PIC18F83J11 [MICROCHIP]

General Purpose PIC18 J-series Microcontroller providing 10 MIPS performance at 3V with 8MHz inter;
PIC18F83J11
型号: PIC18F83J11
厂家: MICROCHIP    MICROCHIP
描述:

General Purpose PIC18 J-series Microcontroller providing 10 MIPS performance at 3V with 8MHz inter

控制器 微控制器 微控制器和处理器
文件: 总396页 (文件大小:6471K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F85J11 Family  
Data Sheet  
64/80-Pin  
High-Performance Microcontrollers  
with nanoWatt Technology  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS39774C-page ii  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
64/80-Pin High-Performance Microcontrollers  
with nanoWatt Technology  
Peripheral Highlights:  
Low-Power Features:  
• High-Current Sink/Source 25 mA/25 mA  
(PORTB and PORTC)  
• Up to Four External Interrupts  
• Power-Managed modes: Run, Idle, Sleep  
• Run Current Down to 9 µA, Typical  
• Idle Current Down to 2.5 µA, Typical  
• Sleep Current Down to 100 nA, Typical  
• Fast INTOSC Start-up from Sleep  
• Two-Speed Oscillator Start-up Reduces Crystal  
Stabilization Wait Time  
• Four 8-Bit/16-Bit Timer/Counter modules  
• Real-Time Clock (RTC) Software module:  
- Configurable 24-hour clock, calendar,  
automatic 100-year or 12800-year day of  
week calculator using Timer1  
• Two Capture/Compare/PWM (CCP) modules:  
- Capture is 16-bit, max. resolution 6.25 ns (TCY/16)  
- Compare is 16-bit, max. resolution 100 ns (TCY)  
- PWM output: PWM resolution is up to 10-bit  
• Master Synchronous Serial Port (MSSP) module with  
Two Modes of Operation:  
Flexible Oscillator Structure:  
• Two Crystal modes, 4-25 MHz  
• Two External Clock modes, up to 40 MHz  
• 4x Phase Lock Loop (PLL)  
• Internal Oscillator Block:  
- 8 user-selectable frequencies from 31.25 kHz  
to 8 MHz  
• Secondary Oscillator using Timer1 @ 32 kHz  
• Fail-Safe Clock Monitor:  
- Allows for safe shutdown if peripheral clock fails  
- 3-wire/4-wire SPI (supports all 4 SPI modes)  
- I2C™ Master and Slave mode  
• One Addressable USART module  
• One Enhanced Addressable USART module:  
- Supports LIN 1.2  
- Auto-wake-up on Start bit and Break character  
- Auto-Baud Detect (ABD)  
• 10-Bit, up to 12-Channel A/D Converter:  
- Auto-acquisition  
- Conversion available during Sleep  
• Two Analog Comparators  
Special Microcontroller Features:  
• 1,000 Erase/Write Cycle Flash  
Program Memory Typical  
• Flash Retention 20 Years Minimum  
• Self-Programmable under Software Control  
• Priority Levels for Interrupts  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Programmable period from 4 ms to 131s  
• In-Circuit Serial Programming™ (ICSP™) via two pins  
• In-Circuit Debug via two pins  
• Operating Voltage Range: 2.0V to 3.6V  
• 5.5V Tolerant Input (digital pins only)  
• Selectable Open-Drain Configuration for Serial  
Communication and CCP pins for Driving Outputs up  
to 5V  
• Programmable Reference Voltage for Comparators  
External Memory Bus (PIC18F8XJ11 only):  
• Address Capability of up to 2 Mbytes  
• 8-Bit or 16-Bit Interface  
• 12-Bit, 16-Bit and 20-Bit Addressing modes  
• On-Chip 2.5V Regulator  
Program Memory  
SRAMData  
MSSP  
10-Bit  
A/D (ch)  
Device  
Memory  
(bytes)  
I/O  
CCP  
PSP  
Flash # Single-Word  
(bytes) Instructions  
Master  
SPI  
2
I C™  
PIC18F63J11  
PIC18F64J11  
PIC18F65J11  
PIC18F83J11  
PIC18F84J11  
PIC18F85J11  
8K  
16K  
32K  
8K  
4096  
8192  
1K  
1K  
2K  
1K  
1K  
2K  
52  
52  
52  
68  
68  
68  
1/3  
1/3  
1/3  
1/3  
1/3  
1/3  
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
1/1  
1/1  
1/1  
1/1  
1/1  
1/1  
12  
12  
12  
12  
12  
12  
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
16384  
4096  
16K  
32K  
8192  
16384  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 1  
PIC18F85J11 FAMILY  
Pin Diagrams  
64-Pin TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/INT3  
RB4/KBI0  
RE1/WR  
RE0/RD  
2
3
RG0  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3  
4
5
6
RB5/KBI1  
7
RB6/KBI2/PGC  
VSS  
MCLR  
PIC18F63J11  
PIC18F64J11  
PIC18F65J11  
8
RG4  
9
VSS  
RA6/OSC2/CLKO  
RA7/OSC1/CLKI  
VDD  
10  
11  
12  
13  
14  
15  
16  
VDDCORE/VCAP  
RF7/AN5/SS  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RB7/KBI3/PGD  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RF3/AN8  
RC2/CCP1  
RF2/AN7/C1OUT  
17 18 19 20 21 22 23 24 25 26 27 28  
29 30 31 32  
Note 1: The CCP2 pin placement depends on the CCP2MX Configuration bit setting.  
DS39774C-page 2  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Pin Diagrams (Continued)  
80-Pin TQFP  
80 79 78  
77 76 75 74 73 72 71 70 69 68 67 66 65  
64 63 62 61  
RH2/A18  
RH3/A19  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
RJ2/WRL  
2
RJ3/WRH  
RE1/WR/AD9  
RE0/RD/AD8  
RG0  
3
RB0/INT0  
4
RB1/INT1  
5
RB2/INT2  
RB3/INT3/CCP2(1)  
RG1/TX2/CK2  
RG2/RX2/DT2  
RG3  
6
7
RB4/KBI0  
8
RB5/KBI1  
MCLR  
9
RB6/KBI2/PGC  
VSS  
PIC18F83J11  
PIC18F84J11  
PIC18F85J11  
RG4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RA6/OSC2/CLKO  
RA7/OSC1/CLKI  
VDD  
VDDCORE/VCAP  
RF7/AN5/SS  
RB7/KBI3/PGD  
RC5/SDO  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RC4/SDI/SDA  
RF3/AN8  
RC3/SCK/SCL  
RC2/CCP1  
RF2/AN7/C1OUT  
RH7  
RJ7/UB  
RJ6/LB  
RH6  
40  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
Note 1: The CCP2 pin placement depends on the settings of the CCP2MX and EMB1:EMB0 Configuration bits.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 3  
PIC18F85J11 FAMILY  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Oscillator Configurations ............................................................................................................................................................ 29  
3.0 Power-Managed Modes ............................................................................................................................................................. 37  
4.0 Reset.......................................................................................................................................................................................... 45  
5.0 Memory Organization................................................................................................................................................................. 57  
6.0 Flash Program Memory.............................................................................................................................................................. 83  
7.0 External Memory Bus................................................................................................................................................................. 93  
8.0 8 x 8 Hardware Multiplier.......................................................................................................................................................... 105  
9.0 Interrupts .................................................................................................................................................................................. 107  
10.0 I/O Ports ................................................................................................................................................................................... 123  
11.0 Timer0 Module ......................................................................................................................................................................... 147  
12.0 Timer1 Module ......................................................................................................................................................................... 151  
13.0 Timer2 Module ......................................................................................................................................................................... 157  
14.0 Timer3 Module ......................................................................................................................................................................... 159  
15.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 163  
16.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 173  
17.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 217  
18.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) ........................................................... 237  
19.0 10-bit Analog-to-Digital Converter (A/D) Module...................................................................................................................... 251  
20.0 Comparator Module.................................................................................................................................................................. 261  
21.0 Comparator Voltage Reference Module................................................................................................................................... 267  
22.0 Special Features of the CPU.................................................................................................................................................... 271  
23.0 Instruction Set Summary.......................................................................................................................................................... 285  
24.0 Development Support............................................................................................................................................................... 335  
25.0 Electrical Characteristics.......................................................................................................................................................... 339  
26.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 373  
27.0 Packaging Information.............................................................................................................................................................. 375  
Appendix A: Revision History............................................................................................................................................................. 379  
Appendix B: Migration Between High-End Device Families............................................................................................................... 379  
Index .................................................................................................................................................................................................. 381  
The Microchip Web Site..................................................................................................................................................................... 391  
Customer Change Notification Service .............................................................................................................................................. 391  
Customer Support.............................................................................................................................................................................. 391  
Reader Response .............................................................................................................................................................................. 392  
Product Identification System............................................................................................................................................................. 393  
DS39774C-page 4  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 5  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 6  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The internal oscillator block provides a stable reference  
source that gives the family additional features for  
robust operation:  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the following devices:  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a reference  
signal provided by the internal oscillator. If a clock  
failure occurs, the controller is switched to the  
internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
• PIC18F63J11  
• PIC18F64J11  
• PIC18F65J11  
• PIC18F83J11  
• PIC18F84J11  
• PIC18F85J11  
This family combines the traditional advantages of all  
PIC18 microcontrollers – namely, high computational  
performance and a rich feature set – while maintaining  
an extremely competitive price point. These features  
make the PIC18F85J11 family a logical choice for  
many high-performance applications where price is a  
primary consideration.  
Two-Speed Start-up: This option allows the  
internal oscillator to serve as the clock source  
from Power-on Reset, or wake-up from Sleep  
mode, until the primary clock source is available.  
1.1.3  
MEMORY OPTIONS  
The PIC18F85J11 family provides a range of program  
memory options, from 8 Kbytes to 32 Kbytes of code  
space. The Flash cells for program memory are rated  
to last up to 1000 erase/write cycles. Data retention  
without refresh is conservatively estimated to be  
greater than 20 years.  
1.1  
Core Features  
1.1.1  
nanoWatt TECHNOLOGY  
All of the devices in the PIC18F85J11 family incorporate  
a range of features that can significantly reduce power  
consumption during operation. Key items include:  
The PIC18F85J11 family also provides plenty of room  
for dynamic application data, with up to 2048 bytes of  
data RAM.  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the internal RC  
oscillator, power consumption during code  
execution can be reduced by as much as 90%.  
1.1.4  
EXTENDED INSTRUCTION SET  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled but the peripherals still  
active. In these states, power consumption can be  
reduced even further, to as little as 4% of normal  
operation requirements.  
The PIC18F85J11 family implements the optional  
extension to the PIC18 instruction set, adding 8 new  
instructions and an Indexed Addressing mode.  
Enabled as a device configuration option, the extension  
has been specifically designed to optimize re-entrant  
application code originally developed in high-level  
languages, such as ‘C’.  
On-the-Fly Mode Switching: The power-managed  
modes are invoked by user code during operation,  
allowing the user to incorporate power-saving ideas  
into their application’s software design.  
1.1.5  
EXTERNAL MEMORY BUS  
In the event that 32 Kbytes of memory are inadequate  
for an application, the 80-pin members of the  
PIC18F85J11 family also implement an external mem-  
ory bus. This allows the controller’s internal program  
counter to address a memory space of up to 2 Mbytes,  
permitting a level of data access that few 8-bit devices  
can claim. This allows additional memory options,  
including:  
1.1.2  
OSCILLATOR OPTIONS AND  
FEATURES  
All of the devices in the PIC18F85J11 family offer six  
different oscillator options, allowing users a range of  
choices in developing application hardware. These  
include:  
• Two Crystal modes, using crystals or ceramic  
resonators.  
• Using combinations of on-chip and external  
memory up to the 2-Mbyte limit  
• Two External Clock modes, offering the option of  
a divide-by-4 clock output.  
• Using external Flash memory for reprogrammable  
application code or large data tables  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to the External Oscillator modes, which  
allows clock speeds of up to 40 MHz.  
• Using external RAM devices for storing large  
amounts of variable data  
• An internal oscillator block which provides an  
8 MHz clock ( 2% accuracy) and an INTRC source  
(approximately 31 kHz, stable over temperature  
and VDD), as well as a range of six user-selectable  
clock frequencies, between 125 kHz to 4 MHz, for a  
total of eight clock frequencies. This option frees the  
two oscillator pins for use as additional general  
purpose I/O.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 7  
PIC18F85J11 FAMILY  
1.1.6  
EASY MIGRATION  
1.3  
Details on Individual Family  
Members  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
Devices in the PIC18F85J11 family are available in  
64-pin and 80-pin packages. Block diagrams for the  
two groups are shown in Figure 1-1 and Figure 1-2.  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between the 64-pin  
members, between the 80-pin members or even  
jumping from 64-pin to 80-pin devices.  
The devices are differentiated from each other in four  
ways:  
1. Flash program memory (three sizes, ranging  
from 8 Kbytes for PIC18FX3J11 devices to  
32 Kbytes for PIC18FX5J11 devices).  
The PIC18F85J11 family is also largely pin compatible  
with other PIC18 general purpose families, such as the  
PIC18F8720 and PIC18F8722. This allows a new  
dimension to the evolution of applications, allowing  
developers to select different price points within  
Microchip’s PIC18 portfolio, while maintaining a similar  
feature set.  
2. Data RAM (1024 bytes for PIC18FX3J11 and  
PIC18FX4J11 devices, 2048 bytes for  
PIC18FX5J11 devices).  
3. I/O ports (7 bidirectional ports on 64-pin devices,  
9 bidirectional ports on 80-pin devices).  
4. External Memory Bus (implemented in 80-pin  
devices only).  
1.2  
Other Special Features  
All other features for devices in this family are identical.  
These are summarized in Table 1-1 and Table 1-2.  
Communications: The PIC18F85J11 family  
incorporates a range of serial communication  
peripherals, including an Addressable USART, a  
separate Enhanced USART that supports LIN  
specification 1.2, and one Master SSP (MSSP)  
module capable of both SPI and I2C™ (Master and  
Slave) modes of operation.  
The pinouts for all devices are listed in Table 1-3 and  
Table 1-4.  
CCP Modules: All devices in the family incorporate  
two Capture/Compare/PWM (CCP) modules. Up to  
four different time bases may be used to perform  
several different operations at once.  
10-Bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period and  
thus, reducing code overhead.  
Extended Watchdog Timer (WDT): This  
enhanced version incorporates a 16-bit prescaler,  
allowing an extended time-out range that is stable  
across operating voltage and temperature. See  
Section 25.0 “Electrical Characteristics” for  
time-out periods.  
DS39774C-page 8  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC18F6XJ11 FAMILY (64-PIN DEVICES)  
Features  
PIC18F63J11  
PIC18F64J11  
PIC18F65J11  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt Sources  
DC – 40 MHz  
8K  
16K  
32K  
16384  
2048  
4096  
1024  
8192  
1024  
27  
I/O Ports  
Ports A, B, C, D, E, F, G  
Timers  
4
2
Capture/Compare/PWM Modules  
Serial Communications  
Parallel Communications (PSP)  
External Memory Bus  
10-Bit Analog-to-Digital Module  
Resets (and Delays)  
MSSP, Addressable USART, Enhanced USART  
Yes  
No  
12 Input Channels  
POR, BOR, RESETInstruction, Stack Full, Stack Underflow, MCLR, WDT  
(PWRT, OST)  
Instruction Set  
Packages  
75 Instructions, 83 with Extended Instruction Set Enabled  
64-Pin TQFP  
TABLE 1-2:  
DEVICE FEATURES FOR THE PIC18F8XJ11 FAMILY (80-PIN DEVICES)  
Features  
PIC18F83J11  
PIC18F84J11  
PIC18F85J11  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt Sources  
DC – 40 MHz  
8K  
16K  
32K  
16384  
2048  
4096  
1024  
8192  
1024  
27  
I/O Ports  
Ports A, B, C, D, E, F, G, H, J  
Timers  
4
2
Capture/Compare/PWM Modules  
Serial Communications  
Parallel Communications (PSP)  
External Memory Bus  
10-Bit Analog-to-Digital Module  
Resets (and Delays)  
MSSP, Addressable USART, Enhanced USART  
Yes  
Yes  
12 Input Channels  
POR, BOR, RESETInstruction, Stack Full, Stack Underflow, MCLR, WDT  
(PWRT, OST)  
Instruction Set  
Packages  
75 Instructions, 83 with Extended Instruction Set Enabled  
80-Pin TQFP  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 9  
PIC18F85J11 FAMILY  
FIGURE 1-1:  
PIC18F6XJ11 (64-PIN) BLOCK DIAGRAM  
Data Bus<8>  
Table Pointer<21>  
inc/dec logic  
21  
PORTA  
RA0:RA7(1,2)  
Data Latch  
8
8
Data Memory  
(3.9 Kbytes)  
PCLATU PCLATH  
Address Latch  
20  
PCU PCH PCL  
Program Counter  
12  
PORTB  
Data Address<12>  
RB0:RB7(1)  
31 Level Stack  
STKPTR  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
Access  
Bank  
Program Memory  
(96 Kbytes)  
12  
Data Latch  
PORTC  
RC0:RC7(1)  
inc/dec  
logic  
8
Table Latch  
ROM Latch  
Address  
Decode  
Instruction Bus <16>  
PORTD  
RD0:RD7(1)  
IR  
8
Instruction  
Decode and  
Control  
State Machine  
Control Signals  
PRODH PRODL  
8 x 8 Multiply  
PORTE  
RE0:RE7(1)  
3
Timing  
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
Generation  
BITOP  
8
W
INTRC  
Oscillator  
8
Oscillator  
Start-up Timer  
8
8 MHz  
Oscillator  
PORTF  
Power-on  
Reset  
8
8
RF1:RF7(1)  
Precision  
Band Gap  
Reference  
ALU<8>  
8
Watchdog  
Timer  
ENVREG  
BOR and  
LVD(3)  
Voltage  
Regulator  
PORTG  
RG0:RG4(1)  
VDDCORE/VCAP  
VDD,VSS  
MCLR  
ADC  
10-Bit  
Timer0  
Timer1  
CCP2  
Timer2  
Timer3  
Comparators  
MSSP  
CCP1  
AUSART  
EUSART  
Note 1: See Table 1-3 for I/O port pin descriptions.  
2: RA6 and RA7 are only available as digital I/O in select oscillator modes. See Section 2.0 “Oscillator Configurations” for more  
information  
3: Brown-out Reset and Low-Voltage Detect functions are provided when the on-board voltage regulator is enabled.  
DS39774C-page 10  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 1-2:  
PIC18F8XJ11 (80-PIN) BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0:RA7(1,2)  
Data Latch  
Table Pointer<21>  
inc/dec logic  
8
8
Data Memory  
(3.9 Kbytes)  
PCLATU PCLATH  
Address Latch  
21  
20  
PORTB  
PCU PCH PCL  
Program Counter  
RB0:RB7(1)  
12  
Data Address<12>  
31 Level Stack  
STKPTR  
4
BSR  
4
12  
FSR0  
FSR1  
FSR2  
Address Latch  
PORTC  
Access  
Bank  
Program Memory  
(128 Kbytes)  
RC0:RC7(1)  
12  
Data Latch  
inc/dec  
logic  
8
PORTD  
Table Latch  
ROM Latch  
RD0:RD7(1)  
Address  
Decode  
Instruction Bus <16>  
PORTE  
IR  
RE0:RE7(1)  
AD15:AD0, A19:A16  
(Multiplexed with PORTD,  
PORTE and PORTH)  
8
PORTF  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
State Machine  
Control Signals  
RF1:RF7(1)  
3
8
W
BITOP  
8
PORTG  
Timing  
Generation  
8
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
RG0:RG4(1)  
INTRC  
Oscillator  
Start-up Timer  
8
8
Oscillator  
8 MHz  
Oscillator  
ALU<8>  
8
Power-on  
Reset  
PORTH  
RH0:RH7(1)  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
ENVREG  
BOR and  
LVD(3)  
Voltage  
Regulator  
PORTJ  
RJ0:RJ7(1)  
VDDCORE/VCAP  
VDD,VSS  
MCLR  
ADC  
10-Bit  
Timer0  
CCP1  
Timer1  
CCP2  
Timer2  
Timer3  
Comparators  
MSSP  
AUSART  
EUSART  
Note 1: See Table 1-3 for I/O port pin descriptions.  
2: RA6 and RA7 are only available as digital I/O in select oscillator modes. See Section 2.0 “Oscillator Configurations” for more  
information  
3: Brown-out Reset and Low-Voltage Detect functions are provided when the on-board voltage regulator is enabled.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 11  
PIC18F85J11 FAMILY  
TABLE 1-3:  
PIC18F6XJ11 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Pin Name  
Description  
Type Type  
TQFP  
MCLR  
7
I
ST  
Master Clear (input) or programming voltage (input). This  
pin is an active-low Reset to the device.  
RA7/OSC1/CLKI  
RA7  
39  
Oscillator crystal or external clock input.  
General purpose I/O pin.  
I/O  
TTL  
OSC1  
CLKI  
I
I
CMOS  
CMOS  
Oscillator crystal input.  
External clock source input. Always associated  
with pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
RA6/OSC2/CLKO  
RA6  
40  
Oscillator crystal or clock output.  
I/O  
O
TTL  
General purpose I/O pin.  
OSC2  
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In EC modes, OSC2 pin outputs CLKO, which has  
1/4 the frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
O
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
24  
23  
22  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
21  
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D reference voltage (high) input.  
RA4/T0CKI  
RA4  
28  
27  
I/O ST/OD  
Digital I/O. Open-drain when configured as output.  
Timer0 external clock input.  
T0CKI  
I
ST  
RA5/AN4  
RA5  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 4.  
AN4  
RA6  
RA7  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
DS39774C-page 12  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-3:  
PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0  
RB0  
48  
47  
46  
45  
44  
43  
42  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3  
RB3  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 3.  
INT3  
RB4/KBI0  
RB4  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1  
RB5  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI1  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
37  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 13  
PIC18F85J11 FAMILY  
TABLE 1-3:  
PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
30  
29  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture 2 input/Compare 2 output/PWM2 output.  
T1OSI  
CCP2(1)  
RC2/CCP1  
RC2  
33  
34  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture 1 input/Compare 1 output/PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C™ mode.  
RC4/SDI/SDA  
RC4  
35  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI  
SDA  
SPI data in.  
I2C data I/O.  
RC5/SDO  
RC5  
36  
31  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX1/CK1  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX1  
CK1  
EUSART asynchronous transmit.  
EUSART synchronous clock (see related RX1/DT1).  
RC7/RX1/DT1  
RC7  
32  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX1  
DT1  
EUSART asynchronous receive.  
EUSART synchronous data (see related TX1/CK1).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
DS39774C-page 14  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-3:  
PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTD is a bidirectional I/O port.  
RD0/PSP0  
RD0  
58  
55  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP0  
RD1/PSP1  
RD1  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP1  
RD2/PSP2  
RD2  
54  
53  
52  
51  
50  
49  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP2  
RD3/PSP3  
RD3  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP3  
RD4/PSP4  
RD4  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP4  
RD5/PSP5  
RD5  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP5  
RD6/PSP6  
RD6  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP6  
RD7/PSP7  
RD7  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
PSP7  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 15  
PIC18F85J11 FAMILY  
TABLE 1-3:  
PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTE is a bidirectional I/O port.  
RE0/RD  
RE0  
2
1
I/O  
I
ST  
TTL  
Digital I/O.  
Read control for Parallel Slave Port.  
RD  
RE1/WR  
RE1  
I/O  
I
ST  
TTL  
Digital I/O.  
Write control for Parallel Slave Port.  
WR  
RE2/CS  
RE2  
64  
I/O  
I
ST  
TTL  
Digital I/O.  
Chip select control for Parallel Slave Port.  
CS  
RE3  
RE4  
RE5  
RE6  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Digital I/O.  
Digital I/O.  
Digital I/O.  
Digital I/O.  
63  
62  
61  
60  
59  
RE7/CCP2  
RE7  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP2(2)  
Capture 2 input/Compare 2 output/PWM2 output.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
DS39774C-page 16  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-3:  
PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTF is a bidirectional I/O port.  
RF1/AN6/C2OUT  
RF1  
17  
16  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8  
RF3  
15  
14  
13  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RF4/AN9  
RF4  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RF5/AN10/CVREF  
RF5  
I/O  
I
O
ST  
Analog  
Analog  
Digital I/O.  
Analog input 10.  
Comparator reference voltage output.  
AN10  
CVREF  
RF6/AN11  
RF6  
12  
11  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
RF7/AN5/SS  
RF7  
I/O  
O
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 5.  
SPI slave select input.  
AN5  
SS  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 17  
PIC18F85J11 FAMILY  
TABLE 1-3:  
PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTG is a bidirectional I/O port.  
Digital I/O.  
RG0  
3
4
I/O  
ST  
RG1/TX2/CK2  
RG1  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
AUSART asynchronous transmit.  
AUSART synchronous clock (see related RX2/DT2).  
RG2/RX2/DT2  
RG2  
5
6
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX2  
DT2  
AUSART asynchronous receive.  
AUSART synchronous data (see related TX2/CK2).  
RG3  
I/O  
ST  
Digital I/O.  
RG4  
8
I/O  
P
P
P
P
I
ST  
ST  
Digital I/O.  
VSS  
9, 25, 41, 56  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Ground reference for analog modules.  
Positive supply for analog modules.  
Enable for on-chip voltage regulator.  
VDD  
26, 38, 57  
AVSS  
AVDD  
ENVREG  
20  
19  
18  
10  
VDDCORE/VCAP  
VDDCORE  
Core logic power or external filter capacitor connection.  
Positive supply for microcontroller core logic  
(regulator disabled).  
P
P
VCAP  
External filter capacitor connection (regulator enabled).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
2: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
DS39774C-page 18  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
MCLR  
9
I
ST  
Master Clear (input) or programming voltage (input). This  
pin is an active-low Reset to the device.  
RA7/OSC1/CLKI  
RA7  
49  
50  
Oscillator crystal or external clock input.  
General purpose I/O pin.  
I/O  
I
I
TTL  
CMOS  
CMOS  
OSC1  
CLKI  
Oscillator crystal input.  
External clock source input. Always associated  
with pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
RA6/OSC2/CLKO  
RA6  
Oscillator crystal or clock output.  
I/O  
O
TTL  
General purpose I/O pin.  
OSC2  
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In EC modes, OSC2 pin outputs CLKO, which has  
1/4 the frequency of OSC1 and denotes the  
instruction cycle rate.  
CLKO  
O
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
30  
29  
28  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
27  
I/O  
TTL  
Digital I/O.  
AN3  
VREF+  
I
I
Analog  
Analog  
Analog input 3.  
A/D reference voltage (high) input.  
RA4/T0CKI  
RA4  
34  
33  
I/O ST/OD  
Digital I/O. Open-drain when configured as output.  
Timer0 external clock input.  
T0CKI  
I
ST  
RA5/AN4  
RA5  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 4.  
AN4  
RA6  
RA7  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 19  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT0  
RB0  
58  
57  
56  
55  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3/CCP2  
RB3  
I/O  
I
I/O  
TTL  
ST  
ST  
Digital I/O.  
External interrupt 3.  
Capture 2 input/Compare 2 output/PWM2 output.  
INT3  
CCP2(1)  
RB4/KBI0  
RB4  
54  
53  
52  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1  
RB5  
I/O  
I
TTL  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
KBI1  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP™ programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
47  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
DS39774C-page 20  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
36  
35  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/CCP2  
RC1  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
Timer1 oscillator input.  
Capture 2 input/Compare 2 output/PWM2 output.  
T1OSI  
CCP2(2)  
RC2/CCP1  
RC2  
43  
44  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture 1 input/Compare 1 output/PWM1 output.  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
SCK  
SCL  
Synchronous serial clock input/output for SPI mode.  
Synchronous serial clock input/output for I2C™ mode.  
RC4/SDI/SDA  
RC4  
45  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SDI  
SDA  
SPI data in.  
I2C data I/O.  
RC5/SDO  
RC5  
46  
37  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX1/CK1  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX1  
CK1  
EUSART asynchronous transmit.  
EUSART synchronous clock (see related RX1/DT1).  
RC7/RX1/DT1  
RC7  
38  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX1  
DT1  
EUSART asynchronous receive.  
EUSART synchronous data (see related TX1/CK1).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 21  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTD is a bidirectional I/O port.  
RD0/AD0/PSP0  
RD0  
72  
69  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 0.  
Parallel Slave Port data.  
AD0  
PSP0  
RD1/AD1/PSP1  
RD1  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 1.  
Parallel Slave Port data.  
AD1  
PSP1  
RD2/AD2/PSP2  
RD2  
68  
67  
66  
65  
64  
63  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 2.  
Parallel Slave Port data.  
AD2  
PSP2  
RD3/AD3/PSP3  
RD3  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 3.  
Parallel Slave Port data.  
AD3  
PSP3  
RD4/AD4/PSP4  
RD4  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 4.  
Parallel Slave Port data.  
AD4  
PSP4  
RD5/AD5/PSP5  
RD5  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 5.  
Parallel Slave Port data.  
AD5  
PSP5  
RD6/AD6/PSP6  
RD6  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 6.  
Parallel Slave Port data.  
AD6  
PSP6  
RD7/AD7/PSP7  
RD7  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 7.  
Parallel Slave Port data.  
AD7  
PSP7  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
DS39774C-page 22  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTE is a bidirectional I/O port.  
RE0/RD/AD8  
RE0  
4
3
I/O  
I
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Read control for Parallel Slave Port.  
External memory address/data 8.  
RD  
AD8  
RE1/WR/AD9  
RE1  
I/O  
I
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Write control for Parallel Slave Port.  
External memory address/data 9.  
WR  
AD9  
RE2/AD10/CS  
RE2  
78  
I/O  
I/O  
I
ST  
TTL  
TTL  
Digital I/O.  
External memory address/data 10.  
Chip select control for Parallel Slave Port.  
AD10  
CS  
RE3/AD11  
RE3  
77  
76  
75  
74  
73  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 11.  
AD11  
RE4/AD12  
RE4  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 12.  
AD12  
RE5/AD13  
RE5  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 13.  
AD13  
RE6/AD14  
RE6  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 14.  
AD14  
RE7/AD15/CCP2  
RE7  
I/O  
I/O  
I/O  
ST  
TTL  
ST  
Digital I/O.  
AD15  
External memory address/data 15.  
Capture 2 input/Compare 2 output/PWM2 output.  
CCP2(3)  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 23  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTF is a bidirectional I/O port.  
RF1/AN6/C2OUT  
RF1  
23  
18  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
I/O  
I
O
ST  
Analog  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8  
RF3  
17  
16  
15  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 8.  
AN8  
RF4/AN9  
RF4  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 9.  
AN9  
RF5/AN10/CVREF  
RF5  
I/O  
I
O
ST  
Analog  
Analog  
Digital I/O.  
Analog input 10.  
Comparator reference voltage output.  
AN10  
CVREF  
RF6/AN11  
RF6  
14  
13  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 11.  
AN11  
RF7/AN5/SS  
RF7  
I/O  
O
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 5.  
SPI slave select input.  
AN5  
SS  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
DS39774C-page 24  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTG is a bidirectional I/O port.  
Digital I/O.  
RG0  
5
6
I/O  
ST  
RG1/TX2/CK2  
RG1  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX2  
CK2  
AUSART asynchronous transmit.  
AUSART synchronous clock (see related RX2/DT2).  
RG2/RX2/DT2  
RG2  
7
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX2  
DT2  
AUSART asynchronous receive.  
AUSART synchronous data (see related TX2/CK2).  
RG3  
RG4  
8
I/O  
I/O  
ST  
ST  
Digital I/O.  
Digital I/O.  
10  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 25  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTH is a bidirectional I/O port.  
RH0/A16  
RH0  
79  
80  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 16.  
A16  
RH1/A17  
RH1  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 17.  
A17  
RH2/A18  
RH2  
1
2
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 18.  
A18  
RH3/A19  
RH3  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 19.  
A19  
RH4  
RH5  
RH6  
RH7  
22  
21  
20  
19  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Digital I/O.  
Digital I/O.  
Digital I/O.  
Digital I/O.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
DS39774C-page 26  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 1-4:  
PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
TQFP  
PORTJ is a bidirectional I/O port.  
RJ0/ALE  
RJ0  
62  
61  
I/O  
O
ST  
Digital I/O.  
External memory address latch enable.  
ALE  
RJ1/OE  
RJ1  
I/O  
O
ST  
Digital I/O.  
External memory output enable.  
OE  
RJ2/WRL  
RJ2  
60  
59  
39  
40  
41  
42  
I/O  
O
ST  
Digital I/O.  
External memory write low control.  
WRL  
RJ3/WRH  
RJ3  
I/O  
O
ST  
Digital I/O.  
External memory write high control.  
WRH  
RJ4/BA0  
RJ4  
I/O  
O
ST  
Digital I/O.  
External memory byte address 0 control.  
BA0  
RJ5/CE  
RJ5  
I/O  
O
ST  
Digital I/O  
External memory chip enable control.  
CE  
RJ6/LB  
RJ6  
I/O  
O
ST  
Digital I/O.  
External memory low byte control.  
LB  
RJ7/UB  
RJ7  
I/O  
O
ST  
Digital I/O.  
External memory high byte control.  
UB  
VSS  
11, 31, 51, 70  
P
P
P
P
I
ST  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
Ground reference for analog modules.  
Positive supply for analog modules.  
Enable for on-chip voltage regulator.  
VDD  
32, 48, 71  
AVSS  
AVDD  
ENVREG  
26  
25  
24  
12  
VDDCORE/VCAP  
VDDCORE  
Core logic power or external filter capacitor connection.  
Positive supply for microcontroller core logic  
(regulator disabled).  
P
P
VCAP  
External filter capacitor connection (regulator enabled).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (80-pin devices, Extended  
Microcontroller mode only).  
2: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 27  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 28  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Five of these are selected by the user by programming  
the FOSC2:FOSC0 Configuration bits. The sixth mode  
(INTRC) may be invoked under software control; it can  
also be configured as the default mode on device  
Resets.  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Oscillator Types  
The PIC18F85J11 family of devices can be operated in  
six different oscillator modes:  
In addition, PIC18F85J11 family devices can switch  
between different clock sources, either under software  
control or automatically under certain conditions. This  
allows for additional power savings by managing  
device clock speed in real time without resetting the  
application.  
1. HS  
High-Speed Crystal/Resonator  
2. HSPLL High-Speed Crystal/Resonator  
with Software PLL Control  
3. EC  
External Clock with FOSC/4 Output  
The clock sources for the PIC18F85J11 family of  
devices are shown in Figure 2-1.  
4. ECPLL External Clock with Software PLL  
Control  
5. INTOSC Internal Fast RC (8 MHz) Oscillator  
6. INTRC Internal 31 kHz Oscillator  
FIGURE 2-1:  
PIC18F85J11 FAMILY CLOCK DIAGRAM  
PIC18F85J11 Family  
Primary Oscillator  
HS, EC  
OSC2  
Sleep  
HSPLL, ECPLL  
4 x PLL  
OSC1  
Peripherals  
Secondary Oscillator  
T1OSC  
T1OSO  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
Internal Oscillator  
OSCCON<6:4>  
CPU  
OSCCON<6:4>  
8 MHz  
111  
110  
101  
4 MHz  
2 MHz  
Internal  
Oscillator  
Block  
IDLEN  
Clock  
1 MHz  
Control  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
8 MHz  
Source  
8 MHz  
(INTOSC)  
FOSC2:FOSC0 OSCCON<1:0>  
Clock Source Option  
for Other Modules  
1
0
INTRC  
Source  
OSCTUNE<7>  
31 kHz (INTRC)  
WDT, PWRT, FSCM  
and Two-Speed Start-up  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 29  
PIC18F85J11 FAMILY  
The OSCTUNE register (Register 2-2) controls the  
tuning and operation of the internal oscillator block. It  
also implements the PLLEN bits which control the  
operation of the Phase Locked Loop (PLL) in Internal  
Oscillator modes (see Section 2.4.3 “PLL Frequency  
Multiplier”).  
2.2  
Control Registers  
The OSCCON register (Register 2-1) controls the main  
aspects of the device clock’s operation. It selects the  
oscillator type to be used, which of the power-managed  
modes to invoke and the output frequency of the  
INTOSC source. It also provides status on the  
oscillators.  
REGISTER 2-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0  
IDLEN  
bit 7  
R/W-1  
IRCF2(2)  
R/W-0  
IRCF1(2)  
R/W-0  
IRCF0(2)  
R(1)  
R-0  
R/W-0  
SCS1(4)  
R/W-0  
SCS0(4)  
OSTS  
IOFS  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
IDLEN: Idle Enable bit  
1= Device enters an Idle mode when a SLEEPinstruction is executed  
0= Device enters Sleep mode when a SLEEPinstruction is executed  
bit 6-4  
IRCF2:IRCF0: INTOSC Source Frequency Select bits(2)  
111= 8 MHz (INTOSC drives clock directly)  
110= 4 MHz  
101= 2 MHz  
100= 1 MHz (default)  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (from either INTOSC/256 or INTRC)(3)  
bit 3  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Oscillator Start-up Timer (OST) time-out has expired; primary oscillator is running  
0= Oscillator Start-up Timer (OST) time-out is running; primary oscillator is not ready  
bit 2  
IOFS: INTOSC Frequency Stable bit  
1= Fast RC oscillator frequency is stable  
0= Fast RC oscillator frequency is not stable  
bit 1-0  
SCS1:SCS0: System Clock Select bits(4)  
11= Internal oscillator block  
10= Primary oscillator  
01= Timer1 oscillator  
When FOSC2 = 1:  
00= Primary oscillator  
When FOSC2 = 0:  
00= Internal oscillator  
Note 1: Reset state depends on state of the IESO Configuration bit.  
2: Modifying these bits will cause an immediate clock frequency switch if the internal oscillator is providing  
the device clocks.  
3: Source selected by the INTSRC bit (OSCTUNE<7>), see text.  
4: Modifying these bits will cause an immediate clock source switch.  
DS39774C-page 30  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 2-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
R/W-0  
R/W-0  
PLLEN(1)  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
INTSRC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
INTSRC: Internal Oscillator Low-Frequency Source Select bit  
1= 31.25 kHz device clock derived from 8 MHz INTOSC source (divide-by-256 enabled)  
0= 31 kHz device clock derived from INTRC 31 kHz oscillator  
bit 6  
PLLEN: Frequency Multiplier PLL Enable bit(1)  
1= PLL enabled  
0= PLL disabled  
bit 5-0  
TUN5:TUN0: Fast RC Oscillator (INTOSC) Frequency Tuning bits  
011111= Maximum frequency  
000001  
000000= Center frequency. Fast RC oscillator is running at the calibrated frequency.  
111111  
100000= Minimum frequency  
Note 1: Available only for ECPLL and HSPLL oscillator configurations; otherwise, this bit is unavailable and reads  
as ‘0’.  
PIC18F85J11 family devices offer the Timer1 oscillator  
2.3  
Clock Sources and  
Oscillator Switching  
as a secondary oscillator source. This oscillator, in all  
power-managed modes, is often the time base for  
functions such as a Real-Time Clock. The Timer1 oscil-  
lator is discussed in greater detail in Section 12.3  
“Timer1 Oscillator”  
Essentially, PIC18F85J11 family devices have three  
independent clock sources:  
• Primary oscillators  
• Secondary oscillators  
• Internal oscillator  
In addition to being a primary clock source in some cir-  
cumstances, the internal oscillator is available as a  
power-managed mode clock source. The INTRC  
source is also used as the clock source for several  
special features, such as the WDT and Fail-Safe Clock  
Monitor. The internal oscillator block is discussed in  
more detail in Section 2.5 “Internal Oscillator  
Block”.  
