PIC18F6525T-I/PT [MICROCHIP]

64/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with A/D; 八十〇分之六十四引脚高性能, 64 KB的增强型闪存微控制器与A / D
PIC18F6525T-I/PT
型号: PIC18F6525T-I/PT
厂家: MICROCHIP    MICROCHIP
描述:

64/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with A/D
八十〇分之六十四引脚高性能, 64 KB的增强型闪存微控制器与A / D

闪存 微控制器
文件: 总396页 (文件大小:6639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F6525/6621/8525/8621  
Data Sheet  
64/80-Pin High-Performance,  
64-Kbyte Enhanced Flash  
Microcontrollers with A/D  
2005 Microchip Technology Inc.  
DS39612B  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,  
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total  
Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39612B-page ii  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
64/80-Pin High-Performance, 64-Kbyte Enhanced Flash  
Microcontrollers with A/D  
High Performance RISC CPU:  
External Memory Interface  
(PIC18F8525/8621 Devices Only):  
• Address capability of up to 2 Mbytes  
• 16-bit interface  
• Linear program memory addressing to 64 Kbytes  
• Linear data memory addressing to 4 Kbytes  
• 1 Kbyte of data EEPROM  
• Up to 10 MIPs operation:  
- DC – 40 MHz osc./clock input  
Analog Features:  
• 10-bit, up to 16-channel Analog-to-Digital  
Converter (A/D):  
- Auto-Acquisition  
- Conversion available during Sleep  
• Programmable 16-level Low-Voltage Detection  
(LVD) module:  
- Supports interrupt on Low-Voltage Detection  
• Programmable Brown-out Reset (BOR)  
• Dual analog comparators:  
- 4 MHz – 10 MHz osc./clock input with PLL active  
• 16-bit wide instructions, 8-bit wide data path  
• Priority levels for interrupts  
• 31-level, software accessible hardware stack  
• 8 x 8 Single-cycle Hardware Multiplier  
Peripheral Features:  
• High current sink/source 25 mA/25 mA  
• Four external interrupt pins  
- Programmable input/output configuration  
• Timer0 module: 8-bit/16-bit timer/counter  
• Timer1 module: 16-bit timer/counter  
• Timer2 module: 8-bit timer/counter  
• Timer3 module: 16-bit timer/counter  
• Timer4 module: 8-bit timer/counter  
• Secondary oscillator clock option – Timer1/Timer3  
• Two Capture/Compare/PWM (CCP) modules:  
- Capture is 16-bit, max. resolution 6.25 ns (TCY/16)  
- Compare is 16-bit, max. resolution 100 ns (TCY)  
- PWM output: 1 to 10-bit PWM resolution  
• Three Enhanced Capture/Compare/PWM (ECCP)  
modules:  
- Same Capture/Compare features as CCP  
- One, two or four PWM outputs  
- Selectable polarity  
- Programmable dead time  
- Auto-Shutdown on external event  
- Auto-Restart  
Special Microcontroller Features:  
• 100,000 erase/write cycle Enhanced Flash  
program memory typical  
• 1,000,000 erase/write cycle Data EEPROM  
memory typical  
• 1 second programming time  
• Flash/Data EEPROM Retention: > 100 years  
• Self-reprogrammable under software control  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Watchdog Timer (WDT) with its own On-Chip  
RC Oscillator for reliable operation  
• Programmable code protection  
• Power-saving Sleep mode  
• Selectable oscillator options including:  
- 4x Phase Lock Loop (PLL) – of primary oscillator  
- Secondary Oscillator (32 kHz) clock input  
• In-Circuit Serial Programming™ (ICSP™) via two pins  
• MPLAB® In-Circuit Debug (ICD 2) via two pins  
• Master Synchronous Serial Port (MSSP) module  
with two modes of operation:  
- 2/3/4-wire SPI™ (supports all 4 SPI modes)  
2
CMOS Technology:  
- I C™ Master and Slave mode  
• Two Enhanced USART modules:  
- Supports RS-485, RS-232 and LIN 1.2  
- Auto-Wake-up on Start bit  
• Low power, high-speed Flash technology  
• Fully static design  
• Wide operating voltage range (2.0V to 5.5V)  
• Industrial and Extended temperature ranges  
- Auto-Baud Rate Detect  
• Parallel Slave Port (PSP) module  
Program Memory  
Data Memory  
10-bit  
A/D  
(ch)  
CCP/  
ECCP  
MSSP/SPI™/  
Timers  
8-bit/16-bit  
Device  
I/O  
PWM  
EUSART  
EMI  
2
#Single-Word SRAM EEPROM  
Instructions (bytes) (bytes)  
Master I C™  
Bytes  
PIC18F6525 48K  
PIC18F6621 64K  
PIC18F8525 48K  
PIC18F8621 64K  
24576  
32768  
24576  
32768  
3840  
3840  
3840  
3840  
1024  
1024  
1024  
1024  
53  
53  
70  
70  
12  
12  
16  
16  
2/3  
2/3  
2/3  
2/3  
14  
14  
14  
14  
Y
Y
Y
Y
2
2
2
2
2/3  
2/3  
2/3  
2/3  
N
N
Y
Y
2005 Microchip Technology Inc.  
DS39612B-page 1  
PIC18F6525/6621/8525/8621  
Pin Diagrams  
64-Pin TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50 49  
RB0/INT0/FLT0  
RB1/INT1  
RE1/WR/P2C  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RE0/RD/P2D  
2
RG0/ECCP3/P3A  
3
RB2/INT2  
RG1/TX2/CK2  
RB3/INT3  
4
RB4/KBI0  
RG2/RX2/DT2  
5
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
RG3/CCP4/P3D  
MCLR/VPP/RG5(2)  
7
6
PIC18F6525  
RG4/CCP5/P1D  
8
VSS  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
PIC18F6621  
9
VDD  
RF7/SS  
10  
11  
12  
13  
14  
15  
16  
RB7/KBI3/PGD  
RC5/SDO  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/ECCP1/P1A  
RF3/AN8  
RF2/AN7/C1OUT  
17 18 19 20 21 22 23 24 25 26 27 28  
29 30 31 32  
Note 1: ECCP2/P2A are multiplexed with RC1 when CCP2MX is set, or RE7 when CCP2MX is not set.  
2: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
DS39612B-page 2  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Pin Diagrams (Cont.’d)  
80-Pin TQFP  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
64 63 62 61  
RH2/A18  
RH3/A19  
RJ2/WRL  
1
2
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
RJ3/WRH  
RE1/AD9/WR/P2C  
RE0/AD8/RD/P2D  
RG0/ECCP3/P3A  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4/P3D  
MCLR/VPP/RG5(3)  
RG4/CCP5/P1D  
VSS  
RB0/INT0/FLT0  
RB1/INT1  
3
4
RB2/INT2  
RB3/INT3/ECCP2(1)/P2A(1)  
5
6
RB4/KBI0  
7
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
8
9
PIC18F8525  
PIC18F8621  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
VDD  
RF7/SS  
RB7/KBI3/PGD  
RC5/SDO  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/ECCP1/P1A  
RJ7/UB  
RF3/AN8  
RF2/AN7/C1OUT  
RH7/AN15/P1B(2)  
RH6/AN14/P1C(2)  
RJ6/LB  
40  
39  
21 22 23 24 25 26 27 28 29 30 31 32 33 34  
35 36 37 38  
Note 1: ECCP2/P2A are multiplexed with RC1 when CCP2MX is set; with RE7 when CCP2MX is cleared and the device  
is configured in Microcontroller mode; or with RB3 when CCP2MX is cleared in all other program memory modes.  
2: P1B/P1C/P3B/P3C are multiplexed with RE6:RE3 when ECCPMX is set and with RH7:RH4 when ECCPMX is  
not set.  
3: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2005 Microchip Technology Inc.  
DS39612B-page 3  
PIC18F6525/6621/8525/8621  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Oscillator Configurations ............................................................................................................................................................ 21  
3.0 Reset.......................................................................................................................................................................................... 29  
4.0 Memory Organization................................................................................................................................................................. 39  
5.0 Flash Program Memory.............................................................................................................................................................. 61  
6.0 External Memory Interface ......................................................................................................................................................... 71  
7.0 Data EEPROM Memory ............................................................................................................................................................. 79  
8.0 8 x 8 Hardware Multiplier............................................................................................................................................................ 85  
9.0 Interrupts .................................................................................................................................................................................... 87  
10.0 I/O Ports ................................................................................................................................................................................... 103  
11.0 Timer0 Module ......................................................................................................................................................................... 131  
12.0 Timer1 Module ......................................................................................................................................................................... 135  
13.0 Timer2 Module ......................................................................................................................................................................... 141  
14.0 Timer3 Module ......................................................................................................................................................................... 143  
15.0 Timer4 Module ......................................................................................................................................................................... 147  
16.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 149  
17.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 157  
18.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 173  
19.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 213  
20.0 10-Bit Analog-to-Digital Converter (A/D) Module ..................................................................................................................... 233  
21.0 Comparator Module.................................................................................................................................................................. 243  
22.0 Comparator Voltage Reference Module................................................................................................................................... 249  
23.0 Low-Voltage Detect.................................................................................................................................................................. 253  
24.0 Special Features of the CPU.................................................................................................................................................... 259  
25.0 Instruction Set Summary.......................................................................................................................................................... 275  
26.0 Development Support............................................................................................................................................................... 317  
27.0 Electrical Characteristics.......................................................................................................................................................... 323  
28.0 DC and AC Characteristics Graphs And Tables ...................................................................................................................... 357  
29.0 Packaging Information.............................................................................................................................................................. 373  
Appendix A: Revision History............................................................................................................................................................. 377  
Appendix B: Device Differences......................................................................................................................................................... 377  
Appendix C: Conversion Considerations ........................................................................................................................................... 378  
Appendix D: Migration From Mid-Range to Enhanced Devices......................................................................................................... 378  
Appendix E: Migration From High-End to Enhanced Devices............................................................................................................ 379  
Index .................................................................................................................................................................................................. 381  
On-Line Support................................................................................................................................................................................. 391  
Systems Information and Upgrade Hot Line ...................................................................................................................................... 391  
Reader Response .............................................................................................................................................................................. 392  
PIC18F6525/6621/8525/8621 Product Identification System ............................................................................................................ 393  
DS39612B-page 4  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our Web site at www.microchip.com/cn to receive the most current information on all of our products.  
2005 Microchip Technology Inc.  
DS39612B-page 5  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 6  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
With the addition of new operating modes, the external  
memory interface offers many new options, including:  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
• Operating the microcontroller entirely from external  
memory  
• PIC18F6525  
• PIC18F6621  
• PIC18F8525  
• PIC18F8621  
• Using combinations of on-chip and external  
memory, up to the 2-Mbyte limit  
• Using external Flash memory for reprogrammable  
application code or large data tables  
• Using external RAM devices for storing large  
amounts of variable data  
This family offers the advantages of all  
PIC18 microcontrollers – namely, high computational  
performance at an economical price – with the addition  
of high-endurance Enhanced Flash program memory.  
The PIC18F6525/6621/8525/8621 family also provides  
an enhanced range of program memory options and  
versatile analog features that make it ideal for complex,  
high performance applications.  
1.1.3  
EASY MIGRATION  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between the 64-pin  
members, between the 80-pin members, or even  
Jumping From 64-pin To 80-pin Devices.  
1.1  
Key Features  
1.1.1  
EXPANDED MEMORY  
The PIC18F6525/6621/8525/8621 family provides  
ample room for application code and includes  
members with 48 Kbytes or 64 Kbytes of code space.  
1.1.4  
OTHER SPECIAL FEATURES  
Communications: The PIC18F6525/6621/8525/  
8621 family incorporates a range of serial communi-  
Other memory features are:  
cation peripherals, including  
2
independent  
Data RAM and Data EEPROM: The PIC18F6525/  
6621/8525/8621 family also provides plenty of room  
for application data. The devices have 3840 bytes of  
data RAM, as well as 1024 bytes of data EEPROM  
for long term retention of nonvolatile data.  
Enhanced USARTs and a Master SSP module capa-  
ble of both SPI and I2C (Master and Slave) modes of  
operation. Also, for PIC18F6525/6621/8525/8621  
devices, one of the general purpose I/O ports can be  
reconfigured as an 8-bit Parallel Slave Port for direct  
processor to processor communications.  
Memory Endurance: The Enhanced Flash cells for  
both program memory and data EEPROM are rated  
to last for many thousands of erase/write cycles –  
up to 100,000 for program memory and 1,000,000  
for EEPROM. Data retention without refresh is  
conservatively estimated to be greater than  
40 years.  
CCP Modules: All devices in the family incorporate  
two Capture/Compare/PWM (CCP) modules and  
three Enhanced CCP (ECCP) modules to maximize  
flexibility in control applications. Up to four different  
time bases may be used to perform several different  
operations at once. Each of the three ECCPs offer  
up to four PWM outputs, allowing for a total of  
12 PWMs. The ECCPs also offer many beneficial  
features, including polarity selection, Programmable  
Dead Time, Auto-Shutdown and Restart and  
Half-Bridge and Full-Bridge Output modes.  
1.1.2  
EXTERNAL MEMORY INTERFACE  
In the unlikely event that 64 Kbytes of program memory  
is inadequate for an application, the PIC18F8525/8621  
members of the family also implement an external  
memory interface. This allows the controller’s internal  
program counter to address a memory space of up to  
2 MBytes, permitting a level of data access that few  
8-bit devices can claim.  
Analog Features: All devices in the family feature  
10-bit A/D converters with up to 16 input channels,  
as well as the ability to perform conversions during  
Sleep mode and auto-acquisition conversions. Also  
included are dual analog comparators with  
programmable input and output configuration, a  
programmable Low-Voltage Detect module and a  
Programmable Brown-out Reset module.  
Self-programmability: These devices can write to  
their own program memory spaces under internal  
software control. By using a bootloader routine  
located in the protected boot block at the top of  
program memory, it becomes possible to create an  
application that can update itself in the field.  
2005 Microchip Technology Inc.  
DS39612B-page 7  
PIC18F6525/6621/8525/8621  
3. I/O ports (7 on PIC18F6525/6621 devices; 9 on  
PIC18F8525/8621 devices).  
1.2  
Details on Individual Family  
Members  
4. External program memory interface (present  
only on PIC18F8525/8621 devices)  
The PIC18F6525/6621/8525/8621 devices are avail-  
able in 64-pin (PIC18F6525/6621) and 80-pin  
(PIC18F8525/8621) packages. They are differentiated  
from each other in four ways:  
All other features for devices in the PIC18F6525/6621/  
8525/8621 family are identical. These are summarized  
in Table 1-1.  
1. Flash program memory (48 Kbytes for  
PIC18F6525/8525 devices; 64 Kbytes for  
PIC18F6621/8621 devices).  
Block diagrams of the PIC18F6525/6621 and  
PIC18F8525/8621 devices are provided in Figure 1-1  
and Figure 1-2, respectively. The pinouts for these  
device families are listed in Table 1-2.  
2. A/D channels (12 for PIC18F6525/6621  
devices; 16 for PIC18F8525/8621 devices).  
TABLE 1-1:  
PIC18F6525/6621/8525/8621 DEVICE FEATURES  
Features  
PIC18F6525  
PIC18F6621  
PIC18F8525  
PIC18F8621  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Data EEPROM Memory (Bytes)  
External Memory Interface  
Interrupt Sources  
DC – 40 MHz  
48K  
DC – 40 MHz  
64K  
DC – 40 MHz  
48K  
DC – 40 MHz  
64K  
24576  
3840  
32768  
3840  
24576  
3840  
32768  
3840  
1024  
1024  
1024  
1024  
No  
No  
Yes  
Yes  
17  
17  
17  
17  
I/O Ports  
Ports A, B, C, D,  
E, F, G  
Ports A, B, C, D, Ports A, B, C, D, E, Ports A, B, C, D, E,  
E, F, G  
F, G, H, J  
F, G, H, J  
Timers  
5
2
3
5
2
3
5
2
3
5
2
3
Capture/Compare/PWM Modules  
Enhanced Capture/Compare/  
PWM Module  
Serial Communications  
MSSP,  
MSSP,  
MSSP,  
MSSP,  
Addressable  
EUSART (2)  
Addressable  
EUSART (2)  
Addressable  
EUSART (2)  
Addressable  
EUSART (2)  
Parallel Communications  
10-bit Analog-to-Digital Module  
Resets (and Delays)  
PSP  
PSP  
PSP  
PSP  
12 input channels 12 input channels 16 input channels 16 input channels  
POR, BOR, POR, BOR, POR, BOR, POR, BOR,  
RESETInstruction, RESETInstruction, RESETInstruction, RESETInstruction,  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Programmable Low-Voltage  
Detect  
Yes  
Yes  
Yes  
Yes  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
Yes  
Yes  
77 Instructions  
64-pin TQFP  
77 Instructions  
64-pin TQFP  
77 Instructions  
80-pin TQFP  
77 Instructions  
80-pin TQFP  
Package  
DS39612B-page 8  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 1-1:  
PIC18F6525/6621 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Table Pointer<21>  
inc/dec logic  
Data Latch  
21  
8
8
Data RAM  
(3.8 Kbytes)  
21  
RA5/AN4/LVDIN  
OSC2/CLKO/RA6  
Address Latch  
12  
20  
PCLATU PCLATH  
PORTB  
RB0/INT0/FLT0  
RB1/INT1  
RB2/INT2  
RB3/INT3  
RB4/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
Address<12>  
PCU PCH PCL  
Program Counter  
4
BSR  
12  
FSR0  
4
Bank 0, F  
Address Latch  
FSR1  
FSR2  
Program Memory  
(48/64 Kbytes)  
31 Level Stack  
12  
Data Latch  
inc/dec  
logic  
PORTC  
Decode  
RC0/T1OSO/T13CKI  
RC1/T1OSI/ECCP2(1)/P2A(1)  
RC2/ECCP1/P1A  
Table Latch  
8
16  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX1/CK1  
RC7/RX1/DT1  
ROM Latch  
IR  
PORTD  
PORTE  
8
RD7/PSP7 :RD0/PSP0  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode and  
Control  
RE0/RD/P2D  
RE1/WR/P2C  
RE2/CS/P2B  
RE3/P3C  
8
3
W
8
BITOP  
8
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
RE4/P3B  
RE5/P1C  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
RE6/P1B  
RE7/ECCP2(1)/P2A(1)  
ALU<8>  
Power-on  
Reset  
PORTF  
RF0/AN5  
8
Watchdog  
Timer  
RF1/AN6/C2OUT  
RF2/AN7/C1OUT  
RF3/AN8  
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
RF4/AN9  
RF5/AN10/CVREF  
RF6/AN11  
Test Mode  
Select  
RF7/SS  
MCLR(2)  
Timer2  
VDD,VSS  
Timer1  
PORTG  
RG0/ECCP3/P3A  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4/P3D  
RG4/CCP5/P1D  
MCLR/VPP/RG5(2)  
Data  
EEPROM  
BOR  
LVD  
10-bit  
ADC  
Timer0  
Timer3  
Timer4  
MSSP  
Comparator ECCP1 ECCP2 ECCP3 CCP4 CCP5  
EUSART1 EUSART2  
Note 1: ECCP2/P2A are multiplexed with RC1 when CCP2MX is set, or RE7 when CCP2MX is not set.  
2: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2005 Microchip Technology Inc.  
DS39612B-page 9  
PIC18F6525/6621/8525/8621  
FIGURE 1-2:  
PIC18F8525/8621 BLOCK DIAGRAM  
PORTA  
PORTB  
Data Bus<8>  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/LVDIN  
OSC2/CLKO/RA6  
Table Pointer<21>  
inc/dec logic  
Data Latch  
21  
8
8
Data RAM  
(3.8 Kbytes)  
21  
Address Latch  
12  
RB0/INT0/FLT0  
RB1/INT1  
20  
PCLATU PCLATH  
RB2/INT2  
Address<12>  
RB3/INT3/ECCP2(1)/P2A(1)  
RB4/KBI0  
PCU PCH PCL  
Program Counter  
12  
FSR0  
4
4
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
BSR  
Bank0, F  
Address Latch  
FSR1  
FSR2  
Program Memory  
(48/64 Kbytes)  
31 Level Stack  
12  
PORTC  
RC0/T1OSO/T13CKI  
RC1/T1OSI/ECCP2(1)/P2A(1)  
RC2/ECCP1/P1A  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX1/CK1  
RC7/RX1/DT1  
Data Latch  
inc/dec  
logic  
Decode  
Table Latch  
8
16  
ROM Latch  
IR  
PORTD  
PORTE  
(4)  
RD7/AD7/PSP7:  
RD0/AD0/PSP0(4)  
AD15:AD0, A19:16  
8
RE0/AD8/RD/P2D(4)  
RE1/AD9/WR/P2C(4)  
RE2/AD10/CS/P2B(4)  
RE3/AD11/P3C(2,4)  
RE4/AD12/P3B(2,4)  
RE5/AD13/P1C(2,4)  
RE6/AD14/P1B(2,4)  
RE7/AD15/ECCP2(1)/P2A(1,4)  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode and  
Control  
8
3
W
8
BITOP  
8
8
Power-up  
OSC2/CLKO  
OSC1/CLKI  
Timer  
PORTF  
Timing  
Oscillator  
Start-up Timer  
RF0/AN5  
8
Generation  
RF1/AN6/C2OUT  
RF2/AN7/C1OUT  
RF3/AN8  
ALU<8>  
Power-on  
Reset  
RF4/AN9  
RF5/AN10/CVREF  
RF6/AN11  
8
Watchdog  
Timer  
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
RF7/SS  
PORTG  
Test Mode  
Select  
RG0/ECCP3/P3A  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4/P3D  
RG4/CCP5/P1D  
MCLR/VPP/RG5(3)  
MCLR(3)  
Timer2  
VDD, VSS  
Timer1  
PORTH  
PORTJ  
RH0/A16:RH3/A19(4)  
RH4/AN12/P3C(2)  
RH5/AN13/P3B(2)  
RH6/AN14/P1C(2)  
RH7/AN15/P1B(2)  
Data  
EEPROM  
BOR  
LVD  
10-bit  
Timer4  
Timer0  
Timer3  
ADC  
RJ0/ALE  
RJ1/OE  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
RJ6/LB  
MSSP  
Comparator ECCP1 ECCP2 ECCP3 CCP4 CCP5  
EUSART1 EUSART2  
RJ7/UB  
Note 1: ECCP2/P2A are multiplexed with RC1 when CCP2MX is set; with RE7 when CCP2MX is cleared and the device is configured in  
Microcontroller mode; or with RB3 when CCP2MX is cleared in all other program memory modes.  
2: P1B/P1C/P3B/P3C are multiplexed with RE6:RE3 when ECCPMX is set and with RH7:RH4 when ECCPMX is not set.  
3: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
4: External memory interface pins are multiplexed with PORTD (AD7:AD0), PORTE (AD15:AD8) and PORTH (A19:A16).  
DS39612B-page 10  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
(9)  
MCLR/VPP/RG5  
MCLR  
7
9
Master Clear (input) or programming  
voltage (output).  
I
ST  
Master Clear (Reset) input. This pin is an  
active-low Reset to the device.  
Programming voltage input.  
Digital input.  
VPP  
RG5  
P
I
ST  
OSC1/CLKI  
OSC1  
39  
49  
50  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock  
source input. ST buffer when configured  
in RC mode; otherwise CMOS.  
I
I
CMOS/ST  
CMOS  
CLKI  
External clock source input. Always  
associated with pin function OSC1 (see  
OSC1/CLKI, OSC2/CLKO pins).  
OSC2/CLKO/RA6  
OSC2  
40  
Oscillator crystal or clock output.  
Oscillator crystal output. Connects to  
crystal or resonator in Crystal oscillator  
mode.  
O
O
CLKO  
RA6  
In RC mode, OSC2 pin outputs CLKO  
which has 1/4 the frequency of OSC1  
and denotes the instruction cycle rate.  
General purpose I/O pin.  
I/O  
TTL  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2005 Microchip Technology Inc.  
DS39612B-page 11  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
24  
30  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
23  
22  
29  
28  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
21  
28  
27  
27  
34  
33  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D reference voltage (high) input.  
AN3  
VREF+  
RA4/T0CKI  
RA4  
I/O  
I
ST/OD  
ST  
Digital I/O – Open-drain when configured  
as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/LVDIN  
RA5  
I/O  
TTL  
Digital I/O.  
AN4  
LVDIN  
I
I
Analog  
Analog  
Analog input 4.  
Low-Voltage Detect input.  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
DS39612B-page 12  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
PORTB is a bidirectional I/O port. PORTB  
can be software programmed for internal  
weak pull-ups on all inputs.  
RB0/INT0/FLT0  
RB0  
48  
58  
I/O  
I
I
TTL  
ST  
ST  
Digital I/O.  
External interrupt 0.  
PWM Fault input for ECCP1.  
INT0  
FLT0  
RB1/INT1  
RB1  
47  
46  
45  
57  
56  
55  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3/ECCP2/P2A  
RB3  
INT3  
ECCP2  
I/O  
I/O  
I/O  
TTL  
ST  
ST  
Digital I/O.  
External interrupt 3.  
Enhanced Capture 2 input, Compare 2  
output, PWM2 output.  
ECCP2 output P2A.  
(1)  
(1)  
P2A  
O
RB4/KBI0  
RB4  
44  
43  
54  
53  
I/O  
I
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
ST  
ST  
Digital I/O.  
KBI1  
PGM  
Interrupt-on-change pin.  
Low-Voltage ICSP™ programming  
enable pin.  
RB6/KBI2/PGC  
RB6  
42  
37  
52  
47  
I/O  
I
I/O  
TTL  
ST  
ST  
Digital I/O.  
KBI2  
PGC  
Interrupt-on-change pin.  
In-Circuit Debugger and  
ICSP programming clock.  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
ST  
ST  
Digital I/O.  
KBI3  
PGD  
Interrupt-on-change pin.  
In-Circuit Debugger and  
ICSP programming data.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2005 Microchip Technology Inc.  
DS39612B-page 13  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
30  
36  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/ECCP2/P2A  
29  
35  
RC1  
T1OSI  
ECCP2  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Enhanced Capture 2 input, Compare 2  
output, PWM 2 output.  
ECCP2 output P2A.  
(2)  
(2)  
P2A  
O
RC2/ECCP1/P1A  
RC2  
33  
34  
43  
44  
I/O  
I/O  
ST  
ST  
Digital I/O.  
ECCP1  
Enhanced Capture 1 input, Compare 1  
output, PWM 1 output.  
ECCP1 output P1A.  
P1A  
O
RC3/SCK/SCL  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Synchronous serial clock input/output for  
SPI™ mode.  
SCK  
SCL  
I/O  
ST  
Synchronous serial clock input/output for  
I C™ mode.  
2
RC4/SDI/SDA  
RC4  
35  
45  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI  
SDA  
SPI data in.  
2
I C data I/O.  
RC5/SDO  
RC5  
36  
31  
46  
37  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX1/CK1  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX1  
CK1  
USART1 asynchronous transmit.  
USART1 synchronous clock  
(see RX1/DT1).  
RC7/RX1/DT1  
RC7  
32  
38  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX1  
DT1  
USART1 asynchronous receive.  
USART1 synchronous data  
(see TX1/CK1).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
DS39612B-page 14  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
PORTD is a bidirectional I/O port. These pins  
have TTL input buffers when external  
memory is enabled.  
RD0/AD0/PSP0  
RD0  
58  
55  
54  
53  
52  
51  
50  
49  
72  
69  
68  
67  
66  
65  
64  
63  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 0.  
Parallel Slave Port data.  
(3)  
AD0  
PSP0  
RD1/AD1/PSP1  
RD1  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 1.  
Parallel Slave Port data.  
(3)  
AD1  
PSP1  
RD2/AD2/PSP2  
RD2  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 2.  
Parallel Slave Port data.  
(3)  
AD2  
PSP2  
RD3/AD3/PSP3  
RD3  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 3.  
Parallel Slave Port data.  
(3)  
AD3  
PSP3  
RD4/AD4/PSP4  
RD4  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 4.  
Parallel Slave Port data.  
(3)  
AD4  
PSP4  
RD5/AD5/PSP5  
RD5  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 5.  
Parallel Slave Port data.  
(3)  
AD5  
PSP5  
RD6/AD6/PSP6  
RD6  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 6.  
Parallel Slave Port data.  
(3)  
AD6  
PSP6  
RD7/AD7/PSP7  
RD7  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 7.  
Parallel Slave Port data.  
(3)  
AD7  
PSP7  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2005 Microchip Technology Inc.  
DS39612B-page 15  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
PORTE is a bidirectional I/O port.  
RE0/AD8/RD/P2D  
RE0  
2
4
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
(3)  
AD8  
RD  
P2D  
External memory address/data 8.  
Read control for Parallel Slave Port.  
ECCP2 output P2D.  
O
RE1/AD9/WR/P2C  
RE1  
1
3
I/O  
I/O  
I
ST  
TTL  
TTL  
ST  
Digital I/O.  
(3)  
AD9  
WR  
P2C  
External memory address/data 9.  
Write control for Parallel Slave Port.  
ECCP2 output P2C.  
O
RE2/AD10/CS/P2B  
RE2  
64  
78  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
(3)  
AD10  
CS  
P2B  
External memory address/data 10.  
Chip select control for Parallel Slave Port.  
ECCP2 output P2B.  
O
RE3/AD11/P3C  
RE3  
63  
62  
61  
60  
59  
77  
76  
75  
74  
73  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 11.  
ECCP3 output P3C.  
(3)  
AD11  
(4)  
P3C  
RE4/AD12/P3B  
RE4  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 12.  
ECCP3 output P3B.  
(3)  
AD12  
P3B  
(4)  
RE5/AD13/P1C  
RE5  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 13.  
ECCP1 output P1C.  
(3)  
AD13  
P1C  
(4)  
RE6/AD14/P1B  
RE6  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address/data 14.  
ECCP1 output P1B.  
(3)  
AD14  
P1B  
(4)  
RE7/AD15/ECCP2/P2A  
RE7  
I/O  
I/O  
I/O  
ST  
TTL  
ST  
Digital I/O.  
(3)  
AD15  
External memory address/data 15.  
Enhanced Capture 2 input, Compare 2  
output, PWM 2 output.  
(5)  
ECCP2  
(5)  
P2A  
O
ECCP2 output P2A.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
DS39612B-page 16  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
PORTF is a bidirectional I/O port.  
RF0/AN5  
RF0  
18  
24  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 5.  
AN5  
RF1/AN6/C2OUT  
RF1  
17  
16  
23  
18  
I/O  
I
O
ST  
Analog  
ST  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
I/O  
I
O
ST  
Analog  
ST  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8  
RF1  
15  
14  
13  
17  
16  
15  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RF4/AN9  
RF1  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RF5/AN10/CVREF  
RF1  
I/O  
I
O
ST  
Analog  
Analog  
Digital I/O.  
Analog input 10.  
Comparator VREF output.  
AN10  
CVREF  
RF6/AN11  
RF6  
12  
11  
14  
13  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
RF7/SS  
RF7  
I/O  
I
ST  
TTL  
Digital I/O.  
SPI™ slave select input.  
SS  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2005 Microchip Technology Inc.  
DS39612B-page 17  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
PORTG is a bidirectional I/O port.  
RG0/ECCP3/P3A  
RG0  
3
5
I/O  
I/O  
ST  
ST  
Digital I/O.  
ECCP3  
Enhanced Capture 3 input, Compare 3  
output, PWM 3 output.  
ECCP3 output P3A.  
P3A  
O
RG1/TX2/CK2  
RG1  
4
5
6
8
7
6
7
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
USART2 asynchronous transmit.  
USART2 synchronous clock  
(see RX2/DT2).  
RG2/RX2/DT2  
RG2  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX2  
DT2  
USART2 asynchronous receive.  
USART2 synchronous data  
(see TX2/CK2).  
RG3/CCP4/P3D  
RG3  
8
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture 4 input, Compare 4 output,  
PWM 4 output.  
CCP4  
P3D  
O
ECCP3 output P3D.  
RG4/CCP5/P1D  
RG4  
10  
9
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture 5 input, Compare 5 output,  
PWM 5 output.  
CCP5  
P1D  
RG5  
O
ECCP1 output P1D.  
See MCLR/VPP/RG5 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
DS39612B-page 18  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
(6)  
PORTH is a bidirectional I/O port  
Digital I/O.  
.
RH0/A16  
RH0  
79  
I/O  
O
ST  
TTL  
A16  
External memory address 16.  
RH1/A17  
RH1  
80  
1
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 17.  
A17  
RH2/A18  
RH2  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 18.  
A18  
RH3/A19  
RH3  
2
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 19.  
A19  
RH4/AN12/P3C  
RH4  
22  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 12.  
ECCP3 output P3C.  
AN12  
(7)  
P3C  
RH5/AN13/P3B  
RH5  
21  
20  
19  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 13.  
ECCP3 output P3B.  
AN13  
(7)  
P3B  
RH6/AN14/P1C  
RH6  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 14.  
ECCP1 output P1C.  
AN14  
(7)  
P1C  
RH7/AN15/P1B  
RH7  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 15.  
ECCP1 output P1B.  
AN15  
(7)  
P1B  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2005 Microchip Technology Inc.  
DS39612B-page 19  
PIC18F6525/6621/8525/8621  
TABLE 1-2:  
PIC18F6525/6621/8525/8621 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PIC18F6X2X  
PIC18F8X2X  
(6)  
PORTJ is a bidirectional I/O port  
Digital I/O.  
.
RJ0/ALE  
RJ0  
62  
I/O  
O
ST  
TTL  
ALE  
External memory address latch enable.  
RJ1/OE  
RJ1  
61  
60  
59  
39  
40  
41  
42  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory output enable.  
OE  
RJ2/WRL  
RJ2  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory write low control.  
WRL  
RJ3/WRH  
RJ3  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory write high control.  
WRH  
RJ4/BA0  
RJ4  
I/O  
O
ST  
TTL  
Digital I/O.  
System bus byte address 0 control.  
BA0  
RJ5/CE  
RJ5  
I/O  
O
ST  
TTL  
Digital I/O  
External memory access indicator.  
CE  
RJ6/LB  
RJ6  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory low byte select.  
LB  
RJ7/UB  
RJ7  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory high byte select.  
UB  
VSS  
VDD  
9, 25,  
41, 56  
11, 31,  
51, 70  
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
10, 26,  
38, 57  
12, 32,  
48, 71  
P
(8)  
AVSS  
20  
19  
26  
25  
P
P
Ground reference for analog modules.  
Positive supply for analog modules.  
(8)  
AVDD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Input  
= Power  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
P
O
= Output  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX (CONFIG3H<0>) is not set (all  
Program Memory modes except Microcontroller).  
2: Default assignment for ECCP2/P2A when CCP2MX is set (all devices).  
3: External memory interface functions are only available on PIC18F8525/8621 devices.  
4: Default assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is set and for  
all PIC18F6525/6621 devices.  
5: Alternate assignment for ECCP2/P2A in PIC18F8525/8621 devices when CCP2MX is not set (Microcontroller mode).  
6: PORTH and PORTJ (and their multiplexed functions) are only available on PIC18F8525/8621 devices.  
7: Alternate assignment for P1B/P1C/P3B/P3C for PIC18F8525/8621 devices when ECCPMX (CONFIG3H<1>) is not set.  
8: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of  
the part in user or ICSP™ modes. See parameter D001 for details.  
9: RG5 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
DS39612B-page 20  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
CONFIGURATION)  
Oscillator Types  
(1)  
C1  
OSC1  
The PIC18F6525/6621/8525/8621 devices can be  
operated in twelve different oscillator modes. The user  
can program four configuration bits (FOSC3, FOSC2,  
FOSC1 and FOSC0) to select one of these eight  
modes:  
To  
Internal  
Logic  
(3)  
RF  
XTAL  
Sleep  
(2)  
RS  
1. LP  
2. XT  
3. HS  
4. RC  
5. EC  
6. ECIO  
Low-Power Crystal  
(1)  
C2  
PIC18F6X2X/8X2X  
Crystal/Resonator  
OSC2  
High-Speed Crystal/Resonator  
External Resistor/Capacitor  
External Clock  
Note 1: See Table 2-1 and Table 2-2 for  
recommended values of C1 and C2.  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
External Clock with I/O pin  
enabled  
3: RF varies with the oscillator mode chosen.  
7. HS+PLL  
8. RCIO  
High-Speed Crystal/Resonator  
with PLL enabled  
External Resistor/Capacitor with  
I/O pin enabled  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
9. ECIO+SPLL External Clock with software  
controlled PLL  
Ranges Tested:  
10. ECIO+PLL External Clock with PLL and I/O  
pin enabled  
Mode  
Freq  
C1  
C2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-68 pF  
15-68 pF  
68-100 pF  
15-68 pF  
15-68 pF  
11. HS+SPLL  
High-Speed Crystal/Resonator  
with software control  
12. RCIO  
External Resistor/Capacitor with  
I/O pin enabled  
HS  
8.0 MHz  
16.0 MHz  
10-68 pF  
10-22 pF  
10-68 pF  
10-22 pF  
These values are for design guidance only.  
See notes following this table.  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
Resonators Used:  
In XT, LP, HS, HS+PLL or HS+SPLL Oscillator modes, a  
crystal or ceramic resonator is connected to the OSC1  
and OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections.  
2 kHz  
8 MHz  
4 MHz  
16 MHz  
Note 1: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
The PIC18F6525/6621/8525/8621 oscillator design  
requires the use of a parallel cut crystal.  
Note:  
Use of a series cut crystal may give a  
frequency out of the crystal manufacturers  
specifications.  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use high  
gain HS mode, try a lower frequency  
resonator or switch to a crystal oscillator.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components or  
verify oscillator performance.  
2005 Microchip Technology Inc.  
DS39612B-page 21  
PIC18F6525/6621/8525/8621  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
2.3  
RC Oscillator  
For timing insensitive applications, the “RC” and  
“RCIO” device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT)  
values and the operating temperature. In addition to  
this, the oscillator frequency will vary from unit to unit  
due to normal process parameter variation. Further-  
more, the difference in lead frame capacitance  
between package types will also affect the oscillation  
frequency, especially for low CEXT values. The user  
also needs to take into account variation due to  
tolerance of external R and C components used.  
Figure 2-3 shows how the R/C combination is  
connected.  
Ranges Tested:  
Mode  
Freq  
C1  
C2  
LP  
XT  
32.0 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
25.0 MHz  
33 pF  
47-68 pF  
15 pF  
33 pF  
47-68 pF  
15 pF  
15 pF  
15 pF  
HS  
15 pF  
15 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
These values are for design guidance only.  
See notes following this table.  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
Crystals Used  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
20 MHz  
FIGURE 2-3:  
RC OSCILLATOR MODE  
VDD  
Note 1: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
REXT  
Internal  
OSC1  
Clock  
CEXT  
VSS  
2: RS (see Figure 2-1) may be required in  
HS mode, as well as XT mode, to avoid  
overdriving crystals with low drive level  
specification.  
PIC18F6X2X/8X2X  
OSC2/CLKO  
FOSC/4  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components or  
verify oscillator performance.  
CEXT > 20 pF  
The RCIO Oscillator mode functions like the RC mode  
except that the OSC2 pin becomes an additional  
general purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6).  
An external clock source may also be connected to the  
OSC1 pin in the HS, XT and LP modes as shown in  
Figure 2-2.  
FIGURE 2-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSCILLATOR  
CONFIGURATION)  
OSC1  
Clock from  
Ext. System  
PIC18F6X2X/8X2X  
OSC2  
Open  
DS39612B-page 22  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
2.4  
External Clock Input  
2.5  
Phase Locked Loop (PLL)  
The EC, ECIO, EC+PLL and EC+SPLL Oscillator  
modes require an external clock source to be con-  
nected to the OSC1 pin. The feedback device between  
OSC1 and OSC2 is turned off in these modes to save  
current. There is a maximum 1.5 µs start-up required  
after a Power-on Reset or wake-up from Sleep mode.  
A Phase Locked Loop circuit is provided as a  
programmable option for users that want to multiply  
the frequency of the incoming oscillator signal by 4.  
For an input clock frequency of 10 MHz, the internal  
clock frequency will be multiplied to 40 MHz. This is  
useful for customers who are concerned with EMI due  
to high-frequency crystals.  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-4 shows the pin connections for the EC  
Oscillator mode.  
The PLL can only be enabled when the oscillator  
configuration bits are programmed for High-Speed  
Oscillator or External Clock mode. If they are  
programmed for any other mode, the PLL is not  
enabled and the system clock will come directly from  
OSC1. There are two types of PLL modes: Software  
Controlled PLL and Configuration Bits Controlled PLL.  
In Software Controlled PLL mode, PIC18F6525/6621/  
8525/8621 executes at regular clock frequency after all  
Reset conditions. During execution, the application can  
enable PLL and switch to 4x clock frequency operation  
by setting the PLLEN bit in the OSCCON register. In  
Configuration Bits Controlled PLL, the PLL operation  
cannot be changed “on-the-fly”. To enable or disable it,  
the controller must either cycle through a Power-on  
Reset, or switch the clock source from the main  
oscillator to the Timer1 oscillator and back again (see  
Section 2.6 “Oscillator Switching Feature” for  
details).  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION  
(EC CONFIGURATION)  
OSC1  
Clock from  
Ext. System  
PIC18F6X2X/8X2X  
OSC2  
FOSC/4  
The ECIO Oscillator mode functions like the EC mode  
except that the OSC2 pin becomes an additional  
general purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-5 shows the pin connections  
for the ECIO Oscillator mode.  
The type of PLL is selected by programming  
FOSC<3:0> configuration bits in the CONFIG1H  
Configuration register. The oscillator mode is specified  
during device programming.  
FIGURE 2-5:  
EXTERNAL CLOCK INPUT  
OPERATION  
(ECIOCONFIGURATION)  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out that is called TPLL.  
OSC1  
Clock from  
Ext. System  
PIC18F6X2X/8X2X  
I/O (OSC2)  
RA6  
FIGURE 2-6:  
PLL BLOCK DIAGRAM  
PLL Enable  
Phase  
Comparator  
FIN  
Loop  
Filter  
VCO  
SYSCLK  
FOUT  
Divide by 4  
2005 Microchip Technology Inc.  
DS39612B-page 23  
PIC18F6525/6621/8525/8621  
Figure 2-7 shows a block diagram of the system clock  
sources. The clock switching feature is enabled by  
programming the Oscillator Switching Enable  
(OSCSEN) bit in the CONFIG1H Configuration register  
to a ‘0’. Clock switching is disabled in an erased device.  
See Section 12.0 “Timer1 Module” for further details  
of the Timer1 oscillator. See Section 24.0 “Special  
Features of the CPU” for Configuration register  
details.  
2.6  
Oscillator Switching Feature  
The PIC18F6525/6621/8525/8621 devices include a  
feature that allows the system clock source to be  
switched from the main oscillator to an alternate low  
frequency clock source. For the PIC18F6525/6621/  
8525/8621 devices, this alternate clock source is the  
Timer1 oscillator. If a low-frequency crystal (32 kHz, for  
example) has been attached to the Timer1 oscillator  
pins and the Timer1 oscillator has been enabled, the  
device can switch to a low-power execution mode.  
FIGURE 2-7:  
DEVICE CLOCK SOURCES  
PIC18F6X2X/8X2X  
Main Oscillator  
OSC2  
TOSC/4  
4 x PLL  
Sleep  
TOSC  
TT1P  
TSCLK  
OSC1  
Timer1 Oscillator  
T1OSO  
T1OSCEN  
Enable  
Oscillator  
Clock  
Source  
T1OSI  
Clock Source Option  
for Other Modules  
DS39612B-page 24  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
Note:  
The Timer1 oscillator must be enabled  
and operating to switch the system clock  
source. The Timer1 oscillator is enabled  
by setting the T1OSCEN bit in the Timer1  
Control register (T1CON). If the Timer1  
oscillator is not enabled, then any write to  
the SCS0 bit will be ignored (SCS0 bit  
forced cleared) and the main oscillator will  
continue to be the system clock source.  
The system clock source switching is performed under  
software control. The system clock switch bits,  
SCS1:SCS0 (OSCCON<1:0>), control the clock  
switching. When the SCS0 bit is ‘0’, the system clock  
source comes from the main oscillator that is selected  
by the FOSC configuration bits in the CONFIG1H  
Configuration register. When the SCS0 bit is set, the  
system clock source will come from the Timer1  
oscillator. The SCS0 bit is cleared on all forms of Reset.  
When the FOSC bits are programmed for Software PLL  
mode, the SCS1 bit can be used to select between  
primary oscillator/clock and PLL output. The SCS1 bit  
will only have an effect on the system clock if the PLL  
is enabled (PLLEN = 1) and locked (LOCK = 1), else it  
will be forced cleared. When programmed with  
Configuration Controlled PLL, the SCS1 bit will be  
forced clear.  
REGISTER 2-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LOCK  
R/W-0  
PLLEN(1)  
R/W-0  
SCS1  
R/W-0  
SCS0(2)  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
bit 2  
bit 1  
LOCK: Phase Lock Loop Lock Status bit  
1= Phase Lock Loop output is stable as system clock  
0= Phase Lock Loop output is not stable and output cannot be used as system clock  
PLLEN: Phase Lock Loop Enable bit(1)  
1= Enable Phase Lock Loop output as system clock  
0= Disable Phase Lock Loop  
SCS1: System Clock Switch bit 1  
When PLLEN and LOCK bits are set:  
1= Use PLL output  
0= Use primary oscillator/clock input pin  
When PLLEN or LOCK bit is cleared:  
Bit is forced clear.  
bit 0  
SCS0: System Clock Switch bit 0(2)  
When OSCSEN configuration bit = 0and T1OSCEN bit = 1:  
1= Switch to Timer1 oscillator/clock pin  
0= Use primary oscillator/clock input pin  
When OSCSEN and T1OSCEN are in other states:  
Bit is forced clear.  
Note 1: PLLEN bit is forced set when configured for ECIO+PLL and HS+PLL modes. This  
bit is writable for ECIO+SPLL and HS+SPLL modes only; forced cleared for all other  
oscillator modes.  
2: The setting of SCS0 = 1supersedes SCS1 = 1.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 25  
PIC18F6525/6621/8525/8621  
A timing diagram indicating the transition from the main  
oscillator to the Timer1 oscillator is shown in Figure 2-8.  
The Timer1 oscillator is assumed to be running all the  
time. After the SCS0 bit is set, the processor is frozen at  
the next occurring Q1 cycle. After eight synchronization  
cycles are counted from the Timer1 oscillator, operation  
resumes. No additional delays are required after the  
synchronization cycles.  
2.6.2  
OSCILLATOR TRANSITIONS  
PIC18F6525/6621/8525/8621 devices contain circuitry  
to prevent “glitches” when switching between oscillator  
sources. Essentially, the circuitry waits for eight rising  
edges of the clock source that the processor is switch-  
ing to. This ensures that the new clock source is stable  
and that its pulse width will not be less than the shortest  
pulse width of the two clock sources.  
FIGURE 2-8:  
TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q1 Q2 Q3 Q4 Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
TT1P  
2
1
3
4
5
6
7
8
T1OSI  
OSC1  
TSCS  
Internal  
System  
Clock  
TOSC  
TDLY  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note: TDLY is the delay from SCS high to first count of transition circuit.  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
If the main oscillator is configured for an external  
crystal (HS, XT, LP), then the transition will take place  
after an oscillator start-up time (TOST) has occurred. A  
timing diagram, indicating the transition from the  
Timer1 oscillator to the main oscillator for HS, XT and  
LP modes, is shown in Figure 2-9.  
FIGURE 2-9:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS, XT, LP)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q3  
Q4  
Q1  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
TOSC  
Internal  
System Clock  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 6  
Note: TOST = 1024 TOSC (drawing not to scale).  
DS39612B-page 26  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
If the main oscillator is configured for HS mode with  
PLL active, an oscillator start-up time (TOST) plus an  
additional PLL time-out (TPLL) will occur. The PLL time-  
out is typically 2 ms and allows the PLL to lock to the  
main oscillator frequency. A timing diagram, indicating  
the transition from the Timer1 oscillator to the main  
oscillator for HS+PLL mode, is shown in Figure 2-10.  
FIGURE 2-10:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1  
(HS WITH PLL ACTIVE, SCS1 = 1)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
TOSC  
1
TSCS  
PLL Clock  
Input  
2
3
4
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 4  
Note: TOST = 1024 TOSC (drawing not to scale).  
If the main oscillator is configured for EC mode with PLL  
active, only PLL time-out (TPLL) will occur. The PLL time-  
out is typically 2 ms and allows the PLL to lock to the  
main oscillator frequency. A timing diagram, indicating  
the transition from the Timer1 oscillator to the main  
oscillator for EC with PLL active, is shown in Figure 2-11.  
FIGURE 2-11:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1  
(EC WITH PLL ACTIVE, SCS1 = 1)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TPLL  
TOSC  
TSCS  
4
PLL Clock  
Input  
1
2
3
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC + 4  
PC  
PC + 2  
2005 Microchip Technology Inc.  
DS39612B-page 27  
PIC18F6525/6621/8525/8621  
If the main oscillator is configured in the RC, RCIO, EC  
or ECIO modes, there is no oscillator start-up time-out.  
Operation will resume after eight cycles of the main  
oscillator have been counted. A timing diagram, indi-  
cating the transition from the Timer1 oscillator to the  
main oscillator for RC, RCIO, EC and ECIO modes, is  
shown in Figure 2-12.  
FIGURE 2-12:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
TT1P  
TOSC  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
TSCS  
Program  
Counter  
PC + 2  
PC  
PC + 4  
Note:  
RC Oscillator mode assumed.  
switching currents have been removed, Sleep mode  
achieves the lowest current consumption of the device  
(only leakage currents). Enabling any on-chip feature  
that will operate during Sleep will increase the current  
consumed during Sleep. The user can wake from  
Sleep through external Reset, Watchdog Timer Reset,  
or through an interrupt.  
2.7  
Effects of Sleep Mode on the  
On-Chip Oscillator  
When the device executes a SLEEPinstruction, the on-  
chip clocks and oscillator are turned off and the device  
is held at the beginning of an instruction cycle (Q1  
state). With the oscillator off, the OSC1 and OSC2  
signals will stop oscillating. Since all the transistor  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
Oscillator Mode  
OSC2 Pin  
RC  
Floating, external resistor should pull high  
At logic low  
RCIO  
Floating, external resistor should pull high  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
At logic low  
ECIO  
Floating  
Floating  
EC  
LP, XT and HS  
Feedback inverter disabled at  
quiescent voltage level  
Feedback inverter disabled at  
quiescent voltage level  
Note:  
See Table 3-1 in Section 3.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
With the PLL enabled (HS+PLL and EC+PLL oscillator  
2.8  
Power-up Delays  
mode), the time-out sequence following a Power-on  
Reset is different from other oscillator modes. The  
time-out sequence is as follows: First, the PWRT time-  
out is invoked after a POR time delay has expired.  
Then, the Oscillator Start-up Timer (OST) is invoked.  
However, this is still not a sufficient amount of time to  
allow the PLL to lock at high frequencies. The PWRT  
timer is used to provide an additional fixed 2 ms  
(nominal) time-out to allow the PLL ample time to lock  
to the incoming clock frequency.  
Power-up delays are controlled by two timers so that no  
external Reset circuitry is required for most  
applications. The delays ensure that the device is kept  
in Reset until the device power supply and clock are  
stable. For additional information on Reset operation,  
see Section 3.0 “Reset”.  
The first timer is the Power-up Timer (PWRT) which  
optionally provides a fixed delay of 72 ms (nominal) on  
power-up only (POR and BOR). The second timer is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in Reset until the crystal oscillator is stable.  
DS39612B-page 28  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Most registers are not affected by a WDT wake-up  
since this is viewed as the resumption of normal oper-  
3.0  
RESET  
The PIC18F6525/6621/8525/8621 devices differentiate  
between various kinds of Reset:  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR, are set or cleared differently in different  
Reset situations as indicated in Table 3-2. These bits  
are used in software to determine the nature of the  
Reset. See Table 3-3 for a full description of the Reset  
states of all registers.  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses. The MCLR pin is not driven low by  
any internal Resets, including the WDT.  
g) Stack Full Reset  
h) Stack Underflow Reset  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” on Power-on Reset, MCLR, WDT Reset, Brown-  
out Reset, MCLR Reset during Sleep and by the  
RESETinstruction.  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESETInstruction  
Stack Full/Underflow Reset  
Stack  
Pointer  
External Reset  
WDT  
Time-out  
Reset  
MCLR  
WDT  
Module  
Sleep  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
BOR  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
Q
R
OSC1  
PWRT  
10-bit Ripple Counter  
On-chip  
RC OSC(1)  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 3-1 for time-out situations.  
2005 Microchip Technology Inc.  
DS39612B-page 29  
PIC18F6525/6621/8525/8621  
3.1  
Power-on Reset (POR)  
3.3  
Oscillator Start-up Timer (OST)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected. To take advantage of the POR  
circuitry, tie the MCLR pin through a 1 kto 10 kΩ  
resistor to VDD. This will eliminate external RC  
components usually needed to create a Power-on  
Reset delay. A minimum rise rate for VDD is specified  
(parameter D004). For a slow rise time, see Figure 3-2.  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delays after the  
PWRT delay is over (parameter 32). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset, or wake-up from  
Sleep.  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters  
(voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
3.4  
PLL Lock Time-out  
With the PLL enabled, the time-out sequence following  
a Power-on Reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to pro-  
vide a fixed time-out that is sufficient for the PLL to lock  
to the main oscillator frequency. This PLL lock time-out  
(TPLL) is typically 2 ms and follows the oscillator  
start-up time-out.  
FIGURE 3-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
VDD  
3.5  
Brown-out Reset (BOR)  
A configuration bit, BOR, can disable (if clear/  
programmed) or enable (if set) the Brown-out Reset  
circuitry. If VDD falls below parameter D005 for greater  
than parameter 35, the brown-out situation will reset  
the chip. A Reset may not occur if VDD falls below  
parameter D005 for less than parameter 35. The chip  
will remain in Brown-out Reset until VDD rises above  
BVDD. If the Power-up Timer is enabled, it will be  
invoked after VDD rises above BVDD; it then will keep  
the chip in Reset for an additional time delay  
(parameter 33). If VDD drops below BVDD while the  
Power-up Timer is running, the chip will go back into a  
Brown-out Reset and the Power-up Timer will be  
initialized. Once VDD rises above BVDD, the Power-up  
Timer will execute the additional time delay.  
D
R
R1  
MCLR  
PIC18F6X2X/8X2X  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kis recommended to make sure  
that the voltage drop across R does not  
violate the device’s electrical specification.  
3: R1 = 1 kto 10 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin breakdown,  
due to Electrostatic Discharge (ESD) or  
Electrical Overstress (EOS).  
3.6  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired. Then, OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and  
Figure 3-7 depict time-out sequences on power-up.  
3.2  
Power-up Timer (PWRT)  
The Power-up Timer provides a fixed nominal time-out  
(parameter 33) only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in Reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an  
acceptable level. A configuration bit is provided to  
enable/disable the PWRT.  
Since the time-outs occur from the POR pulse, the  
time-outs will expire if MCLR is kept low long enough.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes or to  
synchronize more than one PIC18F6525/6621/8525/  
8621 device operating in parallel.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameter 33 for details.  
Table 3-2 shows the Reset conditions for some Special  
Function Registers, while Table 3-3 shows the Reset  
conditions for all of the registers.  
DS39612B-page 30  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 3-1:  
TIME-OUT IN VARIOUS SITUATIONS  
(2)  
Power-up  
Wake-up from  
Sleep or  
Oscillator Switch  
Oscillator  
Configuration  
Brown-out  
PWRTE = 0  
PWRTE = 1  
(1)  
(2)  
HS with PLL enabled  
HS, XT, LP  
EC  
72 ms + 1024 TOSC + 2 ms 1024 TOSC + 2 ms 72 ms + 1024 TOSC + 2 ms 1024 TOSC + 2 ms  
(2)  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
1.5 µs  
72 ms + 1024 TOSC  
1024 TOSC  
(2)  
(3)  
72 ms  
1.5 µs  
(2)  
External RC  
72 ms  
72 ms  
Note 1: 2 ms is the nominal time required for the 4x PLL to lock.  
2: 72 ms is the nominal power-up timer delay, if implemented.  
3: 1.5 µs is the recovery time from Sleep. There is no recovery time from oscillator switch.  
REGISTER 3-1:  
RCON REGISTER BITS AND POSITIONS(1)  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 0  
bit 7  
Note 1: Refer to Section 4.14 “RCON Register” for bit definitions.  
TABLE 3-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
0000h  
0000h  
0000h  
1
u
0
u
u
1
u
u
u
u
1
u
u
u
u
0
u
u
u
u
0
u
u
u
u
u
u
u
u
1
u
u
u
1
u
MCLR Reset during normal operation  
Software Reset during normal operation  
Stack Full Reset during normal operation  
Stack Underflow Reset during normal  
operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
u
1
u
1
u
1
0
0
1
1
0
1
0
1
0
u
u
u
1
u
u
u
u
0
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
PC + 2  
0000h  
PC + 2(1)  
Brown-out Reset  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
2005 Microchip Technology Inc.  
DS39612B-page 31  
PIC18F6525/6621/8525/8621  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
TOSU  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 1111  
1100 0000  
N/A  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 1111  
1100 0000  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
FSR1H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
---- 0000  
---- uuuu  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
7: If MCLR function is disabled, PORTG<5> is a read-only bit.  
8: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
9: The MEMCON register is unimplemented and reads all ‘0’s when the device is in Microcontroller mode.  
DS39612B-page 32  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
FSR1L  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
xxxx xxxx  
---- 0000  
N/A  
uuuu uuuu  
---- 0000  
N/A  
uuuu uuuu  
---- uuuu  
N/A  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
---- 0000  
--00 0101  
---- ---0  
0--1 11qq  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
---- 0000  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
---- 0000  
--00 0101  
---- ---0  
0--1 qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
--uu uuuu  
---- ---u  
u--1 qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
7: If MCLR function is disabled, PORTG<5> is a read-only bit.  
8: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
9: The MEMCON register is unimplemented and reads all ‘0’s when the device is in Microcontroller mode.  
2005 Microchip Technology Inc.  
DS39612B-page 33  
PIC18F6525/6621/8525/8621  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
CCPR3H  
CCPR3L  
CCP3CON  
ECCP1AS  
CVRCON  
CMCON  
TMR3H  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
--00 0000  
--00 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
---- --00  
0000 0000  
0000 0000  
---- ----  
xx-0 x000  
--00 0000  
--00 0000  
0-00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
---- --00  
0000 0000  
0000 0000  
---- ----  
uu-0 u000  
--uu uuuu  
--uu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
---- ----  
uu-u u000  
TMR3L  
T3CON  
PSPCON(8)  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
7: If MCLR function is disabled, PORTG<5> is a read-only bit.  
8: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
9: The MEMCON register is unimplemented and reads all ‘0’s when the device is in Microcontroller mode.  
DS39612B-page 34  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
IPR3  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
--11 1111  
--00 0000  
--00 0000  
-1-1 1111  
-0-0 0000  
-0-0 0000  
1111 1111  
0000 0000  
0000 0000  
0-00 --00  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
xxxx xxxx  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx(5)  
xxxx xxxx  
0000 xxxx  
--11 1111  
--00 0000  
--00 0000  
-1-1 1111  
-0-0 0000  
-0-0 0000  
1111 1111  
0000 0000  
0000 0000  
0-00 --00  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
0000 uuuu  
--uu uuuu  
--uu uuuu  
--uu uuuu  
-u-u uuuu  
-u-u uuuu(1)  
-u-u uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu  
u-uu --uu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
MEMCON(9)  
TRISJ  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5,6)  
LATJ  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA(5,6)  
PORTJ  
PORTH  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
7: If MCLR function is disabled, PORTG<5> is a read-only bit.  
8: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
9: The MEMCON register is unimplemented and reads all ‘0’s when the device is in Microcontroller mode.  
2005 Microchip Technology Inc.  
DS39612B-page 35  
PIC18F6525/6621/8525/8621  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
PORTG(7)  
PORTF  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
PIC18F6X2X PIC18F8X2X  
--xx xxxx  
x000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000(5)  
0000 0000  
-1-0 0-00  
0000 0000  
-1-0 0-00  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
--uu uuuu  
u000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u0u 0000(5)  
0000 0000  
-1-0 0-00  
0000 0000  
-1-0 0-00  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
-u-u u-uu  
uuuu uuuu  
-u-1 u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5,6)  
SPBRGH1  
BAUDCON1  
SPBRGH2  
BAUDCON2  
ECCP1DEL  
TMR4  
PR4  
T4CON  
CCPR4H  
CCPR4L  
CCP4CON  
CCPR5H  
CCPR5L  
CCP5CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
ECCP3AS  
ECCP3DEL  
ECCP2AS  
ECCP2DEL  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read ‘0’.  
7: If MCLR function is disabled, PORTG<5> is a read-only bit.  
8: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
9: The MEMCON register is unimplemented and reads all ‘0’s when the device is in Microcontroller mode.  
DS39612B-page 36  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 3-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA 1 kRESISTOR)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2005 Microchip Technology Inc.  
DS39612B-page 37  
PIC18F6525/6621/8525/8621  
FIGURE 3-6:  
SLOW RISE TIME (MCLR TIED TO VDD VIA 1 kRESISTOR)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POR W/PLL ENABLED  
(MCLR TIED TO VDD VIA 1 kRESISTOR)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
DS39612B-page 38  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
4.1.1  
PIC18F6525/6621/8525/8621  
PROGRAM MEMORY MODES  
4.0  
MEMORY ORGANIZATION  
There are three memory blocks in PIC18F6525/6621/  
8525/8621 devices. They are:  
PIC18F8525/8621 devices differ significantly from their  
PIC18 predecessors in their utilization of program  
memory. In addition to available on-chip Flash program  
memory, these controllers can also address up to  
2 Mbytes of external program memory through the  
external memory interface. There are four distinct  
operating modes available to the controllers:  
• Program Memory  
• Data RAM  
• Data EEPROM  
Data and program memory use separate busses which  
allow for concurrent access of these blocks. Additional  
detailed information for Flash program memory and  
data EEPROM is provided in Section 5.0 “Flash  
Program Memory” and Section 7.0 “Data EEPROM  
Memory”, respectively.  
• Microprocessor (MP)  
• Microprocessor with Boot Block (MPBB)  
• Extended Microcontroller (EMC)  
• Microcontroller (MC)  
In addition to on-chip Flash, the PIC18F8525/8621  
devices are also capable of accessing external  
program memory through an external memory bus.  
Depending on the selected operating mode (discussed  
The Program Memory mode is determined by setting  
the two Least Significant bits of the CONFIG3L  
Configuration Byte register as shown in Register 4-1  
(see Section 24.1 “Configuration Bits” for additional  
details on the device configuration bits).  
in  
Section 4.1.1  
“PIC18F6525/6621/8525/8621  
Program Memory Modes”), the controllers may  
access either internal or external program memory  
exclusively, or both internal and external memory in  
selected blocks. Additional information on the external  
memory interface is provided in Section 6.0 “External  
Memory Interface”.  
The Program Memory modes operate as follows:  
• The Microprocessor Mode permits access only  
to external program memory; the contents of the  
on-chip Flash memory are ignored. The 21-bit  
program counter permits access to a 2-Mbyte  
linear program memory space.  
4.1  
Program Memory Organization  
• The Microprocessor with Boot Block Mode  
accesses on-chip Flash memory from addresses  
000000h to 0007FFh. Above this, external program  
memory is accessed all the way up to the 2-Mbyte  
limit. Program execution automatically switches  
between the two memories as required.  
A 21-bit program counter is capable of addressing the  
2-Mbyte program memory space. Accessing a location  
between the physically implemented memory and the  
2-Mbyte address will cause a read of all ‘0’s (a NOP  
instruction).  
• The Microcontroller Mode accesses only  
on-chip Flash memory. Attempts to read above the  
physical limit of the on-chip Flash (BFFFh for the  
PIC18FX525, FFFFh for the PIC18FX621) causes  
a read of all ‘0’s (a NOPinstruction).  
The PIC18F6525 and PIC18F8525 each have  
48 Kbytes of on-chip Flash memory, while the  
PIC18F6621 and PIC18F8621 have 64 Kbytes of Flash.  
This means that PIC18FX525 devices can store inter-  
nally up to 24,576 single-word instructions and  
PIC18FX621 devices can store up to 32,768 single-word  
instructions.  
The Microcontroller mode is also the only operating  
mode available to PIC18F6525/6621 devices.  
• The Extended Microcontroller Mode allows  
access to both internal and external program  
memories as a single block. The device can  
access its entire on-chip Flash memory; above  
this, the device accesses external program  
memory up to the 2-Mbyte program space limit.  
As with Boot Block mode, execution automatically  
switches between the two memories as required.  
The Reset vector address is at 0000h and the interrupt  
vector addresses are at 0008h and 0018h.  
Figure 4-1 shows the program memory map for  
PIC18FX525 devices, while Figure 4-2 shows the  
program memory map for PIC18FX621 devices.  
In all modes, the microcontroller has complete access  
to data RAM and EEPROM.  
Figure 4-3 compares the memory maps of the different  
program memory modes. The differences between  
on-chip and external memory access limitations are  
more fully explained in Table 4-1.  
2005 Microchip Technology Inc.  
DS39612B-page 39  
PIC18F6525/6621/8525/8621  
FIGURE 4-1:  
INTERNAL PROGRAM  
MEMORY MAP AND  
FIGURE 4-2:  
INTERNAL PROGRAM  
MEMORY MAP AND  
STACK FOR PIC18FX525  
STACK FOR PIC18FX621  
PC<20:0>  
PC<20:0>  
21  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
Reset Vector  
Stack Level 31  
Reset Vector  
000000h  
000000h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
000008h  
000018h  
000008h  
000018h  
On-Chip Flash  
Program Memory  
00BFFFh  
00C000h  
On-Chip Flash  
Program Memory  
00FFFFh  
010000h  
Read ‘0’  
Read ‘0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
TABLE 4-1:  
Operating Mode  
Microprocessor  
MEMORY ACCESS FOR PIC18F8525/8621 PROGRAM MEMORY MODES  
Internal Program Memory  
External Program Memory  
Execution  
From  
Table Read  
Execution  
From  
Table Read  
From  
Table Write To  
Table Write To  
From  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Microprocessor  
w/Boot Block  
Microcontroller  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Extended  
Microcontroller  
DS39612B-page 40  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 4-1:  
CONFIG3L: CONFIGURATION REGISTER 3 LOW  
R/P-1  
WAIT  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
PM1  
R/P-1  
PM0  
bit 7  
bit 0  
bit 7  
WAIT: External Bus Data Wait Enable bit  
1= Wait selections unavailable, device will not wait  
0= Wait programmed by WAIT1 and WAIT0 bits of MEMCOM register (MEMCOM<5:4>)  
bit 6-2  
bit 1-0  
Unimplemented: Read as ‘0’  
PM1:PM0: Processor Data Memory Mode Select bits  
11= Microcontroller mode  
10= Microprocessor mode(1)  
01= Microcontroller with Boot Block mode(1)  
00= Extended Microcontroller mode(1)  
Note 1: This mode is available only on PIC18F8525/8621 devices.  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown  
-n = Value after erase  
FIGURE 4-3:  
MEMORY MAPS FOR PIC18F6525/6621/8525/8621 PROGRAM MEMORY MODES  
Microprocessor  
with Boot Block  
Mode(3)  
Extended  
Microcontroller  
Mode(3)  
Microprocessor  
Microcontroller  
Mode  
Mode(3)  
000000h  
000000h  
000000h  
000000h  
On-Chip  
Program  
Memory  
(No  
On-Chip  
On-Chip  
On-Chip  
Program  
Memory  
Program  
Memory  
Program  
Memory  
00BFFFh(1)  
00FFFFh(2)  
00C000h(1)  
010000h(2)  
00BFFFh(1)  
00FFFFh(2)  
00C000h(1)  
010000h(2)  
access)  
0007FFh  
000800h  
External  
Program  
Memory  
Reads  
0’s  
External  
Program  
Memory  
External  
Program  
Memory  
1FFFFFh  
1FFFFFh  
1FFFFFh  
1FFFFFh  
External  
Memory  
External On-Chip  
Memory Flash  
External  
Memory  
On-Chip  
Flash  
On-Chip  
Flash  
On-Chip  
Flash  
Note 1: PIC18F8525 and PIC18F6525.  
2: PIC18F8621 and PIC18F6621.  
3: This mode is available only on PIC18F8525/8621 devices.  
2005 Microchip Technology Inc.  
DS39612B-page 41  
PIC18F6525/6621/8525/8621  
4.2.2  
RETURN STACK POINTER  
(STKPTR)  
4.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed, or an interrupt  
is Acknowledged. The PC value is pulled off the stack  
on a RETURN, RETLWor a RETFIEinstruction. PCLATU  
and PCLATH are not affected by any of the RETURNor  
CALLinstructions.  
The STKPTR register contains the Stack Pointer value,  
the STKFUL (Stack Full) status bit and the STKUNF  
(Stack Underflow) status bits. Register 4-2 shows the  
STKPTR register. The value of the Stack Pointer can be  
0 through 31. The Stack Pointer increments when  
values are pushed onto the stack and decrements  
when values are popped off the stack. At Reset, the  
Stack Pointer value will be ‘0’. The user may read and  
write the Stack Pointer value. This feature can be used  
by a real-time operating system for return stack  
maintenance.  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit Stack Pointer, with the Stack Pointer initialized to  
00000bafter all Resets. There is no RAM associated  
with Stack Pointer 00000b. This is only a Reset value.  
During a CALLtype instruction causing a push onto the  
stack, the Stack Pointer is first incremented and the  
RAM location pointed to by the Stack Pointer is written  
with the contents of the PC. During a RETURN type  
instruction causing a pop from the stack, the contents  
of the RAM location pointed to by the STKPTR register  
are transferred to the PC and then the Stack Pointer is  
decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack  
Overflow Reset Enable) configuration bit. Refer to  
Section 25.0 “Instruction Set Summary” for a  
description of the device configuration bits. If STVREN  
is set (default), the 31st push will push the (PC + 2)  
value onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to ‘0’.  
The stack space is not part of either program or data  
space. The Stack Pointer is readable and writable and  
the address on the top of the stack is readable and  
writable through SFR registers. Data can also be  
pushed to, or popped from the stack using the Top-of-  
Stack SFRs. Status bits indicate if the Stack Pointer is  
at or beyond the 31 levels provided.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and STKPTR will remain at 31.  
4.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL, hold the  
contents of the stack location pointed to by the  
STKPTR register. This allows users to implement a  
software stack if necessary. After a CALL, RCALLor  
interrupt, the software can read the pushed value by  
reading the TOSU, TOSH and TOSL registers. These  
values can be placed on a user defined software stack.  
At return time, the software can replace the TOSU,  
TOSH and TOSL and do a return.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the Stack  
Pointer remains at ‘0’. The STKUNF bit will remain set  
until cleared in software or a POR occurs.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken.  
The user must disable the global interrupt enable bits  
during this time to prevent inadvertent stack  
operations.  
DS39612B-page 42  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 4-2:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKFUL(1) STKUNF(1)  
bit 7  
bit 0  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit(1)  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit(1)  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 can only be cleared in user software or by a POR.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
FIGURE 4-4:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU  
0x00  
TOSH  
0x1A  
TOSL  
0x34  
00010  
00011  
00010  
00001  
00000  
0x001A34  
0x000D58  
Top-of-Stack  
4.2.3  
PUSH AND POP INSTRUCTIONS  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack, without disturbing normal program  
execution, is a desirable option. To push the current PC  
value onto the stack, a PUSH instruction can be  
executed. This will increment the Stack Pointer and  
load the current PC value onto the stack. TOSU, TOSH  
and TOSL can then be modified to place a return  
address on the stack.  
These Resets are enabled by programming the  
STVREN configuration bit. When the STVREN bit is  
disabled, a full or underflow condition will set the  
appropriate STKFUL or STKUNF bit, but not cause a  
device Reset. When the STVREN bit is enabled, a full  
or underflow condition will set the appropriate STKFUL  
or STKUNF bit and then cause a device Reset. The  
STKFUL or STKUNF bits are only cleared by the user  
software or a Power-on Reset.  
The ability to pull the TOS value off of the stack and  
replace it with the value that was previously pushed  
onto the stack, without disturbing normal execution, is  
achieved by using the POP instruction. The POP  
instruction discards the current TOS by decrementing  
the Stack Pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
2005 Microchip Technology Inc.  
DS39612B-page 43  
PIC18F6525/6621/8525/8621  
4.3  
Fast Register Stack  
4.4  
PCL, PCLATH and PCLATU  
A “fast interrupt return” option is available for interrupts.  
A fast register stack is provided for the STATUS,  
WREG and BSR registers and is only one in depth. The  
stack is not readable or writable and is loaded with the  
current value of the corresponding register when the  
processor vectors for an interrupt. The values in the  
registers are then loaded back into the working  
registers if the FAST RETURN instruction is used to  
return from the interrupt.  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits  
wide. The low byte is called the PCL register; this reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable; updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable; updates to the PCU register may  
be performed through the PCLATU register.  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register values stored by the low priority  
interrupt will be overwritten.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSB of the PCL is fixed to a value of  
0’. The PC increments by 2 to address sequential  
instructions in the program memory.  
If high priority interrupts are not disabled during low  
priority interrupts, users must save the key registers in  
software during a low priority interrupt.  
The CALL, RCALL, GOTOand program branch instruc-  
tions write to the program counter directly. For these  
instructions, the contents of PCLATH and PCLATU are  
not transferred to the program counter.  
If no interrupts are used, the fast register stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the fast register  
stack for a subroutine call, a FAST CALL instruction  
must be executed.  
The contents of PCLATH and PCLATU will be  
transferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the  
program counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 4.8.1  
“Computed GOTO”).  
Example 4-1 shows a source code example that uses  
the fast register stack.  
EXAMPLE 4-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
4.5  
Clocking Scheme/Instruction  
Cycle  
CALL SUB1, FAST  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the  
Program Counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the Instruction Register (IR) in Q4. The  
instruction is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow are shown in Figure 4-5.  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
FIGURE 4-5:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC + 2  
PC  
PC + 4  
OSC2/CLKO  
(RC mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
DS39612B-page 44  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
4.6  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute take another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 4-2).  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
EXAMPLE 4-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single-cycle except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
word boundaries, the data contained in the instruction  
4.7  
Instructions in Program Memory  
is a word address. The word address is written to  
PC<20:1> which accesses the desired byte address in  
program memory. Instruction #2 in Figure 4-6 shows  
how the instruction “GOTO 000006h” is encoded in the  
program memory. Program branch instructions, which  
encode a relative address offset, operate in the same  
manner. The offset value stored in a branch instruction  
represents the number of single-word instructions that  
the PC will be offset by. Section 25.0 “Instruction Set  
Summary” provides further details of the instruction  
set.  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 4-6 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read ‘0’ (see Section 4.4 “PCL,  
PCLATH and PCLATU”).  
The CALL and GOTO instructions have an absolute  
program memory address embedded into the  
instruction. Since instructions are always stored on  
FIGURE 4-6:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
MOVLW  
GOTO  
055h  
000006h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
Instruction 3:  
MOVFF  
123h, 456h  
2005 Microchip Technology Inc.  
DS39612B-page 45  
PIC18F6525/6621/8525/8621  
If the second word of the instruction is executed by itself  
(first word was skipped), it will execute as a NOP. This  
action is necessary when the two-word instruction is  
preceded by a conditional instruction that changes the  
PC. A program example that demonstrates this concept  
is shown in Example 4-3. Refer to Section 25.0  
“Instruction Set Summary” for further details of the  
instruction set.  
4.7.1  
TWO-WORD INSTRUCTIONS  
The PIC18F6525/6621/8525/8621 devices have four  
two-word instructions: MOVFF, CALL, GOTOand LFSR.  
The second word of these instructions has the 4 MSBs  
set to ‘1’s and is a special kind of NOPinstruction. The  
lower 12 bits of the second word contain data to be  
used by the instruction. If the first word of the instruction  
is executed, the data in the second word is accessed.  
EXAMPLE 4-3:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
0010 0100 0000 0000 ADDWF  
REG3  
; continue code  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes  
; 2nd operand becomes NOP  
0010 0100 0000 0000 ADDWF  
REG3  
; continue code  
routine is the ADDWFPCLinstruction. The next instruction  
executed will be one of the RETLW0xnn instructions that  
returns the value 0xnnto the calling function.  
4.8  
Look-up Tables  
Look-up tables are implemented two ways. These are:  
• Computed GOTO  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
Table Reads  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
4.8.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
Note:  
The ADDWF PCL instruction does not  
update PCLATH and PCLATU. A read  
operation on PCL must be performed to  
update PCLATH and PCLATU.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before exe-  
cuting a call to that table. The first instruction of the called  
EXAMPLE 4-4:  
COMPUTED GOTO USING AN OFFSET VALUE  
MAIN: ORG  
0x0000  
MOVLW 0x00  
CALL  
TABLE  
ORG  
TABLE MOVF  
0x8000  
PCL, F  
; A simple read of PCL will update PCLATH, PCLATU  
; Multiply by 2 to get correct offset in table  
; Add the modified offset to force jump into table  
RLNCF W, W  
ADDWF PCL  
RETLW ‘A’  
RETLW ‘B’  
RETLW ‘C’  
RETLW ‘D’  
RETLW ‘E’  
END  
DS39612B-page 46  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 4.10  
“Access Bank” provides a detailed description of the  
Access RAM.  
4.8.2  
TABLE READS/TABLE WRITES  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
Look-up table data may be stored 2 bytes per program  
word by using table reads and writes. The Table Pointer  
(TBLPTR) specifies the byte address and the Table  
Latch (TABLAT) contains the data that is read from, or  
written to program memory. Data is transferred to/from  
program memory, one byte at a time.  
4.9.1  
GENERAL PURPOSE REGISTER  
FILE  
The register file can be accessed either directly or  
indirectly. Indirect addressing operates using a File  
Select Register and corresponding Indirect File  
Operand. The operation of indirect addressing is  
shown in Section 4.12 “Indirect Addressing, INDF  
and FSR Registers”.  
A description of the table read/table write operation is  
shown in Section 5.0 “Flash Program Memory”.  
4.9  
Data Memory Organization  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 4-7  
shows the data memory organization for the  
PIC18F6525/6621/8525/8621 devices.  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
Data RAM is available for use as General Purpose  
Registers by all instructions. The top section of Bank 15  
(F60h to FFFh) contains SFRs. All other banks of data  
memory contain GPRs, starting with Bank 0.  
The data memory map is divided into 16 banks that  
contain 256 bytes each. The lower 4 bits of the Bank  
Select Register (BSR<3:0>) select which bank will be  
accessed. The upper 4 bits for the BSR are not  
implemented.  
4.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 4-2 and Table 4-3.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the user’s appli-  
cation. The SFRs start at the last location of Bank 15  
(0FFFh) and extend downwards. Any remaining space  
beyond the SFRs in the bank may be implemented as  
GPRs. GPRs start at the first location of Bank 0 and  
grow upwards. Any read of an unimplemented location  
will read as ‘0’s.  
The SFRs can be classified into two sets: those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature. The  
SFRs are typically distributed among the peripherals  
whose functions they control.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of a  
File Select Register (FSRn) and a corresponding  
Indirect File Operand (INDFn). Each FSR holds a 12-bit  
address value that can be used to access any location in  
the data memory map without banking.  
The unused SFR locations are unimplemented and  
read as ‘0’s. The addresses for the SFRs are listed in  
Table 4-2.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction  
that moves a value from one register to another.  
2005 Microchip Technology Inc.  
DS39612B-page 47  
PIC18F6525/6621/8525/8621  
FIGURE 4-7:  
DATA MEMORY MAP FOR PIC18F6525/6621/8525/8621 DEVICES  
BSR<3:0>  
Data Memory Map  
000h  
00h  
Access RAM  
GPRs  
= 0000  
05Fh  
Bank 0  
060h  
FFh  
00h  
0FFh  
100h  
= 0001  
= 0010  
GPRs  
GPRs  
Bank 1  
Bank 2  
Bank 3  
FFh  
00h  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
= 0011  
= 0100  
GPRs  
GPRs  
FFh  
3FFh  
400h  
Bank 4  
Access Bank  
4FFh  
500h  
00h  
Access RAM low  
5Fh  
60h  
Access RAM high  
(SFRs)  
FFh  
Bank 5  
to  
Bank 13  
GPRs  
GPRs  
When ‘a’ = 0,  
the BSR is ignored and the  
Access Bank is used.  
The first 96 bytes are general  
purpose RAM (from Bank 0).  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
DFFh  
E00h  
00h  
= 1110  
Bank 14  
Bank 15  
FFh  
00h  
EFFh  
F00h  
Unused  
SFRs  
= 1111  
F5Fh  
F60h  
FFh  
FFFh  
When ‘a’ = 1,  
the BSR is used to specify the  
RAM location that the instruction  
uses.  
DS39612B-page 48  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP  
Address  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
Name  
TOSU  
Address  
FDFh  
Name  
INDF2(3)  
Address  
FBFh  
FBEh  
Name  
Address  
F9Fh  
Name  
IPR1  
PIR1  
PIE1  
CCPR1H  
CCPR1L  
TOSH  
FDEh POSTINC2(3)  
FDDh POSTDEC2(3)  
FDCh PREINC2(3)  
FDBh PLUSW2(3)  
F9Eh  
TOSL  
FBDh CCP1CON  
F9Dh  
F9Ch MEMCON(2)  
STKPTR  
PCLATU  
PCLATH  
PCL  
FBCh  
FBBh  
CCPR2H  
CCPR2L  
(1)  
F9Bh  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
FSR2H  
FSR2L  
FBAh CCP2CON  
TRISJ(2)  
TRISH(2)  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ(2)  
LATH(2)  
LATG  
FB9h  
FB8h  
CCPR3H  
CCPR3L  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0(3)  
STATUS  
TMR0H  
TMR0L  
T0CON  
FB7h CCP3CON  
FB6h ECCP1AS  
FB5h CVRCON  
(1)  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h PSPCON(4)  
FAFh SPBRG1  
FAEh RCREG1  
CMCON  
TMR3H  
TMR3L  
T3CON  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR1H  
FEEh POSTINC0(3)  
FEDh POSTDEC0(3)  
FECh PREINC0(3)  
FEBh PLUSW0(3)  
TMR1L  
LATF  
T1CON  
FADh  
FACh  
FABh  
TXREG1  
TXSTA1  
RCSTA1  
LATE  
TMR2  
LATD  
PR2  
LATC  
FEAh  
FE9h  
FE8h  
FE7h  
FE6h POSTINC1(3)  
FE5h POSTDEC1(3)  
FE4h PREINC1(3)  
FE3h PLUSW1(3)  
FSR0H  
FSR0L  
WREG  
INDF1(3)  
T2CON  
FAAh EEADRH  
LATB  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
LATA  
F88h PORTJ(2)  
F87h PORTH(2)  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
PIR3  
PIE3  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
IPR2  
PIR2  
PIE2  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6525/6621 devices and reads as ‘0’.  
3: This is not a physical register.  
4: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2005 Microchip Technology Inc.  
DS39612B-page 49  
PIC18F6525/6621/8525/8621  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
Name  
Address  
F5Fh  
Name  
Address  
F3Fh  
Name  
Address  
F1Fh  
Name  
(1)  
(1)  
(1)  
F7Fh  
SPBRGH1  
(1)  
(1)  
(1)  
F7Eh BAUDCON1  
F7Dh SPBRGH2  
F5Eh  
F5Dh  
F5Ch  
F5Bh  
F5Ah  
F59h  
F58h  
F57h  
F56h  
F55h  
F54h  
F53h  
F52h  
F51h  
F50h  
F4Fh  
F4Eh  
F4Dh  
F4Ch  
F4Bh  
F4Ah  
F49h  
F48h  
F47h  
F46h  
F45h  
F44h  
F43h  
F42h  
F41h  
F40h  
F3Eh  
F3Dh  
F3Ch  
F3Bh  
F3Ah  
F39h  
F38h  
F37h  
F36h  
F35h  
F34h  
F33h  
F32h  
F31h  
F30h  
F2Fh  
F2Eh  
F2Dh  
F2Ch  
F2Bh  
F2Ah  
F29h  
F28h  
F27h  
F26h  
F25h  
F24h  
F23h  
F22h  
F21h  
F20h  
F1Eh  
F1Dh  
F1Ch  
F1Bh  
F1Ah  
F19h  
F18h  
F17h  
F16h  
F15h  
F14h  
F13h  
F12h  
F11h  
F10h  
F0Fh  
F0Eh  
F0Dh  
F0Ch  
F0Bh  
F0Ah  
F09h  
F08h  
F07h  
F06h  
F05h  
F04h  
F03h  
F02h  
F01h  
F00h  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F7Ch BAUDCON2  
(1)  
(1)  
(1)  
(1)  
F7Bh  
F7Ah  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F79h ECCP1DEL  
(1)  
(1)  
(1)  
F78h  
F77h  
F76h  
F75h  
F74h  
TMR4  
PR4  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
T4CON  
CCPR4H  
CCPR4L  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F73h CCP4CON  
(1)  
(1)  
(1)  
F72h  
F71h  
CCPR5H  
CCPR5L  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F70h CCP5CON  
(1)  
(1)  
(1)  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
RCSTA2  
ECCP3AS  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F69h ECCP3DEL  
F68h ECCP2AS  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
F67h ECCP2DEL  
(1)  
(1)  
(1)  
(1)  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6525/6621 devices and reads as ‘0’.  
3: This is not a physical register.  
4: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 50  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 4-3:  
File Name  
TOSU  
REGISTER FILE SUMMARY  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 32, 42  
0000 0000 32, 42  
0000 0000 32, 42  
00-0 0000 32, 43  
---0 0000 32, 44  
0000 0000 32, 44  
0000 0000 32, 44  
--00 0000 32, 69  
0000 0000 32, 69  
0000 0000 32, 69  
0000 0000 32, 69  
xxxx xxxx 32, 85  
xxxx xxxx 32, 85  
0000 000x 32, 89  
1111 1111 32, 90  
1100 0000 32, 91  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
(2)  
TBLPTRU  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
TBLPTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
INTCON  
INTCON2  
INTCON3  
INDF0  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INTEDG1  
INT3IE  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
INTEDG3  
INT1IE  
TMR0IF  
TMR0IP  
INT3IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
RBPU  
INTEDG0  
INT1IP  
INT2IP  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
N/A  
N/A  
56  
56  
POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented  
(not a physical register)  
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented  
(not a physical register)  
N/A  
56  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
N/A  
N/A  
56  
56  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented  
(not a physical register) – value of FSR0 offset by value in WREG  
FSR0H  
FSR0L  
WREG  
INDF1  
Indirect Data Memory Address Pointer 0 High Byte ---- 0000 32, 56  
xxxx xxxx 32, 56  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
xxxx xxxx  
N/A  
32  
56  
56  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented  
(not a physical register)  
N/A  
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented  
(not a physical register)  
N/A  
56  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
N/A  
N/A  
56  
56  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented  
(not a physical register) – value of FSR1 offset by value in WREG  
FSR1H  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1 High Byte ---- 0000 32, 56  
xxxx xxxx 33, 56  
Indirect Data Memory Address Pointer 1 Low Byte  
Bank Select Register  
---- 0000 33, 55  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
N/A  
N/A  
56  
56  
POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented  
(not a physical register)  
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented  
(not a physical register)  
N/A  
56  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as a port pin in RCIO and ECIO Oscillator modes only and read ‘0’ in all other  
oscillator modes.  
2:  
3:  
4:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6525/6621 devices and read as ‘0’.  
RG5 is available only if MCLR function is disabled in configuration.  
5: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2005 Microchip Technology Inc.  
DS39612B-page 51  
PIC18F6525/6621/8525/8621  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented  
(not a physical register)  
N/A  
N/A  
56  
56  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented  
(not a physical register) – value of FSR2 offset by value in WREG  
FSR2H  
Indirect Data Memory Address Pointer 2 High Byte ---- 0000 33, 56  
xxxx xxxx 33, 56  
FSR2L  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
TMR0L  
N
OV  
Z
DC  
C
---x xxxx 33, 58  
0000 0000 33, 133  
xxxx xxxx 33, 133  
1111 1111 33, 131  
---- 0000 25, 33  
--00 0101 33, 255  
Timer0 Register High Byte  
Timer0 Register Low Byte  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
LOCK  
LVDL3  
T0PS2  
PLLEN  
LVDL2  
T0PS1  
SCS1  
LVDL1  
T0PS0  
SCS0  
LVDL0  
IRVST  
LVDEN  
SWDTEN ---- ---0 33, 267  
IPEN  
RI  
TO  
PD  
POR  
BOR  
0--1 11qq 33, 59,  
101  
TMR1H  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx 33, 139  
xxxx xxxx 33, 139  
TMR1L  
T1CON  
RD16  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC  
TMR1CS  
TMR1ON 0-00 0000 33, 139  
0000 0000 33, 142  
TMR2  
Timer2 Register  
PR2  
Timer2 Period Register  
1111 1111 33, 142  
T2CON  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 33, 142  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
CCPR3H  
CCPR3L  
CCP3CON  
MSSP Receive Buffer/Transmit Register  
2
xxxx xxxx 33, 181  
0000 0000 33, 181  
0000 0000 33, 174  
2
MSSP Address Register in I C Slave mode. MSSP Baud Rate Reload Register in I C Master mode.  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0 0000 0000 33, 175  
ACKEN  
SEN  
0000 0000 33, 185  
xxxx xxxx 33, 241  
xxxx xxxx 33, 241  
--00 0000 34, 233  
--00 0000 34, 234  
0-00 0000 34, 235  
xxxx xxxx 34, 172  
xxxx xxxx 34, 172  
A/D Result Register High Byte  
A/D Result Register Low Byte  
CHS3  
VCFG1  
ACQT2  
CHS2  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0  
ADCS0  
ADFM  
ADCS1  
Enhanced Capture/Compare/PWM Register 1 High Byte  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3  
CCP2M3  
CCP3M3  
CCP1M2  
CCP2M2  
CCP3M2  
CCP1M1  
CCP2M1  
CCP3M1  
CCP1M0 0000 0000 34, 157  
xxxx xxxx 34, 172  
Enhanced Capture/Compare/PWM Register 2 High Byte  
Enhanced Capture/Compare/PWM Register 2 Low Byte  
xxxx xxxx 34, 172  
P2M1  
P2M0  
DC2B1  
DC2B0  
CCP2M0 0000 0000 34, 157  
xxxx xxxx 34, 172  
Enhanced Capture/Compare/PWM Register 3 High Byte  
Enhanced Capture/Compare/PWM Register 3 Low Byte  
xxxx xxxx 34, 172  
P3M1  
P3M0  
DC3B1  
DC2B0  
CCP3M0 0000 0000 34, 157  
ECCP1AS ECCP1ASE ECCP1AS2 ECCP1AS1 ECCP1AS0 PSS1AC1 PSS1AC0 PSS1BD1 PSS1BD0 0000 0000 34, 169  
CVRCON  
CVREN  
CVROE  
CVRR  
CVRSS  
CVR3  
CVR2  
CVR1  
CVR0  
0000 0000 34, 249  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as a port pin in RCIO and ECIO Oscillator modes only and read ‘0’ in all other  
oscillator modes.  
2:  
3:  
4:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6525/6621 devices and read as ‘0’.  
RG5 is available only if MCLR function is disabled in configuration.  
5: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 52  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 4-3:  
File Name  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON  
C2OUT  
C1OUT  
C2INV  
C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000 34, 243  
xxxx xxxx 34, 145  
xxxx xxxx 34, 145  
TMR3H  
TMR3L  
T3CON  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
Timer3 Register High Byte  
Timer3 Register Low Byte  
RD16  
IBF  
T3CCP2  
OBF  
T3CKPS1  
IBOV  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000 34, 145  
(5)  
PSPMODE  
0000 ---- 34, 129  
0000 0000 34, 217  
0000 0000 34, 224  
0000 0000 34, 222  
0000 0010 34, 214  
0000 000x 34, 215  
Enhanced USART1 Baud Rate Generator Register Low Byte  
Enhanced USART1 Receive Register  
Enhanced USART1 Transmit Register  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
EE Addr Register High ---- --00 34, 83  
0000 0000 34, 83  
Data EEPROM Address Register  
Data EEPROM Data Register  
0000 0000 34, 83  
Data EEPROM Control Register 2 (not a physical register)  
---- ---- 34, 83  
EEPGD  
CFGS  
FREE  
TX2IP  
TX2IF  
TX2IE  
EEIP  
WRERR  
TMR4IP  
TMR4IF  
TMR4IE  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
WREN  
CCP5IP  
CCP5IF  
CCP5IE  
LVDIP  
WR  
RD  
xx-0 x000 34, 80  
RC2IP  
RC2IF  
RC2IE  
CCP4IP  
CCP4IF  
CCP4IE  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
WM1  
CCP3IP --11 1111 35, 100  
CCP3IF --00 0000 35, 94  
CCP3IE --00 0000 35, 97  
CCP2IP -1-1 1111 35, 99  
CCP2IF -0-0 0000 35, 93  
CCP2IE -0-0 0000 35, 96  
TMR1IP 1111 1111 35, 98  
TMR1IF 0000 0000 35, 92  
TMR1IE 0000 0000 35, 95  
PIR3  
PIE3  
IPR2  
CMIP  
CMIF  
CMIE  
ADIP  
ADIF  
ADIE  
PIR2  
EEIF  
LVDIF  
PIE2  
EEIE  
LVDIE  
(5)  
IPR1  
PSPIP  
RC1IP  
RC1IF  
RC1IE  
WAIT1  
TX1IP  
TX1IF  
TX1IE  
WAIT0  
CCP1IP  
CCP1IF  
CCP1IE  
(5)  
PIR1  
PSPIF  
(5)  
PIE1  
PSPIE  
(3)  
MEMCON  
EBDIS  
WM0  
0-00 --00 35, 71  
1111 1111 35, 127  
1111 1111 35, 124  
---1 1111 35, 119  
1111 1111 35, 116  
1111 1111 35, 113  
1111 1111 35, 110  
1111 1111 35, 108  
1111 1111 35, 105  
-111 1111 35, 121  
xxxx xxxx 35, 127  
xxxx xxxx 35, 124  
---x xxxx 35, 121  
xxxx xxxx 35, 119  
xxxx xxxx 35, 116  
xxxx xxxx 35, 113  
xxxx xxxx 35, 110  
xxxx xxxx 35, 108  
-xxx xxxx 35, 105  
(3)  
TRISJ  
Data Direction Control Register for PORTJ  
Data Direction Control Register for PORTH  
(3)  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
Data Direction Control Register for PORTG  
Data Direction Control Register for PORTF  
Data Direction Control Register for PORTE  
Data Direction Control Register for PORTD  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
(1)  
TRISA6  
Data Direction Control Register for PORTA  
(3)  
LATJ  
Read PORTJ Data Latch, Write PORTJ Data Latch  
Read PORTH Data Latch, Write PORTH Data Latch  
(3)  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
Read PORTG Data Latch, Write PORTG Data Latch  
Read PORTF Data Latch, Write PORTF Data Latch  
Read PORTE Data Latch, Write PORTE Data Latch  
Read PORTD Data Latch, Write PORTD Data Latch  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
(1)  
(1)  
LATA6  
Read PORTA Data Latch, Write PORTA Data Latch  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as a port pin in RCIO and ECIO Oscillator modes only and read ‘0’ in all other  
oscillator modes.  
2:  
3:  
4:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6525/6621 devices and read as ‘0’.  
RG5 is available only if MCLR function is disabled in configuration.  
5: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2005 Microchip Technology Inc.  
DS39612B-page 53  
PIC18F6525/6621/8525/8621  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
(3)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ  
PORTH  
Read PORTJ pins, Write PORTJ Data Latch  
xxxx xxxx 35, 127  
0000 xxxx 35, 124  
--xx xxxx 36, 121  
(3)  
Read PORTH pins, Write PORTH Data Latch  
(4)  
PORTG  
Read PORTG pins, Write PORTG Data Latch  
RG5  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
Read PORTF pins, Write PORTF Data Latch  
Read PORTE pins, Write PORTE Data Latch  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
x000 0000 36, 119  
xxxx xxxx 36, 116  
xxxx xxxx 36, 113  
xxxx xxxx 36, 110  
xxxx xxxx 36, 108  
-x0x 0000 36, 105  
0000 0000 36, 217  
Read PORTB pins, Write PORTB Data Latch  
(1)  
(1)  
RA6  
Read PORTA pins, Write PORTA Data Latch  
SPBRGH1 Enhanced USART1 Baud Rate Generator Register High Byte  
BAUDCON1 RCIDL SCKP BRG16  
SPBRGH2 Enhanced USART2 Baud Rate Generator Register High Byte  
WUE  
ABDEN -1-0 0-00 36, 216  
0000 0000 36, 217  
BAUDCON2  
RCIDL  
P1DC6  
SCKP  
BRG16  
P1DC3  
WUE  
ABDEN -1-0 0-00 36, 216  
ECCP1DEL P1RSEN  
P1DC5  
P1DC4  
P1DC2  
P1DC1  
P1DC0  
0000 0000 36, 168  
0000 0000 36, 148  
1111 1111 36, 148  
TMR4  
Timer4 Register  
PR4  
Timer4 Period Register  
T4CON  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0 -000 0000 36, 147  
CCPR4H  
CCPR4L  
CCP4CON  
CCPR5H  
CCPR5L  
CCP5CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
RCSTA2  
Capture/Compare/PWM Register 4 High Byte  
Capture/Compare/PWM Register 4 Low Byte  
xxxx xxxx 36, 153  
xxxx xxxx 36, 153  
DC4B1  
DC4B0  
CCP4M3  
CCP4M2  
CCP5M2  
CCP4M1  
CCP5M1  
CCP4M0 --00 0000 36, 149  
xxxx xxxx 36, 153  
Capture/Compare/PWM Register 5 High Byte  
Capture/Compare/PWM Register 5 Low Byte  
xxxx xxxx 36, 153  
DC5B1  
DC5B0  
CCP5M3  
CCP5M0 --00 0000 36, 149  
0000 0000 36, 217  
Enhanced USART2 Baud Rate Generator Register Low Byte  
Enhanced USART2 Receive Register  
0000 0000 36, 224  
Enhanced USART2 Transmit Register  
0000 0000 36, 222  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 0010 36, 222  
0000 000x 36, 222  
ECCP3AS ECCP3ASE ECCP3AS2 ECCP3AS1 ECCP3AS0 PSS3AC1 PSS3AC0 PSS3BD1 PSS3BD0 0000 0000 36, 169  
ECCP3DEL P3RSEN P3DC6 P3DC5 P3DC4 P3DC3 P3DC2 P3DC1 P3DC0 0000 0000 36, 168  
ECCP2AS ECCP2ASE ECCP2AS2 ECCP2AS1 ECCP2AS0 PSS2AC1 PSS2AC0 PSS2BD1 PSS2BD0 0000 0000 36, 169  
ECCP2DEL P2RSEN P2DC6 P2DC5 P2DC4 P2DC3 P2DC2 P2DC1 P2DC0 0000 0000 36, 168  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
Legend:  
Note 1:  
RA6 and associated bits are configured as a port pin in RCIO and ECIO Oscillator modes only and read ‘0’ in all other  
oscillator modes.  
2:  
3:  
4:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6525/6621 devices and read as ‘0’.  
RG5 is available only if MCLR function is disabled in configuration.  
5: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 54  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
4.10  
Access Bank  
4.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement,  
which is very useful for C compiler code optimization.  
The techniques used by the C compiler may also be  
useful for programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into sixteen banks. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ‘0’s and  
writes will have no effect.  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
A
MOVLB instruction has been provided in the  
instruction set to assist in selecting banks.  
• Faster evaluation/control of SFRs (no banking)  
If the currently selected bank is not implemented, any  
read will return all ‘0’s and all writes are ignored. The  
STATUS register bits will be set/cleared as appropriate  
for the instruction performed.  
The Access Bank is comprised of the upper 160 bytes  
in Bank 15 (SFRs) and the lower 96 bytes in Bank 0.  
These two sections will be referred to as Access RAM  
High and Access RAM Low, respectively. Figure 4-7  
indicates the Access RAM areas.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank. This bit is denoted by the ‘a’ bit (for  
access bit).  
A MOVFFinstruction ignores the BSR since the 12-bit  
addresses are embedded into the instruction word.  
Section 4.12 “Indirect Addressing, INDF and FSR  
Registers” provides a description of indirect address-  
ing which allows linear addressing of the entire RAM  
space.  
When forced in the Access Bank (a = 0), the last  
address in Access RAM Low is followed by the first  
address in Access RAM High. Access RAM High maps  
the Special Function Registers so that these registers  
can be accessed without any software overhead. This is  
useful for testing status flags and modifying control bits.  
FIGURE 4-8:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<3:0>  
7
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
000h  
Data  
Memory(1)  
0FFh  
1FFh  
EFFh  
FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 4-2.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the  
registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
2005 Microchip Technology Inc.  
DS39612B-page 55  
PIC18F6525/6621/8525/8621  
the data from the address pointed to by  
FSR1H:FSR1L. INDFn can be used in code anywhere  
an operand can be used.  
4.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. An FSR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 4-9  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address  
specified by the value of the FSR register.  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all ‘0’s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
Status bits are not affected.  
4.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated  
with it, plus four additional register addresses. Perform-  
ing an operation on one of these five registers  
determines how the FSR will be modified during  
indirect addressing.  
Indirect addressing is possible by using one of the INDF  
registers. Any instruction using the INDF register  
actually accesses the register pointed to by the File  
Select Register, FSR. Reading the INDF register itself  
indirectly (FSR = 0), will read 00h. Writing to the INDF  
register indirectly, results in a no operation (NOP). The  
FSR register contains a 12-bit address which is shown in  
Figure 4-10.  
When data access is done to one of the five INDFn  
locations, the address selected will configure the FSRn  
register to:  
• Do nothing to FSRn after an indirect access (no  
change) – INDFn.  
The INDFn register is not a physical register. Address-  
ing INDFn actually addresses the register whose  
address is contained in the FSRn register (FSRn is a  
pointer). This is indirect addressing.  
• Auto-decrement FSRn after an indirect access  
(post-decrement) – POSTDECn.  
• Auto-increment FSRn after an indirect access  
(post-increment) – POSTINCn.  
Example 4-5 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
• Auto-increment FSRn before an indirect access  
(pre-increment) – PREINCn.  
• Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) – PLUSWn.  
EXAMPLE 4-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
LFSR  
NEXT CLRF  
FSR0, 0x100  
POSTINC0  
;
When using the auto-increment or auto-decrement  
features, the effect on the FSR is not reflected in the  
STATUS register. For example, if the indirect address  
causes the FSR to equal ‘0’, the Z bit will not be set.  
; Clear INDF  
; register and  
; inc pointer  
; All done with  
; Bank1?  
BTFSS FSR0H, 1  
Incrementing or decrementing an FSR affects all  
12 bits. That is, when FSRnL overflows from an  
increment, FSRnH will be incremented automatically.  
GOTO  
CONTINUE  
NEXT  
; NO, clear next  
; YES, continue  
Adding these features allows the FSRn to be used as a  
Stack Pointer in addition to its uses for table operations  
in data memory.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12 bits wide. To store the 12 bits of  
addressing information, two 8-bit registers are  
required. These indirect addressing registers are:  
Each FSR has an address associated with it that  
performs an indexed indirect access. When a data  
access to this INDFn location (PLUSWn) occurs, the  
FSRn is configured to add the signed value in the  
WREG register and the value in FSR to form the  
address before an indirect access. The FSR value is  
not changed.  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data. If an instruction writes a  
value to INDF0, the value will be written to the address  
pointed to by FSR0H:FSR0L. A read from INDF1 reads  
If an FSR register contains a value that points to one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(Status bits are not affected).  
If an indirect addressing operation is done where the  
target address is an FSRnH or FSRnL register,  
the write operation will dominate over the pre- or  
post-increment/decrement functions.  
DS39612B-page 56  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 4-9:  
INDIRECT ADDRESSING OPERATION  
0h  
RAM  
Instruction  
Executed  
Opcode  
Address  
12  
FFFh  
File Address = Access of an Indirect Addressing Register  
BSR<3:0>  
12  
8
12  
Instruction  
Fetched  
4
Opcode  
File  
FSR  
FIGURE 4-10:  
INDIRECT ADDRESSING  
Indirect Addressing  
11  
FSR Register  
0
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-2.  
2005 Microchip Technology Inc.  
DS39612B-page 57  
PIC18F6525/6621/8525/8621  
It is recommended that only BCF, BSF, SWAPF, MOVFF  
4.13 STATUS Register  
and MOVWFinstructions are used to alter the STATUS  
register, because these instructions do not affect the Z,  
C, DC, OV or N bits in the STATUS register.  
The STATUS register, shown in Register 4-3, contains  
the arithmetic status of the ALU. As with any other SFR,  
it can be the operand for any instruction.  
For other instructions that do not affect Status bits, see  
the instruction set summaries in Table 25-2.  
If the STATUS register is the destination for an instruc-  
tion that affects the Z, DC, C, OV or N bits, the results of  
the instruction are not written; instead, the status is  
updated according to the instruction performed. There-  
fore, the result of an instruction with the STATUS register  
as its destination may be different than intended. As an  
example, CLRFSTATUSwill set the Z bit and leave the  
remaining Status bits unchanged (‘000u u1uu’).  
Note:  
The C and DC bits operate as the borrow  
and digit borrow bits respectively in  
subtraction.  
REGISTER 4-3:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
N
bit 7  
bit 0  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the  
7-bit magnitude which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the  
2’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit  
is loaded with either bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/Borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the  
2’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit  
is loaded with either the high- or low-order bit of the source register.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 58  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
4.14 RCON Register  
Note:  
It is recommended that the POR bit be set  
after Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
a
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device Reset. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
REGISTER 4-4:  
RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed  
0= The RESETinstruction was executed causing a device Reset  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
TO: Watchdog Time-out Flag bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred  
0= A Power-on Reset occurred  
(must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred  
0= A Brown-out Reset occurred  
(must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 59  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 60  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
5.1  
Table Reads and Table Writes  
5.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data RAM:  
The Flash program memory is readable, writable and  
erasable, during normal operation over the entire VDD  
range.  
Table Read (TBLRD)  
Table Write (TBLWT)  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A bulk erase operation  
may not be issued from user code.  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease instruc-  
tion fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table read operations retrieve data from program  
memory and place it into the data RAM space.  
Figure 5-1 shows the operation of a table read with  
program memory and data RAM.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 5.5  
“Writing to Flash Program Memory”. Figure 5-2  
shows the operation of a table write with program  
memory and data RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block can  
start and end at any byte address. If a table write is being  
used to write executable code into program memory,  
program instructions will need to be word aligned.  
FIGURE 5-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer register points to a byte in program memory.  
2005 Microchip Technology Inc.  
DS39612B-page 61  
PIC18F6525/6621/8525/8621  
FIGURE 5-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table pointer actually points to one of eight holding registers, the address of which is determined by  
TBLPTRL<2:0>. The process for physically writing data to the program memory array is discussed in  
Section 5.5 “Writing to Flash Program Memory”.  
The FREE bit, when set, will allow a program memory  
erase operation. When the FREE bit is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
5.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time-out Reset during normal opera-  
tion. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR) due to Reset values of zero.  
5.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Note:  
During normal operation, the WRERR bit  
is read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
Control bit, EEPGD, determines if the access will be a  
program or data EEPROM memory access. When  
clear, any subsequent operations will operate on the  
data EEPROM memory. When set, any subsequent  
operations will operate on the program memory.  
a
Reset, or  
a write operation was  
attempted improperly.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software; it is cleared in  
hardware at the completion of the write operation. The  
inability to clear the WR bit in software prevents the  
accidental or premature termination of  
operation.  
Control bit, CFGS, determines if the access will be to  
the Configuration/Calibration registers or to program  
memory/data EEPROM memory. When set,  
subsequent operations will operate on Configuration  
registers regardless of EEPGD (see Section 24.0  
“Special Features of the CPU”). When clear, memory  
selection access is determined by EEPGD.  
a write  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when the write is complete. It must  
be cleared in software.  
DS39612B-page 62  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 5-1:  
EECON1 REGISTER (ADDRESS FA6h)  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access Configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note:  
When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 63  
PIC18F6525/6621/8525/8621  
5.2.2  
TABLAT – TABLE LATCH REGISTER  
5.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch register is used to  
hold 8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRDis executed, all 22 bits of the TBLPTR  
determine which byte is read from program memory  
into TABLAT.  
5.2.3  
TBLPTR – TABLE POINTER  
REGISTER  
When a TBLWTis executed, the three LSbs of the Table  
Pointer register (TBLPTR<2:0>) determine which of the  
eight program memory holding registers is written to.  
When the timed write to program memory (long write)  
begins, the 19 MSbs of the TBLPTR (TBLPTR<21:3>)  
will determine which program memory block of 8 bytes  
is written to. For more detail, see Section 5.5 “Writing  
to Flash Program Memory”.  
The Table Pointer register (TBLPTR) addresses a byte  
within the program memory. The TBLPTR is comprised  
of three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the device ID, the user ID and the configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer register (TBLPTR<21:6>)  
point to the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The Table Pointer, TBLPTR, is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways based on the table opera-  
tion. These operations are shown in Table 5-1. These  
operations on the TBLPTR only affect the low-order  
21 bits.  
Figure 5-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 5-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 5-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE – TBLPTR<20:6>  
WRITE – TBLPTR<21:3>  
READ – TBLPTR<21:0>  
DS39612B-page 64  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
5.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
automatically for the next table read operation.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 5-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 5-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
(IR)  
TABLAT  
Read Register  
FETCH  
TBLRD  
EXAMPLE 5-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_EVEN  
TBLRD*+  
MOVFW  
MOVWF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_ODD  
2005 Microchip Technology Inc.  
DS39612B-page 65  
PIC18F6525/6621/8525/8621  
5.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
5.4  
Erasing Flash Program Memory  
The minimum erase block is 32 words or 64 bytes. Only  
through the use of an external programmer, or through  
ICSP control, can larger blocks of program memory be  
bulk erased. Word erase in the Flash array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer register with address of row  
being erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the Flash  
program memory. The WREN bit must be set to enable  
write operations. The FREE bit is set to select an erase  
operation.  
4. Write 55h to EECON2.  
5. Write AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
For protection, the write initiate sequence for EECON2  
must be used.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
8. Re-enable interrupts.  
EXAMPLE 5-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BCF  
BSF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
; write 55h  
; write AAh  
; start erase (CPU stall)  
; re-enable interrupts  
BSF  
DS39612B-page 66  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
the holding registers are written. At the end of updating  
8 registers, the EECON1 register must be written to, to  
start the programming operation with a long write.  
5.5  
Writing to Flash Program Memory  
The minimum programming block is 4 words or 8 bytes.  
Word or byte programming is not supported.  
The long write is necessary for programming the  
internal Flash. Instruction execution is halted while in a  
long write cycle. The long write will be terminated by  
the internal programming timer.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 8 holding registers used by the table writes for  
programming.  
The EEPROM on-chip timer controls the write time.  
The write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device for byte or word operations.  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWT instruction has to be executed 8 times for  
each programming operation. All of the table write  
operations will essentially be short writes because only  
FIGURE 5-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx2  
TBLPTR = xxxxx7  
Holding Register  
TBLPTR = xxxxx1  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
8. Disable interrupts.  
5.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
13. Re-enable interrupts.  
3. Load Table Pointer register with address being  
erased.  
14. Repeat steps 6-14 seven times to write 64 bytes.  
15. Verify the memory (table read).  
4. Do the row erase procedure.  
5. Load Table Pointer register with address of first  
byte being written.  
This procedure will require about 18 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 5-3.  
6. Write the first 8 bytes into the holding registers  
with auto-increment.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the eight bytes  
in the holding register.  
7. Set the EECON1 register for the write operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set WREN to enable byte writes.  
2005 Microchip Technology Inc.  
DS39612B-page 67  
PIC18F6525/6621/8525/8621  
EXAMPLE 5-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
D'64  
; number of bytes in erase block  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT, and inc  
; get data  
; store data  
; done?  
TABLAT, W  
POSTINC0  
DECFSZ COUNTER  
BRA  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BCF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; load TBLPTR with the base  
; address of the memory block  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write AAh  
; start erase (CPU stall)  
; re-enable interrupts  
; dummy read decrement  
BSF  
TBLRD*-  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
PROGRAM_LOOP  
MOVLW  
MOVWF  
8
; number of bytes in holding register  
COUNTER  
WRITE_WORD_TO_HREGS  
MOVFF  
POSTINC0, WREG  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
TBLWT+*  
DECFSZ COUNTER  
BRA WRITE_WORD_TO_HREGS  
DS39612B-page 68  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
EXAMPLE 5-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
PROGRAM_MEMORY  
BSF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write AAh  
; start program (CPU stall)  
; re-enable interrupts  
; loop until done  
BSF  
DECFSZ COUNTER_HI  
BRA PROGRAM_LOOP  
BCF  
EECON1, WREN  
; disable write to memory  
5.5.2  
WRITE VERIFY  
5.5.4  
PROTECTION AGAINST  
SPURIOUS WRITES  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
To protect against spurious writes to Flash program  
memory, the write initiate sequence must also be  
followed. See Section 24.0 “Special Features of the  
CPU” for more detail.  
5.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
5.6  
Flash Program Operation During  
Code Protection  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. The WRERR bit is set when a  
write operation is interrupted by a MCLR Reset or a  
WDT Time-out Reset during normal operation. In these  
situations, users can check the WRERR bit and rewrite  
the location.  
See Section 24.0 “Special Features of the CPU” for  
details on code protection of Flash program memory.  
TABLE 5-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Value on  
Value on:  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
(1)  
TBLPTRU  
bit 21  
Program Memory Table Pointer Upper Byte  
(TBLPTR<20:16>)  
--00 0000 --00 0000  
TBLPTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000u  
TABLAT  
INTCON  
EECON2  
EECON1  
IPR2  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
RD  
EEPROM Control Register 2 (not a physical register)  
EEPGD  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
xx-0 x000 uu-0 u000  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP -1-1 1111 -1-1 1111  
CCP2IF -0-0 0000 -0-0 0000  
PIR2  
PIE2  
CCP2IE -0-0 0000 -0-0 0000  
Legend:  
x= unknown, u= unchanged, r= reserved, — = unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
Note 1: Bit 21 of the TBLPTRU allows access to device configuration bits.  
2005 Microchip Technology Inc.  
DS39612B-page 69  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 70  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
6.1  
Program Memory Modes and the  
External Memory Interface  
6.0  
EXTERNAL MEMORY  
INTERFACE  
As previously noted, PIC18F8525/8621 controllers are  
capable of operating in any one of four program mem-  
ory modes using combinations of on-chip and external  
program memory. The functions of the multiplexed port  
pins depends on the program memory mode selected,  
as well as the setting of the EBDIS bit.  
Note: The external memory interface is not  
implemented on PIC18F6525/6621 (64-pin)  
devices.  
The external memory interface is a feature of the  
PIC18F8525/8621 devices that allows the controller to  
access external memory devices (such as Flash,  
EPROM, SRAM, etc.) as program or data memory.  
In Microprocessor Mode, the external bus is always  
active and the port pins have only the external bus  
function.  
The physical implementation of the interface uses  
27 pins. These pins are reserved for external address/  
data bus functions; they are multiplexed with I/O port  
pins on four ports. Three I/O ports are multiplexed with  
the address/data bus, while the fourth port is multiplexed  
with the bus control signals. The I/O port functions are  
enabled when the EBDIS bit in the MEMCON register is  
set (see Register 6-1). A list of the multiplexed pins and  
their functions is provided in Table 6-1.  
In Microcontroller Mode, the bus is not active and  
the pins have their port functions only. Writes to the  
MEMCOM register are not permitted.  
In Microprocessor with Boot Block or Extended  
Microcontroller Mode, the external program memory  
bus shares I/O port functions on the pins. When the  
device is fetching or doing table read/table write oper-  
ations on the external program memory space, the  
pins will have the external bus function. If the device is  
fetching and accessing internal program memory loca-  
tions only, the EBDIS control bit will change the pins  
from external memory to I/O port functions. When  
EBDIS = 0, the pins function as the external bus.  
When EBDIS = 1, the pins function as I/O ports.  
As implemented in the PIC18F8525/8621 devices, the  
interface operates in a similar manner to the external  
memory interface introduced on PIC18C601/801 micro-  
controllers. The most notable difference is that the  
interface on PIC18F8525/8621 devices only operates in  
16-bit modes. The 8-bit mode is not supported.  
For a more complete discussion of the operating modes  
that use the external memory interface, refer to  
Section 4.1.1PIC18F6525/6621/8525/8621Program  
Memory Modes”.  
REGISTER 6-1:  
MEMCON: MEMORY CONTROL REGISTER  
R/W-0  
EBDIS  
U-0  
R/W-0  
WAIT1  
R/W-0  
WAIT0  
U-0  
U-0  
R/W-0  
WM1  
R/W-0  
WM0  
bit 7  
bit 0  
bit 7  
EBDIS: External Bus Disable bit  
1= External system bus disabled, all external bus drivers are mapped as I/O ports  
0= External system bus enabled and I/O ports are disabled  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-4  
WAIT1:WAIT0: Table Reads and Writes Bus Cycle Wait Count bits  
11= Table reads and writes will wait 0 TCY  
10= Table reads and writes will wait 1 TCY  
01= Table reads and writes will wait 2 TCY  
00= Table reads and writes will wait 3 TCY  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
WM1:WM0: TBLWRTOperation with 16-Bit Bus bits  
1x= Word Write mode: TABLAT<0> and TABLAT<1> word output, WRH active when  
TABLAT<1> written  
01= Byte Select mode: TABLAT data copied on both MSB and LSB, WRH and (UB or LB) will  
activate  
00= Byte Write mode: TABLAT data copied on both MSB and LSB, WRH or WRL will activate  
Note:  
The MEMCON register is unimplemented and reads all ‘0’s when the device is in  
Microcontroller mode.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 71  
PIC18F6525/6621/8525/8621  
If the device fetches or accesses external memory  
while EBDIS = 1, the pins will switch to external bus. If  
the EBDIS bit is set by a program executing from  
external memory, the action of setting the bit will be  
delayed until the program branches into the internal  
memory. At that time, the pins will change from  
external bus to I/O ports.  
When the device is executing out of internal memory  
(EBDIS = 0) in Microprocessor with Boot Block mode  
or Extended Microcontroller mode, the control signals  
will NOT be active. They will go to a state where the  
AD<15:0> and A<19:16> are tri-state; the CE, OE,  
WRH, WRL, UB and LB signals are ‘1’ and ALE and  
BA0 are ‘0’.  
TABLE 6-1:  
Name  
PIC18F8525/8621 EXTERNAL BUS – I/O PORT FUNCTIONS  
Port  
Bit  
Function  
RD0/AD0  
RD1/AD1  
RD2/AD2  
RD3/AD3  
RD4/AD4  
RD5/AD5  
RD6/AD6  
RD7/AD7  
RE0/AD8  
RE1/AD9  
RE2/AD10  
RE3/AD11  
RE4/AD12  
RE5/AD13  
RE6/AD14  
RE7/AD15  
RH0/A16  
RH1/A17  
RH2/A18  
RH3/A19  
RJ0/ALE  
RJ1/OE  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTH  
PORTH  
PORTH  
PORTH  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
bit 0 Input/Output or System Bus Address bit 0 or Data bit 0  
bit 1 Input/Output or System Bus Address bit 1 or Data bit 1  
bit 2 Input/Output or System Bus Address bit 2 or Data bit 2  
bit 3 Input/Output or System Bus Address bit 3 or Data bit 3  
bit 4 Input/Output or System Bus Address bit 4 or Data bit 4  
bit 5 Input/Output or System Bus Address bit 5 or Data bit 5  
bit 6 Input/Output or System Bus Address bit 6 or Data bit 6  
bit 7 Input/Output or System Bus Address bit 7 or Data bit 7  
bit 0 Input/Output or System Bus Address bit 8 or Data bit 8  
bit 1 Input/Output or System Bus Address bit 9 or Data bit 9  
bit 2 Input/Output or System Bus Address bit 10 or Data bit 10  
bit 3 Input/Output or System Bus Address bit 11 or Data bit 11  
bit 4 Input/Output or System Bus Address bit 12 or Data bit 12  
bit 5 Input/Output or System Bus Address bit 13 or Data bit 13  
bit 6 Input/Output or System Bus Address bit 14 or Data bit 14  
bit 7 Input/Output or System Bus Address bit 15 or Data bit 15  
bit 0 Input/Output or System Bus Address bit 16  
bit 1 Input/Output or System Bus Address bit 17  
bit 2 Input/Output or System Bus Address bit 18  
bit 3 Input/Output or System Bus Address bit 19  
bit 0 Input/Output or System Bus Address Latch Enable (ALE) Control pin  
bit 1 Input/Output or System Bus Output Enable (OE) Control pin  
bit 2 Input/Output or System Bus Write Low (WRL) Control pin  
bit 3 Input/Output or System Bus Write High (WRH) Control pin  
bit 4 Input/Output or System Bus Byte Address bit 0  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
bit 5 Input/Output or System Bus Chip Enable (CE) Control pin  
bit 6 Input/Output or System Bus Lower Byte Enable (LB) Control pin  
bit 7 Input/Output or System Bus Upper Byte Enable (UB) Control pin  
RJ6/LB  
RJ7/UB  
DS39612B-page 72  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
In Byte Select mode, JEDEC standard Flash memories  
will require BA0 for the byte address line and one I/O  
line, to select between Byte and Word mode. The other  
16-bit modes do not need BA0. JEDEC standard static  
RAM memories will use the UB or LB signals for byte  
selection.  
6.2  
16-Bit Mode  
The external memory interface implemented in  
PIC18F8525/8621 devices operates only in 16-bit  
mode. The mode selection is not software configurable  
but is programmed via the configuration bits.  
The WM1:WM0 bits in the MEMCON register  
determine three types of connections in 16-bit mode.  
They are referred to as:  
6.2.1  
16-BIT BYTE WRITE MODE  
Figure 6-1 shows an example of 16-bit Byte Write mode  
for PIC18F8525/8621 devices. This mode is used for  
two separate 8-bit memories connected for 16-bit  
operation. This generally includes basic EPROM and  
Flash devices. It allows table writes to byte-wide external  
memories.  
• 16-bit Byte Write  
• 16-bit Word Write  
• 16-bit Byte Select  
These three different configurations allow the designer  
maximum flexibility in using 8-bit and 16-bit memory  
devices.  
During a TBLWTinstruction cycle, the TABLAT data is  
presented on the upper and lower bytes of the  
AD15:AD0 bus. The appropriate WRH or WRL control  
line is strobed on the LSb of the TBLPTR.  
For all 16-bit modes, the Address Latch Enable (ALE)  
pin indicates that the address bits, A15:A0, are  
available on the external memory interface bus.  
Following the address latch, the Output Enable signal  
(OE) will enable both bytes of program memory at once  
to form a 16-bit instruction word. The Chip Enable  
signal (CE) is active at any time that the microcontroller  
accesses external memory, whether reading or writing;  
it is inactive (asserted high) whenever the device is in  
Sleep mode.  
FIGURE 6-1:  
16-BIT BYTE WRITE MODE EXAMPLE  
D<7:0>  
PIC18F8X2X  
AD<7:0>  
(MSB)  
A<x:0>  
(LSB)  
A<x:0>  
A<19:0>  
D<15:8>  
373  
373  
D<7:0>  
D<7:0>  
CE  
D<7:0>  
CE  
AD<15:8>  
ALE  
(1)  
(1)  
OE WR  
OE WR  
A<19:16>  
CE  
OE  
WRH  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
2005 Microchip Technology Inc.  
DS39612B-page 73  
PIC18F6525/6621/8525/8621  
During  
a
TBLWT cycle to an odd address  
6.2.2  
16-BIT WORD WRITE MODE  
(TBLPTR<0> = 1), the TABLAT data is presented on  
the upper byte of the AD15:AD0 bus. The contents of  
the holding latch are presented on the lower byte of the  
AD15:AD0 bus.  
Figure 6-2 shows an example of 16-bit Word Write  
mode for PIC18F8525/8621 devices. This mode is  
used for word-wide memories which include some of  
the EPROM and Flash type memories. This mode  
allows opcode fetches and table reads from all forms of  
16-bit memory and table writes to any type of word-  
wide external memories. This method makes a  
distinction between TBLWT cycles to even or odd  
addresses.  
The WRH signal is strobed for each write cycle; the  
WRL pin is unused. The signal on the BA0 pin indicates  
the LSb of the TBLPTR but it is left unconnected.  
Instead, the UB and LB signals are active to select both  
bytes. The obvious limitation to this method is that the  
table write must be done in pairs on a specific word  
boundary to correctly write a word location.  
During  
a
TBLWT cycle to an even address  
(TBLPTR<0> = 0), the TABLAT data is transferred to a  
holding latch and the external address data bus is tri-  
stated for the data portion of the bus cycle. No write  
signals are activated.  
FIGURE 6-2:  
16-BIT WORD WRITE MODE EXAMPLE  
PIC18F8X2X  
AD<7:0>  
A<20:1>  
D<15:0>  
JEDEC Word  
EPROM Memory  
373  
373  
A<x:0>  
D<15:0>  
CE  
(1)  
OE  
WR  
AD<15:8>  
ALE  
A<19:16>  
CE  
OE  
WRH  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
DS39612B-page 74  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Flash and SRAM devices use different control signal  
combinations to implement Byte Select mode. JEDEC  
6.2.3  
16-BIT BYTE SELECT MODE  
Figure 6-3 shows an example of 16-bit Byte Select  
mode for PIC18F8525/8621 devices. This mode allows  
table write operations to word-wide external memories  
with byte selection capability. This generally includes  
both word-wide Flash and SRAM devices.  
standard Flash memories require that a controller I/O  
port pin be connected to the memory’s BYTE/WORD  
pin to provide the select signal. They also use the BA0  
signal from the controller as a byte address. JEDEC  
standard static RAM memories, on the other hand, use  
the UB or LB signals to select the byte.  
During a TBLWTcycle, the TABLAT data is presented  
on the upper and lower byte of the AD15:AD0 bus. The  
WRH signal is strobed for each write cycle; the WRL  
pin is not used. The BA0 or UB/LB signals are used to  
select the byte to be written based on the Least  
Significant bit of the TBLPTR register.  
FIGURE 6-3:  
16-BIT BYTE SELECT MODE EXAMPLE  
PIC18F8X2X  
AD<7:0>  
A<20:1>  
373  
373  
JEDEC Word  
Flash Memory  
A<x:1>  
D<15:0>  
D<15:0>  
(2)  
138  
CE  
A0  
AD<15:8>  
(1)  
ALE  
A<19:16>  
OE  
BYTE/WORD OE WR  
WRH  
A<20:1>  
WRL  
JEDEC Word  
A<x:1>  
SRAM Memory  
BA0  
I/O  
D<15:0>  
D<15:0>  
CE  
LB  
LB  
(1)  
UB  
OE WR  
UB  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
2: Demultiplexing is only required when multiple memory devices are accessed.  
2005 Microchip Technology Inc.  
DS39612B-page 75  
PIC18F6525/6621/8525/8621  
6.2.4  
16-BIT MODE TIMING  
The presentation of control signals on the external  
memory bus is different for the various operating  
modes. Typical signal timing diagrams are shown in  
Figure 6-4 through Figure 6-6.  
FIGURE 6-4:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD (MICROPROCESSOR MODE)  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q4  
Q1  
Q4  
Q2  
Q4  
Q3  
Q4  
Q4  
Apparent Q  
Actual Q  
00h  
0Ch  
A<19:16>  
3AABh  
0E55h  
9256h  
AD<15:0>  
CF33h  
BA0  
ALE  
OE  
WRH  
1’  
1’  
WRL  
CE  
1’  
0’  
1’  
0’  
1 TCY Wait  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Table Read  
of 92h  
from 007556h  
from 199E67h  
Instruction  
Execution  
TBLRDCycle 1  
TBLRDCycle 2  
FIGURE 6-5:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD  
(EXTENDED MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
0Ch  
A<19:16>  
CF33h  
9256h  
AD<15:0>  
CE  
ALE  
OE  
Opcode Fetch  
TBLRD*  
from 000100h  
Opcode Fetch  
MOVLW55h  
from 000102h  
TBLRD92h  
from 199E67h  
Opcode Fetch  
ADDLW55h  
from 000104h  
Memory  
Cycle  
Instruction  
Execution  
INST(PC – 2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
DS39612B-page 76  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 6-6:  
EXTERNAL MEMORY BUS TIMING FOR SLEEP (MICROPROCESSOR MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
00h  
00h  
A<19:16>  
AD<15:0>  
0E55h  
0003h  
3AAAh  
3AABh  
CE  
ALE  
OE  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Opcode Fetch  
SLEEP  
Sleep Mode, Bus Inactive  
from 007554h  
from 007556h  
Instruction  
Execution  
INST(PC – 2)  
SLEEP  
2005 Microchip Technology Inc.  
DS39612B-page 77  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 78  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
7.1  
EEADR and EEADRH  
7.0  
DATA EEPROM MEMORY  
The address register pair can address up to a  
maximum of 1024 bytes of data EEPROM. The two  
Most Significant bits of the address are stored in  
EEADRH, while the remaining eight Least Significant  
bits are stored in EEADR. The six Most Significant bits  
of EEADRH are unused and are read as ‘0’.  
The data EEPROM is readable and writable during  
normal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
There are five SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
7.2  
EECON1 and EECON2 Registers  
• EECON1  
• EECON2  
• EEDATA  
• EEADRH  
• EEADR  
EECON1 is the control register for EEPROM memory  
accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the EEPROM write sequence.  
Control bits RD and WR initiate read and write  
operations, respectively. These bits cannot be cleared,  
only set in software. They are cleared in hardware at  
the completion of the read or write operation. The  
inability to clear the WR bit in software prevents the  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write. EEADR and  
EEADRH hold the address of the EEPROM location  
being accessed. These devices have 1024 bytes of  
data EEPROM with an address range from 00h to  
3FFh.  
accidental or premature termination of  
operation.  
a write  
Note:  
During normal operation, the WRERR bit  
is read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
The EEPROM data memory is rated for high erase/  
write cycles. A byte write automatically erases the loca-  
tion and writes the new data (erase-before-write). The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature, as well as  
from chip-to-chip. Please refer to parameter D122  
(Section 27.0 “Electrical Characteristics”) for exact  
limits.  
a
Reset, or  
a write operation was  
attempted improperly.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time-out Reset during normal  
operation. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR) due to the Reset condition forcing the  
contents of the registers to zero.  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when write is complete. It must be  
cleared in software.  
2005 Microchip Technology Inc.  
DS39612B-page 79  
PIC18F6525/6621/8525/8621  
REGISTER 7-1:  
EECON1 REGISTER (ADDRESS FA6h)  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program/Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access Configuration or Calibration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR or any WDT Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note:  
When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles to Flash program/data EEPROM  
0= Inhibits write cycles to Flash program/data EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 80  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
control bit (EECON1<6>) and then set the RD control  
bit (EECON1<0>). The data is available for the very  
next instruction cycle; therefore, the EEDATA register  
7.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADRH:EEADR register pair, clear the  
EEPGD control bit (EECON1<7>), clear the CFGS  
can be read by the next instruction. EEDATA will hold  
this value until another read operation or until it is  
written to by the user (during a write operation).  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOVLW DATA_EE_ADDRH  
;
MOVWF EEADRH  
; Upper bits of Data Memory Address to read  
MOVLW DATA_EE_ADDR  
MOVWF EEADR  
;
; Lower bits of Data Memory Address to read  
; Point to DATA memory  
; Access EEPROM  
; EEPROM Read  
; W = EEDATA  
BCF  
BCF  
BSF  
MOVF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, RD  
EEDATA, W  
execution (i.e., runaway programs). The WREN bit  
should be kept clear at all times except when updating  
the EEPROM. The WREN bit is not cleared  
by hardware.  
7.4  
Writing to the Data EEPROM  
Memory  
To write an EEPROM data location, the address must  
first be written to the EEADRH:EEADR register pair  
and the data written to the EEDATA register. Then the  
sequence in Example 7-2 must be followed to initiate  
the write cycle.  
After a write sequence has been initiated, EECON1,  
EEADRH, EEADR and EEDATA cannot be modified.  
The WR bit will be inhibited from being set unless the  
WREN bit is set. Both WR and WREN cannot be set  
with the same instruction.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Write Complete  
Interrupt Flag bit (EEIF) is set. The user may either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code  
EXAMPLE 7-2:  
DATA EEPROM WRITE  
MOVLW  
DATA_EE_ADDRH  
EEADRH  
DATA_EE_ADDR  
EEADR  
DATA_EE_DATA  
EEDATA  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
;
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
; Upper bits of Data Memory Address to write  
;
; Lower bits of Data Memory Address to write  
;
; Data Memory Value to write  
; Point to DATA memory  
; Access EEPROM  
BCF  
BSF  
; Enable writes  
BCF  
INTCON, GIE  
0x55  
EECON2  
0xAA  
EECON2  
; Disable Interrupts  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Enable Interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
EECON1, WR  
INTCON, GIE  
BSF  
; User code execution  
BCF  
EECON1, WREN  
; Disable writes on write complete (EEIF set)  
2005 Microchip Technology Inc.  
DS39612B-page 81  
PIC18F6525/6621/8525/8621  
7.5  
Write Verify  
7.7  
Operation During Code-Protect  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
Data EEPROM memory has its own code-protect  
mechanism. External read and write operations are  
disabled if either of these mechanisms are enabled.  
Refer to Section 24.0 “Special Features of the  
CPU”, for additional information.  
7.6  
Protection Against Spurious Write  
7.8  
Using the Data EEPROM  
There are conditions when the user may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
The data EEPROM is a high endurance, byte  
addressable array that has been optimized for the  
storage of frequently changing information (e.g.,  
program variables or other data that are updated  
often). Frequently changing values will typically be  
updated more often than specification D124. If this is  
not the case, an array refresh must be performed. For  
this reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch or software malfunction.  
A simple data EEPROM refresh routine is shown in  
Example 7-3.  
EXAMPLE 7-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
CLRF  
BCF  
BCF  
BCF  
EEADR  
EEADRH  
EECON1, CFGS  
EECON1, EEPGD  
INTCON, GIE  
EECON1, WREN  
; Start at address 0  
;
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Wait for write to complete  
BSF  
Loop  
BSF  
EECON1, RD  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BTFSC  
BRA  
INCFSZ EEADR, F  
; Increment address  
BRA  
Loop  
; Not zero, do it again  
; Increment the high address  
; Not zero, do it again  
INCFSZ EEADRH, F  
BRA  
Loop  
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
DS39612B-page 82  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
EEADRH  
EEADR  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
EE Addr Register High ---- --00 ---- --00  
0000 0000 0000 0000  
Data EEPROM Address Register  
EEDATA Data EEPROM Data Register  
EECON2 Data EEPROM Control Register 2 (not a physical register)  
0000 0000 0000 0000  
EECON1  
IPR2  
EEPGD  
CFGS  
CMIP  
CMIF  
CMIE  
FREE WRERR WREN  
WR  
RD  
xx-0 x000 uu-0 u000  
EEIP  
EEIF  
EEIE  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP -1-1 1111 -1-1 1111  
CCP2IF -0-0 0000 ---0 0000  
CCP2IE -0-0 0000 ---0 0000  
PIR2  
PIE2  
Legend:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.  
2005 Microchip Technology Inc.  
DS39612B-page 83  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 84  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
8.2  
Operation  
8.0  
8.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
Example 8-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
An 8 x 8 hardware multiplier is included in the ALU of the  
PIC18F6525/6621/8525/8621 devices. By making the  
multiply a hardware operation, it completes in a single  
instruction cycle. This is an unsigned multiply that gives  
a 16-bit result. The result is stored in the 16-bit product  
register pair (PRODH:PRODL). The multiplier does not  
affect any flags in the ALUSTA register.  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the signed bits of the  