The primary oscillators can be thought of as the main  
device oscillators. These are any external oscillators  
connected to the OSC1 and OSC2 pins, and include  
the External Crystal and Resonator modes and the  
External Clock modes. In some circumstances, the  
internal oscillator block may be considered a primary  
oscillator. The particular mode is defined by the FOSC  
Configuration bits. The details of these modes are  
covered in Section 2.4 “External Oscillator Modes”.  
The PIC18F85J11 family includes features that allow  
the device clock source to be switched from the main  
oscillator, chosen by device configuration, to one of the  
alternate clock sources. When an alternate clock  
source is enabled, various power-managed operating  
modes are available.  
The secondary oscillators are external clock sources  
that are not connected to the OSC1 or OSC2 pins.  
These sources may continue to operate even after the  
controller is placed in a power-managed mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 31  
PIC18F85J11 FAMILY  
2.3.1  
CLOCK SOURCE SELECTION  
2.3.1.1  
System Clock Selection and the  
FOSC2 Configuration Bit  
The System Clock Select bits, SCS1:SCS0  
(OSCCON<1:0>), select the clock source. The avail-  
able clock sources are the primary clock, defined by the  
FOSC1:FOSC0 Configuration bits, the secondary  
clock (Timer1 oscillator) and the internal oscillator. The  
clock source changes after one or more of the bits are  
written to, following a brief clock transition interval.  
The SCS bits are cleared on all forms of Reset. In the  
device’s default configuration, this means the primary  
oscillator defined by FOSC1:FOSC0 (that is, one of the  
HS or EC modes) is used as the primary clock source  
on device Resets.  
The default clock configuration on Reset can be  
changed with the FOSC2 Configuration bit. This bit  
determines whether the external or internal oscillator  
will be the default clock source on subsequent device  
Resets. By extension, it also has the effect of determin-  
ing the clock source selected when SCS1:SCS0 are in  
their Reset state (= 00). When FOSC2 = 1(default), the  
oscillator source defined by FOSC1:FOSC0 is selected  
whenever SCS1:SCS0 = 00. When FOSC2 = 0, the  
internal oscillator block is selected whenever  
SCS1:SCS2 = 00.  
The OSTS (OSCCON<3>) and T1RUN (T1CON<6>)  
bits indicate which clock source is currently providing  
the device clock. The OSTS bit indicates that the  
Oscillator Start-up Timer (OST) has timed out and the  
primary clock is providing the device clock in primary  
clock modes. The T1RUN bit indicates when the  
Timer1 oscillator is providing the device clock in sec-  
ondary clock modes. In power-managed modes, only  
one of these bits will be set at any time. If neither of  
these bits are set, the INTRC is providing the clock, or  
the internal oscillator has just started and is not yet  
stable.  
In those cases when the internal oscillator block is the  
default clock on Reset, the Fast RC oscillator  
(INTOSC) will be used as the device clock source. It will  
initially start at 1 MHz; the postscaler selection that  
corresponds to the Reset value of the IRCF2:IRCF0  
bits (‘100’).  
The IDLEN bit determines if the device goes into Sleep  
mode or one of the Idle modes when the SLEEP  
instruction is executed.  
The use of the flag and control bits in the OSCCON  
register is discussed in more detail in Section 3.0  
“Power-Managed Modes”.  
Regardless of the setting of FOSC2, INTRC will always  
be enabled on device power-up. It serves as the clock  
source until the device has loaded its configuration  
values from memory. It is at this point that the FOSC  
Configuration bits are read and the oscillator selection  
of the operational mode is made.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON<3>). If the Timer1 oscillator is  
not enabled, then any attempt to select a  
secondary clock source when executing a  
SLEEPinstruction will be ignored.  
Note that either the primary clock or the internal  
oscillator will have two bit setting options for the  
possible values of SCS1:SCS0, at any given time,  
depending on the setting of FOSC2.  
2: It is recommended that the Timer1  
oscillator be operating and stable before  
executing the SLEEPinstruction or a very  
long delay may occur while the Timer1  
oscillator starts.  
2.3.2  
OSCILLATOR TRANSITIONS  
PIC18F85J11 family devices contain circuitry to  
prevent clock “glitches” when switching between clock  
sources. A short pause in the device clock occurs dur-  
ing the clock switch. The length of this pause is the sum  
of two cycles of the old clock source and three to four  
cycles of the new clock source. This formula assumes  
that the new clock source is stable.  
Clock transitions are discussed in greater detail in  
Section 3.1.2 “Entering Power-Managed Modes”.  
DS39774C-page 32  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
2.4  
External Oscillator Modes  
2.4.1  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS (HS MODES)  
Typical Capacitor Values  
Crystal  
Freq.  
Tested:  
Osc Type  
In HS or HSPLL Oscillator modes, a crystal or ceramic  
resonator is connected to the OSC1 and OSC2 pins to  
establish oscillation. Figure 2-2 shows the pin  
connections.  
C1  
C2  
HS  
4 MHz  
8 MHz  
20 MHz  
27 pF  
22 pF  
15 pF  
27 pF  
22 pF  
15 pF  
The oscillator design requires the use of a parallel cut  
crystal.  
Capacitor values are for design guidance only.  
Note:  
Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturer’s  
specifications.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
Refer to the Microchip application notes cited in  
Table 2-1 for oscillator specific information. Also see  
the notes following this table for additional  
information.  
Typical Capacitor Values Used:  
Mode  
Freq.  
OSC1  
OSC2  
HS  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
Note 1: Higher capacitance increases the  
stability of oscillator but also increases  
the start-up time.  
Capacitor values are for design guidance only.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application. Refer  
to the following application notes for oscillator specific  
information:  
2: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
3: Rs may be required to avoid overdriving  
• AN588, “PIC® Microcontroller Oscillator Design  
Guide”  
crystals with low drive level specification.  
4: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
• AN826, “Crystal Oscillator Basics and Crystal  
Selection for rfPIC® and PIC® Devices”  
• AN849, “Basic PIC® Oscillator Design”  
• AN943, “Practical PIC® Oscillator Analysis and  
Design”  
FIGURE 2-2:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS OR HSPLL  
• AN949, “Making Your Oscillator Work”  
CONFIGURATION)  
See the notes following Table 2-2 for additional  
information.  
(1)  
C1  
C2  
OSC1  
To  
Internal  
Logic  
(3)  
XTAL  
RF  
Sleep  
OSC2  
(2)  
RS  
(1)  
PIC18F85J11  
Note 1: See Table 2-1 and Table 2-2 for initial values of  
C1 and C2.  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
3: RF varies with the oscillator mode chosen.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 33  
PIC18F85J11 FAMILY  
2.4.2  
EXTERNAL CLOCK INPUT  
(EC MODES)  
2.4.3  
PLL FREQUENCY MULTIPLIER  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who want to use a lower frequency  
oscillator circuit, or to clock the device up to its highest  
rated frequency from a crystal oscillator. This may be  
useful for customers who are concerned with EMI due  
to high-frequency crystals, or users who require higher  
clock speeds from an internal oscillator. For these  
reasons, the HSPLL and ECPLL modes are available.  
The EC and ECPLL Oscillator modes require an exter-  
nal clock source to be connected to the OSC1 pin.  
There is no oscillator start-up time required after a  
Power-on Reset or after an exit from Sleep mode.  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-3 shows the pin connections for the EC  
Oscillator mode.  
The HSPLL and ECPLL modes provide the ability to  
selectively run the device at 4 times the external oscil-  
lating source to produce frequencies up to 40 MHz.  
The PLL is enabled by programming the  
FOSC2:FOSC0 Configuration bits (CONFIG2L<2:0>)  
to either ‘110’ (for ECPLL) or ‘100’ (for HSPLL). In  
addition, the PLLEN bit (OSCTUNE<6>) must also be  
set. Clearing PLLEN disables the PLL, regardless of  
the chosen oscillator configuration. It also allows  
additional flexibility for controlling the application’s  
clock speed in software.  
FIGURE 2-3:  
EXTERNAL CLOCK  
INPUT OPERATION  
(EC CONFIGURATION)  
OSC1/CLKI  
Clock from  
Ext. System  
PIC18F85J11  
OSC2/CLKO  
FOSC/4  
or RA6  
FIGURE 2-5:  
PLL BLOCK DIAGRAM  
HSPLL or ECPLL (CONFIG2L)  
PLL Enable (OSCTUNE)  
An external clock source may also be connected to the  
OSC1 pin in the HS mode, as shown in Figure 2-4. In  
this configuration, the divide-by-4 output on OSC2 is  
not available.  
OSC2  
Phase  
Comparator  
FIN  
HS or EC  
OSC1 Mode  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
FOUT  
Loop  
Filter  
OSC1  
Clock from  
Ext. System  
PIC18F85J11  
÷4  
VCO  
SYSCLK  
(HS Mode)  
OSC2  
Open  
DS39774C-page 34  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
2.5.3  
INTOSC FREQUENCY DRIFT  
2.5  
Internal Oscillator Block  
The INTOSC frequency may drift as VDD or tempera-  
ture changes, and can affect the controller operation in  
a variety of ways. It is possible to adjust the INTOSC  
frequency by modifying the value in the OSCTUNE  
register. This will have no effect on the INTRC clock  
source frequency.  
The PIC18F85J11 family of devices includes an internal  
oscillator block which generates two different clock  
signals; either can be used as the microcontroller’s clock  
source. This may eliminate the need for an external  
oscillator circuit on the OSC1 and/or OSC2 pins.  
The main output is the Fast RC oscillator, or INTOSC,  
an 8 MHz clock source which can be used to directly  
drive the device clock. It also drives a postscaler which  
can provide a range of clock frequencies from 31 kHz  
to 4 MHz. INTOSC is enabled when a clock frequency  
from 125 kHz to 8 MHz is selected. The INTOSC out-  
put can also be enabled when 31 kHz is selected,  
depending on the INTSRC bit (OSCTUNE<7>).  
Tuning INTOSC requires knowing when to make the  
adjustment, in which direction it should be made, and in  
some cases, how large a change is needed. Three  
compensation techniques are shown here.  
2.5.3.1  
Compensating with the EUSART  
An adjustment may be required when the EUSART  
begins to generate framing errors or receives data with  
errors while in Asynchronous mode. Framing errors  
indicate that the device clock frequency is too high. To  
adjust for this, decrement the value in OSCTUNE to  
reduce the clock frequency. On the other hand, errors  
in data may suggest that the clock speed is too low. To  
compensate, increment OSCTUNE to increase the  
clock frequency.  
The other clock source is the Internal RC oscillator  
(INTRC), which provides a nominal 31 kHz output.  
INTRC is enabled if it is selected as the device clock  
source. It is also enabled automatically when any of the  
following are enabled:  
• Power-up Timer  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
2.5.3.2  
Compensating with the Timers  
• Two-Speed Start-up  
This technique compares device clock speed to some  
reference clock. Two timers may be used; one timer is  
clocked by the peripheral clock, while the other is  
clocked by a fixed reference source, such as the  
Timer1 oscillator.  
These features are discussed in greater detail in  
Section 22.0 “Special Features of the CPU”.  
The clock source frequency (INTOSC direct, INTOSC  
with postscaler or INTRC direct) is selected by config-  
uring the IRCF bits of the OSCCON register. The  
default frequency on device Resets is 1 MHz.  
Both timers are cleared, but the timer clocked by the  
reference generates interrupts. When an interrupt  
occurs, the internally clocked timer is read and both  
timers are cleared. If the internally clocked timer value  
is much greater than expected, then the internal  
oscillator block is running too fast. To adjust for this,  
decrement the OSCTUNE register.  
2.5.1  
OSC1 AND OSC2 PIN  
CONFIGURATION  
Whenever the internal oscillator is configured as the  
default clock source (FOSC2 = 0), the OSC1 and OSC2  
pins are reconfigured automatically as port pins, RA6  
and RA7. In this mode, they function as general digital  
I/O. All oscillator functions on the pins are disabled.  
2.5.3.3  
Compensating with the CCP Module  
in Capture Mode  
2.5.2  
INTERNAL OSCILLATOR OUTPUT  
FREQUENCY AND TUNING  
A CCP module can use free-running Timer1 (or  
Timer3), clocked by the internal oscillator block and an  
external event with a known period (i.e., AC power  
frequency). The time of the first event is captured in the  
CCPRxH:CCPRxL registers and is recorded for use  
later. When the second event causes a capture, the  
time of the first event is subtracted from the time of the  
second event. Since the period of the external event is  
known, the time difference between events can be  
calculated.  
The internal oscillator block is calibrated at the factory  
to produce an INTOSC output frequency of 8 MHz. It  
can be adjusted in the user’s application by writing to  
TUN5:TUN0 (OSCTUNE<5:0>) in the OSCTUNE  
register (Register 2-2).  
When the OSCTUNE register is modified, the INTOSC  
frequency will begin shifting to the new frequency. The  
oscillator will stabilize within 1 ms. Code execution con-  
tinues during this shift. There is no indication that the  
shift has occurred.  
If the measured time is much greater than the  
calculated time, the internal oscillator block is running  
too fast. To compensate, decrement the OSCTUNE  
register. If the measured time is much less than the  
calculated time, the internal oscillator block is running  
too slow. To compensate, increment the OSCTUNE  
register.  
The INTRC oscillator operates independently of the  
INTOSC source. Any changes in INTOSC across  
voltage and temperature are not necessarily reflected  
by changes in INTRC or vice versa. The frequency of  
INTRC is not affected by OSCTUNE.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 35  
PIC18F85J11 FAMILY  
Timer1 oscillator may be operating to support a Real-  
Time Clock (RTC). Other features may be operating  
that do not require a device clock source (i.e., MSSP  
slave, PSP, INTn pins and others). Peripherals that  
may add significant current consumption are listed in  
Section 25.2 “DC Characteristics: Power-Down and  
Supply Current”.  
2.6  
Effects of Power-Managed Modes  
on the Various Clock Sources  
When PRI_IDLE mode is selected, the designated pri-  
mary oscillator continues to run without interruption.  
For all other power-managed modes, the oscillator  
using the OSC1 pin is disabled. The OSC1 pin (and  
OSC2 pin if used by the oscillator) will stop oscillating.  
2.7  
Power-up Delays  
In secondary clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and  
providing the device clock. The Timer1 oscillator may  
also run in all power-managed modes if required to  
clock Timer1 or Timer3.  
Power-up delays are controlled by two timers, so that  
no external Reset circuitry is required for most applica-  
tions. The delays ensure that the device is kept in  
Reset until the device power supply is stable under nor-  
mal circumstances and the primary clock is operating  
and stable. For additional information on power-up  
delays, see Section 4.6 “Power-up Timer (PWRT)”.  
In RC_RUN and RC_IDLE modes, the internal oscilla-  
tor provides the device clock source. The 31 kHz  
INTRC output can be used directly to provide the clock  
and may be enabled to support various special  
features, regardless of the power-managed mode (see  
Section 22.2 “Watchdog Timer (WDT)” through  
Section 22.5 “Fail-Safe Clock Monitor” for more  
information on WDT, Fail-Safe Clock Monitor and  
Two-Speed Start-up).  
The first timer is the Power-up Timer (PWRT), which  
provides a fixed delay on power-up (parameter 33,  
Table 25-10). It is always enabled.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in Reset until the  
crystal oscillator is stable (HS modes). The OST does  
this by counting 1024 oscillator cycles before allowing  
the oscillator to clock the device.  
If the Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
There is a delay of interval TCSD (parameter 38,  
Table 25-10), following POR, while the controller  
becomes ready to execute instructions.  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The INTRC is required to support WDT operation. The  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
Oscillator Mode  
OSC1 Pin  
OSC2 Pin  
EC, ECPLL  
HS, HSPLL  
Floating, pulled by external clock  
At logic low (clock/4 output)  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
INTOSC  
I/O pin, RA6, direction controlled by  
TRISA<6>  
I/O pin, RA7, direction controlled by  
TRISA<7>  
Note:  
See Table 4-2 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
DS39774C-page 36  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
3.1.1  
CLOCK SOURCES  
3.0  
POWER-MANAGED MODES  
The SCS1:SCS0 bits allow the selection of one of three  
clock sources for power-managed modes. They are:  
The PIC18F85J11 family devices provide the ability to  
manage power consumption by simply managing clock-  
ing to the CPU and the peripherals. In general, a lower  
clock frequency and a reduction in the number of circuits  
being clocked constitutes lower consumed power. For  
the sake of managing power in an application, there are  
three primary modes of operation:  
• the primary clock, as defined by the  
FOSC2:FOSC0 Configuration bits  
• the secondary clock (Timer1 oscillator)  
• the internal oscillator  
3.1.2  
ENTERING POWER-MANAGED  
MODES  
• Run mode  
• Idle mode  
• Sleep mode  
Switching from one power-managed mode to another  
begins by loading the OSCCON register. The  
SCS1:SCS0 bits select the clock source and determine  
which Run or Idle mode is to be used. Changing these  
bits causes an immediate switch to the new clock  
source, assuming that it is running. The switch may  
also be subject to clock transition delays. These are  
discussed in Section 3.1.3 “Clock Transitions and  
Status Indicators” and subsequent sections.  
These modes define which portions of the device are  
clocked and at what speed. The Run and Idle modes  
may use any of the three available clock sources  
(primary, secondary or internal oscillator block); the  
Sleep mode does not use a clock source.  
The power-managed modes include several  
power-saving features offered on previous PIC®  
MCUs. One is the clock switching feature, offered in  
other PIC18 devices, allowing the controller to use the  
Timer1 oscillator in place of the primary oscillator. Also  
included is the Sleep mode, offered by all PIC MCUs,  
where all device clocks are stopped.  
Entry to the power-managed Idle or Sleep modes is  
triggered by the execution of a SLEEPinstruction. The  
actual mode that results depends on the status of the  
IDLEN bit.  
Depending on the current mode and the mode being  
switched to, a change to a power-managed mode does  
not always require setting all of these bits. Many  
transitions may be done by changing the oscillator  
select bits, or changing the IDLEN bit, prior to issuing a  
SLEEP instruction. If the IDLEN bit is already  
configured correctly, it may only be necessary to  
perform a SLEEP instruction to switch to the desired  
mode.  
3.1  
Selecting Power-Managed Modes  
Selecting  
a power-managed mode requires two  
decisions: if the CPU is to be clocked or not and which  
clock source is to be used. The IDLEN bit  
(OSCCON<7>) controls CPU clocking, while the  
SCS1:SCS0 bits (OSCCON<1:0>) select the clock  
source. The individual modes, bit settings, clock  
sources and affected modules are summarized in  
Table 3-1.  
TABLE 3-1:  
Mode  
POWER-MANAGED MODES  
OSCCON bits Module Clocking  
IDLEN<7>(1) SCS1:SCS0<1:0> CPU Peripherals  
Available Clock and Oscillator Source  
Sleep  
0
N/A  
Off  
Off  
None – All clocks are disabled  
PRI_RUN  
N/A  
10  
Clocked Clocked Primary – HS, EC, HSPLL, ECPLL;  
this is the normal, full power execution mode  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
N/A  
N/A  
1
01  
11  
10  
01  
11  
Clocked Clocked Secondary – Timer1 Oscillator  
Clocked Clocked Internal Oscillator  
Off  
Off  
Off  
Clocked Primary – HS, EC, HSPLL, ECPLL  
Clocked Secondary – Timer1 Oscillator  
Clocked Internal Oscillator  
1
1
Note 1: IDLEN reflects its value when the SLEEPinstruction is executed.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 37  
PIC18F85J11 FAMILY  
3.1.3  
CLOCK TRANSITIONS AND STATUS  
INDICATORS  
3.2  
Run Modes  
In the Run modes, clocks to both the core and  
peripherals are active. The difference between these  
modes is the clock source.  
The length of the transition between clock sources is  
the sum of two cycles of the old clock source and three  
to four cycles of the new clock source. This formula  
assumes that the new clock source is stable.  
3.2.1  
PRI_RUN MODE  
Two bits indicate the current clock source and its  
The PRI_RUN mode is the normal, full power execution  
mode of the microcontroller. This is also the default  
mode upon a device Reset unless Two-Speed Start-up  
is enabled (see Section 22.4 “Two-Speed Start-up”  
for details). In this mode, the OSTS bit is set (see  
Section 2.2 “Control Registers”).  
status:  
OSTS  
(OSCCON<3>)  
and  
T1RUN  
(T1CON<6>). In general, only one of these bits will be  
set while in a given power-managed mode. When the  
OSTS bit is set, the primary clock is providing the  
device clock. When the T1RUN bit is set, the Timer1  
oscillator is providing the clock. If neither of these bits  
is set, INTRC is clocking the device.  
3.2.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high-accuracy clock source.  
Note:  
Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode. It acts as the trigger to place the  
controller into either the Sleep mode, or  
one of the Idle modes, depending on the  
setting of the IDLEN bit.  
SEC_RUN mode is entered by setting the SCS1:SCS0  
bits to ‘01’. The device clock source is switched to the  
Timer1 oscillator (see Figure 3-1), the primary oscilla-  
tor is shut down, the T1RUN bit (T1CON<6>) is set and  
the OSTS bit is cleared.  
3.1.4  
MULTIPLE SLEEP COMMANDS  
The power-managed mode that is invoked with the  
SLEEP instruction is determined by the setting of the  
IDLEN bit at the time the instruction is executed. If  
another SLEEPinstruction is executed, the device will  
enter the power-managed mode specified by IDLEN at  
that time. If IDLEN has changed, the device will enter  
the new power-managed mode specified by the new  
setting.  
DS39774C-page 38  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
On transitions from SEC_RUN mode to PRI_RUN  
mode, the peripherals and CPU continue to be clocked  
from the Timer1 oscillator while the primary clock is  
started. When the primary clock becomes ready, a  
clock switch back to the primary clock occurs (see  
Figure 3-2). When the clock switch is complete, the  
T1RUN bit is cleared, the OSTS bit is set and the  
primary clock is providing the clock. The IDLEN and  
SCS bits are not affected by the wake-up; the Timer1  
oscillator continues to run.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when the  
SCS1:SCS0 bits are set to ‘01’, entry to  
SEC_RUN mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, device clocks will be delayed until  
the oscillator has started. In such situa-  
tions, initial oscillator operation is far from  
stable and unpredictable operation may  
result.  
FIGURE 3-1:  
TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
FIGURE 3-2:  
TRANSITION TIMING FROM SEC_RUN MODE TO PRI_RUN MODE (HSPLL)  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
T1OSI  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
SCS1:SCS0 bits Changed  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 39  
PIC18F85J11 FAMILY  
On transitions from RC_RUN mode to PRI_RUN mode,  
the device continues to be clocked from the INTRC  
while the primary clock is started. When the primary  
clock becomes ready, a clock switch to the primary  
clock occurs (see Figure 3-4). When the clock switch is  
complete, the OSTS bit is set and the primary clock is  
providing the device clock. The IDLEN and SCS bits  
are not affected by the switch. The INTRC source will  
continue to run if either the WDT or the Fail-Safe Clock  
Monitor is enabled.  
3.2.3  
RC_RUN MODE  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator; the primary clock is  
shut down. This mode provides the best power conser-  
vation of all the Run modes while still executing code.  
It works well for user applications which are not highly  
timing sensitive or do not require high-speed clocks at  
all times.  
This mode is entered by setting SCS bits to ‘11’. When  
the clock source is switched to the INTRC (see  
Figure 3-3), the primary oscillator is shut down and the  
OSTS bit is cleared.  
FIGURE 3-3:  
TRANSITION TIMING TO RC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
FIGURE 3-4:  
TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTRC  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
SCS1:SCS0 bits Changed  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
DS39774C-page 40  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
3.3  
Sleep Mode  
3.4  
Idle Modes  
The power-managed Sleep mode is identical to the  
legacy Sleep mode offered in all other PIC micro-  
controllers. It is entered by clearing the IDLEN bit (the  
default state on device Reset) and executing the  
SLEEP instruction. This shuts down the selected  
oscillator (Figure 3-5). All clock source status bits are  
cleared.  
The Idle modes allow the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Selecting a particular Idle mode allows users  
to further manage power consumption.  
If the IDLEN bit is set to a ‘1’ when a SLEEPinstruction is  
executed, the peripherals will be clocked from the clock  
source selected using the SCS1:SCS0 bits; however, the  
CPU will not be clocked. The clock source status bits are  
not affected. Setting IDLEN and executing a SLEEP  
instruction provides a quick method of switching from a  
given Run mode to its corresponding Idle mode.  
Entering the Sleep mode from any other mode does not  
require a clock switch. This is because no clocks are  
needed once the controller has entered Sleep. If the  
WDT is selected, the INTRC source will continue to  
operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
If the WDT is selected, the INTRC source will continue  
to operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the device will not be clocked  
until the clock source selected by the SCS1:SCS0 bits  
becomes ready (see Figure 3-6), or it will be clocked  
from the internal oscillator if either the Two-Speed  
Start-up or the Fail-Safe Clock Monitor is enabled (see  
Section 22.0 “Special Features of the CPU”). In  
either case, the OSTS bit is set when the primary clock  
is providing the device clocks. The IDLEN and SCS bits  
are not affected by the wake-up.  
Since the CPU is not executing instructions, the only  
exits from any of the Idle modes are by interrupt, WDT  
time-out or a Reset. When a wake event occurs, CPU  
execution is delayed by an interval of TCSD  
(parameter 38, Table 25-10) while it becomes ready to  
execute code. When the CPU begins executing code,  
it resumes with the same clock source for the current  
Idle mode. For example, when waking from RC_IDLE  
mode, the internal oscillator block will clock the CPU  
and peripherals (in other words, RC_RUN mode). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any Idle mode or the Sleep mode, a WDT  
time-out will result in a WDT wake-up to the Run mode  
currently specified by the SCS1:SCS0 bits.  
FIGURE 3-5:  
TRANSITION TIMING FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-6:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q2 Q3 Q4 Q1 Q2  
Q1  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
Wake Event  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 41  
PIC18F85J11 FAMILY  
3.4.1  
PRI_IDLE MODE  
3.4.2  
SEC_IDLE MODE  
This mode is unique among the three low-power Idle  
modes, in that it does not disable the primary device  
clock. For timing sensitive applications, this allows for  
the fastest resumption of device operation with its more  
accurate primary clock source, since the clock source  
does not have to “warm up” or transition from another  
oscillator.  
In SEC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered from SEC_RUN by set-  
ting the IDLEN bit and executing a SLEEPinstruction. If  
the device is in another Run mode, set IDLEN first, then  
set SCS1:SCS0 to ‘01’ and execute SLEEP. When the  
clock source is switched to the Timer1 oscillator, the  
primary oscillator is shut down, the OSTS bit is cleared  
and the T1RUN bit is set.  
PRI_IDLE mode is entered from PRI_RUN mode by  
setting the IDLEN bit and executing a SLEEPinstruc-  
tion. If the device is in another Run mode, set IDLEN  
first, then set the SCS bits to ‘10’ and execute SLEEP.  
Although the CPU is disabled, the peripherals continue  
to be clocked from the primary clock source specified  
by the FOSC1:FOSC0 Configuration bits. The OSTS  
bit remains set (see Figure 3-7).  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After an interval  
of TCSD following the wake event, the CPU begins exe-  
cuting code being clocked by the Timer1 oscillator. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run (see Figure 3-8).  
When a wake event occurs, the CPU is clocked from the  
primary clock source. A delay of interval TCSD is  
required between the wake event and when code exe-  
cution starts. This is required to allow the CPU to  
become ready to execute instructions. After the  
wake-up, the OSTS bit remains set. The IDLEN and  
SCS bits are not affected by the wake-up (see  
Figure 3-8).  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when the  
SLEEPinstruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_IDLE mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, peripheral clocks will be delayed  
until the oscillator has started. In such  
situations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
FIGURE 3-7:  
TRANSITION TIMING FOR ENTRY TO IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-8:  
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
TCSD  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
Wake Event  
DS39774C-page 42  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
3.4.3  
RC_IDLE MODE  
3.5.2  
EXIT BY WDT TIME-OUT  
In RC_IDLE mode, the CPU is disabled but the periph-  
erals continue to be clocked from the internal oscillator.  
This mode allows for controllable power conservation  
during Idle periods.  
A WDT time-out will cause different actions depending  
on which power-managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in an exit from the  
power-managed mode (see Section 3.2 “Run  
Modes” and Section 3.3 “Sleep Mode”). If the device  
is executing code (all Run modes), the time-out will  
result in a WDT Reset (see Section 22.2 “Watchdog  
Timer (WDT)”).  
From RC_RUN, this mode is entered by setting the  
IDLEN bit and executing a SLEEP instruction. If the  
device is in another Run mode, first set IDLEN, then  
clear the SCS bits and execute SLEEP. When the clock  
source is switched to the INTRC, the primary oscillator  
is shut down and the OSTS bit is cleared.  
When a wake event occurs, the peripherals continue to  
be clocked from the INTOSC. After a delay of TCSD  
following the wake event, the CPU begins executing  
code being clocked by the INTOSC. The IDLEN and  
SCS bits are not affected by the wake-up. The INTOSC  
source will continue to run if either the WDT or the  
Fail-Safe Clock Monitor is enabled.  
The Watchdog Timer and postscaler are cleared by one  
of the following events:  
• executing a SLEEPor CLRWDTinstruction  
• the loss of a currently selected clock source (if the  
Fail-Safe Clock Monitor is enabled)  
3.5.3  
EXIT BY RESET  
Exiting an Idle or Sleep mode by Reset automatically  
forces the device to run from the INTRC.  
3.5  
Exiting Idle and Sleep Modes  
An exit from Sleep mode, or any of the Idle modes, is  
triggered by an interrupt, a Reset or a WDT time-out.  
This section discusses the triggers that cause exits  
from power-managed modes. The clocking subsystem  
actions are discussed in each of the power-managed  
mode sections (see Section 3.2 “Run Modes”,  
Section 3.3 “Sleep Mode” and Section 3.4 “Idle  
Modes”).  
3.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Certain exits from power-managed modes do not  
invoke the OST at all. There are two cases:  
• PRI_IDLE mode, where the primary clock source  
is not stopped; and  
• the primary clock source is either the EC or  
ECPLL mode.  
3.5.1  
EXIT BY INTERRUPT  
Any of the available interrupt sources can cause the  
device to exit from an Idle mode, or the Sleep mode, to  
a Run mode. To enable this functionality, an interrupt  
source must be enabled by setting its enable bit in one  
of the INTCON or PIE registers. The exit sequence is  
initiated when the corresponding interrupt flag bit is set.  
In these instances, the primary clock source either  
does not require an oscillator start-up delay, since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (EC). However, a  
fixed delay of interval TCSD following the wake event is  
still required when leaving Sleep and Idle modes to  
allow the CPU to prepare for execution. Instruction  
execution resumes on the first clock cycle following this  
delay.  
On all exits from Idle or Sleep modes by interrupt, code  
execution branches to the interrupt vector if the  
GIE/GIEH bit (INTCON<7>) is set. Otherwise, code  
execution continues or resumes without branching  
(see Section 9.0 “Interrupts”).  
A fixed delay of interval TCSD following the wake event  
is required when leaving Sleep and Idle modes. This  
delay is required for the CPU to prepare for execution.  
Instruction execution resumes on the first clock cycle  
following this delay.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 43  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 44  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
4.1  
RCON Register  
4.0  
RESET  
Device Reset events are tracked through the RCON  
register (Register 4-1). The lower five bits of the  
register indicate that a specific Reset event has  
occurred. In most cases, these bits can only be set by  
the event and must be cleared by the application after  
the event. The state of these flag bits, taken together,  
can be read to indicate the type of Reset that just  
occurred. This is described in more detail in  
Section 4.7 “Reset State of Registers”.  
The PIC18F85J11 family of devices differentiate  
between various kinds of Reset:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during power-managed modes  
d) Watchdog Timer (WDT) Reset (during  
execution)  
e) Brown-out Reset (BOR)  
f) RESETInstruction  
The RCON register also has a control bit for setting  
interrupt priority (IPEN). Interrupt priority is discussed  
in Section 9.0 “Interrupts”.  
g) Stack Full Reset  
h) Stack Underflow Reset  
This section discusses Resets generated by MCLR,  
POR and BOR, and covers the operation of the various  
start-up timers. Stack Reset events are covered in  
Section 5.1.6.4 “Stack Full and Underflow Resets”.  
WDT Resets are covered in Section 22.2 “Watchdog  
Timer (WDT)”.  
A simplified block diagram of the on-chip Reset circuit  
is shown in Figure 4-1.  
FIGURE 4-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
External Reset  
Stack  
Pointer  
MCLR  
( )_IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
VDD  
Brown-out  
(1)  
Reset  
S
PWRT  
32 μs  
Chip_Reset  
65.5 ms  
PWRT  
11-bit Ripple Counter  
R
Q
INTRC  
Note 1: The ENVREG pin must be tied high to enable Brown-out Reset. The Brown-out Reset is provided by the on-chip  
voltage regulator when there is insufficient source voltage to maintain regulation.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 45  
PIC18F85J11 FAMILY  
REGISTER 4-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
R/W-1  
CM  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16XXXX Compatibility mode)  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A configuration mismatch Reset has not occurred  
0= A configuration mismatch Reset occurred. Must be set in software once the reset occurs.  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESET instruction was executed causing a device Reset (must be set in software after a  
Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-Down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Set by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent  
Power-on Resets may be detected.  
2: If the on-chip voltage regulator is disabled, BOR remains ‘0’ at all times. See Section 4.4.1 “Detecting  
BOR” for more information.  
3: Brown-out Reset is said to have occurred when BOR is ‘0’ and POR is ‘1’ (assuming that POR was set to  
1’ by software immediately after a Power-on Reset).  
DS39774C-page 46  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 4-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
4.2  
Master Clear (MCLR)  
The MCLR pin provides a method for triggering a hard  
external Reset of the device. A Reset is generated by  
holding the pin low. PIC18 extended microcontroller  
devices have a noise filter in the MCLR Reset path  
which detects and ignores small pulses.  
VDD  
VDD  
D
R
The MCLR pin is not driven low by any internal Resets,  
including the WDT.  
R1  
MCLR  
PIC18F85J11  
C
4.3  
Power-on Reset (POR)  
A Power-on Reset condition is generated on-chip  
whenever VDD rises above a certain threshold. This  
allows the device to start in the initialized state when  
VDD is adequate for operation.  
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
To take advantage of the POR circuitry, tie the MCLR  
pin through a resistor (1 kΩ to 10 kΩ) to VDD. This will  
eliminate external RC components usually needed to  
create a Power-on Reset delay. A minimum rise rate for  
VDD is specified (parameter D004). For a slow rise  
time, see Figure 4-2.  
2: R < 40 kΩ is recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 1 kΩ will limit any current flowing into  
MCLR from external capacitor C, in the event  
of MCLR/VPP pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters  
(voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
4.4.1  
DETECTING BOR  
The BOR bit always resets to ‘0’ on any Brown-out  
Reset or Power-on Reset event. This makes it difficult  
to determine if a Brown-out Reset event has occurred  
just by reading the state of BOR alone. A more reliable  
method is to simultaneously check the state of both  
POR and BOR. This assumes that the POR bit is reset  
to ‘1’ in software immediately after any Power-on Reset  
event. If BOR is ‘0’ while POR is ‘1’, it can be reliably  
assumed that a Brown-out Reset event has occurred.  
Power-on Reset events are captured by the POR bit  
(RCON<1>). The state of the bit is set to ‘0’ whenever  
a Power-on Reset occurs; it does not change for any  
other Reset event. POR is not reset to ‘1’ by any  
hardware event. To capture multiple events, the user  
manually resets the bit to ‘1’ in software following any  
Power-on Reset.  
If the voltage regulator is disabled, Brown-out Reset  
functionality is disabled. In this case, the BOR bit  
cannot be used to determine a Brown-out Reset event.  
The BOR bit is still cleared by a Power-on Reset event.  
4.4  
Brown-out Reset (BOR)  
The PIC18F85J11 family of devices incorporates a  
simple BOR function when the internal regulator is  
enabled (ENVREG pin is tied to VDD). The voltage reg-  
ulator will trigger a Brown-out Reset when output of the  
regulator to the device core approaches the voltage at  
which the device is unable to run at full speed. The  
BOR circuit also keeps the device in Reset as VDD  
rises, until the regulator’s output level is sufficient for  
full-speed operation.  
Once a BOR has occurred, the Power-up Timer will  
keep the chip in Reset for TPWRT (parameter 33). If  
VDD drops below the threshold for full-speed operation  
while the Power-up Timer is running, the chip will go  
back into a Brown-out Reset and the Power-up Timer  
will be initialized. Once VDD rises to the point where  
regulator output is sufficient, the Power-up Timer will  
execute the additional time delay.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 47  
PIC18F85J11 FAMILY  
4.5  
Configuration Mismatch (CM)  
4.6  
Power-up Timer (PWRT)  
The Configuration Mismatch (CM) Reset is designed to  
detect and attempt to recover from random, memory  
corrupting events. These include Electrostatic Dis-  
charge (ESD) events, which can cause widespread,  
single bit changes throughout the device and result in  
catastrophic failure.  
PIC18F85J11 family devices incorporate an on-chip  
Power-up Timer (PWRT) to help regulate the Power-on  
Reset process. The PWRT is always enabled. The  
main function is to ensure that the device voltage is  
stable before code is executed.  
The Power-up Timer (PWRT) of the PIC18F85J11 fam-  
ily devices is an 11-bit counter which uses the INTRC  
source as the clock input. This yields an approximate  
time interval of 2048 x 32 µs = 65.6 ms. While the  
PWRT is counting, the device is held in Reset.  
In PIC18FXXJXX Flash devices, the device Configura-  
tion registers (located in the configuration memory  
space) are continuously monitored during operation by  
comparing their values to complimentary Shadow  
registers.  
The power-up time delay depends on the INTRC clock  
and will vary from chip-to-chip due to temperature and  
process variation. See DC parameter 33 for details.  
If a mismatch is detected between the two sets of reg-  
isters, a CM Reset automatically occurs. These events  
are captured by the CM bit (RCON<5>) being set to ‘0’.  
This bit does not change for any other Reset event.  
4.6.1  
TIME-OUT SEQUENCE  
If enabled, the PWRT time-out is invoked after the POR  
pulse has cleared. The total time-out will vary based on  
the status of the PWRT. Figure 4-3, Figure 4-4,  
Figure 4-5 and Figure 4-6 all depict time-out  
sequences on power-up with the Power-up Timer  
enabled.  
A CM Reset behaves similarly to a Master Clear Reset,  
RESET instruction, WDT time-out or Stack Event  
Resets. As with all hard and power Reset events, the  
device Configuration Words are reloaded from the  
Flash Configuration Words in program memory as the  
device restarts.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the PWRT will expire. Bringing  
MCLR high will begin execution immediately  
(Figure 4-5). This is useful for testing purposes, or to  
synchronize more than one PIC18FXXXX device  
operating in parallel.  
FIGURE 4-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
DS39774C-page 48  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 4-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
FIGURE 4-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
FIGURE 4-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
3.3V  
0V  
1V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
INTERNAL RESET  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 49  
PIC18F85J11 FAMILY  
Table 4-2 describes the Reset states for all of the  
Special Function Registers. These are categorized by  
Power-on and Brown-out Resets, Master Clear and  
WDT Resets and WDT wake-ups.  