arguments, each argument’s Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
MOVF  
MULWF ARG2  
ARG1, W  
;
• Higher computational throughput  
; ARG1 * ARG2 ->  
;
• Reduces code size requirements for multiply  
algorithms  
PRODH:PRODL  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
MOVF  
ARG1, W  
;
Table 8-1 shows a performance comparison between  
Enhanced devices using the single-cycle hardware  
multiply and performing the same function without the  
hardware multiply.  
MULWF ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC ARG2, SB  
SUBWF PRODH, F  
;
;
- ARG1  
MOVF  
ARG2, W  
BTFSC ARG1, SB  
SUBWF PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
@ 40 MHz @ 10 MHz @ 4 MHz  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 µs  
100 ns  
9.1 µs  
600 ns  
24.2 µs  
2.4 µs  
25.4 µs  
3.6 µs  
27.6 µs  
400 ns  
36.4 µs  
2.4 µs  
69 µs  
1 µs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 µs  
6 µs  
Without hardware multiply  
Hardware multiply  
21  
24  
52  
36  
242  
24  
254  
36  
96.8 µs  
9.6 µs  
102.6 µs  
14.4 µs  
242 µs  
24 µs  
254 µs  
36 µs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
2005 Microchip Technology Inc.  
DS39612B-page 85  
PIC18F6525/6621/8525/8621  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 8-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2H 216) +  
(ARG1H ARG2L 28) +  
(ARG1L ARG2H 28) +  
(ARG1L ARG2L) +  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 216) +  
(ARG1H ARG2L 28) +  
(ARG1L ARG2H 28) +  
(ARG1L ARG2L)  
(-1 ARG2H<7> ARG1H:ARG1L 216) +  
(-1 ARG1H<7> ARG2H:ARG2L 216)  
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
;
;
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L,W  
ARG2H  
; ARG1L * ARG2H ->  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
ARG1H, W  
SUBWFB RES3  
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the signed bits of the  
arguments, each argument pairs’ Most Significant bit  
(MSb) is tested and the appropriate subtractions are  
done.  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39612B-page 86  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
9.0  
INTERRUPTS  
compatible with PICmicro® mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in Compatibility mode.  
The PIC18F6525/6621/8525/8621 devices have multi-  
ple interrupt sources and an interrupt priority feature  
that allows each interrupt source to be assigned a high  
or a low priority level. The high priority interrupt vector  
is at 000008h, while the low priority interrupt vector is  
at 000018h. High priority interrupt events will override  
any low priority interrupts that may be in progress.  
There are thirteen registers which are used to control  
interrupt operation. They are:  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High priority interrupt sources can interrupt a low  
priority interrupt.  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files  
supplied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used) which re-enables interrupts.  
Each interrupt source has three bits to control its  
operation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
• Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set. Setting the GIEL  
bit (INTCON<6>) enables all interrupts that have the  
priority bit cleared. When the interrupt flag, enable bit  
and appropriate global interrupt enable bit are set, the  
interrupt will vector immediately to address 000008h or  
000018h, depending on the priority level. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
2005 Microchip Technology Inc.  
DS39612B-page 87  
PIC18F6525/6621/8525/8621  
FIGURE 9-1:  
INTERRUPT LOGIC  
Wake-up if in Sleep mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIEH/GIE  
TMR1IF  
TMR1IE  
TMR1IP  
IPEN  
IPEN  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL/PEIE  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL/PEIE  
RBIP  
GIE/GEIH  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS39612B-page 88  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
9.1  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
interrupt enable bit. User software should  
ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt.  
This feature allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 9-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
GIE/GIEH PEIE/GIEL TMR0IE  
bit 7  
INT0IE  
TMR0IF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all high priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note:  
A mismatch condition will continue to set this bit. Reading PORTB will end the  
mismatch condition and allow the bit to be cleared.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 89  
PIC18F6525/6621/8525/8621  
REGISTER 9-2:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RBIP  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP  
INT3IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG3: External Interrupt 3 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IP: INT3 External Interrupt Priority bit  
1= High priority  
0= Low priority  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global interrupt enable bit. User software  
should ensure the appropriate interrupt flag bits are clear prior to enabling an  
interrupt. This feature allows for software polling.  
DS39612B-page 90  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 9-3:  
INTCON3: INTERRUPT CONTROL REGISTER 3  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT3IF  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT3IE  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IE: INT3 External Interrupt Enable bit  
1= Enables the INT3 external interrupt  
0= Disables the INT3 external interrupt  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
INT3IF: INT3 External Interrupt Flag bit  
1= The INT3 external interrupt occurred (must be cleared in software)  
0= The INT3 external interrupt did not occur  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global interrupt enable bit. User software  
should ensure the appropriate interrupt flag bits are clear prior to enabling an  
interrupt. This feature allows for software polling.  
2005 Microchip Technology Inc.  
DS39612B-page 91  
PIC18F6525/6621/8525/8621  
9.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Request Flag registers (PIR1, PIR2 and PIR3).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt and after servicing  
that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
TMR1IF  
bit 0  
RC1IF  
TX1IF  
CCP1IF  
TMR2IF  
bit 7  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1)  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
ADIF: A/D Converter Interrupt Flag bit  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RC1IF: USART1 Receive Interrupt Flag bit  
1= The USART1 receive buffer, RCREGx, is full (cleared when RCREGx is read)  
0= The USART1 receive buffer is empty  
TX1IF: USART1 Transmit Interrupt Flag bit  
1= The USART1 transmit buffer, TXREGx, is empty (cleared when TXREGx is written)  
0= The USART1 transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: ECCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 92  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
U-0  
R/W-0  
CMIF  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
R/W-0  
CCP2IF  
bit 0  
TMR3IF  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIF: Comparator Interrupt Flag bit  
1= The comparator input has changed (must be cleared in software)  
0= The comparator input has not changed  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared in software)  
0= The write operation is not complete, or has not been started  
bit 3  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred while the MSSP module (configured in I2C Master mode)  
was transmitting (must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
bit 0  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low-Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: ECCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 or TMR3 register capture occurred (must be cleared in software)  
0= No TMR1 or TMR3 register capture occurred  
Compare mode:  
1= A TMR1 or TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1 or TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 93  
PIC18F6525/6621/8525/8621  
REGISTER 9-6:  
PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
U-0  
U-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP3IF  
bit 0  
RC2IF  
TX2IF  
TMR4IF  
CCP5IF  
CCP4IF  
bit 7  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IF: USART2 Receive Interrupt Flag bit  
1= The USART2 receive buffer, RCREGx, is full (cleared when RCREGx is read)  
0= The USART2 receive buffer is empty  
bit 4  
TX2IF: USART2 Transmit Interrupt Flag bit  
1= The USART2 transmit buffer, TXREGx, is empty (cleared when TXREGx is written)  
0= The USART2 transmit buffer is full  
bit 3  
TMR4IF: TMR3 Overflow Interrupt Flag bit  
1= TMR4 register overflowed (must be cleared in software)  
0= TMR4 register did not overflow  
bit 2-0  
CCPxIF: CCPx Interrupt Flag bit (ECCP3, CCP4 and CCP5)  
Capture mode:  
1= A TMR1 or TMR3 register capture occurred (must be cleared in software)  
0= No TMR1 or TMR3 register capture occurred  
Compare mode:  
1= A TMR1 or TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1 or TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 94  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
9.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Enable registers (PIE1, PIE2 and PIE3).  
When the IPEN bit (RCON<7>) is ‘0’, the PEIE bit must  
be set to enable any of these peripheral interrupts.  
REGISTER 9-7:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RC1IE  
R/W-0  
TX1IE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit(1)  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
Note:  
Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RC1IE: USART1 Receive Interrupt Enable bit  
1= Enables the USART1 receive interrupt  
0= Disables the USART1 receive interrupt  
TX1IE: USART1 Transmit Interrupt Enable bit  
1= Enables the USART1 transmit interrupt  
0= Disables the USART1 transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: ECCP1 Interrupt Enable bit  
1= Enables the ECCP1 interrupt  
0= Disables the ECCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 95  
PIC18F6525/6621/8525/8621  
REGISTER 9-8:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
U-0  
R/W-0  
CMIE  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
R/W-0  
TMR3IE  
CCP2IE  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIE: Comparator Interrupt Enable bit  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit  
1= Enables the write operation interrupt  
0= Disables the write operation interrupt  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enables the bus collision interrupt  
0= Disables the bus collision interrupt  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enables the Low-Voltage Detect interrupt  
0= Disables the Low-Voltage Detect interrupt  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
CCP2IE: ECCP2 Interrupt Enable bit  
1= Enables the ECCP2 interrupt  
0= Disables the ECCP2 interrupt  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 96  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 9-9:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
U-0  
U-0  
R/W-0  
RC2IE  
R/W-0  
TX2IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TMR4IE  
CCP5IE  
CCP4IE  
CCP3IE  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IE: USART2 Receive Interrupt Enable bit  
1= Enables the USART2 receive interrupt  
0= Disables the USART2 receive interrupt  
bit 4  
TX2IE: USART2 Transmit Interrupt Enable bit  
1= Enables the USART2 transmit interrupt  
0= Disables the USART2 transmit interrupt  
bit 3  
TMR4IE: TMR4 to PR4 Match Interrupt Enable bit  
1= Enables the TMR4 to PR4 match interrupt  
0= Disables the TMR4 to PR4 match interrupt  
bit 2-0  
CCPxIE: CCPx Interrupt Enable bit (ECCP3, CCP4 and CCP5)  
1= Enables the CCPx interrupt  
0= Disables the CCPx interrupt  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 97  
PIC18F6525/6621/8525/8621  
9.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Priority registers (IPR1, IPR2 and IPR3). The  
operation of the priority bits requires that the Interrupt  
Priority Enable (IPEN) bit be set.  
REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP(1)  
bit 7  
R/W-1  
ADIP  
R/W-1  
RC1IP  
R/W-1  
TX1IP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
TMR2IP  
bit 7  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
Note:  
Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RC1IP: USART1 Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX1IP: USART1 Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: ECCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 98  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
U-0  
R/W-1  
CMIP  
U-0  
R/W-1  
EEIP  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
R/W-1  
TMR3IP  
CCP2IP  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: ECCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 99  
PIC18F6525/6621/8525/8621  
REGISTER 9-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
U-0  
U-0  
R/W-1  
RC2IP  
R/W-1  
TX2IP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TMR4IP  
CCP5IP  
CCP4IP  
CCP3IP  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IP: USART2 Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 4  
TX2IP: USART2 Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
TMR4IP: TMR4 to PR4 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2-0  
CCPxIP: CCPx Interrupt Priority bit (ECCP3, CCP4 and CCP5)  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 100  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
9.5  
RCON Register  
The RCON register contains the IPEN bit which is used  
to enable prioritized interrupts. The functions of the  
other bits in this register are discussed in more detail in  
Section 4.14 “RCON Register”.  
REGISTER 9-13: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16 Compatibility mode)  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-4.  
TO: Watchdog Time-out Flag bit  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 4-4.  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 4-4.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-4.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-4.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 101  
PIC18F6525/6621/8525/8621  
9.6  
INT0 Interrupt  
9.8  
PORTB Interrupt-on-Change  
External interrupts on the RB0/INT0/FLT0, RB1/INT1,  
RB2/INT2 and RB3/INT3 pins are edge-triggered;  
either rising if the corresponding INTEDGx bit is set in  
the INTCON2 register, or falling if the INTEDGx bit is  
clear. When a valid edge appears on the RBx/INTx pin,  
the corresponding flag bit, INTxF, is set. This interrupt  
can be disabled by clearing the corresponding enable  
bit, INTxE. Flag bit, INTxF, must be cleared in software  
in the Interrupt Service Routine before re-enabling the  
interrupt. All external interrupts (INT0, INT1, INT2 and  
INT3) can wake-up the processor from Sleep if bit  
INTxIE was set prior to going into Sleep. If the Global  
Interrupt Enable bit, GIE, is set, the processor will  
branch to the interrupt vector following wake-up.  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
9.9  
Context Saving During Interrupts  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, STATUS and BSR  
registers are saved on the fast return stack. If a fast  
return from interrupt is not used (see Section 4.3 “Fast  
Register Stack”), the user may need to save the  
WREG, STATUS and BSR registers in software.  
Depending on the user’s application, other registers may  
also need to be saved. Example 9-1 saves and restores  
the WREG, STATUS and BSR registers during an  
Interrupt Service Routine.  
The interrupt priority for INT1, INT2 and INT3 is  
determined by the value contained in the interrupt priority  
bits: INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and  
INT3IP (INTCON2<1>). There is no priority bit  
associated with INT0; it is always a high priority interrupt  
source.  
9.7  
TMR0 Interrupt  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (FFh 00h) will set flag bit TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L  
registers (FFFFh 0000h) will set flag bit TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit, TMR0IE (INTCON<5>). Interrupt priority for  
Timer0 is determined by the value contained in the  
interrupt priority bit, TMR0IP (INTCON2<2>). See  
Section 11.0 “Timer0 Module” for further details on  
the Timer0 module.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS39612B-page 102  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
10.1 PORTA, TRISA and LATA  
Registers  
10.0 I/O PORTS  
Depending on the device selected, there are either  
seven or nine I/O ports available on PIC18F6525/6621/  
8525/8621 devices. Some of their pins are multiplexed  
with one or more alternate functions from the other  
peripheral features on the device. In general, when a  
peripheral is enabled, that pin may not be used as a  
general purpose I/O pin.  
PORTA is a 7-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Each port has three registers for its operation. These  
registers are:  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
• TRIS register (data direction register)  
The Data Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register, read and write the latched output value for  
PORTA.  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch register)  
The Data Latch (LAT) register is useful for read-modify-  
write operations on the value that the I/O pins are  
driving.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The RA4/  
T0CKI pin is a Schmitt Trigger input and an open-drain  
output. All other RA port pins have TTL input levels and  
full CMOS output drivers.  
A simplified version of a generic I/O port and its  
operation is shown in Figure 10-1.  
The RA6 pin is only enabled as a general I/O pin in  
ECIO and RCIO Oscillator modes.  
FIGURE 10-1:  
SIMPLIFIED BLOCK  
DIAGRAM OF PORT/LAT/  
TRIS OPERATION  
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register 1).  
RD LAT  
TRIS  
Note:  
On a Power-on Reset, RA5 and RA3:RA0  
are configured as analog inputs and read  
as ‘0’. RA6 and RA4 are configured as  
digital inputs.  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
The TRISA register controls the direction of the RA pins  
even when they are being used as analog inputs. The  
user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Data Bus  
RD Port  
I/O pin  
EXAMPLE 10-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
LATA  
0x0F  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
ADCON1 ; for digital inputs  
0x0F  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<6:4> as outputs  
2005 Microchip Technology Inc.  
DS39612B-page 103  
PIC18F6525/6621/8525/8621  
FIGURE 10-2:  
BLOCK DIAGRAM OF  
RA3:RA0AND RA5PINS  
FIGURE 10-3:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
RD LATA  
RD LATA  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
Q
WR LATA  
or  
PORTA  
WR LATA  
or  
PORTA  
VDD  
I/O pin(1)  
Q
Data Latch  
CK  
CK  
P
N
Data Latch  
I/O pin(1)  
D
Q
N
D
Q
VSS  
WR TRISA  
RD TRISA  
Schmitt  
Trigger  
Input  
WR TRISA  
RD TRISA  
CK  
Q
VSS  
Analog  
Q
CK  
TRIS Latch  
TRIS Latch  
Input  
Buffer  
Mode  
TTL  
Input  
Buffer  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
TMR0 Clock Input  
To A/D Converter and LVD Modules  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 10-4:  
BLOCK DIAGRAM OF RA6 PIN (WHEN ENABLED AS I/O)  
ECRA6 or RCRA6 Enable  
Data Bus  
RD LATA  
D
Q
Q
VDD  
P
WR LATA or PORTA  
CK  
Data Latch  
I/O pin(1)  
N
D
Q
WR TRISA  
VSS  
CK  
Q
TRIS Latch  
TTL  
Input  
Buffer  
TRISA  
RD  
ECRA6 or RCRA6 Enable  
Q
D
EN  
RD PORTA  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS39612B-page 104  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 10-1: PORTA FUNCTIONS  
Name  
RA0/AN0  
Bit#  
Buffer  
Function  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
RA1/AN1  
Input/output or analog input.  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output, analog input or VREF-.  
Input/output, analog input or VREF+.  
Input/output or external clock input for Timer0.  
Output is open-drain type.  
RA5/AN4/LVDIN  
OSC2/CLKO/RA6  
bit 5  
bit 6  
TTL  
TTL  
Input/output, analog input or Low-Voltage Detect input.  
OSC2, clock output or I/O pin  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
LATA  
RA6(1)  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
-x0x 0000 -u0u 0000  
-xxx xxxx -uuu uuuu  
-111 1111 -111 1111  
LATA6(1) LATA Data Output Register  
TRISA6(1) PORTA Data Direction Register  
TRISA  
ADCON1  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, — = unimplemented locations read as ‘0’.  
Shaded cells are not used by PORTA.  
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read ‘0’  
in all other oscillator modes.  
2005 Microchip Technology Inc.  
DS39612B-page 105  
PIC18F6525/6621/8525/8621  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
10.2 PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
For PIC18F8525/8621 devices, RB3 can be configured  
by the configuration bit, CCP2MX, as the alternate  
peripheral pin for the ECCP2 module. This is only  
available when the device is configured in  
Microprocessor, Microprocessor with Boot Block or  
Extended Microcontroller operating modes.  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register, read and write the latched output value for  
PORTB.  
The RB5 pin is used as the LVP programming pin.  
When the LVP configuration bit is programmed, this pin  
loses the I/O function and becomes a programming test  
function.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
Note:  
When LVP is enabled, the weak pull-up on  
RB5 is disabled.  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
FIGURE 10-5:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
TRISB  
VDD  
RBPU(2)  
Data Bus  
Weak  
P
Pull-up  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
Data Latch  
D
Q
WR LATB  
or PORTB  
I/O pin(1)  
CK  
TRIS Latch  
D
Q
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
WR TRISB  
TTL  
Input  
Buffer  
CK  
ST  
Buffer  
Four of the PORTB pins (RB3:RB0) are the external  
interrupt pins, INT3 through INT0. In order to use these  
pins as external interrupts, the corresponding TRISB  
bit must be set to ‘1’.  
RD TRISB  
RD LATB  
The other four PORTB pins (RB7:RB4) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the old value latched on  
the last read of PORTB. The “mismatch” outputs of  
RB7:RB4 are ORed together to generate the RB Port  
Change Interrupt with Flag bit, RBIF (INTCON<0>).  
Latch  
Q
D
RD PORTB  
Set RBIF  
Q1  
EN  
Q
D
RD PORTB  
Q3  
From other  
RB7:RB4 pins  
EN  
RB7:RB5 in Serial Programming Mode  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (INTCON2<7>).  
a) Any read or write of PORTB (except with the  
MOVFFinstruction).  
b) Clear flag bit RBIF.  
DS39612B-page 106  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 10-6:  
BLOCK DIAGRAM OF RB2:RB0 PINS  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
D
Q
WR LATB or  
WR PORTB  
I/O pin(1)  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRISB  
CK  
RD TRISB  
Q
D
RD PORTB  
EN  
INTx  
RD Port  
Schmitt Trigger  
Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
FIGURE 10-7:  
BLOCK DIAGRAM OF RB3 PIN  
VDD  
Weak  
RBPU(2)  
CCP2MX  
P
Pull-up  
ECCP Output(3)  
1
VDD  
P
Enable(3)  
ECCP Output  
0
Data Latch  
Data Bus  
I/O pin(1)  
D
Q
WR LATB or  
WR PORTB  
N
CK  
VSS  
TRIS Latch  
D
TTL  
WR TRISB  
Input  
CK  
Q
Buffer  
RD TRISB  
RD LATB  
D
Q
RD PORTB  
EN  
RD PORTB  
ECCP2 or INT3  
Schmitt Trigger  
Buffer  
CCP2MX = 0  
Note 1: I/O pin has diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
3: For PIC18F8525/8621 parts, the ECCP2 input/output is multiplexed with RB3 if the CCP2MX bit is enabled (= 0)  
in the Configuration register and the device is operating in Microprocessor, Microprocessor with Boot Block or  
Extended Microcontroller mode.  
2005 Microchip Technology Inc.  
DS39612B-page 107  
PIC18F6525/6621/8525/8621  
TABLE 10-3: PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT0/FLT0  
bit 0  
TTL/ST(1) Input/output pin or external interrupt input 0, ECCP1 PWM Fault input.  
Internal software programmable weak pull-up.  
RB1/INT1  
RB2/INT2  
bit 1  
bit 2  
bit 3  
TTL/ST(1) Input/output pin or external interrupt input 1.  
Internal software programmable weak pull-up.  
TTL/ST(1) Input/output pin or external interrupt input 2.  
Internal software programmable weak pull-up.  
TTL/ST(4) Input/output pin, external interrupt input 3, Enhanced Capture 2 input/  
Compare 2 output/PWM 2 output or Enhanced PWM output P2A.  
Internal software programmable weak pull-up.  
RB3/INT3/  
ECCP2(3)/P2A(3)  
RB4/KBI0  
bit 4  
bit 5  
TTL  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
RB5/KBI1/PGM  
TTL/ST(2) Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Low-Voltage ICSP™ enable pin.  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
bit 6  
bit 7  
TTL/ST(2) Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Serial programming clock.  
TTL/ST(2) Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: Valid for PIC18F8525/8621 devices in all operating modes except Microcontroller mode when CCP2MX is  
not set. RC1 is the default assignment for ECCP2/PA2 when CCP2MX is set in all devices; RE7 is the  
alternate assignment for PIC18F8525/8621 devices in Microcontroller mode when CCP2MX is clear.  
4: This buffer is a Schmitt Trigger input when configured as the ECCP2 input.  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 000x 0000 000u  
1111 1111 1111 1111  
LATB Data Output Register  
TRISB  
PORTB Data Direction Register  
GIE/GIEH PEIE/GIEL TMR0IE  
INTCON  
INTCON2  
INTCON3  
Legend:  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
RBIP  
RBPU  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP INT3IP  
INT1IP INT3IE INT2IE INT1IE INT3IF INT2IF  
INT2IP  
INT1IF 1100 0000 1100 0000  
x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS39612B-page 108  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The pin override value is not loaded into the TRIS  
register. This allows read-modify-write of the TRIS  
register without concern due to peripheral overrides.  
10.3 PORTC, TRISC and LATC  
Registers  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
RC1 is normally configured by configuration bit,  
CCP2MX, as the default peripheral pin of the ECCP2  
module (default/erased state, CCP2MX = 1).  
EXAMPLE 10-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
The Data Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register, read and write the latched output value for  
PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
PORTC is multiplexed with several peripheral functions  
(Table 10-5). PORTC pins have Schmitt Trigger input  
buffers.  
TRISC  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings.  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
FIGURE 10-8:  
PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
PORTC/Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATC  
Data Bus  
D
Q
Q
(1)  
I/O pin  
or  
WR LATC  
CK  
WR PORTC  
Data Latch  
TRIS OVERRIDE  
N
D
Q
Q
Pin  
Override  
Peripheral  
VSS  
TRIS  
Override  
Logic  
WR TRISC  
CK  
RC0  
Yes  
Timer1 Oscillator  
for Timer1/Timer3  
TRIS Latch  
RC1  
Yes  
Timer1 OSC for  
Timer1/Timer3,  
ECCP2 I/O  
RD TRISC  
Schmitt  
Trigger  
Peripheral Output  
RC2  
RC3  
Yes  
Yes  
ECCP1 I/O  
(2)  
Enable  
2
Q
D
SPI™/I C™  
Master Clock  
EN  
2
RC4  
RC5  
RC6  
Yes  
Yes  
Yes  
I C Data Out  
RD PORTC  
SPI Data Out  
Peripheral Data In  
USART1 Async  
Xmit, Sync Clock  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Peripheral output enable is only active if peripheral select is active.  
RC7  
Yes  
USART1 Sync  
Data Out  
2005 Microchip Technology Inc.  
DS39612B-page 109  
PIC18F6525/6621/8525/8621  
TABLE 10-5: PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RC0/T1OSO/T13CKI bit 0  
ST  
Input/output port pin, Timer1 oscillator output or Timer1/Timer3 clock  
input.  
RC1/T1OSI/  
bit 1  
ST  
Input/output port pin, Timer1 oscillator input, Enhanced Capture 2  
input/Compare 2 output/PWM 2 output or Enhanced PWM output  
P2A.  
ECCP2(1)/P2A(1)  
RC2/ECCP1/P1A  
RC3/SCK/SCL  
bit 2  
bit 3  
ST  
ST  
Input/output port pin, Enhanced Capture 1 input/Compare 1 output/  
PWM 1 output or Enhanced PWM output P1A.  
RC3 can also be the synchronous serial clock for both SPI™ and  
I2C™ modes.  
RC4/SDI/SDA  
RC5/SDO  
bit 4  
bit 5  
bit 6  
ST  
ST  
ST  
RC4 can also be the SPI data in (SPI mode) or data I/O (I2C mode).  
Input/output port pin or synchronous serial port data output.  
RC6/TX1/CK1  
Input/output port pin, Addressable USART1 Asynchronous Transmit  
or Addressable USART1 Synchronous Clock.  
RC7/RX1/DT1  
bit 7  
ST  
Input/output port pin, Addressable USART1 Asynchronous Receive or  
Addressable USART1 Synchronous Data.  
Legend: ST = Schmitt Trigger input  
Note 1: Valid when CCP2MX is set in all devices and in all operating modes (default). RE7 is the alternate assignment  
for ECCP2/P2A for all PIC18F6525/6621 devices and PIC18F8525/8621 devices in Microcontroller modes  
when CCP2MX is not set; RB3 is the alternate assignment for PIC18F8525/8621 devices in all other operating  
modes.  
TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATC Data Output Register  
PORTC Data Direction Register  
TRISC  
Legend: x= unknown, u= unchanged  
DS39612B-page 110  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 10-9:  
PORTD BLOCK DIAGRAM  
IN I/O PORT MODE  
10.4 PORTD, TRISD and LATD  
Registers  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISD bit (= 0)  
will make the corresponding PORTD pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
RD LATD  
Data  
Bus  
D
Q
WR LATD  
or  
PORTD  
I/O pin(1)  
CK  
Data Latch  
The Data Latch register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register, read and write the latched output value for  
PORTD.  
D
Q
Schmitt  
Trigger  
Input  
WR TRISD  
RD TRISD  
CK  
TRIS Latch  
Buffer  
PORTD is an 8-bit port with Schmitt Trigger input  
buffers. Each pin is individually configurable as an input  
or output.  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
Q
D
PORTD is multiplexed with the system bus as the  
external memory interface. I/O port functions are only  
available when the system bus is disabled by setting  
the EBDIS bit in the MEMCOM register  
(MEMCON<7>). When operating as the external  
memory interface, PORTD is the low-order byte of the  
multiplexed address/data bus (AD7:AD0).  
EN  
RD PORTD  
Note 1: I/O pins have diode protection to VDD and VSS.  
PORTD can also be configured as an 8-bit wide  
microprocessor port (Parallel Slave Port) by setting  
control bit PSPMODE (TRISE<4>). In this mode, the  
input buffers are TTL. See Section 10.10 “Parallel  
Slave Port” for additional information on the Parallel  
Slave Port (PSP).  
EXAMPLE 10-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
TRISD  
2005 Microchip Technology Inc.  
DS39612B-page 111  
PIC18F6525/6621/8525/8621  
FIGURE 10-10:  
PORTD BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTD  
RD LATD  
Data Bus  
(1)  
I/O pin  
Port  
D
Q
0
1
Data  
WR LATD  
or PORTD  
CK  
Data Latch  
D
Q
TTL  
Input  
Buffer  
WR TRISD  
RD TRISD  
CK  
TRIS Latch  
Bus Enable  
System Bus  
Control  
Data/TRIS Out  
Drive Bus  
Instruction Register  
Instruction Read  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS39612B-page 112  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 10-7: PORTD FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RD0/AD0(2)/PSP0  
RD1/AD1(2)/PSP1  
RD2/AD2(2)/PSP2  
RD3/AD3(2)/PSP3  
RD4/AD4(2)/PSP4  
RD5/AD5(2)/PSP5  
RD6/AD6(2)/PSP6  
RD7/AD7(2)/PSP7  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, address/data bus bit 0 or Parallel Slave Port bit 0.  
Input/output port pin, address/data bus bit 1 or Parallel Slave Port bit 1.  
Input/output port pin, address/data bus bit 2 or Parallel Slave Port bit 2.  
Input/output port pin, address/data bus bit 3 or Parallel Slave Port bit 3.  
Input/output port pin, address/data bus bit 4 or Parallel Slave Port bit 4.  
Input/output port pin, address/data bus bit 5 or Parallel Slave Port bit 5.  
Input/output port pin, address/data bus bit 6 or Parallel Slave Port bit 6.  
Input/output port pin, address/data bus bit 7 or Parallel Slave Port bit 7.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel  
Slave Port mode.  
2: External memory interface functions are only available on PIC18F8525/8621 devices.  
TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 ---- 0000 ----  
LATD Data Output Register  
PORTD Data Direction Register  
TRISD  
PSPCON(1)  
MEMCON(2) EBDIS  
IBF  
OBF  
IBOV PSPMODE  
WAIT1 WAIT0  
WM1  
WM0 0-00 --00 0-00 --00  
Legend: x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by PORTD.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2: This register is unused on PIC18F6525/6621 devices and reads as ‘0’.  
2005 Microchip Technology Inc.  
DS39612B-page 113  
PIC18F6525/6621/8525/8621  
When the Parallel Slave Port is active, three PORTE  
10.5 PORTE, TRISE and LATE  
Registers  
pins (RE0/AD8/RD/P2D, RE1/AD9/WR/P2C and RE2/  
AD10/CS/P2B) function as its control inputs. This  
automatically occurs when the PSPMODE bit  
(PSPCON<4>) is set. Users must also make certain  
that bits TRISE<2:0> are set to configure the pins as  
digital inputs and the ADCON1 register is configured  
for digital I/O. The PORTE PSP control functions are  
summarized in Table 10-9.  
PORTE is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISE bit (= 0)  
will make the corresponding PORTE pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
Pin RE7 can be configured as the alternate peripheral  
pin for the ECCP2 module when the device is operating  
in Microcontroller mode. This is done by clearing the  
configuration bit, CCP2MX, in the CONFIG3H  
Configuration register (CONFIG3H<0>).  
Read-modify-write operations on the LATE register,  
read and write the latched output value for PORTE.  
PORTE is an 8-bit port with Schmitt Trigger input  
buffers. Each pin is individually configurable as an input  
or output. PORTE is multiplexed with the ECCP  
module (Table 10-9).  
Note:  
For PIC18F8525/8621 (80-pin) devices  
operating in Extended Microcontroller  
mode, PORTE defaults to the system bus  
on Power-on Reset.  
On PIC18F8525/8621 devices, PORTE is also  
multiplexed with the system bus as the external memory  
interface; the I/O bus is available only when the system  
bus is disabled by setting the EBDIS bit in the MEMCON  
register (MEMCON<7>). If the device is configured in  
Microprocessor or Extended Microcontroller mode, then  
the PORTE<7:0> becomes the high byte of the address/  
data bus for the external program memory interface. In  
Microcontroller mode, the PORTE<2:0> pins become  
the control inputs for the Parallel Slave Port when bit  
PSPMODE (PSPCON<4>) is set. (Refer to  
Section 4.1.1 “PIC18F6525/6621/8525/8621 Program  
Memory Modes” for more information.)  
EXAMPLE 10-5:  
INITIALIZING PORTE  
CLRF  
PORTE  
; Initialize PORTE by  
; clearing output  
; data latches  
CLRF  
LATE  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0x03  
; Value used to  
;initializedata  
; direction  
; Set RE1:RE0 as inputs  
; RE7:RE2 as outputs  
TRISE  
DS39612B-page 114  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 10-11:  
PORTE BLOCK DIAGRAM IN I/O MODE  
Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
(1)  
I/O pin  
RD LATE  
Data Bus  
D
Q
Q
WR LATE  
or WR PORTE  
CK  
Data Latch  
N
D
Q
Q
VSS  
TRIS  
WR TRISE  
CK  
TRIS OVERRIDE  
Override  
TRIS Latch  
Pin Override  
Peripheral  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
RD TRISE  
Schmitt  
Trigger  
Peripheral Enable  
Q
D
EN  
RD PORTE  
Peripheral Data In  
Note 1: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-12:  
PORTE BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTE  
RD LATE  
Data Bus  
(1)  
I/O pin  
Port  
0
1
D
Q
Data  
WR LATE  
or PORTE  
CK  
Data Latch  
D
Q
TTL  
WR TRISE  
CK  
Input  
Buffer  
TRIS Latch  
RD TRISE  
Bus Enable  
Data/TRIS Out  
Drive Bus  
System Bus  
Control  
Instruction Register  
Instruction Read  
Note 1: I/O pins have protection diodes to VDD and VSS.  
2005 Microchip Technology Inc.  
DS39612B-page 115  
PIC18F6525/6621/8525/8621  
TABLE 10-9: PORTE FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RE0/AD8/RD/P2D  
bit 0  
ST/TTL(1)  
Input/output port pin, address/data bit 8, read control for Parallel Slave  
Port or Enhanced PWM 2 output P2D  
For RD (PSP Control mode):  
1= Not a read operation  
0= Read operation, reads PORTD register (if chip selected)  
RE1/AD9/WR/P2C  
RE2/AD10/CS/P2B  
bit 1  
bit 2  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, address/data bit 9, write control for Parallel Slave  
Port or Enhanced PWM 2 output P2C  
For WR (PSP Control mode):  
1= Not a write operation  
0= Write operation, writes PORTD register (if chip selected)  
Input/output port pin, address/data bit 10, chip select control for  
Parallel Slave Port or Enhanced PWM 2 output P2B  
For CS (PSP Control mode):  
1= Device is not selected  
0= Device is selected  
RE3/AD11/P3C(2)  
RE4/AD12/P3B(2)  
RE5/AD13/P1C(2)  
RE6/AD14/P1B(2)  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, address/data bit 11 or Enhanced PWM 3  
output P3C.  
Input/output port pin, address/data bit 12 or Enhanced PWM 3  
output P3B.  
Input/output port pin, address/data bit 13 or Enhanced PWM 1  
output P1C.  
Input/output port pin, address/data bit 14 or Enhanced PWM 1  
output P1B.  
RE7/AD15/  
Input/output port pin, address/data bit 15, Enhanced Capture 2 input/  
Compare 2 output/PWM 2 output or Enhanced PWM 2 output P2A.  
ECCP2(3)/P2A(3)  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O or CCP/ECCP modes and TTL buffers when in System Bus  
or PSP Control modes.  
2: Valid for all PIC18F6525/6621 devices and PIC18F8525/8621 devices when ECCPMX is set. Alternate  
assignments for P1B/P1C/P3B/P3C are RH7, RH6, RH5 and RH4, respectively.  
3: Valid for all PIC18F6525/6621 devices and PIC18F8525/8621 devices in Microcontroller mode when  
CCP2MX is not set. RC1 is the default assignment for ECCP2/P2A for all devices in Microcontroller mode  
when CCP2MX is set; RB3 is the alternate assignment for PIC18F8525/8621 devices in operating modes  
except Microcontroller mode when CCP2MX is not set.  
TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
1111 1111  
xxxx xxxx  
xxxx xxxx  
0-00 --00  
0000 ----  
1111 1111  
uuuu uuuu  
uuuu uuuu  
0000 --00  
0000 ----  
TRISE  
PORTE Data Direction Control Register  
Read PORTE pin/Write PORTE Data Latch  
Read PORTE Data Latch/Write PORTE Data Latch  
PORTE  
LATE  
MEMCON(1) EBDIS  
PSPCON(2)  
IBF  
WAIT1  
WAIT0  
WM1  
WM0  
OBF  
IBOV PSPMODE  
Legend: x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by PORTE.  
Note 1: This register is unused on PIC18F6525/6621 devices and reads as ‘0’.  
2: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 116  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
EXAMPLE 10-6:  
INITIALIZING PORTF  
10.6 PORTF, LATF and TRISF Registers  
CLRF  
PORTF  
; Initialize PORTF by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
PORTF is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISF. Setting a  
TRISF bit (= 1) will make the corresponding PORTF pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISF bit (= 0) will  
make the corresponding PORTF pin an output (i.e., put  
the contents of the output latch on the selected pin).  
CLRF  
LATF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
0x07  
CMCON  
0x0F  
; Turn off comparators  
;
Read-modify-write operations on the LATF register,  
read and write the latched output value for PORTF.  
ADCON1 ; Set PORTF as digital I/O  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RF3:RF0 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
PORTF is multiplexed with several analog peripheral  
functions, including the A/D converter inputs and  
comparator inputs, outputs and voltage reference.  
MOVWF  
TRISF  
Note 1: On a Power-on Reset, the RF6:RF0 pins  
are configured as inputs and read as ‘0’.  
2: To configure PORTF as digital I/O, turn off  
comparators and set ADCON1 value.  
FIGURE 10-13:  
PORTF RF1/AN6/C2OUT, RF2/AN7/C1OUT PINS BLOCK DIAGRAM  
PORT/Comparator Select  
Comparator Data Out  
VDD  
P
0
1
RD LATF  
Q
Data Bus  
D
I/O pin  
WR LATF  
or  
WR PORTF  
CK  
Q
Data Latch  
N
D
Q
Q
VSS  
WR TRISF  
CK  
Analog  
Input  
Mode  
TRIS Latch  
Schmitt  
Trigger  
RD TRISF  
Q
D
EN  
RD PORTF  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2005 Microchip Technology Inc.  
DS39612B-page 117  
PIC18F6525/6621/8525/8621  
FIGURE 10-14:  
RF6:RF3 AND RF0 PINS  
BLOCK DIAGRAM  
FIGURE 10-15:  
RF7 PIN BLOCK  
DIAGRAM  
RD LATF  
RD LATF  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
WR LATF or  
WR PORTF  
I/O pin  
WR LATF  
or  
WR PORTF  
VDD  
CK  
Data Latch  
CK  
Data Latch  
Q
P
D
Q
N
I/O pin  
Schmitt  
Trigger  
Input  
D
Q
WR TRISF  
CK  
TRIS Latch  
Buffer  
WR TRISF  
RD TRISF  
VSS  
Analog  
CK  
TRIS Latch  
Q
TTL  
Input  
Buffer  
Input  
Mode  
RD TRISF  
ST  
Input  
Q
D
Buffer  
Q
D
EN  
RD PORTF  
SS Input  
EN  
RD PORTF  
To A/D Converter or Comparator Input  
Note:  
I/O pins have diode protection to VDD and VSS.  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39612B-page 118  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 10-11: PORTF FUNCTIONS  
Name  
RF0/AN5  
Bit#  
Buffer Type  
Function  
bit 0  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or analog input.  
RF1/AN6/C2OUT bit 1  
RF2/AN7/C1OUT bit 2  
Input/output port pin, analog input or Comparator 2 output.  
Input/output port pin, analog input or Comparator 1 output.  
Input/output port pin or analog input/comparator input.  
Input/output port pin or analog input/comparator input.  
RF3/AN8  
RF4/AN9  
bit 3  
bit 4  
RF5/AN10/CVREF bit 5  
Input/output port pin, analog input/comparator input or comparator  
reference output.  
RF6/AN11  
RF7/SS  
bit 6  
bit 7  
ST  
Input/output port pin or analog input/comparator input.  
ST/TTL  
Input/output port pin or slave select pin for synchronous serial port.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
TABLE 10-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISF  
PORTF Data Direction Control Register  
Read PORTF pin/Write PORTF Data Latch  
Read PORTF Data Latch/Write PORTF Data Latch  
1111 1111 1111 1111  
x000 0000 u000 0000  
xxxx xxxx uuuu uuuu  
PORTF  
LATF  
ADCON1  
CMCON  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000 --00 0000  
C2OUT C1OUT C2INV C1INV CIS CM2 CM1 CM0 0000 0000 0000 0000  
CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by PORTF.  
2005 Microchip Technology Inc.  
DS39612B-page 119  
PIC18F6525/6621/8525/8621  
The sixth pin of PORTG (MCLR/VPP/RG5) is a digital  
10.7 PORTG, TRISG and LATG  
Registers  
input pin. Its operation is controlled by the MCLRE  
configuration bit in Configuration Register 3H  
(CONFIG3H<7>). In its default configuration  
(MCLRE = 1), the pin functions as the device Master  
Clear input. When selected as a port pin (MCLRE = 0),  
it functions as an input only pin; as such, it does not  
have TRISG or LATG bits associated with it.  
PORTG is a 6-bit wide port with 5 bidirectional pins  
(RG0:RG4) and one optional input only pin (RG5). The  
corresponding data direction register is TRISG. Setting  
a TRISG bit (= 1) will make the corresponding PORTG  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISG bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
In either configuration, RG5 also functions as the  
programming voltage input during device programming.  
Note 1: On a Power-on Reset, RG5 is enabled as  
The Data Latch register (LATG) is also memory  
mapped. Read-modify-write operations on the LATG  
register, read and write the latched output value for  
PORTG.  
a
digital input only if Master Clear  
functionality is disabled (MCLRE = 0).  
2: If the device Master Clear is disabled,  
verify that either of the following is done to  
ensure proper entry into ICSP mode:  
a.) disable low-voltage programming  
(CONFIG4L<2> = 0); or  
PORTG is multiplexed with both CCP/ECCP and  
EUSART functions (Table 10-13). PORTG pins have  
Schmitt Trigger input buffers.  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTG pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings.  
b.) make certain that RB5/KBI1/PGM is  
held low during entry into ICSP.  
EXAMPLE 10-7:  
INITIALIZING PORTG  
CLRF  
PORTG  
; Initialize PORTG by  
; clearing output  
; data latches  
CLRF  
LATG  
; Alternate method  
; to clear output  
; data latches  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write operations of the  
TRIS register without concern due to peripheral  
overrides.  
MOVLW  
MOVWF  
0x04  
; Value used to  
; initialize data  
; direction  
; Set RG1:RG0 as outputs  
; RG2 as input  
TRISG  
; RG4:RG3 as inputs  
FIGURE 10-16:  
PORTG BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
TRIS OVERRIDE  
PORTG/Peripheral Out Select  
Peripheral Data Out  
Pin  
Override  
Peripheral  
VDD  
P
0
1
RG0  
RG1  
Yes  
Yes  
ECCP3 I/O  
USART1 Async Xmit,  
Sync Clock  
RD LATG  
RG2  
Yes  
USART1 Async Rcv,  
Sync Data Out  
Data Bus  
D
Q
Q
I/O pin(1)  
WR LATG or  
CK  
RG3  
RG4  
Yes  
Yes  
CCP4 I/O  
CCP5 I/O  
WR PORTG  
Data Latch  
N
D
Q
Q
Note 1: I/O pins have diode protection to VDD  
VSS  
and VSS.  
TRIS  
Override  
Logic  
WR TRISG  
CK  
2: Peripheral output enable is only active  
if peripheral select is active.  
TRIS Latch  
RD TRISG  
Schmitt  
Trigger  
Peripheral Output  
Enable(2)  
Q
D
EN  
RD PORTG  
Peripheral Data In  
DS39612B-page 120  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 10-17:  
MCLR/VPP/RG5 PIN BLOCK DIAGRAM  
MCLRE  
Data Bus  
MCLR/VPP/RG5  
RD TRISA  
Schmitt  
Trigger  
RD LATA  
Latch  
Q
D
EN  
RD PORTA  
High-Voltage Detect  
HV  
Internal MCLR  
Filter  
Low-Level  
MCLR Detect  
TABLE 10-13: PORTG FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RG0/ECCP3/P3A  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin, Enhanced Capture 3 input/Compare 3 output/  
PWM 3 output or Enhanced PWM 3 output P3A.  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3/CCP4/P3D  
RG4/CCP5/P1D  
MCLR/VPP/RG5  
Input/output port pin, addressable USART2 asynchronous transmit or  
addressable USART2 synchronous clock.  
Input/output port pin, addressable USART2 asynchronous receive or  
addressable USART2 synchronous data.  
Input/output port pin, Capture 4 input/Compare 4 output/PWM 4 output  
or Enhanced PWM 3 output P3D.  
Input/output port pin, Capture 5 input/Compare 5 output/PWM 5 output  
or Enhanced PWM 1 output P1D.  
Master Clear input or programming voltage input (if MCLR is enabled).  
Input only port pin or programming voltage input (if MCLR is  
disabled).  
Legend: ST = Schmitt Trigger input  
TABLE 10-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTG  
LATG  
RG5(1) Read PORTG pins/Write PORTG Data Latch --xx xxxx --uu uuuu  
LATG Data Output Register  
---x xxxx ---u uuuu  
---1 1111 ---1 1111  
TRISG  
Data Direction Control Register for PORTG  
Legend: x= unknown, u= unchanged, — = unimplemented, read as ‘0’  
Note 1: RG5 is available as an input only when MCLR is disabled.  
2005 Microchip Technology Inc.  
DS39612B-page 121  
PIC18F6525/6621/8525/8621  
FIGURE 10-18:  
RH3:RH0 PINS BLOCK  
DIAGRAM IN I/O MODE  
10.8 PORTH, LATH and TRISH  
Registers  
Note:  
PORTH is available only on PIC18F8525/  
8621 devices.  
RD LATH  
Data  
Bus  
PORTH is an 8-bit wide, bidirectional I/O port. The cor-  
responding data direction register is TRISH. Setting a  
TRISH bit (= 1) will make the corresponding PORTH  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISH bit (= 0)  
will make the corresponding PORTH pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
D
Q
I/O pin(1)  
WR LATH  
or  
PORTH  
CK  
Data Latch  
D
Q
Read-modify-write operations on the LATH register,  
read and write the latched output value for PORTH.  
Schmitt  
Trigger  
Input  
WR TRISH  
RD TRISH  
CK  
TRIS Latch  
Buffer  
Pins RH7:RH4 are multiplexed with analog inputs  
AN15:AN12. Pins RH3:RH0 are multiplexed with the  
system bus as the external memory interface; they are  
the high-order address bits A19:A16. By default, pins  
RH7:RH4 are enabled as A/D inputs and pins  
RH3:RH0 are enabled as the system address bus.  
Register ADCON1 configures RH7:RH4 as I/O or A/D  
inputs. Register MEMCON configures RH3:RH0 as I/O  
or system bus pins.  
Q
D
EN  
RD PORTH  
Note 1: On Power-on Reset, PORTH pins  
RH7:RH4 default to A/D inputs and read  
as ‘0’.  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: On Power-on Reset, PORTH pins  
FIGURE 10-19:  
RH7:RH4 PINS BLOCK  
DIAGRAM IN I/O MODE  
RH3:RH0 default to system bus signals.  
EXAMPLE 10-8:  
INITIALIZING PORTH  
RD LATH  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
Data  
Bus  
D
Q
I/O pin(1)  
CLRF  
LATH  
WR LATH  
or  
PORTH  
CK  
Data Latch  
MOVLW  
MOVWF  
MOVLW  
0Fh  
ADCON1  
0CFh  
;
D
Q
Schmitt  
Trigger  
Input  
; Value used to  
; initialize data  
; direction  
WR TRISH  
CK  
TRIS Latch  
Buffer  
MOVWF  
TRISH  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
RD TRISH  
Q
D
EN  
RD PORTH  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39612B-page 122  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 10-20:  
RH3:RH0 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTH  
RD LATH  
I/O pin(1)  
Data Bus  
WR LATH  
or  
PORTH  
Port  
D
Q
0
1
Data  
CK  
Data Latch  
D
Q
WR TRISH  
RD TRISH  
TTL  
Input  
Buffer  
CK  
TRIS Latch  
External Enable  
Address Out  
System Bus  
Control  
Drive System  
To Instruction Register  
Instruction Read  
Note 1: I/O pins have diode protection to VDD and VSS.  
2005 Microchip Technology Inc.  
DS39612B-page 123  
PIC18F6525/6621/8525/8621  
TABLE 10-15: PORTH FUNCTIONS  
Name  
RH0/A16  
Bit#  
Buffer Type  
Function  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST  
Input/output port pin or address bit 16 for external memory interface.  
Input/output port pin or address bit 17 for external memory interface.  
Input/output port pin or address bit 18 for external memory interface.  
Input/output port pin or address bit 19 for external memory interface.  
RH1/A17  
RH2/A18  
RH3/A19  
RH4/AN12/P3C(2)  
Input/output port pin, analog input channel 12 or Enhanced PWM  
output P3C.  
RH5/AN13/P3B(2)  
RH6/AN14/P1C(2)  
RH7/AN15/P1B(2)  
bit 5  
bit 6  
bit 7  
ST  
ST  
ST  
Input/output port pin, analog input channel 13 or Enhanced PWM  
output P3B.  
Input/output port pin, analog input channel 14 or Enhanced PWM  
output P1C.  
Input/output port pin, analog input channel 15 or Enhanced PWM3  
output P1B.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel Slave  
Port mode.  
2: Valid only for PIC18F8525/8621 devices when ECCPMX is not set. The alternate assignments for  
P1B/P1C/P3B/P3C in all PIC18F6525/6621 devices and in PIC18F8525/8621 devices when ECCPMX is  
set are RE6, RE5, RE4 and RE3, respectively.  
TABLE 10-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
1111 1111  
0000 xxxx  
xxxx xxxx  
--00 0000  
0-00 --00  
1111 1111  
0000 uuuu  
uuuu uuuu  
--00 0000  
0-00 --00  
TRISH  
PORTH Data Direction Control Register  
Read PORTH pin/Write PORTH Data Latch  
PORTH  
LATH  
Read PORTH Data Latch/Write PORTH Data Latch  
ADCON1  
MEMCON(1) EBDIS  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0  
WAIT1 WAIT0 WM1 WM0  
Legend: x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by PORTH.  
Note 1: This register is unused on PIC18F6525/6621 devices and reads as ‘0’.  
DS39612B-page 124  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
EXAMPLE 10-9:  
INITIALIZING PORTJ  
10.9 PORTJ, TRISJ and LATJ Registers  
CLRF  
PORTJ  
; Initialize PORTG by  
; clearing output  
; data latches  
Note:  
PORTJ is available only on PIC18F8525/  
8621 devices.  
CLRF  
LATJ  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as output  
; RJ7:RJ6 as inputs  
PORTJ is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISJ. Setting a  
TRISJ bit (= 1) will make the corresponding PORTJ pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISJ bit (= 0) will  
make the corresponding PORTJ pin an output (i.e., put  
the contents of the output latch on the selected pin).  
MOVLW  
MOVWF  
0xCF  
TRISJ  
The Data Latch register (LATJ) is also memory  
mapped. Read-modify-write operations on the LATJ  
register, read and write the latched output value for  
PORTJ.  
FIGURE 10-21:  
PORTJ BLOCK DIAGRAM  
IN I/O MODE  
PORTJ is multiplexed with the system bus as the  
external memory interface; I/O port functions are only  
available when the system bus is disabled. When  
operating as the external memory interface, PORTJ  
provides the control signal to external memory devices.  
The RJ5 pin is not multiplexed with any system bus  
functions.  
RD LATJ  
Data  
Bus  
D
Q
I/O pin(1)  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTJ pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the corre-  
sponding peripheral section for the correct TRIS bit  
settings.  
D
Q
Schmitt  
Trigger  
Input  
WR TRISJ  
CK  
TRIS Latch  
Buffer  
RD TRISJ  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register  
without concern due to peripheral overrides.  
Q
D
EN  
RD PORTJ  
Note 1: I/O pins have diode protection to VDD and VSS.  
2005 Microchip Technology Inc.  
DS39612B-page 125  
PIC18F6525/6621/8525/8621  
FIGURE 10-22:  
RJ4:RJ0 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTJ  
RD LATJ  
Data Bus  
I/O pin(1)  
Port  
D
Q
0
1
Data  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
WR TRISJ  
RD TRISJ  
CK  
TRIS Latch  
Control Out  
System Bus  
Control  
External Enable  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-23:  
RJ7:RJ6 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTJ  
RD LATJ  
Data Bus  
I/O pin(1)  
Port  
D
Q
0
1
Data  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
WR TRISJ  
CK  
TRIS Latch  
RD TRISJ  
UB/LB Out  
WM = 01  
System Bus  
Control  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39612B-page 126  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 10-17: PORTJ FUNCTIONS  
Name Bit# Buffer Type  
RJ0/ALE  
Function  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or address latch enable control for external  
memory interface.  
RJ1/OE  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
RJ6/LB  
Input/output port pin or output enable control for external memory  
interface.  
Input/output port pin or write low byte control for external memory  
interface.  
Input/output port pin or write high byte control for external memory  
interface.  
Input/output port pin or byte address 0 control for external memory  
interface.  
Input/output port pin or chip enable control for external memory  
interface.  
Input/output port pin or lower byte select control for external  
memory interface.  
RJ7/UB  
Input/output port pin or upper byte select control for external  
memory interface.  
Legend: ST = Schmitt Trigger input  
TABLE 10-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ  
LATJ  
Read PORTJ pin/Write PORTJ Data Latch  
LATJ Data Output Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
TRISJ  
Data Direction Control Register for PORTJ  
Legend: x= unknown, u= unchanged  
2005 Microchip Technology Inc.  
DS39612B-page 127  
PIC18F6525/6621/8525/8621  
FIGURE 10-24:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLELSLAVEPORT)  
10.10 Parallel Slave Port  
PORTD also operates as an 8-bit wide Parallel Slave  
Port, or microprocessor port, when control bit  
PSPMODE (PSPCON<4>) is set. It is asynchronously  
readable and writable by the external world through RD  
control input pin, RE0/RD and WR control input pin,  
RE1/WR.  
Data Bus  
D
Q
RDx  
pin  
WR LATD  
or  
PORTD  
CK  
Data Latch  
Note:  
For PIC18F8525/8621 devices, the Parallel  
Slave Port is available only in  
Microcontroller mode.  
TTL  
Q
D
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
bit PSPMODE enables port pin RE0/RD to be the RD  
input, RE1/WR to be the WR input and RE2/CS to be  
the CS (chip select) input. For this functionality, the  
corresponding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set). The  
RD PORTD  
EN  
TRIS Latch  
RD LATD  
A/D  
port  
configuration  
bits,  
PCFG2:PCFG0  
One bit of PORTD  
(ADCON1<2:0>), must be set, which will configure pins  
RE2:RE0 as digital I/O.  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
The PORTE I/O pins become control inputs for the micro-  
processor port when bit PSPMODE (PSPCON<4>) is  
set. In this mode, the user must make sure that the  
TRISE<2:0> bits are set (pins are configured as digital  
inputs) and the ADCON1 is configured for digital I/O. In  
this mode, the input buffers are TTL.  
Read  
RD  
TTL  
Chip Select  
TTL  
CS  
Write  
TTL  
WR  
Note: I/O pin has protection diodes to VDD and VSS.  
DS39612B-page 128  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 10-1: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER(1)  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OBF  
PSPMODE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit  
1= A write occurred when a previously input word has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
FIGURE 10-25:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
2005 Microchip Technology Inc.  
DS39612B-page 129  
PIC18F6525/6621/8525/8621  
FIGURE 10-26:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 10-19: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
Port Data Latch when written; Port pins when read  
LATD Data Output bits  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 ---- 0000 ----  
0000 000x 0000 000u  
TRISD  
PORTE  
LATE  
PORTD Data Direction bits  
Read PORTE pin/Write PORTE Data Latch  
LATE Data Output bits  
TRISE  
PSPCON  
INTCON  
PIR1  
PORTE Data Direction bits  
(1)  
IBF  
OBF  
IBOV  
PSPMODE  
INT0IE  
TX1IF  
GIE/GIEH PEIE/GIEL TMR0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
TX1IE  
IPR1  
TX1IP  
Legend:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 130  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Figure 11-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
11.0 TIMER0 MODULE  
The Timer0 module has the following features:  
• Software selectable as an 8-bit or  
16-bit timer/counter  
The T0CON register (Register 11-1) is a readable and  
writable register that controls all the aspects of Timer0,  
• Readable and writable  
including the prescale selection.  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
• Interrupt-on-overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
bit 2-0 T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 Prescale value  
110= 1:128 Prescale value  
101= 1:64 Prescale value  
100= 1:32 Prescale value  
011= 1:16 Prescale value  
010= 1:8 Prescale value  
001= 1:4 Prescale value  
000= 1:2 Prescale value  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 131  
PIC18F6525/6621/8525/8621  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
FOSC/4  
0
1
8
1
0
Sync with  
Internal  
Clocks  
TMR0  
T0CKI pin  
Programmable  
Prescaler  
(2 TCY Delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS  
Note:  
Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
FOSC/4  
0
1
Sync with  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
Internal  
TMR0L  
1
Clocks  
Programmable  
T0CKI pin  
0
8
Prescaler  
(2 TCY Delay)  
T0SE  
3
Read TMR0L  
Write TMR0L  
PSA  
T0PS2, T0PS1, T0PS0  
T0CS  
8
8
TMR0H  
8
Data Bus<7:0>  
Note:  
Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39612B-page 132  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
11.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software  
control, (i.e., it can be changed “on-the-fly” during  
program execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
11.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
FFFFh to 0000h in 16-bit mode. This overflow sets the  
TMR0IF bit. The interrupt can be masked by clearing  
the TMR0IE bit. The TMR0IE bit must be cleared in  
software by the Timer0 module Interrupt Service  
Routine before re-enabling this interrupt. The TMR0  
interrupt cannot awaken the processor from Sleep  
since the timer is shut off during Sleep.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment, either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the  
rising edge. Restrictions on the external clock input are  
discussed below.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
11.4 16-Bit Mode Timer Reads  
and Writes  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 11-2). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This  
provides the ability to read all 16 bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid, due to a rollover between successive reads  
of the high and low byte.  
11.2 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not readable or writable.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
A write to the high byte of Timer0 must also take place  
through the TMR0H Buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16 bits of Timer0 to be  
updated at once.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, xand so on) will clear the prescaler  
count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2  
Value on all  
other  
Value on  
POR, BOR  
Bit 1  
Bit 0  
Resets  
TMR0L Timer0 Low Byte Register  
TMR0H Timer0 High Byte Register  
xxxx xxxx uuuu uuuu  
0000 0000 uuuu uuuu  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u  
T0CON  
TRISA  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2 T0PS1 T0PS0 1111 1111 1111 1111  
-111 1111 -111 1111  
TRISA6(1) PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, — = unimplemented locations, read as ‘0’. Shaded cells are not used by Timer0.  
Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read ‘0’  
in all other oscillator modes.  
2005 Microchip Technology Inc.  
DS39612B-page 133  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 134  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Register 12-1 details the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module and contains the Timer1 oscillator enable bit  
(T1OSCEN). Timer1 can be enabled or disabled by  
setting or clearing control bit, TMR1ON (T1CON<0>).  
12.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
• 16-bit timer/counter  
(two 8-bit registers: TMR1H and TMR1L)  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from ECCP module special event trigger  
Figure 12-1 is a simplified block diagram of the Timer1  
module.  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
bit 6  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
Unimplemented: Read as ‘0’  
bit 5-4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 135  
PIC18F6525/6621/8525/8621  
When the Timer1 oscillator is enabled (T1OSCEN is  
12.1 Timer1 Operation  
set), the RC1/T1OSI and RC0/T1OSO/T13CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored and the pins are read as ‘0’.  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
Timer1 also has an internal “Reset input”. This Reset  
can be generated by the ECCP1 or ECCP2 special  
event trigger. This is discussed in detail in Section 12.4  
“Resetting Timer1 Using an ECCP Special Trigger  
Output”.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
When TMR1CS = 0, Timer1 increments every instruc-  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input or the  
Timer1 oscillator, if enabled.  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
ECCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag Bit  
Synchronized  
TMR1  
CLR  
0
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
1
T1OSO/T13CKI  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Oscillator  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
(1)  
0
2
Sleep Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
ECCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
TMR1  
8
0
CLR  
Timer 1  
High Byte  
TMR1L  
Flag bit  
1
TMR1ON  
T1SYNC  
On/Off  
T1OSC  
T1OSO/T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
FOSC/4  
Internal  
Clock  
Enable  
0
(1)  
T1OSI  
Oscillator  
2
Sleep Input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39612B-page 136  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
12.2 Timer1 Oscillator  
12.3 Timer1 Interrupt  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low-power oscillator rated up to 200 kHz. It will  
continue to run during Sleep. It is primarily intended for  
a 32 kHz crystal. The circuit for a typical LP oscillator is  
shown in Figure 12-3. Table 12-1 shows the capacitor  
selection for the Timer1 oscillator.  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled/disabled by  
setting/clearing the TMR1 Interrupt Enable bit, TMR1IE  
(PIE1<0>).  
12.4 Resetting Timer1 Using an ECCP  
Special Trigger Output  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
If either the ECCP1 or ECCP2 module is configured in  
Compare mode to generate a “special event trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1. The trigger for ECCP2 will also start an A/D  
conversion if the A/D module is enabled.  
FIGURE 12-3:  
EXTERNALCOMPONENTS  
FOR THE TIMER1  
LP OSCILLATOR  
C1  
33 pF  
PIC18F6X2X/8X2X  
Note:  
The special event triggers from the  
ECCP1 module will not set interrupt flag  
bit TMR1IF (PIR1<0>).  
T1OSI  
XTAL  
32.768 kHz  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
T1OSO  
C2  
33 pF  
In the event that a write to Timer1 coincides with a  
special event trigger from ECCP1, the write will take  
precedence.  
Note:  
See the notes with Table 12-1 for additional  
information about capacitor selection.  
In this mode of operation, the CCPR1H:CCPR1L  
register pair effectively becomes the period register for  
Timer1.  
TABLE 12-1: CAPACITOR SELECTION  
FOR THE ALTERNATE  
OSCILLATOR(2-4)  
12.5 Timer1 16-Bit Read/Write Mode  
Osc Type  
Freq  
C1  
C2  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, is valid due to a rollover between reads.  
LP  
32 kHz  
15-22 pF(1) 15-22 pF(1)  
Crystal Tested  
32.768 kHz  
Note 1: Microchip suggests 33 pF as a starting  
point in validating the oscillator circuit.  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
components.  
4: Capacitor values are for design guidance  
only.  
2005 Microchip Technology Inc.  
DS39612B-page 137  
PIC18F6525/6621/8525/8621  
the routine which increments the seconds counter by  
one; additional counters for minutes and hours are  
incremented as the previous counter overflow.  
12.6 Using Timer1 as a  
Real-Time Clock  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 12.2 “Timer1 Oscillator”)  
gives users the option to include RTC functionality to  
their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it. The simplest method is to set the Most Signifi-  
cant bit of TMR1H with a BSFinstruction. Note that the  
TMR1L register is never preloaded or altered; doing so  
may introduce cumulative error over many cycles.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1), as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
The application code routine, RTCisr, shown in  
Example 12-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow, triggers the interrupt and calls  
EXAMPLE 12-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
0x80  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1CON  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
MOVLW  
MOVWF  
RETURN  
.01  
hours  
; Reset hours to 1  
; Done  
DS39612B-page 138  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
(1)  
(1)  
PIE1  
IPR1  
TMR1L  
Timer1 Register Low Byte  
TMR1H Timer1 Register High Byte  
xxxx xxxx uuuu uuuu  
T1CON  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Legend:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2005 Microchip Technology Inc.  
DS39612B-page 139  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 140  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
Timer2 can be used as the PWM time base for the  
PWM mode of the ECCP module. The TMR2 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>). The match  
output of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt, latched in flag bit TMR2IF (PIR1<1>).  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
• MSSP module optional use of TMR2 output to  
generate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 has a control register shown in Register 13-1.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
Figure 13-1 is a simplified block diagram of the Timer2  
module. Register 13-1 shows the Timer2 Control  
register. The prescaler and postscaler selection of  
Timer2 are controlled by this register.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset, or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 141  
PIC18F6525/6621/8525/8621  
13.2 Timer2 Interrupt  
13.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon Reset.  
The output of TMR2 (before the postscaler) is fed to the  
synchronous serial port module which optionally uses it  
to generate the shift clock.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
(1)  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS1:T2CKPS0  
4
T2OUTPS3:T2OUTPS0  
Note 1: TMR2 register output can be software selected by the MSSP module as a baud clock.  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
0000 0000 0000 0000  
(1)  
(1)  
PIE1  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
Legend:  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 142  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Figure 14-1 is a simplified block diagram of the Timer3  
module.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 14-1 shows the Timer3 Control register. This  
register controls the operating mode of the Timer3  
module and sets the CCP/ECCP clock source.  
• 16-bit timer/counter  
(two 8-bit registers: TMR3H and TMR3L)  
Register 12-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 oscillator  
enable bit (T1OSCEN) which can be a clock source for  
Timer3.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from ECCP module trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6,3 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
11= Timer3 and Timer4 are the clock sources for ECCP1 through CCP5  
10= Timer3 and Timer4 are the clock sources for ECCP3 through CCP5;  
Timer1 and Timer2 are the clock sources for ECCP1 and ECCP2  
01= Timer3 and Timer4 are the clock sources for ECCP2 through CCP5;  
Timer1 and Timer2 are the clock sources for ECCP1  
00= Timer1 and Timer2 are the clock sources for ECCP1 through CCP5  
bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 2  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI  
(on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 143  
PIC18F6525/6621/8525/8621  
When TMR3CS = 0, Timer3 increments every instruc-  
14.1 Timer3 Operation  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T13CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored and the pins are read as ‘0’.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>).  
Timer3 also has an internal “Reset input”. This Reset  
can be generated by the ECCP module (Section 14.0  
“Timer3 Module”).  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
ECCP Special Event Trigger  
T3CCPx  
TMR3IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
0
Flag bit  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
On/Off  
T3SYNC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
Oscillator  
2
Sleep Input  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
ECCP Special Event Trigger  
T3CCPx  
Synchronized  
Clock Input  
Set TMR3IF Flag bit  
on Overflow  
8
TMR3  
0
CLR  
Timer3  
High Byte  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
Sleep Input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39612B-page 144  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
14.2 Timer1 Oscillator  
14.4 Resetting Timer3 Using an ECCP  
Special Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN (T1CON<3>) bit. The oscillator is a low-  
power oscillator rated up to 200 kHz. See Section 12.0  
“Timer1 Module” for further details.  
If either the ECCP1 or ECCP2 module is configured in  
Compare mode to generate a special event trigger  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer3.  
Note:  
The special event triggers from the ECCP  
module will not set interrupt flag bit,  
TMR3IF (PIR1<0>).  
14.3 Timer3 Interrupt  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR3IF  
(PIR2<1>). This interrupt can be enabled/disabled by  
setting/clearing TMR3 interrupt enable bit, TMR3IE  
(PIE2<1>).  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer3 is running in Asynchronous Counter mode,  
this Reset operation may not work. In the event that a  
write to Timer3 coincides with a special event trigger  
from ECCP1, the write will take precedence. In this  
mode of operation, the CCPR1H:CCPR1L register pair  
effectively becomes the period register for Timer3.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
CMIF  
CMIE  
CMIP  
EEIF  
EEIE  
EEIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF -0-0 0000 -0-0 0000  
CCP2IE -0-0 0000 -0-0 0000  
CCP2IP -1-1 1111 -1-1 1111  
xxxx xxxx uuuu uuuu  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Legend:  
Timer3 Register Low Byte  
Timer3 Register High Byte  
xxxx xxxx uuuu uuuu  
RD16  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
2005 Microchip Technology Inc.  
DS39612B-page 145  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 146  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
15.1 Timer4 Operation  
15.0 TIMER4 MODULE  
Timer4 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR4 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T4CKPS1:T4CKPS0 (T4CON<1:0>). The match  
output of TMR4 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR4 interrupt, latched in flag bit TMR4IF (PIR3<3>).  
The Timer4 module timer has the following features:  
• 8-bit timer (TMR4 register)  
• 8-bit period register (PR4)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR4 match of PR4  
Timer4 has a control register shown in Register 15-1.  
Timer4 can be shut off by clearing control bit, TMR4ON  
(T4CON<2>), to minimize power consumption. The  
prescaler and postscaler selection of Timer4 are also  
controlled by this register. Figure 15-1 is a simplified  
block diagram of the Timer4 module.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• a write to the TMR4 register  
• a write to the T4CON register  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset, or Brown-out Reset)  
TMR4 is not cleared when T4CON is written.  
REGISTER 15-1: T4CON: TIMER4 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 T4OUTPS3:T4OUTPS0: Timer4 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR4ON: Timer4 On bit  
1= Timer4 is on  
0= Timer4 is off  
bit 1-0 T4CKPS1:T4CKPS0: Timer4 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 147  
PIC18F6525/6621/8525/8621  
15.2 Timer4 Interrupt  
15.3 Output of TMR4  
The Timer4 module has an 8-bit period register, PR4,  
which is both readable and writable. Timer4 increments  
from 00h until it matches PR4 and then resets to 00h on  
the next increment cycle. The PR4 register is initialized  
to FFh upon Reset.  
The output of TMR4 (before the postscaler) is used  
only as a PWM time base for the CCP modules. It is not  
used as a baud rate clock for the MSSP, as is the  
Timer2 output.  
FIGURE 15-1:  
TIMER4 BLOCK DIAGRAM  
Sets Flag  
TMR4  
bit TMR4IF  
Output  
Prescaler  
Reset  
TMR4  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
EQ  
2
Comparator  
PR4  
T4CKPS1:T4CKPS0  
4
T4OUTPS3:T4OUTPS0  
TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER4 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IP  
TX2IF  
TX2IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
IPR3  
RC2IP  
RC2IF  
RC2IE  
TMR4IP  
TMR4IF  
TMR4IE  
CCP5IP CCP4IP CCP3IP --11 1111 --00 0000  
CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
0000 0000 0000 0000  
PIR3  
PIE3  
TMR4  
T4CON  
PR4  
Timer4 Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0 -000 0000 -000 0000  
Timer4 Period Register 1111 1111 1111 1111  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer4 module.  
Legend:  
DS39612B-page 148  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Capture and Compare operations described in this  
16.0 CAPTURE/COMPARE/PWM  
chapter apply to all standard and Enhanced CCP  
modules. The operations of PWM mode described in  
Section 16.4 “PWM Mode” apply to CCP4 and CCP5  
only.  
(CCP) MODULES  
PIC18F6525/6621/8525/8621 devices all have a total  
of five CCP (Capture/Compare/PWM) modules. Two of  
these (CCP4 and CCP5) implement standard Capture,  
Compare and Pulse-Width Modulation (PWM) modes  
and are discussed in this section. The other three  
modules (ECCP1, ECCP2, ECCP3) implement  
standard Capture and Compare modes, as well as  
Enhanced PWM modes. These are discussed in  
Section 17.0 “Enhanced Capture/Compare/PWM  
(ECCP) Module”.  
Note:  
Throughout this section and Section 17.0  
“Enhanced Capture/Compare/PWM  
(ECCP) Module”, references to register  
and bit names that may be associated with  
a specific CCP module are referred to  
generically by the use of ‘x’ or ‘y’ in place of  
the specific module number. Thus,  
“CCPxCON” might refer to the control  
register for CCP4 or CCP5, or ECCP1,  
ECCP2 or ECCP3. “CCPxCON” is used  
throughout these sections to refer to the  
module control register, regardless of  
whether the CCP module is a standard or  
Enhanced implementation.  
Each CCP/ECCP module contains a 16-bit register  
which can operate as a 16-bit Capture register, a 16-bit  
Compare register or a PWM Master/Slave Duty Cycle  
register. For the sake of clarity, all CCP module opera-  
tion in the following sections is described with respect  
to CCP4, but is equally applicable to CCP5.  
REGISTER 16-1: CCPxCON REGISTER (CCP4 AND CCP5 MODULES)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0 for CCP Module x  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The  
eight Most Significant bits (DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0 CCPxM3:CCPxM0: CCP Module x Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode; initialize CCP pin low; on compare match, force CCP pin high  
(CCPIF bit is set)  
1001= Compare mode; initialize CCP pin high; on compare match, force CCP pin low  
(CCPIF bit is set)  
1010= Compare mode; generate software interrupt on compare match (CCPIF bit is set,  
CCP pin reflects I/O state)  
1011= Reserved  
11xx= PWM mode  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 149  
PIC18F6525/6621/8525/8621  
TABLE 16-1: CCP MODE – TIMER  
RESOURCE  
Timer Resource  
16.1 CCP Module Configuration  
Each Capture/Compare/PWM module is associated  
with a control register (generically, CCPxCON) and a  
data register (CCPRx). The data register in turn is com-  
prised of two 8-bit registers: CCPRxL (low byte) and  
CCPRxH (high byte). All registers are both readable  
and writable.  
CCP Mode  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2 or Timer4  
The assignment of a particular timer to a module is  
determined by the Timer-to-CCP enable bits in the  
T3CON register (Register 14-1, page 143). Depending  
on the configuration selected, up to four timers may be  
active at once, with modules in the same configuration  
(Capture/Compare or PWM) sharing timer resources.  
The possible configurations are shown in Figure 16-1.  
16.1.1  
CCP MODULES AND TIMER  
RESOURCES  
The CCP/ECCP modules utilize Timers 1, 2, 3 or 4,  
depending on the mode selected. Timer1 and Timer3  
are available to modules in Capture or Compare  
modes, while Timer2 and Timer4 are available for  
modules in PWM mode.  
FIGURE 16-1:  
CCP AND TIMER INTERCONNECT CONFIGURATIONS  
T3CCP<2:1> = 00  
T3CCP<2:1> = 01  
T3CCP<2:1> = 10  
T3CCP<2:1> = 11  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
ECCP1  
ECCP2  
ECCP3  
CCP4  
ECCP1  
ECCP1  
ECCP2  
ECCP1  
ECCP2  
ECCP3  
CCP4  
ECCP2  
ECCP3  
CCP4  
ECCP3  
CCP4  
CCP5  
CCP5  
CCP5  
CCP5  
TMR2  
TMR4  
TMR2  
TMR4  
TMR2  
TMR4  
TMR2  
TMR4  
Timer1 is used for all Capture Timer1 and Timer2 are used Timer1 and Timer2 are used  
for Capture and Compare or  
all CCP modules. Timer2 is PWM operations for ECCP1 PWM operations for ECCP1  
used for PWM operations for only (depending on selected and ECCP2 only (depending  
Timer3 is used for all Capture  
and Compare operations for  
all CCP modules. Timer4 is  
used for PWM operations for  
all CCP modules. Modules  
may share either timer  
resource as a common time  
base.  
and Compare operations for for Capture and Compare or  
on the mode selected for each  
module). Both modules may  
use a timer as a common time  
base if they are both in  
Capture/Compare or PWM  
modes.  
all CCP modules. Modules mode).  
may share either timer  
All other modules use either  
resource as a common time  
base.  
Timer3 or Timer4. Modules  
may share either timer  
Timer3 and Timer4 are not resource as a common time  
Timer1 and Timer2 are not  
available.  
available.  
base if they are in Capture/  
Compare or PWM modes.  
The other modules use either  
Timer3 or Timer4. Modules  
may share either timer  
resource as a common time  
base if they are in Capture/  
Compare or PWM modes.  
DS39612B-page 150  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
16.2.3  
SOFTWARE INTERRUPT  
16.2 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP4IE (PIE3<1>) clear to avoid false interrupts and  
should clear the flag bit, CCP4IF, following any such  
change in operating mode.  
In Capture mode, the CCPR4H:CCPR4L register pair  
captures the 16-bit value of the TMR1 or TMR3 regis-  
ters when an event occurs on pin RG3/CCP4/P1D. An  
event is defined as one of the following:  
• every falling edge  
• every rising edge  
16.2.4  
CCP PRESCALER  
• every 4th rising edge  
• every 16th rising edge  
There are four prescaler settings in Capture mode; they  
are specified as part of the operating mode selected by  
the mode select bits (CCP4M3:CCP4M0). Whenever  
the CCP module is turned off or the CCP module is not  
in Capture mode, the prescaler counter is cleared. This  
means that any Reset will clear the prescaler counter.  
The event is selected by the mode select bits,  
CCP4M3:CCP4M0 (CCP4CON<3:0>). When  
a
capture is made, the interrupt request flag bit CCP4IF  
(PIR3<1>) is set; it must be cleared in software. If  
another capture occurs before the value in register  
CCPR4 is read, the old captured value is overwritten by  
the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a
non-zero prescaler. Example 16-1 shows the  
16.2.1  
CCP PIN CONFIGURATION  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
In Capture mode, the RG3/CCP4/P1D pin should be  
configured as an input by setting the TRISG<3> bit.  
Note:  
If the RG3/CCP4/P1D is configured as an  
output, a write to the port can cause a  
capture condition.  
EXAMPLE 16-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
CCP4CON  
; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
16.2.2  
TIMER1/TIMER3 MODE SELECTION  
The timers that are to be used with the capture feature  
(Timer1 and/or Timer3) must be running in Timer mode  
or Synchronized Counter mode. In Asynchronous  
Counter mode, the capture operation may not work.  
The timer to be used with each CCP module is selected  
in the T3CON register (see Section 16.1.1 “CCP  
Modules and Timer Resources”).  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVWF CCP4CON  
FIGURE 16-2:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR4L  
TMR1L  
Set Flag bit CCP4IF  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
RG3/CCP4/P1D pin  
CCPR4H  
TMR1  
and  
Edge Detect  
Enable  
T3CCP2  
TMR1H  
CCP1CON<3:0>  
Q’s  
2005 Microchip Technology Inc.  
DS39612B-page 151  
PIC18F6525/6621/8525/8621  
16.3.2  
TIMER1/TIMER3 MODE SELECTION  
16.3 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against either the TMR1 or TMR3  
register pair value. When a match occurs, the CCP4  
pin can be:  
• driven high  
16.3.3  
SOFTWARE INTERRUPT MODE  
• driven low  
When the Generate Software Interrupt mode is chosen  
(CCP4M3:CCP4M0 = 1010), the CCP4 pin is not  
affected. Only a CCP interrupt is generated if enabled  
and the CCP4IE bit is set.  
• toggled (high-to-low or low-to-high)  
• remain unchanged (that is, reflects the state of the  
I/O latch)  
The action on the pin is based on the value of the mode  
select bits (CCP4M3:CCP4M0). At the same time, the  
interrupt flag bit CCP4IF is set.  
16.3.4  
SPECIAL EVENT TRIGGER  
Although shown in Figure 16-3, the compare on match  
special event triggers are not implemented on CCP4 or  
CCP5; they are only available on ECCP1 and ECCP2.  
Their operation is discussed in detail in Section 17.2.1  
“Special Event Trigger”.  
16.3.1  
CCP PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRIS bit.  
Note:  
Clearing the CCP4CON register will force  
the RG3/CCP4/P1D compare output latch  
to the default low level. This is not the  
PORTG I/O data latch.  
FIGURE 16-3:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger  
(ECCP1 and ECCP2 only)  
Set Flag bit CCP4IF  
CCPR4H CCPR4L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RG3/CCP4/P1D  
pin  
TRISG<3>  
Output Enable  
1
CCP4CON<3:0>  
Mode Select  
0
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
DS39612B-page 152  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 16-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
RCON  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 000x 0000 000u  
0--1 11qq 0--q qquu  
IPEN  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
RC1IF  
RC1IE  
RC1IP  
TX1IF  
TX1IE  
TX1IP  
EEIF  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TMR4IF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
PIR2  
LVDIF  
LVDIE  
LVDIP  
TMR3IF CCP2IF -0-0 0000 ---0 0000  
TMR3IE CCP2IE -0-0 0000 ---0 0000  
TMR3IP CCP2IP -1-1 1111 ---1 1111  
PIE2  
EEIE  
EEIP  
TX2IF  
TX2IE  
TX2IP  
IPR2  
PIR3  
RC2IF  
RC2IE  
RC2IP  
CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
PIE3  
TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
1111 1111 1111 1111  
IPR3  
TRISB  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTE Data Direction Register  
TRISC  
1111 1111 1111 1111  
TRISE  
1111 1111 1111 1111  
TRISG  
---1 1111 ---1 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PORTG Data Direction Register  
TMR1L  
TMR1H  
T1CON  
TMR3H  
TMR3L  
T3CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
CCPR3L  
CCPR3H  
CCP3CON  
CCPR4L  
CCPR4H  
CCP4CON  
CCPR5L  
CCPR5H  
CCP5CON  
Legend:  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Timer3 Register High Byte  
Timer3 Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
Enhanced Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
Enhanced Capture/Compare/PWM Register 2 Low Byte  
Enhanced Capture/Compare/PWM Register 2 High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
P2M1  
P2M0  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 0000 0000 0000 0000  
Enhanced Capture/Compare/PWM Register 3 Low Byte  
Enhanced Capture/Compare/PWM Register 3 High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
P3M1  
P3M0  
DC3B1  
DC3B0  
CCP3M3 CCP3M2 CCP3M1 CCP3M0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register 4 Low Byte  
Capture/Compare/PWM Register 4 High Byte  
xxxx xxxx uuuu uuuu  
DC4B1  
DC4B0  
CCP4M3 CCP4M2 CCP4M1 CCP4M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
Capture/Compare/PWM Register 5 Low Byte  
Capture/Compare/PWM Register 5 High Byte  
xxxx xxxx uuuu uuuu  
DC5B1  
DC5B0  
CCP5M3 CCP5M2 CCP5M1 CCP5M0 --00 0000 --00 0000  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’.  
Shaded cells are not used by Capture and Compare, Timer1 or Timer3.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2005 Microchip Technology Inc.  
DS39612B-page 153  
PIC18F6525/6621/8525/8621  
16.4.1  
PWM PERIOD  
16.4 PWM Mode  
The PWM period is specified by writing to the PR2  
(PR4) register. The PWM period can be calculated  
using the following formula:  
In Pulse-Width Modulation (PWM) mode, the CCP4 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP4 pin is multiplexed with the PORTG data  
latch, the TRISG<3> bit must be cleared to make the  
CCP4 pin an output.  
EQUATION 16-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
Note:  
Clearing the CCP4CON register will force  
the CCP4 PWM output latch to the default  
low level. This is not the PORTG I/O data  
latch.  
PWM frequency is defined as 1/[PWM period].  
When TMR2 (TMR4) is equal to PR2 (PR2), the  
following three events occur on the next increment  
cycle:  
Figure 16-4 shows a simplified block diagram of the  
CCP module in PWM mode.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 16.4.3  
“Setup for PWM Operation”.  
• TMR2 (TMR4) is cleared  
• The CCP4 pin is set (exception: if PWM duty  
cycle = 0%, the CCP4 pin will not be set)  
• The PWM duty cycle is latched from CCPR4L into  
CCPR4H  
FIGURE 16-4:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note:  
The Timer2 and Timer4 postscalers (see  
Section 13.0 “Timer2 Module”) are not  
used in the determination of the PWM  
frequency. The postscaler could be used  
to have a servo update rate at a different  
frequency than the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR4L  
CCPR4H (Slave)  
Comparator  
16.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR4L register and to the CCP4CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR4L contains  
the eight MSbs and the CCP4CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR4L:CCP4CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
Q
R
S
RG3/CCP4  
(Note 1)  
TMR2  
TRISG<3>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
EQUATION 16-2:  
PWM Duty Cycle = (CCPR4L:CCP4CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
Note 1: 8-bit TMR2 or TMR4 is concatenated with 2-bit  
internal Q clock, or 2 bits of the prescaler, to create  
10-bit time base.  
CCPR4L and CCP4CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR4H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR4H is a read-only register.  
A PWM output (Figure 16-5) has a time base (period)  
and a time that the output stays high (duty cycle).  
The frequency of the PWM is the inverse of the  
period (1/period).  
FIGURE 16-5:  
PWM OUTPUT  
The CCPR4H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation.  
Period  
When the CCPR4H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP4 pin is cleared.  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS39612B-page 154  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
16.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
EQUATION 16-3:  
1. Select TMR2 or TMR4 by setting or clearing the  
T3CCP2:T3CCP1 bits in the T3CON register.  
FOSC   
---------------  
log  
FPWM  
PWM Resolution (max)  
= ----------------------------- b i t s  
2. Set the PWM period by writing to the PR2 or  
PR4 register  
log(2)  
3. Set the PWM duty cycle by writing to the  
CCPR4L register and CCP4CON<5:4> bits.  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP4 pin will not be  
cleared.  
4. Make the CCP4 pin an output by clearing the  
TRISG<3> bit.  
5. Set TMR2 or TMR4 prescale value, enable  
Timer2 or Timer4 by writing to T2CON or  
T4CON.  
6. Configure the CCP4 module for PWM operation.  
TABLE 16-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
14  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
12  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
2005 Microchip Technology Inc.  
DS39612B-page 155  
PIC18F6525/6621/8525/8621  
TABLE 16-4: REGISTERS ASSOCIATED WITH PWM, TIMER2 AND TIMER4  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 000x 0000 000u  
0--1 11qq 0--q qquu  
IPEN  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
(1)  
PSPIF  
PSPIE  
PSPIP  
RC1IF  
RC1IE  
RC1IP  
TX1IF  
TX1IE  
TX1IP  
EEIF  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TMR4IF  
TMR4IE  
TMR4IP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
PIR2  
LVDIF  
LVDIE  
LVDIP  
TMR3IF CCP2IF -0-0 0000 ---0 0000  
TMR3IE CCP2IE -0-0 0000 ---0 0000  
TMR3IP CCP2IP -1-1 1111 ---1 1111  
PIE2  
EEIE  
EEIP  
TX2IF  
TX2IE  
TX2IP  
IPR2  
PIR3  
RC2IF  
RC2IE  
RC2IP  
CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
0000 0000 0000 0000  
PIE3  
IPR3  
TMR2  
PR2  
Timer2 Register  
Timer2 Period Register  
1111 1111 1111 1111  
T2CON  
T3CON  
TMR4  
PR4  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
RD16  
Timer4 Register  
0000 0000 uuuu uuuu  
1111 1111 uuuu uuuu  
Timer4 Period Register  
T4CON  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0 -000 0000 uuuu uuuu  
CCPR1L Enhanced Capture/Compare/PWM Register 1 Low Byte  
CCPR1H Enhanced Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
CCPR2L Enhanced Capture/Compare/PWM Register 2 Low Byte  
CCPR2H Enhanced Capture/Compare/PWM Register 2 High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2CON P2M1  
P2M0  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 0000 0000 0000 0000  
CCPR3L Enhanced Capture/Compare/PWM Register 3 Low Byte  
CCPR3H Enhanced Capture/Compare/PWM Register 3 High Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP3CON P3M1  
P3M0  
DC3B1  
DC3B0  
CCP3M3 CCP3M2 CCP3M1 CCP3M0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
CCPR4L Capture/Compare/PWM Register 4 Low Byte  
CCPR4H Capture/Compare/PWM Register 4 High Byte  
xxxx xxxx uuuu uuuu  
CCP4CON  
DC4B1  
DC4B0  
CCP4M3 CCP4M2 CCP4M1 CCP4M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
CCPR5L Capture/Compare/PWM Register 5 Low Byte  
CCPR5H Capture/Compare/PWM Register 5 High Byte  
xxxx xxxx uuuu uuuu  
CCP5CON  
DC5B1  
DC5B0  
CCP5M3 CCP5M2 CCP5M1 CCP5M0 --00 0000 --00 0000  
Legend:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by PWM, Timer2 or Timer4.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 156  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Capture and Compare functions of the ECCP module  
are the same as the standard CCP module.  
17.0 ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULE  
The prototype control register for the Enhanced CCP  
module is shown in Register 17-1. In addition to the  
The Enhanced CCP (ECCP) modules differ from the  
standard CCP modules by the addition of Enhanced  
PWM capabilities. These allow for 2 or 4 output  
channels, user selectable polarity, dead-band control  
and automatic shutdown and restart and are discussed  
in detail in Section 17.4 “Enhanced PWM Mode”.  
Except for the addition of the special event trigger,  
expanded range of modes available through the  
CCPxCON register, the ECCP modules each have two  
additional registers associated with Enhanced PWM  
operation and auto-shutdown features. They are:  
• ECCPxDEL (Dead-Band Delay)  
• ECCPxAS (Auto-Shutdown Configuration)  
REGISTER 17-1: CCPxCON REGISTER (ECCP1, ECCP2 AND ECCP3 MODULES)  
R/W-0  
PxM1  
R/W-0  
PxM0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3 CCPxM2 CCPxM1 CCPxM0  
bit 0  
bit 7  
bit 7-6  
PxM1:PxM0: Enhanced PWM Output Configuration bits  
If CCPxM3:CCPxM2 = 00, 01, 10:  
xx= PxA assigned as Capture/Compare input/output; PxB, PxC, PxD assigned as port pins  
If CCPxM3:CCPxM2 = 11:  
00= Single output: PxA modulated; PxB, PxC, PxD assigned as port pins  
01= Full-bridge output forward: P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output: P1A, P1B modulated with dead-band control; P1C, P1D assigned  
as port pins  
11= Full-bridge output reverse: P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are  
found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: Enhanced CCP Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match  
0011= Capture mode  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize ECCP pin low, set output on compare match (set CCPxIF)  
1001= Compare mode, initialize ECCP pin high, clear output on compare match (set CCPxIF)  
1010= Compare mode, generate software interrupt only, ECCP pin reverts to I/O state  
1011= Compare mode, trigger special event (ECCP resets TMR1 or TMR3, sets CCxIF bit,  
ECCP2 trigger starts A/D conversion if A/D module is enabled)(1)  
1100= PWM mode; PxA, PxC active-high; PxB, PxD active-high  
1101= PWM mode; PxA, PxC active-high; PxB, PxD active-low  
1110= PWM mode; PxA, PxC active-low; PxB, PxD active-high  
1111= PWM mode; PxA, PxC active-low; PxB, PxD active-low  
Note 1: Implemented only for ECCP1 and ECCP2; same as ‘1010’ for ECCP3.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 157  
PIC18F6525/6621/8525/8621  
ECCP1 and ECCP3, on the other hand, only have  
17.1 ECCP Outputs and Configuration  
three dedicated output pins: ECCPx/PxA, PxB and  
PxC. Whenever these modules are configured for  
Quad PWM mode, the pin normally used for CCP4 or  
CCP5 becomes the D output pins for ECCP3 and  
ECCP1, respectively. The CCP4 and CCP5 modules  
remain functional but their outputs are overridden.  
Each of the Enhanced CCP modules may have up to  
four PWM outputs, depending on the selected  
operating mode. These outputs, designated PxA  
through PxD, are multiplexed with various I/O pins.  
Some ECCP pin assignments are constant, while  
others change based on device configuration. For  
those pins that do change, the controlling bits are:  
17.1.2  
ECCP MODULE OUTPUTS AND  
PROGRAM MEMORY MODES  
• CCP2MX configuration bit (CONFIG3H<0>)  
• ECCPMX configuration bit (CONFIG3H<1>)  
For PIC18F8525/8621 devices, the Program Memory  
mode of the device (Section 4.1.1 “PIC18F6525/6621/  
8525/8621 Program Memory Modes”) impacts both  
pin multiplexing and the operation of the module.  
• Program Memory mode (set by configuration bits  
CONFIG3L<1:0>)  
The pin assignments for the Enhanced CCP modules  
are summarized in Table 17-1, Table 17-2 and  
Table 17-3. To configure the I/O pins as PWM outputs,  
the proper PWM mode must be selected by setting the  
PxMx and CCPxMx bits (CCPxCON<7:6> and <3:0>,  
respectively). The appropriate TRIS direction bits for  
the corresponding port pins must also be set as  
outputs.  
The ECCP2 input/output (ECCP2/P2A) can be multi-  
plexed to one of three pins. By default, this is RC1 for  
all devices. In this case, the default occurs when  
CCP2MX is set and the device is operating in Micro-  
controller mode. With PIC18F8525/8621 devices, three  
other options exist. When CCP2MX is not set (= 0) and  
the device is in Microcontroller mode, ECCP2/P2A is  
multiplexed to RE7; in all other program memory  
modes, it is multiplexed to RB3.  
17.1.1  
USE OF CCP4 AND CCP5 WITH  
ECCP1 AND ECCP3  
The final option is for CCP2MX to be set while the  
device is operating in one of the three other program  
memory modes. In this case, ECCP1 and ECCP3 oper-  
ate as compatible (i.e., single output) CCP modules.  
The pins used by their other outputs (PxB through PxD)  
are available for other multiplexed functions. ECCP2  
continues to operate as an Enhanced CCP module  
regardless of the program memory mode.  
Only the ECCP2 module has four dedicated output pins  
available for use. Assuming that the I/O ports or other  
multiplexed functions on those pins are not needed,  
they may be used whenever needed without interfering  
with any other CCP module.  
TABLE 17-1: PIN CONFIGURATIONS FOR ECCP1  
CCP1CON  
ECCP Mode  
RC2  
RE6  
RE5  
RG4  
RH7  
RH6  
Configuration  
All PIC18F6525/6621 devices:  
Compatible CCP 00xx 11xx  
ECCP1  
P1A  
RE6  
P1B  
P1B  
RE5  
RE5  
P1C  
RG4/CCP5  
RG4/CCP5  
P1D  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P1A  
PIC18F8525/8621 devices, ECCPMX = 1, Microcontroller mode:  
Compatible CCP 00xx 11xx  
ECCP1  
P1A  
RE6/AD14 RE5/AD13 RG4/CCP5 RH7/AN15 RH6/AN14  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P1B  
P1B  
RE5/AD13 RG4/CCP5 RH7/AN15 RH6/AN14  
P1A  
P1C  
P1D  
RH7/AN15 RH6/AN14  
PIC18F8525/8621 devices, ECCPMX = 0, Microcontroller mode:  
Compatible CCP 00xx 11xx  
ECCP1  
P1A  
RE6/AD14 RE5/AD13 RG4/CCP5 RH7/AN15 RH6/AN14  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
RE6/AD14 RE5/AD13 RG4/CCP5  
RE6/AD14 RE5/AD13 P1D  
P1B  
P1B  
RH6/AN14  
P1C  
P1A  
PIC18F8525/8621 devices, ECCPMX = 1, all other Program Memory modes:  
Compatible CCP 00xx 11xx  
ECCP1  
RE6/AD14 RE5/AD13 RG4/CCP5 RH7/AN15 RH6/AN14  
Legend: x= Don’t care, N/A = Not available. Shaded cells indicate pin assignments not used by ECCP1 in a given mode.  
Note 1: With ECCP1 in Quad PWM mode, CCP5’s output is overridden by P1D; otherwise CCP5 is fully operational.  
DS39612B-page 158  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 17-2: PIN CONFIGURATIONS FOR ECCP2  
CCP2CON  
Configuration  
ECCP Mode  
RB3  
RC1  
RE7  
RE2  
RE1  
RE0  
All devices, CCP2MX = 1, Microcontroller mode:  
Compatible CCP 00xx 11xx  
RB3/INT3  
RB3/INT3  
RB3/INT3  
ECCP2  
P2A  
RE7  
RE7  
RE7  
RE2  
P2B  
P2B  
RE1  
RE1  
P2C  
RE0  
RE0  
P2D  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P2A  
All devices, CCP2MX = 0, Microcontroller mode:  
Compatible CCP 00xx 11xx  
RB3/INT3 RC1/T1OS1  
RB3/INT3 RC1/T1OS1  
RB3/INT3 RC1/T1OS1  
ECCP2  
P2A  
RE2  
P2B  
P2B  
RE1  
RE1  
P2C  
RE0  
RE0  
P2D  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P2A  
PIC18F8525/8621 devices, CCP2MX = 0, all other Program Memory modes:  
Compatible CCP 00xx 11xx  
ECCP2  
P2A  
RC1/T1OS1 RE7/AD15  
RC1/T1OS1 RE7/AD15  
RC1/T1OS1 RE7/AD15  
RE2/CS  
P2B  
RE1/WR  
RE1/WR  
P2C  
RE0/RD  
RE0/RD  
P2D  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P2A  
P2B  
Legend: x= Don’t care. Shaded cells indicate pin assignments not used by ECCP2 in a given mode.  
TABLE 17-3: PIN CONFIGURATIONS FOR ECCP3  
CCP3CON  
ECCP Mode  
RG0  
RE4  
RE3  
RG3  
RH5  
RH4  
Configuration  
All PIC18F6525/6621 devices:  
Compatible CCP 00xx 11xx  
ECCP3  
P3A  
RE4  
P3B  
P3B  
RE3  
RE3  
P3C  
RG3/CCP4  
RG3/CCP4  
P3D  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P3A  
PIC18F8525/8621 devices, ECCPMX = 1, Microcontroller mode:  
Compatible CCP 00xx 11xx  
ECCP3  
P3A  
RE4/AD12 RE3/AD11 RG3/CCP4 RH5/AN13 RH4/AN12  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
P3B  
P3B  
RE3/AD11 RG3/CCP4 RH5/AN13 RH4/AN12  
P3A  
P3C  
P3D  
RH5/AN13 RH4/AN12  
PIC18F8525/8621 devices, ECCPMX = 0, Microcontroller mode:  
Compatible CCP 00xx 11xx  
ECCP3  
P3A  
RE6/AD14 RE5/AD13 RG3/CCP4 RH7/AN15 RH6/AN14  
Dual PWM  
Quad PWM  
10xx 11xx  
x1xx 11xx  
RE6/AD14 RE5/AD13 RG3/CCP4  
RE6/AD14 RE5/AD13 P3D  
P3B  
P3B  
RH6/AN14  
P3C  
P3A  
PIC18F8525/8621 devices, ECCPMX = 1, all other Program Memory modes:  
Compatible CCP 00xx 11xx  
ECCP3  
RE6/AD14 RE5/AD13 RG3/CCP4 RH7/AN15 RH6/AN14  
Legend: x= Don’t care, N/A = Not available. Shaded cells indicate pin assignments not used by ECCP3 in a given mode.  
Note 1: With ECCP3 in Quad PWM mode, CCP4’s output is overridden by P1D; otherwise CCP4 is fully operational.  
2005 Microchip Technology Inc.  
DS39612B-page 159  
PIC18F6525/6621/8525/8621  
17.1.3  
ECCP MODULES AND TIMER  
RESOURCES  
17.4 Enhanced PWM Mode  
The Enhanced PWM mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is a backward compatible version of  
the standard CCP module and offers up to four outputs,  
designated PxA through PxD. Users are also able to  
select the polarity of the signal (either active-high or  
active-low). The module’s output mode and polarity  
are configured by setting the PxM1:PxM0 and  
CCPxM3CCPxM0 bits of the CCPxCON register  
(CCPxCON<7:6> and CCPxCON<3:0>, respectively).  
Like the standard CCP modules, the ECCP modules  
can utilize Timers 1, 2, 3 or 4, depending on the mode  
selected. Timer1 and Timer3 are available for modules  
in Capture or Compare modes, while Timer2 and  
Timer4 are available for modules in PWM mode.  
Additional details on timer resources are provided in  
Section 16.1.1  
“CCP  
Modules  
and  
Timer  
Resources”.  
17.2 Capture and Compare Modes  
For the sake of clarity, Enhanced PWM mode operation  
is described generically throughout this section with  
respect to ECCP1 and TMR2 modules. Control register  
names are presented in terms of ECCP1. All three  
Enhanced modules, as well as the two timer resources,  
can be used interchangeably and function identically.  
TMR2 or TMR4 can be selected for PWM operation by  
selecting the proper bits in T3CON.  
Except for the operation of the special event trigger  
discussed below, the Capture and Compare modes of  
the ECCP module are identical in operation to that of  
CCP4. These are discussed in detail in Section 16.2  
“Capture Mode” and Section 16.3 “Compare  
Mode”.  
17.2.1  
SPECIAL EVENT TRIGGER  
Figure 17-1 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when Timer2 resets) in order to  
prevent glitches on any of the outputs. The exception is  
the PWM Delay register, ECCP1DEL, which is loaded  
at either the duty cycle boundary or the boundary  
period (whichever comes first). Because of the buffer-  
ing, the module waits until the assigned timer resets  
instead of starting immediately. This means that  
Enhanced PWM waveforms do not exactly match the  
standard PWM waveforms, but are instead offset by  
one full instruction cycle (4 TOSC).  
In this mode, an internal hardware trigger is generated  
in Compare mode, on a match between the CCPR  
register pair and the selected timer. This can be used in  
turn to initiate an action.  
The special event trigger output of either ECCP1 or  
ECCP2 resets the TMR1 or TMR3 register pair,  
depending on which timer resource is currently  
selected. This allows the CCPRx register to effectively  
be a 16-bit programmable period register for Timer1 or  
Timer3. In addition, the ECCP2 special event trigger  
will also start an A/D conversion if the A/D module is  
enabled.  
As before, the user must manually configure the  
appropriate TRIS bits for output.  
The triggers are not implemented for ECCP3, CCP4 or  
CCP5. Selecting the Special Event mode  
(CCPxM3:CCPxM0 = 1011) for these modules has the  
same effect as selecting the Compare with Software  
Interrupt mode (CCPxM3:CCPxM0 = 1010).  
17.4.1  
PWM PERIOD  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
equation:  
Note:  
The special event trigger from ECCP2 will  
not set the Timer1 or Timer3 interrupt flag  
bits.  
EQUATION 17-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
17.3 Standard PWM Mode  
PWM frequency is defined as 1/[PWM period]. When  
TMR2 is equal to PR2, the following three events occur  
on the next increment cycle:  
When configured in Single Output mode, the ECCP  
module functions identically to the standard CCP  
module in PWM mode as described in Section 16.4  
“PWM Mode”. This is also sometimes referred to as  
“Compatible CCP” mode as in Tables 17-1  
through 17-3.  
• TMR2 is cleared  
• The ECCP1 pin is set (if PWM duty cycle = 0%,  
the ECCP1 pin will not be set)  
• The PWM duty cycle is copied from CCPR1L into  
CCPR1H  
Note:  
When setting up single output PWM opera-  
tions, users are free to use either of the  
processes described in Section 16.4.3  
“Setup for PWM Operation” or  
Section 17.4.9 “Setup for PWM Opera-  
tion”. The latter is more generic but will  
work for either single or multi-output PWM.  
Note:  
The Timer2 postscaler (see Section 13.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
DS39612B-page 160  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 17-1:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
CCP1CON<5:4>  
P1M1<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
ECCP1/P1A  
P1B  
ECCP1/P1A  
P1B  
TRISx<x>  
TRISx<x>  
TRISx<x>  
TRISx<x>  
CCPR1H (Slave)  
Comparator  
Output  
Controller  
R
S
Q
P1C  
P1C  
P1D  
(Note 1)  
TMR2  
P1D  
Comparator  
PR2  
Clear Timer,  
set ECCP1 pin and  
latch D.C.  
ECCP1DEL  
Note 1: The 8-bit TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler, to create the 10-bit  
time base.  
The CCPRxH register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM opera-  
tion. When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or two bits  
of the TMR2 prescaler, the ECCP1 pin is cleared. The  
maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
17.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPRxL:CCPxCON<5:4>. The PWM duty cycle is  
calculated by the equation:  
EQUATION 17-3:  
EQUATION 17-2:  
FOSC  
log  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
(FPWM)  
bits  
PWM Resolution (max) =  
log(2)  
CCPR1L and CCP1CON<5:4> can be written to at any  
time but the duty cycle value is not copied into  
CCPR1H until a match between PR2 and TMR2 occurs  
(i.e., the period is complete). In PWM mode, CCPR1H  
is a read-only register.  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the ECCP1 pin will not  
be cleared.  
TABLE 17-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
2005 Microchip Technology Inc.  
DS39612B-page 161  
PIC18F6525/6621/8525/8621  
The Single Output mode is the standard PWM mode  
discussed in Section 17.4 “Enhanced PWM Mode”.  
The Half-Bridge and Full-Bridge Output modes are  
covered in detail in the sections that follow.  
17.4.3  
PWM OUTPUT CONFIGURATIONS  
The P1M1:P1M0 bits in the CCP1CON register allow  
one of four configurations:  
• Single Output  
The general relationship of the outputs in all  
configurations is summarized in Figure 17-2.  
• Half-Bridge Output  
• Full-Bridge Output, Forward mode  
• Full-Bridge Output, Reverse mode  
FIGURE 17-2:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)  
0
PR2 + 1  
Duty  
SIGNAL  
CCP1CON  
<7:6>  
Cycle  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
Delay  
Delay  
(Half-Bridge)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
DS39612B-page 162  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 17-3:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
0
PR2 + 1  
Duty  
SIGNAL  
CCP1CON  
Cycle  
<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
(1)  
(1)  
Delay  
Delay  
(Half-Bridge)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (ECCP1DEL<6:0>)  
Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 17.4.6 “Programmable  
Dead-Band Delay”).  
17.4.4  
HALF-BRIDGE MODE  
FIGURE 17-4:  
HALF-BRIDGE PWM  
OUTPUT  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The PWM output sig-  
nal is output on the P1A pin, while the complementary  
PWM output signal is output on the P1B pin  
(Figure 17-4). This mode can be used for half-bridge  
applications, as shown in Figure 17-5, or for full-bridge  
applications, where four power switches are being  
modulated with two PWM signals.  
Period  
Period  
Duty Cycle  
(2)  
(2)  
P1A  
td  
td  
P1B  
In Half-Bridge Output mode, the programmable  
dead-band delay can be used to prevent shoot-through  
current in half-bridge power devices. The value of bits  
PDC6:PDC0 sets the number of instruction cycles  
before the output is driven active. If the value is greater  
than the duty cycle, the corresponding output remains  
inactive during the entire cycle. See Section 17.4.6  
“Programmable Dead-Band Delay” for more details  
on dead-band delay operations.  
(1)  
(1)  
(1)  
td = Dead Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
Since the P1A and P1B outputs are multiplexed with  
the PORTC<2> and PORTE<6> data latches, the  
TRISC<2> and TRISE<6> bits must be cleared to  
configure P1A and P1B as outputs.  
2005 Microchip Technology Inc.  
DS39612B-page 163  
PIC18F6525/6621/8525/8621  
FIGURE 17-5:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
PIC18F6X2X/8X2X  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18F6X2X/8X2X  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
Driver  
FET  
Driver  
P1B  
V-  
DS39612B-page 164  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORTC<2>, PORTE<6:5> and PORTG<4> data  
latches. The TRISC<2>, TRISC<6:5> and TRISG<4>  
bits must be cleared to make the P1A, P1B, P1C and  
P1D pins outputs.  
17.4.5  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as  
outputs; however, only two outputs are active at a time.  
In the Forward mode, pin P1A is continuously active  
and pin P1D is modulated. In the Reverse mode, pin  
P1C is continuously active and pin P1B is modulated.  
These are illustrated in Figure 17-6.  
FIGURE 17-6:  
FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Duty Cycle  
(2)  
(2)  
P1B  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Duty Cycle  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
Note 2: Output signal is shown as active-high.  
2005 Microchip Technology Inc.  
DS39612B-page 165  
PIC18F6525/6621/8525/8621  
FIGURE 17-7:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18F6X2X/8X2X  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
Load  
P1B  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
Figure 17-9 shows an example where the PWM  
direction changes from forward to reverse at a near  
100% duty cycle. At time t1, the output P1A and P1D  
become inactive, while output P1C becomes active. In  
this example, since the turn-off time of the power  
devices is longer than the turn-on time, a shoot-through  
current may flow through power devices QC and QD  
(see Figure 17-7) for the duration of ‘t’. The same  
phenomenon will occur to power devices QA and QB  
for PWM direction change from reverse to forward.  
17.4.5.1  
Direction Change in Full-Bridge Mode  
In the Full-Bridge Output mode, the P1M1 bit in the  
CCP1CON register allows users to control the forward/  
reverse direction. When the application firmware  
changes this direction control bit, the module will  
assume the new direction on the next PWM cycle.  
Just before the end of the current PWM period, the  
modulated outputs (P1B and P1D) are placed in their  
inactive state, while the unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite direction.  
This occurs in a time interval of (4 TOSC * (Timer2  
Prescale Value) before the next PWM period begins.  
The Timer2 prescaler will be either 1, 4 or 16, depend-  
ing on the value of the T2CKPS bit (T2CON<1:0>).  
During the interval from the switch of the unmodulated  
outputs to the beginning of the next period, the  
modulated outputs (P1B and P1D) remain inactive.  
This relationship is shown in Figure 17-8.  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
1. Reduce PWM for  
changing directions.  
a PWM period before  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
Note that in the Full-Bridge Output mode, the ECCP1  
module does not provide any dead-band delay. In gen-  
eral, since only one output is modulated at all times,  
dead-band delay is not required. However, there is a  
situation where a dead-band delay might be required.  
This situation occurs when both of the following  
conditions are true:  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn-off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn-on time.  
DS39612B-page 166  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 17-8:  
PWM DIRECTION CHANGE  
(1)  
Period  
Period  
SIGNAL  
P1A (Active-High)  
P1B (Active-High)  
DC  
P1C (Active-High)  
P1D (Active-High)  
(Note 2)  
DC  
Note 1: The direction bit in the ECCP1 Control register (CCP1CON<7>) is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle at intervals  
of 4 TOSC, 16 TOSC or 64 TOSC, depending on the Timer2 prescaler value. The modulated P1B and P1D signals  
are inactive at this time.  
FIGURE 17-9:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
(1)  
(1)  
P1A  
P1B  
DC  
(1)  
P1C  
P1D  
(1)  
DC  
(2)  
t
ON  
(1)  
(1)  
External Switch C  
External Switch D  
(3)  
t
OFF  
(2,3)  
Potential  
t = t  
– t  
ON  
OFF  
Shoot-Through  
(1)  
Current  
Note 1: All signals are shown as active-high.  
2:  
3:  
t
t
is the turn-on delay of power switch QC and its driver.  
ON  
is the turn-off delay of power switch QD and its driver.  
OFF  
2005 Microchip Technology Inc.  
DS39612B-page 167  
PIC18F6525/6621/8525/8621  
A shutdown event can be caused by either of the two  
comparator modules or the INT0/FLT0 pin (or any com-  
bination of these three sources). The comparators may  
be used to monitor a voltage input proportional to a cur-  
rent being monitored in the bridge circuit. If the voltage  
exceeds a threshold, the comparator switches state and  
triggers a shutdown. Alternatively, a digital signal on the  
INT0/FLT0 pin can also trigger a shutdown. The  
auto-shutdown feature can be disabled by not selecting  
any auto-shutdown sources. The auto-shutdown  
sources to be used are selected using the  
ECCP1AS2:ECCP1AS0 bits (bits<6:4> of the  
ECCP1AS register).  
17.4.6  
PROGRAMMABLE DEAD-BAND  
DELAY  
In half-bridge applications where all power switches are  
modulated at the PWM frequency at all times, the  
power switches normally require more time to turn off  
than to turn on. If both the upper and lower power  
switches are switched at the same time (one turned on  
and the other turned off), both switches may be on for  
a short period of time until one switch completely turns  
off. During this brief interval, a very high current  
(shoot-through current) may flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from flow-  
ing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
When a shutdown occurs, the output pin(s) are  
asynchronously placed in their shutdown states,  
specified  
by  
the  
PSS1AC1:PSS1AC0  
and  
PSS1BD1:PSS1BD0 bits (ECCP1AS3:ECCP1AS0).  
Each pin pair (P1A/P1C and P1B/P1D) may be set to  
drive high, drive low or be tri-stated (not driving). The  
ECCP1ASE bit (ECCP1AS<7>) is also set to hold the  
Enhanced PWM outputs in their shutdown states.  
In the Half-Bridge Output mode, a digitally program-  
mable dead-band delay is available to avoid  
shoot-through current from destroying the bridge  
power switches. The delay occurs at the signal  
transition from the non-active state to the active state.  
See Figure 17-4 for illustration. The lower seven bits of  
the ECCPxDEL register (Register 17-2) set the delay  
period in terms of microcontroller instruction cycles  
(TCY or 4 TOSC).  
The ECCP1ASE bit is set by hardware when a  
shutdown event occurs. If automatic restarts are not  
enabled, the ECCPASE bit is cleared by firmware when  
the cause of the shutdown clears. If automatic restarts  
are enabled, the ECCPASE bit is automatically cleared  
when the cause of the Auto-Shutdown has cleared.  
17.4.7  
ENHANCED PWM  
AUTO-SHUTDOWN  
If the ECCPASE bit is set when a PWM period begins,  
the PWM outputs remain in their shutdown state for that  
entire PWM period. When the ECCPASE bit is cleared,  
the PWM outputs will return to normal operation at the  
beginning of the next PWM period.  
When an ECCP module is programmed for any PWM  
mode, the active output pin(s) may be configured for  
auto-shutdown. Auto-shutdown immediately places the  
PWM output pin(s) into a defined shutdown state when  
a shutdown event occurs.  
Note:  
Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
REGISTER 17-2: ECCPxDEL: PWM CONFIGURATION REGISTER  
R/W-0  
PxRSEN  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PxDC6  
PxDC5  
PxDC4  
PxDC3  
PxDC2  
PxDC1  
PxDC0  
bit 0  
bit 7  
PxRSEN: PWM Restart Enable bit  
1= Upon Auto-Shutdown, the ECCPxASE bit clears automatically once the shutdown event  
goes away; the PWM restarts automatically  
0= Upon Auto-Shutdown, ECCPxASE must be cleared in software to restart the PWM  
bit 6-0  
PxDC6:PxDC0: PWM Delay Count bits  
Delay time, in number of FOSC/4 (4 * TOSC) cycles, between the scheduled and actual time for  
a PWM signal to transition to active.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 168  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 17-3: ECCPxAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPxASE ECCPxAS2 ECCPxAS1 ECCPxAS0 PSSxAC1 PSSxAC0 PSSxBD1 PSSxBD0  
bit 7  
bit 0  
bit 7  
ECCPxASE: ECCP Auto-Shutdown Event Status bit  
0= ECCP outputs are operating  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
bit 6-4  
ECCPxAS2:ECCPxAS0: ECCP Auto-Shutdown Source Select bits  
000= Auto-shutdown is disabled  
001= Comparator 1 output  
010= Comparator 2 output  
011= Either Comparator 1 or 2  
100= INT0/FLT0  
101= INT0/FLT0 or Comparator 1  
110= INT0/FLT0 or Comparator 2  
111= INT0/FLT0 or Comparator 1 or Comparator 2  
bit 3-2  
bit 1-0  
PSSxAC1:PSSxAC0: Pins A and C Shutdown State Control bits  
00= Drive Pins A and C to ‘0’  
01= Drive Pins A and C to ‘1’  
1x= Pins A and C tri-state  
PSSxBD1:PSSxBD0: Pins B and D Shutdown State Control bits  
00= Drive Pins B and D to ‘0’  
01= Drive Pins B and D to ‘1’  
1x= Pins B and D tri-state  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 169  
PIC18F6525/6621/8525/8621  
17.4.7.1  
Auto-Shutdown and Automatic  
Restart  
17.4.8  
START-UP CONSIDERATIONS  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external  
pull-up and/or pull-down resistors on the PWM output  
pins. When the microcontroller is released from Reset,  
all of the I/O pins are in the high-impedance state. The  
external circuits must keep the power switch devices in  
the off state until the microcontroller drives the I/O pins  
with the proper signal levels, or activates the PWM  
output(s).  
The auto-shutdown feature can be configured to allow  
automatic restarts of the module following a shutdown  
event. This is enabled by setting the P1RSEN bit of the  
ECCP1DEL register (ECCP1DEL<7>).  
In Shutdown mode with PRSEN = 1(Figure 17-10), the  
ECCPASE bit will remain set for as long as the cause  
of the shutdown continues. When the shutdown condi-  
tion clears, the ECCP1ASE bit is cleared. If PRSEN = 0  
(Figure 17-11), once a shutdown condition occurs, the  
ECCP1ASE bit will remain set until it is cleared by  
firmware. Once ECCP1ASE is cleared, the Enhanced  
PWM will resume at the beginning of the next PWM  
period.  
The CCP1M1:CCP1M0 bits (CCP1CON<1:0>) allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output  
pins (P1A/P1C and P1B/P1D). The PWM output  
polarities must be selected before the PWM pins are  
configured as outputs. Changing the polarity configura-  
tion while the PWM pins are configured as outputs is  
not recommended since it may result in damage to the  
application circuits.  
Note:  
Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
Independent of the P1RSEN bit setting, if the  
auto-shutdown source is one of the comparators, the  
shutdown condition is a level. The ECCP1ASE bit can-  
not be cleared as long as the cause of the shutdown  
persists.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is initialized.  
Enabling the PWM pins for output at the same time as  
the ECCP module may cause damage to the applica-  
tion circuit. The ECCP module must be enabled in the  
proper output mode and complete a full PWM cycle  
before configuring the PWM pins as outputs. The com-  
pletion of a full PWM cycle is indicated by the TMR2IF  
bit being set as the second PWM period begins.  
The Auto-Shutdown mode can be forced by writing a ‘1’  
to the ECCPASE bit.  
FIGURE 17-10:  
PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
FIGURE 17-11:  
PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
ECCPASE  
Cleared by  
Firmware  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
DS39612B-page 170  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
8. If auto-restart operation is required, set the  
P1RSEN bit (ECCP1DEL<7>).  
17.4.9  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the ECCP1 module for PWM operation using Timer2:  
9. Configure and start TMR2:  
• Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit (PIR1<1>).  
1. Configure the PWM pins, P1A and P1B (and  
P1C and P1D, if used), as inputs by setting the  
corresponding TRIS bits.  
• Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
2. Set the PWM period by loading the PR2 register.  
3. If auto-shutdown is required do the following:  
• Disable auto-shutdown (ECCP1AS = 0)  
• Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>).  
10. Enable PWM outputs after a new PWM cycle  
has started:  
• Configure source (FLT0, Comparator 1 or  
Comparator 2)  
• Wait until TMRn overflows (TMRnIF bit is set).  
• Wait for non-shutdown condition  
• Enable the ECCP1/P1A, P1B, P1C and/or  
P1D pin outputs by clearing the respective  
TRIS bits.  
4. Configure the ECCP1 module for the desired  
PWM mode and configuration by loading the  
CCP1CON register with the appropriate values:  
• Clear the ECCP1ASE bit (ECCP1AS<7>).  
• Select one of the available output  
configurations and direction with the  
P1M1:P1M0 bits.  
17.4.10 EFFECTS OF A RESET  
Both Power-on Reset and subsequent Resets will force  
all ports to Input mode and the CCP registers to their  
Reset states.  
• Select the polarities of the PWM output  
signals with the CCP1M3:CCP1M0 bits.  
5. Set the PWM duty cycle by loading the CCPR1L  
register and CCP1CON<5:4> bits.  
This forces the Enhanced CCP module to reset to a  
state compatible with the standard CCP module.  
6. For Half-Bridge Output mode, set the  
dead-band delay by loading ECCP1DEL<6:0>  
with the appropriate value.  
7. If auto-shutdown operation is required, load the  
ECCP1AS register:  
• Select the auto-shutdown sources using the  
ECCP1AS2:ECCP1AS0 bits.  
• Select the shutdown states of the PWM  
output pins using the PSS1AC1:PSS1AC0  
and PSS1BD1:PSS1BD0 bits.  
• Set the ECCP1ASE bit (ECCP1AS<7>).  
• Configure the comparators using the CMCON  
register.  
• Configure the comparator inputs as analog  
inputs.  
2005 Microchip Technology Inc.  
DS39612B-page 171  
PIC18F6525/6621/8525/8621  
TABLE 17-5: REGISTERS ASSOCIATED WITH ECCP MODULES AND TIMER1 TO TIMER4  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 000x 0000 000u  
0--1 11qq 0--q qquu  
IPEN  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
RC1IF  
RC1IE  
RC1IP  
TX1IF  
TX1IE  
TX1IP  
EEIF  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TMR4IF  
TMR4IE  
TMR4IP  
CCP1IF  
CCP1IE  
CCP1IP  
LVDIF  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP4IF  
CCP4IE  
CCP4IP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
CCP2IF -0-0 0000 ---0 0000  
CCP2IE -0-0 0000 ---0 0000  
CCP2IP -1-1 1111 ---1 1111  
CCP3IF --00 0000 --00 0000  
CCP3IE --00 0000 --00 0000  
CCP3IP --11 1111 --11 1111  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
PIR2  
PIE2  
EEIE  
EEIP  
TX2IF  
TX2IE  
TX2IP  
LVDIE  
IPR2  
LVDIP  
PIR3  
RC2IF  
RC2IE  
RC2IP  
CCP5IF  
CCP5IE  
CCP5IP  
PIE3  
IPR3  
TRISB  
TRISC  
TRISCD  
TRISE  
TRISF  
TRISG  
TRISH  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
PR2  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
PORTE Data Direction Register  
PORTF Data Direction Register  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
PORTG Data Direction Register  
---1 1111 ---1 1111  
PORTH Data Direction Register  
Timer1 Register Low Byte  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
Timer1 Register High Byte  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Timer2 Register  
0000 0000 0000 0000  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
TMR3L  
TMR3H  
T3CON  
TMR4  
T4CON  
PR4  
Timer3 Register Low Byte  
Timer3 Register High Byte  
xxxx xxxx uuuu uuuu  
RD16  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
0000 0000 0000 0000  
Timer4 Register  
T4OUTPS3 T4OUTPS2 T4OUTPS1 T4OUTPS0 TMR4ON T4CKPS1 T4CKPS0 -000 0000 -000 0000  
Timer4 Period Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
CCPR1L  
CCPR1H  
CCP1CON  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
Enhanced Capture/Compare/PWM Register 1 High Byte  
xxxx xxxx uuuu uuuu  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
ECCP1AS ECCP1ASE ECCP1AS2 ECCP1AS1 ECCP1AS0 PSS1AC1 PSS1AC0 PSS1BD1 PSS1BD0 0000 0000 0000 0000  
ECCP1DEL P1RSEN  
P1DC6  
P1DC5  
P1DC4  
P1DC3  
P1DC2  
P1DC1  
P1DC0 0000 0000 uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR2L  
CCPR2H  
CCP2CON  
Enhanced Capture/Compare/PWM Register 2 Low Byte  
Enhanced Capture/Compare/PWM Register 2 High Byte  
xxxx xxxx uuuu uuuu  
P2M1  
P2M0  
DC2B1  
DC2B0  
CCP2M3  
CCP2M2 CCP2M1 CCP2M0 0000 0000 0000 0000  
ECCP2AS ECCP2ASE ECCP2AS2 ECCP2AS1 ECCP2AS0 PSS2AC1 PSS2AC0 PSS2BD1 PSS2BD0 0000 0000 0000 0000  
ECCP2DEL P2RSEN  
P2DC6  
P2DC5  
P2DC4  
P2DC3  
P2DC2  
P2DC1  
P2DC0 0000 0000 uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR3L  
CCPR3H  
CCP3CON  
Enhanced Capture/Compare/PWM Register 3 Low Byte  
Enhanced Capture/Compare/PWM Register 3 High Byte  
xxxx xxxx uuuu uuuu  
P3M1  
P3M0  
DC3B1  
DC3B0  
CCP3M3  
CCP3M2 CCP3M1 CCP3M0 0000 0000 0000 0000  
ECCP3AS ECCP3ASE ECCP3AS2 ECCP3AS1 ECCP3AS0 PSS3AC1 PSS3AC0 PSS3BD1 PSS3BD0 0000 0000 0000 0000  
ECCP3DEL Px3RSEN P3DC6 P3DC5 P3DC4 P3DC3 P3DC2 P3DC1 P3DC0 0000 0000 uuuu uuuu  
Legend:  
Note 1:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used during ECCP operation.  
Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 172  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
18.3 SPI Mode  
18.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
18.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDO) – RC5/SDO  
• Serial Data In (SDI) – RC4/SDI/SDA  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Clock (SCK) – RC3/SCK/SCL  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) – RF7/SS  
Figure 18-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master mode  
FIGURE 18-1:  
MSSP BLOCK DIAGRAM  
(SPI™ MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
Read  
Write  
• Master mode  
• Multi-Master mode  
• Slave mode  
SSPBUF reg  
SSPSR reg  
18.2 Control Registers  
RC4/SDI/SDA  
RC5/SDO  
The MSSP module has three associated registers.  
These include a status register (SSPSTAT) and two  
control registers (SSPCON1 and SSPCON2). The use  
of these registers and their individual configuration bits  
differ significantly depending on whether the MSSP  
module is operated in SPI or I2C mode.  
Shift  
Clock  
bit 0  
RF7/SS  
Control  
Enable  
SS  
Additional details are provided under the individual  
sections.  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 Output  
RC3/SCK/  
SCL  
(
)
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Data to TXx/RXx in SSPSR  
TRIS bit  
2005 Microchip Technology Inc.  
DS39612B-page 173  
PIC18F6525/6621/8525/8621  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
18.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPBUF)  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
SSPCON1 and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON1 regis-  
ter is readable and writable. The lower 6 bits of the  
SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 18-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
CKE: SPI Clock Edge Select bit  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
Note:  
Polarity of clock state is set by the CKP bit (SSPCON1<4>).  
bit 5  
bit 4  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is  
cleared.  
bit 3  
bit 2  
bit 1  
bit 0  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write bit Information  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 174  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 18-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be  
cleared in software).  
0= No overflow  
Note:  
In Master mode, the overflow bit is not set since each new reception (and  
transmission) is initiated by writing to the SSPBUF register.  
bit 5  
bit 4  
SSPEN: Master Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO, SDI and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, these pins must be properly configured as input or output.  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0 SSPM3:SSPM0: Master Synchronous Serial Port Mode Select bits  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
I2C mode only.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 175  
PIC18F6525/6621/8525/8621  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored and the write collision detect bit, WCOL  
(SSPCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the follow-  
ing write(s) to the SSPBUF register completed  
successfully.  
18.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0>) and SSPSTAT<7:6>.  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally, the MSSP interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 18-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit, BF  
(SSPSTAT<0>) and the interrupt flag bit, SSPIF, are  
set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP Status register (SSPSTAT)  
indicates the various status conditions.  
EXAMPLE 18-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP  
BTFSS  
BRA  
SSPSTAT, BF  
LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF  
SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF  
RXDATA  
;Save in user RAM, if data is meaningful  
MOVF  
MOVWF  
TXDATA, W  
SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS39612B-page 176  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
18.3.3  
ENABLING SPI I/O  
18.3.4  
TYPICAL CONNECTION  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port  
function, some must have their data direction bits (in  
the TRIS register) appropriately programmed as  
follows:  
Figure 18-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their  
programmed clock edge and latched on the opposite  
edge of the clock. Both processors should be  
programmed to the same Clock Polarity (CKP), then  
both controllers would send and receive data at the  
same time. Whether the data is meaningful (or dummy  
data) depends on the application software. This leads  
to three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• Master sends dummy data – Slave sends data  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISF<7> bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
FIGURE 18-2:  
SPI™ MASTER/SLAVE CONNECTION  
SPI™ Master SSPM3:SSPM0 = 00xxb  
SDO  
SPI™ Slave SSPM3:SSPM0 = 010xb  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
2005 Microchip Technology Inc.  
DS39612B-page 177  
PIC18F6525/6621/8525/8621  
The clock polarity is selected by appropriately  
programming the CKP bit (SSPCON1<4>). This then,  
would give waveforms for SPI communication as  
shown in Figure 18-3, Figure 18-5 and Figure 18-6,  
where the MSB is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
18.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 18-2) is to  
broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 18-3 shows the waveforms for Master mode.  
FIGURE 18-3:  
SPI™ MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39612B-page 178  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
must be high. When the SS pin is low, transmission and  
reception are enabled and the SDO pin is driven. When  
the SS pin goes high, the SDO pin is no longer driven  
even if in the middle of a transmitted byte and becomes  
a floating output. External pull-up/pull-down resistors  
may be desirable depending on the application.  
18.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the SPI module will reset if the SS pin is set  
to VDD.  
Before enabling the module in SPI Slave mode, the  
clock line must match the proper Idle state. The clock  
line can be observed by reading the SCK pin. The Idle  
state is determined by the CKP bit (SSPCON1<4>).  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
18.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 04h). The pin must not be driven  
low for the SS pin to function as an input. The data latch  
FIGURE 18-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
SSPSR to  
SSPBUF  
after Q2↓  
2005 Microchip Technology Inc.  
DS39612B-page 179  
PIC18F6525/6621/8525/8621  
FIGURE 18-5:  
SPI™ MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 18-6:  
SPI™ MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39612B-page 180  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
18.3.8  
SLEEP OPERATION  
18.3.10 BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from Sleep. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
Table 18-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 18-1: SPI™ BUS MODES  
In Slave mode, the SPI Transmit/Receive Shift register  
operates asynchronously to the device. This allows the  
device to be placed in Sleep mode and data to be  
shifted into the SPI Transmit/Receive Shift register.  
When all 8 bits have been received, the MSSP interrupt  
flag bit will be set and if enabled, will wake the device  
from Sleep.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
18.3.9  
EFFECTS OF A RESET  
There is also a SMP bit which controls when the data is  
sampled.  
A Reset disables the MSSP module and terminates the  
current transfer.  
TABLE 18-2: REGISTERS ASSOCIATED WITH SPI™ OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
TX1IF  
TX1IE  
TX1IP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
TRISC  
PORTC Data Direction Register  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3  
MSSP Receive Buffer/Transmit Register  
TRISF  
TRISF2  
TRISF1 TRISF0 1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
SSPBUF  
SSPCON1  
SSPSTAT  
Legend:  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1 SSPM0 0000 0000 0000 0000  
UA  
BF  
0000 0000 0000 0000  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI™ mode.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2005 Microchip Technology Inc.  
DS39612B-page 181  
PIC18F6525/6621/8525/8621  
2
18.4.1  
REGISTERS  
18.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call  
support) and provides interrupts on Start and Stop bits  
in hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPBUF)  
Two pins are used for data transfer:  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
• Serial clock (SCL) – RC3/SCK/SCL  
• Serial data (SDA) – RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
The user must configure these pins as inputs or outputs  
through the TRISC<4:3> bits.  
SSPCON1, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON1 and SSPCON2 registers are readable and  
writable. The lower 6 bits of the SSPSTAT are read-  
only. The upper two bits of the SSPSTAT are read/  
write.  
FIGURE 18-7:  
MSSP BLOCK DIAGRAM  
(I2C™ MODE)  
Internal  
Data Bus  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
Read  
Write  
SSPADD register holds the slave device address  
when the MSSP is configured in I2C Slave mode.  
When the MSSP is configured in Master mode, the  
lower seven bits of SSPADD act as the Baud Rate  
Generator reload value.  
SSPBUF reg  
RC3/SCK/SCL  
Shift  
Clock  
SSPSR reg  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD reg  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit Detect  
DS39612B-page 182  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 18-3: SSPSTAT: MSSP STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for High Speed mode (400 kHz)  
bit 6  
bit 5  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
S: Start bit  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
R/W: Read/Write bit Information (I2C mode only)  
In Slave mode:  
1= Read  
0= Write  
Note:  
This bit holds the R/W bit information following the last address match. This bit is only  
valid from the address match to the next Start bit, Stop bit or not ACK bit.  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
Note:  
ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is  
in Idle mode.  
bit 1  
bit 0  
UA: Update Address bit (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= SSPBUF is full  
0= SSPBUF is empty  
In Receive mode:  
1= SSPBUF is full (does not include the ACK and Stop bits)  
0= SSPBUF is empty (does not include the ACK and Stop bits)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 183  
PIC18F6525/6621/8525/8621  
REGISTER 18-4: SSPCON1: MSSP CONTROL REGISTER 1 (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for  
a transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must be  
cleared in software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Master Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, the SDA and SCL pins must be properly configured as input or  
output.  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0 SSPM3:SSPM0: Master Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
SPI mode only.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 184  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 18-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)  
1= Not Acknowledge  
0= Acknowledge  
Note:  
Value that will be transmitted when the user initiates an Acknowledge sequence at  
the end of a receive.  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (Master mode only)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit (Master mode only)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
bit 1  
bit 0  
RSEN: Repeated Start Condition Enable bit (Master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enable/Stretch Enable bit  
In Master mode:  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode,  
this bit may not be set (no spooling) and the SSPBUF may not be written (or writes  
to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 185  
PIC18F6525/6621/8525/8621  
18.4.2  
OPERATION  
18.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPCON<5>).  
The SSPCON1 register allows control of the I2C oper-  
ation. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Master mode, clock = (FOSC/4) x (SSPADD + 1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
• I2C Slave mode (7-bit address), with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address), with Start and  
Stop bit interrupts enabled  
• I2C firmware controlled master operation, slave is  
Idle  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain,  
provided these pins are programmed to inputs by  
setting the appropriate TRISC bits. To ensure proper  
operation of the module, pull-up resistors must be  
provided externally to the SCL and SDA pins.  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The buffer full bit BF is set.  
3. An ACK pulse is generated.  
4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is  
set (interrupt is generated, if enabled) on the  
falling edge of the ninth SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write so  
the slave device will receive the second address byte.  
For a 10-bit address, the first byte would equal ‘11110  
A9 A8 0’, where ‘A9’ and ‘A8’ are the two MSbs of the  
address. The sequence of events for 10-bit address is as  
follows, with steps 7 through 9 for the slave-transmitter:  
18.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
Start and Stop bits  
1. Receive first (high) byte of address (bits SSPIF,  
BF and UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
load the SSPBUF register with the received value  
currently in the SSPSR register.  
4. Receive second (low) byte of address (bits  
SSPIF, BF and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
• The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
7. Receive Repeated Start condition.  
• The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared through software.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter 100 and  
parameter 101.  
DS39612B-page 186  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
18.4.3.2  
Reception  
18.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low regardless of SEN (see Section 18.4.4 “Clock  
Stretching” for more detail). By stretching the clock,  
the master will be unable to assert another clock pulse  
until the slave is done preparing the transmit data. The  
transmit data must be loaded into the SSPBUF register  
which also loads the SSPSR register. Then pin RC3/  
SCK/SCL should be enabled by setting bit, CKP  
(SSPCON1<4>). The eight data bits are shifted out on  
the falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 18-9).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON1<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit, SSPIF (PIR1<3>), must be cleared in  
software. The SSPSTAT register is used to determine  
the status of the byte.  
If SEN is enabled (SSPCON1<0> = 1), RC3/SCK/SCL  
will be held low (clock stretch) following each data  
transfer. The clock must be released by setting bit CKP  
(SSPCON<4>). See Section 18.4.4 “Clock Stretching”  
for more detail.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is  
complete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT regis-  
ter) and the slave monitors for another occurrence of  
the Start bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin RC3/SCK/SCL must be enabled by setting  
bit CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
2005 Microchip Technology Inc.  
DS39612B-page 187  
PIC18F6525/6621/8525/8621  
2
FIGURE 18-8:  
I C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
DS39612B-page 188  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
2
FIGURE 18-9:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
2005 Microchip Technology Inc.  
DS39612B-page 189  
PIC18F6525/6621/8525/8621  
FIGURE 18-10:  
I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
DS39612B-page 190  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
2
FIGURE 18-11:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
2005 Microchip Technology Inc.  
DS39612B-page 191  
PIC18F6525/6621/8525/8621  
18.4.4  
CLOCK STRETCHING  
18.4.4.3  
Clock Stretching for 7-bit Slave  
Transmit Mode  
Both 7-bit and 10-bit Slave modes implement  
automatic clock stretching during a transmit sequence.  
7-bit Slave Transmit mode implements clock stretching  
by clearing the CKP bit after the falling edge of the  
ninth clock if the BF bit is clear. This occurs regardless  
of the state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause  
the SCL pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 18-9).  
18.4.4.1  
Clock Stretching for 7-bit Slave  
Receive Mode (SEN = 1)  
In 7-bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence if the BF  
bit is set, the CKP bit in the SSPCON1 register is  
automatically cleared, forcing the SCL output to be  
held low. The CKP being cleared to ‘0’ will assert the  
SCL line low. The CKP bit must be set in the user’s  
ISR before reception is allowed to continue. By holding  