4.7  
Reset State of Registers  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” depending on the type of Reset that occurred.  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal  
operation. Status bits from the RCON register, CM, RI,  
TO, PD, POR and BOR, are set or cleared differently in  
different Reset situations, as indicated in Table 4-1.  
These bits are used in software to determine the nature  
of the Reset.  
TABLE 4-1:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
RCON Register  
STKPTR Register  
Program  
Condition  
Counter(1)  
CM  
RI  
TO  
PD  
POR BOR STKFUL STKUNF  
Power-on Reset  
RESETInstruction  
Brown-out Reset  
0000h  
0000h  
0000h  
0000h  
1
u
1
u
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
MCLR during power-managed  
Run modes  
MCLR during power-managed  
Idle modes and Sleep mode  
0000h  
0000h  
0000h  
u
u
u
u
1
0
u
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
WDT time-out during full power  
or power-managed Run modes  
u
u
MCLR during full power  
execution  
Stack Full Reset (STVREN = 1)  
0000h  
0000h  
u
u
u
u
u
u
u
u
u
u
1
u
u
1
u
u
Stack Underflow Reset  
(STVREN = 1)  
Stack Underflow Error (not an  
actual Reset, STVREN = 0)  
0000h  
u
u
u
u
u
0
u
0
u
u
u
u
u
u
1
u
WDT time-out during  
power-managed Idle or Sleep  
modes  
PC + 2  
Interrupt exit from  
PC + 2  
u
u
u
0
u
u
u
u
power-managed modes  
Legend: u= unchanged  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
DS39774C-page 50  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 4-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
WDT Reset  
RESETInstruction  
Stack Resets  
CM Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
TOSU  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 1111  
1100 0000  
N/A  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 1111  
1100 0000  
N/A  
---0 uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
uu-u uuuu(1)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 4-1 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 51  
PIC18F85J11 FAMILY  
TABLE 4-2:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESETInstruction  
Stack Resets  
CM Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
FSR1H  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
---- xxxx  
xxxx xxxx  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
FSR1L  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0100 q000  
0--- ---0  
0-11 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0100 q000  
0--- ---0  
0-uq qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu quuu  
u--- ---u  
u-uu qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 4-1 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
DS39774C-page 52  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 4-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESETInstruction  
Stack Resets  
CM Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CVRCON  
CMCON  
TMR3H  
TMR3L  
T3CON  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EECON2  
EECON1  
IPR3  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
--00 0000  
0-00 0000  
0000 0000  
0000 0111  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
---- ----  
---0 x00-  
--00 -11-  
--00 -00-  
--00 -00-  
11-- 111-  
00-- 000-  
00-- 000-  
1111 1-11  
0000 0-00  
0000 0-00  
0-00 --00  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0-00 0000  
--00 0000  
0-00 0000  
0000 0000  
0000 0111  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
---- ----  
---0 u00-  
--00 -11-  
--00 -00-  
--00 -00-  
11-- 111-  
00-- 000-  
00-- 000-  
1111 1-11  
0000 0-00  
0000 0-00  
0-00 --00  
0000 0000  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
--uu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ----  
---0 u00-  
--uu -uu-  
--uu -00-(3)  
--uu -00-  
uu-- uuu-  
uu-- uuu-(3)  
uu-- uuu-  
uuuu u-uu  
uuuu u-uu(3)  
uuuu u-uu  
u-uu --uu  
uuuu uuuu  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
MEMCON  
OSCTUNE  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 4-1 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 53  
PIC18F85J11 FAMILY  
TABLE 4-2:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESETInstruction  
Stack Resets  
CM Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
TRISJ  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
1111 1111  
1111 1111  
0001 1111  
1111 111-  
1111 1-11  
1111 1111  
1111 1111  
1111 1111  
1111 1111(5)  
xxxx xxxx  
xxxx xxxx  
00-x xxxx  
xxxx xxx-  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx(5)  
xxxx xxxx  
xxxx xxxx  
000x xxxx  
xxxx xxx-  
xxxx x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xx0x 0000(5)  
0000 0000  
01-0 0-00  
xxxx xxxx  
xxxx xxxx  
--00 0000  
1111 1111  
1111 1111  
0001 1111  
1111 111-  
1111 1-11  
1111 1111  
1111 1111  
1111 1111  
1111 1111(5)  
uuuu uuuu  
uuuu uuuu  
00-u uuuu  
uuuu uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
000u uuuu  
uuuu uuu-  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu0u 0000(5)  
0000 0000  
01-0 0-00  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuu-  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
uu-u uuuu  
uuuu uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
000u uuuu  
uuuu uuu-  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(5)  
uuuu uuuu  
uu-u u-uu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5)  
LATJ  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA(5)  
PORTJ  
PORTH  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5)  
SPBRGH1  
BAUDCON1  
CCPR1H  
CCPR1L  
CCP1CON  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 4-1 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
DS39774C-page 54  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 4-2:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESETInstruction  
Stack Resets  
CM Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
CCPR2H  
CCPR2L  
CCP2CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
PIC18F6XJ11 PIC18F8XJ11  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
RCSTA2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008h or 0018h).  
3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
4: See Table 4-1 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 55  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 56  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
5.1  
Program Memory Organization  
5.0  
MEMORY ORGANIZATION  
PIC18 microcontrollers implement a 21-bit program  
counter which is capable of addressing a 2-Mbyte  
program memory space. Accessing a location between  
the upper boundary of the physically implemented  
memory and the 2-Mbyte address will return all ‘0’s (a  
NOPinstruction).  
There are two types of memory in PIC18 Flash  
microcontroller devices:  
• Program Memory  
• Data RAM  
As Harvard architecture devices, the data and program  
memories use separate busses; this allows for  
concurrent access of the two memory spaces.  
The entire PIC18F85J11 family offers a range of  
on-chip Flash program memory sizes, from 8 Kbytes  
(up to 4,096 single-word instructions) to 32 Kbytes  
(32,768 single-word instructions). The program  
memory maps for individual family members are shown  
in Figure 5-1.  
Additional detailed information on the operation of the  
Flash program memory is provided in Section 6.0  
“Flash Program Memory”.  
FIGURE 5-1:  
MEMORY MAPS FOR PIC18F85J11 FAMILY DEVICES  
PC<20:0>  
21  
CALL, CALLW, RCALL,  
RETURN, RETFIE, RETLW,  
ADDULNK, SUBULNK  
Stack Level 1  
Stack Level 31  
PIC18FX3J11  
PIC18FX4J11  
PIC18FX5J11  
000000h  
On-Chip  
Memory  
On-Chip  
Memory  
On-Chip  
Memory  
Config. Words  
001FFFh  
Config. Words  
003FFFh  
Config. Words  
007FFFh  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
1FFFFFh  
Note:  
Sizes of memory areas are not to scale. Sizes of program memory areas are enhanced to show detail.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 57  
PIC18F85J11 FAMILY  
5.1.1  
HARD MEMORY VECTORS  
5.1.2  
FLASH CONFIGURATION WORDS  
All PIC18 devices have a total of three hard-coded  
return vectors in their program memory space. The  
Reset vector address is the default value to which the  
program counter returns on all device Resets; it is  
located at 0000h.  
Because PIC18F85J11 family devices do not have per-  
sistent configuration memory, the top four words of  
on-chip program memory are reserved for configuration  
information. On Reset, the configuration information is  
copied into the Configuration registers.  
PIC18 devices also have two interrupt vector  
addresses for the handling of high priority and low  
priority interrupts. The high priority interrupt vector is  
located at 0008h and the low priority interrupt vector is  
at 0018h. Their locations in relation to the program  
memory map are shown in Figure 5-2.  
The Configuration Words are stored in their program  
memory location in numerical order, starting with the  
lower byte of CONFIG1 at the lowest address and end-  
ing with the upper byte of CONFIG4. For these devices,  
only Configuration Words, CONFIG1 through  
CONFIG3, are used; CONFIG4 is reserved. The actual  
addresses of the Flash Configuration Word for devices  
in the PIC18F85J11 family are shown in Table 5-1.  
Their location in the memory map is shown with the  
other memory vectors in Figure 5-2.  
FIGURE 5-2:  
HARD VECTOR AND  
CONFIGURATION WORD  
LOCATIONS FOR  
Additional details on the device Configuration Words  
are provided in Section 22.1 “Configuration Bits”.  
PIC18F85J11 FAMILY  
FAMILY DEVICES  
TABLE 5-1:  
FLASH CONFIGURATION  
WORD FOR PIC18F85J11  
FAMILY DEVICES  
0000h  
0008h  
Reset Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector 0018h  
Program  
Memory  
(Kbytes)  
Configuration  
Word  
Addresses  
Device  
PIC18F63J11  
PIC18F83J11  
PIC18F64J11  
PIC18F84J11  
PIC18F65J11  
PIC18F85J11  
8
1FF8h to 1FFFh  
3FF8h to 3FFFh  
7FF8h to 7FFFh  
On-Chip  
Program Memory  
16  
32  
(Top of Memory-7)  
(Top of Memory)  
Flash Configuration Words  
Read as ‘0’  
1FFFFFh  
Legend:  
(Top of Memory) represents upper boundary  
of on-chip program memory space (see  
Figure 5-1 for device-specific values).  
Shaded area represents unimplemented  
memory. Areas are not shown to scale.  
DS39774C-page 58  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
• The Extended Microcontroller Mode allows  
access to both internal and external program  
memories as a single block. The device can  
access its entire on-chip program memory; above  
this, the device accesses external program  
memory up to the 2-Mbyte program space limit.  
Execution automatically switches between the  
two memories as required.  
5.1.3  
PIC18F8XJ11 PROGRAM MEMORY  
MODES  
The 80-pin devices in this family can address up to a  
total of 2 Mbytes of program memory. This is achieved  
through the external memory bus. There are two  
distinct operating modes available to the controllers:  
• Microcontroller (MC)  
• Extended Microcontroller (EMC)  
The setting of the EMB Configuration bits also controls  
the address bus width of the external memory bus. This  
is covered in more detail in Section 7.0 “External  
Memory Bus”.  
The Program Memory mode is determined by setting  
the EMB Configuration bits (CONFIG3L<5:4>), as  
shown in Register 5-1. (See also Section 22.1  
“Configuration Bits” for additional details on the  
device Configuration bits.)  
In all modes, the microcontroller has complete access  
to data RAM.  
The Program Memory modes operate as follows:  
Figure 5-3 compares the memory maps of the different  
Program Memory modes. The differences between  
on-chip and external memory access limitations are  
more fully explained in Table 5-2.  
• The Microcontroller Mode accesses only on-chip  
Flash memory. Attempts to read above the top of  
on-chip memory causes a read of all ‘0’s (a NOP  
instruction).  
The Microcontroller mode is also the only operating  
mode available to 64-pin devices.  
REGISTER 5-1:  
CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)(1)  
R/WO-1  
WAIT  
R/WO-1  
BW  
R/WO-1  
EMB1  
R/WO-1  
EMB0  
R/WO-1  
EASHFT  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7  
WAIT: External Bus Wait Enable bit  
1= Wait selections from MEMCON.WAIT<1:0> unavailable, and the device will not wait  
0= Wait programmed by MEMCON.WAIT<1:0>  
bit 6  
BW: Data Bus Width Select bit  
1= 16-Bit External Bus mode  
0= 8-Bit External Bus mode  
bit 5:4  
EMB1:EMB0: External Memory Bus Configuration bits  
00= Extended Microcontroller mode – 20-Bit Address mode  
01= Extended Microcontroller mode – 16-Bit Address mode  
10= Extended Microcontroller mode – 12-Bit Address mode  
11= Microcontroller mode – external bus disabled  
bit 3  
EASHFT: External Address Bus Shift Enable bit  
1= Address shifting enabled – external address bus is shifted to start at 000000h  
0= Address shifting disabled – external address bus reflects the PC value  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: CONFIG3L and its associated bits are implemented only in 80-pin devices.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 59  
PIC18F85J11 FAMILY  
To avoid this, the Extended Microcontroller mode  
implements an address shifting option to enable auto-  
matic address translation. In this mode, addresses  
presented on the external bus are shifted down by the  
size of the on-chip program memory and are remapped  
to start at 0000h. This allows the complete use of the  
external memory device’s memory space.  
5.1.4  
EXTENDED MICROCONTROLLER  
MODE AND ADDRESS SHIFTING  
By default, devices in Extended Microcontroller mode  
directly present the program counter value on the  
external address bus for those addresses in the range  
of the external memory space. In practical terms, this  
means addresses in the external memory device below  
the top of on-chip memory are unavailable.  
FIGURE 5-3:  
MEMORY MAPS FOR PIC18F85J11 FAMILY PROGRAM MEMORY MODES  
(1)  
(2)  
Extended Microcontroller Mode  
Microcontroller Mode  
Extended Microcontroller Mode  
(2)  
with Address Shifting  
On-Chip  
Memory  
Space  
On-Chip  
Memory  
Space  
External  
Memory  
Space  
External  
Memory  
Space  
On-Chip  
Memory  
Space  
000000h  
000000h  
000000h  
On-Chip  
Program  
Memory  
On-Chip  
Program  
Memory  
On-Chip  
Program  
Memory  
No  
Access  
(Top of Memory)  
(Top of Memory) + 1  
(Top of Memory)  
(Top of Memory) + 1  
(Top of Memory)  
(Top of Memory) + 1  
External  
Memory  
Mapped  
to  
External  
Memory  
Space  
Reads  
0’s  
Mapped  
to  
External  
Memory  
Space  
External  
Memory  
1FFFFFh –  
(Top of Memory)  
1FFFFFh  
1FFFFFh  
1FFFFFh  
Legend:  
(Top of Memory) represents upper boundary of on-chip program memory space (see Figure 5-1 for device-specific  
values). Shaded areas represent unimplemented, or inaccessible areas, depending on the mode.  
Note 1: This mode is the only available mode on 64-pin devices and the default on 80-pin devices.  
2: These modes are only available on 80-pin devices.  
TABLE 5-2:  
MEMORY ACCESS FOR PIC18F8XJ11 PROGRAM MEMORY MODES  
Internal Program Memory External Program Memory  
Execution Table Read Table Write  
Operating Mode  
Execution  
From  
Table Read Table Write  
From  
From  
To  
From  
To  
Microcontroller  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Extended Microcontroller  
DS39774C-page 60  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit Stack Pointer, STKPTR. The stack space is not  
part of either program or data space. The Stack Pointer  
is readable and writable and the address on the top of  
the stack is readable and writable through the  
Top-of-Stack Special Function Registers. Data can also  
be pushed to, or popped from the stack, using these  
registers.  
5.1.5  
PROGRAM COUNTER  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits wide  
and is contained in three separate 8-bit registers. The  
low byte, known as the PCL register, is both readable  
and writable. The high byte, or PCH register, contains  
the PC<15:8> bits; it is not directly readable or writable.  
Updates to the PCH register are performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits; it is also not  
directly readable or writable. Updates to the PCU  
register are performed through the PCLATU register.  
A CALLtype instruction causes a push onto the stack.  
The Stack Pointer is first incremented and the location  
pointed to by the Stack Pointer is written with the  
contents of the PC (already pointing to the instruction  
following the CALL). A RETURNtype instruction causes  
a pop from the stack. The contents of the location  
pointed to by the STKPTR are transferred to the PC  
and then the Stack Pointer is decremented.  
The contents of PCLATH and PCLATU are transferred  
to the program counter by any operation that writes  
PCL. Similarly, the upper two bytes of the program  
counter are transferred to PCLATH and PCLATU by an  
operation that reads PCL. This is useful for computed  
offsets to the PC (see Section 5.1.8.1 “Computed  
GOTO”).  
The Stack Pointer is initialized to ‘00000’ after all  
Resets. There is no RAM associated with the location  
corresponding to a Stack Pointer value of ‘00000’; this  
is only a Reset value. Status bits indicate if the stack is  
full, has overflowed or has underflowed.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the Least Significant bit of PCL is fixed to  
a value of ‘0’. The PC increments by 2 to address  
sequential instructions in the program memory.  
5.1.6.1  
Top-of-Stack Access  
Only the top of the return address stack (TOS) is  
readable and writable. A set of three registers,  
TOSU:TOSH:TOSL, holds the contents of the stack  
location pointed to by the STKPTR register  
(Figure 5-4). This allows users to implement a software  
stack if necessary. After a CALL, RCALL or interrupt  
(and ADDULNK and SUBULNK instructions if the  
extended instruction set is enabled), the software can  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
5.1.6  
RETURN ADDRESS STACK  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC is  
pushed onto the stack when a CALLor RCALLinstruc-  
tion is executed, or an interrupt is Acknowledged. The  
PC value is pulled off the stack on a RETURN, RETLWor  
a RETFIEinstruction (and on ADDULNKand SUBULNK  
instructions if the extended instruction set is enabled).  
PCLATU and PCLATH are not affected by any of the  
RETURNor CALLinstructions.  
read  
the  
pushed  
value  
by  
reading  
the  
TOSU:TOSH:TOSL registers. These values can be  
placed on a user-defined software stack. At return time,  
the software can return these values to  
TOSU:TOSH:TOSL and do a return.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 5-4:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack <20:0>  
Stack Pointer  
Top-of-Stack Registers  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU TOSH TOSL  
00010  
00h  
1Ah  
34h  
00011  
00010  
00001  
00000  
001A34h  
000D58h  
Top-of-Stack  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 61  
PIC18F85J11 FAMILY  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and set the STKUNF bit, while the Stack  
Pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or until a POR occurs.  
5.1.6.2  
Return Stack Pointer (STKPTR)  
The STKPTR register (Register 5-2) contains the Stack  
Pointer value, the STKFUL (Stack Full) status bit and  
the STKUNF (Stack Underflow) status bits. The value  
of the Stack Pointer can be 0 through 31. The Stack  
Pointer increments before values are pushed onto the  
stack and decrements after values are popped off the  
stack. On Reset, the Stack Pointer value will be zero.  
The user may read and write the Stack Pointer value.  
This feature can be used by a Real-Time Operating  
System (RTOS) for return stack maintenance.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset, as the contents  
of the SFRs are not affected.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
5.1.6.3  
PUSHand POPInstructions  
Since the Top-of-Stack is readable and writable, the  
ability to push values onto the stack and pull values off  
the stack, without disturbing normal program execu-  
tion, is a desirable feature. The PIC18 instruction set  
includes two instructions, PUSH and POP, that permit  
the TOS to be manipulated under software control.  
TOSU, TOSH and TOSL can be modified to place data  
or a return address on the stack.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) Configuration bit. (Refer to  
Section 22.1 “Configuration Bits” for a description of  
the device Configuration bits.) If STVREN is set  
(default), the 31st push will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to zero.  
The PUSHinstruction places the current PC value onto  
the stack. This increments the Stack Pointer and loads  
the current PC value onto the stack.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and the STKPTR will remain at 31.  
The POP instruction discards the current TOS by  
decrementing the Stack Pointer. The previous value  
pushed onto the stack then becomes the TOS value.  
REGISTER 5-2:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
STKFUL(1)  
R/C-0  
STKUNF(1)  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
bit 7  
bit 0  
Legend:  
C = Clearable-only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit(1)  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit(1)  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
DS39774C-page 62  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
5.1.6.4  
Stack Full and Underflow Resets  
5.1.8  
LOOK-UP TABLES IN PROGRAM  
MEMORY  
Device Resets on stack overflow and stack underflow  
conditions are enabled by setting the STVREN bit in  
Configuration Register 1L. When STVREN is set, a full  
or underflow condition will set the appropriate STKFUL  
or STKUNF bit and then cause a device Reset. When  
STVREN is cleared, a full or underflow condition will set  
the appropriate STKFUL or STKUNF bit, but not cause  
a device Reset. The STKFUL or STKUNF bits are  
cleared by the user software or a Power-on Reset.  
There may be programming situations that require the  
creation of data structures, or look-up tables, in  
program memory. For PIC18 devices, look-up tables  
can be implemented in two ways:  
• Computed GOTO  
Table Reads  
5.1.8.1  
Computed GOTO  
5.1.7  
FAST REGISTER STACK  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 5-2.  
A Fast Register Stack is provided for the STATUS,  
WREG and BSR registers to provide a “fast return”  
option for interrupts. This stack is only one level deep  
and is neither readable nor writable. It is loaded with the  
current value of the corresponding register when the  
processor vectors for an interrupt. All interrupt sources  
will push values into the Stack registers. The values in  
the registers are then loaded back into the working  
registers if the RETFIE, FAST instruction is used to  
return from the interrupt.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW nninstructions. The  
W register is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW nn  
instructions that returns the value ‘nn’ to the calling  
function.  
If both low and high priority interrupts are enabled, the  
Stack registers cannot be used reliably to return from  
low priority interrupts. If a high priority interrupt occurs  
while servicing a low priority interrupt, the Stack  
register values stored by the low priority interrupt will be  
overwritten. In these cases, users must save the key  
registers in software during a low priority interrupt.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSb = 0).  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
If interrupt priority is not used, all interrupts may use the  
Fast Register Stack for returns from interrupt. If no  
interrupts are used, the Fast Register Stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the Fast Register  
Stack for a subroutine call, a CALL label, FAST  
instruction must be executed to save the STATUS,  
WREG and BSR registers to the Fast Register Stack. A  
RETURN, FASTinstruction is then executed to restore  
these registers from the Fast Register Stack.  
EXAMPLE 5-2:  
COMPUTED GOTOUSING  
AN OFFSET VALUE  
OFFSET, W  
TABLE  
MOVF  
CALL  
ORG  
TABLE  
nn00h  
ADDWF  
RETLW  
RETLW  
RETLW  
.
PCL  
nnh  
nnh  
nnh  
.
Example 5-1 shows a source code example that uses  
the Fast Register Stack during a subroutine call and  
return.  
.
5.1.8.2  
Table Reads  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
EXAMPLE 5-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
CALL SUB1, FAST  
Look-up table data may be stored two bytes per  
program word while programming. The Table Pointer  
(TBLPTR) specifies the byte address and the Table  
Latch (TABLAT) contains the data that is read from the  
program memory. Data is transferred from program  
memory one byte at a time.  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
Table read operation is discussed further in  
Section 6.1 “Table Reads and Table Writes”.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 63  
PIC18F85J11 FAMILY  
5.2.2  
INSTRUCTION FLOW/PIPELINING  
5.2  
PIC18 Instruction Cycle  
An “Instruction Cycle” consists of four Q cycles, Q1  
through Q4. The instruction fetch and execute are pipe-  
lined in such a manner that a fetch takes one instruction  
cycle, while the decode and execute take another  
instruction cycle. However, due to the pipelining, each  
instruction effectively executes in one cycle. If an  
instruction causes the program counter to change (e.g.,  
GOTO), then two cycles are required to complete the  
instruction (Example 5-3).  
5.2.1  
CLOCKING SCHEME  
The microcontroller clock input, whether from an  
internal or external source, is internally divided by four  
to generate four non-overlapping quadrature clocks  
(Q1, Q2, Q3 and Q4). Internally, the program counter is  
incremented on every Q1; the instruction is fetched  
from the program memory and latched into the  
Instruction Register (IR) during Q4. The instruction is  
decoded and executed during the following Q1 through  
Q4. The clocks and instruction execution flow are  
shown in Figure 5-5.  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 5-5:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
Internal  
Phase  
Clock  
PC  
PC + 2  
PC + 4  
PC  
OSC2/CLKO  
(RC mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
EXAMPLE 5-3:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS39774C-page 64  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The CALL and GOTO instructions have the absolute  
program memory address embedded into the instruc-  
tion. Since instructions are always stored on word  
boundaries, the data contained in the instruction is a  
word address. The word address is written to PC<20:1>  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 5-6 shows how the  
instruction, GOTO 0006h, is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner. The  
offset value stored in a branch instruction represents the  
number of single-word instructions that the PC will be  
offset by. Section 23.0 “Instruction Set Summary”  
provides further details of the instruction set.  
5.2.3  
INSTRUCTIONS IN PROGRAM  
MEMORY  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). To maintain alignment  
with instruction boundaries, the PC increments in steps  
of 2 and the LSB will always read ‘0’ (see Section 5.1.5  
“Program Counter”).  
Figure 5-6 shows an example of how instruction words  
are stored in the program memory.  
FIGURE 5-6:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
MOVLW  
GOTO  
055h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
0006h  
Instruction 3:  
MOVFF  
123h, 456h  
and used by the instruction sequence. If the first word  
is skipped for some reason and the second word is  
executed by itself, a NOP is executed instead. This is  
necessary for cases when the two-word instruction is  
preceded by a conditional instruction that changes the  
PC. Example 5-4 shows how this works.  
5.2.4  
TWO-WORD INSTRUCTIONS  
The standard PIC18 instruction set has four two-word  
instructions: CALL, MOVFF, GOTO and LSFR. In all  
cases, the second word of the instructions always has  
1111’ as its four Most Significant bits; the other 12 bits  
are literal data, usually a data memory address.  
Note:  
See Section 5.5 “Program Memory and  
the Extended Instruction Set” for  
information on two-word instructions in the  
extended instruction set.  
The use of ‘1111’ in the 4 MSbs of an instruction  
specifies a special form of NOP. If the instruction is  
executed in proper sequence – immediately after the  
first word – the data in the second word is accessed  
EXAMPLE 5-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
CASE 2:  
TSTFSZ  
MOVFF  
REG1  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
; is RAM location 0?  
ADDWF  
REG3  
Object Code  
Source Code  
TSTFSZ  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
REG1  
; is RAM location 0?  
MOVFF  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
ADDWF  
REG3  
; continue code  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 65  
PIC18F85J11 FAMILY  
5.3.1  
BANK SELECT REGISTER  
5.3  
Data Memory Organization  
Large areas of data memory require an efficient  
addressing scheme to make rapid access to any  
address possible. Ideally, this means that an entire  
address does not need to be provided for each read or  
write operation. For PIC18 devices, this is accom-  
plished with a RAM banking scheme. This divides the  
memory space into 16 contiguous banks of 256 bytes.  
Depending on the instruction, each location can be  
addressed directly by its full 12-bit address, or an 8-bit  
low-order address and a 4-bit Bank Pointer.  
Note:  
The operation of some aspects of data  
memory are changed when the PIC18  
extended instruction set is enabled. See  
Section 5.6 “Data Memory and the  
Extended Instruction Set” for more  
information.  
The data memory in PIC18 devices is implemented as  
static RAM. Each register in the data memory has a  
12-bit address, allowing up to 4096 bytes of data  
memory. The memory space is divided into as many as  
16 banks that contain 256 bytes each. The  
PIC18FX3J11/X4J11 devices, with up to 16 Kbytes of  
program memory, implement 4 complete banks for a  
total of 1024 bytes. PIC18FX5J11 devices, with  
32 Kbytes of program memory, implement 8 complete  
banks for a total of 2048 bytes. Figure 5-7 and  
Figure 5-8 show the data memory organization for the  
devices.  
Most instructions in the PIC18 instruction set make use  
of the Bank Pointer, known as the Bank Select Register  
(BSR). This SFR holds the 4 Most Significant bits of a  
location’s address; the instruction itself includes the  
8 Least Significant bits. Only the four lower bits of the  
BSR are implemented (BSR3:BSR0). The upper four  
bits are unused; they will always read ‘0’ and cannot be  
written to. The BSR can be loaded directly by using the  
MOVLBinstruction.  
The data memory contains Special Function Registers  
(SFRs) and General Purpose Registers (GPRs). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratchpad operations in the user’s  
application. Any read of an unimplemented location will  
read as ‘0’s.  
The value of the BSR indicates the bank in data  
memory. The 8 bits in the instruction show the location  
in the bank and can be thought of as an offset from the  
bank’s lower boundary. The relationship between the  
BSR’s value and the bank division in data memory is  
shown in Figure 5-9.  
Since up to 16 registers may share the same low-order  
address, the user must always be careful to ensure that  
the proper bank is selected before performing a data  
read or write. For example, writing what should be  
program data to an 8-bit address of F9h while the BSR  
is 0Fh, will end up resetting the program counter.  
The instruction set and architecture allow operations  
across all banks. The entire data memory may be  
accessed by Direct, Indirect or Indexed Addressing  
modes. Addressing modes are discussed later in this  
section.  
To ensure that commonly used registers (select SFRs  
and select GPRs) can be accessed in a single cycle,  
PIC18 devices implement an Access Bank. This is a  
256-byte memory space that provides fast access to  
select SFRs and the lower portion of GPR Bank 0 with-  
out using the BSR. Section 5.3.2 “Access Bank”  
provides a detailed description of the Access RAM.  
While any bank can be selected, only those banks that  
are actually implemented can be read or written to.  
Writes to unimplemented banks are ignored, while  
reads from unimplemented banks will return ‘0’s. Even  
so, the STATUS register will still be affected as if the  
operation was successful. The data memory map in  
Figure 5-7 indicates which banks are implemented.  
In the core PIC18 instruction set, only the MOVFF  
instruction fully specifies the 12-bit address of the  
source and target registers. This instruction ignores the  
BSR completely when it executes. All other instructions  
include only the low-order address as an operand and  
must use either the BSR or the Access Bank to locate  
their target registers.  
DS39774C-page 66  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 5-7:  
DATA MEMORY MAP FOR PIC18FX3J11/X4J11 DEVICES  
When a = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
00h  
000h  
05Fh  
060h  
0FFh  
100h  
Access RAM  
GPR  
The first 96 bytes are general  
purpose RAM (from Bank 0).  
= 0000  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
= 0001  
= 0010  
= 0011  
GPR  
GPR  
GPR  
1FFh  
200h  
FFh  
00h  
When a = 1:  
The BSR specifies the bank  
used by the instruction.  
FFh  
00h  
2FFh  
300h  
3FFh  
400h  
FFh  
00h  
= 0100  
Bank 4  
Access Bank  
00h  
Access RAM Low  
5Fh  
60h  
Unused  
Access RAM High  
Read as ‘0’  
(SFRs)  
to  
FFh  
= 1110  
= 1111  
Bank 14  
Bank 15  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
Unused  
SFR  
FFh  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 67  
PIC18F85J11 FAMILY  
FIGURE 5-8:  
DATA MEMORY MAP FOR PIC18FX5J11 DEVICES  
When a = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
00h  
000h  
05Fh  
060h  
0FFh  
100h  
Access RAM  
GPR  
The first 96 bytes are general  
purpose RAM (from Bank 0).  
= 0000  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
Bank 6  
Bank 7  
FFh  
00h  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
= 0001  
= 0010  
= 0011  
= 0100  
= 0101  
= 0110  
= 0111  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
GPR  
1FFh  
200h  
FFh  
00h  
When a = 1:  
The BSR specifies the bank  
used by the instruction.  
FFh  
00h  
2FFh  
300h  
3FFh  
400h  
FFh  
00h  
FFh  
00h  
4FFh  
500h  
FFh  
00h  
5FFh  
600h  
FFh  
00h  
6FFh  
700h  
Access Bank  
00h  
FFh  
00h  
7FFh  
800h  
Access RAM Low  
5Fh  
60h  
Access RAM High  
(SFRs)  
FFh  
= 1000  
Bank 8  
Unused  
to  
Read as ‘0’  
= 1110  
= 1111  
Bank 14  
Bank 15  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
Unused  
SFR  
FFh  
DS39774C-page 68  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 5-9:  
USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)  
Data Memory  
(2)  
(1)  
From Opcode  
1 1  
BSR  
000h  
100h  
7
0
7
0
00h  
Bank 0  
0
0
0
0
0
0
1
0
1
1
1
1
1 1  
FFh  
00h  
Bank 1  
Bank 2  
(2)  
Bank Select  
FFh  
00h  
200h  
300h  
FFh  
00h  
Bank 3  
through  
Bank 13  
FFh  
00h  
E00h  
Bank 14  
Bank 15  
FFh  
00h  
F00h  
FFFh  
FFh  
Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>)  
to the registers of the Access Bank.  
2: The MOVFF instruction embeds the entire 12-bit address in the instruction.  
however, the instruction is forced to use the Access  
Bank address map; the current value of the BSR is  
ignored entirely.  
5.3.2  
ACCESS BANK  
While the use of the BSR with an embedded 8-bit  
address allows users to address the entire range of data  
memory, it also means that the user must always ensure  
that the correct bank is selected. Otherwise, data may  
be read from, or written to, the wrong location. This can  
be disastrous if a GPR is the intended target of an oper-  
ation, but an SFR is written to instead. Verifying and/or  
changing the BSR for each read or write to data memory  
can become very inefficient.  
Using this “forced” addressing allows the instruction to  
operate on a data address in a single cycle without  
updating the BSR first. For 8-bit addresses of 60h and  
above, this means that users can evaluate and operate  
on SFRs more efficiently. The Access RAM below 60h  
is a good place for data values that the user might need  
to access rapidly, such as immediate computational  
results or common program variables. Access RAM  
also allows for faster and more code efficient context  
saving and switching of variables.  
To streamline access for the most commonly used data  
memory locations, the data memory is configured with  
an Access Bank, which allows users to access a  
mapped block of memory without specifying a BSR.  
The Access Bank consists of the first 96 bytes of  
memory (00h-5Fh) in Bank 0 and the last 160 bytes of  
memory (60h-FFh) in Bank 15. The lower half is known  
as the “Access RAM” and is composed of GPRs. The  
upper half is where the device’s SFRs are mapped.  
These two areas are mapped contiguously in the  
Access Bank and can be addressed in a linear fashion  
by an 8-bit address (Figure 5-7).  
The mapping of the Access Bank is slightly different  
when the extended instruction set is enabled (XINST  
Configuration bit = 1). This is discussed in more detail  
in Section 5.6.3 “Mapping the Access Bank in  
Indexed Literal Offset Mode”.  
5.3.3  
GENERAL PURPOSE  
REGISTER FILE  
PIC18 devices may have banked memory in the GPR  
area. This is data RAM which is available for use by all  
instructions. GPRs start at the bottom of Bank 0  
(address 000h) and grow upwards towards the bottom of  
the SFR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
The Access Bank is used by core PIC18 instructions  
that include the Access RAM bit (the ‘a’ parameter in  
the instruction). When ‘a’ is equal to ‘1’, the instruction  
uses the BSR and the 8-bit address included in the  
opcode for the data memory address. When ‘a’ is ‘0’,  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 69  
PIC18F85J11 FAMILY  
The SFRs can be classified into two sets: those  
associated with the “core” device functionality (ALU,  
Resets and interrupts) and those related to the  
peripheral functions. The Reset and Interrupt registers  
are described in their respective chapters, while the  
ALU’s STATUS register is described later in this section.  
Registers related to the operation of the peripheral  
features are described in the chapter for that peripheral.  
5.3.4  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. SFRs start at the top of  
data memory (FFFh) and extend downward to occupy  
more than the top half of Bank 15 (F60h to FFFh). A list  
of these registers is given in Table 5-3 and Table 5-4.  
The SFRs are typically distributed among the  
peripherals whose functions they control. Unused SFR  
locations are unimplemented and read as ‘0’s.  
TABLE 5-3:  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F85J11 FAMILY DEVICES  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
(1)  
(2)  
FFFh  
FFEh  
FFDh  
TOSU  
TOSH  
TOSL  
FDFh  
INDF2  
FBFh  
FBEh  
FBDh  
FBCh  
FBBh  
FBAh  
FB9h  
FB8h  
FB7h  
FB6h  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
F9Fh  
F9Eh  
F9Dh  
IPR1  
PIR1  
PIE1  
F7Fh  
SPBRGH1  
(1)  
(1)  
(2)  
FDEh POSTINC2  
F7Eh BAUDCON1  
(2)  
(2)  
FDDh POSTDEC2  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F76h  
F75h  
F74h  
F73h  
F72h  
F71h  
F70h  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
(1)  
(2)  
(3)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
STKPTR  
PCLATU  
PCLATH  
PCL  
FDCh PREINC2  
F9Ch MEMCON  
(1)  
(2)  
FDBh PLUSW2  
F9Bh OSCTUNE  
(2)  
(3)  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
FSR2H  
FSR2L  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
TRISJ  
TRISH  
(2)  
(3)  
(2)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
STATUS  
TMR0H  
TMR0L  
T0CON  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
(2)  
(2)  
CVRCON  
CMCON  
TMR3H  
(2)  
OSCCON  
(2)  
INTCON  
INTCON2  
INTCON3  
TMR3L  
(3)  
WDTCON  
RCON  
T3CON  
LATJ  
(3)  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
LATH  
(1)  
INDF0  
TMR1H  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
(1)  
(1)  
FEEh POSTINC0  
TMR1L  
FEDh POSTDEC0  
T1CON  
(1)  
FECh PREINC0  
TMR2  
(1)  
FEBh PLUSW0  
PR2  
(2)  
FEAh  
FE9h  
FE8h  
FE7h  
FSR0H  
FSR0L  
WREG  
T2CON  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
(2)  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
(2)  
(3)  
PORTJ  
PORTH  
(1)  
(3)  
INDF1  
EECON2  
EECON1  
IPR3  
(1)  
(1)  
FE6h POSTINC1  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
FE5h POSTDEC1  
(1)  
FE4h PREINC1  
PIR3  
(1)  
FE3h PLUSW1  
PIE3  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
IPR2  
PIR2  
PIE2  
RCSTA2  
Note 1: This is not a physical register.  
2: Unimplemented registers are read as ‘0’.  
3: This register is not available on 64-pin devices.  
DS39774C-page 70  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 5-4:  
PIC18F85J11 FAMILY REGISTER FILE SUMMARY  
Value on  
POR, BOR on page  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TOSU  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 51, 61  
0000 0000 51, 61  
0000 0000 51, 61  
uu-0 0000 51, 62  
---0 0000 51, 61  
0000 0000 51, 61  
0000 0000 51, 61  
--00 0000 51, 86  
0000 0000 51, 86  
0000 0000 51, 86  
0000 0000 51, 86  
xxxx xxxx 51, 105  
xxxx xxxx 51, 105  
0000 000x 51, 109  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
bit 21(1)  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
INTCON2  
INTCON3  
INDF0  
RBPU  
INTEDG0  
INT1IP  
INTEDG1  
INT3IE  
INTEDG2  
INT2IE  
INTEDG3  
INT1IE  
TMR0IP  
INT3IF  
INT3IP  
INT2IF  
RBIP  
1111 1111 51, 110  
1100 0000 51, 111  
INT2IP  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
51, 77  
51, 78  
51, 78  
51, 78  
51, 78  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) –  
value of FSR0 offset by W  
FSR0H  
Indirect Data Memory Address Pointer 0 High Byte  
---- xxxx 51, 77  
xxxx xxxx 51, 77  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
xxxx xxxx  
N/A  
51  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
51, 77  
51, 78  
51, 78  
51, 78  
51, 78  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) –  
value of FSR1 offset by W  
N/A  
FSR1H  
Indirect Data Memory Address Pointer 1 High Byte  
---- xxxx 52, 77  
xxxx xxxx 52, 77  
---- 0000 52, 66  
FSR1L  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
52, 77  
52, 78  
52, 78  
52, 78  
52, 78  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –  
value of FSR2 offset by W  
FSR2H  
FSR2L  
STATUS  
Indirect Data Memory Address Pointer 2 High Byte  
---- xxxx 52, 77  
xxxx xxxx 52, 77  
---x xxxx 52, 75  
Indirect Data Memory Address Pointer 2 Low Byte  
N
OV  
Z
DC  
C
Legend: x= unknown, u= unchanged, -= unimplemented, q= value depends on condition, r= reserved, do not modify  
Note 1:  
2:  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘0’. Reset states shown  
are for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 16.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 2.4.3 “PLL  
Frequency Multiplier” for details.  
RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 71  
PIC18F85J11 FAMILY  
TABLE 5-4:  
PIC18F85J11 FAMILY REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0H  
TMR0L  
T0CON  
OSCCON  
WDTCON  
RCON  
Timer0 Register High Byte  
Timer0 Register Low Byte  
0000 0000 52, 149  
xxxx xxxx 52, 149  
1111 1111 52, 147  
0100 q000 30, 52  
TMR0ON  
IDLEN  
T08BIT  
IRCF2  
T0CS  
IRCF1  
T0SE  
IRCF0  
PSA  
OSTS  
T0PS2  
IOFS  
T0PS1  
SCS1  
T0PS0  
SCS0  
REGSLP  
IPEN  
SWDTEN 0--- ---0 52, 278  
CM  
RI  
TO  
PD  
POR  
BOR  
0-11 11q0 46, 52  
xxxx xxxx 52, 155  
xxxx xxxx 52, 155  
TMR1H  
TMR1L  
Timer1 Register High Byte  
Timer1 Register Low Byte  
T1CON  
TMR2  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0 T1OSCEN  
T1SYNC  
TMR1CS  
T2CKPS1  
TMR1ON 0000 0000 52, 151  
0000 0000 52, 158  
Timer2 Register  
PR2  
Timer2 Period Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON  
MSSP Receive Buffer/Transmit Register  
1111 1111 52, 158  
T2CON  
SSPBUF  
T2CKPS0 -000 0000 52, 157  
xxxx xxxx 52, 181,  
216  
SSPADD  
SSPSTAT  
MSSP Address Register (I2C™ Slave mode). MSSP Baud Rate Reload Register (I2C Master mode).  
0000 0000 52, 216  
SMP  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000 52, 174,  
183  
SSPCON1  
SSPCON2  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0  
0000 0000 52, 175,  
184  
GCEN  
GCEN  
ACKSTAT  
ACKDT  
ACKEN  
SEN  
SEN  
0000 0000 52, 185,  
186  
ACKSTAT ADMSK5(3) ADMSK4(3) ADMSK3(3) ADMSK2(3) ADMSK1(3)  
ADRESH  
ADRESL  
A/D Result Register High Byte  
A/D Result Register Low Byte  
xxxx xxxx 53, 259  
xxxx xxxx 53, 259  
ADCON0  
ADCON1  
ADCON2  
CVRCON  
CMCON  
TMR3H  
ADCAL  
CHS3  
VCFG1  
ACQT2  
CVRR  
C2INV  
CHS2  
VCFG0  
ACQT1  
CVRSS  
C1INV  
CHS1  
PCFG3  
ACQT0  
CVR3  
CIS  
CHS0  
PCFG2  
ADCS2  
CVR2  
CM2  
GO/DONE  
PCFG1  
ADCS1  
CVR1  
ADON  
PCFG0  
ADCS0  
CVR0  
CM0  
0-00 0000 53, 251  
--00 0000 53, 252  
0-00 0000 53, 253  
0000 0000 53, 267  
0000 0111 53, 261  
xxxx xxxx 53, 161  
xxxx xxxx 53, 161  
ADFM  
CVREN  
C2OUT  
CVROE  
C1OUT  
CM1  
Timer3 Register High Byte  
Timer3 Register Low Byte  
TMR3L  
T3CON  
RD16  
IBF  
T3CCP2  
OBF  
T3CKPS1  
IBOV  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000 53, 159  
PSPCON  
SPBRG1  
RCREG1  
TXREG1  
TXSTA1  
RCSTA1  
EECON2  
EECON1  
PSPMODE  
0000 ---- 53, 159  
0000 0000 53, 221  
0000 0000 53, 229  
0000 0000 53, 227  
0000 0010 53, 218  
0000 000x 53, 219  
---- ---- 53, 84  
---0 x00- 53, 85  
EUSART Baud Rate Generator Register  
EUSART Receive Register  
EUSART Transmit Register  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
EEPROM Control Register 2 (not a physical register)  
FREE  
WRERR  
WREN  
WR  
Legend: x= unknown, u= unchanged, -= unimplemented, q= value depends on condition, r= reserved, do not modify  
Note 1:  
2:  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘0’. Reset states shown  
are for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 16.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 2.4.3 “PLL  
Frequency Multiplier” for details.  
RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as ‘0’.  
DS39774C-page 72  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 5-4:  
PIC18F85J11 FAMILY REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPR3  
RC2IP  
RC2IF  
RC2IE  
TX2IP  
TX2IF  
TX2IE  
CCP2IP  
CCP2IF  
CCP2IE  
LVDIP  
LVDIF  
LVDIE  
CCP1IP  
CCP1IF  
CCP1IE  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
WM1  
--00 -11- 53, 120  
--00 -00- 53, 114  
--00 -00- 53, 117  
11-- 111- 53, 119  
00-- 000- 53, 113  
00-- 000- 53, 116  
1111 1-11 53, 118  
0000 0-00 53, 112  
0000 0-00 53, 115  
0-00 --00 53, 94  
0000 0000 31, 53  
1111 1111 54, 143  
1111 1111 54, 141  
0001 1111 54, 140  
1111 111- 54, 138  
1111 1-11 54, 136  
1111 1111 54, 133  
1111 1111 54, 130  
1111 1111 54, 127  
1111 1111 54, 125  
xxxx xxxx 54, 143  
xxxx xxxx 54, 141  
00-x xxxx 54, 140  
xxxx xxx- 54, 138  
xxxx xxxx 54, 136  
xxxx xxxx 54, 133  
xxxx xxxx 54, 130  
xxxx xxxx 54, 127  
xxxx xxxx 54, 125  
xxxx xxxx 54, 143  
xxxx xxxx 54, 141  
000x xxxx 54, 140  
xxxx xxx- 54, 138  
xxxx x-xx 54, 136  
xxxx xxxx 54, 133  
xxxx xxxx 54, 130  
xxxx xxxx 54, 127  
xx0x 0000 54, 125  
PIR3  
PIE3  
IPR2  
OSCFIP  
OSCFIF  
OSCFIE  
PSPIP  
PSPIF  
PSPIE  
EBDIS  
INTSRC  
TRISJ7  
TRISH7  
SPIOD  
TRISF7  
TRISE7  
TRISD7  
TRISC7  
TRISB7  
TRISA7(5)  
LATJ7  
LATH7  
U2OD  
LATF7  
LATE7  
LATD7  
LATC7  
LATB7  
LATA7(5)  
RJ7  
CMIP  
CMIF  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
PIR2  
PIE2  
CMIE  
ADIP  
IPR1  
RC1IP  
RC1IF  
RC1IE  
WAIT1  
TUN5  
TRISJ5  
TRISH5  
CCP1OD  
TRISF5  
TRISE5  
TRISD5  
TRISC5  
TRISB5  
TRISA5  
LATJ5  
LATH5  
TX1IP  
TX1IF  
TX1IE  
WAIT0  
TUN4  
TRISJ4  
TRISH4  
TRISG4  
TRISF4  
TRISE4  
TRISD4  
TRISC4  
TRISB4  
TRISA4  
LATJ4  
LATH4  
LATG4  
LATF4  
LATE4  
LATD4  
LATC4  
LATB4  
LATA4  
RJ4  
TMR1IP  
TMR1IF  
TMR1IE  
WM0  
TUN0  
TRISJ0  
TRISH0  
TRISG0  
PIR1  
ADIF  
PIE1  
ADIE  
MEMCON(2)  
OSCTUNE  
TRISJ(2)  
TRISH(2)  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ(2)  
LATH(2)  
LATG  
PLLEN(4)  
TRISJ6  
TRISH6  
CCP2OD  
TRISF6  
TRISE6  
TRISD6  
TRISC6  
TRISB6  
TRISA6(5)  
LATJ6  
LATH6  
U1OD  
LATF6  
LATE6  
LATD6  
LATC6  
LATB6  
LATA6(5)  
RJ6  
TUN3  
TRISJ3  
TRISH3  
TRISG3  
TRISF3  
TRISE3  
TRISD3  
TRISC3  
TRISB3  
TRISA3  
LATJ3  
LATH3  
LATG3  
LATF3  
LATE3  
LATD3  
LATC3  
LATB3  
LATA3  
RJ3  
TUN2  
TRISJ2  
TRISH2  
TRISG2  
TRISF2  
TUN1  
TRISJ1  
TRISH1  
TRISG1  
TRISF1  
TRISE1  
TRISD1  
TRISC1  
TRISB1  
TRISA1  
LATJ1  
LATH1  
LATG1  
LATF1  
LATE1  
LATD1  
LATC1  
LATB1  
LATA1  
RJ1  
TRISE0  
TRISD0  
TRISC0  
TRISB0  
TRISA0  
LATJ0  
LATH0  
LATG0  
TRISD2  
TRISC2  
TRISB2  
TRISA2  
LATJ2  
LATH2  
LATG2  
LATF2  
LATE2  
LATD2  
LATC2  
LATB2  
LATA2  
RJ2  
LATF  
LATF5  
LATE5  
LATD5  
LATC5  
LATB5  
LATA5  
RJ5  
LATE  
LATE0  
LATD0  
LATC0  
LATB0  
LATA0  
RJ0  
LATD  
LATC  
LATB  
LATA  
PORTJ(2)  
PORTH(2)  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
RH7  
RH6  
RH5  
RJPU(2)  
RH4  
RH3  
RH2  
RH1  
RH0  
RDPU  
RF7  
REPU  
RF6  
RG4  
RG3  
RG2  
RG1  
RG0  
RF5  
RF4  
RF3  
RF2  
RF1  
RE7  
RE6  
RE5  
RE4  
RE3  
RE1  
RE0  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
RB7  
RA7(5)  
RB6  
RA6(5)  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
Legend: x= unknown, u= unchanged, -= unimplemented, q= value depends on condition, r= reserved, do not modify  
Note 1:  
2:  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘0’. Reset states shown  
are for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 16.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 2.4.3 “PLL  
Frequency Multiplier” for details.  
RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 73  
PIC18F85J11 FAMILY  
TABLE 5-4:  
PIC18F85J11 FAMILY REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPBRGH1  
BAUDCON1  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
SPBRG2  
RCREG2  
TXREG2  
TXSTA2  
EUSART Baud Rate Generator High Byte  
ABDOVF RCMT  
0000 0000 54, 221  
01-0 0-00 54, 220  
xxxx xxxx 54, 164  
xxxx xxxx 54, 164  
SCKP  
BRG16  
WUE  
ABDEN  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
DC1B1  
DC1B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0 --00 0000 54, 163  
xxxx xxxx 55, 164  
Capture/Compare/PWM Register 2 High Byte  
Capture/Compare/PWM Register 2 Low Byte  
xxxx xxxx 55, 164  
DC2B1  
DC2B0  
CCP2M0 --00 0000 55, 163  
0000 0000 55, 240  
AUSART Baud Rate Generator Register  
AUSART Receive Register  
0000 0000 55, 245  
AUSART Transmit Register  
0000 0000 55, 243  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 -010 55, 238  
0000 000x 55, 239  
RCSTA2  
ADDEN  
Legend: x= unknown, u= unchanged, -= unimplemented, q= value depends on condition, r= reserved, do not modify  
Note 1:  
2:  
Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as ‘0’. Reset states shown  
are for 80-pin devices.  
3:  
4:  
5:  
Alternate names and definitions for these bits when the MSSP module is operating in I2C™ Slave mode. See Section 16.4.3.2 “Address  
Masking” for details.  
The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as ‘0’. See Section 2.4.3 “PLL  
Frequency Multiplier” for details.  
RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default  
clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as ‘0’.  
DS39774C-page 74  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
register then reads back as ‘000u u1uu’. It is recom-  
mended, therefore, that only BCF, BSF, SWAPF, MOVFF  
and MOVWFinstructions are used to alter the STATUS  
register because these instructions do not affect the Z,  
C, DC, OV or N bits in the STATUS register.  
5.3.5  
STATUS REGISTER  
The STATUS register, shown in Register 5-3, contains  
the arithmetic status of the ALU. The STATUS register  
can be the operand for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV or N bits,  
then the write to these five bits is disabled.  
For other instructions not affecting any Status bits, see  
the instruction set summaries in Table 23-2 and  
Table 23-3.  
These bits are set or cleared according to the device  
logic. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended. For example, CLRF STATUSwill set the Z bit  
but leave the other bits unchanged. The STATUS  
Note: The C and DC bits operate as a borrow and  
digit borrow bit respectively, in subtraction.  
REGISTER 5-3:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the  
7-bit magnitude which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit(1)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit(2)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register.  
2: For borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the  
source register.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 75  
PIC18F85J11 FAMILY  
The Access RAM bit ‘a’ determines how the address is  
interpreted. When ‘a’ is ‘1’, the contents of the BSR  
(Section 5.3.1 “Bank Select Register”) are used with  
the address to determine the complete 12-bit address  
of the register. When ‘a’ is ‘0’, the address is interpreted  
as being a register in the Access Bank. Addressing that  
uses the Access RAM is sometimes also known as  
Direct Forced Addressing mode.  
5.4  
Data Addressing Modes  
Note:  
The execution of some instructions in the  
core PIC18 instruction set are changed  
when the PIC18 extended instruction set is  
enabled. See Section 5.6 “Data Memory  
and the Extended Instruction Set” for  
more information.  
A few instructions, such as MOVFF, include the entire  
12-bit address (either source or destination) in their  
opcodes. In these cases, the BSR is ignored entirely.  
While the program memory can be addressed in only  
one way – through the program counter – information  
in the data memory space can be addressed in several  
ways. For most instructions, the addressing mode is  
fixed. Other instructions may use up to three modes,  
depending on which operands are used and whether or  
not the extended instruction set is enabled.  
The destination of the operation’s results is determined  
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are  
stored back in the source register, overwriting its origi-  
nal contents. When ‘d’ is ‘0’, the results are stored in  
the W register. Instructions without the ‘d’ argument  
have a destination that is implicit in the instruction; their  
destination is either the target register being operated  
on or the W register.  
The addressing modes are:  
• Inherent  
• Literal  
• Direct  
5.4.3  
INDIRECT ADDRESSING  
• Indirect  
Indirect Addressing allows the user to access a location  
in data memory without giving a fixed address in the  
instruction. This is done by using File Select Registers  
(FSRs) as pointers to the locations to be read or written  
to. Since the FSRs are themselves located in RAM as  
Special Function Registers, they can also be directly  
manipulated under program control. This makes FSRs  
very useful in implementing data structures such as  
tables and arrays in data memory.  
An additional addressing mode, Indexed Literal Offset,  
is available when the extended instruction set is  
enabled (XINST Configuration bit = 1). Its operation is  
discussed in greater detail in Section 5.6.1 “Indexed  
Addressing with Literal Offset”.  
5.4.1  
INHERENT AND LITERAL  
ADDRESSING  
Many PIC18 control instructions do not need any  
argument at all; they either perform an operation that  
globally affects the device, or they operate implicitly on  
one register. This addressing mode is known as Inherent  
Addressing. Examples include SLEEP, RESETand DAW.  
The registers for Indirect Addressing are also  
implemented with Indirect File Operands (INDFs) that  
permit automatic manipulation of the pointer value with  
auto-incrementing, auto-decrementing or offsetting  
with another value. This allows for efficient code using  
loops, such as the example of clearing an entire RAM  
bank in Example 5-5. It also enables users to perform  
Indexed Addressing and other Stack Pointer  
operations for program memory in data memory.  
Other instructions work in a similar way, but require an  
additional explicit argument in the opcode. This is  
known as Literal Addressing mode, because they  
require some literal value as an argument. Examples  
include ADDLWand MOVLW, which respectively, add or  
move a literal value to the W register. Other examples  
include CALL and GOTO, which include a 20-bit  
program memory address.  
EXAMPLE 5-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
5.4.2  
DIRECT ADDRESSING  
LFSR  
FSR0, 100h  
;
NEXT  
CLRF  
POSTINC0  
; Clear INDF  
; register then  
; inc pointer  
; All done with  
; Bank1?  
Direct Addressing specifies all or part of the source  
and/or destination address of the operation within the  
opcode itself. The options are specified by the  
arguments accompanying the instruction.  
BTFSS  
BRA  
FSR0H, 1  
NEXT  
; NO, clear next  
; YES, continue  
In the core PIC18 instruction set, bit-oriented and  
byte-oriented instructions use some version of Direct  
Addressing by default. All of these instructions include  
some 8-bit literal address as their Least Significant  
Byte. This address specifies either a register address in  
one of the banks of data RAM (Section 5.3.3 “General  
Purpose Register File”), or a location in the Access  
Bank (Section 5.3.2 “Access Bank”) as the data  
source for the instruction.  
CONTINUE  
DS39774C-page 76  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
the SFR space but are not physically implemented.  
Reading or writing to a particular INDF register actually  
accesses its corresponding FSR register pair. A read  
from INDF1, for example, reads the data at the address  
indicated by FSR1H:FSR1L. Instructions that use the  
INDF registers as operands actually use the contents  
of their corresponding FSR as a pointer to the instruc-  
tion’s target. The INDF operand is just a convenient  
way of using the pointer.  
5.4.3.1  
FSR Registers and the  
INDF Operand  
At the core of Indirect Addressing are three sets of  
registers: FSR0, FSR1 and FSR2. Each represents a  
pair of 8-bit registers, FSRnH and FSRnL. The four  
upper bits of the FSRnH register are not used, so each  
FSR pair holds a 12-bit value. This represents a value  
that can address the entire range of the data memory  
in a linear fashion. The FSR register pairs, then, serve  
as pointers to data memory locations.  
Because Indirect Addressing uses a full 12-bit address,  
data RAM banking is not necessary. Thus, the current  
contents of the BSR and the Access RAM bit have no  
effect on determining the target address.  
Indirect Addressing is accomplished with a set of Indi-  
rect File Operands, INDF0 through INDF2. These can  
be thought of as “virtual” registers: they are mapped in  
FIGURE 5-10:  
INDIRECT ADDRESSING  
000h  
Using an instruction with one of the  
Indirect Addressing registers as the  
operand....  
Bank 0  
Bank 1  
ADDWF, INDF1, 1  
100h  
200h  
300h  
Bank 2  
FSR1H:FSR1L  
...uses the 12-bit address stored in  
the FSR pair associated with that  
register....  
7
0
7
0
x x x x 1 1 1 1  
1 1 0 0 1 1 0 0  
Bank 3  
through  
Bank 13  
...to determine the data memory  
location to be used in that operation.  
E00h  
In this case, the FSR1 pair contains  
FCCh. This means the contents of  
location FCCh will be added to that  
of the W register and stored back in  
FCCh.  
Bank 14  
Bank 15  
F00h  
FFFh  
Data Memory  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 77  
PIC18F85J11 FAMILY  
5.4.3.2  
FSR Registers and POSTINC,  
5.4.3.3  
Operations by FSRs on FSRs  
POSTDEC, PREINC and PLUSW  
Indirect Addressing operations that target other FSRs  
or virtual registers represent special cases. For exam-  
ple, using an FSR to point to one of the virtual registers  
will not result in successful operations. As a specific  
case, assume that FSR0H:FSR0L contain FE7h, the  
address of INDF1. Attempts to read the value of the  
INDF1, using INDF0 as an operand, will return 00h.  
Attempts to write to INDF1, using INDF0 as the  
operand, will result in a NOP.  
In addition to the INDF operand, each FSR register pair  
also has four additional indirect operands. Like INDF,  
these are “virtual” registers that cannot be indirectly  
read or written to. Accessing these registers actually  
accesses the associated FSR register pair, but also  
performs a specific action on its stored value. They are:  
• POSTDEC: accesses the FSR value, then  
automatically decrements it by ‘1’ afterwards  
On the other hand, using the virtual registers to write to  
an FSR pair may not occur as planned. In these cases,  
the value will be written to the FSR pair but without any  
incrementing or decrementing. Thus, writing to INDF2  
or POSTDEC2 will write the same value to the  
FSR2H:FSR2L.  
• POSTINC: accesses the FSR value, then  
automatically increments it by ‘1’ afterwards  
• PREINC: increments the FSR value by ‘1’, then  
uses it in the operation  
• PLUSW: adds the signed value of the W register  
(range of -127 to 128) to that of the FSR and uses  
the new value in the operation  
Since the FSRs are physical registers mapped in the  
SFR space, they can be manipulated through all direct  
operations. Users should proceed cautiously when  
working on these registers, particularly if their code  
uses Indirect Addressing.  
In this context, accessing an INDF register uses the  
value in the FSR registers without changing them.  
Similarly, accessing a PLUSW register gives the FSR  
value offset by the value in the W register; neither value  
is actually changed in the operation. Accessing the  
other virtual registers changes the value of the FSR  
registers.  
Similarly, operations by Indirect Addressing are gener-  
ally permitted on all other SFRs. Users should exercise  
the appropriate caution that they do not inadvertently  
change settings that might affect the operation of the  
device.  
Operations on the FSRs with POSTDEC, POSTINC  
and PREINC affect the entire register pair; that is, roll-  
overs of the FSRnL register from FFh to 00h carry over  
to the FSRnH register. On the other hand, results of  
these operations do not change the value of any flags  
in the STATUS register (e.g., Z, N, OV, etc.).  
5.5  
Program Memory and the  
Extended Instruction Set  
The operation of program memory is unaffected by the  
use of the extended instruction set.  
The PLUSW register can be used to implement a form  
of Indexed Addressing in the data memory space. By  
manipulating the value in the W register, users can  
reach addresses that are fixed offsets from pointer  
addresses. In some applications, this can be used to  
implement some powerful program control structure,  
such as software stacks, inside of data memory.  
Enabling the extended instruction set adds five  
additional two-word commands to the existing PIC18  
instruction set: ADDFSR, CALLW, MOVSF, MOVSS and  
SUBFSR. These instructions are executed as described  
in Section 5.2.4 “Two-Word Instructions”.  
DS39774C-page 78  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
5.6.2  
INSTRUCTIONS AFFECTED BY  
INDEXED LITERAL OFFSET MODE  
5.6  
Data Memory and the Extended  
Instruction Set  
Any of the core PIC18 instructions that can use Direct  
Addressing are potentially affected by the Indexed  
Literal Offset Addressing mode. This includes all  
byte-oriented and bit-oriented instructions, or almost  
one-half of the standard PIC18 instruction set. Instruc-  
tions that only use Inherent or Literal Addressing  
modes are unaffected.  
Enabling the PIC18 extended instruction set (XINST  
Configuration bit = 1) significantly changes certain  
aspects of data memory and its addressing. Specifically,  
the use of the Access Bank for many of the core PIC18  
instructions is different; this is due to the introduction of  
a new addressing mode for the data memory space.  
This mode also alters the behavior of Indirect  
Addressing using FSR2 and its associated operands.  
Additionally, byte-oriented and bit-oriented instructions  
are not affected if they use the Access Bank (Access  
RAM bit is ‘1’) or include a file address of 60h or above.  
Instructions meeting these criteria will continue to  
execute as before. A comparison of the different  
possible addressing modes when the extended  
instruction set is enabled is shown in Figure 5-11.  
What does not change is just as important. The size of  
the data memory space is unchanged, as well as its  
linear addressing. The SFR map remains the same.  
Core PIC18 instructions can still operate in both Direct  
and Indirect Addressing mode; inherent and literal  
instructions do not change at all. Indirect Addressing  
with FSR0 and FSR1 also remains unchanged.  
Those who desire to use byte-oriented or bit-oriented  
instructions in the Indexed Literal Offset mode should  
note the changes to assembler syntax for this mode.  
This is described in more detail in Section 23.2.1  
“Extended Instruction Syntax”.  
5.6.1  
INDEXED ADDRESSING WITH  
LITERAL OFFSET  
Enabling the PIC18 extended instruction set changes  
the behavior of Indirect Addressing using the FSR2  
register pair and its associated file operands. Under the  
proper conditions, instructions that use the Access  
Bank – that is, most bit-oriented and byte-oriented  
instructions – can invoke a form of Indexed Addressing  
using an offset specified in the instruction. This special  
addressing mode is known as Indexed Addressing with  
Literal Offset, or Indexed Literal Offset mode.  
When using the extended instruction set, this  
addressing mode requires the following:  
• The use of the Access Bank is forced (‘a’ = 0);  
and  
• The file address argument is less than or equal to  
5Fh.  
Under these conditions, the file address of the  
instruction is not interpreted as the lower byte of an  
address (used with the BSR in Direct Addressing) or as  
an 8-bit address in the Access Bank. Instead, the value  
is interpreted as an offset value to an Address Pointer  
specified by FSR2. The offset and the contents of FSR2  
are added to obtain the target address of the operation.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 79  
PIC18F85J11 FAMILY  
FIGURE 5-11:  
COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND  
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)  
EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)  
000h  
When a = 0and f 60h:  
The instruction executes in  
Direct Forced mode. ‘f’ is  
interpreted as a location in the  
Access RAM between 060h  
and FFFh. This is the same as  
locations F60h to FFFh  
(Bank 15) of data memory.  
060h  
100h  
Bank 0  
00h  
60h  
Bank 1  
through  
Bank 14  
Valid range  
for ‘f’  
Locations below 060h are not  
available in this addressing  
mode.  
FFh  
F00h  
Access RAM  
Bank 15  
F40h  
FFFh  
SFRs  
Data Memory  
When a = 0and f 5Fh:  
000h  
060h  
100h  
Bank 0  
The instruction executes in  
Indexed Literal Offset mode. ‘f’  
is interpreted as an offset to the  
address value in FSR2. The  
two are added together to  
obtain the address of the target  
register for the instruction. The  
address can be anywhere in  
the data memory space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
FSR2H  
FSR2L  
F00h  
F40h  
Note that in this mode, the  
correct syntax is now:  
Bank 15  
ADDWF [k], d  
SFRs  
where ‘k’ is the same as ‘f’.  
FFFh  
Data Memory  
BSR  
000h  
060h  
100h  
00000000  
When a = 1(all values of f):  
Bank 0  
The instruction executes in  
Direct mode (also known as  
Direct Long mode). ‘f’ is  
interpreted as a location in  
one of the 16 banks of the data  
memory space. The bank is  
designated by the Bank Select  
Register (BSR). The address  
can be in any implemented  
bank in the data memory  
space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
F00h  
F40h  
Bank 15  
SFRs  
FFFh  
Data Memory  
DS39774C-page 80  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Remapping of the Access Bank applies only to opera-  
tions using the Indexed Literal Offset mode. Operations  
that use the BSR (Access RAM bit is ‘1’) will continue  
to use Direct Addressing as before. Any Indirect or  
Indexed Addressing operation that explicitly uses any  
of the indirect file operands (including FSR2) will con-  
tinue to operate as standard Indirect Addressing. Any  
instruction that uses the Access Bank, but includes a  
register address of greater than 05Fh, will use Direct  
Addressing and the normal Access Bank map.  
5.6.3  
MAPPING THE ACCESS BANK IN  
INDEXED LITERAL OFFSET MODE  
The use of Indexed Literal Offset Addressing mode  
effectively changes how the lower part of Access RAM  
(00h to 5Fh) is mapped. Rather than containing just the  
contents of the bottom part of Bank 0, this mode maps  
the contents from Bank 0 and a user-defined “window”  
that can be located anywhere in the data memory  
space. The value of FSR2 establishes the lower bound-  
ary of the addresses mapped into the window, while the  
upper boundary is defined by FSR2 plus 95 (5Fh).  
Addresses in the Access RAM above 5Fh are mapped  
as previously described (see Section 5.3.2 “Access  
Bank”). An example of Access Bank remapping in this  
addressing mode is shown in Figure 5-12.  
5.6.4  
BSR IN INDEXED LITERAL  
OFFSET MODE  
Although the Access Bank is remapped when the  
extended instruction set is enabled, the operation of the  
BSR remains unchanged. Direct Addressing, using the  
BSR to select the data memory bank, operates in the  
same manner as previously described.  
FIGURE 5-12:  
REMAPPING THE ACCESS BANK WITH INDEXED LITERAL  
OFFSET ADDRESSING  
Example Situation:  
000h  
ADDWF f, d, a  
Not Accessible  
05Fh  
FSR2H:FSR2L = 120h  
Bank 0  
Locations in the region  
from the FSR2 Pointer  
(120h) to the pointer plus  
05Fh (17Fh) are mapped  
to the bottom of the  
Access RAM (000h-05Fh).  
100h  
120h  
17Fh  
Window  
Bank 1  
00h  
Bank 1 “Window”  
200h  
5Fh  
60h  
Special Function Registers  
at F60h through FFFh are  
mapped to 60h through  
FFh, as usual.  
Bank 2  
through  
Bank 14  
SFRs  
Bank 0 addresses below  
5Fh are not available in  
this mode. They can still  
be addressed by using the  
BSR.  
FFh  
Access Bank  
F00h  
Bank 15  
SFRs  
F60h  
FFFh  
Data Memory  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 81  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 82  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
6.1  
Table Reads and Table Writes  
6.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data RAM:  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Table Read (TBLRD)  
Table Write (TBLWT)  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 64 bytes at a time. Program memory is  
erased in blocks of 1024 bytes at a time. A Bulk Erase  
operation may not be issued from user code.  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease  
instruction fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table read operations retrieve data from program  
memory and place it into the data RAM space.  
Figure 6-1 shows the operation of a table read with  
program memory and data RAM.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 6.5 “Writing  
to Flash Program Memory”. Figure 6-2 shows the  
operation of a table write with program memory and data  
RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word-aligned. Therefore, a table block can  
start and end at any byte address. If a table write is being  
used to write executable code into program memory,  
program instructions will need to be word-aligned.  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer register points to a byte in program memory.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 83  
PIC18F85J11 FAMILY  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
TBLPTRU TBLPTRH TBLPTRL  
Table Latch (8-bit)  
TABLAT  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of 64 holding registers, the address of which is determined by  
TBLPTRL<5:0>. The process for physically writing data to the program memory array is discussed in  
Section 6.5 “Writing to Flash Program Memory”.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set in hardware when the WR bit is set and cleared  
when the internal programming timer expires and the  
write operation is complete.  
6.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
Note:  
During normal operation, the WRERR is  
read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
a
Reset, or  
a write operation was  
6.2.1  
EECON1 AND EECON2 REGISTERS  
attempted improperly.  
The EECON1 register (Register 6-1) is the control  
register for memory accesses. The EECON2 register is  
not a physical register; it is used exclusively in the  
memory write and erase sequences. Reading  
EECON2 will read all ‘0’s.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software. It is cleared in  
hardware at the completion of the write operation.  
The FREE bit, when set, will allow a program memory  
erase operation. When FREE is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
DS39774C-page 84  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 6-1:  
EECON1: EEPROM CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
U-0  
WRERR  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
S = Set only bit (cannot be cleared in software)  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command (cleared by  
completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program Error Flag bit  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation, or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program Write Enable bit  
1= Allows write cycles to Flash program memory  
0= Inhibits write cycles to Flash program memory  
WR: Write Control bit  
1= Initiates a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete.  
The WR bit can only be set (not cleared) in software.)  
0= Write cycle is complete  
bit 0  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 85  
PIC18F85J11 FAMILY  
6.2.2  
TABLE LATCH REGISTER (TABLAT)  
6.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch register is used to  
hold 8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRDis executed, all 22 bits of the TBLPTR  
determine which byte is read from program memory  
into TABLAT.  
6.2.3  
TABLE POINTER REGISTER  
(TBLPTR)  
When a TBLWT is executed, the seven LSbs of the  
Table Pointer register (TBLPTR<6:0>) determine which  
of the 64 program memory holding registers is written  
to. When the timed write to program memory begins  
(via the WR bit), the 12 MSbs of the TBLPTR  
(TBLPTR<21:10>) determine which program memory  
block of 1024 bytes is written to. For more detail, see  
Section 6.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) register addresses a byte  
within the program memory. The TBLPTR is comprised  
of three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the device ID, the user ID and the Configuration bits.  
When an erase of program memory is executed, the  
12 MSbs of the Table Pointer register point to the  
1024-byte block that will be erased. The Least  
Significant bits are ignored.  
The Table Pointer register, TBLPTR, is used by the  
TBLRDand TBLWTinstructions. These instructions can  
update the TBLPTR in one of four ways based on the  
table operation. These operations are shown in  
Table 6-1. These operations on the TBLPTR only affect  
the low-order 21 bits.  
Figure 6-3 describes the relevant boundaries of the  
TBLPTR based on Flash program memory operations.  
TABLE 6-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRDAND TBLWTINSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE: TBLPTR<21:10>  
TABLE WRITE: TBLPTR<21:6>  
TABLE READ: TBLPTR<21:0>  
DS39774C-page 86  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
shows the interface between the internal program  
memory and the TABLAT.  
6.3  
Reading the Flash Program Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
TABLAT  
Read Register  
FETCH  
TBLRD  
(IR)  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
TBLRD*+  
MOVF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_EVEN  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_ODD  
MOVF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 87  
PIC18F85J11 FAMILY  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing Flash Program Memory  
The minimum erase block is 512 words or 1024 bytes.  
Only through the use of an external programmer, or  
through ICSP control, can larger blocks of program  
memory be Bulk Erased. Word Erase in the Flash array  
is not supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer register with address of row  
being erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 1024 bytes of program  
memory is erased. The Most Significant 12 bits of the  
TBLPTR<21:10> point to the block being erased;  
TBLPTR<9:0> are ignored.  
2. Set the WREN and FREE bits (EECON1<2,4>)  
to enable the erase operation.  
3. Disable interrupts.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
The EECON1 register commands the erase operation.  
The WREN bit must be set to enable write operations.  
The FREE bit is set to select an erase operation. For  
protection, the write initiate sequence for EECON2  
must be used.  
6. Set the WR bit. This will begin the Row Erase  
cycle.  
7. The CPU will stall for duration of the erase for  
TIW (see parameter D133A).  
8. Re-enable interrupts.  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
BSF  
DS39774C-page 88  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The on-chip timer controls the write time. The  
write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device.  
6.5  
Writing to Flash Program Memory  
The minimum programming block is 32 words or  
64 bytes. Word or byte programming is not supported.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 64 holding registers used by the table writes for  
programming.  
Note 1: Unlike previous PIC® MCUs, members of  
the PIC18F85J11 family do not reset the  
holding registers after a write occurs. The  
holding registers must be cleared or over-  
written before a programming sequence.  
Since the Table Latch (TABLAT) is only a single byte, the  
TBLWTinstruction may need to be executed 64 times for  
each programming operation. All of the table write oper-  
ations will essentially be short writes because only the  
holding registers are written. At the end of updating the  
64 holding registers, the EECON1 register must be  
written to in order to start the programming operation  
with a long write.  
2: To maintain the endurance of the program  
memory cells, each Flash byte should not  
be programmed more than one time  
between erase operations. Before  
attempting to modify the contents of the  
target cell a second time, a Row Erase of  
the target row, or a Bulk Erase of the  
entire memory, must be performed.  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx1  
TBLPTR = xxxxx2  
TBLPTR = xxxx3F  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
8. Disable interrupts.  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write 0AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write for TIW  
(see parameter D133A).  
1. Read 1024 bytes into RAM.  
2. Update data values in RAM as necessary.  
13. Re-enable interrupts.  
3. Load Table Pointer register with address being  
erased.  
14. Repeat steps 6 through 13 until all 1024 bytes  
are written to program memory.  
4. Execute the Row Erase procedure.  
15. Verify the memory (table read).  
5. Load Table Pointer register with address of first  
byte being written, minus 1.  
An example of the required code is shown in  
Example 6-3 on the following page.  
6. Write the 64 bytes into the holding registers with  
auto-increment.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the 64 bytes in  
the holding register.  
7. Set the WREN bit (EECON1<2>) to enable byte  
writes.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 89  
PIC18F85J11 FAMILY  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base address  
; of the memory block, minus 1  
ERASE_BLOCK  
BSF  
BSF  
BCF  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BSF  
MOVLW  
MOVWF  
; write 55h  
EECON2  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
EECON1, WR  
INTCON, GIE  
D'16'  
WRITE_COUNTER  
; Need to write 16 blocks of 64 to write  
; one erase block of 1024  
RESTART_BUFFER  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
D'64'  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
; point to buffer  
FILL_BUFFER  
...  
; read the new data from I2C, SPI,  
; PSP, USART, etc.  
WRITE_BUFFER  
MOVLW  
MOVWF  
D’64  
COUNTER  
; number of bytes in holding register  
WRITE_BYTE_TO_HREGS  
MOVFF  
MOVWF  
TBLWT+*  
POSTINC0, WREG  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
DECFSZ COUNTER  
BRA WRITE_BYTE_TO_HREGS  
PROGRAM_MEMORY  
BSF  
BCF  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
; enable write to memory  
; disable interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
; write 55h  
EECON2  
; write 0AAh  
EECON1, WR  
INTCON, GIE  
EECON1, WREN  
; start program (CPU stall)  
; re-enable interrupts  
; disable write to memory  
BSF  
BCF  
DECFSZ WRITE_COUNTER  
BRA RESTART_BUFFER  
; done with one write cycle  
; if not done replacing the erase block  
DS39774C-page 90  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
6.5.2  
WRITE VERIFY  
6.6  
Flash Program Operation During  
Code Protection  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
See Section 22.6 “Program Verification and Code  
Protection” for details on code protection of Flash  
program memory.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. If the write operation is interrupted  
by a MCLR Reset or a WDT Time-out Reset during  
normal operation, the user can check the WRERR bit  
and rewrite the location(s) as needed.  
TABLE 6-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Reset  
Values on  
page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
51  
51  
51  
51  
51  
53  
53  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
TABLAT  
INTCON  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
WREN  
INT0IF  
WR  
RBIF  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1 FREE WRERR  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during program memory access.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 91  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 92  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The bus is implemented with 28 pins, multiplexed  
across four I/O ports. Three ports (PORTD, PORTE  
and PORTH) are multiplexed with the address/data bus  
for a total of 20 available lines, while PORTJ is  
multiplexed with the bus control signals.  
7.0  
EXTERNAL MEMORY BUS  
Note:  
The external memory bus is not  
implemented on 64-pin devices.  
The external memory bus allows the device to access  
external memory devices (such as Flash, EPROM,  
SRAM, etc.) as program or data memory. It supports  
both 8 and 16-Bit Data Width modes and three address  
widths of up to 20 bits.  
A list of the pins and their functions is provided in  
Table 7-1.  