the SCL line low, the user has time to service the ISR  
and read the contents of the SSPBUF before the  
master device can initiate another receive sequence.  
This will prevent buffer overruns from occurring (see  
Figure 18-13).  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
18.4.4.4  
Clock Stretching for 10-bit Slave  
Transmit Mode  
In 10-bit Slave Transmit mode, clock stretching is  
controlled during the first two address sequences by  
the state of the UA bit, just as it is in 10-bit Slave  
Receive mode. The first two addresses are followed  
by a third address sequence which contains the high-  
order bits of the 10-bit address and the R/W bit set to  
1’. After the third address sequence is performed, the  
UA bit is not set, the module is now configured in  
Transmit mode and clock stretching is controlled by  
the BF flag as in 7-bit Slave Transmit mode (see  
Figure 18-11).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
18.4.4.2  
Clock Stretching for 10-bit Slave  
Receive Mode (SEN = 1)  
In 10-bit Slave Receive mode during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address and following the receive of the second  
byte of the 10-bit address with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a  
data sequence, not an address sequence.  
DS39612B-page 192  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
already asserted the SCL line. The SCL output will  
remain low until the CKP bit is set and all other  
devices on the I2C bus have deasserted SCL. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCL (see  
Figure 18-12).  
18.4.4.5  
Clock Synchronization and  
the CKP bit  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’. However, clearing the CKP bit will not assert the  
SCL output low until the SCL output is already  
sampled low. Therefore, the CKP bit will not assert the  
SCL line until an external I2C master device has  
FIGURE 18-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX – 1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
2005 Microchip Technology Inc.  
DS39612B-page 193  
PIC18F6525/6621/8525/8621  
2
FIGURE 18-13:  
I C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
DS39612B-page 194  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 18-14:  
I2C™ SLAVE MODE TIMING SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
2005 Microchip Technology Inc.  
DS39612B-page 195  
PIC18F6525/6621/8525/8621  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit) and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
18.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address which  
can address all devices. When this address is used, all  
devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-bit Address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 18-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the  
General Call Enable bit (GCEN) is enabled  
(SSPCON2<7> set). Following a Start bit detect, 8 bits  
are shifted into the SSPSR and the address is  
compared against the SSPADD. It is also compared to  
the general call address and fixed in hardware.  
FIGURE 18-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7-BIT OR 10-BIT ADDRESS MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
General Call Address  
ACK  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
DS39612B-page 196  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
18.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set or the  
bus is Idle, with both the S and P bits clear.  
The following events will cause MSSP Interrupt Flag  
bit, SSPIF, to be set (MSSP interrupt, if enabled):  
In Firmware Controlled Master mode, user code con-  
ducts all I2C bus operations based on Start and Stop bit  
conditions.  
• Start condition  
• Stop condition  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
Once Master mode is enabled, the user has six  
options.  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 18-16:  
MSSP BLOCK DIAGRAM (I C™ MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset S, P, WCOL (SSPSTAT),  
Set SSPIF, BCLIF,  
Reset ACKSTAT, PEN (SSPCON2)  
2005 Microchip Technology Inc.  
DS39612B-page 197  
PIC18F6525/6621/8525/8621  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
18.4.6.1  
1. The user generates a Start condition by setting  
the Start Enable bit, SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out of the SDA pin until all 8  
bits are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an Acknowledge bit is transmitted.  
Start and Stop conditions indicate the beginning and  
end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out of the SDA pin until all 8 bits  
are transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode oper-  
ation is used to set the SCL clock frequency for either  
100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 18.4.7 “Baud Rate Generator” for more  
detail.  
11. The user generates a Stop condition by setting  
the Stop Enable bit, PEN (SSPCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
DS39612B-page 198  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
18.4.7  
BAUD RATE GENERATOR  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 18-17). When a write occurs  
to SSPBUF, the Baud Rate Generator will automatically  
begin counting. The BRG counts down to ‘0’ and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
Table 18-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
FIGURE 18-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 18-3: I2C™ CLOCK RATE w/BRG  
FSCL  
FOSC  
FCY  
FCY*2  
BRG Value  
(2 Rollovers of BRG)  
40 MHz  
40 MHz  
40 MHz  
16 MHz  
16 MHz  
16 MHz  
4 MHz  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
18h  
1Fh  
63h  
09h  
0Ch  
27h  
02h  
09h  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
4 MHz  
100 kHz  
1 MHz(1)  
4 MHz  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
2005 Microchip Technology Inc.  
DS39612B-page 199  
PIC18F6525/6621/8525/8621  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 18-18).  
18.4.7.1  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
FIGURE 18-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX – 1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS39612B-page 200  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
18.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
Note:  
If at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the Start condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag, BCLIF, is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
To initiate a Start condition, the user sets the Start  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the Baud Rate  
Generator is reloaded with the contents of  
SSPADD<6:0> and starts its count. If SCL and SDA are  
both sampled high when the Baud Rate Generator  
times out (TBRG), the SDA pin is driven low. The action  
of the SDA being driven low while SCL is high is the  
Start condition and causes the S bit (SSPSTAT<3>) to  
be set. Following this, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
resumes its count. When the Baud Rate Generator  
times out (TBRG), the SEN bit (SSPCON2<0>) will be  
automatically cleared by hardware, the Baud Rate  
Generator is suspended, leaving the SDA line held low  
and the Start condition is complete.  
18.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
FIGURE 18-19:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st bit  
2nd bit  
SDA  
TBRG  
SCL  
TBRG  
S
2005 Microchip Technology Inc.  
DS39612B-page 201  
PIC18F6525/6621/8525/8621  
18.4.9  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is sam-  
pled low, the Baud Rate Generator is loaded with the  
contents of SSPADD<5:0> and begins counting. The  
SDA pin is released (brought high) for one Baud Rate  
Generator count (TBRG). When the Baud Rate Genera-  
tor times out, if SDA is sampled high, the SCL pin will  
be deasserted (brought high). When SCL is sampled  
high, the Baud Rate Generator is reloaded with the  
contents of SSPADD<6:0> and begins counting. SDA  
and SCL must be sampled high for one TBRG. This  
action is then followed by assertion of the SDA pin  
(SDA = 0) for one TBRG while SCL is high. Following  
this, the RSEN bit (SSPCON2<1>) will be automatically  
cleared and the Baud Rate Generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
Start condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
not be set until the Baud Rate Generator has timed out.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
Immediately following the SSPIF bit getting set, the user  
may write the SSPBUF with the 7-bit address in 7-bit  
mode, or the default first address in 10-bit mode. After  
the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
18.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
FIGURE 18-20:  
REPEATED START CONDITION WAVEFORM  
S bit set by hardware  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SCL (no change).  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
RSEN bit set by hardware on the falling  
edge of ninth clock, end of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
DS39612B-page 202  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
18.4.10 I2C MASTER MODE  
TRANSMISSION  
18.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the buffer full flag bit, BF and allow the Baud Rate  
Generator to begin counting and start the next  
transmission. Each bit of address/data will be shifted  
out onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification  
parameter 106). SCL is held low for one Baud Rate  
Generator rollover count (TBRG). Data should be valid  
before SCL is released high (see data setup time  
specification parameter 107). When the SCL pin is  
released high, it is held that way for TBRG. The data on  
the SDA pin must remain stable for that duration and  
some hold time after the next falling edge of SCL. After  
the eighth bit is shifted out (the falling edge of the eighth  
clock), the BF flag is cleared and the master releases  
SDA. This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time if an  
address match occurred, or if data was received  
properly. The status of ACK is written into the ACKDT  
bit on the falling edge of the ninth clock. If the master  
receives an Acknowledge, the Acknowledge status bit,  
ACKSTAT, is cleared. If not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 18-21).  
18.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
receive enable bit, RCEN (SSPCON2<3>).  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set or the RCEN bit  
will be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCL pin changes (high-to-low/  
low-to-high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag bit is  
set, the SSPIF flag bit is set and the Baud Rate  
Generator is suspended from counting, holding SCL  
low. The MSSP is now in Idle state awaiting the next  
command. When the buffer is read by the CPU, the BF  
flag bit is automatically cleared. The user can then  
send an Acknowledge bit at the end of reception by  
setting the Acknowledge sequence enable bit, ACKEN  
(SSPCON2<4>).  
18.4.11.1 BF Status Flag  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the  
falling edge of the eighth clock, the master will deassert  
the SDA pin, allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared and the Baud Rate Generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
18.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
18.4.11.3 WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
18.4.10.1 BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
18.4.10.2 WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
2005 Microchip Technology Inc.  
DS39612B-page 203  
PIC18F6525/6621/8525/8621  
2
FIGURE 18-21:  
I C™ MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS39612B-page 204  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
2
FIGURE 18-22:  
I C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
2005 Microchip Technology Inc.  
DS39612B-page 205  
PIC18F6525/6621/8525/8621  
18.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
18.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop sequence enable  
bit, PEN (SSPCON2<2>). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is  
sampled low, the Baud Rate Generator is reloaded and  
counts down to ‘0’. When the Baud Rate Generator  
times out, the SCL pin will be brought high and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be deasserted. When the SDA pin is sam-  
pled high while SCL is high, the P bit (SSPSTAT<4>) is  
set. A TBRG later, the PEN bit is cleared and the SSPIF  
bit is set (Figure 18-24).  
An Acknowledge sequence is enabled by setting the  
Acknowledge  
sequence  
enable  
bit,  
ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 18-23).  
18.4.13.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
18.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 18-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
SSPIF set at the end  
of receive  
software  
Cleared in  
software  
SSPIF set at the end  
of Acknowledge sequence  
Note: TBRG = one baud rate generator period.  
FIGURE 18-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2,  
set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
ACK  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one baud rate generator period.  
DS39612B-page 206  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
18.4.14 SLEEP OPERATION  
18.4.17 MULTI-MASTER COMMUNICATION,  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
BUS COLLISION AND BUS  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA, by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF and reset the  
I2C port to its Idle state (Figure 18-25).  
18.4.15 EFFECT OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
18.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT<4>) is set, or the  
bus is Idle with both the S and P bits clear. When the  
bus is busy, enabling the MSSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDA line must be  
monitored for arbitration to see if the signal level is the  
expected output level. This check is performed in  
hardware with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are deasserted and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine and if  
the I2C bus is free, the user can resume communication  
by asserting a Start condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
FIGURE 18-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
Data changes  
while SCL = 0  
SDA line pulled low  
by another source  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
2005 Microchip Technology Inc.  
DS39612B-page 207  
PIC18F6525/6621/8525/8621  
If the SDA pin is sampled low during this count, the  
18.4.17.1 Bus Collision During a Start  
Condition  
BRG is reset and the SDA line is asserted early  
(Figure 18-28). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to ‘0’ and during this time, if the SCL pin  
is sampled as ‘0’, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 18-26).  
b) SCL is sampled low before SDA is asserted low  
(Figure 18-27).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus  
collision because the two masters must be  
allowed to arbitrate the first address follow-  
ing the Start condition. If the address is the  
same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLIF flag is set and  
• the MSSP module is reset to its Idle state  
(Figure 18-26).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to ‘0’. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 18-26:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS39612B-page 208  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 18-27:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 18-28:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
time-out  
SEN  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1,  
set SSPIF  
2005 Microchip Technology Inc.  
DS39612B-page 209  
PIC18F6525/6621/8525/8621  
If SDA is low, a bus collision has occurred (i.e., another  
18.4.17.2 Bus Collision During a Repeated  
Start Condition  
master is attempting to transmit a data ‘0’, Figure 18-29).  
If SDA is sampled high, the BRG is reloaded and begins  
counting. If SDA goes from high-to-low before the BRG  
times out, no bus collision occurs because no two  
masters can assert SDA at exactly the same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
If SCL goes from high-to-low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition,  
see Figure 18-30.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to ‘0’. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is  
complete.  
FIGURE 18-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
0’  
S
0’  
SSPIF  
FIGURE 18-30:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS39612B-page 210  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to ‘0’. After the BRG times out, SDA  
is sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 18-31). If the SCL pin is  
sampled low before SDA is allowed to float high, a bus  
collision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 18-32).  
18.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 18-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 18-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
2005 Microchip Technology Inc.  
DS39612B-page 211  
PIC18F6525/6621/8525/8621  
TABLE 18-4: REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
TMR2IF TMR1IF 0000 0000 0000 0000  
TMR2IE TMR1IE 0000 0000 0000 0000  
TMR2IP TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
TRISC  
TRISF  
PORTC Data Direction Register  
TRISF7 TRISF6 TRISF5  
TRISF4  
TRISF3  
TRISF2  
TRISF1  
TRISF0 1111 1111 1111 1111  
SSPBUF MSSP Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
2
2
SSPADD MSSP Address Register in I C Slave mode. MSSP Baud Rate Reload Register in I C Master mode. 0000 0000 0000 0000  
SSPCON1  
SSPSTAT  
Legend:  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0 0000 0000 0000 0000  
BF  
0000 0000 0000 0000  
2
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in I C™ mode.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 212  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The pins of USART1 and USART2 are multiplexed with  
the functions of PORTC (RC6/TX1/CK1 and RC7/RX1/  
DT1) and PORTG (RG1/TX2/CK2 and RG2/RX2/DT2),  
respectively. In order to configure these pins as an  
EUSART:  
19.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• For USART1:  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is one of the  
two serial I/O modules. (USART is also known as a  
Serial Communications Interface or SCI.) The EUSART  
can be configured as a full-duplex asynchronous system  
that can communicate with peripheral devices, such as  
CRT terminals and personal computers. It can also be  
configured as a half-duplex synchronous system that  
can communicate with peripheral devices, such as A/D  
or D/A integrated circuits, serial EEPROMs, etc.  
- bit SPEN (RCSTA1<7>) must be set (= 1)  
- bit TRISC<7> must be set (= 1)  
- bit TRISC<6> must be cleared (= 0) for  
Asynchronous and Synchronous Master  
modes  
- bit TRISC<6> must be set (= 1) for  
Synchronous Slave mode  
• For USART2:  
- bit SPEN (RCSTA2<7>) must be set (= 1)  
- bit TRISG<2> must be set (= 1)  
The Enhanced USART module implements additional  
features, including automatic baud rate detection and  
calibration, automatic wake-up on Sync Break recep-  
tion and 12-bit Break character transmit. These make it  
ideally suited for use in Local Interconnect Network bus  
(LIN bus) systems.  
- bit TRISG<1> must be cleared (= 0) for  
Asynchronous and Synchronous Master  
modes  
- bit TRISC<6> must be set (= 1) for  
Synchronous Slave mode  
The EUSART can be configured in the following  
modes:  
Note:  
The EUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
• Asynchronous (full duplex) with:  
- Auto-Wake-up on character reception  
- Auto-Baud calibration  
The operation of each Enhanced USART module is  
controlled through three registers:  
- 12-bit Break character transmission  
• Transmit Status and Control (TXSTAx)  
• Receive Status and Control (RCSTAx)  
• Baud Rate Control (BAUDCONx)  
• Synchronous – Master (half duplex) with  
selectable clock polarity  
• Synchronous – Slave (half duplex) with selectable  
clock polarity  
These are detailed on the following pages in  
Register 19-1, Register 19-2 and Register 19-3,  
respectively.  
Note:  
Throughout this section, references to  
register and bit names that may be associ-  
ated with a specific EUSART module are  
referred to generically by the use of ‘x’ in  
place of the specific module number.  
Thus, “RCSTAx” might refer to the  
Receive Status register for either USART1  
or USART2  
2005 Microchip Technology Inc.  
DS39612B-page 213  
PIC18F6525/6621/8525/8621  
REGISTER 19-1: TXSTAx: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
bit 3  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send sync break on next transmission (cleared by hardware upon completion)  
0= Sync break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 214  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 19-2: RCSTAx: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RXx/DTx and TXx/CKx pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 9-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREGx register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 215  
PIC18F6525/6621/8525/8621  
REGISTER 19-3: BAUDCONx: BAUD RATE CONTROL REGISTER  
U-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
RCIDL: Receive Operation Idle Status bit  
1= Receive operation is Idle  
0= Receive operation is active  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode.  
Synchronous mode:  
1= Idle state for clock (CKx) is a high level  
0= Idle state for clock (CKx) is a low level  
bit 3  
BRG16: 16-bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGHx and SPBRGx  
0= 8-bit Baud Rate Generator – SPBRGx only (Compatible mode), SPBRGHx value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= EUSART will continue to sample the RXx pin – interrupt generated on falling edge; bit  
cleared in hardware on following rising edge  
0= RXx pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Rate Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character – requires reception of a Sync field  
(55h); cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 216  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
this, the error in baud rate can be determined. An  
19.1 EUSART Baud Rate Generator  
example calculation is shown in Example 19-1. Typical  
baud rates and error values for the various Asynchro-  
nous modes are shown in Table 19-2. It may be  
advantageous to use the high baud rate (BRGH = 1) or  
the 16-bit BRG to reduce the baud rate error, or  
achieve a slow baud rate for a fast oscillator frequency.  
(BRG)  
The BRG is a dedicated 8-bit or 16-bit generator that  
supports both the Asynchronous and Synchronous  
modes of the EUSART. By default, the BRG operates  
in 8-bit mode; setting the BRG16 bit (BAUDCONx<3>)  
selects 16-bit mode.  
Writing a new value to the SPBRGHx:SPBRGx regis-  
ters causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
The SPBRGHx:SPBRGx register pair controls the  
period of a free running timer. In Asynchronous mode,  
bits BRGH (TXSTAx<2>) and BRG16 also control the  
baud rate. In Synchronous mode, bit BRGH is ignored.  
Table 19-1 shows the formula for computation of the  
baud rate for different EUSART modes which only  
apply in Master mode (internally generated clock).  
19.1.1  
SAMPLING  
The data on the RXx pin (either RC7/RX1/DT1 or RG2/  
RX2/DT2) is sampled three times by a majority detect  
circuit to determine if a high or a low level is present at  
the RXx pin.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGHx:SPBRGx registers can  
be calculated using the formulas in Table 19-1. From  
TABLE 19-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/EUSART Mode  
Baud Rate Formula  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = value of SPBRGHx:SPBRGx register pair  
EXAMPLE 19-1: CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate = FOSC/(64 ([SPBRGHx:SPBRGx] + 1))  
Solving for SPBRGHx:SPBRGx:  
X
=
=
=
((FOSC/Desired Baud Rate)/64) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
Calculated Baud Rate = 16000000/(64 (25 + 1))  
=
=
=
9615  
Error  
(Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
(9615 – 9600)/9600 = 0.16%  
TABLE 19-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTAx  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
0000 0010  
0000 000x  
-1-0 0-00  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
-1-0 0-00  
0000 0000  
0000 0000  
RCSTAx  
BAUDCONx  
RCIDL  
ABDEN  
SPBRGHx Enhanced USARTx Baud Rate Generator Register High Byte  
SPBRGx  
Enhanced USARTx Baud Rate Generator Register Low Byte  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
Legend:  
2005 Microchip Technology Inc.  
DS39612B-page 217  
PIC18F6525/6621/8525/8621  
TABLE 19-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
300  
1201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2403  
9615  
19230  
55555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
DS39612B-page 218  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 19-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
300  
1201  
2403  
9615  
19230  
55555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
300  
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
%
%
Error  
value  
(decimal)  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
300  
1200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2400  
9.6  
9.606  
9.596  
9.615  
9615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19230  
57142  
117647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
300  
1201  
2403  
9615  
19230  
55555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
300  
1201  
2403  
9615  
19230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
2005 Microchip Technology Inc.  
DS39612B-page 219  
PIC18F6525/6621/8525/8621  
as a 16-bit counter. This allows the user to verify that  
no carry occurred for 8-bit modes by checking for 00h  
in the SPBRGHx register. Refer to Table 19-4 for  
counter clock rates to the BRG.  
19.1.2  
AUTO-BAUD RATE DETECT  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. The RCxIF interrupt is set  
once the fifth rising edge on RXx is detected. The value  
in the RCREGx needs to be read to clear the RC1IF  
interrupt. RCREGx content should be discarded.  
The automatic baud rate measurement sequence  
(Figure 19-1) begins whenever a Start bit is received  
and the ABDEN bit is set. The calculation is  
self-averaging.  
Note 1: If the WUE bit is set with the ABDEN bit,  
Auto-Baud Rate Detection will occur on  
the byte following the Break character.  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RXx signal, the RXx signal is timing the BRG.  
In ABD mode, the internal Baud Rate Generator is  
used as a counter to time the bit period of the incoming  
serial byte stream.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some  
combinations  
of  
oscillator  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The Auto-Baud Rate  
Detect must receive a byte with the value 55h  
(ASCII “U”, which is also the LIN bus Sync character),  
in order to calculate the proper bit rate. The measure-  
ment is taken over both a low and a high bit time in  
order to minimize any effects caused by asymmetry of  
the incoming signal. After a Start bit, the SPBRGx  
begins counting up using the preselected clock source  
on the first rising edge of RXx. After eight bits on the  
RXx pin or the fifth rising edge, an accumulated value  
totalling the proper BRG period is left in the  
SPBRGHx:SPBRGx register pair. Once the 5th edge is  
seen (this should correspond to the Stop bit), the  
ABDEN bit is automatically cleared.  
frequency and EUSART baud rates are  
not possible due to bit error rates. Overall  
system timing and communication baud  
rates must be taken into consideration  
when using the Auto-Baud Rate  
Detection feature.  
TABLE 19-4: BRG COUNTER CLOCK  
RATES  
BRG16 BRGH  
BRG Counter Clock  
0
0
1
0
1
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
0
1
While calibrating the baud rate period, the BRG regis-  
ters are clocked at 1/8th the preconfigured clock rate.  
Note that the BRG clock will be configured by the  
BRG16 and BRGH bits. Independent of the BRG16 bit  
setting, both the SPBRGx and SPBRGHx will be used  
1
Note:  
During the ABD sequence, SPBRGx and  
SPBRGHx are both used as a 16-bit  
counter, independent of BRG16 setting.  
FIGURE 19-1:  
AUTOMATIC BAUD RATE CALCULATION  
BRG Value  
XXXXh  
0000h  
001Ch  
Edge #2  
Bit 3  
Edge #3  
Bit 5  
Bit 4  
Edge #4  
Bit 7  
Edge #5  
Stop Bit  
Edge #1  
RXx pin  
Bit 1  
Start  
Bit 2  
Bit 6  
Bit 0  
BRG Clock  
Auto-Cleared  
Set by User  
ABDEN bit  
RCxIF bit  
(Interrupt)  
Read  
RCREGx  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRGx  
SPBRGHx  
Note: The ABD sequence requires the EUSART module to be configured in Asynchronous mode and WUE = 0.  
DS39612B-page 220  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Once the TXREGx register transfers the data to the TSR  
19.2 EUSART Asynchronous Mode  
register (occurs in one TCY), the TXREGx register is  
empty and flag bit TXxIF is set. This interrupt can be  
enabled/disabled by setting/clearing enable bit TXxIE.  
Flag bit TXxIF will be set regardless of the state of  
enable bit TXxIE and cannot be cleared in software. Flag  
bit TXxIF is not cleared immediately upon loading the  
Transmit Buffer register, TXREGx. TXxIF becomes valid  
in the second instruction cycle following the load instruc-  
tion. Polling TXxIF immediately following a load of  
TXREGx will return invalid results.  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTAx<4>). In this mode, the  
EUSART uses standard non-return-to-zero (NRZ) for-  
mat (one Start bit, eight or nine data bits and one Stop  
bit). The most common data format is 8 bits. An on-chip  
dedicated 8-bit/16-bit Baud Rate Generator can be  
used to derive standard baud rate frequencies from the  
oscillator.  
The EUSART transmits and receives the LSb first. The  
EUSART module’s transmitter and receiver are  
functionally independent but use the same data format  
and baud rate. The Baud Rate Generator produces a  
clock, either x16 or x64 of the bit shift rate depending  
on the BRGH and BRG16 bits (TXSTAx<2> and  
BAUDCONx<3>). Parity is not supported by the  
hardware but can be implemented in software and  
stored as the 9th data bit.  
While flag bit TXxIF indicates the status of the TXREGx  
register, another bit, TRMT (TXSTAx<1>), shows the  
status of the TSR register. Status bit TRMT is a read-only  
bit which is set when the TSR register is empty. No inter-  
rupt logic is tied to this bit so the user has to poll this bit  
in order to determine if the TSR register is empty.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
When operating in Asynchronous mode, the EUSART  
module consists of the following important elements:  
2: Flag bit TXxIF is set when enable bit  
TXEN is set.  
• Baud Rate Generator  
To set up an Asynchronous Transmission:  
• Sampling Circuit  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Auto-Wake-up on Sync Break Character  
• 12-bit Break Character Transmit  
• Auto-Baud Rate Detection  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit TXxIE.  
19.2.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
The EUSART transmitter block diagram is shown in  
Figure 19-2. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREGx. The TXREGx register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREGx register (if available).  
5. Enable the transmission by setting bit TXEN  
which will also set bit TXxIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREGx register (starts  
transmission).  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
FIGURE 19-2:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXxIF  
TXREGx Register  
8
TXxIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR Register  
TXx pin  
Interrupt  
Baud Rate CLK  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGHx SPBRGx  
Baud Rate Generator  
TX9  
TX9D  
2005 Microchip Technology Inc.  
DS39612B-page 221  
PIC18F6525/6621/8525/8621  
FIGURE 19-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREGx  
Word 1  
BRG Output  
(Shift Clock)  
TXx  
(pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXxIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 19-4:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREGx  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TXx  
(pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TXxIF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 19-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
PIE1  
TX1IE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TX1IP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
IPR1  
PIR3  
PIE3  
IPR3  
RCSTAx  
TXREGx  
TXSTAx  
BAUDCONx  
SPEN  
RX9  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
Enhanced USARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
SCKP BRG16  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN -1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
SPBRGHx Enhanced USARTx Baud Rate Generator Register High Byte  
SPBRGx  
Enhanced USARTx Baud Rate Generator Register Low Byte  
0000 0000 0000 0000  
Legend:  
x= unknown, – = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 222  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
19.2.2  
EUSART ASYNCHRONOUS  
RECEIVER  
19.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 19-5.  
The data is received on the RXx pin and drives the data  
recovery block. The data recovery block is actually a  
high speed shifter operating at x16 times the baud rate,  
whereas the main receive serial shifter operates at the  
bit rate or at FOSC. This mode would typically be used  
in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCxIP  
bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set enable bit RCxIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
7. The RCxIF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RCxIE and GIE bits are set.  
6. Flag bit RCxIF will be set when reception is  
complete and an interrupt will be generated if  
enable bit RCxIE was set.  
8. Read the RCSTAx register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREGx to determine if the device is  
being addressed.  
8. Read the 8-bit received data by reading the  
RCREGx register.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 19-5:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
÷ 64  
RSR Register  
• • •  
MSb  
Stop  
LSb  
Start  
BRG16  
SPBRGHx SPBRGx  
or  
÷ 16  
(8)  
7
1
0
or  
Baud Rate Generator  
÷ 4  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RXx  
RX9D  
RCREGx Register  
FIFO  
SPEN  
8
Interrupt  
RCxIF  
RCxIE  
Data Bus  
2005 Microchip Technology Inc.  
DS39612B-page 223  
PIC18F6525/6621/8525/8621  
FIGURE 19-6:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RXx (pin)  
bit 0 bit 1  
bit 7/8  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift Reg  
Rcv Buffer Reg  
Word 2  
RCREGx  
Word 1  
RCREGx  
Read Rcv  
Buffer Reg  
RCREGx  
RCxIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RXx input. The RCREGx (Receive Buffer register) is read after the  
third word causing the OERR (overrun) bit to be set.  
TABLE 19-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
PIR3  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
PIE3  
IPR3  
RCSTAx  
RCREGx  
TXSTAx  
BAUDCONx  
SPEN  
RX9  
CREN ADDEN FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
Enhanced USARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP BRG16  
ABDEN -1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
SPBRGHx Enhanced USARTx Baud Rate Generator Register High Byte  
SPBRGx  
Enhanced USARTx Baud Rate Generator Register Low Byte  
0000 0000 0000 0000  
Legend:  
x= unknown, – = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 224  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
character and cause data or framing errors. To work  
properly, therefore, the initial character in the trans-  
mission must be all ‘0’s. This can be 00h (8 bytes) for  
standard RS-232 devices, or 000h (12 bits) for LIN bus.  
19.2.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper byte reception cannot be  
performed. The Auto-Wake-up feature allows the con-  
troller to wake-up due to activity on the RXx/DTx line,  
while the EUSART is operating in Asynchronous mode.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., XT or HS mode). The Sync  
Break (or Wake-up Signal) character must be of suffi-  
cient length and be followed by a sufficient interval to  
allow enough time for the selected oscillator to start  
and provide proper initialization of the EUSART.  
The Auto-Wake-up feature is enabled by setting the  
WUE bit (BAUDCONx<1>). Once set, the typical receive  
sequence on RXx/DTx is disabled and the EUSART  
remains in an Idle state, monitoring for a wake-up event  
independent of the CPU mode. A wake-up event  
consists of a high-to-low transition on the RXx/DTx line.  
(This coincides with the start of a Sync Break or a  
Wake-up Signal character for the LIN protocol.)  
19.2.4.2  
Special Considerations Using  
the WUE Bit  
The timing of WUE and RCxIF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
EUSART in an Idle mode. The wake-up event causes  
a receive interrupt by setting the RCxIF bit. The WUE  
bit is cleared after this when a rising edge is seen on  
RXx/DTx. The interrupt condition is then cleared by  
reading the RCREGx register. Ordinarily, the data in  
RCREGx will be dummy data and should be discarded.  
Following a wake-up event, the module generates an  
RC1IF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 19-7) and asynchronously, if the device is in  
Sleep mode (Figure 19-8). The interrupt condition is  
cleared by reading the RCREGx register.  
The WUE bit is automatically cleared once a low-to-high  
transition is observed on the RXx line following the  
wake-up event. At this point, the EUSART module is in  
Idle mode and returns to normal operation. This signals  
to the user that the Sync Break event is over.  
The fact that the WUE bit has been cleared (or is still  
set) and the RCxIF flag is set should not be used as an  
indicator of the integrity of the data in RCREGx. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
19.2.4.1  
Special Considerations Using  
Auto-Wake-up  
Since auto-wake-up functions by sensing rising edge  
transitions on RXx/DTx, information with any state  
changes before the Stop bit may signal a false end-of-  
FIGURE 19-7:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
Bit set by user  
Auto-Cleared  
WUE bit  
RXx/DTx  
Line  
RCxIF  
Cleared due to user read of RCREGx  
Note: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 19-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
Bit set by user  
Auto-Cleared  
WUE bit  
RXx/DTx  
Line  
Note 1  
RCxIF  
Cleared due to user read of RCREGx  
Sleep Ends  
Sleep Command Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.  
This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
2005 Microchip Technology Inc.  
DS39612B-page 225  
PIC18F6525/6621/8525/8621  
1. Configure the EUSART for the desired mode.  
19.2.5  
BREAK CHARACTER SEQUENCE  
2. Set the TXEN and SENDB bits to set up the  
Break character.  
The Enhanced USART module has the capability of  
sending the special Break character sequences that  
are required by the LIN bus standard. The Break  
character transmit consists of a Start bit, followed by  
twelve ‘0’ bits and a Stop bit. The frame Break charac-  
ter is sent whenever the SENDB and TXEN bits  
(TXSTAx<3> and TXSTAx<5>) are set while the  
Transmit Shift register is loaded with data. Note that the  
value of data written to TXREGx will be ignored and all  
0’s will be transmitted.  
3. Load the TXREGx with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREGx to load the Sync  
character into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the preconfigured mode.  
When the TXREGx becomes empty, as indicated by  
the TXxIF, the next data byte can be written to  
TXREGx.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
19.2.6  
RECEIVING A BREAK CHARACTER  
The Enhanced USART module can receive a Break  
character in two ways.  
Note that the data value written to the TXREGx for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
The first method forces configuration of the baud rate  
at a frequency of 9/13 the typical speed. This allows for  
the Stop bit transition to be at the correct sampling  
location (13 bits for Break versus Start bit and 8 data  
bits for typical data).  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmis-  
sion. See Figure 19-9 for the timing of the Break  
character sequence.  
The second method uses the Auto-Wake-up feature  
described in Section 19.2.4 “Auto-Wake-up on Sync  
Break Character”. By enabling this feature, the  
EUSART will sample the next two transitions on RXx/  
DTx, cause an RCxIF interrupt and receive the next  
data byte followed by another interrupt.  
19.2.5.1  
Break and Sync Transmit Sequence  
The following sequence will send a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Rate Detect  
feature. For both methods, the user can set the ABD bit  
once the TXxIF interrupt is observed.  
FIGURE 19-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREGx  
Dummy Write  
BRG Output  
(Shift Clock)  
TXx (pin)  
Start Bit  
Bit 0  
Bit 1  
Break  
Bit 11  
Stop Bit  
TXxIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB sampled here  
Auto-Cleared  
SENDB  
(Transmit Shift  
Reg. Empty Flag)  
DS39612B-page 226  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Once the TXREGx register transfers the data to the  
TSR register (occurs in one TCYCLE), the TXREGx is  
empty and interrupt bit TXxIF is set. The interrupt can  
19.3 EUSART Synchronous  
Master Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTAx<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit  
SYNC (TXSTAx<4>). In addition, enable bit SPEN  
(RCSTAx<7>) is set in order to configure the TXx and  
RXx pins to CKx (clock) and DTx (data) lines,  
respectively.  
be enabled/disabled by setting/clearing enable bit  
TXxIE. Flag bit TXxIF will be set regardless of the state  
of enable bit TXxIE and cannot be cleared in software.  
It will reset only when new data is loaded into the  
TXREGx register.  
While flag bit TXxIF indicates the status of the TXREGx  
register, another bit, TRMT (TXSTAx<1>), shows the  
status of the TSR register. TRMT is a read-only bit which  
is set when the TSR is empty. No interrupt logic is tied to  
this bit so the user has to poll this bit in order to deter-  
mine if the TSR register is empty. The TSR is not  
mapped in data memory so it is not available to the user.  
The Master mode indicates that the processor trans-  
mits the master clock on the CKx line. Clock polarity is  
selected with the SCKP bit (BAUDCONx<4>); setting  
SCKP sets the Idle state on CKx as high, while clearing  
the bit sets the Idle state as low. This option is provided  
to support Microwire devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRG16 bit, as required, to achieve the desired  
baud rate.  
19.3.1  
EUSART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
The EUSART transmitter block diagram is shown in  
Figure 19-2. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREGx. The TXREGx register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREGx (if available).  
3. If interrupts are desired, set enable bit TXxIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREGx register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 19-10:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
RC6/TX1/CK1 pin  
(SCKP = 0)  
RC6/TX1/CK1 pin  
(SCKP = 1)  
Write to  
TXREG1 Reg  
Write Word 1  
Write Word 2  
TX1IF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode, SPBRGx = 0, continuous transmission of two 8-bit words.  
2005 Microchip Technology Inc.  
DS39612B-page 227  
PIC18F6525/6621/8525/8621  
FIGURE 19-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX1/DT1 pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RC6/TX1/CK1 pin  
Write to  
TXREG1 reg  
TX1IF bit  
TRMT bit  
TXEN bit  
TABLE 19-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
IPR1  
PIR3  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
PIE3  
IPR3  
RCSTAx  
TXREGx  
TXSTAx  
BAUDCONx  
SPEN  
RX9  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
-1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
0000 0000 0000 0000  
Enhanced USARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB  
SCKP BRG16  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN  
SPBRGHx Enhanced USARTx Baud Rate Generator Register High Byte  
SPBRGx  
Enhanced USARTx Baud Rate Generator Register Low Byte  
Legend:  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 228  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set enable bit RCxIE.  
5. If 9-bit reception is desired, set bit RX9.  
19.3.2  
EUSART SYNCHRONOUS MASTER  
RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTAx<5>), or the Continuous Receive  
Enable bit, CREN (RCSTAx<4>). Data is sampled on  
the RXx pin on the falling edge of the clock.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCxIF will be set when  
reception is complete and an interrupt will be  
generated if the enable bit RCxIE was set.  
If enable bit SREN is set, only a single word is received.  
If enable bit CREN is set, the reception is continuous  
until CREN is cleared. If both bits are set, then CREN  
takes precedence.  
8. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREGx register.  
To set up a Synchronous Master Reception:  
1. Initialize the SPBRGHx:SPBRGx registers for  
the appropriate baud rate. Set or clear the  
BRG16 bit, as required, to achieve the desired  
baud rate.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
FIGURE 19-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RC7/TX1/CK1 pin  
(SCKP = 0)  
RC7/TX1/CK1 pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RC1IF bit  
(Interrupt)  
Read  
RXREG1  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
2005 Microchip Technology Inc.  
DS39612B-page 229  
PIC18F6525/6621/8525/8621  
TABLE 19-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
IPR1  
PIR3  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
PIE3  
IPR3  
RCSTAx  
RCREGx  
TXSTAx  
BAUDCONx  
SPEN  
RX9  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
Enhanced USARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC SENDB  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP  
BRG16  
ABDEN -1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
SPBRGHx Enhanced USARTx Baud Rate Generator Register High Byte  
SPBRGx  
Enhanced USARTx Baud Rate Generator Register Low Byte  
0000 0000 0000 0000  
Legend:  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 230  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
To set up a Synchronous Slave Transmission:  
19.4 EUSART Synchronous Slave  
Mode  
1. Enable the synchronous slave serial port by  
setting bits SYNC and SPEN and clearing bit  
Synchronous Slave mode is entered by clearing bit  
CSRC (TXSTAx<7>). This mode differs from the Syn-  
chronous Master mode in that the shift clock is supplied  
externally at the CKx pin (instead of being supplied  
internally in Master mode). This allows the device to  
transfer or receive data while in any low-power mode.  
CSRC.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXxIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
19.4.1  
EUSART SYNCHRONOUS SLAVE  
TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical except in the case of the Sleep  
mode.  
7. Start transmission by loading data to the  
TXREGx register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREGx and then the  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in the TXREGx  
register.  
c) Flag bit TXxIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREGx register will transfer the second  
word to the TSR and flag bit TXxIF will now be  
set.  
e) If enable bit TXxIE is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 19-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
PIR3  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
PIE3  
IPR3  
RCSTAx  
TXREGx  
TXSTAx  
BAUDCONx  
SPEN  
RX9  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
Enhanced USARTx Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB BRGH  
BRG16  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN -1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
SPBRGHx Enhanced USARTx Baud Rate Generator Register High Byte  
SPBRGx  
Enhanced USARTx Baud Rate Generator Register Low Byte  
0000 0000 0000 0000  
Legend:  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2005 Microchip Technology Inc.  
DS39612B-page 231  
PIC18F6525/6621/8525/8621  
To set up a Synchronous Slave Reception:  
19.4.2  
EUSART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical except in the case of Sleep or any  
Idle mode and bit SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit RCxIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this Low-Power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREGx register; if the RC1IE enable bit is set, the  
interrupt generated will wake the chip from Low-Power  
mode. If the global interrupt is enabled, the program will  
branch to the interrupt vector.  
5. Flag bit RCxIF will be set when reception is com-  
plete. An interrupt will be generated if enable bit  
RCxIE was set.  
6. Read the RCSTAx register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREGx register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 19-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
SREN  
TX1IF  
TX1IE  
TX1IP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
PIR3  
TX2IF TMR4IF CCP5IF CCP4IF CCP3IF --00 0000 --00 0000  
TX2IE TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000  
TX2IP TMR4IP CCP5IP CCP4IP CCP3IP --11 1111 --11 1111  
PIE3  
IPR3  
RCSTAx  
RCREGx  
TXSTAx  
BAUDCONx  
SPEN  
RX9  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
Enhanced USARTx Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB BRGH  
BRG16  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN -1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
SPBRGHx Enhanced USARTx Baud Rate Generator Register High Byte  
SPBRGx  
Enhanced USARTx Baud Rate Generator Register Low Byte  
0000 0000 0000 0000  
Legend:  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
DS39612B-page 232  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The module has five registers:  
20.0 10-BIT ANALOG-TO-DIGITAL  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
CONVERTER (A/D) MODULE  
The analog-to-digital (A/D) converter module has  
12 inputs for the PIC18F6525/6621 devices and 16 for  
the PIC18F8525/8621 devices. This module allows  
conversion of an analog input signal to a corresponding  
10-bit digital number.  
The ADCON0 register, shown in Register 20-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 20-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 20-3, configures the A/D clock  
source, justification and auto-acquisition time.  
A new feature for the A/D converter is the addition of  
programmable acquisition time. This feature allows the  
user to select a new channel for conversion and setting  
the GO/DONE bit immediately. When the GO/DONE bit  
is set, the selected channel is sampled for the  
programmed acquisition time before a conversion is  
actually started. This removes the firmware overhead  
that may have been required to allow for an acquisition  
(sampling) period (see Register 20-3 and Section 20.5  
“A/D Conversions”).  
REGISTER 20-1: ADCON0: A/D CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5-2 CHS3:CHS0: Analog Channel Select bits  
0000= Channel 0 (AN0)  
0001= Channel 1 (AN1)  
0010= Channel 2 (AN2)  
0011= Channel 3 (AN3)  
0100= Channel 4 (AN4)  
0101= Channel 5 (AN5)  
0110= Channel 6 (AN6)  
0111= Channel 7 (AN7)  
1000= Channel 8 (AN8)  
1001= Channel 9 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
1100= Channel 12 (AN12)(1)  
1101= Channel 13 (AN13)(1)  
1110= Channel 14 (AN14)(1)  
1111= Channel 15 (AN15)(1)  
Note 1: These channels are not available on the PIC18F6525/6621 (64-pin) devices.  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion which is automatically  
cleared by hardware when the A/D conversion is complete)  
0= A/D conversion not in progress  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 233  
PIC18F6525/6621/8525/8621  
REGISTER 20-2: ADCON1: A/D CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
VCFG1:VCFG0: Voltage Reference Configuration bits:  
VCFG1  
A/D VREF+  
VCFG0  
A/D VREF-  
00  
01  
10  
11  
AVDD  
AVSS  
External VREF+  
AVDD  
AVSS  
External VREF-  
External VREF-  
External VREF+  
bit 3-0  
PCFG3:PCFG0: A/D Port Configuration Control bits:  
PCFG3  
PCFG0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
Note:  
Shaded cells indicate A/D channels available only on PIC18F8525/8621 devices.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39612B-page 234  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 20-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT2:ACQT0: A/D Acquisition Time Select bits  
(1)  
000= 0 TAD  
001= 2 TAD  
010= 4 TAD  
011= 6 TAD  
100= 8 TAD  
101= 12 TAD  
110= 16 TAD  
111= 20 TAD  
bit 2-0  
ADCS2:ADCS0: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock derived from A/D RC oscillator)(1)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock derived from A/D RC oscillator)(1)  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is  
added before the A/D clock starts. This allows the SLEEPinstruction to be executed  
before starting a conversion.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 235  
PIC18F6525/6621/8525/8621  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS), or the voltage level on the RA3/AN3/  
VREF+ pin and RA2/AN2/VREF- pin.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion is aborted.  
Each port pin associated with the A/D converter can be  
configured as an analog input (RA3 can also be a  
voltage reference), or as a digital I/O. The ADRESH  
and ADRESL registers contain the result of the A/D  
conversion. When the A/D conversion is complete, the  
result is loaded into the ADRESH/ADRESL registers,  
the GO/DONE bit (ADCON0 register) is cleared and A/D  
interrupt flag bit, ADIF, is set. The block diagram of the  
A/D module is shown in Figure 20-1.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To  
operate in Sleep, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter which generates the result via successive  
approximation.  
FIGURE 20-1:  
A/D BLOCK DIAGRAM  
CHS3:CHS0  
1111  
AN15(1)  
1110  
AN14(1)  
1101  
AN13(1)  
1100  
AN12(1)  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7  
0110  
AN6  
0101  
AN5  
0100  
AN4  
VAIN  
0011  
(Input Voltage)  
10-bit  
Converter  
A/D  
AN3  
0010  
AN2  
0001  
VCFG1:VCFG0  
AN1  
0000  
AN0  
AVDD  
VREF+  
VREF-  
Reference  
Voltage  
AVSS  
Note 1: Channels AN15 through AN12 are not available on PIC18F6525/6621 devices.  
2: I/O pins have diode protection to VDD and VSS.  
DS39612B-page 236  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The value in the ADRESH/ADRESL registers is  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
not modified for a Power-on Reset. The ADRESH/  
ADRESL registers will contain unknown data after a  
Power-on Reset.  
• Set ADIE bit  
• Set GIE bit  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the  
conversion is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 20.1  
“A/D Acquisition Requirements”. After this acquisi-  
tion time has elapsed, the A/D conversion can be  
started.  
3. Wait the required acquisition time (not required  
in case of auto-acquisition time).  
4. Start conversion:  
• Set GO/DONE bit (ADCON0 register)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
The following steps should be followed to do an A/D  
conversion:  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit ADIF, if required.  
1. Configure the A/D module:  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before the next acquisition starts.  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
FIGURE 20-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
ILEAKAGE  
± 500 nA  
VAIN  
CHOLD = 120 pF  
VT = 0.6V  
5 pF  
VSS  
Legend:  
CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
3V  
ILEAKAGE = leakage current at the pin due to  
various junctions  
RIC  
= interconnect resistance  
2V  
SS  
= sampling switch  
CHOLD  
RSS  
= sample/hold capacitance (from DAC)  
= sampling switch resistance  
5
6
7
8 9 10 11  
Sampling Switch (k)  
2005 Microchip Technology Inc.  
DS39612B-page 237  
PIC18F6525/6621/8525/8621  
To calculate the minimum acquisition time,  
20.1 A/D Acquisition Requirements  
Equation 20-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 20-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
Example 20-3 shows the calculation of the minimum  
required acquisition time, TACQ. This calculation is  
based on the following application system  
assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 kΩ  
1/2 LSb  
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
Note:  
When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
EQUATION 20-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 20-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
Tc  
=
=
(VREF – (VREF/2048)) • (1 – e(-Tc/CHOLD(RIC + RSS + RS))  
)
-(120 pF)(1 k+ RSS + RS) ln(1/2047)  
EQUATION 20-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
=
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25°C.  
TACQ  
TC  
=
=
2 µs + TC + [(Temp – 25°C)(0.05 µs/°C)]  
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 k+ 7 k+ 2.5 k) ln(0.0004885)  
-120 pF (10.5 k) ln(0.0004885)  
-1.26 µs (-7.6241)  
9.61 µs  
TACQ  
=
2 µs + 9.61 µs + [(50°C – 25°C)(0.05 µs/°C)]  
11.61 µs + 1.25 µs  
12.86 µs  
DS39612B-page 238  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
20.2 Selecting and Configuring  
Acquisition Time  
20.3 Selecting the A/D Conversion  
Clock  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set. It also gives users the option to use an  
automatically determined acquisition time.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
Acquisition time may be set with the ACQT2:ACQT0  
bits (ADCON2<5:3>), which provides a range of 2 to  
20 TAD. When the GO/DONE bit is set, the A/D module  
continues to sample the input for the selected acquisi-  
tion time, then automatically begins a conversion.  
Since the acquisition time is programmed, there may  
be no need to wait for an acquisition time between  
selecting a channel and setting the GO/DONE bit.  
• 2 TOSC  
• 4 TOSC  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC oscillator  
Automatic acquisition is selected when the  
ACQT2:ACQT0 = 000. When the GO/DONE bit is set,  
sampling is stopped and a conversion begins. The user  
is responsible for ensuring the required acquisition time  
has passed between selecting the desired input  
channel and setting the GO/DONE bit. This option is  
also the default Reset state of the ACQT2:ACQT0 bits  
and is compatible with devices that do not offer  
programmable acquisition times.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 20-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
TABLE 20-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
PIC18F6525/6621/8525/8621  
Operation  
ADCS2:ADCS0  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.50 MHz  
5.00 MHz  
10.0 MHz  
20.0 MHz  
40.0 MHz  
2005 Microchip Technology Inc.  
DS39612B-page 239  
PIC18F6525/6621/8525/8621  
20.4 Configuring Analog Port Pins  
20.5 A/D Conversions  
The ADCON1, TRISA, TRISF and TRISH registers  
control the operation of the A/D port pins. The port pins  
needed as analog inputs must have their corresponding  
TRIS bits set (input). If the TRIS bit is cleared (output),  
the digital output level (VOH or VOL) will be converted.  
Figure 20-3 shows the operation of the A/D converter  
after the GODONE bit has been set. Clearing the GO/  
DONE bit during a conversion will abort the current  
conversion. The A/D Result register pair will NOT be  
updated with the partially completed A/D conversion  
sample. That is, the ADRESH:ADRESL registers will  
continue to contain the value of the last completed  
conversion (or the last value written to the  
ADRESH:ADRESL registers). After the A/D conversion  
is aborted, a 2 TAD wait is required before the next  
acquisition is started. After this 2 TAD wait, acquisition  
on the selected channel is automatically started.  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as a digital input will convert as an  
analog input. Analog levels on a digitally  
configured input will not affect the  
conversion accuracy.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
2: Analog levels on any pin defined as a  
digital input may cause the input buffer to  
consume current out of the device’s  
specification limits.  
FIGURE 20-3:  
A/D CONVERSION TAD CYCLES  
TCY - TAD  
TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
b5  
b4  
b3  
b2  
b1  
b0  
b0  
b7  
b6  
b8  
b9  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO/DONE bit  
Next Q4: ADRESH/ADRESL is loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
DS39612B-page 240  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
A/D acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition done before the special  
event trigger sets the GO/DONE bit and starts a  
conversion.  
20.6 Use of the ECCP2 Trigger  
An A/D conversion can be started by the special event  
trigger of the ECCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as ‘1011’ and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the GO/  
DONE bit will be set, starting the A/D conversion and  
the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
If the A/D module is not enabled (ADON is cleared), the  
special event trigger will be ignored by the A/D module  
but will still reset the Timer1 (or Timer3) counter.  
TABLE 20-2: SUMMARY OF REGISTERS ASSOCIATED WITH A/D  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
0000 000u  
(1)  
PIR1  
PIE1  
IPR1  
PIR2  
PIE2  
IPR2  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
RC1IF  
RC1IE  
RC1IP  
TX1IF  
TX1IE  
TX1IP  
EEIF  
SSPIF CCP1IF  
SSPIE CCP1IE  
SSPIP CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
TMR1IF 0000 0000  
TMR1IE 0000 0000  
TMR1IP 1111 1111  
CCP2IF -0-0 0000  
CCP2IE -0-0 0000  
CCP2IP -1-1 1111  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-0-0 0000  
-0-0 0000  
-1-1 1111  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--00 0000  
0-00 0000  
-u0u 0000  
-111 1111  
u000 0000  
1111 1111  
0000 uuuu  
1111 1111  
(1)  
(1)  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
EEIE  
EEIP  
ADRESH A/D Result Register High Byte  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
A/D Result Register Low Byte  
xxxx xxxx  
CHS3  
CHS3  
CHS1  
CHS0  
GO/DONE  
PCFG1  
ADCS1  
RA1  
ADON  
PCFG0  
ADCS0  
RA0  
--00 0000  
--00 0000  
0-00 0000  
-x0x 0000  
-111 1111  
x000 0000  
1111 1111  
0000 xxxx  
1111 1111  
VCFG1 VCFG0 PCFG3 PCFG2  
ACQT2 ACQT1 ACQT0 ADCS2  
ADFM  
(2)  
RA6  
RA5  
RA4  
RA3  
RA2  
RF2  
RH2  
(2)  
TRISA6  
RF6  
PORTA Data Direction Register  
PORTF  
TRISF  
RF7  
RF5  
RF4  
RF3  
RH3  
RF1  
RH1  
RF0  
RH0  
PORTF Data Direction Control Register  
(3)  
PORTH  
RH7  
RH6  
RH5  
RH4  
(3)  
TRISH  
PORTH Data Direction Control Register  
Legend:  
x= unknown, u= unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: Enabled only in Microcontroller mode for PIC18F8525/8621 devices.  
2: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read ‘0’ in all other  
oscillator modes.  
3: Implemented on PIC18F8525/8621 devices only, otherwise read as ‘0’.  
2005 Microchip Technology Inc.  
DS39612B-page 241  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 242  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The CMCON register, shown as Register 21-1, con-  
trols the comparator input and output multiplexers. A  
block diagram of the various comparator configurations  
is shown in Figure 21-1.  
21.0 COMPARATOR MODULE  
The comparator module contains two analog  
comparators. The inputs to the comparators are  
multiplexed with the RF1 through RF6 pins. The on-  
chip Voltage Reference (Section 22.0 “Comparator  
Voltage Reference Module”) can also be an input to  
the comparators.  
REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RF5/AN10  
C2 VIN- connects to RF3/AN8  
0= C1 VIN- connects to RF6/AN11  
C2 VIN- connects to RF4/AN9  
bit 2-0  
CM2:CM0: Comparator Mode bits  
Figure 21-1 shows the Comparator modes and the CM2:CM0 bit settings.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 243  
PIC18F6525/6621/8525/8621  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
21.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors. The CMCON register is used to select these  
modes. Figure 21-1 shows the eight possible modes.  
The TRISF register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Section 27.0 “Electrical Characteristics”.  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change;  
otherwise, a false interrupt may occur.  
a
FIGURE 21-1:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
Comparators Off  
CM2:CM0 = 000  
CM2:CM0 = 111  
A
D
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RF5/AN10/  
RF5/AN10/  
CVREF  
CVREF  
A
A
D
VIN-  
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
D
RF3/AN8  
Two Independent Comparators with Outputs  
CM2:CM0 = 011  
Two Independent Comparators  
CM2:CM0 = 010  
A
VIN-  
A
VIN-  
RF6/AN11  
RF6/AN11  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1OUT  
C2OUT  
C1  
C2  
RF5/AN10/  
CVREF  
VIN+  
A
RF5/AN10/  
CVREF  
RF2/AN7/C1OUT  
A
A
VIN-  
A
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
A
RF3/AN8  
RF1/AN6/C2OUT  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 100  
CM2:CM0 = 101  
A
A
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
RF2/AN7/C1OUT  
A
D
VIN-  
RF4/AN9  
RF3/AN8  
A
VIN-  
VIN+  
RF4/AN9  
C2OUT  
VIN+  
D
RF3/AN8  
RF1/AN6/C2OUT  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM2:CM0 = 110  
CM2:CM0 = 001  
A
A
A
VIN-  
RF6/AN11  
RF6/AN11  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
C2  
VIN+  
RF5/AN10/  
CVREF  
C1OUT  
C2OUT  
RF5/AN10/  
CVREF  
C1  
C2  
VIN+  
RF2/AN7/C1OUT  
A
A
RF4/AN9  
RF3/AN8  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
VIN-  
RF4/AN9  
Off (Read as ‘0’)  
VIN+  
D
RF3/AN8  
CVREF  
From VREF Module  
A = Analog Input, port reads zeros always  
DS39612B-page 244  
D = Digital Input  
CIS (CMCON<3>) is the Comparator Input Switch  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
21.3.2  
INTERNAL REFERENCE SIGNAL  
21.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference for the  
comparators. Section 22.0 “Comparator Voltage  
Reference Module” contains a detailed description of  
the comparator voltage reference module that provides  
this signal. The internal reference signal is used when  
comparators are in mode CM<2:0> = 110(Figure 21-1).  
In this mode, the internal voltage reference is applied to  
the VIN+ pin of both comparators.  
A single comparator is shown in Figure 21-2, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 21-2 represent  
the uncertainty due to input offsets and response time.  
21.4 Comparator Response Time  
21.3 Comparator Reference  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal  
reference is changed, the maximum delay of the  
internal voltage reference must be considered when  
using the comparator outputs. Otherwise, the  
maximum delay of the comparators should be used  
(Section 27.0 “Electrical Characteristics”).  
An external or internal reference signal may be used  
depending on the comparator operating mode. The  
analog signal present at VIN- is compared to the signal  
at VIN+ and the digital output of the comparator is  
adjusted accordingly (Figure 21-2).  
FIGURE 21-2:  
SINGLE COMPARATOR  
21.5 Comparator Outputs  
VIN+  
VIN-  
+
Output  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RF1 and RF2  
I/O pins. When enabled, multiplexors in the output path  
of the RF1 and RF2 pins will switch and the output of  
each pin will be the unsynchronized output of the com-  
parator. The uncertainty of each of the comparators is  
related to the input offset voltage and the response time  
given in the specifications. Figure 21-3 shows the  
comparator output block diagram.  
VIN-  
VIN+  
The TRISA bits will still function as an output enable/  
disable for the RF1 and RF2 pins while in this mode.  
Output  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<4:5>).  
21.3.1  
EXTERNAL REFERENCE SIGNAL  
Note 1: When reading the Port register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same, or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a  
digital input may cause the input buffer to  
consume more current than is specified.  
2005 Microchip Technology Inc.  
DS39612B-page 245  
PIC18F6525/6621/8525/8621  
FIGURE 21-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
MULTIPLEX  
+
-
CxINV  
To RF1 or  
RF2 Pin  
Bus  
Data  
Q
D
Read CMCON  
EN  
Q
Set  
CMIF  
bit  
D
From  
Other  
Comparator  
EN  
CL  
Read CMCON  
Reset  
21.6 Comparator Interrupts  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR  
registers) interrupt flag may not get set.  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR registers) is the comparator interrupt flag. The  
CMIF bit must be reset by clearing ‘0’. Since it is also  
possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
The CMIE bit (PIE registers) and the PEIE bit (INTCON  
register) must be set to enable the interrupt. In addition,  
the GIE bit must also be set. If any of these bits are  
clear, the interrupt is not enabled, though the CMIF bit  
will still be set if an interrupt condition occurs.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
DS39612B-page 246  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
21.7 Comparator Operation  
During Sleep  
21.9 Analog Input Connection  
Considerations  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional if enabled. This interrupt will  
wake-up the device from Sleep mode when enabled.  
While the comparator is powered up, higher Sleep  
currents than shown in the power-down current  
specification will occur. Each operational comparator  
will consume additional current, as shown in the  
comparator specifications. To minimize power  
consumption while in Sleep mode, turn off the  
comparators, CM<2:0> = 111, before entering Sleep. If  
the device wakes up from Sleep, the contents of the  
CMCON register are not affected.  
A simplified circuit for an analog input is shown in  
Figure 21-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kis  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
21.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator module to be in the  
comparator Reset mode, CM<2:0> = 000. This  
ensures that all potential inputs are analog inputs.  
Device current is minimized when analog inputs are  
present at Reset time. The comparators will be  
powered down during the Reset interval.  
FIGURE 21-4:  
COMPARATOR ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
Comparator  
Input  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
2005 Microchip Technology Inc.  
DS39612B-page 247  
PIC18F6525/6621/8525/8621  
TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
all other  
Resets  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON C2OUT C1OUT C2INV C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000 0000 0000  
CVRCON CVREN CVROE CVRR CVRSS CVR3  
CVR2  
CVR1  
CVR0 0000 0000 0000 0000  
RBIF 0000 000x 0000 000u  
INTCON  
GIE/  
PEIE/ TMR0IE INT0IE  
GIEL  
RBIE TMR0IF INT0IF  
GIEH  
PIR2  
CMIF  
CMIE  
CMIP  
RF6  
EEIF  
EEIE  
EEIP  
RF4  
BCLIF  
BCLIE  
BCLIP  
RF3  
LVDIF TMR3IF CCP2IF -0-0 0000 -0-0 0000  
LVDIE TMR3IE CCP2IE -0-0 0000 -0-0 0000  
LVDIP TMR3IP CCP2IP -1-1 1111 -1-1 1111  
PIE2  
IPR2  
PORTF  
LATF  
TRISF  
RF7  
RF5  
RF2  
RF1  
LATF1 LATF0 xxxx xxxx uuuu uuuu  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 1111 1111  
RF0  
x000 0000 u000 0000  
LATF7 LATF6 LATF5 LATF4 LATF3 LATF2  
Legend: x= unknown, u= unchanged, – = unimplemented, read as ‘0’.  
Shaded cells are unused by the comparator module.  
DS39612B-page 248  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
22.1 Configuring the Comparator  
Voltage Reference  
22.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The comparator voltage reference can output 16  
distinct voltage levels for each range. The equations  
used to calculate the output of the comparator voltage  
reference are as follows:  
The comparator voltage reference is a 16-tap resistor  
ladder network that provides a selectable voltage  
reference. The resistor ladder is segmented to provide  
two ranges of CVREF values and has a power-down  
function to conserve power when the reference is not  
If CVRR = 1:  
CVREF = (CVR<3:0>/24) x CVRSRC  
being used.  
The CVRCON register controls the  
operation of the reference as shown in Register 22-1.  
The block diagram is given in Figure 22-1.  
If CVRR = 0:  
CVREF=(CVRSRC x 1/4)+(CVR<3:0>/32)xCVRSRC  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF- that are multiplexed with RA3 and RA2. The  
comparator reference supply voltage is controlled by  
the CVRSS bit.  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF output  
(Section 27.0 “Electrical Characteristics”).  
REGISTER 22-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
CVREN CVROE(1)  
bit 7  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVRSS  
bit 0  
bit 7  
bit 6  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit(1)  
1= CVREF voltage level is also output on the RF5/AN10/CVREF pin  
0= CVREF voltage is disconnected from the RF5/AN10/CVREF pin  
Note 1: If enabled for output, RF5 must also be configured as an input by setting TRISF<5>  
to ‘1’.  
bit 5  
CVRR: Comparator VREF Range Selection bit  
1= 0.00 CVRSRC to 0.667 CVRSRC, with CVRSRC/24 step size (low range)  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range)  
bit 4  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = VREF+ – VREF-  
0= Comparator reference source, CVRSRC = AVDD – AVSS  
bit 3-0  
CVR3:CVR0: Comparator VREF Value Selection bits (0 VR3:VR0 15)  
When CVRR = 1:  
CVREF = (CVR<3:0>/ 24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR3:CVR0/32) (CVRSRC)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 249  
PIC18F6525/6621/8525/8621  
FIGURE 22-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
AVDD  
VREF+  
16 Stages  
CVRSS = 1  
CVRSS = 0  
CVREN  
R
R
R
8R  
R
CVRR  
CVRSS = 0  
8R  
CVRSS = 1  
VREF-  
CVR3  
CVREF  
(From CVRCON<3:0>)  
CVR0  
16-1 Analog Mux  
Note: R is defined in Section 27.0 “Electrical Characteristics”.  
22.2 Voltage Reference Accuracy/Error  
22.4 Effects of a Reset  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 22-1) keep CVREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the CVREF output  
changes with fluctuations in that source. The tested  
absolute accuracy of the voltage reference can be  
found in Section 27.0 “Electrical Characteristics”.  
A device Reset disables the voltage reference by  
clearing bit CVREN (CVRCON<7>). This Reset also  
disconnects the reference from the RA2 pin by clearing  
bit CVROE (CVRCON<6>) and selects the high-  
voltage range by clearing bit CVRR (CVRCON<5>).  
The VRSS value select bits, CVRCON<3:0>, are also  
cleared.  
22.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RF5 pin if the  
TRISF<5> bit is set and the CVROE bit is set. Enabling  
the voltage reference output onto the RF5 pin  
configured as a digital input will increase current  
consumption. Connecting RF5 as a digital output with  
VRSS enabled will also increase current consumption.  
22.3 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The RF5 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, a buffer must be used on the voltage  
reference output for external connections to VREF.  
Figure 22-2 shows an example buffering technique.  
DS39612B-page 250  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 22-2:  
COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
RF5  
R
CVREF  
+
Module  
CVREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the voltage reference configuration bits, CVRCON<3:0> and CVRCON<5>.  
TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Value on  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
CVRCON CVREN CVROE CVRR CVRSS CVR3  
CVR2  
CM2  
CVR1  
CM1  
CVR0 0000 0000 0000 0000  
CM0 0000 0000 0000 0000  
CMCON  
TRISF  
C2OUT C1OUT C2INV C1INV  
CIS  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, – = unimplemented, read as ‘0’.  
Shaded cells are not used with the comparator voltage reference.  
2005 Microchip Technology Inc.  
DS39612B-page 251  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 252  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The Low-Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be “turned  
off” by the software which minimizes the current  
consumption for the device.  
23.0 LOW-VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do “housekeeping tasks” before the device  
voltage exits the valid operating range. This can be  
done using the Low-Voltage Detect module.  
Figure 23-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shutdown the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference TB TA is the total  
time for shutdown.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower then the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
FIGURE 23-1:  
TYPICAL LOW-VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
The block diagram for the LVD module is shown in  
Figure 23-2. A comparator uses an internally gener-  
ated reference voltage as the set point. When the  
selected tap output of the device voltage crosses the  
set point (is lower than), the LVDIF bit is set.  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the 1.2V  
internal reference voltage generated by the voltage  
reference module. The comparator then generates an  
interrupt signal setting the LVDIF bit. This voltage is  
software programmable to any one of 16 values (see  
Figure 23-2). The trip point is selected by  
programming the LVDL3:LVDL0 bits (LVDCON<3:0>).  
Each node in the resistor divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
2005 Microchip Technology Inc.  
DS39612B-page 253  
PIC18F6525/6621/8525/8621  
FIGURE 23-2:  
LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVDL3:LVDL0  
LVDCON  
Register  
LVDIF  
Internally Generated  
Reference Voltage  
LVDEN  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when bits  
LVDL3:LVDL0 are set to ‘1111’. In this state, the com-  
parator input is multiplexed from the external input pin,  
LVDIN (Figure 23-3). This gives users flexibility  
because it allows them to configure the Low-Voltage  
Detect interrupt to occur at any voltage in the valid  
operating range.  
FIGURE 23-3:  
LOW-VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVDL3:LVDL0  
LVDCON  
Register  
LVDIN  
LVDEN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS39612B-page 254  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
23.1 Control Register  
The  
Low-Voltage  
Detect  
Control  
register  
(Register 23-1) controls the operation of the  
Low-Voltage Detect circuitry.  
REGISTER 23-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5  
bit 4  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low-Voltage Detect logic will generate the interrupt flag at the specified  
voltage range  
0= Indicates that the Low-Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
LVDEN: Low-Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0 LVDL3:LVDL0: Low-Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.45V-4.83V  
1101= 4.16V-4.5V  
1100= 3.96V-4.3V  
1011= 3.76V-3.92V  
1010= 3.57V-3.87V  
1001= 3.47V-3.75V  
1000= 3.27V-3.55V  
0111= 2.98V-3.22V  
0110= 2.77V-3.01V  
0101= 2.67V-2.89V  
0100= 2.48V-2.68V  
0011= 2.37V-2.57V  
0010= 2.18V-2.36V  
0001= 1.98V-2.14V  
0000= Reserved  
Note:  
LVDL3:LVDL0 modes, which result in a trip point below the valid operating voltage  
of the device, are not tested.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 255  
PIC18F6525/6621/8525/8621  
The following steps are needed to set up the LVD  
module:  
23.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be  
constantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods where the voltage is checked. After doing  
the check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register) which selects the desired  
LVD trip point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set, until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 23-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 23-4:  
LOW-VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIRVST  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIRVST  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS39612B-page 256  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
23.2.1  
REFERENCE VOLTAGE SET POINT  
23.3 Operation During Sleep  
The internal reference voltage of the LVD module may  
be used by other internal circuitry (the Programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires a time to become stable before a low-voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter 36. The low-voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 23-4.  
When enabled, the LVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will  
wake-up from Sleep. Device execution will continue  
from the interrupt vector address if interrupts have  
been globally enabled.  
23.4 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the LVD module to be turned off.  
23.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter D022B.  
2005 Microchip Technology Inc.  
DS39612B-page 257  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 258  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Sleep mode is designed to offer a very low current  
24.0 SPECIALFEATURESOFTHECPU  
power-down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost, while the  
LP crystal option saves power. A set of configuration  
bits is used to select various options.  
There are several features intended to maximize  
system reliability, minimize cost through elimination of  
external components, provide power-saving operating  
modes and offer code protection. These are:  
• Oscillator Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
24.1 Configuration Bits  
The configuration bits can be programmed (read as ‘0’)  
or left unprogrammed (read as ‘1’), to select various  
device configurations. These bits are mapped, starting  
at program memory location 300000h.  
• Watchdog Timer (WDT)  
• Sleep  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h through  
3FFFFFh) which can only be accessed using table  
reads and table writes.  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming  
All PIC18F6525/6621/8525/8621 devices have  
a
Programming the Configuration registers is done in a  
manner similar to programming the Flash memory. The  
EECON1 register WR bit starts a self-timed write to the  
Configuration register. In normal operation mode, a  
TBLWT instruction, with the TBLPTR pointed to the  
Configuration register, sets up the address and the  
data for the Configuration register write. Setting the WR  
bit starts a long write to the Configuration register. The  
Configuration registers are written a byte at a time. To  
write or erase a configuration cell, a TBLWTinstruction  
can write a ‘1’ or a ‘0’ into the cell.  
Watchdog Timer which is permanently enabled via the  
configuration bits, or software controlled. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in Reset until the crystal oscillator is stable.  
The other is the Power-up Timer (PWRT) which  
provides a fixed delay on power-up only, designed to  
keep the part in Reset while the power supply  
stabilizes. With these two timers on-chip, most  
applications need no external Reset circuitry.  
TABLE 24-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
OSCSEN  
FOSC3 FOSC2  
BORV1 BORV0  
FOSC1  
BOR  
FOSC0  
PWRTEN  
WDTEN  
PM0  
--1- 1111  
---- 1111  
---1 1111  
1--- --11  
1--- --11  
1--- -1-1  
---- 1111  
11-- ----  
---- 1111  
111- ----  
---- 1111  
-1-- ----  
(Note 3)  
WDTPS3 WDTPS2 WDTPS1 WDTPS0  
(1)  
300004h CONFIG3L  
WAIT  
PM1  
ECCPMX  
(1)  
300005h CONFIG3H MCLRE  
300006h CONFIG4L DEBUG  
CCP2MX  
STVREN  
CP0  
LVP  
CP2  
(2)  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
CPD  
CP3  
CP1  
CPB  
(2)  
(2)  
WRT3  
WRT2  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD  
WRTB  
WRTC  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
3FFFFEh DEVID1  
3FFFFFh DEVID2  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
0000 1010  
Legend:  
x= unknown, u= unchanged, – = unimplemented. Shaded cells are unimplemented, read as ‘0’.  
Note 1: Unimplemented in PIC18F6525/6621 devices; maintain this bit set.  
2: Unimplemented in PIC18FX525 devices; maintain this bit set.  
3: See Register 24-13 for DEVID1 values.  
2005 Microchip Technology Inc.  
DS39612B-page 259  
PIC18F6525/6621/8525/8621  
REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)  
U-0  
U-0  
R/P-1  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
FOSC0  
bit 0  
OSCSEN  
FOSC3  
FOSC2  
FOSC1  
bit 7  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5  
bit 4  
OSCSEN: Oscillator System Clock Switch Enable bit  
1= Oscillator system clock switch option is disabled (main oscillator is source)  
0= Timer1 oscillator system clock switch option is enabled (oscillator switching is enabled)  
Unimplemented: Read as ‘0’  
bit 3-0 FOSC3:FOSC0: Oscillator Selection bits  
1111= RC oscillator with OSC2 configured as RA6  
1110= HS oscillator with SW enabled 4x PLL  
1101= EC oscillator with OSC2 configured as RA6 and SW enabled 4x PLL  
1100= EC oscillator with OSC2 configured as RA6 and HW enabled 4x PLL  
1011= Reserved; do not use  
1010= Reserved; do not use  
1001= Reserved; do not use  
1000= Reserved; do not use  
0111= RC oscillator with OSC2 configured as RA6  
0110= HS oscillator with HW enabled 4x PLL  
0101= EC oscillator with OSC2 configured as RA6  
0100= EC oscillator with OSC2 configured as divide by 4 clock output  
0011= RC oscillator with OSC2 configured as divide by 4 clock output  
0010= HS oscillator  
0001= XT oscillator  
0000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39612B-page 260  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 24-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
BOR  
R/P-1  
PWRTEN  
bit 0  
BORV1  
BORV0  
bit 7  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3-2 BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.0V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOR: Brown-out Reset Enable bit  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRTEN: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-5 Unimplemented: Read as ‘0’  
bit 4-1 WDTPS2:WDTPS0: Watchdog Timer Postscaler Select bits  
1111= 1:32768  
1110= 1:16384  
1101= 1:8192  
1100= 1:4096  
1011= 1:2048  
1010= 1:1024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2005 Microchip Technology Inc.  
DS39612B-page 261  
PIC18F6525/6621/8525/8621  
REGISTER 24-4: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)(1)  
R/P-1  
WAIT  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
PM1  
R/P-1  
PM0  
bit 7  
bit 0  
bit 7  
WAIT: External Bus Data Wait Enable bit  
1= Wait selections unavailable for table reads and table writes  
0= Wait selections for table reads and table writes are determined by WAIT1:WAIT0 bits  
(MEMCOM<5:4>)  
bit 6-2 Unimplemented: Read as ‘0’  
bit 1-0 PM1:PM0: Processor Mode Select bits  
11= Microcontroller mode  
10= Microprocessor mode  
01= Microprocessor with Boot Block mode  
00= Extended Microcontroller mode  
Note 1: This register is unimplemented for PIC18F6525/6621 devices; maintain these bits set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 24-5: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)  
R/P-1  
MCLRE(1)  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
ECCPMX(2) CCP2MX  
bit 0  
bit 7  
MCLRE: MCLR Enable bit(1)  
1= MCLR pin enabled, RG5 input pin disabled  
0= RG5 input enabled, MCLR disabled  
bit 6-2 Unimplemented: Read as ‘0’  
bit 1  
ECCPMX: ECCP Mux bit(2)  
1= ECCP1 (P1B/P1C) and ECCP3 (P3B/P3C) PWM outputs are multiplexed with RE6 through  
RE3  
0= ECCP1 (P1B/P1C) and ECCP3 (P3B/P3C) PWM outputs are multiplexed with RH7 through  
RH4  
bit 0  
CCP2MX: ECCP2 Mux bit  
In Microcontroller mode:  
1= ECCP2 input/output is multiplexed with RC1  
0= ECCP2 input/output is multiplexed with RE7  
In Microprocessor, Microprocessor with Boot Block and Extended Microcontroller modes  
(PIC18F8525/8621 devices only):  
1= ECCP2 input/output is multiplexed with RC1  
0= ECCP2 input/output is multiplexed with RB3  
Note 1: If MCLR is disabled, either disable Low-Voltage ICSP or hold RB5/KBI1/PGM low to  
ensure proper entry into ICSP mode.  
2: This register is unimplemented for PIC18F6525/6621 devices; maintain these bits  
set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39612B-page 262  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 24-6: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
STVREN  
bit 0  
DEBUG  
bit 7  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled. RB6 and RB7 configured as general purpose I/O pins.  
0= Background debugger enabled. RB6 and RB7 are dedicated to in-circuit debug.  
bit 6-3 Unimplemented: Read as ‘0’  
bit 2  
LVP: Low-Voltage ICSP Enable bit  
1= Low-Voltage ICSP enabled  
0= Low-Voltage ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 24-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
CP3(1)  
R/C-1  
CP2  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
CP3: Code Protection bit(1)  
1= Block 3 (00C000-00FFFFh) not code-protected  
0= Block 3 (00C000-00FFFFh) code-protected  
Note 1: Unimplemented in PIC18FX525 devices; maintain this bit set.  
CP2: Code Protection bit  
bit 2  
bit 1  
bit 0  
1= Block 2 (008000-00BFFFh) not code-protected  
0= Block 2 (008000-00BFFFh) code-protected  
CP1: Code Protection bit  
1= Block 1 (004000-007FFFh) not code-protected  
0= Block 1 (004000-007FFFh) code-protected  
CP0: Code Protection bit  
1= Block 0 (000800-003FFFh) not code-protected  
0= Block 0 (000800-003FFFh) code-protected  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
2005 Microchip Technology Inc.  
DS39612B-page 263  
PIC18F6525/6621/8525/8621  
REGISTER 24-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code-protected  
0= Data EEPROM code-protected  
CPB: Boot Block Code Protection bit  
1= Boot block (000000-0007FFh) not code-protected  
0= Boot block (000000-0007FFh) code-protected  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 24-9: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
WRT3(1)  
R/C-1  
WRT2  
R/C-1  
WRT1  
R/C-1  
WRT0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
WRT3: Write Protection bit(1)  
1= Block 3 (00C000-00FFFFh) not write-protected  
0= Block 3 (00C000-00FFFFh) write-protected  
Note 1: Unimplemented in PIC18FX525 devices; maintain this bit set.  
WRT2: Write Protection bit  
bit 2  
bit 1  
bit 0  
1= Block 2 (008000-00BFFFh) not write-protected  
0= Block 2 (008000-00BFFFh) write-protected  
WRT1: Write Protection bit  
1= Block 1 (004000-007FFFh) not write-protected  
0= Block 1 (004000-007FFFh) write-protected  
WR0: Write Protection bit  
1= Block 0 (000800-003FFFh) not write-protected  
0= Block 0 (000800-003FFFh) write-protected  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39612B-page 264  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
REGISTER 24-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)  
R/C-1  
R/C-1  
R/C-1  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
WRTC  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write-protected  
0= Data EEPROM write-protected  
WRTB: Boot Block Write Protection bit  
1= Boot block (000000-0007FFh) not write-protected  
0= Boot block (000000-0007FFh) write-protected  
WRTC: Configuration Register Write Protection bit  
1= Configuration registers (300000-3000FFh) not write-protected  
0= Configuration registers (300000-3000FFh) write-protected  
bit 4-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 24-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
EBTR3(1)  
R/C-1  
R/C-1  
R/C-1  
EBTR2  
EBTR1  
EBTR0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
EBTR3: Table Read Protection bit(1)  
1= Block 3 (00C000-00FFFFh) not protected from table reads executed in other blocks  
0= Block 3 (00C000-00FFFFh) protected from table reads executed in other blocks  
Note 1: Unimplemented in PIC18FX525 devices; maintain this bit set.  
bit 2  
bit 1  
bit 0  
EBTR2: Table Read Protection bit  
1= Block 2 (008000-00BFFFh) not protected from table reads executed in other blocks  
0= Block 2 (008000-00BFFFh) protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit  
1= Block 1 (004000-007FFFh) not protected from table reads executed in other blocks  
0= Block 1 (004000-007FFFh) protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit  
1= Block 0 (000800-003FFFh) not protected from table reads executed in other blocks  
0= Block 0 (000800-003FFFh) protected from table reads executed in other blocks  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
2005 Microchip Technology Inc.  
DS39612B-page 265  
PIC18F6525/6621/8525/8621  
REGISTER 24-12: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)  
U-0  
R/C-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot block (000000-0007FFh) not protected from table reads executed in other blocks  
0= Boot block (000000-0007FFh) protected from table reads executed in other blocks  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 24-13: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F6525/6621/8525/8621 DEVICES  
(ADDRESS 3FFFFEh)  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
bit 7-5 DEV2:DEV0: Device ID bits  
100= PIC18F8621  
101= PIC18F6621  
110= PIC18F8525  
111= PIC18F6525  
bit 4-0 REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision.  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 24-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F6525/6621/8525/8621 DEVICES  
(ADDRESS 3FFFFFh)  
R-0  
R-0  
R-0  
R-0  
R-1  
R-0  
R-1  
R-0  
DEV3  
bit 0  
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
bit 7  
bit 7-0 DEV10:DEV3: Device ID bits  
These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part  
number.  
0000 1010= PIC18F6525/6621/8525/8621  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39612B-page 266  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The WDT time-out period values may be found in the  
Electrical Specifications section under parameter 31.  
Values for the WDT postscaler may be assigned using  
the configuration bits.  
24.2 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC  
oscillator which does not require any external  
components. This RC oscillator is separate from the  
RC oscillator of the OSC1/CLKI pin. That means that  
the WDT will run even if the clock on the OSC1/CLKI  
and OSC2/CLKO/RA6 pins of the device has been  
stopped, for example, by execution of a SLEEP  
instruction.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler if  
assigned to the WDT and prevent it from  
timing out and generating a device Reset  
condition.  
2: When a CLRWDT instruction is executed  
and the postscaler is assigned to the  
WDT, the postscaler count will be cleared  
but the postscaler assignment is not  
changed.  
During normal operation, a WDT time-out generates a  
device Reset (Watchdog Timer Reset). If the device is  
in Sleep mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer wake-up). The TO bit in the RCON register  
will be cleared upon a WDT time-out.  
24.2.1  
CONTROL REGISTER  
The Watchdog Timer is enabled or disabled by a device  
configuration bit, WDTEN (CONFIG2H<0>). If WDTEN  
is set, software execution may not disable this function.  
When WDTEN is cleared, the SWDTEN bit enables or  
disables the operation of the WDT.  
Register 24-15 shows the WDTCON register. This is a  
readable and writable register which contains a control  
bit that allows software to override the WDT enable  
configuration bit only when the configuration bit has  
disabled the WDT.  
REGISTER 24-15: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1 Unimplemented: Read as ‘0’  
bit 0  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off (if CONFIG2H<0> = 0)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2005 Microchip Technology Inc.  
DS39612B-page 267  
PIC18F6525/6621/8525/8621  
24.2.2  
WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
Reset period. The postscaler is selected at the time of  
the device programming by the value written to the  
CONFIG2H Configuration register.  
FIGURE 24-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDT Timer  
Postscaler  
16  
16-to-1 MUX  
WDTPS3:WDTPS0  
WDTEN  
Configuration bit  
SWDTEN bit  
WDT  
Time-out  
Note:  
WDTPS3:WDTPS0 are bits in register CONFIG2H.  
TABLE 24-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
WDTPS3 WDTPS2 WDTPS2 WDTPS0  
WDTEN  
BOR  
RI  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
DS39612B-page 268  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
24.3 Power-Down Mode (Sleep)  
Power-down mode is entered by executing a SLEEP  
External MCLR Reset will cause a device Reset. All  
other events are considered a continuation of program  
execution and will cause a “wake-up”. The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device Reset. The PD bit, which is set on  
power-up, is cleared when Sleep is invoked. The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (RCON<3>) is cleared, the  
TO (RCON<4>) bit is set and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low or high-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are high-impedance inputs, high or low externally,  
to avoid switching currents caused by floating inputs.  
The T0CKI input should also be at VDD or VSS for low-  
est current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the  
interrupt address. In cases where the execution of the  
instruction following Sleep is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
The MCLR pin must be at a logic high level (VIHMC).  
24.3.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
24.3.2  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
1. External Reset input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
• If an interrupt condition (interrupt flag bit and  
interrupt enable bits are set) occurs before the  
execution of a SLEEPinstruction, the SLEEP  
instruction will complete as a NOP. Therefore, the  
WDT and WDT postscaler will not be cleared, the  
TO bit will not be set and PD bits will not be  
cleared.  
3. Interrupt from INTx pin, RB port change or a  
peripheral interrupt.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
• If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
3. TMR3 interrupt. Timer3 must be operating as an  
asynchronous counter.  
4. CCP Capture mode interrupt (Capture will not  
occur).  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
5. MSSP (Start/Stop) bit detect interrupt.  
6. MSSP transmit or receive in Slave mode  
(SPI/I2C).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
7. USART RXx or TXx (Synchronous Slave mode).  
8. A/D conversion (when A/D clock source is RC).  
9. EEPROM write operation complete.  
10. LVD interrupt.  
To ensure that the WDT is cleared, a CLRWDT  
instruction should be executed before a SLEEP  
instruction.  
2005 Microchip Technology Inc.  
DS39612B-page 269  
PIC18F6525/6621/8525/8621  
FIGURE 24-2:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKO(4)  
INT pin  
(2)  
TOST  
INTF Flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIEH bit  
(INTCON<7>)  
Processor in  
Sleep  
INSTRUCTION FLOW  
PC  
PC  
PC + 2  
PC + 4  
PC + 4  
PC + 4  
0008h  
000Ah  
Instruction  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(PC + 2)  
Inst(000Ah)  
Inst(PC) = Sleep  
Fetched  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst(0008h)  
Sleep  
Inst(PC – 1)  
Note 1:  
XT, HS or LP Oscillator mode assumed.  
2:  
3:  
4:  
GIE = 1assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.  
TOST = 1024 TOSC (drawing not to scale). This delay will not occur for RC and EC Oscillator modes.  
CLKO is not available in these oscillator modes but shown here for timing reference.  
Each of the blocks has three code protection bits  
associated with them. They are:  
24.4 Program Verification and  
Code Protection  
• Code-Protect bit (CPn)  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other  
PICmicro devices.  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
Figure 24-3 shows the program memory organization  
for 48 and 64-Kbyte devices and the specific code  
protection bit associated with each block. The actual  
locations of the bits are summarized in Table 24-3.  
The user program memory is divided on binary bound-  
aries into four blocks of 16 Kbytes each. The first block is  
further divided into a boot block of 2048 bytes and a  
second block (Block 0) of 14 Kbytes.  
FIGURE 24-3:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18F6525/6621/8525/8621  
DEVICES  
MEMORY SIZE/DEVICE  
Block Code Protection  
48 Kbytes  
64 Kbytes  
Address  
Controlled By:  
(PIC18FX525)  
(PIC18FX621)  
Range  
000000h  
0007FFh  
Boot Block  
Block 0  
Boot Block  
Block 0  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000800h  
003FFFh  
004000h  
Block 1  
Block 2  
Block 1  
Block 2  
Block 3  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
007FFFh  
008000h  
00BFFFh  
00C000h  
Unimplemented, read ‘0’  
00FFFFh  
DS39612B-page 270  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH CODE PROTECTION  
File Name  
300008h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CONFIG6H  
CONFIG7L  
CONFIG7H  
CPD  
CPB  
CP3(1)  
CP2  
CP1  
CP0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
WRT3(1)  
EBTR3(1) EBTR2  
WRT2  
WRT1  
WRT0  
WRTD  
WRTB  
WRTC  
EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
Note 1: Unimplemented in PIC18FX525 devices.  
table read instruction that executes from a location out-  
side of that block is not allowed to read and will result  
in reading ‘0’s. Figures 24-4 through 24-6 illustrate  
table write and table read protection.  
24.4.1  
PROGRAM MEMORY  
CODE PROTECTION  
The user memory may be read to or written from any  
location using the table read and table write instruc-  
tions. The Device ID register may be read with table  
reads. The Configuration registers may be read and  
written with the table read and table write instructions.  
Note: Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code  
protection bits are only set to ‘1’ by a full  
chip erase or block erase function. The full  
chip erase and block erase functions can  
only be initiated via ICSP or an external  
programmer.  
In user mode, the CPn bits have no direct effect. CPn  
bits inhibit external reads and writes. A block of user  
memory may be protected from table writes if the  
WRTn configuration bit is ‘0’. The EBTRn bits control  
table reads. For a block of user memory with the  
EBTRn bit set to ‘0’, a table read instruction that  
executes from within that block is allowed to read. A  
2005 Microchip Technology Inc.  
DS39612B-page 271  
PIC18F6525/6621/8525/8621  
FIGURE 24-4:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
000800h  
WRTB,EBTRB = 11  
TBLPTR = 000FFFh  
PC = 003FFEh  
WRT0,EBTR0 = 01  
WRT1,EBTR1 = 11  
TBLWT*  
003FFFh  
004000h  
007FFFh  
008000h  
TBLWT*  
WRT2,EBTR2 = 11  
WRT3,EBTR3 = 11  
PC = 008FFEh  
00BFFFh  
00C000h  
00FFFFh  
Results: All table writes disabled to Block n whenever WRTn = 0.  
FIGURE 24-5:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
000800h  
WRTB,EBTRB = 11  
TBLPTR = 000FFFh  
WRT0,EBTR0 = 10  
003FFFh  
004000h  
TBLRD*  
PC = 004FFEh  
WRT1,EBTR1 = 11  
007FFFh  
008000h  
WRT2,EBTR2 = 11  
WRT3,EBTR3 = 11  
00BFFFh  
00C000h  
00FFFFh  
Results: All table reads from external blocks to Block n are disabled whenever EBTRn = 0.  
TABLAT register returns a value of ‘0’.  
DS39612B-page 272  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 24-6:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Program Memory Configuration Bit Settings  
000000h  
0007FFh  
000800h  
WRTB,EBTRB = 11  
WRT0,EBTR0 = 10  
TBLPTR = 000FFFh  
PC = 003FFEh  
TBLRD*  
003FFFh  
004000h  
WRT1,EBTR1 = 11  
007FFFh  
008000h  
WRT2,EBTR2 = 11  
WRT3,EBTR3 = 11  
00BFFFh  
00C000h  
00FFFFh  
Results: Table reads permitted within Block n, even when EBTRBn = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
24.4.2  
DATA EEPROM CODE  
PROTECTION  
24.4.3  
CONFIGURATION REGISTER  
PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits external writes to data EEPROM. The  
CPU can continue to read data EEPROM regardless of  
the protection bit settings.  
The Configuration registers can be write-protected.  
The WRTC bit controls protection of the Configuration  
registers. In user mode, the WRTC bit is readable only.  
WRTC can only be written via ICSP or an external  
programmer.  
2005 Microchip Technology Inc.  
DS39612B-page 273  
PIC18F6525/6621/8525/8621  
24.5 ID Locations  
24.8 Low-Voltage ICSP Programming  
The LVP bit in Configuration register, CONFIG4L,  
enables Low-Voltage ICSP programming. This mode  
allows the microcontroller to be programmed via ICSP  
using a VDD source in the operating voltage range. This  
only means that VPP does not have to be brought to  
VIHH, but can instead be left at the normal operating  
voltage. In this mode, the RB5/KBI1/PGM pin is dedi-  
cated to the programming function and ceases to be a  
general purpose I/O pin. During programming, VDD is  
applied to the MCLR/VPP pin. To enter Programming  
mode, VDD must be applied to the RB5/KBI1/PGM pin  
provided the LVP bit is set. The LVP bit defaults to a ‘1’  
from the factory.  
Eight memory locations (200000h-200007h) are desig-  
nated as ID locations where the user can store check-  
sum or other code identification numbers. These  
locations are accessible during normal execution  
through the TBLRDand TBLWTinstructions, or during  
program/verify. The ID locations can be read when the  
device is code-protected.  
24.6  
In-Circuit Serial Programming™  
(ICSP™)  
PIC18F6525/6621/8525/8621 microcontrollers can be  
serially programmed while in the end application circuit.  
This is simply done with two lines for clock and data  
and three other lines for power, ground and the  
programming voltage. This allows customers to  
manufacture boards with unprogrammed devices and  
then program the microcontroller just before shipping  
the product. This also allows the most recent firmware  
or a custom firmware to be programmed.  
Note 1: The High-Voltage Programming mode is  
always available, regardless of the state  
of the LVP bit, by applying VIHH to the  
MCLR pin.  
2: While in Low-Voltage ICSP mode, the  
RB5 pin can no longer be used as a  
general purpose I/O pin and should be  
held low during normal operation.  
24.7 In-Circuit Debugger  
3: When using Low-Voltage ICSP Program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 5 in the TRISB register  
must be cleared to disable the pull-up on  
RB5 and ensure the proper operation of  
the device.  
When the DEBUG bit in Configuration register,  
CONFIG4L, is programmed to a ‘0’, the in-circuit  
debugger functionality is enabled. This function allows  
simple debugging functions when used with MPLAB®  
IDE. When the microcontroller has this feature  
enabled, some of the resources are not available for  
general use. Table 24-4 shows which features are  
consumed by the background debugger.  
4: If the device Master Clear is disabled,  
verify that either of the following is done to  
ensure proper entry into ICSP mode:  
a.) disable Low-Voltage Programming  
(CONFIG4L<2> = 0); or  
TABLE 24-4: DEBUGGER RESOURCES  
I/O pins  
RB6, RB7  
b.) make certain that RB5/KBI1/PGM is  
held low during entry into ICSP.  
Stack  
2 levels  
512 bytes  
10 bytes  
If Low-Voltage Programming mode is not used, the LVP  
bit can be programmed to a ‘0’ and RB5/KBI1/PGM  
becomes a digital I/O pin. However, the LVP bit may  
only be programmed when programming is entered  
with VIHH on MCLR/VPP.  
Program Memory  
Data Memory  
To use the in-circuit debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, GND,  
RB7 and RB6. This will interface to the in-circuit debug-  
ger module available from Microchip or one of the third  
party development tool companies.  
It should be noted that once the LVP bit is programmed  
to ‘0’, only the High-Voltage Programming mode is  
available and only High-Voltage Programming mode  
can be used to program the device.  
When using Low-Voltage ICSP, the part must be  
supplied 4.5V to 5.5V if a bulk erase will be executed.  
This includes reprogramming of the code-protect bits  
from an on-state to off-state. For all other cases of Low-  
Voltage ICSP, the part may be programmed at the  
normal operating voltage. This means unique user IDs  
or user code can be reprogrammed or added.  
DS39612B-page 274  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
The literal instructions may use some of the following  
operands:  
25.0 INSTRUCTION SET SUMMARY  
The PIC18 instruction set adds many enhancements to  
the previous PICmicro® instruction sets, while  
maintaining an easy migration from these PICmicro  
instruction sets.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
Most instructions are a single program memory word  
(16 bits), but there are three instructions that require  
two program memory locations.  
• No operand required  
(specified by ‘—’)  
The control instructions may use some of the following  
operands:  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
• A program memory address (specified by ‘n’)  
• The mode of the call or return instructions  
(specified by ‘s’)  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
• No operand required  
(specified by ‘—’)  
All instructions are a single word, except for three  
double-word instructions. These three instructions  
were made double-word instructions so that all the  
required information is available in these 32 bits. In the  
second word, the 4 MSbs are ‘1’s. If this second word  
is executed as an instruction (by itself), it will execute  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 25-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 25-1 shows the opcode field  
descriptions.  
Most byte-oriented instructions have three operands:  
All single-word instructions are executed in a single  
instruction cycle unless a conditional test is true, or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
1. The file register (specified by ‘f’)  
2. The destination of the result  
(specified by ‘d’)  
3. The accessed memory  
(specified by ‘a’)  
The file register designator ‘f’ specifies which file  
register is to be used by the instruction.  
The double-word instructions execute in two instruction  
cycles.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If ‘d’ is zero, the  
result is placed in the WREG register. If ‘d’ is one, the  
result is placed in the file register specified in the  
instruction.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true or the program counter is changed as a result of an  
instruction, the instruction execution time is 2 µs.  
Two-word branch instructions (if true) would take 3 µs.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Figure 25-1 shows the general formats that the  
instructions can have.  
2. The bit in the file register  
(specified by ‘b’)  
All examples use the format ‘nnh’ to represent a hexa-  
decimal number, where ‘h’ signifies a hexadecimal  
digit.  
3. The accessed memory  
(specified by ‘a’)  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register desig-  
nator ‘f’ represents the number of the file in which the  
bit is located.  
The Instruction Set Summary, shown in Table 25-2,  
lists the instructions recognized by the Microchip  
MPASMTM Assembler.  
Section 25.1 “Instruction Set” provides a description  
of each instruction.  
2005 Microchip Technology Inc.  
DS39612B-page 275  
PIC18F6525/6621/8525/8621  
TABLE 25-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7).  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination either the WREG register or the specified register file location.  
8-bit register file address (0x00 to 0xFF).  
fs  
12-bit register file address (0x000 to 0xFFF). This is the source address.  
12-bit register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
fd  
k
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for call/  
branch and return instructions.  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or unchanged.  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’)  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
TABLAT  
TOS  
21-bit Table Pointer (points to a Program Memory location).  
8-bit Table Latch.  
Top-of-Stack.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Global Interrupt Enable bit.  
Watchdog Timer.  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit.  
PD  
Power-down bit.  
C, DC, Z, OV, N  
ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
Optional.  
[
]
)
(
Contents.  
< >  
Assigned to.  
Register bit field.  
In the set of.  
italics  
User defined term (font is courier).  
DS39612B-page 276  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 25-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
OPCODE f (FILE #)  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
d
a
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
2005 Microchip Technology Inc.  
DS39612B-page 277  
PIC18F6525/6621/8525/8621  
TABLE 25-2: PIC18FXXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
1
1
1
1
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CPFSEQ  
CPFSGT  
CPFSLT  
DECF  
f, a  
f, a  
f, a  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ  
DCFSNZ  
INCF  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word  
fd (destination)2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
1, 2  
RRNCF  
SETF  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap nibbles in f  
f, a Test f, skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, b, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39612B-page 278  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
CALL  
Call subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
1
1
1
1
2
1
2
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device Reset  
Return from interrupt enable  
s
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
2005 Microchip Technology Inc.  
DS39612B-page 279  
PIC18F6525/6621/8525/8621  
TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
AND literal with WREG  
Inclusive OR literal with WREG  
Move literal (12-bit) 2nd word  
to FSRx 1st word  
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
1
1
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39612B-page 280  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
25.1 Instruction Set  
ADDLW  
Add Literal to W  
ADDWF  
Add W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a] f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are added to the  
8-bit literal ‘k’ and the result is placed in  
W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank  
will be selected. If ‘a’ is ‘1’, the BSR is  
used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Q Cycle Activity:  
Q1  
Example:  
ADDLW  
0x15  
Q2  
Q3  
Q4  
Before Instruction  
0x10  
After Instruction  
0x25  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
=
W
=
Example:  
ADDWF  
REG, 0, 0  
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
After Instruction  
W
REG  
=
=
0xD9  
0xC2  
2005 Microchip Technology Inc.  
DS39612B-page 281  
PIC18F6525/6621/8525/8621  
ADDWFC  
Add W and Carry bit to f  
ANDLW  
AND Literal with W  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are ANDed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data memory  
location ‘f’. If ‘d’ is ‘0’, the result is placed  
in W. If ‘d’ is ‘1’, the result is placed in  
data memory location ‘f’. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Example:  
ANDLW  
0x5F  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
W
=
0xA3  
0x03  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
Example:  
ADDWFC  
REG, 0, 1  
Before Instruction  
Carry bit =  
1
REG  
W
=
=
0x02  
0x4D  
After Instruction  
Carry bit =  
0
REG  
W
=
=
0x02  
0x50  
DS39612B-page 282  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
ANDWF  
AND W with f  
BC  
Branch if Carry  
Syntax:  
[ label ] ANDWF  
f [,d [,a]  
Syntax:  
[ label ] BC  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ‘1’, then the program  
will branch.  
Description:  
The contents of W are ANDed with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘d’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden (default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
Q1  
Q2  
Q3  
Q4  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Example:  
ANDWF  
REG, 0, 0  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
W
=
=
0x17  
0xC2  
If No Jump:  
Q1  
REG  
Q2  
Q3  
Q4  
After Instruction  
W
REG  
=
=
0x02  
0xC2  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BC  
5
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
PC  
=
=
=
=
1;  
address (HERE + 12)  
0;  
address (HERE + 2)  
If Carry  
PC  
2005 Microchip Technology Inc.  
DS39612B-page 283  
PIC18F6525/6621/8525/8621  
BCF  
Bit Clear f  
BN  
Branch if Negative  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
[ label ] BN  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
Description:  
Bit ‘b’ in register ‘f’ is cleared. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Example:  
BCF  
FLAG_REG, 7, 0  
Before Instruction  
FLAG_REG  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
=
=
0xC7  
0x47  
After Instruction  
FLAG_REG  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
If Negative  
PC  
DS39612B-page 284  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if Carry bit is ‘0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if Negative bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
None  
1110  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
None  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the program  
will branch.  
Description:  
If the Negative bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Negative  
PC  
If Carry  
PC  
=
0;  
=
=
=
=
0;  
=
=
=
address (Jump)  
1;  
address (HERE + 2)  
address (Jump)  
1;  
address (HERE + 2)  
If Carry  
PC  
If Negative  
PC  
2005 Microchip Technology Inc.  
DS39612B-page 285  
PIC18F6525/6621/8525/8621  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if Zero bit is ‘0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if Overflow bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
None  
1110  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
1110  
0101  
nnnn  
nnnn  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
Description:  
If the Zero bit is ‘0’, then the  
program will branch.  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
After Instruction  
=
=
=
=
0;  
If Zero  
PC  
=
0;  
address (Jump)  
1;  
address (HERE + 2)  
=
=
=
address (Jump)  
1;  
address (HERE + 2)  
If Overflow  
PC  
If Zero  
PC  
DS39612B-page 286  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
BRA  
Unconditional Branch  
BSF  
Bit Set f  
Syntax:  
[ label ] BRA  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Add the 2’s complement number ‘2n’ to  
the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set. If ‘a’ is ‘0’,  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
BSF  
FLAG_REG, 7, 1  
0x0A  
0x8A  
Before Instruction  
FLAG_REG  
Example:  
HERE  
BRA Jump  
=
=
Before Instruction  
PC  
After Instruction  
PC  
After Instruction  
FLAG_REG  
=
address (HERE)  
address (Jump)  
=
2005 Microchip Technology Inc.  
DS39612B-page 287  
PIC18F6525/6621/8525/8621  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the next  
instruction is skipped.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the next  
instruction is skipped.  
If bit ‘b’ is ‘0’, then the next instruction  
fetched during the current instruction  
execution is discarded and a NOPis  
executed instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
If bit ‘b’ is ‘1’, then the next instruction  
fetched during the current instruction  
execution, is discarded and a NOPis  
executed instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note:  
3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
If FLAG<1>  
PC  
After Instruction  
If FLAG<1>  
PC  
=
=
=
=
0;  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
address (FALSE)  
1;  
address (TRUE)  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
DS39612B-page 288  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if Overflow bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted. If ‘a’ is ‘0’, the Access Bank will  
be selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected as  
per the BSR value (default).  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Example:  
BTG  
PORTC, 4, 0  
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
=
0111 0101 [0x75]  
0110 0101 [0x65]  
If No Jump:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BOV Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
If Overflow  
PC  
2005 Microchip Technology Inc.  
DS39612B-page 289  
PIC18F6525/6621/8525/8621  
BZ  
Branch if Zero  
CALL  
Subroutine Call  
Syntax:  
[ label ] BZ  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS;  
k PC<20:1>  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS;  
(STATUS) STATUSS;  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the program  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return address  
(PC + 4) is pushed onto the return  
stack. If ‘s’ = 1, the W, STATUS and  
Words:  
Cycles:  
1
1(2)  
BSR registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs (default). Then, the  
20-bit value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
‘k’<7:0>,  
stack  
‘k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
PC  
After Instruction  
=
address (HERE)  
1;  
address (Jump)  
0;  
Example:  
HERE  
CALL THERE,1  
If Zero  
PC  
=
=
=
=
Before Instruction  
PC  
After Instruction  
If Zero  
PC  
=
address (HERE)  
address (HERE + 2)  
PC  
=
address (THERE)  
TOS  
WS  
BSRS  
=
=
=
address (HERE + 4)  
W
BSR  
STATUSS=  
STATUS  
DS39612B-page 290  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
000h WDT;  
000h WDT postscaler;  
1 TO;  
Operation:  
000h f;  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ‘a’ is ‘0’, the Access Bank will  
be selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits, TO  
and PD, are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Example:  
CLRF  
FLAG_REG,1  
Example:  
CLRWDT  
Before Instruction  
FLAG_REG  
Before Instruction  
=
=
0x5A  
0x00  
WDT Counter  
=
?
After Instruction  
FLAG_REG  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
=
=
=
0x00  
0
1
1
PD  
2005 Microchip Technology Inc.  
DS39612B-page 291  
PIC18F6525/6621/8525/8621  
COMF  
Complement f  
CPFSEQ  
Compare f with W, Skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W);  
Operation:  
(f) dest  
skip if (f) = (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Example:  
COMF  
REG, 0, 0  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
REG  
=
0x13  
After Instruction  
If skip:  
Q1  
REG  
W
=
=
0x13  
0xEC  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG, 0  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
W
REG  
=
=
=
HERE  
?
?
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
=
W;  
Address (EQUAL)  
W;  
Address (NEQUAL)  
DS39612B-page 292  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
CPFSGT  
Compare f with W, Skip if f > W  
CPFSLT  
Compare f with W, Skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) − (W);  
Operation:  
(f) – (W);  
skip if (f) > (W)  
skip if (f) < (W)  
(unsigned comparison)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of the W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden (default).  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip and followed by 2-word instruction:  
No  
No  
No  
No  
operation  
Q1  
Q2  
Q3  
Q4  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
Example:  
HERE  
CPFSGT REG, 0  
NGREATER  
GREATER  
:
:
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Before Instruction  
After Instruction  
PC  
W
=
=
Address (HERE)  
?
If REG  
PC  
<
W;  
=
=
Address (LESS)  
W;  
After Instruction  
If REG  
PC  
If REG  
PC  
If REG  
PC  
>
W;  
Address (NLESS)  
=
=
Address (GREATER)  
W;  
Address (NGREATER)  
2005 Microchip Technology Inc.  
DS39612B-page 293  
PIC18F6525/6621/8525/8621  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[ label ] DAW  
Syntax:  
[ label ] DECF f [,d [,a]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
Operation:  
(f) – 1 dest  
(W<3:0>) W<3:0>  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> > 9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
else  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
(W<7:4>) W<7:4>  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in W  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
DECF  
CNT,  
1, 0  
Decode  
Read  
register W  
Process  
Data  
Write  
W
Before Instruction  
CNT  
Z
=
=
0x01  
0
Example 1:  
DAW  
After Instruction  
Before Instruction  
CNT  
Z
=
=
0x00  
1
W
C
DC  
=
=
=
0xA5  
0
0
After Instruction  
W
=
0x05  
C
DC  
=
=
1
0
Example 2:  
Before Instruction  
W
C
DC  
=
=
=
0xCE  
0
0
After Instruction  
W
=
0x34  
C
DC  
=
=
1
0
DS39612B-page 294  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
DECFSZ  
Decrement f, Skip if 0  
DCFSNZ  
Decrement f, Skip if Not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest;  
Operation:  
(f) – 1 dest;  
skip if result = 0  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value (default).  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
=
Address (HERE)  
=
?
After Instruction  
TEMP  
CNT  
If CNT  
PC  
=
CNT – 1  
0;  
Address (CONTINUE)  
0;  
=
=
=
=
TEMP – 1,  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
=
=
=
If TEMP  
PC  
If TEMP  
PC  
If CNT  
PC  
Address (HERE + 2)  
2005 Microchip Technology Inc.  
DS39612B-page 295  
PIC18F6525/6621/8525/8621  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO  
0 k 1048575  
k PC<20:1>  
None  
k
Syntax:  
[ label ] INCF f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional branch  
Description:  
The contents of register ‘f’ are  
anywhere within entire 2-Mbyte memory  
range. The 20-bit value ‘k’ is loaded into  
PC<20:1>. GOTOis always a  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
two-cycle instruction.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Example:  
INCF  
CNT, 1, 0  
Example:  
GOTO THERE  
Before Instruction  
After Instruction  
CNT  
Z
=
0xFF  
PC  
=
Address (THERE)  
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
Z
C
=
0x00  
=
=
=
1
1
1
DC  
DS39612B-page 296  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
INCFSZ  
Increment f, Skip if 0  
INFSNZ  
Increment f, Skip if Not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]  
Syntax:  
[ label ] INFSNZ f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest;  
skip if result = 0  
Operation:  
(f) + 1 dest;  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value (default).  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
=
=
=
=
=
=
2005 Microchip Technology Inc.  
DS39612B-page 297  
PIC18F6525/6621/8525/8621  
IORLW  
Inclusive OR Literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW  
0 k 255  
(W) .OR. k W  
N, Z  
k
Syntax:  
[ label ] IORWF f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
eight-bit literal ‘k’. The result is placed  
in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Example:  
IORLW  
0x35  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
0x9A  
After Instruction  
0xBF  
W
=
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
=
Example:  
IORWF RESULT, 0, 1  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS39612B-page 298  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
k kkk  
11  
kkkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into the  
file select register pointed to by ‘f’.  
Description:  
The contents of register ‘f’ are moved to  
a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
Location ‘f’ can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value  
(default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
Words:  
Cycles:  
1
1
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Q Cycle Activity:  
Q1  
Example:  
LFSR 2, 0x3AB  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write W  
After Instruction  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
Example:  
MOVF  
REG, 0, 0  
Before Instruction  
REG  
W
=
=
0x22  
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
2005 Microchip Technology Inc.  
DS39612B-page 299  
PIC18F6525/6621/8525/8621  
MOVFF  
Move f to f  
MOVLB  
Move Literal to Low Nibble in BSR  
Syntax:  
[ label ] MOVFF f ,f  
Syntax:  
[ label ] MOVLB  
0 k 255  
k BSR  
k
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
None  
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The 8-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
s
d
Words:  
Cycles:  
1
1
Description:  
The contents of source register ‘f ’ are  
s
moved to destination register ‘f ’.  
d
Location of source ‘f ’ can be anywhere  
in the 4096-byte data space (000h to  
s
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
FFFh) and location of destination ‘f ’  
d
Decode  
Read literal  
‘k’  
Process  
Data  
Write  
literal ‘k’ to  
BSR  
can also be anywhere from 000h to  
FFFh.  
Either source or destination can be W  
(a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Example:  
MOVLB  
5
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
=
=
0x33  
0x33  
REG2  
DS39612B-page 300  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
MOVLW  
Move Literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW  
0 k 255  
k W  
k
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight-bit literal ‘k’ is loaded into W.  
Description:  
Move data from W to register ‘f’.  
1
1
Location ‘f’ can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value  
(default).  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Example:  
MOVLW  
0x5A  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x5A  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG, 0  
Before Instruction  
W
REG  
=
=
0x4F  
0xFF  
After Instruction  
W
REG  
=
=
0x4F  
0x4F  
2005 Microchip Technology Inc.  
DS39612B-page 301  
PIC18F6525/6621/8525/8621  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried  
out between the contents of W and  
the 8-bit literal ‘k’. The 16-bit result is  
placed in PRODH:PRODL register  
pair. PRODH contains the high byte.  
W is unchanged.  
None of the Status flags are affected.  
Note that neither overflow nor carry  
is possible in this operation. A zero  
result is possible but not detected.  
Description:  
An unsigned multiplication is carried out  
between the contents of W and the  
register file location ‘f’. The 16-bit result  
is stored in the PRODH:PRODL  
register pair. PRODH contains the high  
byte.  
Both W and ‘f’ are unchanged.  
None of the Status flags are affected.  
Note that neither overflow nor carry is  
possible in this operation. A zero result  
is possible but not detected. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
Words:  
Cycles:  
1
1
registers  
PRODH:  
PRODL  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
MULLW  
0xC4  
0xE2  
?
?
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Before Instruction  
registers  
PRODH:  
PRODL  
W
PRODH  
PRODL  
=
=
=
After Instruction  
W
Example:  
MULWF  
REG, 1  
=
=
=
0xE2  
0xAD  
0x08  
PRODH  
PRODL  
Before Instruction  
W
REG  
PRODH  
PRODL  
=
=
=
=
0xC4  
0xB5  
?
?
After Instruction  
W
=
=
=
=
0xC4  
0xB5  
0x8A  
0x94  
REG  
PRODH  
PRODL  
DS39612B-page 302  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location ‘f’ is negated using 2’s  
Description:  
Words:  
No operation.  
complement. The result is placed in the  
data memory location ‘f’. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
operation  
Q4  
Decode  
No  
No  
operation  
Words:  
Cycles:  
1
1
operation  
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
=
2005 Microchip Technology Inc.  
DS39612B-page 303  
PIC18F6525/6621/8525/8621  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(TOS) bit bucket  
None  
(PC + 2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implementing a  
software stack by modifying TOS and  
then pushing it onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
PUSH  
No  
No  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PC + 2 onto  
return stack  
operation  
operation  
Example:  
POP  
Example:  
PUSH  
GOTO  
NEW  
Before Instruction  
Before Instruction  
TOS  
Stack (1 level down)=  
TOS  
PC  
=
=
00345Ah  
000124h  
=
0031A2h  
014332h  
After Instruction  
After Instruction  
TOS  
PC  
TOS  
=
=
000126h  
000126h  
00345Ah  
=
=
014332h  
NEW  
Stack (1 level down)=  
PC  
DS39612B-page 304  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS;  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that are  
affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number ‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
No  
No  
Reset  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
PC  
TOS  
=
=
Address (Jump)  
Address (HERE + 2)  
2005 Microchip Technology Inc.  
DS39612B-page 305  
PIC18F6525/6621/8525/8621  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
[ label ] RETLW  
0 k 255  
k
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC;  
k W;  
1 GIE/GIEH or PEIE/GIEL  
if s = 1  
(TOS) PC;  
PCLATU, PCLATH are unchanged  
(WS) W;  
(STATUSS) STATUS;  
(BSRS) BSR;  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged  
Description:  
W is loaded with the eight-bit literal ‘k’.  
The program counter is loaded from the  
top of the stack (the return address).  
The high address latch (PCLATH)  
remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers WS,  
STATUSS and BSRS are loaded into  
their corresponding registers, W,  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Pop PC  
from stack,  
Write to W  
STATUS and BSR. If ‘s’ = 0, no update  
of these registers occurs (default).  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
2
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
Pop PC  
from stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
Example:  
RETFIE  
1
After Interrupt  
:
PC  
W
BSR  
STATUS  
=
=
=
=
=
TOS  
WS  
BSRS  
STATUSS  
1
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
GIE/GIEH, PEIE/GIEL  
After Instruction  
W
=
value of kn  
DS39612B-page 306  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
[ label ]  
RLCF f [,d [,a]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC;  
if s = 1  
(WS) W;  
Operation:  
(f<n>) dest<n + 1>;  
(f<7>) C;  
(C) dest<0>  
(STATUSS) STATUS;  
(BSRS) BSR;  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry flag.  
If ‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’ = 1, the contents of the shadow  
registers WS, STATUSS and BSRS are  
loaded into their corresponding  
registers, W, STATUS and BSR. If  
‘s’ = 0, no update of these registers  
occurs (default).  
register f  
C
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
Decode  
No  
operation  
Process  
Data  
Pop PC  
from stack  
Decode  
Write to  
destination  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
RLCF  
REG, 0, 0  
Before Instruction  
REG  
C
=
=
1110 0110  
0
Example:  
RETURN  
After Interrupt  
After Instruction  
PC = TOS  
REG  
W
C
=
=
=
1110 0110  
1100 1100  
1
2005 Microchip Technology Inc.  
DS39612B-page 307  
PIC18F6525/6621/8525/8621  
RLNCF  
Rotate Left f (No Carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ]  
RLNCF f [,d [,a]  
Syntax:  
[ label ] RRCF f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>;  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>;  
(f<0>) C;  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in W.  
If ‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ is ‘1’, then  
the bank will be selected as per the  
BSR value (default).  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
Example:  
RRCF  
REG, 0, 0  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
0111 0011  
0
DS39612B-page 308  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
RRNCF  
Rotate Right f (No Carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n – 1>;  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ is ‘1’, then the bank will  
be selected as per the BSR value  
(default).  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG,1  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
REG  
After Instruction  
REG  
=
=
0x5A  
0xFF  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
2005 Microchip Technology Inc.  
DS39612B-page 309  
PIC18F6525/6621/8525/8621  
SLEEP  
Enter Sleep Mode  
SUBFWB  
Subtract f from W with Borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT;  
0 WDT postscaler;  
1 TO;  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ is ‘1’, then  
the bank will be selected as per the  
BSR value (default).  
Description:  
The Power-Down status bit (PD) is  
cleared. The Time-out status bit (TO)  
is set. Watchdog Timer and its  
postscaler are cleared.  
The processor is put into Sleep mode  
with the oscillator stopped.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
SLEEP  
Example 1:  
SUBFWB  
REG, 1, 0  
Before Instruction  
TO  
PD  
=
=
?
?
Before Instruction  
REG  
W
C
=
=
=
3
2
1
After Instruction  
TO  
PD  
=
=
1 †  
0
After Instruction  
REG  
W
C
Z
N
=
FF  
2
0
0
1
=
=
=
=
If WDT causes wake-up, this bit is cleared.  
; result is negative  
Example 2:  
Before Instruction  
SUBFWB  
REG, 0, 0  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
Z
N
=
2
3
1
0
=
=
=
=
0
; result is positive  
Example 3:  
Before Instruction  
SUBFWB  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
Z
N
=
0
2
1
1
0
=
=
=
=
; result is zero  
DS39612B-page 310  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
SUBLW  
Subtract W from Literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ] SUBLW  
0 k 255  
k
[ label ] SUBWF f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ is ‘1’, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example 1:  
SUBLW 0x02  
Words:  
Cycles:  
1
1
Before Instruction  
W
C
=
=
1
?
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
C
Z
=
1
=
=
=
1
0
0
; result is positive  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
N
Example 1:  
SUBWF  
REG, 1, 0  
Example 2:  
Before Instruction  
SUBLW 0x02  
Before Instruction  
REG  
W
C
=
=
=
3
2
?
W
C
=
=
2
?
After Instruction  
After Instruction  
W
C
Z
=
0
REG  
W
C
Z
N
=
1
2
1
0
0
=
=
=
1
1
0
; result is zero  
=
=
=
=
; result is positive  
N
Example 3:  
Before Instruction  
SUBLW 0x02  
Example 2:  
Before Instruction  
SUBWF  
REG, 0, 0  
W
C
=
=
3
?
REG  
W
C
=
=
=
2
2
?
After Instruction  
W
C
Z
=
FF ; (2’s complement)  
=
=
=
0
0
1
; result is negative  
After Instruction  
REG  
W
C
Z
N
=
2
0
1
1
0
N
=
=
=
=
; result is zero  
Example 3:  
SUBWF  
REG, 1, 0  
Before Instruction  
REG  
W
C
=
=
=
1
2
?
After Instruction  
REG  
W
C
Z
N
=
FFh ;(2’s complement)  
2
=
=
=
=
0
0
1
; result is negative  
2005 Microchip Technology Inc.  
DS39612B-page 311  
PIC18F6525/6621/8525/8621  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
[ label ] SWAPF f [,d [,a]  
[ label ] SUBWFB f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>;  
(f<7:4>) dest<3:0>  
Operation:  
(f) – (W) – (C) dest  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0101  
10da  
ffff  
ffff  
0011  
10da  
ffff  
ffff  
Description:  
Subtract W and the Carry flag (borrow)  
from register ‘f’ (2’s complement method).  
If ‘d’ is ‘0’, the result is stored in W. If ‘d’ is  
1’, the result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank will  
be selected, overriding the BSR value. If  
‘a’ is ‘1’, then the bank will be selected as  
per the BSR value (default).  
Description:  
The upper and lower nibbles of register  
‘f’ are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register ‘f’ (default). If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Before Instruction  
Example:  
SWAPF  
REG, 1, 0  
REG  
W
C
=
=
=
0x19  
0x0D  
1
(0001 1001)  
(0000 1101)  
Before Instruction  
REG  
=
0x53  
0x35  
After Instruction  
After Instruction  
REG  
=
REG  
W
C
Z
N
=
0x0C  
0x0D  
1
0
0
(0000 1011)  
(0000 1101)  
=
=
=
=
; result is positive  
Example 2:  
Before Instruction  
SUBWFB REG, 0, 0  
REG  
W
C
=
=
=
0x1B  
0x1A  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
C
=
0x1B  
(0001 1011)  
=
=
=
=
0x00  
1
1
0
Z
; result is zero  
N
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
W
C
=
=
=
0x03  
0x0E  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
0xF5  
(1111 0100)  
; [2’s comp]  
W
C
Z
=
=
=
=
0x0E  
(0000 1101)  
0
0
1
N
; result is negative  
DS39612B-page 312  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
Syntax:  
[ label ]  
TBLRD ( *; *+; *-; +*)  
Example 1:  
TBLRD *+ ;  
Operands:  
Operation:  
None  
Before Instruction  
if TBLRD*  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change  
if TBLRD*+  
After Instruction  
(Prog Mem (TBLPTR)) TABLAT;  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
(TBLPTR) + 1 TBLPTR  
if TBLRD*-  
Example 2:  
TBLRD +* ;  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1 TBLPTR  
Before Instruction  
if TBLRD+*  
TABLAT  
TBLPTR  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
=
=
=
=
0xAA  
(TBLPTR) + 1 TBLPTR;  
0x01A357  
0x12  
(Prog Mem (TBLPTR)) TABLAT  
0x34  
Status Affected: None  
After Instruction  
Encoding:  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range.  
TBLPTR[0] = 0: Least Significant Byte of  
Program Memory Word  
TBLPTR[0] = 1: Most Significant Byte of  
Program Memory Word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
2005 Microchip Technology Inc.  
DS39612B-page 313  
PIC18F6525/6621/8525/8621  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
[ label ] TBLWT ( *; *+; *-; +*)  
Words:  
Cycles:  
1
2
Operands:  
Operation:  
None  
if TBLWT*  
Q Cycle Activity:  
Q1  
(TABLAT) Holding Register;  
Q2  
Q3  
Q4  
TBLPTR – No Change  
if TBLWT*+  
Decode  
No  
operation  
No  
operation  
No  
operation  
(TABLAT) Holding Register;  
(TBLPTR) + 1 TBLPTR  
if TBLWT*-  
No  
No  
No  
operation  
No  
(TABLAT) Holding Register;  
operation operation  
(Read  
operation  
(Write to  
Holding  
Register )  
(TBLPTR) – 1 TBLPTR  
if TBLWT+*  
TABLAT)  
(TBLPTR) + 1 TBLPTR;  
(TABLAT) Holding Register  
Example 1:  
Before Instruction  
TBLWT *+;  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x00A356)  
=
=
0x55  
0x00A356  
=
0xFF  
After Instructions (table write completion)  
TABLAT  
=
=
0x55  
Description:  
This instruction uses the 3 LSBs of TBLPTR  
to determine which of the 8 holding registers  
the TABLAT is written to. The holding  
registers are used to program the contents  
of Program Memory (P.M.). (Refer to  
Section 5.0 “Flash Program Memory” for  
additional details on programming Flash  
memory.)  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-MByte address range. The LSB of  
the TBLPTR selects which byte of the  
program memory location to access.  
TBLPTR[0] = 0: Least Significant Byte of  
Program Memory Word  
TBLPTR  
0x00A357  
HOLDING REGISTER  
(0x00A356)  
=
0x55  
Example 2:  
Before Instruction  
TBLWT +*;  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389A  
=
=
0xFF  
0xFF  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389B  
=
=
0xFF  
0x34  
TBLPTR[0] = 1: Most Significant Byte of  
Program Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
DS39612B-page 314  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
TSTFSZ  
Test f, Skip if 0  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW  
0 k 255  
k
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction, fetched  
during the current instruction execution  
is discarded and a NOPis executed,  
making this a two-cycle instruction. If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
Example:  
XORLW 0xAF  
by a 2-word instruction.  
Before Instruction  
0xB5  
After Instruction  
0x1A  
Q Cycle Activity:  
Q1  
W
=
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
W
=
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
If CNT  
PC  
If CNT  
PC  
=
0x00,  
=
=
Address (ZERO)  
0x00,  
Address (NZERO)  
2005 Microchip Technology Inc.  
DS39612B-page 315  
PIC18F6525/6621/8525/8621  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in the register ‘f’ (default). If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS39612B-page 316  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
26.1 MPLAB Integrated Development  
Environment Software  
26.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• An interface to debugging tools  
- simulator  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor with color coded context  
• A multiple project manager  
- MPLAB C30 C Compiler  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB SIM Software Simulator  
- MPLAB dsPIC30 Software Simulator  
• Emulators  
• High-level source code debugging  
• Mouse over variable inspection  
• Extensive on-line help  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