TABLE 7-1:  
Name  
PIC18F85J11 FAMILY EXTERNAL BUS – I/O PORT FUNCTIONS  
Port  
Bit  
External Memory Bus Function  
RD0/AD0  
RD1/AD1  
RD2/AD2  
RD3/AD3  
RD4/AD4  
RD5/AD5  
RD6/AD6  
RD7/AD7  
RE0/AD8  
RE1/AD9  
RE2/AD10  
RE3/AD11  
RE4/AD12  
RE5/AD13  
RE6/AD14  
RE7/AD15  
RH0/A16  
RH1/A17  
RH2/A18  
RH3/A19  
RJ0/ALE  
RJ1/OE  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTH  
PORTH  
PORTH  
PORTH  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
0
1
2
3
4
5
6
7
Address bit 0 or Data bit 0  
Address bit 1 or Data bit 1  
Address bit 2 or Data bit 2  
Address bit 3 or Data bit 3  
Address bit 4 or Data bit 4  
Address bit 5 or Data bit 5  
Address bit 6 or Data bit 6  
Address bit 7 or Data bit 7  
Address bit 8 or Data bit 8  
Address bit 9 or Data bit 9  
Address bit 10 or Data bit 10  
Address bit 11 or Data bit 11  
Address bit 12 or Data bit 12  
Address bit 13 or Data bit 13  
Address bit 14 or Data bit 14  
Address bit 15 or Data bit 15  
Address bit 16  
Address bit 17  
Address bit 18  
Address bit 19  
Address Latch Enable (ALE) Control pin  
Output Enable (OE) Control pin  
Write Low (WRL) Control pin  
Write High (WRH) Control pin  
Byte Address bit 0 (BA0)  
Chip Enable (CE) Control pin  
Lower Byte Enable (LB) Control pin  
Upper Byte Enable (UB) Control pin  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
RJ6/LB  
RJ7/UB  
Note:  
For the sake of clarity, only I/O port and external bus assignments are shown here. One or more additional  
multiplexed features may be available on some pins.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 93  
PIC18F85J11 FAMILY  
The operation of the EBDIS bit is also influenced by the  
Program Memory mode being used. This is discussed  
in more detail in Section 7.5 “Program Memory  
Modes and the External Memory Bus”.  
7.1  
External Memory Bus Control  
The operation of the interface is controlled by the  
MEMCON register (Register 7-1). This register is  
available in all Program Memory modes except Micro-  
controller mode. In this mode, the register is disabled  
and cannot be written to.  
The WAIT bits allow for the addition of wait states to  
external memory operations. The use of these bits is  
discussed in Section 7.3 “Wait States”.  
The EBDIS bit (MEMCON<7>) controls the operation  
of the bus and related port functions. Clearing EBDIS  
enables the interface and disables the I/O functions of  
the ports, as well as any other functions multiplexed to  
those pins. Setting the bit enables the I/O ports and  
other functions, but allows the interface to override  
everything else on the pins when an external memory  
operation is required. By default, the external bus is  
always enabled and disables all other I/O.  
The WM bits select the particular operating mode used  
when the bus is operating in 16-Bit Data Width mode.  
These are discussed in more detail in Section 7.6  
“16-Bit Data Width Modes”. These bits have no effect  
when an 8-Bit Data Width mode is selected.  
REGISTER 7-1:  
MEMCON: EXTERNAL MEMORY BUS CONTROL REGISTER  
R/W-0  
EBDIS  
bit 15  
U-0  
R/W-0  
WAIT1  
R/W-0  
WAIT0  
U-0  
U-0  
R/W-0  
WM1  
R/W-0  
WM0  
bit 8  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
EBDIS: External Bus Disable bit  
1= External bus enabled when microcontroller accesses external memory; otherwise, all external bus  
drivers are mapped as I/O ports  
0= External bus always enabled, I/O ports are disabled  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-4  
WAIT1:WAIT0: Table Reads and Writes Bus Cycle Wait Count bits  
11= Table reads and writes will wait 0 TCY  
10= Table reads and writes will wait 1 TCY  
01= Table reads and writes will wait 2 TCY  
00= Table reads and writes will wait 3 TCY  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
WM1:WM0: TBLWTOperation with 16-Bit Data Bus Width Select bits  
1x= Word Write mode: TABLAT0 and TABLAT1 word output, WRH active when TABLAT1 written  
01= Byte Select mode: TABLAT data copied on both MSB and LSB, WRH and (UB or LB) will activate  
00= Byte Write mode: TABLAT data copied on both MSB and LSB, WRH or WRL will activate  
DS39774C-page 94  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
7.2.1  
ADDRESS SHIFTING ON THE  
EXTERNAL BUS  
7.2  
Address and Data Width  
The PIC18F85J11 family of devices can be indepen-  
dently configured for different address and data widths  
on the same memory bus. Both address and data width  
are set by Configuration bits in the CONFIG3L register.  
As Configuration bits, this means that these options  
can only be configured by programming the device and  
are not controllable in software.  
By default, the address presented on the external bus  
is the value of the PC. In practical terms, this means  
that addresses in the external memory device below  
the top of on-chip memory are unavailable to the micro-  
controller. To access these physical locations, the glue  
logic between the microcontroller and the external  
memory must somehow translate addresses.  
The BW bit selects an 8-bit or 16-bit data bus width.  
Setting this bit (default) selects a data width of 16 bits.  
To simplify the interface, the external bus offers an  
extension of Extended Microcontroller mode that  
automatically performs address shifting. This feature is  
controlled by the EASHFT Configuration bit. Setting  
this bit offsets addresses on the bus by the size of the  
microcontroller’s on-chip program memory and sets  
the bottom address at 0000h. This allows the device to  
use the entire range of physical addresses of the  
external memory.  
The EMB1:EMB0 bits determine both the Program  
Memory mode and the address bus width. The avail-  
able options are 20-bit, 16-bit and 12-bit, as well as the  
default Microcontroller mode (external bus disabled).  
Selecting a 16-bit or 12-bit width makes a correspond-  
ing number of high-order lines available for I/O func-  
tions; these pins are no longer affected by the setting of  
the EBDIS bit. For example, selecting a 16-Bit Address  
mode (EMB1:EMB0 = 01) disables A19:A16 and  
allows PORTH<3:0> to function without interruptions  
from the bus. Using the smaller address widths allows  
users to tailor the memory bus to the size of the exter-  
nal memory space for a particular design while freeing  
up pins for dedicated I/O operation.  
7.2.2  
21-BIT ADDRESSING  
As an extension of 20-bit address width operation, the  
external memory bus can also fully address a 2-Mbyte  
memory space. This is done by using the Bus Address  
bit 0 (BA0) control line as the Least Significant bit of the  
address. The UB and LB control signals may also be  
used with certain memory devices to select the upper  
and lower bytes within a 16-bit wide data word.  
Because the EMB bits have the effect of disabling pins  
for memory bus operations, it is important to always  
select an address width at least equal to the data width.  
If a 12-bit address width is used with a 16-bit data  
width, the upper four bits of data will not be available on  
the bus.  
This addressing mode is available in both 8-bit and  
certain 16-Bit Data Width modes. Additional details are  
provided in Section 7.6.3 “16-Bit Byte Select Mode”  
and Section 7.7 “8-Bit Data Width Mode”.  
All combinations of address and data widths require  
multiplexing of address and data information on the  
same lines. The address and data multiplexing, as well  
as I/O ports made available by the use of smaller  
address widths, are summarized in Table 7-2.  
TABLE 7-2:  
Data Width  
ADDRESS AND DATA LINES FOR DIFFERENT ADDRESS AND DATA WIDTHS  
Multiplexed Data and  
Address Lines (and  
Address-Only  
Lines (and  
Ports Available  
for I/O  
Address Width  
Corresponding Ports) Corresponding Ports)  
AD11:AD8  
(PORTE<3:0>)  
PORTE<7:4>,  
All of PORTH  
12-bit  
16-bit  
AD15:AD8  
AD7:AD0  
All of PORTH  
8-bit  
(PORTE<7:0>)  
(PORTD<7:0>)  
A19:A16, AD15:AD8  
(PORTH<3:0>,  
20-bit  
PORTE<7:0>)  
16-bit  
20-bit  
All of PORTH  
AD15:AD0  
(PORTD<7:0>,  
PORTE<7:0>)  
16-bit  
A19:A16  
(PORTH<3:0>)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 95  
PIC18F85J11 FAMILY  
If the device fetches or accesses external memory  
while EBDIS = 1, the pins will switch to the external  
bus. If the EBDIS bit is set by a program executing from  
external memory, the action of setting the bit will be  
delayed until the program branches into the internal  
memory. At that time, the pins will change from external  
bus to I/O ports.  
7.3  
Wait States  
While it may be assumed that external memory devices  
will operate at the microcontroller clock rate, this is  
often not the case. In fact, many devices require longer  
times to write or retrieve data than the time allowed by  
the execution of table read or table write operations.  
To compensate for this, the external memory bus can  
be configured to add a fixed delay to each table opera-  
tion using the bus. Wait states are enabled by setting  
the WAIT Configuration bit. When enabled, the amount  
of delay is set by the WAIT1:WAIT0 bits  
(MEMCON<5:4>). The delay is based on multiples of  
microcontroller instruction cycle time and are added  
following the instruction cycle when the table operation  
is executed. The range is from no delay to 3 TCY  
(default value).  
If the device is executing out of internal memory when  
EBDIS = 0, the memory bus address/data and control  
pins will not be active. They will go to a state where the  
active address/data pins are tri-state; the CE, OE,  
WRH, WRL, UB and LB signals are ‘1’ and ALE and  
BA0 are ‘0’. Note that only those pins associated with  
the current address width are forced to tri-state; the  
other pins continue to function as I/O. In the case of  
16-bit address width, for example, only AD<15:0>  
(PORTD and PORTE) are affected; A19:A16  
(PORTH<3:0>) continue to function as I/O.  
7.4  
Port Pin Weak Pull-ups  
In all External Memory modes, the bus takes priority  
over any other peripherals that may share pins with it.  
This includes the Parallel Slave Port and serial commu-  
nication modules which would otherwise take priority  
over the I/O port.  
With the exception of the upper address lines,  
A19:A16, the pins associated with the external memory  
bus are equipped with weak pull-ups. The pull-ups are  
controlled by the upper three bits of the PORTG  
register. They are named RDPU, REPU and RJPU and  
control pull-ups on PORTD, PORTE and PORTJ,  
respectively. Setting one of these bits enables the  
corresponding pull-ups for that port. All pull-ups are  
disabled by default on all device Resets.  
7.6  
16-Bit Data Width Modes  
In 16-Bit Data Width mode, the external memory  
interface can be connected to external memories in  
three different configurations:  
• 16-Bit Byte Write  
• 16-Bit Word Write  
• 16-Bit Byte Select  
7.5  
Program Memory Modes and the  
External Memory Bus  
The PIC18F85J11 family of devices are capable of  
operating in one of two Program Memory modes, using  
combinations of on-chip and external program memory.  
The functions of the multiplexed port pins depend on  
the Program Memory mode selected, as well as the  
setting of the EBDIS bit.  
The configuration to be used is determined by the  
WM1:WM0 bits in the MEMCON register  
(MEMCON<1:0>). These three different configurations  
allow the designer maximum flexibility in using both  
8-bit and 16-bit devices with 16-bit data.  
For all 16-Bit Data Width modes, the Address Latch  
Enable (ALE) pin indicates that the address bits,  
AD<15:0>, are available on the external memory inter-  
face bus. Following the address latch, the Output  
Enable signal (OE) will enable both bytes of program  
memory at once to form a 16-bit instruction word. The  
Chip Enable signal (CE) is active at any time that the  
microcontroller accesses external memory, whether  
reading or writing. It is inactive (asserted high)  
whenever the device is in Sleep mode.  
In Microcontroller Mode, the bus is not active and the  
pins have their port functions only. Writes to the  
MEMCOM register are not permitted. The Reset value  
of EBDIS (‘0’) is ignored and EMB pins behave as I/O  
ports.  
In Extended Microcontroller Mode, the external  
program memory bus shares I/O port functions on the  
pins. When the device is fetching or doing table  
read/table write operations on the external program  
memory space, the pins will have the external bus  
function.  
In Byte Select mode, JEDEC standard Flash memories  
will require BA0 for the byte address line and one I/O  
line to select between Byte and Word mode. The other  
16-Bit Data Width modes do not need BA0. JEDEC  
standard static RAM memories will use the UB or LB  
signals for byte selection.  
If the device is fetching and accessing internal program  
memory locations only, the EBDIS control bit will  
change the pins from external memory to I/O port  
functions. When EBDIS = 0, the pins function as the  
external bus. When EBDIS = 1, the pins function as I/O  
ports.  
DS39774C-page 96  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
During a TBLWTinstruction cycle, the TABLAT data is  
presented on the upper and lower bytes of the  
AD15:AD0 bus. The appropriate WRH or WRL control  
line is strobed on the LSb of the TBLPTR.  
7.6.1  
16-BIT BYTE WRITE MODE  
Figure 7-1 shows an example of 16-Bit Byte Write  
mode for PIC18F85J11 family devices. This mode is  
used for two separate 8-bit memories connected for  
16-bit operation. This generally includes basic EPROM  
and Flash devices. It allows table writes to byte-wide  
external memories.  
FIGURE 7-1:  
16-BIT BYTE WRITE MODE EXAMPLE  
D<7:0>  
(MSB)  
A<x:0>  
(LSB)  
PIC18F85J11  
AD<7:0>  
A<19:0>  
D<15:8>  
373  
373  
A<x:0>  
D<7:0>  
D<7:0>  
CE  
D<7:0>  
CE  
AD<15:8>  
ALE  
(2)  
(2)  
OE WR  
OE WR  
(1)  
A<19:16>  
CE  
OE  
WRH  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper order address lines are used only for 20-bit address widths.  
2: This signal only applies to table writes. See Section 6.1 “Table Reads and Table Writes”.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 97  
PIC18F85J11 FAMILY  
During  
a
TBLWT cycle to an odd address  
7.6.2  
16-BIT WORD WRITE MODE  
(TBLPTR<0> = 1), the TABLAT data is presented on  
the upper byte of the AD15:AD0 bus. The contents of  
the holding latch are presented on the lower byte of the  
AD15:AD0 bus.  
Figure 7-2 shows an example of 16-Bit Word Write  
mode for PIC18F85J11 family devices. This mode is  
used for word-wide memories which include some of  
the EPROM and Flash-type memories. This mode  
allows opcode fetches and table reads from all forms of  
16-bit memory and table writes to any type of  
word-wide external memories. This method makes a  
distinction between TBLWT cycles to even or odd  
addresses.  
The WRH signal is strobed for each write cycle; the  
WRL pin is unused. The signal on the BA0 pin indicates  
the LSb of the TBLPTR, but it is left unconnected.  
Instead, the UB and LB signals are active to select both  
bytes. The obvious limitation to this method is that the  
table write must be done in pairs on a specific word  
boundary to correctly write a word location.  
During  
a
TBLWT cycle to an even address  
(TBLPTR<0> = 0), the TABLAT data is transferred to a  
holding latch and the external address data bus is  
tri-stated for the data portion of the bus cycle. No write  
signals are activated.  
FIGURE 7-2:  
16-BIT WORD WRITE MODE EXAMPLE  
PIC18F85J11  
AD<7:0>  
A<20:1>  
JEDEC Word  
A<x:0>  
373  
373  
EPROM Memory  
D<15:0>  
D<15:0>  
(2)  
CE  
OE  
WR  
AD<15:8>  
ALE  
(1)  
A<19:16>  
CE  
OE  
WRH  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper order address lines are used only for 20-bit address widths.  
2: This signal only applies to table writes. See Section 6.1 “Table Reads and Table Writes”.  
DS39774C-page 98  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Flash and SRAM devices use different control signal  
combinations to implement Byte Select mode. JEDEC  
standard Flash memories require that a controller I/O  
port pin be connected to the memory’s BYTE/WORD  
pin to provide the select signal. They also use the BA0  
signal from the controller as a byte address. JEDEC  
standard static RAM memories, on the other hand, use  
the UB or LB signals to select the byte.  
7.6.3  
16-BIT BYTE SELECT MODE  
Figure 7-3 shows an example of 16-Bit Byte Select  
mode. This mode allows table write operations to  
word-wide external memories with byte selection  
capability. This generally includes both word-wide  
Flash and SRAM devices.  
During a TBLWTcycle, the TABLAT data is presented  
on the upper and lower byte of the AD15:AD0 bus. The  
WRH signal is strobed for each write cycle; the WRL  
pin is not used. The BA0 or UB/LB signals are used to  
select the byte to be written, based on the Least  
Significant bit of the TBLPTR register.  
FIGURE 7-3:  
16-BIT BYTE SELECT MODE EXAMPLE  
PIC18F85J11  
AD<7:0>  
A<20:1>  
373  
373  
JEDEC Word  
FLASH Memory  
A<x:1>  
D<15:0>  
D<15:0>  
(3)  
138  
CE  
A0  
AD<15:8>  
ALE  
(1)  
BYTE/WORD OE WR  
(2)  
A<19:16>  
OE  
WRH  
WRL  
A<20:1>  
JEDEC Word  
A<x:1>  
SRAM Memory  
BA0  
I/O  
D<15:0>  
D<15:0>  
CE  
LB  
LB  
(1)  
UB  
OE WR  
UB  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 6.1 “Table Reads and Table Writes”.  
2: Upper order address lines are used only for 20-bit address width.  
3: Demultiplexing is only required when multiple memory devices are accessed.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 99  
PIC18F85J11 FAMILY  
7.6.4  
16-BIT MODE TIMING  
The presentation of control signals on the external  
memory bus is different for the various operating  
modes. Typical signal timing diagrams are shown in  
Figure 7-4 and Figure 7-5.  
FIGURE 7-4:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD(EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
0Ch  
A<19:16>  
CF33h  
9256h  
AD<15:0>  
CE  
ALE  
OE  
Opcode Fetch  
TBLRD *  
from 000100h  
Opcode Fetch  
MOVLW55h  
from 000102h  
TBLRD92h  
from 199E67h  
Opcode Fetch  
ADDLW55h  
from 000104h  
Memory  
Cycle  
Instruction  
Execution  
INST(PC – 2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
FIGURE 7-5:  
EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
00h  
00h  
A<19:16>  
AD<15:0>  
0E55h  
0003h  
3AAAh  
3AABh  
CE  
ALE  
OE  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Opcode Fetch  
SLEEP  
Sleep Mode, Bus Inactive  
from 007554h  
from 007556h  
Instruction  
Execution  
INST(PC – 2)  
SLEEP  
DS39774C-page 100  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
will enable one byte of program memory for a portion of  
the instruction cycle, then BA0 will change and the  
second byte will be enabled to form the 16-bit instruc-  
tion word. The Least Significant bit of the address, BA0,  
must be connected to the memory devices in this  
mode. The Chip Enable signal (CE) is active at any  
time that the microcontroller accesses external  
memory, whether reading or writing. It is inactive  
(asserted high) whenever the device is in Sleep mode.  
7.7  
8-Bit Data Width Mode  
In 8-Bit Data Width mode, the external memory bus  
operates only in Multiplexed mode; that is, data shares  
the 8 Least Significant bits of the address bus.  
Figure 7-6 shows an example of 8-Bit Multiplexed  
mode for 80-pin devices. This mode is used for a single  
8-bit memory connected for 16-bit operation. The  
instructions will be fetched as two 8-bit bytes on a  
shared data/address bus. The two bytes are sequen-  
tially fetched within one instruction cycle (TCY).  
Therefore, the designer must choose external memory  
devices according to timing calculations based on  
1/2 TCY (2 times the instruction rate). For proper mem-  
ory speed selection, glue logic propagation delay times  
must be considered, along with setup and hold times.  
This generally includes basic EPROM and Flash  
devices. It allows table writes to byte-wide external  
memories.  
During a TBLWTinstruction cycle, the TABLAT data is  
presented on the upper and lower bytes of the  
AD15:AD0 bus. The appropriate level of the BA0  
control line is strobed on the LSb of the TBLPTR.  
The Address Latch Enable (ALE) pin indicates that the  
address bits, AD<15:0>, are available on the external  
memory interface bus. The Output Enable signal (OE)  
FIGURE 7-6:  
8-BIT MULTIPLEXED MODE EXAMPLE  
D<7:0>  
PIC18F85J11  
AD<7:0>  
A<19:0>  
A<x:1>  
373  
ALE  
A0  
D<15:8>  
D<7:0>  
CE  
(1)  
AD<15:8>  
(1)  
A<19:16>  
(2)  
OE WR  
BA0  
CE  
OE  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: Upper order address bits are only used 20-bit address width. The upper AD byte is used for all  
address widths except 8-bit.  
2: This signal only applies to table writes. See Section 6.1 “Table Reads and Table Writes”.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 101  
PIC18F85J11 FAMILY  
7.7.1  
8-BIT MODE TIMING  
The presentation of control signals on the external  
memory bus is different for the various operating  
modes. Typical signal timing diagrams are shown in  
Figure 7-7 and Figure 7-8.  
FIGURE 7-7:  
EXTERNAL MEMORY BUS TIMING FOR TBLRD(EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
0Ch  
CFh  
A<19:16>  
AD<15:8>  
AD<7:0>  
CE  
33h  
92h  
ALE  
OE  
Opcode Fetch  
TBLRD *  
from 000100h  
Opcode Fetch  
MOVLW55h  
from 000102h  
TBLRD92h  
from 199E67h  
Opcode Fetch  
ADDLW55h  
from 000104h  
Memory  
Cycle  
Instruction  
Execution  
INST(PC – 2)  
TBLRDCycle 1  
TBLRDCycle 2  
MOVLW  
FIGURE 7-8:  
EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED  
MICROCONTROLLER MODE)  
Q1 Q2  
Q3  
Q4  
Q1 Q2  
Q3 Q4  
Q1  
00h  
00h  
A<19:16>  
AD<15:8>  
AD<7:0>  
3Ah  
0Eh 55h  
3Ah  
00h 03h  
AAh  
ABh  
BA0  
CE  
ALE  
OE  
Memory  
Cycle  
Opcode Fetch  
MOVLW55h  
Opcode Fetch  
Sleep Mode, Bus Inactive  
SLEEP  
from 007554h  
from 007556h  
Instruction  
Execution  
INST(PC – 2)  
SLEEP  
DS39774C-page 102  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
In Sleep and Idle modes, the microcontroller core does  
not need to access data; bus operations are  
suspended. The state of the external bus is frozen, with  
the address/data pins and most of the control pins hold-  
ing at the same state they were in when the mode was  
invoked. The only potential changes are the CE, LB  
and UB pins, which are held at logic high.  
7.8  
Operation in Power-Managed  
Modes  
In alternate, power-managed Run modes, the external  
bus continues to operate normally. If a clock source  
with a lower speed is selected, bus operations will run  
at that speed. In these cases, excessive access times  
for the external memory may result if wait states have  
been enabled and added to external memory opera-  
tions. If operations in a lower power Run mode are  
anticipated, users should provide in their applications  
for adjusting memory access times at the lower clock  
speeds.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 103  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 104  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
8.0  
8.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
All PIC18 devices include an 8 x 8 hardware multiplier  
as part of the ALU. The multiplier performs an unsigned  
operation and yields a 16-bit result that is stored in the  
Product register pair, PRODH:PRODL. The multiplier’s  
operation does not affect any flags in the STATUS  
register.  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
Making multiplication a hardware operation allows it to  
be completed in a single instruction cycle. This has the  
advantages of higher computational throughput and  
reduced code size for multiplication algorithms and  
allows the PIC18 devices to be used in many applica-  
tions previously reserved for digital signal processors.  
A comparison of various hardware and software  
multiply operations, along with the savings in memory  
and execution time, is shown in Table 8-1.  
MOVF  
MULWF  
ARG1, W  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
8.2  
Operation  
Example 8-1 shows the instruction sequence for an 8 x 8  
unsigned multiplication. Only one instruction is required  
when one of the arguments is already loaded in the  
WREG register.  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiplication. To account for the sign bits of the argu-  
ments, each argument’s Most Significant bit (MSb) is  
tested and the appropriate subtractions are done.  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS  
Program  
Memory  
(Words)  
Time  
Cycles  
(Max)  
Multiply Method  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 µs  
100 ns  
9.1 µs  
600 ns  
24.2 µs  
2.8 µs  
25.4 µs  
4.0 µs  
27.6 µs  
400 ns  
36.4 µs  
2.4 µs  
69 µs  
1 µs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 µs  
6 µs  
Without hardware multiply  
Hardware multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 µs  
11.2 µs  
102.6 µs  
16.0 µs  
242 µs  
28 µs  
254 µs  
40 µs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 105  
PIC18F85J11 FAMILY  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiplication. Equation 8-1 shows the  
algorithm that is used. The 32-bit result is stored in four  
registers (RES3:RES0).  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 2 ) +  
16  
8
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2L 2 ) +  
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
8
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
(-1 ARG1H<7> ARG2H:ARG2L 2  
)
16  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
(ARG1L ARG2L)  
MOVF  
ARG1L, W  
MULWF  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
ARG1L, W  
MULWF  
ARG2L  
; ARG1L * ARG2L->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L->  
; PRODH:PRODL  
;
; Add cross  
; products  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers  
(RES3:RES0). To account for the sign bits of the  
arguments, the MSb for each argument pair is tested  
and the appropriate subtractions are done.  
ARG1H, W  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39774C-page 106  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
compatible with PIC® MCU mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit which enables/disables all  
interrupt sources. All interrupts branch to address  
0008h in Compatibility mode.  
9.0  
INTERRUPTS  
Members of the PIC18F85J11 family of devices have  
multiple interrupt sources and an interrupt priority  
feature that allows most interrupt sources to be  
assigned a high priority level or a low priority level. The  
high priority interrupt vector is at 0008h and the low  
priority interrupt vector is at 0018h. High priority inter-  
rupt events will interrupt any low priority interrupts that  
may be in progress.  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High priority interrupt sources can interrupt a low  
priority interrupt. Low priority interrupts are not  
processed while high priority interrupts are in progress.  
There are thirteen registers which are used to control  
interrupt operation. These registers are:  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address (0008h  
or 0018h). Once in the Interrupt Service Routine (ISR),  
the source(s) of the interrupt can be determined by  
polling the interrupt flag bits. The interrupt flag bits must  
be cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files  
supplied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the  
assembler/compiler to automatically take care of the  
placement of these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used) which re-enables interrupts.  
In general, interrupt sources have three bits to control  
their operation. They are:  
For external interrupt events, such as the INTx pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
Flag bit to indicate that an interrupt event  
occurred  
Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Note:  
Do not use the MOVFFinstruction to modify  
any of the Interrupt Control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all  
interrupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will  
vector immediately to address 0008h or 0018h,  
depending on the priority bit setting. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 107  
PIC18F85J11 FAMILY  
FIGURE 9-1:  
PIC18F85J11 FAMILY INTERRUPT LOGIC  
Wake-up if in  
Idle or Sleep modes  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
Interrupt to CPU  
Vector to Location  
0008h  
PIR1<6:3,1:0>  
PIE1<6:3,1:0>  
IPR1<6:3,1:0>  
GIE/GIEH  
PIR2<7:6,3:1>  
PIE2<7:6 3:1>  
IPR2<7:6,3:1>  
IPEN  
PIR3<6:4,2:1>  
PIE3<6:4,2:1>  
IPR3<6:4,2:1>  
IPEN  
PEIE/GIEL  
IPEN  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
PIR1<6:3,1:0>  
PIE1<6:3,1:0>  
IPR1<6:3,1:0>  
PIR2<7:6,3:1>  
PIE2<7:6,3:1>  
IPR2<7:6,3:1>  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
IPEN  
PIR3<6:4,2:1>  
PIE3<6:4,2:1>  
IPR3<6:4,2:1>  
RBIF  
RBIE  
RBIP  
GIE/GIEH  
PEIE/GIEL  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
DS39774C-page 108  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
9.1  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
interrupt enable bit. User software should  
ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt.  
This feature allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 9-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
R/W-0  
PEIE/GIEL  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF(1)  
GIE/GIEH  
bit 7  
TMR0IE  
INT0IE  
TMR0IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit(1)  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and  
allow the bit to be cleared.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 109  
PIC18F85J11 FAMILY  
REGISTER 9-2:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
R/W-1  
INTEDG0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RBIP  
RBPU  
bit 7  
INTEDG1  
INTEDG2  
INTEDG3  
TMR0IP  
INT3IP  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG3: External Interrupt 3 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IP: INT3 External Interrupt Priority bit  
1= High priority  
0= Low priority  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
DS39774C-page 110  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 9-3:  
INTCON3: INTERRUPT CONTROL REGISTER 3  
R/W-1  
INT2IP  
bit 7  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT3IF  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT1IP  
INT3IE  
INT2IE  
INT1IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IE: INT3 External Interrupt Enable bit  
1= Enables the INT3 external interrupt  
0= Disables the INT3 external interrupt  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
INT3IF: INT3 External Interrupt Flag bit  
1= The INT3 external interrupt occurred (must be cleared in software)  
0= The INT3 external interrupt did not occur  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 111  
PIC18F85J11 FAMILY  
9.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Request (Flag) registers (PIR1, PIR2, PIR3).  
2: User software should ensure the  
appropriate interrupt flag bits are cleared  
prior to enabling an interrupt and after  
servicing that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
U-0  
R/W-0  
R/W-0  
RC1IF  
TX1IF  
TMR2IF  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RC1IF: EUSART Receive Interrupt Flag bit  
1= The EUSART receive buffer, RCREG1, is full (cleared when RCREG1 is read)  
0= The EUSART receive buffer is empty  
TX1IF: EUSART Transmit Interrupt Flag bit  
1= The EUSART transmit buffer, TXREG1, is empty (cleared when TXREG1 is written)  
0= The EUSART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
bit 0  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
DS39774C-page 112  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
OSCFIF  
bit 7  
R/W-0  
CMIF  
U-0  
U-0  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
U-0  
TMR3IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= Device oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= Device clock operating  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed (must be cleared in software)  
0= Comparator input has not changed  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred (must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
bit 0  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (must be cleared in software)  
0= The device voltage is above the regulator’s low-voltage trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 113  
PIC18F85J11 FAMILY  
REGISTER 9-6:  
PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
U-0  
U-0  
R-0  
R-0  
U-0  
R/W-0  
R/W-0  
U-0  
RC2IF  
TX2IF  
CCP2IF  
CCP1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IF: AUSART Receive Interrupt Flag bit  
1= The AUSART receive buffer, RCREG2, is full (cleared when RCREG2 is read)  
0= The AUSART receive buffer is empty  
bit 4  
TX2IF: AUSART Transmit Interrupt Flag bit  
1= The AUSART transmit buffer, TXREG2, is empty (cleared when TXREG2 is written)  
0= The AUSART transmit buffer is full  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1/TMR3 register capture occurred (must be cleared in software)  
0= No TMR1/TMR3 register capture occurred  
Compare mode:  
1= A TMR1/TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1/TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 0  
Unimplemented: Read as ‘0’  
DS39774C-page 114  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
9.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Enable registers (PIE1, PIE2, PIE3). When  
IPEN = 0, the PEIE bit must be set to enable any of  
these peripheral interrupts.  
REGISTER 9-7:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
PSPIE  
bit 7  
R/W-0  
ADIE  
R/W-0  
RC1IE  
R/W-0  
TX1IE  
R/W-0  
SSPIE  
U-0  
R/W-0  
R/W-0  
TMR2IE  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RC1IE: EUSART Receive Interrupt Enable bit  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
TX1IE: EUSART Transmit Interrupt Enable bit  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
bit 0  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 115  
PIC18F85J11 FAMILY  
REGISTER 9-8:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSCFIE  
bit 7  
R/W-0  
CMIE  
U-0  
U-0  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
U-0  
TMR3IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
CMIE: Comparator Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 2  
bit 1  
bit 0  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enabled  
0= Disabled  
Unimplemented: Read as ‘0’  
DS39774C-page 116  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 9-9:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
U-0  
U-0  
R-0  
R-0  
U-0  
R/W-0  
R/W-0  
U-0  
RC2IE  
TX2IE  
CCP2IE  
CCP1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IE: AUSART Receive Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 4  
TX2IE: AUSART Transmit Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 1  
bit 0  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enabled  
0= Disabled  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 117  
PIC18F85J11 FAMILY  
9.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Priority registers (IPR1, IPR2, IPR3). Using  
the priority bits requires that the Interrupt Priority  
Enable (IPEN) bit be set.  
REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP  
R/W-1  
ADIP  
R/W-1  
RC1IP  
R/W-1  
TX1IP  
R/W-1  
SSPIP  
U-0  
R/W-1  
R/W-1  
TMR2IP  
TMR1IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit  
1= High priority  
0= Low priority  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RC1IP: EUSART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TX1IP: EUSART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 0  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39774C-page 118  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
R/W-1  
CMIP  
U-0  
U-0  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
U-0  
OSCFIP  
TMR3IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 2  
bit 1  
bit 0  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 119  
PIC18F85J11 FAMILY  
REGISTER 9-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
U-0  
U-0  
R-0  
R-0  
U-0  
R/W-1  
R/W-1  
U-0  
RC2IP  
TX2IP  
CCP2IP  
CCP1IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
RC2IP: AUSART Receive Priority Flag bit  
1= High priority  
0= Low priority  
bit 4  
TX2IP: AUSART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
Unimplemented: Read as ‘0’  
DS39774C-page 120  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
9.5  
RCON Register  
The RCON register contains bits used to determine the  
cause of the last Reset or wake-up from Idle or Sleep  
modes. RCON also contains the bit that enables  
interrupt priorities (IPEN).  
REGISTER 9-13: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
R/W-1  
CM  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
For details of bit operation, see Register 4-1.  
RI: RESETInstruction Flag bit  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 4-1.  
TO: Watchdog Timer Time-out Flag bit  
For details of bit operation, see Register 4-1.  
PD: Power-Down Detection Flag bit  
For details of bit operation, see Register 4-1.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-1.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-1.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 121  
PIC18F85J11 FAMILY  
9.6  
INTx Pin Interrupts  
9.7  
TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1,  
RB2/INT2 and RB3/INT3 pins are edge-triggered. If the  
corresponding INTEDGx bit in the INTCON2 register is  
set (= 1), the interrupt is triggered by a rising edge; if  
the bit is clear, the trigger is on the falling edge. When  
a valid edge appears on the RBx/INTx pin, the  
corresponding flag bit, INTxIF, is set. This interrupt can  
be disabled by clearing the corresponding enable bit,  
INTxIE. Flag bit, INTxIF, must be cleared in software in  
the Interrupt Service Routine before re-enabling the  
interrupt.  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (FFh 00h) will set flag bit, TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L register  
pair (FFFFh 0000h) will set TMR0IF. The interrupt can  
be enabled/disabled by setting/clearing enable bit,  
TMR0IE (INTCON<5>). Interrupt priority for Timer0 is  
determined by the value contained in the interrupt priority  
bit, TMR0IP (INTCON2<2>). See Section 11.0 “Timer0  
Module” for further details on the Timer0 module.  
9.8  
PORTB Interrupt-on-Change  
All external interrupts (INT0, INT1, INT2 and INT3) can  
wake-up the processor from the power-managed  
modes if bit INTxIE was set prior to going into the  
power-managed modes. If the Global Interrupt Enable  
bit, GIE, is set, the processor will branch to the interrupt  
vector following wake-up.  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1, INT2 and INT3 is determined  
by the value contained in the interrupt priority bits,  
INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and  
INT3IP (INTCON2<1>). There is no priority bit  
associated with INT0. It is always a high priority  
interrupt source.  
9.9  
Context Saving During Interrupts  
During interrupts, the return PC address is saved on  
the stack. Additionally, the WREG, STATUS and BSR  
registers are saved on the Fast Return Stack. If a fast  
return from interrupt is not used (see Section 5.3  
“Data Memory Organization”), the user may need to  
save the WREG, STATUS and BSR registers on entry  
to the Interrupt Service Routine. Depending on the  
user’s application, other registers may also need to be  
saved. Example 9-1 saves and restores the WREG,  
STATUS and BSR registers during an Interrupt Service  
Routine.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS39774C-page 122  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
10.1 I/O Port Pin Capabilities  
10.0 I/O PORTS  
When developing an application, the capabilities of the  
port pins must be considered. Outputs on some pins  
have higher output drive strength than others. Similarly,  
some pins can tolerate higher than VDD input levels.  
Depending on the device selected and features  
enabled, there are up to nine ports available. Some  
pins of the I/O ports are multiplexed with an alternate  
function from the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
10.1.1  
INPUT PINS AND VOLTAGE  
CONSIDERATIONS  
Each port has three memory mapped registers for its  
operation:  
The voltage tolerance of pins used as device inputs is  
dependent on the pin’s input function. Pins that are used  
as digital only inputs are able to handle DC voltages up  
to 5.5V, a level typical for digital logic circuits. In contrast,  
pins that also have analog input functions of any kind  
can only tolerate voltages up to VDD. Voltage excursions  
beyond VDD on these pins should be avoided.  
• TRIS register (Data Direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (Output Latch register)  
Reading the PORT register reads the current status of  
the pins, whereas writing to the PORT register writes to  
the Output Latch (LAT) register.  
Table 10-1 summarizes the input voltage capabilities.  
Refer to Section 25.0 “Electrical Characteristics” for  
more details.  
Setting a TRIS bit (= 1) makes the corresponding  
PORT pin an input (i.e., put the corresponding output  
driver in a High-Impedance mode). Clearing a TRIS bit  
(= 0) makes the corresponding PORT pin an output  
(i.e., put the contents of the corresponding LAT bit on  
the selected pin).  
TABLE 10-1: INPUT VOLTAGE TOLERANCE  
Tolerated  
Port or Pin  
Description  
Input  
PORTA<7:0>  
PORTC<1:0>  
PORTF<7:1>  
PORTB<7:0>  
PORTC<7:2>  
PORTD<7:0>  
PORTE<7:0>  
PORTG<4:0>  
PORTH<7:0>(1)  
PORTJ<7:0>(1)  
VDD  
Only VDD input levels  
tolerated.  
The Output Latch (LAT register) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving. Read-modify-write operations on the  
LAT register read and write the latched output value for  
the PORT register.  
5.5V  
Tolerates input levels  
above VDD, useful for  
most standard logic.  
A simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 10-1.  
FIGURE 10-1:  
GENERIC I/O PORT  
OPERATION  
RD LAT  
Note 1: Not available on 64-pin devices.  
Data  
Bus  
D
Q
10.1.2 PIN OUTPUT DRIVE  
I/O pin(1)  
WR LAT  
or PORT  
When used as digital I/O, the output pin drive strengths  
vary for groups of pins intended to meet the needs for  
a variety of applications. In general, there are three  
classes of output pins in terms of drive capability.  
CK  
Data Latch  
D
Q
PORTB and PORTC, as well as PORTA<7:6>, are  
designed to drive higher current loads, such as LEDs.  
PORTD, PORTE and PORTJ are capable of driving  
digital circuits associated with external memory  
devices. They can also drive LEDs, but only those with  
smaller current requirements. PORTF, PORTG and  
PORTH, along with PORTA<5:0>, have the lowest  
drive level, but are capable of driving normal digital  
circuit loads with a high input impedance.  
WR TRIS  
RD TRIS  
CK  
TRIS Latch  
Input  
Buffer  
D
Q
Table 10-2 summarizes the output capabilities of the  
ports. Refer to the “Absolute Maximum Ratings” in  
Section 25.0 “Electrical Characteristics” for more  
details.  
EN  
RD PORT  
Note 1: I/O pins have diode protection to VDD and VSS.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 123  
PIC18F85J11 FAMILY  
TABLE 10-2: OUTPUT DRIVE LEVELS FOR  
VARIOUS PORTS  
10.2 PORTA, TRISA and  
LATA Registers  
Low  
Medium  
PORTD  
High  
PORTA is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISA and LATA.  
PORTA<5:0>  
PORTF  
PORTA<7:6>  
PORTB  
PORTE  
RA4/T0CKI is a Schmitt Trigger input. All other PORTA  
pins have TTL input levels and full CMOS output  
drivers.  
PORTG  
PORTH(1)  
PORTJ(1)  
PORTC  
Note 1: Not available on 64-pin devices.  