- MPLAB ICD 2  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools  
(automatically updates all project information)  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
• Low-Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM.netTM Demonstration Board  
- PICDEM 2 Plus Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 4 Demonstration Board  
- PICDEM 17 Demonstration Board  
- PICDEM 18R Demonstration Board  
- PICDEM LIN Demonstration Board  
- PICDEM USB Demonstration Board  
• Evaluation Kits  
• Debug using:  
- source files (assembly or C)  
- mixed assembly and C  
- machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increasing flexibility  
and power.  
26.2 MPASM Assembler  
The MPASM assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
®
- KEELOQ Evaluation and Programming Tools  
- PICDEM MSC  
- microID® Developer Kits  
- CAN  
The MPASM assembler generates relocatable object  
files for the MPLINK object linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol ref-  
erence, absolute LST files that contain source lines and  
generated machine code and COFF files for  
debugging.  
- PowerSmart® Developer Kits  
- Analog  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects  
• User defined macros to streamline assembly code  
• Conditional assembly for multi-purpose source  
files  
• Directives that allow complete control over the  
assembly process  
2005 Microchip Technology Inc.  
DS39612B-page 317  
PIC18F6525/6621/8525/8621  
26.3 MPLAB C17 and MPLAB C18  
C Compilers  
26.6 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPLAB C17 and MPLAB C18 Code Development  
MPLAB ASM30 assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 compiler uses the  
assembler to produce it’s object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
26.4 MPLINK Object Linker/  
MPLIB Object Librarian  
• Rich directive set  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
• Flexible macro language  
• MPLAB IDE compatibility  
26.7 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any pin. The execu-  
tion can be performed in Single-Step, Execute Until  
Break or Trace mode.  
The MPLIB object librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and MPLAB C18  
C Compilers, as well as the MPASM assembler. The  
software simulator offers the flexibility to develop and  
debug code outside of the laboratory environment,  
making it an excellent, economical software  
development tool.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
26.5 MPLAB C30 C Compiler  
26.8 MPLAB SIM30 Software Simulator  
The MPLAB C30 C compiler is a full-featured, ANSI  
compliant, optimizing compiler that translates standard  
ANSI C programs into dsPIC30F assembly language  
source. The compiler also supports many command  
line options and language extensions to take full  
advantage of the dsPIC30F device hardware capabili-  
ties and afford fine control of the compiler code  
generator.  
The MPLAB SIM30 software simulator allows code  
development in a PC hosted environment by simulating  
the dsPIC30F series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any of the pins.  
The MPLAB SIM30 simulator fully supports symbolic  
debugging using the MPLAB C30 C Compiler and  
MPLAB ASM30 assembler. The simulator runs in either  
a Command Line mode for automated tasks, or from  
MPLAB IDE. This high-speed simulator is designed to  
debug, analyze and optimize time intensive DSP  
routines.  
MPLAB C30 is distributed with a complete ANSI C  
standard library. All library functions have been vali-  
dated and conform to the ANSI C library standard. The  
library includes functions for string manipulation,  
dynamic memory allocation, data conversion, time-  
keeping and math functions (trigonometric, exponential  
and hyperbolic). The compiler provides symbolic  
information for high-level source debugging with the  
MPLAB IDE.  
DS39612B-page 318  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
26.9 MPLAB ICE 2000  
High-Performance Universal  
In-Circuit Emulator  
26.11 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
The MPLAB ICE 2000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers. Software control of the  
MPLAB ICE 2000 in-circuit emulator is advanced by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
USB interface. This tool is based on the Flash  
PICmicro MCUs and can be used to develop for these  
and other PICmicro microcontrollers. The MPLAB  
ICD 2 utilizes the in-circuit debugging capability built  
into the Flash devices. This feature, along with  
Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM  
)
protocol, offers cost effective in-circuit Flash debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by setting  
breakpoints, single-stepping and watching variables,  
CPU status and peripheral registers. Running at full  
speed enables testing hardware and applications in  
real-time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
26.12 PRO MATE II Universal Device  
Programmer  
The PRO MATE II is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
an LCD display for instructions and error messages  
and a modular detachable socket assembly to support  
various package types. In Stand-Alone mode, the  
PRO MATE II device programmer can read, verify and  
program PICmicro devices without a PC connection. It  
can also set code protection in this mode.  
26.10 MPLAB ICE 4000  
High-Performance Universal  
In-Circuit Emulator  
The MPLAB ICE 4000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for high-  
end PICmicro microcontrollers. Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment, which  
allows editing, building, downloading and source  
debugging from a single environment.  
26.13 MPLAB PM3 Device Programmer  
The MPLAB PM3 is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
a large LCD display (128 x 64) for menus and error  
messages and a modular detachable socket assembly  
to support various package types. The ICSP™ cable  
assembly is included as a standard item. In Stand-  
Alone mode, the MPLAB PM3 device programmer can  
read, verify and program PICmicro devices without a  
PC connection. It can also set code protection in this  
mode. MPLAB PM3 connects to the host PC via an RS-  
232 or USB cable. MPLAB PM3 has high-speed com-  
munications and optimized algorithms for quick pro-  
gramming of large memory devices and incorporates  
an SD/MMC card for file storage and secure data appli-  
cations.  
The MPLAB ICD 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high-speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, up to 2 Mb of emulation memory and the  
ability to view variables in real-time.  
The MPLAB ICE 4000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
2005 Microchip Technology Inc.  
DS39612B-page 319  
PIC18F6525/6621/8525/8621  
26.14 PICSTART Plus Development  
Programmer  
26.17 PICDEM 2 Plus  
Demonstration Board  
The PICSTART Plus development programmer is an  
easy-to-use, low-cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus development programmer supports  
most PICmicro devices up to 40 pins. Larger pin count  
devices, such as the PIC16C92X and PIC17C76X,  
may be supported with an adapter socket. The  
PICSTART Plus development programmer is CE  
compliant.  
The PICDEM 2 Plus demonstration board supports  
many 18, 28 and 40-pin microcontrollers, including  
PIC16F87X and PIC18FXX2 devices. All the neces-  
sary hardware and software is included to run the dem-  
onstration programs. The sample microcontrollers  
provided with the PICDEM 2 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, PICSTART Plus development programmer, or  
MPLAB ICD 2 with a Universal Programmer Adapter.  
The MPLAB ICD 2 and MPLAB ICE in-circuit emulators  
may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area extends the  
circuitry for additional application components. Some  
of the features include an RS-232 interface, a 2 x 16  
LCD display, a piezo speaker, an on-board temperature  
sensor, four LEDs and sample PIC18F452 and  
PIC16F877 Flash microcontrollers.  
26.15 PICDEM 1 PICmicro  
Demonstration Board  
The PICDEM 1 demonstration board demonstrates the  
capabilities of the PIC16C5X (PIC16C54 to  
PIC16C58A), PIC16C61, PIC16C62X, PIC16C71,  
PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All  
necessary hardware and software is included to run  
basic demo programs. The sample microcontrollers  
provided with the PICDEM 1 demonstration board can  
be programmed with a PRO MATE II device program-  
mer or a PICSTART Plus development programmer.  
The PICDEM 1 demonstration board can be connected  
to the MPLAB ICE in-circuit emulator for testing. A  
prototype area extends the circuitry for additional appli-  
cation components. Features include an RS-232  
interface, a potentiometer for simulated analog input,  
push button switches and eight LEDs.  
26.18 PICDEM 3 PIC16C92X  
Demonstration Board  
The PICDEM 3 demonstration board supports the  
PIC16C923 and PIC16C924 in the PLCC package. All  
the necessary hardware and software is included to run  
the demonstration programs.  
26.19 PICDEM 4 8/14/18-Pin  
Demonstration Board  
The PICDEM 4 can be used to demonstrate the capa-  
bilities of the 8, 14 and 18-pin PIC16XXXX and  
PIC18XXXX MCUs, including the PIC16F818/819,  
PIC16F87/88, PIC16F62XA and the PIC18F1320  
family of microcontrollers. PICDEM 4 is intended to  
showcase the many features of these low pin count  
parts, including LIN and Motor Control using ECCP.  
Special provisions are made for low-power operation  
with the supercapacitor circuit and jumpers allow on-  
board hardware to be disabled to eliminate current  
draw in this mode. Included on the demo board are pro-  
visions for Crystal, RC or Canned Oscillator modes, a  
five volt regulator for use with a nine volt wall adapter  
or battery, DB-9 RS-232 interface, ICD connector for  
programming via ICSP and development with MPLAB  
ICD 2, 2 x 16 liquid crystal display, PCB footprints for  
H-Bridge motor driver, LIN transceiver and EEPROM.  
Also included are: header for expansion, eight LEDs,  
four potentiometers, three push buttons and a proto-  
typing area. Included with the kit is a PIC16F627A and  
a PIC18F1320. Tutorial firmware is included along  
with the User’s Guide.  
26.16 PICDEM.net Internet/Ethernet  
Demonstration Board  
The PICDEM.net demonstration board is an Internet/  
Ethernet demonstration board using the PIC18F452  
microcontroller and TCP/IP firmware. The board  
supports any 40-pin DIP device that conforms to the  
standard pinout used by the PIC16F877 or  
PIC18C452. This kit features a user friendly TCP/IP  
stack, web server with HTML, a 24L256 Serial  
EEPROM for Xmodem download to web pages into  
Serial EEPROM, ICSP/MPLAB ICD 2 interface con-  
nector, an Ethernet interface, RS-232 interface and a  
16 x 2 LCD display. Also included is the book and  
CD-ROM “TCP/IP Lean, Web Servers for Embedded  
Systems,” by Jeremy Bentham  
DS39612B-page 320  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
26.20 PICDEM 17 Demonstration Board  
26.24 PICDEM USB PIC16C7X5  
Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. A pro-  
grammed sample is included. The PRO MATE II device  
programmer, or the PICSTART Plus development pro-  
grammer, can be used to reprogram the device for user  
tailored application development. The PICDEM 17  
demonstration board supports program download and  
execution from external on-board Flash memory. A  
generous prototype area is available for user hardware  
expansion.  
The PICDEM USB Demonstration Board shows off the  
capabilities of the PIC16C745 and PIC16C765 USB  
microcontrollers. This board provides the basis for  
future USB products.  
26.25 Evaluation and  
Programming Tools  
In addition to the PICDEM series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
for these products.  
• KEELOQ evaluation and programming tools for  
Microchip’s HCS Secure Data Products  
26.21 PICDEM 18R PIC18C601/801  
Demonstration Board  
• CAN developers kit for automotive network  
applications  
The PICDEM 18R demonstration board serves to assist  
development of the PIC18C601/801 family of Microchip  
microcontrollers. It provides hardware implementation  
of both 8-bit Multiplexed/Demultiplexed and 16-bit  
Memory modes. The board includes 2 Mb external  
Flash memory and 128 Kb SRAM memory, as well as  
serial EEPROM, allowing access to the wide range of  
memory types supported by the PIC18C601/801.  
• Analog design boards and filter design software  
• PowerSmart battery charging evaluation/  
calibration kits  
• IrDA® development kit  
• microID development and rfLabTM development  
software  
• SEEVAL® designer kit for memory evaluation and  
endurance calculations  
26.22 PICDEM LIN PIC16C43X  
Demonstration Board  
• PICDEM MSC demo boards for Switching mode  
power supply, high-power IR driver, delta sigma  
ADC and flow rate sensor  
The powerful LIN hardware and software kit includes a  
series of boards and three PICmicro microcontrollers.  
The small footprint PIC16C432 and PIC16C433 are  
used as slaves in the LIN communication and feature  
Check the Microchip web page and the latest Product  
Selector Guide for the complete list of demonstration  
and evaluation kits.  
on-board LIN transceivers.  
A PIC16F874 Flash  
microcontroller serves as the master. All three micro-  
controllers are programmed with firmware to provide  
LIN bus communication.  
26.23 PICkitTM 1 Flash Starter Kit  
A complete “development system in a box”, the PICkit™  
Flash Starter Kit includes a convenient multi-section  
board for programming, evaluation and development of  
8/14-pin Flash PIC® microcontrollers. Powered via USB,  
the board operates under a simple Windows GUI. The  
PICkit 1 Starter Kit includes the User’s Guide (on CD  
ROM), PICkit 1 tutorial software and code for various  
applications. Also included are MPLAB® IDE (Integrated  
Development Environment) software, software and  
hardware “Tips 'n Tricks for 8-pin Flash PIC®  
Microcontrollers” Handbook and a USB interface cable.  
Supports all current 8/14-pin Flash PIC microcontrollers,  
as well as many future planned devices.  
2005 Microchip Technology Inc.  
DS39612B-page 321  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 322  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
27.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings(†)  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4) .......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to VSS............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2005 Microchip Technology Inc.  
DS39612B-page 323  
PIC18F6525/6621/8525/8621  
FIGURE 27-1:  
PIC18F6X2X/8X2XVOLTAGE-FREQUENCYGRAPH(INDUSTRIAL,EXTENDED)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18F6525/6621/8525/8621  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
25 MHz  
(Extended)  
40 MHz  
(Industrial)  
Frequency  
FIGURE 27-2:  
PIC18LF6X2X/8X2X VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LF6525/6621/8525/8621  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX  
4 MHz  
Frequency  
For PIC18F6525/6621 and PIC18F8525/8621 in Microcontroller mode:  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 40 MHz, if VDDAPPMIN > 4.2V.  
For PIC18F8525/8621 in modes other than Microcontroller mode:  
FMAX = (9.55 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 25 MHz, if VDDAPPMIN > 4.2V.  
Note:  
VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
DS39612B-page 324  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
27.1 DC Characteristics: Supply Voltage  
PIC18F6X2X/8X2X (Industrial, Extended)  
PIC18LF6X2X/8X2X (Industrial)  
PIC18LF6X2X/8X2X  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X2X/8X2X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic  
Supply Voltage  
Min  
Typ  
Max Units  
Conditions  
D001  
VDD  
PIC18LF6X2X/8X2X 2.0  
PIC18F6X2X/8X2X 4.2  
5.5  
5.5  
+0.3  
V
V
V
V
D001A  
D002  
AVDD  
VDR  
Analog Supply Voltage  
RAM Data Retention  
-0.3  
1.5  
(1)  
Voltage  
D003  
D004  
D005  
VPOR  
SVDD  
VBOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
0.7  
V
See Section 3.1 “Power-on Reset (POR)” for  
details  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms See Section 3.1 “Power-on Reset (POR)” for  
details  
Brown-out Reset Voltage  
BORV1:BORV0 = 11  
BORV1:BORV0 = 10  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
1.96  
2.64  
4.11  
4.41  
2.18  
2.92  
4.55  
4.87  
V
V
V
V
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode or during a device Reset without losing RAM data.  
2005 Microchip Technology Inc.  
DS39612B-page 325  
PIC18F6525/6621/8525/8621  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X2X/8X2X (Industrial, Extended)  
PIC18LF6X2X/8X2X (Industrial)  
PIC18LF6X2X/8X2X  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X2X/8X2X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Power-Down Current (IPD)  
Typ  
Max Units  
Conditions  
(1)  
PIC18LF6X2X/8X2X 0.2  
1
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
(Sleep mode)  
0.2  
5.0  
10  
1
PIC18LF6X2X/8X2X 0.4  
VDD = 3.0V,  
(Sleep mode)  
0.4  
1
3.0  
18  
2
All devices 0.7  
VDD = 5.0V,  
(Sleep mode)  
0.7  
15  
2
32  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: The band gap reference is a shared resource used by both BOR and LVD modules. Enabling both modules will  
consume less than the specified sum current of the modules.  
DS39612B-page 326  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X2X/8X2X (Industrial, Extended)  
PIC18LF6X2X/8X2X (Industrial) (Continued)  
PIC18LF6X2X/8X2X  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X2X/8X2X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
D010  
PIC18LF6X2X/8X2X 300  
500  
500  
1000  
900  
900  
1.5  
2
µA  
µA  
-40°C  
300  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
850  
µA  
PIC18LF6X2X/8X2X 500  
µA  
FOSC = 1 MHZ,  
EC oscillator  
500  
1
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All devices  
1
1
2
1.3  
1
3
PIC18LF6X2X/8X2X  
2
1
2
1.5  
2.5  
2
PIC18LF6X2X/8X2X 1.5  
FOSC = 4 MHz,  
EC oscillator  
1.5  
2
2
2.5  
5
All devices  
3
3
4
5
6
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: The band gap reference is a shared resource used by both BOR and LVD modules. Enabling both modules will  
consume less than the specified sum current of the modules.  
2005 Microchip Technology Inc.  
DS39612B-page 327  
PIC18F6525/6621/8525/8621  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X2X/8X2X (Industrial, Extended)  
PIC18LF6X2X/8X2X (Industrial) (Continued)  
PIC18LF6X2X/8X2X  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X2X/8X2X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
PIC18F6X2X/8X2X  
PIC18F6X2X/8X2X  
PIC18F6X2X/8X2X  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
PIC18LF6X2X/8X2X  
All devices  
13  
15  
19  
17  
21  
23  
20  
24  
29  
28  
33  
40  
27  
30  
32  
33  
36  
39  
75  
90  
113  
27  
27  
29  
31  
31  
34  
34  
34  
44  
46  
46  
51  
45  
50  
54  
55  
60  
65  
125  
150  
188  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
VDD = 4.2V  
VDD = 5.0V  
VDD = 4.2V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
FOSC = 25 MHZ,  
EC oscillator  
FOSC = 40 MHZ,  
EC oscillator  
D014  
µA  
µA  
µA  
FOSC = 32 kHz,  
Timer1 as clock  
µA  
µA  
µA  
µA  
µA  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: The band gap reference is a shared resource used by both BOR and LVD modules. Enabling both modules will  
consume less than the specified sum current of the modules.  
DS39612B-page 328  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
27.2 DC Characteristics: Power-Down and Supply Current  
PIC18F6X2X/8X2X (Industrial, Extended)  
PIC18LF6X2X/8X2X (Industrial) (Continued)  
PIC18LF6X2X/8X2X  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F6X2X/8X2X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
Module Differential Currents (IWDT, IBOR, ILVD, IOSCB, IAD)  
D022  
(IWDT)  
Watchdog Timer <1  
2.0  
2
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
<1  
5
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
20  
10  
20  
35  
25  
35  
50  
115  
175  
125  
150  
225  
27  
30  
35  
60  
65  
75  
75  
85  
100  
2
+85°C  
3
-40°C  
3
+25°C  
10  
12  
15  
+85°C  
-40°C  
+25°C  
20  
+85°C  
(4)  
D022A  
(IBOR)  
Brown-out Reset  
55  
105  
45  
45  
45  
20  
20  
25  
22  
22  
25  
30  
30  
35  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-10°C  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
(4)  
D022B  
(ILVD)  
Low-Voltage Detect  
D025  
(IOSCB)  
Timer1 Oscillator  
+25°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
32 kHz on Timer1  
+70°C  
-10°C  
+25°C  
32 kHz on Timer1  
32 kHz on Timer1  
+70°C  
-10°C  
+25°C  
+70°C  
D026  
(IAD)  
A/D Converter <1  
+25°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
<1  
<1  
2
+25°C  
A/D on, not converting  
2
+25°C  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in k.  
4: The band gap reference is a shared resource used by both BOR and LVD modules. Enabling both modules will  
consume less than the specified sum current of the modules.  
2005 Microchip Technology Inc.  
DS39612B-page 329  
PIC18F6525/6621/8525/8621  
27.3 DC Characteristics: PIC18F6X2X/8X2X (Industrial, Extended)  
PIC18LF6X2X/8X2X (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
VSS  
0.15 VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032  
MCLR  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
0.2 VDD  
0.3  
V
V
V
V
V
D033  
OSC1  
HS, HS+PLL modes  
RC, EC modes  
XT, LP modes  
D033A  
D033B  
D034  
OSC1  
OSC1  
T1OSI  
0.3  
VIH  
Input High Voltage  
I/O ports:  
with TTL buffer  
D040  
D040A  
D041  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042  
MCLR, OSC1 (EC mode)  
0.8 VDD  
0.7 VDD  
0.8 VDD  
0.9 VDD  
1.6  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
D043  
OSC1  
HS, HS+PLL modes  
EC mode  
RC mode(1)  
D043A  
D043B  
D043C  
D044  
OSC1  
OSC1  
OSC1  
XT, LP modes  
T13CKI  
1.6  
IIL  
Input Leakage Current(2,3)  
D060  
I/O ports  
1
µA VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR  
5
5
µA VSS VPIN VDD  
µA VSS VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070  
IPURB  
50  
400  
µA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
DS39612B-page 330  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
27.3 DC Characteristics: PIC18F6X2X/8X2X (Industrial, Extended)  
PIC18LF6X2X/8X2X (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
VOH  
VOD  
Output Low Voltage  
D080  
I/O ports  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
D080A  
D083  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKO  
(RC mode)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
D083A  
Output High Voltage(3)  
D090  
I/O ports  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
D090A  
D092  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKO  
(RC mode)  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D092A  
D150  
Open-Drain High Voltage  
8.5  
RA4 pin  
Capacitive Loading Specs  
on Output Pins  
D100(4)  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes  
when external clock is used  
to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF In I2C™ mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
2005 Microchip Technology Inc.  
DS39612B-page 331  
PIC18F6525/6621/8525/8621  
TABLE 27-1: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
0
±5.0  
±10  
VDD – 1.5  
mV  
V
D301  
D302  
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
CMRR  
TRESP  
55  
dB  
Response Time(1)  
300  
300A  
150  
400  
600  
ns  
ns  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
301  
TMC2OV Comparator Mode Change to  
Output Valid  
10  
µs  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from  
VSS to VDD.  
TABLE 27-2: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)  
Spec  
No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
2k  
VDD/32  
1/2  
LSb  
LSb  
D311  
D312  
310  
VRAA  
VRUR  
TSET  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
10  
µs  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from 0000to 1111.  
DS39612B-page 332  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-3:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 27-3: LOW-VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
LOW-VOLTAGE DETECT CHARACTERISTICS  
Param  
Symbol  
Characteristic  
Min  
Typ† Max  
Units  
Conditions  
No.  
D420 VLVD  
LVD Voltage on VDD LVV = 0000  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
transition high-to-low  
LVV = 0001 1.96  
LVV = 0010 2.16  
LVV = 0011 2.35  
LVV = 0100 2.46  
LVV = 0101 2.64  
LVV = 0110 2.75  
LVV = 0111 2.95  
LVV = 1000 3.24  
LVV = 1001 3.43  
LVV = 1010 3.53  
LVV = 1011 3.72  
LVV = 1100 3.92  
LVV = 1101 4.11  
LVV = 1110 4.41  
2.06  
2.27  
2.47  
2.58  
2.78  
2.89  
3.10  
3.41  
3.61  
3.72  
3.92  
4.13  
4.33  
4.64  
1.22  
2.16  
2.38  
2.59  
2.71  
2.92  
3.03  
3.26  
3.58  
3.79  
3.91  
4.12  
4.33  
4.55  
4.87  
D423 VBG  
Band Gap Reference Voltage Value  
Production tested at TAMB = 25°C. Specifications over temp. limits ensured by characterization.  
2005 Microchip Technology Inc.  
DS39612B-page 333  
PIC18F6525/6621/8525/8621  
TABLE 27-4: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
DC Characteristics  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Internal Program Memory  
Programming Specifications  
D110  
D112  
D113  
VPP  
IPP  
Voltage on MCLR/VPP pin  
Current into MCLR/VPP pin  
9.00  
13.25  
300  
V
(Note 2)  
µA  
mA  
IDDP  
Supply Current during  
Programming  
1.0  
Data EEPROM Memory  
D120  
ED  
Byte Endurance  
100K  
10K  
1M  
100K  
E/W -40°C to +85°C  
E/W -40°C to +125°C  
D121 VDRW VDD for Read/Write  
VMIN  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122 TDEW Erase/Write Cycle Time  
D123 TRETD Characteristic Retention  
4
ms  
40  
Year Provided no other  
specifications are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh(1)  
1M  
100K  
10M  
1M  
E/W -40°C to +85°C  
E/W -40°C to +125°C  
Program Flash Memory  
D130  
D131  
D132  
EP  
Cell Endurance  
10K  
1K  
100K  
10K  
E/W -40°C to +85°C  
E/W -40°C to +125°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
VIE  
VDD for Block Erase  
4.5  
4.5  
5.5  
5.5  
V
V
Using ICSP™ port  
Using ICSP port  
D132A VIW  
VDD for Externally Timed Erase  
or Write  
D132B VPEW VDD for Self-Timed Write and  
Row Erase  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D133  
TIE  
ICSP Block Erase Cycle Time  
1
4
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
D133A TIW  
Self-Timed Write Cycle Time  
2
ms  
D134 TRETD Characteristic Retention  
40  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Refer to Section 7.8 “Using the Data EEPROM” for a more detailed discussion on data EEPROM  
endurance.  
2: Required only if Low-Voltage Programming is disabled.  
DS39612B-page 334  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
27.4 AC (Timing) Characteristics  
27.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
2005 Microchip Technology Inc.  
DS39612B-page 335  
PIC18F6525/6621/8525/8621  
27.4.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 27-5  
apply to all timing specifications, unless otherwise  
noted. Figure 27-4 specifies the load conditions for the  
timing specifications.  
TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 27.1 and  
Section 27.3.  
LF parts operate for industrial temperatures only.  
FIGURE 27-4:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
DS39612B-page 336  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
27.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 27-5:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
1
3
4
3
4
2
TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
DC  
DC  
DC  
DC  
0.1  
4
25  
40  
MHz EC, ECIO(2) (-40ºC to +85ºC)  
MHz EC, ECIO  
25  
MHz EC, ECIO (+85ºC to +125ºC)  
MHz RC oscillator  
Oscillator Frequency(1)  
4
4
MHz XT oscillator  
25  
MHz HS oscillator  
4
10  
MHz HS + PLL oscillator  
MHz HS + PLL oscillator(2)  
4
6.25  
33  
5
kHz  
ns  
LP Oscillator mode  
EC, ECIO  
1
TOSC  
External CLKI Period(1)  
Oscillator Period(1)  
25  
40  
40  
250  
250  
ns  
EC, ECIO(2)  
ns  
EC, ECIO (+85ºC to +125ºC)  
RC oscillator  
ns  
10,000  
ns  
XT oscillator  
40  
100  
160  
250  
250  
250  
ns  
ns  
ns  
HS oscillator  
HS + PLL oscillator  
HS + PLL oscillator(2)  
30  
100  
30  
2.5  
10  
200  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
LP oscillator  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
2
3
TCY  
Instruction Cycle Time(1)  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
2: PIC18F6525/6621/8525/8621 devices using external memory interface.  
2005 Microchip Technology Inc.  
DS39612B-page 337  
PIC18F6525/6621/8525/8621  
TABLE 27-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2 TO 5.5V)  
Param. No. Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
MHz HS mode  
MHz HS mode  
FOSC  
FSYS  
trc  
Oscillator Frequency Range  
On-Chip VCO System Frequency  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)  
4
10  
40  
2
16  
-2  
ms  
%
CLK  
+2  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 27-6:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
19  
18  
16  
I/O pin  
(input)  
15  
17  
I/O pin  
(output)  
New Value  
Old Value  
20, 21  
Refer to Figure 27-4 for load conditions.  
Note:  
TABLE 27-8: CLKO AND I/O TIMING REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
10  
TosH2ckL OSC1 to CLKO ↓  
TosH2ckH OSC1 to CLKO ↑  
75  
75  
35  
35  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
11  
200  
12  
TckR  
TckF  
CLKO Rise Time  
CLKO Fall Time  
100  
13  
100  
14  
TckL2ioV CLKO to Port Out Valid  
TioV2ckH Port In Valid before CLKO ↑  
0.5 TCY + 20  
15  
0.25 TCY + 25  
50  
10  
10  
16  
TckH2ioI  
Port In Hold after CLKO ↑  
0
17  
TosH2ioV OSC1 (Q1 cycle) to Port Out Valid  
150  
18  
TosH2ioI  
OSC1 (Q2 cycle) to Port  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
100  
200  
0
Input Invalid (I/O in hold time)  
18A  
19  
TioV2osH Port Input Valid to OSC1 (I/O in setup time)  
20  
TioR  
Port Output Rise Time  
Port Output Fall Time  
INT pin High or Low Time  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
25  
60  
25  
60  
20A  
21  
TioF  
21A  
22†  
23†  
24†  
TINP  
TCY  
TCY  
20  
TRBP  
TRCP  
RB7:RB4 Change INT High or Low Time  
RC7:RC4 Change INT High or Low Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
DS39612B-page 338  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-7:  
PROGRAM MEMORY READ TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
Address  
Data from External  
AD<15:0>  
163  
162  
150  
151  
160  
155  
161  
166  
167  
168  
ALE  
164  
169  
171  
CE  
OE  
171A  
165  
Operating Conditions: 2.0V < VCC < 5.5V, -40°C < TA < +125°C unless otherwise stated.  
TABLE 27-9: PROGRAM MEMORY READ TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No  
150  
TadV2alL Address Out Valid to ALE (address  
0.25 TCY – 10  
ns  
setup time)  
151  
TalL2adl  
ALE to Address Out Invalid (address  
hold time)  
5
ns  
155  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
171  
171A  
TalL2oeL ALE to OE ↓  
10  
0.125 TCY  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TadZ2oeL AD high-Z to OE (bus release to OE)  
ToeH2adD OE to AD Driven  
0
0.125 TCY – 5  
TadV2oeH LS Data Valid before OE (data setup time)  
ToeH2adl OE to Data In Invalid (data hold time)  
20  
0
TalH2alL  
ALE Pulse Width  
0.25 TCY  
0.5 TCY  
TCY  
ToeL2oeH OE Pulse Width  
0.5 TCY – 5  
40 ns  
TalH2alH ALE to ALE (cycle time)  
Tacc  
Address Valid to Data Valid  
0.75 TCY – 25  
0.5 TCY – 25  
0.625 TCY + 10  
10  
Toe  
OE to Data Valid  
TalL2oeH ALE to OE ↑  
TalH2csL Chip Enable Active to ALE ↓  
TubL2oeH AD Valid to Chip Enable Active  
0.625 TCY – 10  
0.25 TCY – 20  
2005 Microchip Technology Inc.  
DS39612B-page 339  
PIC18F6525/6621/8525/8621  
FIGURE 27-8:  
PROGRAM MEMORY WRITE TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
166  
Data  
156  
Address  
AD<15:0>  
153  
150  
151  
ALE  
CE  
171  
171A  
154  
WRH or  
WRL  
157A  
157  
UB or LB  
Operating Conditions: 2.0V < VCC < 5.5V, -40°C < TA < +125°C unless otherwise stated.  
TABLE 27-10: PROGRAM MEMORY WRITE TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No  
150  
TadV2alL  
TalL2adl  
TwrH2adl  
TwrL  
Address Out Valid to ALE (address setup time)  
ALE to Address Out Invalid (address hold time)  
WRn to Data Out Invalid (data hold time)  
WRn Pulse Width  
0.25 TCY – 10  
5
ns  
ns  
ns  
ns  
ns  
ns  
151  
153  
154  
156  
157  
5
0.5 TCY – 5  
0.5 TCY – 10  
0.25 TCY  
0.5 TCY  
TadV2wrH Data Valid before WRn (data setup time)  
TbsV2wrL Byte Select Valid before WRn (byte select  
setup time)  
157A  
166  
TwrH2bsI  
TalH2alH  
TalH2csL  
WRn to Byte Select Invalid (byte select hold time) 0.125 TCY – 5  
TCY  
10  
ns  
ns  
ns  
ns  
ALE to ALE (cycle time)  
Chip Enable Active to ALE ↓  
171  
171A  
TubL2oeH AD Valid to Chip Enable Active  
0.25 TCY – 20  
DS39612B-page 340  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-9:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note:  
Refer to Figure 27-4 for load conditions.  
FIGURE 27-10:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
TABLE 27-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
7
µs  
31  
Watchdog Timer Time-out Period  
(no postscaler)  
18  
33  
ms  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
72  
2
1024 TOSC  
ms  
µs  
TOSC = OSC1 period  
TPWRT  
28  
132  
TIOZ  
I/O High-impedance from MCLR Low  
or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
µs  
µs  
VDD BVDD (see D005)  
VDD VLVD  
TIRVST  
Time for Internal Reference  
Voltage to become stable  
20  
50  
37  
TLVD  
Low-Voltage Detect Pulse Width  
200  
µs  
2005 Microchip Technology Inc.  
DS39612B-page 341  
PIC18F6525/6621/8525/8621  
FIGURE 27-11:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T13CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 27-4 for load conditions.  
TABLE 27-12: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
No prescaler  
Min  
Max  
Units  
Conditions  
40  
Tt0H  
T0CKI High Pulse Width  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
41  
42  
Tt0L  
Tt0P  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
47  
Tt1H  
Tt1L  
T13CKI  
High Time  
Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous, PIC18F6X2X/8X2X  
10  
with prescaler  
PIC18LF6X2X/8X2X  
25  
Asynchronous PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
30  
50  
0.5 TCY + 5  
10  
T13CKI  
Low Time  
Synchronous, no prescaler  
Synchronous, PIC18F6X2X/8X2X  
with prescaler  
PIC18LF6X2X/8X2X  
25  
Asynchronous PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
30  
TBD  
TBD  
Tt1P  
Ft1  
T13CKI  
Input Period  
Synchronous  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value (1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T13CKI Oscillator Input Frequency Range  
48  
Tcke2tmrI Delay from External T13CKI Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Legend:  
TBD = To Be Determined  
DS39612B-page 342  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-12:  
CAPTURE/COMPARE/PWM TIMINGS (ALL ECCP/CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note:  
Refer to Figure 27-4 for load conditions.  
TABLE 27-13: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL ECCP/CCP MODULES)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
50  
TccL  
CCPx Input  
Low Time  
No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
With  
PIC18F6X2X/8X2X  
10  
prescaler  
PIC18LF6X2X/8X2X  
20  
51  
TccH  
CCPx Input  
High Time  
No prescaler  
0.5 TCY + 20  
With  
prescaler  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
10  
20  
52  
53  
TccP  
TccR  
CCPx Input Period  
3 TCY + 40  
N
ns N = prescale  
value (1,4 or 16)  
CCPx Output Rise Time  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
CCPx Output Fall Time  
2005 Microchip Technology Inc.  
DS39612B-page 343  
PIC18F6525/6621/8525/8621  
FIGURE 27-13:  
PARALLEL SLAVE PORT TIMING (PIC18F8525/8621)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
Refer to Figure 27-4 for load conditions.  
63  
Note:  
TABLE 27-14: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F8525/8621)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH Data In Valid before WR or CS ↑  
20  
25  
ns  
ns  
(setup time)  
Extended Temp. range  
63  
64  
TwrH2dtI WR or CS to Data–in PIC18F6X2X/8X2X  
20  
35  
ns  
ns  
Invalid (hold time)  
PIC18LF6X2X/8X2X  
TrdL2dtV RD and CS to Data–out Valid  
80  
90  
ns  
ns  
Extended Temp. range  
65  
66  
TrdH2dtI RD or CS to Data–out Invalid  
10  
30  
ns  
TibfINH  
Inhibit of the IBF Flag bit being cleared from  
3 TCY  
WR or CS ↑  
DS39612B-page 344  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-14:  
EXAMPLE SPI™ MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-15: EXAMPLE SPI™ MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TCY  
ns  
TssL2scL  
71  
TscH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge of  
Byte 2  
1.5 TCY + 40  
100  
ns (Note 2)  
TscH2diL,  
TscL2diL  
Hold Time of SDI Data Input to SCK Edge  
ns  
75  
TdoR  
SDO Data Output Rise Time PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO Data Output Fall Time  
SCK Output Rise Time  
(Master mode)  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after PIC18F6X2X/8X2X  
TscL2doV SCK Edge  
PIC18LF6X2X/8X2X  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
2005 Microchip Technology Inc.  
DS39612B-page 345  
PIC18F6525/6621/8525/8621  
FIGURE 27-15:  
EXAMPLE SPI™ MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
bit 6 - - - - - -1  
LSb  
MSb  
SDO  
SDI  
75, 76  
bit 6 - - - -1  
MSb In  
74  
LSb In  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-16: EXAMPLE SPI™ MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
TscH  
Characteristic  
Min  
Max Units  
Conditions  
71  
SCK Input High Time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge of  
Byte 2  
1.5 TCY + 40  
ns (Note 2)  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO Data Output Rise Time PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO Data Output Fall Time  
SCK Output Rise Time  
(Master mode)  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after PIC18F6X2X/8X2X  
TscL2doV SCK Edge  
PIC18LF6X2X/8X2X  
81  
TdoV2scH, SDO Data Output Setup to SCK Edge  
TdoV2scL  
TCY  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39612B-page 346  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-16:  
EXAMPLE SPI™ SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
bit 6 - - - - - -1  
MSb  
LSb  
SDO  
SDI  
77  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note:  
Refer to Figure 27-4 for load conditions.  
TABLE 27-17: EXAMPLE SPI™ MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TCY  
ns  
TssL2scL  
71  
TscH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2  
1.5 TCY + 40  
100  
ns (Note 2)  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
ns  
75  
TdoR  
SDO Data Output Rise Time  
PIC18F6X2X/8X2X  
PIC18F6X2X/8X2X  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
78  
TdoF  
SDO Data Output Fall Time  
10  
TssH2doZ SS to SDO Output High-impedance  
TscR  
SCK Output Rise Time (Master mode) PIC18F6X2X/8X2X  
PIC18F6X2X/8X2X  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after SCK  
TscL2doV Edge  
PIC18F6X2X/8X2X  
PIC18F6X2X/8X2X  
83  
TscH2ssH, SS after SCK Edge  
1.5 TCY + 40  
TscL2ssH  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
2005 Microchip Technology Inc.  
DS39612B-page 347  
PIC18F6525/6621/8525/8621  
FIGURE 27-17:  
EXAMPLE SPI™ SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-18: EXAMPLE SPI™ SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TssL2scL  
TCY  
ns  
71  
TscH  
TscL  
TB2B  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCK Input Low Time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
75  
TdoR  
SDO Data Output Rise Time  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
78  
TdoF  
SDO Data Output Fall Time  
TssH2doZ SS to SDO Output High-impedance  
10  
TscR  
SCK Output Rise Time  
(Master mode)  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after SCK PIC18F6X2X/8X2X  
TscL2doV Edge  
PIC18LF6X2X/8X2X  
82  
83  
TssL2doV SDO Data Output Valid after  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
SS Edge  
TscH2ssH, SS after SCK Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39612B-page 348  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-18:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
91  
93  
90  
92  
SDA  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-19: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
FIGURE 27-19:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 27-4 for load conditions.  
2005 Microchip Technology Inc.  
DS39612B-page 349  
PIC18F6525/6621/8525/8621  
TABLE 27-20: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time  
100 kHz mode  
4.0  
µs  
µs  
PIC18F6X2X/8X2X must  
operate at a minimum of  
1.5 MHz  
400 kHz mode  
0.6  
PIC18F6X2X/8X2X must  
operate at a minimum of  
10 MHz  
MSSP module  
100 kHz mode  
1.5 TCY  
4.7  
101  
TLOW  
Clock Low Time  
µs  
µs  
PIC18F6X2X/8X2X must  
operate at a minimum of  
1.5 MHz  
400 kHz mode  
MSSP module  
1.3  
PIC18F6X2X/8X2X must  
operate at a minimum of  
10 MHz  
1.5 TCY  
102  
103  
TR  
TF  
SDA and SCL Rise 100 kHz mode  
1000  
ns  
ns  
Time  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
SDA and SCL Fall 100 kHz mode  
300  
ns  
ns  
Time  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for Repeated  
Start condition  
91  
Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold  
Time  
0
0.9  
TSU:DAT  
TSU:STO  
TAA  
Data Input Setup  
Time  
250  
100  
4.7  
0.6  
(Note 2)  
Stop Condition  
Setup Time  
109  
110  
Output Valid from  
Clock  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
D102  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode I2C™ bus device can be used in a Standard mode I2C bus system but the requirement  
TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the  
low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output  
the next data bit to the SDA line.  
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before  
the SCL line is released.  
DS39612B-page 350  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-20:  
MASTER SSP I2C™ BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
93  
91  
90  
92  
SDA  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-21: MASTER SSP I2C™ BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start  
condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
FIGURE 27-21:  
MASTER SSP I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 27-4 for load conditions.  
2005 Microchip Technology Inc.  
DS39612B-page 351  
PIC18F6525/6621/8525/8621  
TABLE 27-22: MASTER SSP I2C™ BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
101  
102  
103  
90  
TLOW  
TR  
Clock Low Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
SDA and SCL  
Rise Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TF  
SDA and SCL  
Fall Time  
ns  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TSU:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms Only relevant for  
Setup Time  
Repeated Start  
condition  
ms  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
91  
THD:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode  
2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
0
0
0.9  
ms  
ns  
TBD  
250  
TSU:DAT Data Input  
Setup Time  
ns  
ns  
(Note 2)  
100  
TBD  
ns  
TSU:STO Stop Condition  
Setup Time  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
3500  
1000  
ns  
ns  
Bus Free Time  
4.7  
1.3  
TBD  
ms Time the bus must be free  
before a new transmission  
ms  
can start  
ms  
Bus Capacitive Loading  
400  
pF  
Legend: TBD = To Be Determined  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the low period of the SCL  
signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the  
SDA line, parameter #102.+ parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL  
line is released.  
DS39612B-page 352  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-22:  
EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX1/CK1  
pin  
121  
121  
RC7/RX1/DT1  
pin  
120  
Note: Refer to Figure 27-4 for load conditions.  
122  
TABLE 27-23: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (Master and Slave)  
Clock High to Data Out Valid  
PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock Out Rise Time and Fall Time PIC18F6X2X/8X2X  
(Master mode)  
PIC18LF6X2X/8X2X  
50  
Data Out Rise Time and Fall Time PIC18F6X2X/8X2X  
PIC18LF6X2X/8X2X  
20  
50  
FIGURE 27-23:  
EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX1/CK1  
pin  
125  
RC7/RX1/DT1  
pin  
126  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-24: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (Master and Slave)  
Data Hold before CKx (DTx hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
Data Hold after CKx (DTx hold time)  
2005 Microchip Technology Inc.  
DS39612B-page 353  
PIC18F6525/6621/8525/8621  
TABLE 27-25: A/D CONVERTER CHARACTERISTICS:PIC18F6X2X/8X2X (INDUSTRIAL, EXTENDED)  
PIC18LF6X2X/8X2X(INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10  
TBD  
bit VREF = VDD 3.0V  
bit VREF = VDD < 3.0V  
A03  
A04  
A05  
A06  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Full Scale Error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
EDL  
EFS  
EOFF  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
Offset Error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
(3)  
A10  
A20  
A20A  
A21  
A22  
A25  
A30  
Monotonicity  
guaranteed  
V
VSS VAIN VREF  
VREF  
Reference Voltage  
(VREFH – VREFL)  
0V  
3V  
V
For 10-bit resolution  
VREFH  
VREFL  
VAIN  
Reference Voltage High  
Reference Voltage Low  
Analog Input Voltage  
AVSS  
AVDD + 0.3V  
AVDD  
V
AVSS – 0.3V  
AVSS – 0.3V  
V
VREF + 0.3V  
10.0  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
kΩ  
A40  
A50  
IAD  
A/D Conversion PIC18F6X2X/8X2X  
180  
90  
µA Average current  
Current (VDD)  
consumption when  
PIC18LF6X2X/8X2X  
µA  
A/D is on (Note 1)  
IREF  
VREF Input Current (Note 2)  
5
150  
µA During VAIN acquisition.  
µA During A/D conversion  
cycle.  
Legend: TBD = To Be Determined  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec  
includes any such leakage from the A/D module.  
VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVSS pins, whichever is selected as  
reference input.  
2: Vss VAIN VREF  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
DS39612B-page 354  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 27-24:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns) which also disconnects the holding capacitor from the analog input.  
TABLE 27-26: A/D CONVERSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
PIC18F6X2X/8X2X  
1.6  
20(5)  
20(5)  
6.0  
µs TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC mode  
PIC18LF6X2X/8X2X 3.0  
PIC18F6X2X/8X2X 2.0  
PIC18LF6X2X/8X2X 3.0  
9.0  
µs A/D RC mode  
131  
132  
TCNV  
TACQ  
Conversion Time (not including acquisition  
time) (Note 1)  
11  
12  
TAD  
Acquisition Time (Note 3)  
15  
10  
µs -40°C Temp +125°C  
µs 0°C Temp +125°C  
135  
136  
TSWC  
TAMP  
Switching Time from Convert Sample  
Amplifier Settling Time (Note 2)  
1
(Note 4)  
µs This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 20.0 “10-Bit Analog-to-Digital Converter (A/D) Module” for minimum conditions when input  
voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels is  
50.  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2005 Microchip Technology Inc.  
DS39612B-page 355  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 356  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
28.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean – 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 28-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
40  
36  
32  
28  
24  
20  
16  
12  
8
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
4
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 28-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
4
2.0V  
8
0
4
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
2005 Microchip Technology Inc.  
DS39612B-page 357  
PIC18F6525/6621/8525/8621  
FIGURE 28-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS/PLL MODE)  
40  
36  
32  
28  
24  
20  
16  
12  
8
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
5.5V  
5.0V  
4.5V  
4.2V  
4
0
4
5
6
7
8
9
10  
FOSC (MHz)  
FIGURE 28-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS/PLL MODE)  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
5.5V  
5.0V  
4.5V  
4.2V  
0
4
5
6
7
8
9
10  
F
(MHz)  
OSC  
DS39612B-page 358  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 28-5:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
5
5.5V  
Typical:  
statistical mean @ 25°C  
5.0V  
4.5V  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
4
3
2
1
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
FOSC (MHz)  
FIGURE 28-6:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
7
5.5V  
6
5
4
3
2
1
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
F
(MHz)  
OSC  
2005 Microchip Technology Inc.  
DS39612B-page 359  
PIC18F6525/6621/8525/8621  
FIGURE 28-7:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
1
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 28-8:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
6
5.5V  
5
4
3
2
1
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
DS39612B-page 360  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 28-9:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
40  
36  
32  
28  
24  
20  
16  
12  
8
Typical:  
statistical mean @ 25°C  
5.5V  
5.0V  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
4
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
F
(MHz)  
OSC  
FIGURE 28-10:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
Typical:  
statistical mean @ 25°C  
5.5V  
5.0V  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
2.5V  
4
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
F
(MHz)  
OSC  
2005 Microchip Technology Inc.  
DS39612B-page 361  
PIC18F6525/6621/8525/8621  
FIGURE 28-11:  
TYPICAL AND MAXIMUM IT1OSC vs. VDD (TIMER1 AS SYSTEM CLOCK)  
240  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-10°C to +70°C)  
Minimum: mean – 3σ (-10°C to +70°C)  
220  
200  
180  
160  
140  
120  
100  
80  
Max (70°C)  
Typ (25°C)  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-12:  
AVERAGE FOSC vs. VDD FOR VARIOUS Rs (RC MODE, C = 20 pF, TEMP = 25°C)  
6,000  
Operation above 4 MHz is not recomended.  
5,000  
4,000  
3,000  
2,000  
1,000  
33Ω  
3.3kΩ  
5.1 kΩ  
10 kΩ  
100 kΩ  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39612B-page 362  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 28-13:  
AVERAGE FOSC vs. VDD FOR VARIOUS Rs (RC MODE, C = 100 pF, TEMP = 25°C)  
2,200  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
3.3 kΩ  
5.1 kΩ  
10 kΩ  
600  
400  
200  
100 kΩ  
1
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
FIGURE 28-14:  
AVERAGE FOSC vs. VDD FOR VARIOUS Rs (RC MODE, C = 300 pF, TEMP = 25°C)  
800  
700  
600  
500  
400  
300  
200  
100  
3.3 kΩ  
5.1 kΩ  
10 kΩ  
100 kΩ  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
(V)  
DD  
2005 Microchip Technology Inc.  
DS39612B-page 363  
PIC18F6525/6621/8525/8621  
FIGURE 28-15:  
IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
1000  
Max  
(-40°C to +125°C)  
100  
10  
Max  
(85°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1
Typ (25°C)  
0.1  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-16:  
TYPICAL AND MAXIMUM IBOR vs. VDD OVER TEMPERATURE,  
VBOR = 2.00-2.16V  
300  
Device  
Held in  
Reset  
Typical:  
statistical mean @ 25°C  
250  
200  
150  
100  
50  
Max (+125°C)  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+85°C)  
Typ (+25°C)  
Device  
in Sleep  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39612B-page 364  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 28-17:  
IT1OSC vs. VDD (SLEEP MODE, TIMER1 AND OSCILLATOR ENABLED)  
80  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-10°C to +70°C)  
Minimum: mean – 3σ (-10°C to +70°C)  
70  
60  
50  
40  
30  
20  
10  
Max (70°C)  
Typ (25°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-18:  
IPD vs. VDD (SLEEP MODE, WDT ENABLED)  
1000  
Max  
(-40°C to +125°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
100  
10  
1
Max  
(85°C)  
Typ (25°C)  
0.1  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2005 Microchip Technology Inc.  
DS39612B-page 365  
PIC18F6525/6621/8525/8621  
FIGURE 28-19:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD  
40  
35  
30  
25  
20  
15  
10  
5
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (125°C)  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-20:  
ILVD vs. VDD OVER TEMPERATURE, VLVD = 4.5-4.78V  
250  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (125°C)  
200  
150  
100  
50  
Max (125°C)  
LVDIF state  
is unknown  
Typ (25°C)  
LVDIF can be  
cleared by  
firmware  
Typ (25°C)  
LVDIF is set  
by hardware  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39612B-page 366  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 28-21:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (+25°C)  
Typ (25C)  
Min  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 28-22:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (+25°C)  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
2005 Microchip Technology Inc.  
DS39612B-page 367  
PIC18F6525/6621/8525/8621  
FIGURE 28-23:  
TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 5V, -40°C TO +125°C)  
1.8  
1.6  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max  
Max  
TyTpy(p+(2255°CC))  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 28-24:  
TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 3V, -40°C TO +125°C)  
2.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2.0  
1.5  
1.0  
0.5  
0.0  
Max  
Typ (+25°C)  
Typ (25C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
DS39612B-page 368  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 28-25:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)  
4.0  
Typical:  
statistical mean @ 25°C  
VIH Max  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH Min  
VIL Max  
VIL Min  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-26:  
MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)  
1.6  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VTH (Max)  
VTH (Min)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2005 Microchip Technology Inc.  
DS39612B-page 369  
PIC18F6525/6621/8525/8621  
FIGURE 28-27:  
MINIMUM AND MAXIMUM VIN vs. VDD (I2C INPUT, -40°C TO +125°C)  
3.5  
VIH Max  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Minimum: mean – 3σ (-40°C to +125°C)  
VIL Max  
VIH Min  
VIL Min  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-28:  
A/D NONLINEARITY vs. VREFH (VDD = VREFH, -40°C TO +125°C)  
4
3.5  
3
-40°C  
+25°C  
25C  
2.5  
2
+85°C  
85C  
1.5  
1
0.5  
0
+125°C  
125C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD and VREFH (V)  
DS39612B-page 370  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
FIGURE 28-29:  
A/D NONLINEARITY vs. VREFH (VDD = 5V, -40°C TO +125°C)  
3
2.5  
2
1.5  
1
Max (-40°C to +125°C)  
TTyypp((+2255C°)C)  
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VREFH (V)  
2005 Microchip Technology Inc.  
DS39612B-page 371  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 372  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
29.0 PACKAGING INFORMATION  
29.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F6621  
e
3
-I/PT  
0410017  
80-Lead TQFP  
Example  
-E/PT  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18F8621  
e
3
0410017  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2005 Microchip Technology Inc.  
DS39612B-page 373  
PIC18F6525/6621/8525/8621  
29.2 Package Details  
The following sections give the technical details of the  
packages.  
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45°  
α
A
c
L
A2  
φ
A1  
β
(F)  
Units  
Dimension Limits  
INCHES  
NOM  
64  
MILLIMETERS*  
NOM  
64  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
.020  
0.50  
16  
Pins per Side  
n1  
A
16  
.043  
.039  
.006  
.024  
.039  
3.5  
Overall Height  
.039  
.047  
1.00  
1.10  
1.00  
0.15  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
.037  
.002  
.018  
.041  
.010  
.030  
0.95  
0.05  
0.45  
1.05  
0.25  
0.75  
Foot Length  
(F)  
φ
E
D
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.005  
.007  
.025  
5
7
.482  
.482  
.398  
.398  
.009  
.011  
.045  
15  
0
11.75  
11.75  
9.90  
9.90  
0.13  
0.17  
0.64  
5
7
12.25  
12.25  
10.10  
10.10  
0.23  
0.27  
1.14  
15  
Overall Width  
.472  
.472  
.394  
.394  
.007  
.009  
.035  
10  
12.00  
12.00  
10.00  
10.00  
0.18  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
5
10  
15  
5
10  
15  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-085  
DS39612B-page 374  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45°  
A
α
c
A2  
φ
β
L
A1  
(F)  
Units  
Dimension Limits  
INCHES  
NOM  
80  
MILLIMETERS*  
NOM  
80  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
.020  
0.50  
20  
Pins per Side  
n1  
A
20  
.043  
.039  
.004  
.024  
.039  
3.5  
Overall Height  
.039  
.037  
.002  
.018  
.047  
1.00  
1.10  
1.00  
0.10  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
.041  
.006  
.030  
0.95  
0.05  
0.45  
1.05  
0.15  
0.75  
Foot Length  
(F)  
Footprint (Reference)  
Foot Angle  
φ
E
0
.541  
.541  
.463  
.463  
.004  
.007  
.025  
5
7
.561  
.561  
.482  
.482  
.008  
.011  
.045  
15  
0
13.75  
13.75  
11.75  
11.75  
0.09  
0.17  
0.64  
5
7
14.25  
14.25  
12.25  
12.25  
0.20  
0.27  
1.14  
15  
Overall Width  
.551  
.551  
.472  
.472  
.006  
.009  
.035  
10  
14.00  
14.00  
12.00  
12.00  
0.15  
0.22  
0.89  
10  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
β
5
10  
15  
5
10  
15  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-092  
2005 Microchip Technology Inc.  
DS39612B-page 375  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 376  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Revision A (July 2003)  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Original data sheet for PIC18F6525/6621/8525/8621  
family.  
Revision B (August 2004)  
This revision includes updates to the Electrical Specifi-  
cations in Section 27.0, the DC and AC Characteristics  
Graphs and Tables in Section 28.0 have been added  
and includes minor corrections to the data sheet text.  
TABLE B-1:  
DEVICE DIFFERENCES  
Feature  
PIC18F6525  
PIC18F6621  
PIC18F8525  
PIC18F8621  
On-chip Program Memory (Kbytes)  
I/O Ports  
48K  
64K  
48K  
64K  
Ports A, B, C, D,  
E, F, G  
Ports A, B, C, D,  
E, F, G  
Ports A, B, C, D,  
E, F, G, H, J  
Ports A, B, C, D,  
E, F, G, H, J  
A/D Channels  
12  
No  
12  
No  
16  
Yes  
16  
Yes  
External Memory Interface  
Package Types  
64-pin TQFP  
64-pin TQFP  
80-pin TQFP  
80-pin TQFP  
2005 Microchip Technology Inc.  
DS39612B-page 377  
PIC18F6525/6621/8525/8621  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
APPENDIX D: MIGRATION FROM  
MID-RANGE TO  
ENHANCED DEVICES  
This appendix discusses the considerations for con-  
verting from previous versions of a device to the ones  
listed in this data sheet. Typically, these changes are  
due to the differences in the process technology used.  
An example of this type of conversion is from a  
PIC17C756 to a PIC18F8720.  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18C442.” The changes discussed, while device  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
Not Applicable  
This Application Note is available as Literature Number  
DS00716.  
DS39612B-page 378  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
APPENDIX E: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
A detailed discussion of the migration pathway and dif-  
ferences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18FXXXX) is provided in AN726, “PIC17CXXX to  
PIC18CXXX Migration.”  
This Application Note is available as Literature Number  
DS00726.  
2005 Microchip Technology Inc.  
DS39612B-page 379  
PIC18F6525/6621/8525/8621  
NOTES:  
DS39612B-page 380  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
INDEX  
Block Diagrams  
A
16-Bit Byte Select Mode............................................. 75  
A/D.................................................................................... 233  
Acquisition Requirements ......................................... 238  
Acquisition Time........................................................ 238  
ADCON0 Register..................................................... 233  
ADCON1 Register..................................................... 233  
ADCON2 Register..................................................... 233  
ADRESH Register............................................. 233, 236  
ADRESL Register ............................................. 233, 236  
Analog Port Pins ....................................................... 128  
Analog Port Pins, Configuring................................... 240  
Associated Register Summary.................................. 241  
Automatic Acquisition Time....................................... 239  
Calculating Minimum Required  
16-Bit Byte Write Mode............................................... 73  
16-Bit Word Write Mode ............................................. 74  
A/D............................................................................ 236  
Analog Input Model................................................... 237  
Baud Rate Generator ............................................... 199  
Capture Mode Operation.......................................... 151  
Comparator Analog Input Model............................... 247  
Comparator I/O Operating Modes ............................ 244  
Comparator Output................................................... 246  
Comparator Voltage Reference................................ 250  
Comparator Voltage Reference  
Output Buffer Example ..................................... 251  
Compare Mode Operation........................................ 152  
Enhanced PWM........................................................ 161  
EUSART Receive..................................................... 223  
EUSART Transmit.................................................... 221  
Low-Voltage Detect (LVD)........................................ 254  
Low-Voltage Detect with External Input.................... 254  
MCLR/VPP/RG5 Pin.................................................. 121  
Acquisition Time ............................................... 238  
Configuring the Module............................................. 237  
Conversion Clock (TAD) ............................................ 239  
Conversion Status (GO/DONE Bit)........................... 236  
Conversion TAD Cycles............................................. 240  
Conversions.............................................................. 240  
Converter Characteristics ......................................... 354  
Converter Interrupt, Configuring ............................... 237  
ECCP2 Special Event Trigger................................... 241  
Equations.................................................................. 238  
Minimum Charging Time........................................... 238  
Selecting and Configuring  
2
MSSP (I C Master Mode)......................................... 197  
2
MSSP (I C Mode)..................................................... 182  
MSSP (SPI Mode) .................................................... 173  
On-Chip Reset Circuit................................................. 29  
PIC18F6525/6621 ........................................................ 9  
PIC18F8525/8621 ...................................................... 10  
PLL ............................................................................. 23  
Port/LAT/TRIS Operation ......................................... 103  
PORTC (Peripheral Output Override)....................... 109  
PORTD and PORTE (Parallel Slave Port)................ 128  
PORTD in I/O Port Mode.......................................... 111  
PORTD in System Bus Mode................................... 112  
PORTE in I/O Mode.................................................. 115  
PORTE in System Bus Mode ................................... 115  
PORTG (Peripheral Output Override) ...................... 120  
PORTJ in I/O Mode .................................................. 125  
PWM Operation (Simplified)..................................... 154  
RA3:RA0 and RA5 Pins............................................ 104  
RA4/T0CKI Pin ......................................................... 104  
RA6 Pin (Enabled as I/O) ......................................... 104  
RB2:RB0 Pins........................................................... 107  
RB3 Pin .................................................................... 107  
RB7:RB4 Pins........................................................... 106  
Reads from Flash Program Memory .......................... 65  
RF1/AN6/C2OUT and RF2/AN7/C1OUT Pins.......... 117  
RF6:RF3 and RF0 Pins ............................................ 118  
RF7 Pin..................................................................... 118  
RH3:RH0 Pins in I/O Mode....................................... 122  
RH3:RH0 Pins in System Bus Mode ........................ 123  
RH7:RH4 Pins in I/O Mode....................................... 122  
RJ4:RJ0 Pins in System Bus Mode.......................... 126  
RJ7:RJ6 Pins in System Bus Mode.......................... 126  
Single Comparator.................................................... 245  
Table Read Operation ................................................ 61  
Table Write Operation ................................................ 62  
Table Writes to Flash Program Memory..................... 67  
Timer0 in 16-Bit Mode .............................................. 132  
Timer0 in 8-Bit Mode ................................................ 132  
Timer1 ...................................................................... 136  
Timer1 (16-Bit Read/Write Mode)............................. 136  
Timer2 ...................................................................... 142  
Acquisition Time ............................................... 239  
Special Event Trigger (ECCP) .................................. 160  
TAD vs. Device Operating  
Frequencies (table)........................................... 239  
Absolute Maximum Ratings .............................................. 323  
AC (Timing) Characteristics.............................................. 335  
Load Conditions for Device  
Timing Specifications........................................ 336  
Parameter Symbology .............................................. 335  
Temperature and Voltage  
Specifications.................................................... 336  
Timing Conditions ..................................................... 336  
ACKSTAT ......................................................................... 203  
ACKSTAT Status Flag ...................................................... 203  
ADCON0 Register............................................................. 233  
GO/DONE Bit............................................................ 236  
ADCON1 Register............................................................. 233  
ADCON2 Register............................................................. 233  
ADDLW ............................................................................. 281  
ADDWF............................................................................. 281  
ADDWFC .......................................................................... 282  
ADRESH Register..................................................... 233, 236  
ADRESL Register ..................................................... 233, 236  
Analog-to-Digital Converter. See A/D.  
ANDLW ............................................................................. 282  
ANDWF............................................................................. 283  
Assembler  
MPASM Assembler................................................... 317  
Auto-Wake-up on Sync Break Character.......................... 225  
B
Baud Rate Generator........................................................ 199  
BC ..................................................................................... 283  
BCF................................................................................... 284  
BF ..................................................................................... 203  
BF Status Flag .................................................................. 203  
2005 Microchip Technology Inc.  
DS39612B-page 381  
PIC18F6525/6621/8525/8621  
Timer3.......................................................................144  
Timer3 (16-Bit Read/Write Mode).............................144  
Timer4.......................................................................148  
Watchdog Timer........................................................268  
BN .....................................................................................284  
BNC...................................................................................285  
BNN...................................................................................285  
BNOV................................................................................286  
BNZ...................................................................................286  
BOR. See Brown-out Reset.  
BOV...................................................................................289  
BRA...................................................................................287  
Break Character (12-Bit) Transmit and Receive ...............226  
BRG. See Baud Rate Generator.  
Brown-out Reset (BOR) .............................................. 30, 259  
BSF ...................................................................................287  
BTFSC ..............................................................................288  
BTFSS...............................................................................288  
BTG...................................................................................289  
BZ......................................................................................290  
Initializing PORTE..................................................... 114  
Initializing PORTF..................................................... 117  
Initializing PORTG .................................................... 120  
Initializing PORTH .................................................... 122  
Initializing PORTJ ..................................................... 125  
Loading the SSPBUF (SSPSR) Register.................. 176  
Reading a Flash Program Memory Word ................... 65  
Saving STATUS, WREG and  
BSR Registers in RAM ..................................... 102  
Writing to Flash Program Memory........................ 68–69  
Code Protection........................................................ 259, 270  
Associated Registers................................................ 271  
Configuration Register Protection............................. 273  
Data EEPROM.......................................................... 273  
Program Memory...................................................... 271  
COMF ............................................................................... 292  
Comparator....................................................................... 243  
Analog Input Connection Considerations ................. 247  
Associated Registers................................................ 248  
Configuration ............................................................ 244  
Effects of a Reset ..................................................... 247  
Interrupts .................................................................. 246  
Operation.................................................................. 245  
Operation During Sleep ............................................ 247  
Outputs..................................................................... 245  
Reference ................................................................. 245  
External Signal ................................................. 245  
Internal Signal................................................... 245  
Response Time......................................................... 245  
Comparator Specifications................................................ 332  
Comparator Voltage Reference........................................ 249  
Accuracy and Error................................................... 250  
Associated Registers................................................ 251  
Configuring ............................................................... 249  
Connection Considerations....................................... 250  
Effects of a Reset ..................................................... 250  
Operation During Sleep ............................................ 250  
Compare (CCP Module) ................................................... 152  
Associated Registers................................................ 153  
CCP Pin Configuration.............................................. 152  
CCPR1 Register ....................................................... 152  
Software Interrupt ..................................................... 152  
Special Event Trigger ............................................... 152  
Timer1/Timer3 Mode Selection................................. 152  
Compare (ECCP Module)................................................. 160  
Special Event Trigger ............................... 137, 145, 160  
Configuration Bits ............................................................. 259  
Context Saving During Interrupts...................................... 102  
Control Registers  
C
C Compilers  
MPLAB C17 ..............................................................318  
MPLAB C18 ..............................................................318  
MPLAB C30 ..............................................................318  
CALL .................................................................................290  
Capture (CCP Module)......................................................151  
Associated Registers ................................................153  
CCP Pin Configuration..............................................151  
CCPR4H:CCPR4L Registers....................................151  
Software Interrupt .....................................................151  
Timer1/Timer3 Mode Selection.................................151  
Capture (ECCP Module) ...................................................160  
Capture/Compare/PWM (CCP).........................................149  
Capture Mode. See Capture.  
CCP Mode and Timer Resources.............................150  
CCPRxH Register.....................................................150  
CCPRxL Register......................................................150  
Compare Mode. See Compare.  
Interconnect Configurations......................................150  
Module Configuration................................................150  
PWM Mode. See PWM.  
Clocking Scheme/Instruction Cycle.....................................44  
CLRF.................................................................................291  
CLRWDT...........................................................................291  
Code Examples  
16 x 16 Signed Multiply Routine .................................86  
16 x 16 Unsigned Multiply Routine .............................86  
8 x 8 Signed Multiply Routine .....................................85  
8 x 8 Unsigned Multiply Routine .................................85  
Changing Between Capture Prescalers....................151  
Computed GOTO Using an Offset Value....................46  
Data EEPROM Read ..................................................81  
Data EEPROM Refresh Routine.................................82  
Data EEPROM Write ..................................................81  
Erasing a Flash Program Memory Row ......................66  
Fast Register Stack.....................................................44  
How to Clear RAM (Bank 1) Using  
EECON1 and EECON2 .............................................. 62  
TABLAT (Table Latch) Register.................................. 64  
TBLPTR (Table Pointer) Register............................... 64  
Conversion Considerations............................................... 378  
CPFSEQ........................................................................... 292  
CPFSGT ........................................................................... 293  
CPFSLT............................................................................ 293  
D
Data EEPROM Memory...................................................... 79  
Associated Registers.................................................. 83  
EEADR Register......................................................... 79  
EEADRH Register ...................................................... 79  
EECON1 Register....................................................... 79  
EECON2 Register....................................................... 79  
Operation During Code-Protect .................................. 82  
Protection Against Spurious Write.............................. 82  
Indirect Addressing .............................................56  
Implementing a Real-Time Clock Using a  
Timer1 Interrupt Service ...................................138  
Initializing PORTA.....................................................103  
Initializing PORTB.....................................................106  
Initializing PORTC.....................................................109  
Initializing PORTD.....................................................111  
DS39612B-page 382  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Reading....................................................................... 81  
Baud Rate Generator (BRG) .................................... 217  
Associated Registers........................................ 217  
Auto-Baud Rate Detect..................................... 220  
Baud Rate Error, Calculating............................ 217  
Baud Rates, Asynchronous Modes .................. 218  
High Baud Rate Select (BRGH Bit) .................. 217  
Sampling .......................................................... 217  
Synchronous Master Mode....................................... 227  
Associated Registers, Receive......................... 230  
Associated Registers, Transmit........................ 228  
Reception ......................................................... 229  
Transmission .................................................... 227  
Synchronous Slave Mode......................................... 231  
Associated Registers, Receive......................... 232  
Associated Registers, Transmit........................ 231  
Reception ......................................................... 232  
Transmission .................................................... 231  
Evaluation and Programming Tools.................................. 321  
Extended Microcontroller Mode.......................................... 71  
External Memory Interface.................................................. 71  
16-Bit Byte Select Mode............................................. 75  
16-Bit Byte Write Mode............................................... 73  
16-Bit Mode ................................................................ 73  
16-Bit Mode Timing .................................................... 76  
16-Bit Word Write Mode ............................................. 74  
PIC18F8X2X External Bus -  
Using........................................................................... 82  
Write Verify ................................................................. 82  
Writing To.................................................................... 81  
Data Memory ...................................................................... 47  
General Purpose Registers......................................... 47  
Map for PIC18F6X2X/8X2X Devices .......................... 48  
Special Function Registers ......................................... 47  
DAW.................................................................................. 294  
DC and AC Characteristics  
Graphs and Tables ................................................... 357  
DC Characteristics............................................................ 330  
Power-Down and Supply Current ............................. 326  
Supply Voltage.......................................................... 325  
DCFSNZ ........................................................................... 295  
DECF ................................................................................ 294  
DECFSZ............................................................................ 295  
Demonstration Boards  
PICDEM 1................................................................. 320  
PICDEM 17............................................................... 321  
PICDEM 18R ............................................................ 321  
PICDEM 2 Plus......................................................... 320  
PICDEM 3................................................................. 320  
PICDEM 4................................................................. 320  
PICDEM LIN ............................................................. 321  
PICDEM USB............................................................ 321  
PICDEM.net Internet/Ethernet .................................. 320  
Development Support ....................................................... 317  
Device Differences............................................................ 377  
Direct Addressing................................................................ 57  
Direct Addressing........................................................ 55  
I/O Port Functions............................................... 72  
Program Memory Modes and External  
Memory Interface................................................ 71  
F
Flash Program Memory...................................................... 61  
Associated Registers.................................................. 69  
Control Registers........................................................ 62  
Erase Sequence......................................................... 66  
Erasing ....................................................................... 66  
Operation During Code-Protect.................................. 69  
Reading ...................................................................... 65  
Table Pointer  
E
ECCP  
Capture and Compare Modes................................... 160  
Standard PWM Mode................................................ 160  
Electrical Characteristics................................................... 323  
Enhanced Capture/Compare/PWM (ECCP)..................... 157  
and Program Memory modes ................................... 158  
Capture Mode. See Capture (ECCP Module).  
Outputs and Configuration........................................ 158  
Pin Configurations for ECCP1 .................................. 158  
Pin Configurations for ECCP2 .................................. 159  
Pin Configurations for ECCP3 .................................. 159  
PWM Mode. See PWM (ECCP Module).  
Timer Resources....................................................... 160  
Use with CCP4 and CCP5........................................ 158  
Enhanced PWM Mode. See PWM (ECCP Module).  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART)............................... 213  
Errata .................................................................................... 5  
EUSART  
Boundaries Based on Operation ........................ 64  
Table Pointer Boundaries........................................... 64  
Table Reads and Table Writes................................... 61  
Write Sequence.......................................................... 67  
Writing To ................................................................... 67  
Protection Against Spurious Writes.................... 69  
Unexpected Termination .................................... 69  
Write Verify......................................................... 69  
G
General Call Address Support.......................................... 196  
GOTO ............................................................................... 296  
H
Asynchronous Mode ................................................. 221  
12-Bit Break Transmit and Receive .................. 226  
Associated Registers, Receive ......................... 224  
Associated Registers, Transmit ........................ 222  
Auto-Wake-up on Sync Break .......................... 225  
Receiver............................................................ 223  
Setting Up 9-Bit Mode with  
Hardware Multiplier............................................................. 85  
Introduction................................................................. 85  
Operation.................................................................... 85  
Performance Comparison........................................... 85  
Address Detect ......................................... 223  
Transmitter........................................................ 221  
2005 Microchip Technology Inc.  
DS39612B-page 383  
PIC18F6525/6621/8525/8621  
MOVF ....................................................................... 299  
I
MOVFF ..................................................................... 300  
MOVLB..................................................................... 300  
MOVLW .................................................................... 301  
MOVWF.................................................................... 301  
MULLW..................................................................... 302  
MULWF..................................................................... 302  
NEGF........................................................................ 303  
NOP.......................................................................... 303  
Opcode Field Descriptions........................................ 276  
POP .......................................................................... 304  
PUSH........................................................................ 304  
RCALL ...................................................................... 305  
RESET...................................................................... 305  
RETFIE..................................................................... 306  
RETLW ..................................................................... 306  
RETURN................................................................... 307  
RLCF ........................................................................ 307  
RLNCF...................................................................... 308  
RRCF........................................................................ 308  
RRNCF ..................................................................... 309  
SETF ........................................................................ 309  
SLEEP ...................................................................... 310  
SUBFWB .................................................................. 310  
SUBLW..................................................................... 311  
SUBWF..................................................................... 311  
SUBWFB .................................................................. 312  
SWAPF..................................................................... 312  
TBLRD...................................................................... 313  
TBLWT ..................................................................... 314  
TSTFSZ .................................................................... 315  
XORLW .................................................................... 315  
XORWF .................................................................... 316  
Summary Table ........................................................ 278  
INT Interrupt (RB3/INT3:RB0/INT0). See Interrupt Sources.  
INTCON Registers.............................................................. 89  
I/O Ports............................................................................103  
I C Mode  
2
Associated Registers ................................................212  
General Call Address Support ..................................196  
Master Mode  
Operation ..........................................................198  
Master Mode Transmit Sequence.............................198  
Read/Write Bit Information (R/W Bit) ................ 186, 187  
Serial Clock (RC3/SCK/SCL)....................................187  
ID Locations ..............................................................259, 274  
INCF..................................................................................296  
INCFSZ .............................................................................297  
In-Circuit Debugger...........................................................274  
Resources (table)......................................................274  
In-Circuit Serial Programming (ICSP) ....................... 259, 274  
Indirect Addressing .............................................................57  
INDF and FSR Registers ............................................56  
Operation ....................................................................56  
Indirect Addressing Operation.............................................57  
Indirect File Operand...........................................................47  
INFSNZ .............................................................................297  
Initialization Conditions for All Registers....................... 32–36  
Instruction Flow/Pipelining ..................................................45  
Instruction Set  
ADDLW .....................................................................281  
ADDWF.....................................................................281  
ADDWFC ..................................................................282  
ANDLW .....................................................................282  
ANDWF.....................................................................283  
BC .............................................................................283  
BCF...........................................................................284  
BN .............................................................................284  
BNC ..........................................................................285  
BNN ..........................................................................285  
BNOV........................................................................286  
BNZ...........................................................................286  
BOV ..........................................................................289  
BRA...........................................................................287  
BSF...........................................................................287  
BTFSC ......................................................................288  
BTFSS ......................................................................288  
BTG...........................................................................289  
BZ .............................................................................290  
CALL .........................................................................290  
CLRF.........................................................................291  
CLRWDT...................................................................291  
COMF .......................................................................292  
CPFSEQ ...................................................................292  
CPFSGT ...................................................................293  
CPFSLT ....................................................................293  
DAW..........................................................................294  
DCFSNZ ...................................................................295  
DECF ........................................................................294  
DECFSZ....................................................................295  
Firmware Instructions................................................275  
General Format.........................................................277  
GOTO .......................................................................296  
INCF..........................................................................296  
INCFSZ.....................................................................297  
INFSNZ.....................................................................297  
IORLW ......................................................................298  
IORWF ......................................................................298  
LFSR.........................................................................299  
2
Inter-Integrated Circuit. See I C.  
Interrupt Logic (diagram) .................................................... 88  
Interrupt Sources .............................................................. 259  
A/D Conversion Complete ........................................ 237  
Capture Complete (CCP).......................................... 151  
Compare Complete (CCP)........................................ 152  
INT0.......................................................................... 102  
Interrupt-on-Change (RB7:RB4)............................... 106  
PORTB, Interrupt-on-Change................................... 102  
RB3/INT3:RB0/INT0/FLT0 Pins, External................. 102  
TMR0........................................................................ 102  
TMR0 Overflow......................................................... 133  
TMR1 Overflow................................................. 135, 137  
TMR2 to PR2 Match ................................................. 142  
TMR2 to PR2 Match (PWM)..................... 141, 154, 160  
TMR3 Overflow................................................. 143, 145  
TMR4 to PR4 Match ................................................. 148  
TMR4 to PR4 Match (PWM)..................................... 147  
Interrupts............................................................................. 87  
Control Registers........................................................ 89  
Enable Registers ........................................................ 95  
Flag Registers............................................................. 92  
Priority Registers ........................................................ 98  
Reset Control Registers............................................ 101  
IORLW.............................................................................. 298  
IORWF.............................................................................. 298  
IPR Registers...................................................................... 98  
DS39612B-page 384  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Control Registers (general) ...................................... 173  
Enabling SPI I/O....................................................... 177  
I C Mode .................................................................. 182  
K
Key Features  
2
Easy Migration .............................................................. 7  
Expanded Memory........................................................ 7  
External Memory Interface............................................ 7  
Other Special Features................................................. 7  
Acknowledge Sequence Timing ....................... 206  
Baud Rate Generator ....................................... 199  
Bus Collision  
During a Repeated  
Start Condition.................................. 210  
Bus Collision During a Start Condition ............. 208  
Bus Collision During a Stop Condition.............. 211  
Clock Arbitration ............................................... 200  
Effect of a Reset............................................... 207  
I C Clock Rate w/BRG ..................................... 199  
Master Mode..................................................... 197  
Reception ................................................. 203  
L
LFSR................................................................................. 299  
Low-Voltage Detect........................................................... 253  
Characteristics .......................................................... 333  
Converter Characteristics ......................................... 333  
Effects of a Reset...................................................... 257  
Operation .................................................................. 256  
Current Consumption........................................ 257  
During Sleep ..................................................... 257  
Reference Voltage Set Point ............................ 257  
Typical Application.................................................... 253  
Low-Voltage ICSP Programming ...................................... 274  
LVD. See Low-Voltage Detect.  
2
Repeated Start Condition Timing ............. 202  
Start Condition Timing.............................. 201  
Transmission............................................ 203  
Multi-Master Communication, Bus  
Collision and Arbitration ........................... 207  
Multi-Master Mode............................................ 207  
Registers .......................................................... 182  
Sleep Operation ............................................... 207  
Stop Condition Timing ...................................... 206  
Module Operation..................................................... 186  
Operation.................................................................. 176  
Slave Mode............................................................... 186  
Addressing ....................................................... 186  
Reception ......................................................... 187  
Transmission .................................................... 187  
SPI Master Mode...................................................... 178  
SPI Mode.................................................................. 173  
SPI Slave Mode........................................................ 179  
SSPBUF ................................................................... 178  
SSPSR ..................................................................... 178  
TMR2 Output for Clock Shift............................. 141, 142  
TMR4 Output for Clock Shift..................................... 148  
Typical Connection................................................... 177  
M
Master SSP (MSSP) Module Overview ............................ 173  
Master Synchronous Serial Port (MSSP). See MSSP.  
Master Synchronous Serial Port. See MSSP  
Memory  
Mode Memory Access ................................................ 40  
Memory Maps for PIC18F6X2X/8X2X  
Program Memory Modes ............................................ 41  
Memory Organization  
Data Memory .............................................................. 47  
Program Memory ........................................................ 39  
Modes................................................................. 39  
Memory Programming Requirements ............................... 334  
Microcontroller Mode .......................................................... 71  
Microprocessor Mode ......................................................... 71  
Microprocessor with Boot Block Mode................................ 71  
Migration from High-End to  
MSSP Module  
Enhanced Devices.................................................... 379  
Migration from Mid-Range to  
SPI Master/Slave Connection................................... 177  
MULLW............................................................................. 302  
MULWF............................................................................. 302  
Enhanced Devices.................................................... 378  
MOVF................................................................................ 299  
MOVFF ............................................................................. 300  
MOVLB ............................................................................. 300  
MOVLW ............................................................................ 301  
MOVWF ............................................................................ 301  
MPLAB ASM30 Assembler, Linker, Librarian ................... 318  
MPLAB ICD 2 In-Circuit Debugger ................................... 319  
MPLAB ICE 2000 High-Performance  
Universal In-Circuit Emulator .................................... 319  
MPLAB ICE 4000 High-Performance  
Universal In-Circuit Emulator .................................... 319  
MPLAB Integrated Development  
Environment Software............................................... 317  
MPLAB PM3 Device Programmer .................................... 319  
MPLINK Object Linker/MPLIB Object Librarian ................ 318  
MSSP................................................................................ 173  
ACK Pulse......................................................... 186, 187  
Clock Stretching........................................................ 192  
10-Bit Slave Receive Mode (SEN = 1).............. 192  
10-Bit Slave Transmit Mode ............................. 192  
7-Bit Slave Receive Mode (SEN = 1)................ 192  
7-Bit Slave Transmit Mode ............................... 192  
Clock Synchronization and the  
N
NEGF................................................................................ 303  
NOP.................................................................................. 303  
O
Oscillator Configuration ...................................................... 21  
EC............................................................................... 21  
ECIO........................................................................... 21  
ECIO+PLL .................................................................. 21  
ECIO+SPLL................................................................ 21  
HS............................................................................... 21  
HS+PLL ...................................................................... 21  
HS+SPLL.................................................................... 21  
LP ............................................................................... 21  
RC .............................................................................. 21  
RCIO........................................................................... 21  
XT............................................................................... 21  
Oscillator Selection........................................................... 259  
Oscillator, Timer1.............................................. 135, 137, 145  
Oscillator, Timer3.............................................................. 143  
Oscillator, WDT................................................................. 267  
CKP bit (SEN = 1)............................................. 193  
2005 Microchip Technology Inc.  
DS39612B-page 385  
PIC18F6525/6621/8525/8621  
RF3/AN8..................................................................... 17  
P
RF4/AN9..................................................................... 17  
RF5/AN10/CVREF ....................................................... 17  
RF6/AN11................................................................... 17  
RF7/SS ....................................................................... 17  
RG0/ECCP3/P3A........................................................ 18  
RG1/TX2/CK2............................................................. 18  
RG2/RX2/DT2............................................................. 18  
RG3/CCP4/P3D.......................................................... 18  
RG4/CCP5/P1D.......................................................... 18  
RH0/A16 ..................................................................... 19  
RH1/A17 ..................................................................... 19  
RH2/A18 ..................................................................... 19  
RH3/A19 ..................................................................... 19  
RH4/AN12/P3C........................................................... 19  
RH5/AN13/P3B........................................................... 19  
RH6/AN14/P1C........................................................... 19  
RH7/AN15/P1B........................................................... 19  
RJ0/ALE ..................................................................... 20  
RJ1/OE....................................................................... 20  
RJ2/WRL .................................................................... 20  
RJ3/WRH.................................................................... 20  
RJ4/BA0 ..................................................................... 20  
RJ5/CE ....................................................................... 20  
RJ6/LB........................................................................ 20  
RJ7/UB ....................................................................... 20  
VDD ............................................................................. 20  
VSS ............................................................................. 20  
Pinout I/O Descriptions....................................................... 11  
PIR Registers...................................................................... 92  
PLL Lock Time-out.............................................................. 30  
Pointer, FSR ....................................................................... 56  
POP .................................................................................. 304  
POR. See Power-on Reset.  
Packaging .........................................................................373  
Details.......................................................................374  
Marking .....................................................................373  
Parallel Slave Port (PSP).......................................... 111, 128  
Associated Registers ................................................130  
RE0/AD8/RD/P2D Pin...............................................128  
RE1/AD9/WR/P2C Pin..............................................128  
RE2/AD10/CS/P2B Pin .............................................128  
Select (PSPMODE Bit) ..................................... 111, 128  
Phase Locked Loop (PLL)...................................................23  
PICkit 1 Flash Starter Kit...................................................321  
PICSTART Plus Development Programmer .....................320  
PIE Registers ......................................................................95  
Pin Functions  
AVDD ...........................................................................20  
AVSS ...........................................................................20  
MCLR/VPP/RG5 ..........................................................11  
OSC1/CLKI .................................................................11  
OSC2/CLKO/RA6 .......................................................11  
RA0/AN0 .....................................................................12  
RA1/AN1 .....................................................................12  
RA2/AN2/VREF-...........................................................12  
RA3/AN3/VREF+..........................................................12  
RA4/T0CKI..................................................................12  
RA5/AN4/LVDIN .........................................................12  
RA6 .............................................................................12  
RB0/INT0/FLT0...........................................................13  
RB1/INT1 ....................................................................13  
RB2/INT2 ....................................................................13  
RB3/INT3/ECCP2/P2A ...............................................13  
RB4/KBI0 ....................................................................13  
RB5/KBI1/PGM ...........................................................13  
RB6/KBI2/PGC ...........................................................13  
RB7/KBI3/PGD ...........................................................13  
RC0/T1OSO/T13CKI ..................................................14  
RC1/T1OSI/ECCP2/P2A.............................................14  
RC2/ECCP1/P1A........................................................14  
RC3/SCK/SCL ............................................................14  
RC4/SDI/SDA .............................................................14  
RC5/SDO ....................................................................14  
RC6/TX1/CK1 .............................................................14  
RC7/RX1/DT1.............................................................14  
RD0/AD0/PSP0...........................................................15  
RD1/AD1/PSP1...........................................................15  
RD2/AD2/PSP2...........................................................15  
RD3/AD3/PSP3...........................................................15  
RD4/AD4/PSP4...........................................................15  
RD5/AD5/PSP5...........................................................15  
RD6/AD6/PSP6...........................................................15  
RD7/AD7/PSP7...........................................................15  
RE0/AD8/RD/P2D.......................................................16  
RE1/AD9/WR/P2C ......................................................16  
RE2/AD10/CS/P2B .....................................................16  
RE3/AD11/P3C...........................................................16  
RE4/AD12/P3B ...........................................................16  
RE5/AD13/P1C...........................................................16  
RE6/AD14/P1B ...........................................................16  
RE7/AD15/ECCP2/P2A ..............................................16  
RF0/AN5 .....................................................................17  
RF1/AN6/C2OUT ........................................................17  
RF2/AN7/C1OUT ........................................................17  
PORTA  
Associated Registers................................................ 105  
Functions .................................................................. 105  
LATA Register .......................................................... 103  
PORTA Register....................................................... 103  
TRISA Register......................................................... 103  
PORTB  
Associated Registers................................................ 108  
Functions .................................................................. 108  
LATB Register .......................................................... 106  
PORTB Register....................................................... 106  
RB3/INT3:RB0/INT0/FLT0 Pins, External................. 102  
TRISB Register......................................................... 106  
PORTC  
Associated Registers................................................ 110  
Functions .................................................................. 110  
LATC Register .......................................................... 109  
PORTC Register....................................................... 109  
RC3/SCK/SCL Pin.................................................... 187  
TRISC Register......................................................... 109  
PORTD ............................................................................. 128  
Associated Registers................................................ 113  
Functions .................................................................. 113  
LATD Register .......................................................... 111  
Parallel Slave Port (PSP) Function........................... 111  
PORTD Register....................................................... 111  
TRISD Register......................................................... 111  
DS39612B-page 386  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
PORTE  
Analog Port Pins ....................................................... 128  
Associated Registers ................................................ 116  
Program Verification ......................................................... 270  
Programming, Device Instructions.................................... 275  
PSP. See Parallel Slave Port.  
Functions .................................................................. 116  
LATE Register........................................................... 114  
PORTE Register ....................................................... 114  
PSP Mode Select (PSPMODE Bit) ................... 111, 128  
RE0/AD8/RD/P2D Pin............................................... 128  
RE1/AD9/WR/P2C Pin.............................................. 128  
RE2/AD10/CS/P2B Pin............................................. 128  
TRISE Register......................................................... 114  
Pulse-Width Modulation. See PWM (CCP Module)  
and PWM (ECCP Module).  
PUSH................................................................................ 304  
PWM (CCP Module) ......................................................... 154  
Associated Registers................................................ 156  
CCPR4H:CCPR4L Registers ................................... 154  
Duty Cycle ................................................................ 154  
Example Frequencies/Resolutions........................... 155  
Period ....................................................................... 154  
Setup for PWM Operation ........................................ 155  
TMR2 to PR2 Match......................................... 141, 154  
TMR4 to PR4 Match................................................. 147  
PWM (ECCP Module)....................................................... 160  
Associated Registers................................................ 172  
CCPR1H:CCPR1L Registers ................................... 160  
Direction Change in Full-Bridge  
PORTF  
Associated Registers ................................................ 119  
Functions .................................................................. 119  
LATF Register........................................................... 117  
PORTF Register ....................................................... 117  
TRISF Register ......................................................... 117  
PORTG  
Associated Registers ................................................ 121  
Functions .................................................................. 121  
LATG Register .......................................................... 120  
PORTG Register....................................................... 120  
TRISG Register......................................................... 120  
Output Mode..................................................... 166  
Duty Cycle ................................................................ 161  
Effects of a Reset ..................................................... 171  
Enhanced PWM Auto-Shutdown.............................. 168  
Example Frequencies/Resolutions........................... 161  
Full-Bridge Application Example............................... 166  
Full-Bridge Mode ...................................................... 165  
Half-Bridge Mode...................................................... 163  
Half-Bridge Output Mode  
Applications Example ....................................... 164  
Output Configurations............................................... 162  
Output Relationships (Active-High) .......................... 162  
Output Relationships (Active-Low) ........................... 163  
Period ....................................................................... 160  
Programmable Dead-Band Delay............................. 168  
Setup for PWM Operation ........................................ 171  
Start-up Considerations............................................ 170  
TMR2 to PR2 Match................................................. 160  
PORTH  
Associated Registers ................................................ 124  
Functions .................................................................. 124  
LATH Register .......................................................... 122  
PORTH Register....................................................... 122  
TRISH Register......................................................... 122  
PORTJ  
Associated Registers ................................................ 127  
Functions .................................................................. 127  
LATJ Register ........................................................... 125  
PORTJ Register........................................................ 125  
TRISJ Register.......................................................... 125  
Postscaler, WDT  
Assignment (PSA Bit) ............................................... 133  
Rate Select (T0PS2:T0PS0 Bits).............................. 133  
Switching Between Timer0 and WDT ....................... 133  
Power-Down Mode. See Sleep.  
Q
Q Clock..................................................................... 154, 161  
Power-on Reset (POR)............................................... 30, 259  
Oscillator Start-up Timer (OST) .......................... 30, 259  
Power-up Timer (PWRT) .................................... 30, 259  
Time-out Sequence..................................................... 30  
Prescaler  
Timer2....................................................................... 161  
Prescaler, Capture ............................................................ 151  
Prescaler, Timer0.............................................................. 133  
Assignment (PSA Bit) ............................................... 133  
Rate Select (T0PS2:T0PS0 Bits).............................. 133  
Switching Between Timer0 and WDT ....................... 133  
Prescaler, Timer2.............................................................. 154  
PRO MATE II Universal Device Programmer ................... 319  
Product Identification System ........................................... 393  
Program Counter  
R
RAM. See Data Memory.  
RC Oscillator....................................................................... 22  
RCALL .............................................................................. 305  
RCON Registers............................................................... 101  
Register File........................................................................ 47  
Registers  
ADCON0 (A/D Control 0).......................................... 233  
ADCON1 (A/D Control 1).......................................... 234  
ADCON2 (A/D Control 2).......................................... 235  
BAUDCONx (Baud Rate Control)............................. 216  
CCPxCON (Capture/Compare/PWM  
Control - CCP4, CCP5) .................................... 149  
CCPxCON (Capture/Compare/PWM Control -  
ECCP1, ECCP2, ECCP3 Modules).................. 157  
CMCON (Comparator Control)................................. 243  
CONFIG1H (Configuration 1 High)........................... 260  
CONFIG2H (Configuration 2 High)........................... 261  
CONFIG2L (Configuration 2 Low) ............................ 261  
CONFIG3H (Configuration 3 High)........................... 262  
CONFIG3L (Configuration 3 Low) ...................... 41, 262  
CONFIG4L (Configuration 4 Low) ............................ 263  
CONFIG5H (Configuration 5 High)........................... 264  
CONFIG5L (Configuration 5 Low) ............................ 263  
CONFIG6H (Configuration 6 High)........................... 265  
CONFIG6L (Configuration 6 Low) ............................ 264  
PCL, PCLATH and PCLATU Register ........................ 44  
Program Memory  
Extended Microcontroller Mode .................................. 39  
Instructions.................................................................. 45  
Two-Word ........................................................... 46  
Interrupt Vector ........................................................... 39  
Map and Stack for PIC18FX525 ................................. 40  
Map and Stack for PIC18FX621 ................................. 40  
Microcontroller Mode .................................................. 39  
Microprocessor Mode ................................................. 39  
Microprocessor with Boot Block Mode........................ 39  
Reset Vector ............................................................... 39  
2005 Microchip Technology Inc.  
DS39612B-page 387  
PIC18F6525/6621/8525/8621  
CONFIG7H (Configuration 7 High) ...........................266  
CONFIG7L (Configuration 7 Low).............................265  
S
SCK .................................................................................. 173  
CVRCON (Comparator Voltage  
SDI.................................................................................... 173  
SDO.................................................................................. 173  
Serial Clock, SCK ............................................................. 173  
Serial Data In (SDI)........................................................... 173  
Serial Data Out (SDO)...................................................... 173  
Serial Peripheral Interface. See SPI Mode.  
SETF................................................................................. 309  
Slave Select (SS).............................................................. 173  
Slave Select Synchronization ........................................... 179  
SLEEP .............................................................................. 310  
Sleep......................................................................... 259, 269  
Software Simulator (MPLAB SIM) .................................... 318  
Software Simulator (MPLAB SIM30) ................................ 318  
Special Event Trigger. See Compare (ECCP Mode).  
Special Event Trigger. See Compare (ECCP Module).  
Special Features of the CPU ............................................ 259  
Configuration Registers.................................... 260–266  
Special Function Registers................................................. 47  
Map............................................................................. 49  
SPI Mode  
Associated Registers................................................ 181  
Bus Mode Compatibility............................................ 181  
Effects of a Reset ..................................................... 181  
Master Mode............................................................. 178  
Master/Slave Connection.......................................... 177  
Serial Clock............................................................... 173  
Serial Data In............................................................ 173  
Serial Data Out ......................................................... 173  
Slave Mode............................................................... 179  
Slave Select.............................................................. 173  
Slave Select Synchronization ................................... 179  
Sleep Operation........................................................ 181  
SPI Clock.................................................................. 178  
SS..................................................................................... 173  
SSPOV ............................................................................. 203  
SSPOV Status Flag .......................................................... 203  
SSPSTAT Register  
Reference Control)............................................249  
Device ID Register 2 .................................................266  
DEVID1 (Device ID Register 1).................................266  
ECCPxAS (ECCP Auto-Shutdown Control)..............169  
ECCPxDEL (PWM Configuration).............................168  
EECON1 (Data EEPROM Control 1) .................... 63, 80  
INTCON (Interrupt Control).........................................89  
INTCON2 (Interrupt Control 2)....................................90  
INTCON3 (Interrupt Control 3)....................................91  
IPR1 (Peripheral Interrupt Priority 1)...........................98  
IPR2 (Peripheral Interrupt Priority 2)...........................99  
IPR3 (Peripheral Interrupt Priority 3).........................100  
LVDCON (Low-Voltage Detect Control)....................255  
MEMCON (Memory Control).......................................71  
OSCCON (Oscillator Control) .....................................25  
PIE1 (Peripheral Interrupt Enable 1)...........................95  
PIE2 (Peripheral Interrupt Enable 2)...........................96  
PIE3 (Peripheral Interrupt Enable 3)...........................97  
PIR1 (Peripheral Interrupt  
Request (Flag) 1)................................................92  
PIR2 (Peripheral Interrupt  
Request (Flag) 2)................................................93  
PIR3 (Peripheral Interrupt  
Request (Flag) 3)................................................94  
PSPCON (Parallel Slave Port Control) .....................129  
RCON (Reset Control)........................................ 59, 101  
RCSTAx (Receive Status and Control).....................215  
2
SSPCON1 (MSSP Control 1, I C Mode) ..................184  
SSPCON1 (MSSP Control 1, SPI Mode)..................175  
2
SSPCON2 (MSSP Control 2, I C Mode) ..................185  
2
SSPSTAT (MSSP Status, I C Mode)........................183  
SSPSTAT (MSSP Status, SPI Mode) .......................174  
STATUS......................................................................58  
STKPTR (Stack Pointer).............................................43  
Summary............................................................... 51–54  
T0CON (Timer0 Control)...........................................131  
T1CON (Timer 1 Control)..........................................135  
T2CON (Timer 2 Control)..........................................141  
T3CON (Timer3 Control)...........................................143  
T4CON (Timer 4 Control)..........................................147  
TXSTAx (Transmit Status and Control) ....................214  
WDTCON (Watchdog Timer Control)........................267  
RESET ..............................................................................305  
Reset........................................................................... 29, 259  
MCLR Reset (normal operation) .................................29  
MCLR Reset (Sleep)...................................................29  
Power-on Reset ..........................................................29  
Programmable Brown-out Reset (BOR) .....................29  
RESET Instruction ......................................................29  
Stack Full Reset..........................................................29  
Stack Underflow Reset ...............................................29  
Watchdog Timer (WDT) Reset....................................29  
RETFIE .............................................................................306  
RETLW..............................................................................306  
RETURN ...........................................................................307  
Return Address Stack .........................................................42  
and Associated Registers ...........................................43  
Revision History ................................................................377  
RLCF.................................................................................307  
RLNCF ..............................................................................308  
RRCF ................................................................................308  
RRNCF..............................................................................309  
R/W Bit ............................................................. 186, 187  
Status Bits  
Significance and Initialization Condition  
for RCON Register ............................................. 31  
SUBFWB .......................................................................... 310  
SUBLW............................................................................. 311  
SUBWF............................................................................. 311  
SUBWFB .......................................................................... 312  
SWAPF............................................................................. 312  
T
T0CON Register  
PSA Bit ..................................................................... 133  
T0CS Bit ................................................................... 133  
T0PS2:T0PS0 Bits.................................................... 133  
T0SE Bit ................................................................... 133  
Table Pointer Operations (table)......................................... 64  
TBLRD.............................................................................. 313  
TBLWT.............................................................................. 314  
Time-out in Various Situations............................................ 31  
DS39612B-page 388  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
Timer0............................................................................... 131  
Bus Collision During a Stop  
16-Bit Mode Timer Reads and Writes....................... 133  
Associated Registers ................................................ 133  
Clock Source Edge Select (T0SE Bit)....................... 133  
Clock Source Select (T0CS Bit)................................ 133  
Operation .................................................................. 133  
Overflow Interrupt ..................................................... 133  
Prescaler. See Prescaler, Timer0.  
Condition (Case 1)............................................ 211  
Bus Collision During a Stop  
Condition (Case 2)............................................ 211  
Bus Collision During Start  
Condition (SDA Only)....................................... 208  
Bus Collision for Transmit and  
Acknowledge .................................................... 207  
Capture/Compare/PWM  
(All ECCP/CCP Modules)................................. 343  
CLKO and I/O........................................................... 338  
Clock Synchronization.............................................. 193  
Clock/Instruction Cycle............................................... 44  
EUSART Synchronous  
Timer1............................................................................... 135  
16-Bit Read/Write Mode............................................ 137  
Associated Registers ................................................ 139  
Operation .................................................................. 136  
Oscillator........................................................... 135, 137  
Overflow Interrupt ............................................. 135, 137  
Special Event Trigger (ECCP) .......................... 137, 160  
TMR1H Register ....................................................... 135  
TMR1L Register........................................................ 135  
Use as a Real-Time Clock ........................................ 138  
Timer2............................................................................... 141  
Associated Registers ................................................ 142  
MSSP Clock Shift.............................................. 141, 142  
Operation .................................................................. 141  
Postscaler. See Postscaler, Timer2.  
Receive (Master/Slave) .................................... 353  
EUSART Synchronous  
Transmission (Master/Slave)............................ 353  
Example SPI Master Mode (CKE = 0)...................... 345  
Example SPI Master Mode (CKE = 1)...................... 346  
Example SPI Slave Mode (CKE = 0)........................ 347  
Example SPI Slave Mode (CKE = 1)........................ 348  
External Clock (All Modes Except PLL).................... 337  
External Memory Bus Timing for Sleep  
PR2 Register............................................. 141, 154, 160  
Prescaler. See Prescaler, Timer2.  
(Microprocessor Mode)....................................... 77  
External Memory Bus Timing for TBLRD  
TMR2 Register.......................................................... 141  
TMR2 to PR2 Match Interrupt........... 141, 142, 154, 160  
Timer3............................................................................... 143  
Associated Registers ................................................ 145  
Operation .................................................................. 144  
Oscillator........................................................... 143, 145  
Overflow Interrupt ............................................. 143, 145  
Special Event Trigger (ECCP) .................................. 145  
TMR3H Register ....................................................... 143  
TMR3L Register........................................................ 143  
Timer4............................................................................... 147  
Associated Registers ................................................ 148  
MSSP Clock Shift...................................................... 148  
Operation .................................................................. 147  
Postscaler. See Postscaler, Timer4.  
(Extended Microcontroller Mode) ....................... 76  
External Memory Bus Timing for TBLRD  
(Microprocessor Mode)....................................... 76  
Full-Bridge PWM Output........................................... 165  
Half-Bridge Output.................................................... 163  
2
I C Bus Data............................................................. 349  
2
I C Bus Start/Stop Bits ............................................. 349  
2
I C Master Mode  
(7 or 10-Bit Transmission) ................................ 204  
I C Master Mode (7-Bit Reception) .......................... 205  
I C Master Mode First Start Bit Timing..................... 201  
I C Slave Mode (10-Bit Reception, SEN = 0)........... 190  
I C Slave Mode (10-Bit Reception, SEN = 1)........... 195  
I C Slave Mode (10-Bit Transmission) ..................... 191  
I C Slave Mode (7-Bit Reception, SEN = 0)............. 188  
I C Slave Mode (7-Bit Reception, SEN = 1)............. 194  
2
2
2
2
2
2
2
PR4 Register............................................................. 147  
Prescaler. See Prescaler, Timer4.  
2
I C Slave Mode (7-Bit Transmission) ....................... 189  
TMR4 Register.......................................................... 147  
TMR4 to PR4 Match Interrupt........................... 147, 148  
Timing Diagrams  
Low-Voltage Detect .................................................. 256  
2
Master SSP I C Bus Data ........................................ 351  
2
Master SSP I C Bus Start/Stop Bits......................... 351  
A/D Conversion......................................................... 355  
Acknowledge Sequence ........................................... 206  
Asynchronous Reception.......................................... 224  
Asynchronous Transmission..................................... 222  
Asynchronous Transmission  
(Back to Back) .................................................. 222  
Automatic Baud Rate Calculation ............................. 220  
Auto-Wake-up Bit (WUE) During  
Parallel Slave Port (PSP) ......................................... 344  
Parallel Slave Port (PSP) Read................................ 130  
Parallel Slave Port (PSP) Write................................ 129  
Program Memory Read ............................................ 339  
Program Memory Write ............................................ 340  
PWM Auto-Shutdown (PRSEN = 0,  
Auto-Restart Disabled) ..................................... 170  
PWM Auto-Shutdown (PRSEN = 1,  
Normal Operation ............................................. 225  
Auto-Wake-up Bit (WUE) During Sleep .................... 225  
Baud Rate Generator with Clock Arbitration............. 200  
BRG Reset Due to SDA Arbitration  
During Start Condition ...................................... 209  
Brown-out Reset (BOR)............................................ 341  
Bus Collision During a Repeated Start  
Auto-Restart Enabled)...................................... 170  
PWM Direction Change............................................ 167  
PWM Direction Change at Near  
100% Duty Cycle.............................................. 167  
PWM Output............................................................. 154  
Repeated Start Condition ......................................... 202  
Reset, Watchdog Timer (WDT),  
Condition (Case 1)............................................ 210  
Bus Collision During a Repeated Start  
Condition (Case 2)............................................ 210  
Bus Collision During a Start  
Oscillator Start-up Timer (OST)  
and Power-up Timer (PWRT)........................... 341  
Send Break Character Sequence............................. 226  
Slave Mode General Call Address Sequence  
(7 or 10-Bit Address Mode) .............................. 196  
Condition (SCL = 0) .......................................... 209  
2005 Microchip Technology Inc.  
DS39612B-page 389  
PIC18F6525/6621/8525/8621  
Slave Synchronization ..............................................179  
Slow Rise Time (MCLR Tied to VDD  
External Clock Requirements ................................... 337  
2
I C Bus Data Requirements (Slave Mode)............... 350  
2
via 1 kResistor)................................................38  
SPI Mode (Master Mode)..........................................178  
SPI Mode (Slave Mode with CKE = 0)......................180  
SPI Mode (Slave Mode with CKE = 1)......................180  
Stop Condition Receive or Transmit Mode ...............206  
Synchronous Reception  
(Master Mode, SREN).......................................229  
Synchronous Transmission.......................................227  
Synchronous Transmission (Through TXEN) ...........228  
Time-out Sequence on POR w/PLL Enabled  
(MCLR Tied to VDD via 1 kResistor) ...............38  
Time-out Sequence on Power-up (MCLR  
I C Bus Start/Stop Bits Requirements  
(Slave Mode) .................................................... 349  
2
Master SSP I C Bus Data Requirements ................. 352  
2
Master SSP I C Bus Start/Stop Bits  
Requirements ................................................... 351  
Parallel Slave Port Requirements............................. 344  
PLL Clock ................................................................. 338  
Program Memory Read Requirements..................... 339  
Program Memory Write Requirements ..................... 340  
Reset, Watchdog Timer, Oscillator  
Start-up Timer, Power-up Timer  
and Brown-out Reset Requirements ................ 341  
Timer0 and Timer1 External  
Not Tied to VDD): Case 1 ....................................37  
Time-out Sequence on Power-up (MCLR  
Clock Requirements ......................................... 342  
Not Tied to VDD): Case 2 ....................................37  
Time-out Sequence on Power-up (MCLR  
Tied to VDD via 1 kResistor)............................37  
Timer0 and Timer1 External Clock ...........................342  
Timing for Transition Between Timer1 and  
TRISE Register  
PSPMODE Bit................................................... 111, 128  
TSTFSZ ............................................................................ 315  
Two-Word Instructions  
Example Cases........................................................... 46  
TXSTAx Register  
OSC1 (EC with PLL Active, SCS1 = 1)...............27  
Timing for Transition Between Timer1 and  
BRGH Bit .................................................................. 217  
OSC1 (HS with PLL Active, SCS1 = 1)...............27  
Transition Between Timer1 and  
V
Voltage Reference Specifications..................................... 332  
OSC1 (HS, XT, LP).............................................26  
Transition Between Timer1 and  
W
OSC1 (RC, EC)...................................................28  
Transition from OSC1 to Timer1 Oscillator.................26  
Wake-up from Sleep via Interrupt .............................270  
Timing Specifications ........................................................337  
A/D Conversion Requirements .................................355  
Capture/Compare/PWM Requirements ....................343  
CLKO and I/O Requirements....................................338  
EUSART Synchronous Receive  
Wake-up from Sleep................................................. 259, 269  
Using Interrupts ........................................................ 269  
Watchdog Timer (WDT)............................................ 259, 267  
Associated Registers................................................ 268  
Control Register........................................................ 267  
Postscaler................................................................. 268  
Programming Considerations ................................... 267  
RC Oscillator............................................................. 267  
Time-out Period ........................................................ 267  
WCOL....................................................... 201, 202, 203, 206  
WCOL Status Flag.................................... 201, 202, 203, 206  
WWW, On-Line Support ....................................................... 5  
Requirements....................................................353  
EUSART Synchronous Transmission  
Requirements....................................................353  
Example SPI Mode Requirements  
(Master Mode, CKE = 0)...................................345  
Example SPI Mode Requirements  
(Master Mode, CKE = 1)...................................346  
Example SPI Mode Requirements  
X
XORLW............................................................................. 315  
XORWF ............................................................................ 316  
(Slave Mode, CKE = 0).....................................347  
Example SPI Slave Mode  
Requirements (CKE = 1)...................................348  
DS39612B-page 390  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
In addition, there is  
a
Development Systems  
Information Line which lists the latest versions of  
Microchip’s development systems software products.  
This line also provides information on how customers  
can receive currently available upgrade kits.  
The Development Systems Information Line  
numbers are:  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
1-800-755-2345 – United States and most of Canada  
1-480-792-7302 – Other International Locations  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
2005 Microchip Technology Inc.  
DS39612B-page 391  
PIC18F6525/6621/8525/8621  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F6525/6621/8525/8621  
DS39612B  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39612B-page 392  
2005 Microchip Technology Inc.  
PIC18F6525/6621/8525/8621  
PIC18F6525/6621/8525/8621 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC18LF6621-I/PT 301 = Industrial temp.,  
TQFP package, Extended VDD  
limits, QTP pattern #301.  
b) PIC18F8621-E/PT = Extended temp.,  
TQFP package, standard VDD limits.  
(1)  
Device  
PIC18F6525/6621/8525/8621  
PIC18F6525/6621/8525/8621T  
,
(2)  
;
VDD range 4.2V to 5.5V  
(1)  
PIC18LF6X2X/8X2X  
PIC18LF6X2X/8X2XT  
,
(2)  
;
VDD range 2.0V to 5.5V  
Temperature  
Range  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Note 1: F  
LF  
2: T  
=
=
Standard Voltage Range  
Extended Voltage Range  
Package  
Pattern  
PT = TQFP (Thin Quad Flatpack)  
=
in tape and reel  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2005 Microchip Technology Inc.  
DS39612B-page 393  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/20/04  
DS39612B-page 394  
2005 Microchip Technology Inc.  

相关型号:

PIC18F6525T-I/PTQTP

64/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with A/D
MICROCHIP

PIC18F6525T-I/PTSQTP

64/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with A/D
MICROCHIP

PIC18F6525_13

64/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with A/D
MICROCHIP

PIC18F6527

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-bit A/D and nanoWatt Technology
MICROCHIP

PIC18F6527-E/PT

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F6527-E/PTQTP

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F6527-E/PTSQTP

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F6527-I/PT

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F6527-I/PTQTP

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F6527-I/PTSQTP

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F6527EPTQTP

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-bit A/D and nanoWatt Technology
MICROCHIP

PIC18F6527EPTSQTP

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-bit A/D and nanoWatt Technology
MICROCHIP