The RA4 pin is multiplexed with the Timer0 clock input.  
RA5 and RA3:RA0 are multiplexed with analog inputs  
for the A/D converter.  
10.1.3 PULL-UP CONFIGURATION  
Four of the I/O ports (PORTB, PORTD, PORTE and  
PORTJ) implement configurable weak pull-ups on all  
pins. These are internal pull-ups that allow floating  
digital input signals to be pulled to a consistent level  
without the use of external resistors.  
The operation of the analog inputs as A/D converter  
inputs is selected by clearing or setting the  
PCFG3:PCFG0 control bits in the ADCON1 register.  
The corresponding TRISA bits control the direction of  
these pins, even when they are being used as analog  
inputs. The user must ensure the bits in the TRISA  
register are maintained set when using them as analog  
inputs.  
The pull-ups are enabled with a single bit for each of the  
ports: RBPU (INTCON2<7>) for PORTB, and RDPU,  
REPU and RJPU (PORTG<7:5>) for the other ports.  
Note:  
RA5 and RA3:RA0 are configured as  
analog inputs on any Reset and are read  
as ‘0’. RA4 is configured as a digital input.  
10.1.4  
OPEN-DRAIN OUTPUTS  
The output pins for several peripherals are also  
equipped with a configurable open-drain output option.  
This allows the peripherals to communicate with  
external digital logic, operating at a higher voltage  
level, without the use of level translators.  
RA6/OSC2/CLKO and RA7/OSC1/CLKI normally  
serve as the external circuit connections for the exter-  
nal (primary) oscillator circuit (HS Oscillator modes), or  
the external clock input and output (EC Oscillator  
modes). In these cases, RA6 and RA7 are not available  
as digital I/O and their corresponding TRIS and LAT  
bits are read as ‘0’. When the device is configured to  
use INTOSC or INTRC as the default oscillator mode  
(FOSC2 Configuration bit is ‘0’), RA6 and RA7 are  
automatically configured as digital I/O; the oscillator  
and clock in/clock out functions are disabled.  
The open-drain option is implemented on port pins  
specifically associated with the data and clock outputs  
of the USARTs, the MSSP module (in SPI mode) and  
the CCP modules. The option is selectively enabled by  
setting the open-drain control bit for the corresponding  
module in TRISG and LATG. Their configuration is dis-  
cussed in more detail in the sections for PORTC,  
PORTE and PORTG.  
EXAMPLE 10-1:  
INITIALIZING PORTA  
When the open-drain option is required, the output pin  
must also be tied through an external pull-up resistor  
provided by the user to a higher voltage level, up to 5V  
(Figure 10-2). When a digital logic high signal is output,  
it is pulled up to the higher voltage level.  
CLRF  
PORTA  
LATA  
07h  
; Initialize PORTA by  
; clearing output latches  
; Alternate method to  
; clear output data latches  
; Configure A/D  
CLRF  
MOVLW  
MOVWF  
MOVLW  
ADCON1 ; for digital inputs  
0BFh  
FIGURE 10-2:  
USING THE OPEN-DRAIN  
OUTPUT (USARTs  
; Value used to initialize  
; data direction  
; Set RA<7, 5:0> as inputs,  
; RA<6> as output  
SHOWN AS EXAMPLES  
MOVWF  
TRISA  
+5V  
3.3V  
PIC18F85J11  
3.3V  
TXX  
5V  
VDD  
(at logic ‘1’)  
DS39774C-page 124  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 10-3:  
Pin Name  
PORTA FUNCTIONS  
TRIS  
I/O  
Type  
Function  
I/O  
Description  
Setting  
RA0/AN0  
RA0  
0
1
1
O
I
DIG  
TTL  
ANA  
LATA<0> data output; not affected by analog input.  
PORTA<0> data input; disabled when analog input enabled.  
AN0  
RA1  
I
A/D input channel 0. Default input configuration on POR; does not  
affect digital output.  
RA1/AN1  
0
1
1
O
I
DIG  
TTL  
ANA  
LATA<1> data output; not affected by analog input.  
PORTA<1> data input; disabled when analog input enabled.  
AN1  
RA2  
I
A/D input channel 1. Default input configuration on POR; does not  
affect digital output.  
RA2/AN2/VREF-  
0
1
1
1
0
1
1
1
0
1
x
0
1
1
0
1
x
x
0
1
x
x
O
I
DIG  
TTL  
ANA  
ANA  
DIG  
TTL  
ANA  
ANA  
DIG  
ST  
LATA<2> data output; not affected by analog input.  
PORTA<2> data input. Disabled when analog functions enabled.  
A/D input channel 2. Default input configuration on POR.  
A/D and comparator low reference voltage input.  
AN2  
VREF-  
RA3  
I
I
RA3/AN3/  
VREF+  
O
I
LATA<3> data output; not affected by analog input.  
PORTA<3> data input; disabled when analog input enabled.  
A/D input channel 3. Default input configuration on POR.  
A/D and comparator high reference voltage input.  
AN3  
VREF+  
RA4  
I
I
RA4/T0CKI  
RA5/AN4  
O
I
LATA<4> data output.  
PORTA<4> data input; default configuration on POR.  
Timer0 clock input.  
T0CKI  
RA5  
I
ST  
O
I
DIG  
TTL  
ANA  
DIG  
TTL  
ANA  
DIG  
DIG  
TTL  
ANA  
ANA  
LATA<5> data output; not affected by analog input.  
PORTA<5> data input; disabled when analog input enabled.  
A/D input channel 4. Default configuration on POR.  
LATA<6> data output; disabled when FOSC2 Configuration bit is set.  
PORTA<6> data input; disabled when FOSC2 Configuration bit is set.  
Main oscillator feedback output connection (HS and HSPLL modes).  
System cycle clock output, FOSC/4 (EC and ECPLL modes).  
LATA<7> data output; disabled when FOSC2 Configuration bit is set.  
PORTA<7> data input; disabled when FOSC2 Configuration bit is set.  
Main oscillator input connection (HS and HSPLL modes).  
Main external clock source input (EC and ECPLL modes).  
AN4  
RA6  
I
RA6/OSC2/  
CLKO  
O
I
OSC2  
CLKO  
RA7  
O
O
O
I
RA7/OSC1/  
CLKI  
OSC1  
CLKI  
I
I
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
LATA  
RA7(1)  
LATA7(1)  
TRISA7(1) TRISA6(1) TRISA5  
RA6(1)  
LATA6(1)  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
54  
54  
54  
53  
LATA5  
LATA4  
TRISA4  
VCFG0  
LATA3  
TRISA3  
PCFG3  
LATA2  
TRISA2  
PCFG2  
LATA1  
TRISA1  
PCFG1  
LATA0  
TRISA0  
PCFG0  
TRISA  
ADCON1  
VCFG1  
Legend: — = Unimplemented, read as ‘0’. Shaded cells are not used by PORTA.  
x= Don’t care.  
Note 1: These bits are enabled depending on the oscillator mode selected. When not enabled as PORTA pins,  
they are disabled and read as ‘x’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 125  
PIC18F85J11 FAMILY  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit, RBIF, to be cleared.  
10.3 PORTB, TRISB and  
LATB Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISB and LATB. All pins on PORTB are digital only  
and tolerate voltages up to 5.5V.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
Four of the PORTB pins (RB7:RB4) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the old value latched on  
the last read of PORTB. The “mismatch” outputs of  
RB7:RB4 are ORed together to generate the RB Port  
Change Interrupt with Flag bit, RBIF (INTCON<0>).  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
MOVLW  
MOVWF  
0CFh  
TRISB  
This interrupt can wake the device from power-managed  
modes. The user, in the Interrupt Service Routine, can  
clear the interrupt in the following manner:  
a) Any read or write of PORTB (except with the  
MOVFF (ANY), PORTB instruction). This will  
end the mismatch condition.  
b) Clear flag bit, RBIF.  
DS39774C-page 126  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 10-5: PORTB FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RB0/INT0  
Function  
I/O  
Description  
RB0  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
O
I
DIG LATB<0> data output.  
TTL PORTB<0> data input; weak pull-up when RBPU bit is cleared.  
INT0  
RB1  
I
ST  
External interrupt 0 input.  
RB1/INT1  
RB2/INT2  
O
I
DIG LATB<1> data output.  
TTL PORTB<1> data input; weak pull-up when RBPU bit is cleared.  
INT1  
RB2  
I
ST  
External interrupt 1 input.  
O
I
DIG LATB<2> data output.  
TTL PORTB<2> data input; weak pull-up when RBPU bit is cleared.  
INT2  
RB3  
I
ST  
External interrupt 2 input.  
RB3/INT3/  
CCP2  
O
I
DIG LATB<3> data output.  
TTL PORTB<3> data input; weak pull-up when RBPU bit is cleared.  
INT3  
I
ST  
DIG CCP2 compare output and CCP2 PWM output; takes priority over port data.  
ST CCP2 capture input.  
External interrupt 3 input.  
(1)  
CCP2  
O
I
RB4/KBI0  
RB4  
O
I
DIG LATB<4> data output.  
TTL PORTB<4> data input; weak pull-up when RBPU bit is cleared.  
TTL Interrupt-on-pin change.  
KBI0  
RB5  
I
RB5/KBI1  
0
1
O
I
DIG LATB<5> data output.  
TTL PORTB<5> data input; weak pull-up when RBPU bit is cleared.  
TTL Interrupt-on-pin change.  
KBI1  
RB6  
I
RB6/KBI2/PGC  
0
1
1
x
0
1
1
x
x
O
I
DIG LATB<6> data output.  
TTL PORTB<6> data input; weak pull-up when RBPU bit is cleared.  
TTL Interrupt-on-pin change.  
KBI2  
PGC  
RB7  
I
(2)  
I
ST  
Serial execution (ICSP™) clock input for ICSP and ICD operation.  
RB7/KBI3/PGD  
O
I
DIG LATB<7> data output.  
TTL PORTB<7> data input; weak pull-up when RBPU bit is cleared.  
TTL Interrupt-on-pin change.  
KBI3  
PGD  
I
(2)  
O
I
DIG Serial execution data output for ICSP and ICD operation.  
(2)  
ST  
Serial execution data input for ICSP and ICD operation.  
Legend:  
O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x= Don’t care (TRIS bit  
does not affect port direction or is overridden for this option).  
Note 1: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared (Extended Microcontroller mode, 80-pin  
devices only). Default assignment is RC1.  
2: All other pin functions are disabled when ICSP™ or ICD is enabled.  
TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on page  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
LATB3  
TRISB3  
RBIE  
RB2  
RB1  
RB0  
LATB0  
TRISB0  
RBIF  
54  
54  
54  
51  
51  
51  
LATB7  
TRISB7  
LATB6  
TRISB6  
LATB5  
TRISB5  
LATB4  
TRISB4  
INT0IE  
LATB2  
TRISB2  
TMR0IF  
LATB1  
TRISB1  
INT0IF  
INT3IP  
INT2IF  
TRISB  
INTCON  
INTCON2  
INTCON3  
GIE/GIEH PEIE/GIEL TMR0IE  
RBPU  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP  
INT1IP INT3IE INT2IE INT1IE INT3IF  
RBIP  
INT2IP  
INT1IF  
Legend: Shaded cells are not used by PORTB.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 127  
PIC18F85J11 FAMILY  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an output,  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
10.4 PORTC, TRISC and  
LATC Registers  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISC and LATC. Only PORTC pins, RC2 through  
RC7, are digital only pins and can tolerate input  
voltages up to 5.5V.  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
PORTC is multiplexed with CCP, MSSP and EUSART  
peripheral functions (Table 10-7). The pins have  
Schmitt Trigger input buffers. The pins for CCP, SPI  
and EUSART are also configurable for open-drain out-  
put whenever these functions are active. Open-drain  
configuration is selected by setting the SPIOD,  
CCPxOD and U1OD control bits (TRISG<7:5> and  
LATG<6>, respectively).  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents, even though a peripheral device  
may be overriding one or more of the pins.  
EXAMPLE 10-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
RC1 is normally configured as the default peripheral  
pin for the CCP2 module. Assignment of CCP2 is con-  
trolled by Configuration bit, CCP2MX (default state,  
CCP2MX = 1).  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
TRISC  
DS39774C-page 128  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 10-7: PORTC FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RC0/T1OSO/  
T13CKI  
RC0  
0
1
x
O
I
DIG  
ST  
LATC<0> data output.  
PORTC<0> data input.  
T1OSO  
O
ANA Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables  
digital I/O.  
T13CKI  
RC1  
1
0
1
x
I
O
I
ST  
DIG  
ST  
Timer1/Timer3 counter input.  
LATC<1> data output.  
RC1/T1OSI/  
CCP2  
PORTC<1> data input.  
T1OSI  
I
ANA Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables  
digital I/O.  
(1)  
CCP2  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
0
1
0
0
1
1
1
O
I
DIG  
ST  
CCP2 compare output and CCP2 PWM output; takes priority over port data.  
CCP2 capture input.  
RC2/CCP1  
RC2  
CCP1  
RC3  
SCK  
SCL  
O
I
DIG  
ST  
LATC<2> data output.  
PORTC<2> data input.  
O
I
DIG  
ST  
CCP1 compare output and CCP1 PWM output; takes priority over port data.  
CCP1 capture input.  
RC3/SCK/SCL  
O
I
DIG  
ST  
LATC<3> data output.  
PORTC<3> data input.  
O
I
DIG  
ST  
SPI clock output (MSSP module); takes priority over port data.  
SPI clock input (MSSP module).  
2
O
I
DIG  
ST  
I C™ clock output (MSSP module); takes priority over port data.  
2
I C clock input (MSSP module); input type depends on module setting.  
RC4/SDI/SDA  
RC4  
O
I
DIG  
ST  
LATC<4> data output.  
PORTC<4> data input.  
SDI  
I
ST  
SPI data input (MSSP module).  
2
SDA  
O
I
DIG  
ST  
I C data output (MSSP module); takes priority over port data.  
2
I C data input (MSSP module); input type depends on module setting.  
RC5/SDO  
RC5  
O
I
DIG  
ST  
LATC<5> data output.  
PORTC<5> data input.  
SDO  
RC6  
O
O
I
DIG  
DIG  
ST  
SPI data output (MSSP module); takes priority over port data.  
LATC<6> data output.  
RC6/TX1/CK1  
PORTC<6> data input.  
TX1  
CK1  
O
O
DIG  
DIG  
Synchronous serial data output (EUSART module); takes priority over port data.  
Synchronous serial data input (EUSART module). User must configure as  
an input.  
1
0
1
1
1
I
O
I
ST  
DIG  
ST  
Synchronous serial clock input (EUSART module).  
LATC<7> data output.  
RC7/RX1/DT1  
RC7  
PORTC<7> data input.  
RX1  
DT1  
I
ST  
Asynchronous serial receive data input (EUSART module).  
O
DIG  
Synchronous serial data output (EUSART module); takes priority over  
port data.  
1
I
ST  
Synchronous serial data input (EUSART module). User must configure as  
an input.  
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, x= Don’t care (TRIS bit  
does not affect port direction or is overridden for this option).  
Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 129  
PIC18F85J11 FAMILY  
TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
54  
54  
54  
54  
54  
LATC  
LATC7  
LATBC6  
LATC5  
LATCB4  
LATC3  
LATC2  
LATC1  
LATC0  
TRISC  
LATG  
TRISG  
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
U2OD U1OD LATG4 LATG3 LATG2 LATG1 LATG0  
SPIOD CCP2OD CCP1OD TRISG4 TRISG3 TRISG2 TRISG1 TRISG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTC.  
DS39774C-page 130  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
PORTD can also be configured to function as an 8-bit  
wide, parallel microprocessor port by setting the  
PSPMODE control bit (PSPCON<4>). In this mode,  
parallel port data takes priority over other digital I/O (but  
not the external memory interface). When the parallel  
port is active, the input buffers are TTL. For more  
information, refer to Section 10.11 “Parallel Slave  
Port”.  
10.5 PORTD, TRISD and  
LATD Registers  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISD and LATD. All pins on PORTD are digital only  
and tolerate voltages up to 5.5V.  
All pins on PORTD are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
EXAMPLE 10-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
Each of the PORTD pins has a weak internal pull-up. A  
single control bit can turn off all the pull-ups. This is  
performed by setting bit RDPU (PORTG<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on all device Resets.  
MOVLW  
MOVWF  
0CFh  
TRISD  
On 80-pin devices, PORTD is multiplexed with the  
system bus as part of the external memory interface.  
I/O port and other functions are only available when the  
interface is disabled, by setting the EBDIS bit  
(MEMCON<7>). When the interface is enabled,  
PORTD is the low-order byte of the multiplexed  
address/data bus (AD7:AD0). The TRISD bits are also  
overridden.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 131  
PIC18F85J11 FAMILY  
TABLE 10-9: PORTD FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RD0/AD0/PSP0  
RD0  
0
1
x
x
O
I
DIG  
ST  
LATD<0> data output.  
PORTD<0> data input.  
(2)  
(1)  
AD0  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 0 output.  
(1)  
External memory interface, data bit 0 input.  
PSP0  
RD1  
O
I
PSP read output data (LATD<0>); takes priority over port data.  
PSP write data input.  
RD1/AD1/PSP1  
RD2/AD2/PSP2  
RD3/AD3/PSP3  
RD4/AD4/PSP4  
RD5/AD5/PSP5  
RD6/AD6/PSP6  
0
1
x
x
x
x
0
1
x
x
x
x
0
1
x
x
x
x
0
1
x
x
x
x
0
1
x
x
x
x
0
1
x
x
x
x
O
I
LATD<1> data output.  
PORTD<1> data input.  
(2)  
(1)  
AD1  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 1 output.  
(1)  
External memory interface, data bit 1 input.  
PSP1  
RD2  
O
I
PSP read output data (LATD<1>); takes priority over port data.  
PSP write data input.  
O
I
LATD<2> data output.  
PORTD<2> data input.  
(2)  
(1)  
AD2  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 2 output.  
(1)  
External memory interface, data bit 2 input.  
PSP2  
RD3  
O
I
PSP read output data (LATD<2>); takes priority over port data.  
PSP write data input.  
O
I
LATD<3> data output.  
PORTD<3> data input.  
(2)  
(1)  
AD3  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 3 output.  
(1)  
External memory interface, data bit 3 input.  
PSP3  
RD4  
O
I
PSP read output data (LATD<3>); takes priority over port data.  
PSP write data input.  
O
I
LATD<4> data output.  
PORTD<4> data input.  
(2)  
(1)  
AD4  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 4 output.  
(1)  
External memory interface, data bit 4 input.  
PSP4  
RD5  
O
I
PSP read output data (LATD<4>); takes priority over port data.  
PSP write data input.  
O
I
LATD<5> data output.  
PORTD<5> data input.  
(2)  
(1)  
AD5  
O
I
DIG  
TTL  
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 5 output.  
(1)  
External memory interface, data bit 5 input.  
PSP5  
RD6  
O
I
PSP read output data (LATD<5>); takes priority over port data.  
PSP write data input.  
O
I
LATD<6> data output.  
PORTD<6> data input.  
(2)  
(1)  
AD6  
O
I
DIG-3 External memory interface, address/data bit 6 output.  
(1)  
TTL  
DIG  
TTL  
External memory interface, data bit 6 input.  
PSP read output data (LATD<6>); takes priority over port data.  
PSP write data input.  
PSP6  
O
I
Legend:  
O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x= Don’t care (TRIS bit  
does not affect port direction or is overridden for this option).  
Note 1: External memory interface I/O takes priority over all other digital and PSP I/O.  
2: Available on 80-pin devices only.  
DS39774C-page 132  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 10-9: PORTD FUNCTIONS (CONTINUED)  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RD7/AD7/PSP7  
RD7  
0
1
x
x
x
x
O
I
DIG  
ST  
LATD<7> data output.  
PORTD<7> data input.  
(2)  
(1)  
AD7  
O
I
DIG  
TTL  
DIG  
TTL  
External memory interface, address/data bit 7 output.  
(1)  
External memory interface, data bit 7 input.  
PSP7  
O
I
PSP read output data (LATD<7>); takes priority over port data.  
PSP write data input.  
Legend:  
O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x= Don’t care (TRIS bit  
does not affect port direction or is overridden for this option).  
Note 1: External memory interface I/O takes priority over all other digital and PSP I/O.  
2: Available on 80-pin devices only.  
TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
LATD7  
TRISD7  
RDPU  
RD6  
LATD6  
TRISD6  
REPU  
RD5  
RD4  
LATD4  
TRISD4  
RG4  
RD3  
LATD3  
TRISD3  
RG3  
RD2  
LATD2  
TRISD2  
RG2  
RD1  
LATD1  
TRISD1  
RG1  
RD0  
LATD0  
TRISD0  
RG0  
54  
54  
54  
54  
LATD5  
TRISD5  
RJPU(1)  
TRISD  
PORTG  
Legend: Shaded cells are not used by PORTD.  
Note 1: Unimplemented on 64-pin devices, read as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 133  
PIC18F85J11 FAMILY  
When the Parallel Slave Port is active on PORTD, three  
of the PORTE pins (RE0, RE1 and RE2) are configured  
as digital control inputs for the port. The control  
functions are summarized in Table 10-11. The reconfig-  
uration occurs automatically when the PSPMODE  
control bit (PSPCON<4>) is set. Users must still make  
certain the corresponding TRISE bits are set to  
configure these pins as digital inputs.  
10.6 PORTE, TRISE and  
LATE Registers  
PORTE is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISE and LATE. All pins on PORTE are digital only  
and tolerate voltages up to 5.5V.  
All pins on PORTE are implemented with Schmitt Trig-  
ger input buffers. Each pin is individually configurable  
as an input or output. The RE7 pin is also configurable  
for open-drain output when CCP2 is active on this pin.  
Open-drain configuration is selected by setting the  
CCP2OD control bit (TRISG<6>)  
RE7 can also be configured as the alternate peripheral  
pin for the CCP2 module. This is done by clearing the  
CCP2MX Configuration bit.  
EXAMPLE 10-5:  
INITIALIZING PORTE  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
CLRF  
PORTE  
LATE  
03h  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
Each of the PORTE pins has a weak internal pull-up. A  
single control bit can turn off all the pull-ups. This is  
performed by setting bit REPU (PORTG<6>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on any device Reset.  
CLRF  
MOVLW  
MOVWF  
TRISE  
; Set RE<1:0> as inputs  
; RE<7:2> as outputs  
On 80-pin devices, PORTE is multiplexed with the  
system bus as part of the external memory interface.  
I/O port and other functions are only available when the  
interface is disabled by setting the EBDIS bit  
(MEMCON<7>). When the interface is enabled,  
PORTE is the high-order byte of the multiplexed  
address/data bus (AD15:AD8). The TRISE bits are also  
overridden.  
DS39774C-page 134  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 10-11: PORTE FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RE0/RD/AD8  
RE0  
0
1
1
x
x
0
1
1
x
x
0
1
x
x
1
0
1
x
x
0
1
x
x
0
1
x
x
0
1
x
x
0
1
x
x
0
O
I
DIG  
ST  
LATE<0> data output.  
PORTE<0> data input.  
RD  
I
TTL  
DIG  
TTL  
DIG  
ST  
Parallel Slave Port read enable control input.  
External memory interface, address/data bit 8 output.  
(1)  
(2)  
(2)  
AD8  
O
I
(2)  
External memory interface, data bit 8 input.  
RE1/WR/AD9  
RE2/AD10/CS  
RE1  
O
I
LATE<1> data output.  
PORTE<1> data input.  
WR  
I
TTL  
DIG  
TTL  
DIG  
ST  
Parallel Slave Port write enable control input.  
External memory interface, address/data bit 9 output.  
(1)  
AD9  
O
I
(2)  
External memory interface, data bit 9 input.  
RE2  
O
I
LATE<2> data output.  
PORTE<2> data input.  
(1)  
(2)  
AD10  
O
I
DIG  
TTL  
TTL  
DIG  
ST  
External memory interface, address/data bit 10 output.  
(2)  
External memory interface, data bit 10 input.  
CS  
I
Parallel Slave Port chip select control input.  
LATE<3> data output.  
RE3/AD11  
RE4/AD12  
RE5/AD13  
RE6/AD14  
RE3  
O
I
PORTE<3> data input.  
(1)  
(2)  
(2)  
AD11  
O
I
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 11 output.  
(2)  
External memory interface, data bit 11 input.  
RE4  
O
I
LATE<4> data output.  
PORTE<4> data input.  
(1)  
AD12  
O
I
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 12 output.  
(2)  
External memory interface, data bit 12 input.  
RE5  
O
I
LATE<5> data output.  
PORTE<5> data input.  
(1)  
(2)  
AD13  
O
I
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 13 output.  
(2)  
External memory interface, data bit 13 input.  
RE6  
O
I
LATE<6> data output.  
PORTE<6> data input.  
(1)  
(2)  
(2)  
AD14  
O
I
DIG  
TTL  
DIG  
ST  
External memory interface, address/data bit 14 output.  
(2)  
External memory interface, data bit 14 input.  
RE7/AD15/  
CCP2  
RE7  
O
I
LATE<7> data output.  
PORTE<7> data input.  
(1)  
AD15  
O
I
DIG  
TTL  
DIG  
External memory interface, address/data bit 15 output.  
(2)  
External memory interface, data bit 15 input.  
(3)  
CCP2  
O
CCP2 compare output and CCP2 PWM output; takes priority over  
port data.  
1
I
ST  
CCP2 capture input.  
Legend:  
O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x= Don’t care (TRIS bit  
does not affect port direction or is overridden for this option).  
Note 1: Available on 80-pin devices only.  
2: External memory interface I/O takes priority over all other digital and PSP I/O.  
3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 135  
PIC18F85J11 FAMILY  
TABLE 10-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTE  
LATE  
RE7  
RE6  
RE5  
RE4  
LATE4  
TRISE4  
RG4  
RE3  
LATE3  
TRISE3  
RG3  
RE2  
LATE2  
TRISE2  
RG2  
RE1  
LATE1  
TRISE1  
RG1  
RE0  
LATE0  
TRISE0  
RG0  
54  
54  
54  
54  
54  
LATE7  
TRISE7  
RDPU  
SPIOD  
LATE6  
TRISE6  
REPU  
LATE5  
TRISE5  
RJPU(1)  
TRISE  
PORTG  
TRISG  
CCP2OD CCP1OD TRISG4  
TRISG3  
TRISG2  
TRISG1  
TRISG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTE.  
Note 1: Unimplemented on 64-pin devices, read as ‘0’.  
DS39774C-page 136  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
EXAMPLE 10-6:  
INITIALIZING PORTF  
10.7 PORTF, LATF and TRISF Registers  
CLRF  
PORTF  
; Initialize PORTF by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
PORTF is a 7-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISF and LATF. All pins on PORTF are implemented  
with Schmitt Trigger input buffers. Each pin is individually  
configurable as an input or output.  
CLRF  
LATF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
07h  
CMCON  
0Fh;  
;
PORTF is multiplexed with analog peripheral functions.  
Pins RF1 through RF6 may be used as comparator  
inputs or outputs by setting the appropriate bits in the  
CMCON register. To use RF6:RF3 as digital inputs, it is  
also necessary to turn off the comparators.  
; Turn off comparators  
ADCON1 ; Set PORTF as digital I/O  
0CEh  
; Value used to  
; initialize data  
; direction  
; Set RF3:RF1 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
Note 1: On device Resets, pins RF6:RF1 are  
configured as analog inputs and are read  
as ‘0’.  
MOVWF  
TRISF  
2: To configure PORTF as digital I/O, turn off  
comparators and set ADCON1 value.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 137  
PIC18F85J11 FAMILY  
TABLE 10-13: PORTF FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
Function  
I/O  
Description  
RF1/AN6/  
C2OUT  
RF1  
0
1
1
0
0
1
1
0
0
1
1
O
I
DIG  
ST  
LATF<1> data output; not affected by analog input.  
PORTF<1> data input; disabled when analog input enabled.  
A/D input channel 6. Default configuration on POR.  
Comparator 2 output; takes priority over port data.  
LATF<2> data output; not affected by analog input.  
PORTF<2> data input; disabled when analog input enabled.  
A/D input channel 7. Default configuration on POR.  
Comparator 1 output; takes priority over port data.  
LATF<3> data output; not affected by analog input.  
PORTF<3> data input; disabled when analog input enabled.  
AN6  
C2OUT  
RF2  
I
ANA  
DIG  
DIG  
ST  
O
O
I
RF2/AN7/  
C1OUT  
AN7  
C1OUT  
RF3  
I
ANA  
TTL  
DIG  
ST  
O
O
I
RF3/AN8  
RF4/AN9  
AN8  
RF4  
I
ANA  
A/D input channel 8 and Comparator C2+ input. Default input  
configuration on POR; not affected by analog output.  
0
1
1
O
I
DIG  
ST  
LATF<4> data output; not affected by analog input.  
PORTF<4> data input; disabled when analog input enabled.  
AN9  
RF5  
I
ANA  
A/D input channel 9 and Comparator C2- input. Default input  
configuration on POR; does not affect digital output.  
RF5/AN10/  
CVREF  
0
1
1
x
O
I
DIG  
ST  
LATF<5> data output; not affected by analog input. Disabled when  
CVREF output enabled.  
PORTF<5> data input; disabled when analog input enabled. Disabled  
when CVREF output enabled.  
AN10  
CVREF  
RF6  
I
ANA  
ANA  
A/D input channel 10 and Comparator C1+ input. Default input  
configuration on POR.  
O
Comparator voltage reference output. Enabling this feature disables  
digital I/O.  
RF6/AN11  
0
1
1
O
I
DIG  
ST  
LATF<6> data output; not affected by analog input.  
PORTF<6> data input; disabled when analog input enabled.  
AN11  
RF7  
I
ANA  
A/D input channel 11 and Comparator C1- input. Default input  
configuration on POR; does not affect digital output.  
RF7/AN5/SS  
0
1
1
O
I
DIG  
ST  
LATF<7> data output.  
PORTF<7> data input.  
AN5  
SS  
I
ANA  
TTL  
A/D input channel 5. Default configuration on POR.  
Slave select input for MSSP module.  
1
I
Legend:  
O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input,  
x= Don’t care (TRIS bit does not affect port direction or is overridden for this option).  
TABLE 10-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTF  
LATF  
RF7  
LATF7  
TRISF7  
RF6  
LATF6  
TRISF6  
RF5  
RF4  
RF3  
LATF3  
TRISF3  
PCFG3  
CIS  
RF2  
LATF2  
TRISF2  
PCFG2  
CM2  
RF1  
LATF1  
TRISF1  
PCFG1  
CM1  
54  
54  
54  
53  
53  
53  
LATF5  
TRISF5  
VCFG1  
C2INV  
CVRR  
LATF4  
TRISF4  
VCFG0  
C1INV  
CVRSS  
TRISF  
ADCON1  
CMCON  
CVRCON  
PCFG0  
CM0  
CVR0  
C2OUT  
CVREN  
C1OUT  
CVROE  
CVR3  
CVR2  
CVR1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTF.  
DS39774C-page 138  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Although the port itself is only five bits wide, the  
PORTG<7:5> bits are still implemented to control the  
weak pull-ups on the I/O ports associated with PORTD,  
PORTE and PORTJ. Setting these bits enables the  
respective port pull-ups.  
10.8 PORTG, TRISG and  
LATG Registers  
PORTG is a 5-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISG and LATG. All pins on PORTG are digital only  
and tolerate voltages up to 5.5V.  
Most of the corresponding TRISG and LATG bits are  
implemented as open-drain control bits for CCP1,  
CCP2 and SPI (TRISG<7:5>), and the USARTs  
(LATG<7:6>). Setting these bits configures the output  
pin for the corresponding peripheral for open-drain  
operation. LATG<5> is not implemented.  
When operating as I/O, all PORTG pins have Schmitt  
Trigger input buffers. Pins RG1 and RG2 are multi-  
plexed with the AUSART module. The RG1 pin is also  
configurable for open-drain output when the AUSART  
is active. Open-drain configuration is selected by  
setting the U2OD control bit (LATG<7>).  
EXAMPLE 10-7:  
INITIALIZING PORTG  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTG pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings. The pin override value is not loaded into  
the TRIS register. This allows read-modify-write of the  
TRIS register without concern due to peripheral  
overrides.  
CLRF  
PORTG  
LATG  
04h  
; Initialize PORTG by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
MOVLW  
MOVWF  
TRISG  
; Set RG1:RG0 as outputs  
; RG2 as input  
; RG4:RG3 as inputs  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 139  
PIC18F85J11 FAMILY  
TABLE 10-15: PORTG FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RG0  
Function  
I/O  
Description  
RG0  
0
1
0
1
1
O
I
DIG  
ST  
LATG<0> data output.  
PORTG<0> data input.  
LATG<1> data output.  
PORTG<1> data input.  
RG1/TX2/CK2  
R21  
O
I
DIG  
ST  
TX2  
CK2  
O
DIG  
Synchronous serial data output (AUSART2 module); takes priority over  
port data.  
1
O
DIG  
Synchronous serial data input (AUSART2 module). User must configure  
as an input.  
1
0
1
1
1
I
O
I
ST  
DIG  
ST  
Synchronous serial clock input (AUSART2 module).  
LATG<2> data output.  
RG2/RX2/DT2  
RG2  
PORTG<2> data input.  
RX2  
DT2  
I
ST  
Asynchronous serial receive data input (AUSART2 module).  
O
DIG  
Synchronous serial data output (AUSART2 module); takes priority over  
port data.  
1
I
ST  
Synchronous serial data input (AUSART2 module). User must configure  
as an input.  
RG3  
RG4  
RG3  
RG4  
0
1
0
1
O
I
DIG  
ST  
LATG<3> data output.  
PORTG<3> data input.  
LATG<4> data output.  
PORTG<4> data input.  
O
I
DIG  
ST  
Legend:  
O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, x= Don’t care (TRIS bit does not affect port  
direction or is overridden for this option).  
TABLE 10-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Reset  
Values on  
page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTG  
RDPU  
U2OD  
REPU  
U1OD  
RJPU(1)  
RG4  
RG3  
RG2  
RG1  
RG0  
54  
54  
54  
LATG  
LATG4  
LATG3  
LATG2  
LATG1  
LATG0  
TRISG  
SPIOD CCP2OD CCP1OD TRISG4 TRISG3 TRISG2 TRISG1 TRISG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTG.  
Note 1: Unimplemented on 64-pin devices, read as ‘0’.  
DS39774C-page 140  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
EXAMPLE 10-8:  
INITIALIZING PORTH  
10.9 PORTH, LATH and TRISH Registers  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
Note: PORTH is available only on 80-pin  
devices.  
CLRF  
LATH  
; Alternate method  
; to clear output  
; data latches  
; Configure PORTH as  
; digital I/O  
; Value used to  
; initialize data  
; direction  
PORTH is an 8-bit wide, bidirectional I/O port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISH and LATH. All pins are digital only and tolerate  
voltages up to 5.5V.  
MOVLW  
MOVWF  
MOVLW  
0Fh  
ADCON1  
0CFh  
All pins on PORTH are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
MOVWF  
TRISH  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
When the external memory interface is enabled, four of  
the PORTH pins function as the high-order address  
lines for the interface. The address output from the  
interface takes priority over other digital I/O. The  
corresponding TRISH bits are also overridden.  
TABLE 10-17: PORTH FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RH0/A16  
Function  
I/O  
Description  
RH0  
0
1
x
0
1
x
0
1
x
0
1
x
0
1
0
1
0
1
0
1
O
I
DIG LATH<0> data output.  
ST PORTH<0> data input.  
A16  
O
O
I
DIG External memory interface, address line 16. Takes priority over port data.  
DIG LATH<1> data output.  
RH1/A17  
RH2/A18  
RH3/A19  
RH1  
ST  
PORTH<1> data input.  
A17  
O
O
I
DIG External memory interface, address line 17. Takes priority over port data.  
DIG LATH<2> data output.  
RH2  
ST  
PORTH<2> data input.  
A18  
O
O
I
DIG External memory interface, address line 18. Takes priority over port data.  
DIG LATH<3> data output.  
RH3  
ST  
PORTH<3> data input.  
A19  
O
O
I
DIG External memory interface, address line 19. Takes priority over port data.  
DIG LATH<4> data output.  
RH4  
RH4  
ST  
DIG LATH<5> data output.  
ST PORTH<5> data input.  
DIG LATH<6> data output.  
ST PORTH<6> data input.  
DIG LATH<7> data output.  
ST PORTH<7> data input.  
PORTH<4> data input.  
RH5  
RH5  
RH6  
RH7  
O
I
RH6  
O
I
RH7  
O
I
Legend:  
O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, x= Don’t care (TRIS bit does not affect port  
direction or is overridden for this option).  
TABLE 10-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTH  
LATH  
RH7  
RH6  
RH5  
RH4  
RH3  
RH2  
RH1  
RH0  
54  
54  
54  
LATH7  
TRISH7  
LATH6  
TRISH6  
LATH5  
TRISH5  
LATH4  
TRISH4  
LATH3  
TRISH3  
LATH2  
LATH1  
LATH0  
TRISH  
TRISH2 TRISH1 TRISH0  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 141  
PIC18F85J11 FAMILY  
When the external memory interface is enabled, all of  
the PORTJ pins function as control outputs for the  
interface. This occurs automatically when the interface  
is enabled by clearing the EBDIS control bit  
(MEMCON<7>). The TRISJ bits are also overridden.  
10.10 PORTJ, TRISJ and LATJ Registers  
Note: PORTJ is available only on 80-pin devices.  
PORTJ is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction and Output Latch registers are  
TRISJ and LATJ. All pins on PORTJ are digital only and  
tolerate voltages up to 5.5V.  
EXAMPLE 10-9:  
INITIALIZING PORTJ  
CLRF  
CLRF  
MOVLW  
PORTJ  
LATJ  
0CFh  
; Initialize PORTJ by  
; clearing output latches  
; Alternate method  
; to clear output latches  
; Value used to  
All pins on PORTJ are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
Note:  
These pins are configured as digital inputs  
on any device Reset.  
; initialize data  
; direction  
MOVWF  
TRISJ  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as output  
; RJ7:RJ6 as inputs  
Each of the PORTJ pins has a weak internal pull-up.  
The pull-ups are provided to keep the inputs at a known  
state for the external memory interface while powering  
up. A single control bit can turn off all the pull-ups. This  
is performed by clearing bit, RJPU (PORTG<5>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on any device Reset.  
DS39774C-page 142  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 10-19: PORTJ FUNCTIONS  
TRIS  
Setting  
I/O  
Type  
Pin Name  
RJ0/ALE  
Function  
I/O  
Description  
RJ0  
0
1
x
O
I
DIG  
ST  
LATJ<0> data output.  
PORTJ<0> data input.  
ALE  
RJ1  
O
DIG  
External memory interface address latch enable control output; takes  
priority over digital I/O.  
RJ1/OE  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
RJ6/LB  
0
1
x
O
I
DIG  
ST  
LATJ<1> data output.  
PORTJ<1> data input.  
OE  
O
DIG  
External memory interface output enable control output; takes priority  
over digital I/O.  
RJ2  
0
1
x
O
I
DIG  
ST  
LATJ<2> data output.  
PORTJ<2> data input.  
WRL  
RJ3  
O
DIG  
External memory bus write low byte control; takes priority over  
digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<3> data output.  
PORTJ<3> data input.  
WRH  
RJ4  
O
DIG  
External memory interface write high byte control output; takes priority  
over digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<4> data output.  
PORTJ<4> data input.  
BA0  
RJ5  
O
DIG  
External memory interface byte address 0 control output; takes priority  
over digital I/O.  
0
1
x
O
I
DIG  
ST  
LATJ<5> data output.  
PORTJ<5> data input.  
CE  
O
DIG  
External memory interface chip enable control output; takes priority  
over digital I/O.  
RJ6  
0
1
x
O
I
DIG  
ST  
LATJ<6> data output.  
PORTJ<6> data input.  
LB  
O
DIG  
External memory interface lower byte enable control output; takes  
priority over digital I/O.  
RJ7/UB  
Legend:  
RJ7  
0
1
x
O
I
DIG  
ST  
LATJ<7> data output.  
PORTJ<7> data input.  
UB  
O
DIG  
External memory interface upper byte enable control output; takes  
priority over digital I/O.  
O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, x= Don’t care (TRIS bit does not affect port  
direction or is overridden for this option).  
TABLE 10-20: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ  
RJ7  
RJ6  
RJ5  
RJ4  
LATJ4  
TRISJ4  
RG4  
RJ3  
LATJ3  
TRISJ3  
RG3  
RJ2  
LATJ2  
TRISJ2  
RG2  
RJ1  
LATJ1  
TRISJ1  
RG1  
RJ0  
LATJ0  
TRISJ0  
RG0  
54  
54  
54  
54  
LATJ  
LATJ7  
TRISJ7  
RDPU  
LATJ6  
TRISJ6  
REPU  
LATJ5  
TRISJ5  
RJPU  
TRISJ  
PORTG  
Legend: Shaded cells are not used by PORTJ.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 143  
PIC18F85J11 FAMILY  
FIGURE 10-3:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLELSLAVEPORT)  
10.11 Parallel Slave Port  
PORTD can also function as an 8-bit wide Parallel  
Slave Port, or microprocessor port, when control bit  
PSPMODE (PSPCON<4>) is set. It is asynchronously  
readable and writable by the external world through RD  
control input pin, RE0/RD, and WR control input pin,  
RE1/WR.  
Data Bus  
D
Q
RDx  
pin  
WR LATD  
or  
CK  
Note:  
For 80-pin devices, the Parallel Slave Port  
is available only in Microcontroller mode.  
PORTD  
Data Latch  
TTL  
D
Q
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
bit PSPMODE enables port pin, RE0/RD, to be the RD  
input, RE1/WR to be the WR input and RE2/CS to be  
the CS (Chip Select) input. For this functionality, the  
corresponding data direction bits of the TRISE register  
(TRISE<2:0>) must be configured as inputs (set).  
RD PORTD  
EN  
TRIS Latch  
RD LATD  
A write to the PSP occurs when both the CS and WR  
lines are first detected low and ends when either are  
detected high. The PSPIF and IBF flag bits are both set  
when the write ends.  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A read from the PSP occurs when both the CS and RD  
lines are first detected low. The data in PORTD is read  
out and the OBF bit is set. If the user writes new data  
to PORTD to set OBF, the data is immediately read out;  
however, the OBF bit is not set.  
Read  
When either the CS or RD lines are detected high, the  
PORTD pins return to the input state and the PSPIF bit  
is set. User applications should wait for PSPIF to be set  
before servicing the PSP. When this happens, the IBF  
and OBF bits can be polled and the appropriate action  
taken.  
RD  
CS  
TTL  
Chip Select  
TTL  
Write  
TTL  
WR  
The timing for the control signals in Write and Read  
modes is shown in Figure 10-4 and Figure 10-5,  
respectively.  
Note: I/O pin has protection diodes to VDD and VSS.  
DS39774C-page 144  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 10-1: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OBF  
PSPMODE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
IBF: Input Buffer Full Status bit  
1= A word has been received and is waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit  
1= A write occurred when a previously input word has not been read (must be cleared in software)  
0= No overflow occurred  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
Unimplemented: Read as ‘0’  
FIGURE 10-4:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 145  
PIC18F85J11 FAMILY  
FIGURE 10-5:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 10-21: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
LATD  
RD7  
LATD7  
TRISD7  
RE7  
RD6  
LATD6  
TRISD6  
RE6  
RD5  
LATD5  
TRISD5  
RE5  
RD4  
LATD4  
TRISD4  
RE4  
RD3  
LATD3  
TRISD3  
RE3  
RD2  
LATD2  
TRISD2  
RE2  
RD1  
LATD1  
TRISD1  
RE1  
RD0  
LATD0  
TRISD0  
RE0  
54  
54  
54  
54  
54  
54  
53  
51  
53  
53  
53  
TRISD  
PORTE  
LATE  
LATE7  
TRISE7  
IBF  
LATE6  
TRISE6  
OBF  
LATE5  
TRISE5  
IBOV  
LATE4  
TRISE4  
PSPMODE  
INT0IE  
TX1IF  
LATE3  
TRISE3  
LATE2  
TRISE2  
LATE1  
TRISE1  
LATE0  
TRISE0  
TRISE  
PSPCON  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
RBIE  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
SSP1IF  
SSP1IE  
SSP1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
TX1IE  
IPR1  
TX1IP  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
DS39774C-page 146  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The T0CON register (Register 11-1) controls all  
aspects of the module’s operation, including the  
prescale selection; it is both readable and writable.  
11.0 TIMER0 MODULE  
The Timer0 module incorporates the following features:  
• Software selectable operation as a timer or  
counter in both 8-bit or 16-bit modes  
A simplified block diagram of the Timer0 module in 8-bit  
mode is shown in Figure 11-1. Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
• Readable and writable registers  
• Dedicated, 8-bit software programmable  
prescaler  
• Selectable clock source (internal or external)  
• Edge select for external clock  
• Interrupt on overflow  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
TMR0ON  
T08BIT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-Bit/16-Bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 Prescale value  
110= 1:128 Prescale value  
101= 1:64 Prescale value  
100= 1:32 Prescale value  
011= 1:16 Prescale value  
010= 1:8 Prescale value  
001= 1:4 Prescale value  
000= 1:2 Prescale value  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 147  
PIC18F85J11 FAMILY  
internal phase clock (TOSC). There is a delay between  
synchronization and the onset of incrementing the  
timer/counter.  
11.1 Timer0 Operation  
Timer0 can operate as either a timer or a counter. The  
mode is selected with the T0CS bit (T0CON<5>). In  
Timer mode (T0CS = 0), the module increments on  
every clock by default unless a different prescaler value  
is selected (see Section 11.3 “Prescaler”). If the  
TMR0 register is written to, the increment is inhibited  
for the following two instruction cycles. The user can  
work around this by writing an adjusted value to the  
TMR0 register.  
11.2 Timer0 Reads and Writes in  
16-Bit Mode  
TMR0H is not the actual high byte of Timer0 in 16-bit  
mode. It is actually a buffered version of the real high  
byte of Timer0 which is not directly readable nor writ-  
able (refer to Figure 11-2). TMR0H is updated with the  
contents of the high byte of Timer0 during a read of  
TMR0L. This provides the ability to read all 16 bits of  
Timer0 without having to verify that the read of the high  
and low byte were valid, due to a rollover between  
successive reads of the high and low byte.  
The Counter mode is selected by setting the T0CS bit  
(= 1). In this mode, Timer0 increments either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit, T0SE (T0CON<4>). Clearing this bit selects  
the rising edge. Restrictions on the external clock input  
are discussed below.  
Similarly, a write to the high byte of Timer0 must also  
take place through the TMR0H Buffer register. The high  
byte is updated with the contents of TMR0H when a  
write occurs to TMR0L. This allows all 16 bits of Timer0  
to be updated at once.  
An external clock source can be used to drive Timer0;  
however, it must meet certain requirements to ensure  
that the external clock can be synchronized with the  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM (8-BIT MODE)  
FOSC/4  
0
1
1
0
Set  
TMR0IF  
on Overflow  
Sync with  
Internal  
Clocks  
TMR0L  
8
Programmable  
Prescaler  
T0CKI pin  
(2 TCY Delay)  
T0SE  
T0CS  
3
T0PS2:T0PS0  
PSA  
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM (16-BIT MODE)  
0
FOSC/4  
1
Sync with  
Internal  
Clocks  
Set  
TMR0  
High Byte  
1
TMR0L  
TMR0IF  
Programmable  
Prescaler  
on Overflow  
8
0
T0CKI pin  
(2 TCY Delay)  
T0SE  
T0CS  
3
Read TMR0L  
Write TMR0L  
T0PS2:T0PS0  
PSA  
8
8
TMR0H  
8
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS39774C-page 148  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
11.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.3 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not directly readable or writable.  
Its value is set by the PSA and T0PS2:T0PS0 bits  
(T0CON<3:0>) which determine the prescaler  
assignment and prescale ratio.  
The prescaler assignment is fully under software  
control and can be changed “on-the-fly” during program  
execution.  
11.4 Timer0 Interrupt  
Clearing the PSA bit assigns the prescaler to the  
Timer0 module. When it is assigned, prescale values  
from 1:2 through 1:256, in power-of-2 increments, are  
selectable.  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
from FFFFh to 0000h in 16-bit mode. This overflow sets  
the TMR0IF flag bit. The interrupt can be masked by  
clearing the TMR0IE bit (INTCON<5>). Before  
re-enabling the interrupt, the TMR0IF bit must be  
cleared in software by the Interrupt Service Routine.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, etc.) clear the prescaler count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count but will not change the prescaler  
assignment.  
Since Timer0 is shut down in Sleep mode, the TMR0  
interrupt cannot awaken the processor from Sleep.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
Timer0 Register Low Byte  
Timer0 Register High Byte  
52  
52  
51  
52  
54  
TMR0H  
INTCON  
T0CON  
TRISA  
GIE/GIEH PEIE/GIEL TMR0IE  
TMR0ON T08BIT T0CS  
TRISA7(1) TRISA6(1) TRISA5  
INT0IE  
T0SE  
RBIE  
PSA  
TMR0IF  
T0PS2  
INT0IF  
T0PS1  
TRISA1  
RBIF  
T0PS0  
TRISA0  
TRISA4  
TRISA3  
TRISA2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Timer0.  
Note 1: RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal  
oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are  
disabled and these bits read as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 149  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 150  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
A simplified block diagram of the Timer1 module is  
shown in Figure 12-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 12-2.  
12.0 TIMER1 MODULE  
The Timer1 timer/counter module incorporates these  
features:  
The module incorporates its own low-power oscillator  
to provide an additional clocking option. The Timer1  
oscillator can also be used as a low-power clock source  
for the microcontroller in power-managed operation.  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR1H  
and TMR1L)  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt on overflow  
Timer1 is controlled through the T1CON Control  
register (Register 12-1). It also contains the Timer1  
Oscillator Enable bit (T1OSCEN). Timer1 can be  
enabled or disabled by setting or clearing control bit,  
TMR1ON (T1CON<0>).  
• Reset on CCPx Special Event Trigger  
• Device clock status flag (T1RUN)  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of TImer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
T1RUN: Timer1 System Clock Status bit  
1= Device clock is derived from Timer1 oscillator  
0= Device clock is derived from another source  
bit 5-4  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 151  
PIC18F85J11 FAMILY  
cycle (FOSC/4). When the bit is set, Timer1 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
12.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
• Timer  
When Timer1 is enabled, the RC1/T1OSI and  
RC0/T1OSO/T13CKI pins become inputs. This means  
the values of TRISC<1:0> are ignored and the pins are  
read as ‘0’.  
• Synchronous Counter  
• Asynchronous Counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>). When TMR1CS is cleared  
(= 0), Timer1 increments on every internal instruction  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM (8-BIT MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
On/Off  
1
T1OSO/T13CKI  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
0
2
Sleep Input  
T1OSCEN(1)  
Timer1  
On/Off  
TMR1CS  
T1CKPS1:T1CKPS0  
T1SYNC  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCPx Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
T1OSO/T13CKI  
T1OSI  
1
0
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T1CKPS1:T1CKPS0  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1IF  
on Overflow  
TMR1  
Clear TMR1  
(CCPx Special Event Trigger)  
TMR1L  
High Byte  
8
Read TMR1L  
Write TMR1L  
8
8
TMR1H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39774C-page 152  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 12-1: CAPACITOR SELECTION FOR  
THE TIMER1  
12.2 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, has become invalid due to a rollover between  
reads.  
OSCILLATOR(2,3,4)  
Oscillator  
Freq.  
C1  
C2  
Type  
LP  
32.768 kHz  
27 pF(1)  
27 pF(1)  
Note 1: Microchip suggests these values as a  
starting point in validating the oscillator  
circuit.  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. The Timer1 high  
byte is updated with the contents of TMR1H when a  
write occurs to TMR1L. This allows a user to write all  
16 bits to both the high and low bytes of Timer1 at once.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
components.  
4: Capacitor values are for design guidance  
only.  
12.3.1  
USING TIMER1 AS A  
CLOCK SOURCE  
12.3 Timer1 Oscillator  
The Timer1 oscillator is also available as a clock source  
in power-managed modes. By setting the System  
Clock Select bits, SCS1:SCS0 (OSCCON<1:0>), to  
01’, the device switches to SEC_RUN mode; both the  
CPU and peripherals are clocked from the Timer1  
oscillator. If the IDLEN bit (OSCCON<7>) is cleared  
and a SLEEPinstruction is executed, the device enters  
SEC_IDLE mode. Additional details are available in  
Section 3.0 “Power-Managed Modes”.  
An on-chip crystal oscillator circuit is incorporated  
between pins T1OSI (input) and T1OSO (amplifier  
output). It is enabled by setting the Timer1 Oscillator  
Enable bit, T1OSCEN (T1CON<3>). The oscillator is a  
low-power circuit rated for 32 kHz crystals. It will  
continue to run during all power-managed modes. The  
circuit for a typical LP oscillator is shown in Figure 12-3.  
Table 12-1 shows the capacitor selection for the Timer1  
oscillator.  
Whenever the Timer1 oscillator is providing the clock  
source, the Timer1 system clock status flag, T1RUN  
(T1CON<6>), is set. This can be used to determine the  
controller’s current clocking mode. It can also indicate  
the clock source being currently used by the Fail-Safe  
Clock Monitor. If the Fail-Safe Clock Monitor is enabled  
and the Timer1 oscillator fails while providing the clock,  
polling the T1RUN bit will indicate whether the clock is  
being provided by the Timer1 oscillator or another  
source.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
FIGURE 12-3:  
EXTERNAL  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
C1  
27 pF  
PIC18F85J11  
T1OSI  
XTAL  
32.768 kHz  
T1OSO  
C2  
27 pF  
Note:  
See the Notes with Table 12-1 for additional  
information about capacitor selection.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 153  
PIC18F85J11 FAMILY  
12.3.2  
TIMER1 OSCILLATOR LAYOUT  
CONSIDERATIONS  
12.5 Resetting Timer1 Using the CCPx  
Special Event Trigger  
The Timer1 oscillator circuit draws very little power  
during operation. Due to the low-power nature of the  
oscillator, it may also be sensitive to rapidly changing  
signals in close proximity.  
If CCP1 or CCP2 is configured to use Timer1 and to  
generate a Special Event Trigger in Compare mode  
(CCPxM3:CCPxM0 = 1011), this signal will reset  
Timer3. The trigger from CCP2 will also start an A/D  
conversion if the A/D module is enabled (see  
Section 15.3.4 “Special Event Trigger” for more  
information).  
The oscillator circuit, shown in Figure 12-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
The module must be configured as either a timer or a  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRxH:CCPRxL register  
pair effectively becomes a Period register for Timer1.  
If a high-speed circuit must be located near the oscilla-  
tor (such as the CCP1 pin in Output Compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 12-4, may be helpful when used on a  
single-sided PCB or in addition to a ground plane.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
In the event that a write to Timer1 coincides with a  
Special Event Trigger, the write operation will take  
precedence.  
FIGURE 12-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED  
GUARD RING  
Note:  
The Special Event Triggers from the CCPx  
module will not set the TMR1IF interrupt  
flag bit (PIR1<0>).  
VDD  
VSS  
12.6 Using Timer1 as a Real-Time Clock  
OSC1  
OSC2  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 12.3 “Timer1 Oscillator”  
above) gives users the option to include RTC function-  
ality to their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
RC0  
RC1  
RC2  
The application code routine, RTCisr, shown in  
Example 12-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow triggers the interrupt and calls  
the routine which increments the seconds counter by  
one. Additional counters for minutes and hours are  
incremented as the previous counter overflows.  
Note: Not drawn to scale.  
12.4 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled or disabled  
by setting or clearing the Timer1 Interrupt Enable bit,  
TMR1IE (PIE1<0>).  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it. The simplest method is to set the MSb of  
TMR1H with a BSF instruction. Note that the TMR1L  
register is never preloaded or altered; doing so may  
introduce cumulative error over many cycles.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1), as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
DS39774C-page 154  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
EXAMPLE 12-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
80h  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1CON  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
; Reset hours  
; Done  
CLRF  
hours  
RETURN  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
51  
53  
53  
53  
52  
52  
52  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
IPR1  
TMR1L  
TMR1H  
T1CON  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: Shaded cells are not used by the Timer1 module.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 155  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 156  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
In normal operation, TMR2 is incremented from 00h on  
each clock (FOSC/4). A 4-bit counter/prescaler on the  
clock input gives direct input, divide-by-4 and  
divide-by-16 prescale options. These are selected by  
the prescaler control bits, T2CKPS1:T2CKPS0  
(T2CON<1:0>). The value of TMR2 is compared to that  
of the Period register, PR2, on each clock cycle. When  
the two values match, the comparator generates a  
match signal as the timer output. This signal also resets  
the value of TMR2 to 00h on the next cycle and drives  
the output counter/postscaler (see Section 13.2  
“Timer2 Interrupt”).  
The Timer2 module incorporates the following features:  
• 8-bit Timer and Period registers (TMR2 and PR2,  
respectively)  
• Readable and writable (both registers)  
• Software programmable prescaler  
(1:1, 1:4 and 1:16)  
• Software programmable postscaler  
(1:1 through 1:16)  
• Interrupt on TMR2 to PR2 match  
• Optional use as the shift clock for the  
MSSP module  
The TMR2 and PR2 registers are both directly readable  
and writable. The TMR2 register is cleared on any  
device Reset while the PR2 register initializes at FFh.  
Both the prescaler and postscaler counters are cleared  
on the following events:  
The module is controlled through the T2CON register  
(Register 13-1) which enables or disables the timer and  
configures the prescaler and postscaler. Timer2 can be  
shut off by clearing control bit, TMR2ON (T2CON<2>),  
to minimize power consumption.  
• a write to the TMR2 register  
• a write to the T2CON register  
A simplified block diagram of the module is shown in  
Figure 13-1.  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 157  
PIC18F85J11 FAMILY  
13.2 Timer2 Interrupt  
13.3 Timer2 Output  
Timer2 can also generate an optional device interrupt.  
The Timer2 output signal (TMR2 to PR2 match) pro-  
vides the input for the 4-bit output counter/postscaler.  
This counter generates the TMR2 match interrupt flag  
which is latched in TMR2IF (PIR1<1>). The interrupt is  
enabled by setting the TMR2 Match Interrupt Enable  
bit, TMR2IE (PIE1<1>).  
The unscaled output of TMR2 is available primarily to  
the CCP modules where it is used as a time base for  
operations in PWM mode.  
Timer2 can be optionally used as the shift clock source  
for the MSSP module operating in SPI mode.  
Additional information is provided in Section 16.0  
“Master Synchronous Serial Port (MSSP) Module”.  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, T2OUTPS3:T2OUTPS0 (T2CON<6:3>).  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
4
1:1 to 1:16  
Set TMR2IF  
Postscaler  
T2OUTPS3:T2OUTPS0  
2
TMR2 Output  
T2CKPS1:T2CKPS0  
(to PWM or MSSP)  
TMR2/PR2  
Match  
Reset  
TMR2  
1:1, 1:4, 1:16  
Prescaler  
FOSC/4  
Comparator  
PR2  
8
8
8
Internal Data Bus  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
51  
53  
53  
53  
52  
52  
52  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
DS39774C-page 158  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
A simplified block diagram of the Timer3 module is  
shown in Figure 14-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 14-2.  
14.0 TIMER3 MODULE  
The Timer3 timer/counter module incorporates these  
features:  
The Timer3 module is controlled through the T3CON  
register (Register 14-1). It also selects the clock source  
options for the CCP modules. See Section 15.2.2  
“Timer1/Timer3 Mode Selection” for more  
information.  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR3H  
and TMR3L)  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt on overflow  
• Module Reset on CCPx Special Event Trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6,3  
T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
1x= Timer3 is the capture/compare clock source for the CCP modules  
01= Timer3 is the capture/compare clock source for CCP2;  
Timer1 is the capture/compare clock source for CCP1  
00= Timer1 is the capture/compare clock source for the CCP modules  
bit 5-4  
bit 2  
T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the device clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI (on the rising edge after the first  
falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 159  
PIC18F85J11 FAMILY  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>). When TMR3CS is cleared  
(= 0), Timer3 increments on every internal instruction  
cycle (FOSC/4). When the bit is set, Timer3 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
14.1 Timer3 Operation  
Timer3 can operate in one of three modes:  
• Timer  
• Synchronous Counter  
• Asynchronous Counter  
As  
with  
Timer1,  
the  
RC1/T1OSI  
and  
RC0/T1OSO/T13CKI pins become inputs when the  
Timer1 oscillator is enabled. This means the values of  
TRISC<1:0> are ignored and the pins are read as ‘0’.  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM (8-BIT MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
1
0
T1OSO/T13CKI  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T3CKPS1:T3CKPS0  
T3SYNC  
Timer3  
On/Off  
TMR3CS  
TMR3ON  
CCPx Special Event Trigger  
CCPx Select from T3CON<6,3>  
Clear TMR3  
Set  
TMR3  
High Byte  
TMR3L  
TMR3IF  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
Timer1 Clock Input  
1
0
1
0
T1OSO/T13CKI  
T1OSI  
Synchronize  
Detect  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
2
Sleep Input  
T1OSCEN(1)  
T3CKPS1:T3CKPS0  
T3SYNC  
Timer3  
On/Off  
TMR3CS  
TMR3ON  
CCPx Special Event Trigger  
Clear TMR3  
Set  
TMR3  
High Byte  
TMR3L  
TMR3IF  
CCPx Select from T3CON<6,3>  
on Overflow  
8
Read TMR1L  
Write TMR1L  
8
8
TMR3H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39774C-page 160  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
14.2 Timer3 16-Bit Read/Write Mode  
14.4 Timer3 Interrupt  
Timer3 can be configured for 16-bit reads and writes  
(see Figure 14-2). When the RD16 control bit  
(T3CON<7>) is set, the address for TMR3H is mapped  
to a buffer register for the high byte of Timer3. A read  
from TMR3L will load the contents of the high byte of  
Timer3 into the Timer3 High Byte Buffer register. This  
provides the user with the ability to accurately read all  
16 bits of Timer1 without having to determine whether  
a read of the high byte, followed by a read of the low  
byte, has become invalid due to a rollover between  
reads.  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and overflows to 0000h. The  
Timer3 interrupt, if enabled, is generated on overflow  
and is latched in interrupt flag bit, TMR3IF (PIR2<1>).  
This interrupt can be enabled or disabled by setting or  
clearing the Timer3 Interrupt Enable bit, TMR3IE  
(PIE2<1>).  
14.5 Resetting Timer3 Using the CCPx  
Special Event Trigger  
If CCP1 or CCP2 is configured to use Timer3 and to  
generate a Special Event Trigger in Compare mode  
(CCPxM3:CCPxM0 = 1011), this signal will reset  
Timer3. The trigger from CCP2 will also start an A/D  
conversion if the A/D module is enabled (see  
Section 15.3.4 “Special Event Trigger” for more  
information).  
A write to the high byte of Timer3 must also take place  
through the TMR3H Buffer register. The Timer3 high  
byte is updated with the contents of TMR3H when a  
write occurs to TMR3L. This allows a user to write all  
16 bits to both the high and low bytes of Timer3 at once.  
The high byte of Timer3 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer3 High Byte Buffer register.  
The module must be configured as either a timer or  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRxH:CCPRxL register  
pair effectively becomes a Period register for Timer3.  
Writes to TMR3H do not clear the Timer3 prescaler.  
The prescaler is only cleared on writes to TMR3L.  
If Timer3 is running in Asynchronous Counter mode,  
the Reset operation may not work.  
14.3 Using the Timer1 Oscillator as the  
Timer3 Clock Source  
In the event that a write to Timer3 coincides with a  
Special Event Trigger from a CCPx module, the write  
will take precedence.  
The Timer1 internal oscillator may be used as the clock  
source for Timer3. The Timer1 oscillator is enabled by  
setting the T1OSCEN (T1CON<3>) bit. To use it as the  
Timer3 clock source, the TMR3CS bit must also be set.  
As previously noted, this also configures Timer3 to  
increment on every rising edge of the oscillator source.  
Note:  
The Special Event Triggers from the CCPx  
module will not set the TMR3IF interrupt  
flag bit (PIR2<1>).  
The Timer1 oscillator is described in Section 12.0  
“Timer1 Module”.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
LVDIF  
LVDIE  
LVDIP  
INT0IF  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
51  
53  
53  
53  
53  
53  
52  
53  
OSCFIF  
OSCFIE  
OSCFIP  
CMIF  
CMIE  
CMIP  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Timer3 Register Low Byte  
Timer3 Register High Byte  
RD16  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 161  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 162  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Each CCP module contains a 16-bit register which can  
operate as a 16-bit Capture register, a 16-bit Compare  
register or a PWM Master/Slave Duty Cycle register.  
For the sake of clarity, all CCP module operation in the  
following sections is described with respect to CCP2,  
but is equally applicable to CCP1.  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
PIC18F85J11 family devices have two CCP  
(Capture/Compare/PWM) modules, designated CCP1  
and CCP2. Both modules implement standard Capture,  
Compare and Pulse-Width Modulation (PWM) modes.  
REGISTER 15-1: CCPxCON: CCPx CONTROL REGISTER (CCP1, CCP2 MODULES)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0 for CCPx Module  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight  
Most Significant bits (DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Module Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode: initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit  
is set)  
1001= Compare mode: initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit  
is set)  
1010= Compare mode: generate software interrupt on compare match (CCPxIF bit is set, CCPx pin  
reflects I/O state)  
1011= Compare mode: Special Event Trigger; reset timer; start A/D conversion on CCPx match  
(CCPxIF bit is set)(1)  
11xx= PWM mode  
Note 1: CCPxM3:CCPxM0 = 1011will only reset timer and not start A/D conversion on CCPx match.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 163  
PIC18F85J11 FAMILY  
Depending on the configuration selected, up to four  
timers may be active at once, with modules in the same  
configuration (Capture/Compare or PWM) sharing  
timer resources. The possible configurations are  
shown in Figure 15-1.  
15.1 CCP Module Configuration  
Each Capture/Compare/PWM module is associated  
with a control register (generically, CCPxCON) and a  
data register (CCPRx). The data register, in turn, is  
comprised of two 8-bit registers: CCPRxL (low byte)  
and CCPRxH (high byte). All registers are both  
readable and writable.  
15.1.2  
OPEN-DRAIN OUTPUT OPTION  
When operating in Output mode (i.e., in Compare or  
PWM modes), the drivers for the CCPx pins can be  
optionally configured as open-drain outputs. This  
feature allows the voltage level on the pin to be pulled  
to a higher level through an external pull-up resistor  
and allows the output to communicate with external  
circuits without the need for additional level shifters.  
15.1.1  
CCP MODULES AND TIMER  
RESOURCES  
The CCP modules utilize Timers 1, 2 or 3, depending  
on the mode selected. Timer1 and Timer3 are available  
to modules in Capture or Compare mode, while Timer2  
is available for modules in PWM mode.  
The open-drain output option is controlled by the  
CCP2OD and CCP1OD bits (TRISG<6:5>). Setting the  
appropriate bit configures the pin for the corresponding  
module for open-drain operation.  
TABLE 15-1: CCPx MODE – TIMER  
RESOURCE  
CCPx Mode  
Timer Resource  
15.1.3  
CCP2 PIN ASSIGNMENT  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
The pin assignment for CCP2 (Capture input, Compare  
and PWM output) can change, based on device config-  
uration. The CCP2MX Configuration bit determines  
which pin CCP2 is multiplexed to. By default, it is  
assigned to RC1 (CCP2MX = 1). If the Configuration bit  
is cleared, CCP2 is multiplexed with RE7.  
The assignment of a particular timer to a module is  
determined by the timer to CCPx enable bits in the  
T3CON register (Register 14-1). Both modules may be  
active at any given time and may share the same timer  
resource if they are configured to operate in the same  
mode (Capture/Compare or PWM) at the same time.  
The interactions between the two modules are  
summarized in Table 15-2.  
Changing the pin assignment of CCP2 does not  
automatically change any requirements for configuring  
the port pin. Users must always verify that the appropri-  
ate TRIS register is configured correctly for CCP2  
operation, regardless of where it is located.  
FIGURE 15-1:  
CCPx AND TIMER INTERCONNECT CONFIGURATIONS  
T3CCP<2:1> = 00  
T3CCP<2:1> = 01  
T3CCP<2:1> = 1x  
TMR1  
TMR3  
TMR1  
TMR3  
TMR1  
TMR3  
CCP1  
CCP2  
CCP1  
CCP1  
CCP2  
CCP2  
TMR2  
TMR2  
TMR2  
Timer1 is used for all Capture  
and Compare operations for  
all CCP modules. Timer2 is  
used for PWM operations for  
all CCP modules. Modules  
may share either timer  
resource as a common time  
base.  
Timer1 is used for Capture  
and Compare operations for  
CCP1 and Timer 3 is used for  
CCP2.  
Timer3 is used for all Capture  
and Compare operations for  
all CCP modules. Timer2 is  
used for PWM operations for  
all CCP modules. Modules  
may share either timer  
resource as a common time  
base.  
Both the modules use Timer2  
as a common time base if they  
are in PWM modes.  
DS39774C-page 164  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 15-2: INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES  
CCP1 Mode CCP2 Mode  
Interaction  
Capture  
Capture  
Each module can use TMR1 or TMR3 as the time base. The time base can be different  
for each CCP module.  
Capture  
Compare CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3  
(depending upon which time base is used). Automatic A/D conversions on trigger event  
can also be done. Operation of CCP1 could be affected if it is using the same timer as a  
time base.  
Compare  
Compare  
Capture  
CCP1 can be configured for the Special Event Trigger to reset TMR1 or TMR3  
(depending upon which time base is used). Operation of CCP2 could be affected if it is  
using the same timer as a time base.  
Compare Either module can be configured for the Special Event Trigger to reset the time base.  
Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if  
both modules are using the same time base.  
Capture  
Compare  
PWM  
PWM  
PWM  
None  
None  
None  
Capture  
PWM  
Compare None  
PWM Both PWMs will have the same frequency and update rate (TMR2 interrupt).  
PWM  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 165  
PIC18F85J11 FAMILY  
15.2.3  
SOFTWARE INTERRUPT  
15.2 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCP2IE bit (PIE3<2>) clear to avoid false interrupts  
and should clear the flag bit, CCP2IF, following any  
such change in operating mode.  
In Capture mode, the CCPR2H:CCPR2L register pair  
captures the 16-bit value of the TMR1 or TMR3 register  
when an event occurs on the CCP2 pin (RB3, RC1 or  
RE7, depending on device configuration). An event is  
defined as one of the following:  
• every falling edge  
• every rising edge  
15.2.4  
CCP PRESCALER  
There are four prescaler settings in Capture mode.  
They are specified as part of the operating mode  
selected by the mode select bits (CCP2M3:CCP2M0).  
Whenever the CCP2 module is turned off, or the CCP2  
module is not in Capture mode, the prescaler counter  
is cleared. This means that any Reset will clear the  
prescaler counter.  
• every 4th rising edge  
• every 16th rising edge  
The event is selected by the mode select bits,  
CCP2M3:CCP2M0 (CCP2CON<3:0>). When  
a
capture is made, the interrupt request flag bit, CCP2IF  
(PIR3<2>), is set; it must be cleared in software. If  
another capture occurs before the value in register  
CCPR2 is read, the old captured value is overwritten by  
the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a
non-zero prescaler. Example 15-1 shows the  
15.2.1  
CCPx PIN CONFIGURATION  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
In Capture mode, the appropriate CCPx pin should be  
configured as an input by setting the corresponding  
TRIS direction bit.  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
Note: If RB3/INT3/CCP2, RC1/T1OSI/CCP2 or  
RE7/CCP2 is configured as an output, a write  
to the port can cause a capture condition.  
CLRF CCP2CON  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
; Turn CCP module off  
15.2.2  
TIMER1/TIMER3 MODE SELECTION  
; value and CCP ON  
The timers that are to be used with the capture feature  
(Timer1 and/or Timer3) must be running in Timer mode or  
Synchronized Counter mode. In Asynchronous Counter  
mode, the capture operation may not work. The timer to  
be used with each CCP module is selected in the T3CON  
register (see Section 15.1.1 “CCP Modules and Timer  
Resources”).  
MOVWF CCP2CON  
; Load CCP2CON with  
; this value  
FIGURE 15-2:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
Set CCP1IF  
T3CCP2  
TMR3  
Enable  
CCP1 pin  
Prescaler  
÷ 1, 4, 16  
and  
Edge Detect  
CCPR1H  
CCPR1L  
TMR1  
Enable  
T3CCP2  
TMR1H  
TMR1L  
TMR3L  
4
4
CCP1CON<3:0>  
Q1:Q4  
Set CCP2IF  
4
CCP2CON<3:0>  
TMR3H  
T3CCP1  
T3CCP2  
TMR3  
Enable  
CCP2 pin  
Prescaler  
÷ 1, 4, 16  
and  
Edge Detect  
CCPR2H  
CCPR2L  
TMR1L  
TMR1  
Enable  
T3CCP2  
T3CCP1  
TMR1H  
DS39774C-page 166  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
15.3.3  
SOFTWARE INTERRUPT MODE  
15.3 Compare Mode  
When the Generate Software Interrupt mode is chosen  
(CCP2M3:CCP2M0 = 1010), the CCP2 pin is not  
affected. Only a CCP2 interrupt is generated, if  
enabled, and the CCP2IE bit is set.  
In Compare mode, the 16-bit CCPR2 register value is  
constantly compared against either the TMR1 or TMR3  
register pair value. When a match occurs, the CCP2  
pin can be:  
• driven high  
15.3.4  
SPECIAL EVENT TRIGGER  
• driven low  
Both CCP modules are equipped with a Special Event  
Trigger. This is an internal hardware signal generated  
in Compare mode to trigger actions by other modules.  
The Special Event Trigger is enabled by selecting  
the Compare Special Event Trigger mode  
(CCP2M3:CCP2M0 = 1011).  
• toggled (high-to-low or low-to-high)  
• remains unchanged (that is, reflects the state of  
the I/O latch)  
The action on the pin is based on the value of the mode  
select bits (CCP2M3:CCP2M0). At the same time, the  
interrupt flag bit, CCP2IF, is set.  
For either CCP module, the Special Event Trigger resets  
the Timer register pair for whichever timer resource is  
currently assigned as the module’s time base. This  
allows the CCPRx registers to serve as a Programmable  
Period register for either timer.  
15.3.1  
CCPx PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRIS bit.  
The Special Event Trigger for CCP2 can also start an  
A/D conversion. In order to do this, the A/D converter  
must already be enabled.  
Note:  
Clearing the CCP2CON register will force  
the RB3, RC1 or RE7 compare output  
latch (depending on device configuration)  
to the default low level. This is not the  
PORTB, PORTC or PORTE I/O data latch.  
Note:  
The Special Event Trigger of CCP1 only  
resets Timer1/Timer3 and cannot start an  
A/D conversion even when the A/D  
converter is enabled.  
15.3.2  
TIMER1/TIMER3 MODE SELECTION  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCPx module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
FIGURE 15-3:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger  
(Timer1 Reset)  
Set CCP1IF  
CCPR1H  
CCPR1L  
CCP1 pin  
S
R
Q
Output  
Logic  
Compare  
Match  
Comparator  
TRIS  
Output Enable  
4
CCP1CON<3:0>  
TMR1H  
TMR3H  
TMR1L  
TMR3L  
0
0
1
1
Special Event Trigger  
(Timer1/Timer3 Reset, A/D Trigger)  
T3CCP1  
T3CCP2  
Set CCP2IF  
CCP2 pin  
S
R
Q
Compare  
Match  
Output  
Logic  
Comparator  
TRIS  
Output Enable  
4
CCPR2H  
CCPR2L  
CCP2CON<3:0>  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 167  
PIC18F85J11 FAMILY  
TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page  
INTCON  
RCON  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
51  
52  
53  
53  
53  
53  
53  
53  
54  
54  
54  
52  
52  
52  
53  
53  
53  
54  
54  
54  
55  
55  
55  
IPEN  
CM  
RC2IF  
RC2IE  
RC2IP  
PIR3  
TX2IF  
TX2IE  
TX2IP  
CCP2IF  
CCP1IF  
PIE3  
CCP2IE CCP1IE  
CCP2IP CCP1IP  
IPR3  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
TRISC7  
TRISE7  
SPIOD  
CMIF  
CMIE  
CMIP  
TRISC6  
TRISE6  
BCLIF  
BCLIE  
BCLIP  
TRISC3  
TRISE3  
TRISG3  
LVDIF  
LVDIE  
LVDIP  
TRISC2  
TMR3IF  
TMR3IE  
TMR3IP  
TRISC1  
TRISE1  
PIE2  
IPR2  
TRISC  
TRISE  
TRISC5  
TRISE5  
TRISC4  
TRISE4  
TRISC0  
TRISE0  
TRISG  
TMR1L  
TMR1H  
T1CON  
TMR3H  
TMR3L  
T3CON  
CCPR1L  
CCPR1H  
CCP1CON  
CCPR2L  
CCPR2H  
CCP2CON  
CCP2OD CCP1OD TRISG4  
TRISG2 TRISG1 TRISG0  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Timer3 Register High Byte  
Timer3 Register Low Byte  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Capture/Compare/PWM Register 2 Low Byte  
Capture/Compare/PWM Register 2 High Byte  
DC2B1  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.  
DS39774C-page 168  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
A PWM output (Figure 15-5) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
15.4 PWM Mode  
In Pulse-Width Modulation (PWM) mode, the CCP2 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP2 pin is multiplexed with a PORTB, PORTC or  
PORTE data latch, the appropriate TRIS bit must be  
cleared to make the CCP2 pin an output.  
FIGURE 15-5:  
PWM OUTPUT  
Period  
Note:  
Clearing the CCP2CON register will force  
the RB3, RC1 or RE7 output latch  
(depending on device configuration) to the  
default low level. This is not the PORTB,  
PORTC or PORTE I/O data latch.  
Duty Cycle  
TMR2 = PR2  
Figure 15-4 shows a simplified block diagram of the  
CCP1 module in PWM mode.  
TMR2 = Duty Cycle  
TMR2 = PR2  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 15.4.3  
“Setup for PWM Operation”.  
15.4.1  
PWM PERIOD  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula:  
FIGURE 15-4:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
EQUATION 15-1:  
CCPR1L  
PWM Period = (PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
PWM frequency is defined as 1/[PWM period].  
CCPR1H (Slave)  
Comparator  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
Q
R
S
RC2/CCP1  
• TMR2 is cleared  
(Note 1)  
TMR2  
• The CCP2 pin is set (exception: if PWM duty  
cycle = 0%, the CCP2 pin will not be set)  
• The PWM duty cycle is latched from CCPR2L into  
CCPR2H  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
Note:  
The Timer2 postscalers (see Section 13.0  
“Timer2 Module”) are not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
Note 1: The 8-bit TMR2 value is concatenated with the 2-bit  
internal Q clock, or 2 bits of the prescaler, to create  
the 10-bit time base.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 169  
PIC18F85J11 FAMILY  
The CCPR2H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation.  
15.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR2L register and to the CCP2CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR2L contains  
the eight MSbs and the CCP2CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR2L:CCP2CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
When the CCPR2H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or 2 bits of  
the TMR2 prescaler, the CCP2 pin is cleared.  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
EQUATION 15-2:  
PWM Duty Cycle = (CCPR2L:CCP2CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
EQUATION 15-3:  
FOSC  
---------------  
log  
FPWM  
PWM Resolution (max)  
= ----------------------------- b i t s  
CCPR2L and CCP2CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR2H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR2H is a read-only register.  
log(2)  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP2 pin will not be  
cleared.  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
14  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
12  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
DS39774C-page 170  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
3. Make the CCP2 pin an output by clearing the  
appropriate TRIS bit.  
15.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
4. Set the TMR2 prescale value, then enable  
Timer2 by writing to T2CON.  
1. Set the PWM period by writing to the PR2  
register.  
5. Configure the CCP2 module for PWM operation.  
2. Set the PWM duty cycle by writing to the  
CCPR2L register and CCP2CON<5:4> bits.  
TABLE 15-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
51  
52  
53  
53  
53  
54  
54  
54  
52  
52  
52  
54  
54  
54  
55  
55  
55  
IPEN  
PSPIF  
PSPIE  
PSPIP  
TRISC7  
TRISE7  
SPIOD  
CM  
ADIF  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
TRISE5  
TX1IF  
TX1IE  
TX1IP  
TRISC4  
TRISE4  
TRISG4  
SSPIF  
SSPIE  
SSPIP  
TRISC3  
TRISE3  
TRISG3  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
ADIE  
IPR1  
ADIP  
TRISC  
TRISE  
TRISG  
TMR2  
PR2  
TRISC6  
TRISE6  
TRISC2 TRISC1 TRISC0  
TRISE1 TRISE0  
TRISG2 TRISG1 TRISG0  
CCP2OD CCP1OD  
Timer2 Register  
Timer2 Period Register  
T2CON  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
CCPR1L Capture/Compare/PWM Register 1 Low Byte  
CCPR1H Capture/Compare/PWM Register 1 High Byte  
CCP1CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
CCPR2L Capture/Compare/PWM Register 2 Low Byte  
CCPR2H Capture/Compare/PWM Register 2 High Byte  
CCP2CON  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PWM or Timer2.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 171  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 172  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
16.3 SPI Mode  
16.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
16.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDO) – RC5/SDO  
• Serial Data In (SDI) – RC4/SDI/SDA  
• Serial Clock (SCK) – RC3/SCK/SCL  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) – RF7/AN5/SS  
Figure 16-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
- Full Master mode  
FIGURE 16-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
• Master mode  
• Multi-Master mode  
• Slave mode  
Read  
Write  
SSPBUF reg  
16.2 Control Registers  
SDI  
The MSSP module has three associated control  
registers. These include a status register (SSPSTAT)  
and two control registers (SSPCON1 and SSPCON2).  
The use of these registers and their individual bits differ  
significantly depending on whether the MSSP module  
is operated in SPI or I2C mode.  
SSPSR reg  
Shift  
Clock  
bit 0  
SDO  
Additional details are provided under the individual  
sections.  
SS  
Control  
Enable  
SS  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 Output  
2
(
)
SCK  
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Data to TXx/RXx in SSPSR  
TRIS bit  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 173  
PIC18F85J11 FAMILY  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
16.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
During  
transmission,  
the  
SSPBUF  
is  
not  
double-buffered. A write to SSPBUF will write to both  
SSPBUF and SSPSR.  
SSPCON1 and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON1  
register is readable and writable. The lower 6 bits of  
the SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 16-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE(1)  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
bit 6  
CKE: SPI Clock Select bit(1)  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C™ mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Note 1: Polarity of clock state is set by the CKP bit (SSPCON1<4>).  
DS39774C-page 174  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 16-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
SSPOV(1)  
R/W-0  
SSPEN(2)  
R/W-0  
CKP  
R/W-0  
SSPM3(3)  
R/W-0  
SSPM2(3)  
R/W-0  
SSPM1(3)  
R/W-0  
SSPM0(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit(1)  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of over-  
flow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the  
SSPBUF, even if only transmitting data, to avoid setting overflow (must be cleared in software).  
0= No overflow  
bit 5  
SSPEN: Master Synchronous Serial Port Enable bit(2)  
1= Enables serial port and configures SCK, SDO, SDI and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM3:SSPM0: Master Synchronous Serial Port Mode Select bits(3)  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note 1: In Master mode, the overflow bit is not set, since each new reception (and transmission) is initiated by  
writing to the SSPBUF register.  
2: When enabled, this pin must be properly configured as an input or output.  
3: Bit combinations not specifically listed here are either reserved or implemented in I2C™ mode only.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 175  
PIC18F85J11 FAMILY  
before reading the data that was just received. Any  
write to the SSPBUF register during transmis-  
sion/reception of data will be ignored and the Write  
Collision detect bit, WCOL (SSPCON1<7>), will be set.  
User software must clear the WCOL bit so that it can be  
determined if the following write(s) to the SSPBUF  
register completed successfully.  
16.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. The  
Buffer Full bit, BF (SSPSTAT<0>), indicates when  
SSPBUF has been loaded with the received data (trans-  
mission is complete). When the SSPBUF is read, the BF  
bit is cleared. This data may be irrelevant if the SPI is  
only a transmitter. Generally, the MSSP interrupt is used  
to determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 16-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then, the Buffer Full detect bit, BF  
(SSPSTAT<0>), and the MSSP Interrupt Flag bit,  
SSPIF, are set. This double-buffering of the received  
data (SSPBUF) allows the next byte to start reception  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the SSPSTAT register indicates the  
various status conditions.  
EXAMPLE 16-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP  
BTFSS  
BRA  
SSPSTAT, BF  
LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF  
MOVWF  
MOVF  
MOVWF  
SSPBUF, W  
RXDATA  
TXDATA, W  
SSPBUF  
;WREG reg = contents of SSPBUF  
;Save in user RAM, if data is meaningful  
;W reg = contents of TXDATA  
;New data to xmit  
DS39774C-page 176  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
to a higher level through an external pull-up resistor,  
and allows the output to communicate with external  
circuits without the need for additional level shifters.  
16.3.3  
ENABLING SPI I/O  
To enable the serial port, MSSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, reinitialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed as follows:  
The open-drain output option is controlled by the  
SPIOD bit (TRISG<7>). Setting the bit configures both  
pins for open-drain operation.  
16.3.5  
TYPICAL CONNECTION  
Figure 16-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISF<7> bit set  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
16.3.4  
OPEN-DRAIN OUTPUT OPTION  
The drivers for the SDO output and SCK clock pins can  
be optionally configured as open-drain outputs. This  
feature allows the voltage level on the pin to be pulled  
• Master sends dummy data – Slave sends data  
FIGURE 16-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xx  
SPI Slave SSPM3:SSPM0 = 010x  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
SCK  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
PROCESSOR 1  
PROCESSOR 2  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 177  
PIC18F85J11 FAMILY  
The clock polarity is selected by appropriately  
programming the CKP bit (SSPCON1<4>). This, then,  
would give waveforms for SPI communication as  
shown in Figure 16-3, Figure 16-5 and Figure 16-6,  
where the MSB is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user-programmable to be one  
of the following:  
16.3.6  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 16-2) will  
broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 16-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 16-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
SDO  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
bit 7  
bit 7  
bit 3  
bit 3  
(CKE = 0)  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39774C-page 178  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
driven. When the SS pin goes high, the SDO pin is no  
longer driven, even if in the middle of a transmitted byte  
16.3.7  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
and  
becomes  
a
floating  
output.  
External  
pull-up/pull-down resistors may be desirable depending  
on the application.  
Before enabling the module in SPI Slave mode, the  
clock line must match the proper Idle state. The clock  
line can be observed by reading the SCK pin. The Idle  
state is determined by the CKP bit (SSPCON1<4>).  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON1<3:0> = 0100),  
the SPI module will reset if the SS pin is set  
to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
16.3.8  
SLAVE SELECT  
SYNCHRONIZATION  
The SS pin allows a Synchronous Slave mode. The SPI  
must be in Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 04h). When the SS pin is low, trans-  
mission and reception are enabled and the SDO pin is  
FIGURE 16-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2  
SSPSR to  
SSPBUF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 179  
PIC18F85J11 FAMILY  
FIGURE 16-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 3  
bit 1  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 16-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 3  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 7  
SDI  
(SMP = 0)  
bit 0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS39774C-page 180  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
mode and data to be shifted into the SPI  
Transmit/Receive Shift register. When all 8 bits have  
been received, the MSSP interrupt flag bit will be set,  
and if enabled, will wake the device.  
16.3.9  
OPERATION IN POWER-MANAGED  
MODES  
In SPI Master mode, module clocks may be operating  
at a different speed than when in full power mode; in  
the case of Sleep mode, all clocks are halted.  
16.3.10 EFFECTS OF A RESET  
In Idle modes, a clock is provided to the peripherals.  
That clock should be from the primary clock source, the  
secondary clock (Timer1 oscillator at 32.768 kHz) or  
the INTRC source. See Section 2.3 “Clock Sources  
and Oscillator Switching” for additional information.  
A Reset disables the MSSP module and terminates the  
current transfer.  
16.3.11 BUS MODE COMPATIBILITY  
Table 16-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
In most cases, the speed that the master clocks SPI  
data is not important; however, this should be  
evaluated for each system.  
TABLE 16-1: SPI BUS MODES  
If MSSP interrupts are enabled, they can wake the con-  
troller from Sleep mode, or one of the Idle modes, when  
the master completes sending data. If an exit from  
Sleep or Idle mode is not desired, MSSP interrupts  
should be disabled.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
If the Sleep mode is selected, all module clocks are  
halted and the transmission/reception will remain in  
that state until the devices wakes. After the device  
returns to Run mode, the module will resume  
transmitting and receiving data.  
There is also an SMP bit which controls when the data  
is sampled.  
In SPI Slave mode, the SPI Transmit/Receive Shift  
register operates asynchronously to the device. This  
allows the device to be placed in any power-managed  
TABLE 16-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
RBIE  
SSPIF  
TMR0IF  
INT0IF  
RBIF  
51  
53  
53  
53  
54  
54  
54  
52  
52  
52  
PSPIF  
PSPIE  
PSPIP  
TRISC7  
TRISF7  
SPIOD  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
TRISC5  
TRISF5  
TMR2IF  
TMR1IF  
PIE1  
TX1IE  
SSPIE  
SSPIP  
TRISC3  
TRISF3  
TRISG3  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
ADIP  
TX1IP  
TRISC  
TRISF  
TRISC6  
TRISF6  
TRISC4  
TRISF4  
TRISC2  
TRISF2  
TRISG2  
TRISC1  
TRISF1  
TRISG1  
TRISC0  
TRISG  
SSPBUF  
SSPCON1  
SSPSTAT  
CCP2OD CCP1OD TRISG4  
TRISG0  
MSSP Receive Buffer/Transmit Register  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP module in SPI mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 181  
PIC18F85J11 FAMILY  
2
16.4.1  
REGISTERS  
16.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call  
support) and provides interrupts on Start and Stop bits  
in hardware to determine a free bus (multi-master  
function). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPBUF)  
Two pins are used for data transfer:  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
• Serial Clock (SCL) – RC3/SCK/SCL  
• Serial Data (SDA) – RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
The user must configure these pins as inputs by setting  
the TRISC<4:3> bits.  
SSPCON1, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON1 and SSPCON2 registers are readable and  
writable. The lower 6 bits of the SSPSTAT are  
read-only. The upper two bits of the SSPSTAT are  
read/write.  
FIGURE 16-7:  
MSSP BLOCK DIAGRAM  
(I2C™ MODE)  
Internal  
Many of the bits in SSPCON2 assume different  
functions, depending on whether the module is operat-  
ing in Master or Slave mode; bits <5:2> also assume  
different names in Slave mode. The different aspects of  
SSPCON2 are shown in Register 16-5 (for Master  
mode) and Register 16-6 (Slave mode).  
Data Bus  
Read  
Write  
SSPBUF reg  
SCL  
SDA  
Shift  
Clock  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
SSPSR reg  
LSb  
MSb  
SSPADD register holds the slave device address when  
the MSSP is configured in I2C Slave mode. When the  
MSSP is configured in Master mode, the lower seven  
bits of SSPADD act as the Baud Rate Generator reload  
value.  
Match Detect  
Addr Match  
Address Mask  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
SSPADD reg  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit Detect  
During  
transmission,  
the  
SSPBUF  
is  
not  
double-buffered. A write to SSPBUF will write to both  
SSPBUF and SSPSR.  
DS39774C-page 182  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 16-3: SSPSTAT: MSSP STATUS REGISTER (I2C™ MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P(1)  
R-0  
S(1)  
R-0  
R0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for High-Speed mode (400 kHz)  
bit 6  
bit 5  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit(1)  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
S: Start bit(1)  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
R/W: Read/Write Information bit (I2C mode only)  
In Slave mode:(2)  
1= Read  
0= Write  
In Master mode:(3)  
1= Transmit is in progress  
0= Transmit is not in progress  
bit 1  
bit 0  
UA: Update Address bit (10-Bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= SSPBUF is full  
0= SSPBUF is empty  
In Receive mode:  
1= SSPBUF is full (does not include the ACK and Stop bits)  
0= SSPBUF is empty (does not include the ACK and Stop bits)  
Note 1: This bit is cleared on Reset and when SSPEN is cleared.  
2: This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next Start bit, Stop bit or not ACK bit.  
3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 183  
PIC18F85J11 FAMILY  
REGISTER 16-4: SSPCON1: MSSP CONTROL REGISTER 1 (I2C™ MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
SSPEN(1)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for a  
transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in  
software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Master Synchronous Serial Port Enable bit(1)  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.  
Note 1: When enabled, the SDA and SCL pins must be configured as inputs.  
DS39774C-page 184  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 16-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C™ MASTER MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
ACKDT(1)  
R/W-0  
ACKEN(2)  
R/W-0  
RCEN(2)  
R/W-0  
PEN(2)  
R/W-0  
RSEN(2)  
R/W-0  
SEN(2)  
ACKSTAT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
GCEN: General Call Enable bit  
Unused in Master mode.  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (Master Receive mode only)(1)  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit(2)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit. Automatically  
cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (Master Receive mode only)(2)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit(2)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
RSEN: Repeated Start Condition Enable bit(2)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enable bit(2)  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
Note 1: Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.  
2: If the I2C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 185  
PIC18F85J11 FAMILY  
REGISTER 16-6: SSPCON2: MSSP CONTROL REGISTER 2 (I2C™ SLAVE MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEN(1)  
ACKSTAT  
ADMSK5  
ADMSK4  
ADMSK3  
ADMSK2  
ADMSK1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GCEN: General Call Enable bit  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
bit 6  
ACKSTAT: Acknowledge Status bit  
Unused in Slave mode.  
bit 5-2  
ADMSK5:ADMSK2: Slave Address Mask Select bits  
1= Masking of corresponding bits of SSPADD enabled  
0= Masking of corresponding bits of SSPADD disabled  
bit 1  
ADMSK1: Slave Address Least Significant bit(s) Mask Select bit  
In 7-Bit Address mode:  
1= Masking of SSPADD<1> only enabled  
0= Masking of SSPADD<1> only disabled  
In 10-Bit Address mode:  
1= Masking of SSPADD<1:0> enabled  
0= Masking of SSPADD<1:0> disabled  
bit 0  
SEN: Stretch Enable bit(1)  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Note 1: If the I2C module is active, this bit may not be set (no spooling) and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
DS39774C-page 186  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter 100 and  
parameter 101.  
16.4.2  
OPERATION  
The MSSP module functions are enabled by setting the  
MSSP Enable bit, SSPEN (SSPCON1<5>).  
The SSPCON1 register allows control of the I2C  
operation. Four mode selection bits (SSPCON1<3:0>)  
allow one of the following I2C modes to be selected:  
16.4.3.1  
Addressing  
• I2C Master mode,  
clock = (FOSC/4) x (SSPADD + 1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode,  
slave is Idle  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain,  
provided these pins are programmed to inputs by  
setting the appropriate TRISC or TRISD bits. To ensure  
proper operation of the module, pull-up resistors must  
be provided externally to the SCL and SDA pins.  
Once the MSSP module has been enabled, it waits for a  
Start condition to occur. Following the Start condition, the  
8 bits are shifted into the SSPSR register. All incoming  
bits are sampled with the rising edge of the clock (SCL)  
line. The value of register SSPSR<7:1> is compared to  
the value of the SSPADD register. The address is com-  
pared on the falling edge of the eighth clock (SCL) pulse.  
If the addresses match and the BF and SSPOV bits are  
clear, the following events occur:  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The Buffer Full bit, BF, is set.  
3. An ACK pulse is generated.  
4. The MSSP Interrupt Flag bit, SSPIF, is set (and  
the interrupt is generated, if enabled) on the  
falling edge of the ninth SCL pulse.  
In 10-Bit Addressing mode, two address bytes need to  
be received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address, the first byte would equal  
11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two  
MSbs of the address. The sequence of events for 10-bit  
addressing is as follows, with steps 7 through 9 for the  
slave-transmitter:  
16.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be  
configured as inputs (TRISC<4:3> set). The MSSP  
module will override the input state with the output data  
when required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an exact address match. In addition,  
address masking will also allow the hardware to gener-  
ate an interrupt for more than one address (up to 31 in  
7-bit addressing and up to 63 in 10-bit addressing).  
Through the mode select bits, the user can also choose  
to interrupt on Start and Stop bits.  
1. Receive first (high) byte of address (bits SSPIF,  
BF and UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
When an address is matched, or the data transfer after  
an address match is received, the hardware auto-  
matically will generate the Acknowledge (ACK) pulse  
and load the SSPBUF register with the received value  
currently in the SSPSR register.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit, SSPIF.  
4. Receive second (low) byte of address (SSPIF,  
BF and UA bits are set).  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear UA bit.  
• The Buffer Full bit, BF (SSPSTAT<0>), was set  
before the transfer was received.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit, SSPIF.  
• The MSSP Overflow bit, SSPOV (SSPCON1<6>),  
was set before the transfer was received.  
7. Receive Repeated Start condition.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but the SSPIF bit is set. The BF bit is  
cleared by reading the SSPBUF register, while the  
SSPOV bit is cleared through software.  
8. Receive first (high) byte of address (SSPIF and  
BF bits are set).  
9. Read the SSPBUF register (clears BF bit) and  
clear flag bit, SSPIF.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 187  
PIC18F85J11 FAMILY  
to issue an address Acknowledge, it is sufficient to match  
only on addresses that do not have an active address  
mask.  
16.4.3.2  
Address Masking  
Masking an address bit causes that bit to become a  
“don’t care”. When one address bit is masked, two  
addresses will be Acknowledged and cause an  
interrupt. It is possible to mask more than one address  
bit at a time, which makes it possible to Acknowledge  
up to 31 addresses in 7-Bit Addressing mode and up to  
63 addresses in 10-Bit Addressing mode (see  
Example 16-2).  
The I2C Slave behaves the same way, whether  
address masking is used or not. However, when  
address masking is used, the I2C slave can  
Acknowledge multiple addresses and cause interrupts.  
When this occurs, it is necessary to determine which  
address caused the interrupt by checking SSPBUF.  
In 10-Bit Addressing mode, ADMSK<5:2> bits mask  
the corresponding address bits in the SSPADD regis-  
ter. In addition, ADMSK1 simultaneously masks the two  
LSbs of the address (SSPADD<1:0>). For any ADMSK  
bits that are active (ADMSK<n> = 1), the correspond-  
ing address bit is ignored (SSPADD<n> = x). Also note  
that although in 10-Bit Addressing mode, the upper  
address bits reuse part of the SSPADD register bits, the  
address mask bits do not interact with those bits. They  
only affect the lower address bits.  
Note 1: ADMSK1 masks the two Least Significant  
bits of the address.  
In 7-Bit Addressing mode, Address Mask bits,  
ADMSK<5:1> (SSPCON2<5:1>), mask the correspond-  
ing address bits in the SSPADD register. For any ADMSK  
bits that are set (ADMSK<n> = 1), the corresponding  
address bit is ignored (SSPADD<n> = x). For the module  
2: The two Most Significant bits of the  
address are not affected by address  
masking.  
EXAMPLE 16-2:  
7-Bit Addressing:  
ADDRESS MASKING EXAMPLES  
SSPADD<7:1> = A0h (1010000) (SSPADD<0> is assumed to be ‘0’)  
ADMSK<5:1> = 00111  
Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh  
10-Bit Addressing:  
SSPADD<7:0> = A0h (10100000) (the two MSbs of the address are ignored in this example, since they are  
not affected by masking)  
ADMSK<5:1> = 00111  
Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh  
DS39774C-page 188  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
16.4.3.3  
Reception  
16.4.3.4  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3 is held low, regard-  
less of SEN (see Section 16.4.4 “Clock Stretching”  
for more details). By stretching the clock, the master  
will be unable to assert another clock pulse until the  
slave is done preparing the transmit data. The transmit  
data must be loaded into the SSPBUF register which  
also loads the SSPSR register. Then, pin RC3 should  
be enabled by setting bit, CKP (SSPCON1<4>). The  
eight data bits are shifted out on the falling edge of the  
SCL input. This ensures that the SDA signal is valid  
during the SCL high time (Figure 16-10).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit, BF (SSPSTAT<0>), is  
set or bit, SSPOV (SSPCON1<6>), is set.  
An MSSP interrupt is generated for each data transfer  
byte. The interrupt flag bit, SSPIF, must be cleared in  
software. The SSPSTAT register is used to determine  
the status of the byte.  
If SEN is enabled (SSPCON2<0> = 1), SCK/SCL will  
be held low (clock stretch) following each data  
transfer. The clock must be released by setting bit,  
CKP (SSPCON1<4>). See Section 16.4.4 “Clock  
Stretching” for more details.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is  
complete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT  
register) and the slave monitors for another occurrence  
of the Start bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin RC3 must be enabled by setting bit, CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 189  
PIC18F85J11 FAMILY  
2
FIGURE 16-8:  
I C™ SLAVE MODE TIMING WITH SEN = 0(RECEPTION, 7-BIT ADDRESSING)  
DS39774C-page 190  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
2
FIGURE 16-9:  
I C™ SLAVE MODE TIMING WITH SEN = 0AND ADMSK<5:1> = 01011  
(RECEPTION, 7-BIT ADDRESSING)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 191  
PIC18F85J11 FAMILY  
2
FIGURE 16-10:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESSING)  
DS39774C-page 192  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 16-11:  
I2C™ SLAVE MODE TIMING WITH SEN = 0(RECEPTION, 10-BIT ADDRESSING)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 193  
PIC18F85J11 FAMILY  
FIGURE 16-12:  
I2C™ SLAVE MODE TIMING WITH SEN = 0AND ADMSK<5:1> = 01001  
(RECEPTION, 10-BIT ADDRESSING)  
DS39774C-page 194  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
2
FIGURE 16-13:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESSING)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 195  
PIC18F85J11 FAMILY  
16.4.4  
CLOCK STRETCHING  
16.4.4.3  
Clock Stretching for 7-Bit Slave  
Transmit Mode  
Both 7-Bit and 10-Bit Slave modes implement  
automatic clock stretching during a transmit sequence.  
The 7-Bit Slave Transmit mode implements clock  
stretching by clearing the CKP bit after the falling edge  
of the ninth clock if the BF bit is clear. This occurs  
regardless of the state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause  
the SCL pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 16-10).  
16.4.4.1  
Clock Stretching for 7-Bit Slave  
Receive Mode (SEN = 1)  
In 7-Bit Slave Receive mode when the BF bit is set, on  
the falling edge of the ninth clock at the end of the  
ACK sequence, the CKP bit in the SSPCON1 register  
is automatically cleared, forcing the SCL output to be  
held low. The CKP bit being cleared to ‘0’ will assert  
the SCL line low. The CKP bit must be set in the user’s  
ISR before reception is allowed to continue. By holding  
the SCL line low, the user has time to service the ISR  
and read the contents of the SSPBUF before the  
master device can initiate another receive sequence.  
This will prevent buffer overruns from occurring (see  
Figure 16-15).  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
16.4.4.4  
Clock Stretching for 10-Bit Slave  
Transmit Mode  
In 10-Bit Slave Transmit mode, clock stretching is  
controlled during the first two address sequences by  
the state of the UA bit, just as it is in 10-Bit Slave  
Receive mode. The first two addresses are followed  
by a third address sequence which contains the  
high-order bits of the 10-bit address and the R/W bit  
set to ‘1’. After the third address sequence is  
performed, the UA bit is not set, the module is now  
configured in Transmit mode and clock stretching is  
controlled by the BF flag as in 7-Bit Slave Transmit  
mode (see Figure 16-13).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
16.4.4.2  
Clock Stretching for 10-Bit Slave  
Receive Mode (SEN = 1)  
In 10-Bit Slave Receive mode, during the address  
sequence, clock stretching automatically takes place  
but the CKP bit is not cleared. During this time, if the  
UA bit is set after the ninth clock, clock stretching is  
initiated. The UA bit is set after receiving the upper  
byte of the 10-bit address and following the receive of  
the second byte of the 10-bit address with the R/W bit  
cleared to ‘0’. The release of the clock line occurs  
upon updating SSPADD. Clock stretching will occur on  
each data receive sequence as described in 7-bit  
mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a  
data sequence, not an address sequence.  
DS39774C-page 196  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
already asserted the SCL line. The SCL output will  
remain low until the CKP bit is set and all other  
devices on the I2C bus have deasserted SCL. This  
ensures that a write to the CKP bit will not violate the  
minimum high time requirement for SCL (see  
Figure 16-14).  
16.4.4.5  
Clock Synchronization and  
the CKP bit  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’. However, clearing the CKP bit will not assert the  
SCL output low until the SCL output is already sam-  
pled low. Therefore, the CKP bit will not assert the  
SCL line until an external I2C master device has  
FIGURE 16-14:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX – 1  
Master Device  
Asserts Clock  
CKP  
Master Device  
Deasserts Clock  
WR  
SSPCONx  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 197  
PIC18F85J11 FAMILY  
2
FIGURE 16-15:  
I C™ SLAVE MODE TIMING WITH SEN = 1(RECEPTION, 7-BIT ADDRESSING)  
DS39774C-page 198  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 16-16:  
I2C™ SLAVE MODE TIMING WITH SEN = 1(RECEPTION, 10-BIT ADDRESSING)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 199  
PIC18F85J11 FAMILY  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit) and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
16.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually  
determines which device will be the slave addressed by  
the master. The exception is the general call address  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-Bit Addressing mode, the SSPADD is required to  
be updated for the second half of the address to match  
and the UA bit is set (SSPSTAT<1>). If the general call  
address is sampled when the GCEN bit is set, while the  
slave is configured in 10-Bit Addressing mode, then the  
second half of the address is not necessary, the UA bit  
will not be set and the slave will begin receiving data  
after the Acknowledge (Figure 16-17).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the  
General Call Enable bit, GCEN, is enabled  
(SSPCON2<7> set). Following a Start bit detect, 8 bits  
are shifted into the SSPSR and the address is  
compared against the SSPADD. It is also compared to  
the general call address and fixed in hardware.  
FIGURE 16-17:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESSING MODE)  
Address is compared to General Call Address;  
after ACK, set interrupt  
Receiving Data  
ACK  
9
R/W = 0  
General Call Address  
ACK D7 D6  
D5 D4 D3 D2 D1 D0  
SDA  
SCL  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
DS39774C-page 200  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
16.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start con-  
dition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop con-  
ditions. The Stop (P) and Start (S) bits are cleared from  
a Reset or when the MSSP module is disabled. Control  
of the I2C bus may be taken when the P bit is set, or the  
bus is Idle, with both the S and P bits clear.  
The following events will cause the MSSP Interrupt  
Flag bit, SSPIF, to be set (and MSSP interrupt, if  
enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start Condition  
Once Master mode is enabled, the user has six  
options.  
• Stop Condition  
• Data Transfer Byte Transmitted/Received  
• Acknowledge Transmit  
• Repeated Start  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 16-18:  
MSSP BLOCK DIAGRAM (I C™ MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
End of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset S, P, WCOL (SSPSTAT, SSPCON1);  
Set SSPIF, BCLIF;  
Reset ACKSTAT, PEN (SSPCON2)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 201  
PIC18F85J11 FAMILY  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
16.4.6.1  
1. The user generates a Start condition by setting  
the Start Enable bit, SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted  
contains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate the receive bit.  
Serial data is received via SDA, while SCL outputs the  
serial clock. Serial data is received 8 bits at a time. After  
each byte is received, an Acknowledge bit is transmit-  
ted. Start and Stop conditions indicate the beginning  
and end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCL clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 16.4.7 “Baud Rate” for more detail.  
11. The user generates a Stop condition by setting  
the Stop Enable bit, PEN (SSPCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
DS39774C-page 202  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Table 16-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
16.4.7  
BAUD RATE  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 16-19). When a write occurs  
to SSPBUF, the Baud Rate Generator will automatically  
begin counting. The BRG counts down to 0 and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
16.4.7.1  
Baud Rate Generation in  
Power-Managed Modes  
When the device is operating in one of the  
power-managed modes, the clock source to the BRG  
may change frequency, or even stop, depending on the  
mode and clock source selected. Switching to a Run or  
Idle mode from either the secondary clock or internal  
oscillator is likely to change the clock rate to the BRG.  
In Sleep mode, the BRG will not be clocked at all.  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
FIGURE 16-19:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 16-3: I2C™ CLOCK RATE w/BRG  
FSCL  
FCY  
FCY * 2  
BRG Value  
(2 Rollovers of BRG)  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
18h  
1Fh  
63h  
09h  
0Ch  
27h  
02h  
09h  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
100 kHz  
1 MHz(1)  
Note 1: The I2C™ interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 203  
PIC18F85J11 FAMILY  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 16-20).  
16.4.7.2  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
FIGURE 16-20:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX – 1  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL allowed to transition high  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS39774C-page 204  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
16.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
Note:  
If, at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the Start condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs.  
The Bus Collision Interrupt Flag, BCLIF, is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
To initiate a Start condition, the user sets the Start  
Enable bit, SEN (SSPCON2<0>). If the SDA and SCL  
pins are sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and starts  
its count. If SCL and SDA are both sampled high when  
the Baud Rate Generator times out (TBRG), the SDA  
pin is driven low. The action of the SDA being driven  
low while SCL is high is the Start condition and causes  
the S bit (SSPSTAT<3>) to be set. Following this, the  
Baud Rate Generator is reloaded with the contents of  
SSPADD<6:0> and resumes its count. When the Baud  
Rate Generator times out (TBRG), the SEN bit  
(SSPCON2<0>) will be automatically cleared by  
hardware. The Baud Rate Generator is suspended,  
leaving the SDA line held low and the Start condition is  
complete.  
16.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
FIGURE 16-21:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st bit 2nd bit  
SDA  
TBRG  
SCL  
TBRG  
S
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 205  
PIC18F85J11 FAMILY  
16.4.9  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is  
sampled low, the Baud Rate Generator is loaded with  
the contents of SSPADD<6:0> and begins counting.  
The SDA pin is released (brought high) for one Baud  
Rate Generator count (TBRG). When the Baud Rate  
Generator times out, if SDA is sampled high, the SCL  
pin will be deasserted (brought high). When SCL is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of SSPADD<6:0> and begins  
counting. SDA and SCL must be sampled high for one  
TBRG. This action is then followed by assertion of the  
SDA pin (SDA = 0) for one TBRG while SCL is high.  
Following this, the RSEN bit (SSPCON2<1>) will be  
automatically cleared and the Baud Rate Generator will  
not be reloaded, leaving the SDA pin held low. As soon  
as a Start condition is detected on the SDA and SCL  
pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit  
will not be set until the Baud Rate Generator has timed  
out.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
Immediately following the SSPIF bit getting set, the user  
may write the SSPBUF with the 7-bit address in 7-Bit  
Addressing mode or the default first address in 10-Bit  
Addressing mode. After the first eight bits are transmit-  
ted and an ACK is received, the user may then transmit  
an additional eight bits of address (10-Bit Addressing  
mode) or eight bits of data (7-Bit Addressing mode).  
16.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
FIGURE 16-22:  
REPEATED START CONDITION WAVEFORM  
S bit set by hardware  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
Write to SSPCON2 occurs here: SDA = 1,  
SCL (no change)  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
RSEN bit set by hardware  
on falling edge of ninth clock,  
end of Xmit  
Write to SSPBUF occurs here  
TBRG  
SCL  
TBRG  
Sr = Repeated Start  
DS39774C-page 206  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
16.4.10 I2C MASTER MODE  
TRANSMISSION  
The user should verify that the WCOL is clear after  
each write to SSPBUF to ensure the transfer is correct.  
In all cases, WCOL must be cleared in software.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full bit, BF, and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification  
parameter 106). SCL is held low for one Baud Rate  
Generator rollover count (TBRG). Data should be valid  
before SCL is released high (see data setup time  
specification parameter 107). When the SCL pin is  
released high, it is held that way for TBRG. The data on  
the SDA pin must remain stable for that duration and  
some hold time after the next falling edge of SCL. After  
the eighth bit is shifted out (the falling edge of the eighth  
clock), the BF flag is cleared and the master releases  
SDA. This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time if an  
address match occurred, or if data was received  
properly. The status of ACK is written into the ACKDT  
bit on the falling edge of the ninth clock. If the master  
receives an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared; if not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 16-23).  
16.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
16.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2<3>).  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set or the RCEN bit  
will be disregarded.  
The Baud Rate Generator begins counting, and on  
each rollover, the state of the SCL pin changes  
(high-to-low/low-to-high) and data is shifted into the  
SSPSR. After the falling edge of the eighth clock, the  
receive enable flag is automatically cleared, the con-  
tents of the SSPSR are loaded into the SSPBUF, the  
BF flag bit is set, the SSPIF flag bit is set and the Baud  
Rate Generator is suspended from counting, holding  
SCL low. The MSSP is now in Idle state awaiting the  
next command. When the buffer is read by the CPU,  
the BF flag bit is automatically cleared. The user can  
then send an Acknowledge bit at the end of reception  
by setting the Acknowledge Sequence Enable bit,  
ACKEN (SSPCON2<4>).  
After the write to the SSPBUF, each bit of the address  
will be shifted out on the falling edge of SCL until all  
seven address bits and the R/W bit are completed. On  
the falling edge of the eighth clock, the master will  
deassert the SDA pin, allowing the slave to respond  
with an Acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDA pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT bit  
(SSPCON2<6>). Following the falling edge of the ninth  
clock transmission of the address, the SSPIF bit is set,  
the BF flag is cleared and the Baud Rate Generator is  
turned off until another write to the SSPBUF takes  
place, holding SCL low and allowing SDA to float.  
16.4.11.1 BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
16.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
16.4.11.3 WCOL Status Flag  
16.4.10.1 BF Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
16.4.10.2 WCOL Status Flag  
If the user writes to the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur) after  
2 TCY after the SSPBUF write. If SSPBUF is rewritten  
within 2 TCY, the WCOL bit is set and SSPBUF is  
updated. This may result in a corrupted transfer.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 207  
PIC18F85J11 FAMILY  
2
FIGURE 16-23:  
I C™ MASTER MODE WAVEFORM (TRANSMISSION,  
7 OR 10-BIT ADDRESSING)  
DS39774C-page 208  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
2
FIGURE 16-24:  
I C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESSING)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 209  
PIC18F85J11 FAMILY  
16.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
16.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2<2>). At the end of  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 16-25).  
a
receive/transmit, the SCL line is held low after the fall-  
ing edge of the ninth clock. When the PEN bit is set, the  
master will assert the SDA line low. When the SDA line  
is sampled low, the Baud Rate Generator is reloaded  
and counts down to ‘0’. When the Baud Rate Generator  
times out, the SCL pin will be brought high and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be deasserted. When the SDA pin is  
sampled high while SCL is high, the  
(SSPSTAT<4>) is set. A TBRG later, the PEN bit is  
cleared and the SSPIF bit is set (Figure 16-26).  
P
bit  
16.4.13.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
16.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 16-25:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2,  
ACKEN automatically cleared  
TBRG  
ACKEN = 1, ACKDT = 0  
TBRG  
SDA  
D0  
8
ACK  
SCL  
9
SSPIF  
Cleared in  
software  
SSPIF set at  
the end of receive  
Cleared in  
software  
SSPIF set at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 16-26:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
Write to SSPCON2,  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
set PEN  
Falling edge of  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
9th clock  
ACK  
TBRG  
SCL  
SDA  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS39774C-page 210  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
16.4.14 SLEEP OPERATION  
16.4.17 MULTI -MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA by letting SDA float high, and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF and reset the  
I2C port to its Idle state (Figure 16-27).  
16.4.15 EFFECTS OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
16.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT<4>) is set, or the  
bus is Idle, with both the S and P bits clear. When the  
bus is busy, enabling the MSSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C bus  
is free, the user can resume communication by asserting  
a Start condition.  
In multi-master operation, the SDA line must be  
monitored for arbitration to see if the signal level is the  
expected output level. This check is performed in  
hardware with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop or Acknowledge condition  
was in progress when the bus collision occurred, the  
condition is aborted, the SDA and SCL lines are  
deasserted and the respective control bits in the  
SSPCON2 register are cleared. When the user services  
the bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the deter-  
mination of when the bus is free. Control of the I2C bus  
can be taken when the P bit is set in the SSPSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
FIGURE 16-27:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
Data changes  
while SCL = 0  
SDA line pulled low  
by another source  
data doesn’t match what is driven  
by the master.  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 211  
PIC18F85J11 FAMILY  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 16-30). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to 0. If the SCL pin is sampled as ‘0’  
during this time, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
16.4.17.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 16-28).  
b) SCL is sampled low before SDA is asserted low  
(Figure 16-29).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address  
following the Start condition. If the address  
is the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted;  
• the BCLIF flag is set; and  
• the MSSP module is reset to its Idle state  
(Figure 16-28).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 16-28:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
MSSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS39774C-page 212  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 16-29:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
SSPIF  
0’  
FIGURE 16-30:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
SEN  
S
SCL pulled low after BRG  
time-out  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1,  
set SSPIF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 213  
PIC18F85J11 FAMILY  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, see  
Figure 16-31). If SDA is sampled high, the BRG is  
reloaded and begins counting. If SDA goes from  
high-to-low before the BRG times out, no bus collision  
occurs because no two masters can assert SDA at  
exactly the same time.  
16.4.17.2 Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
If SCL goes from high-to-low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition  
(see Figure 16-32).  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to 0. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is complete.  
FIGURE 16-31:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
0’  
S
0’  
SSPIF  
FIGURE 16-32:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS39774C-page 214  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 16-33). If the SCL pin is  
sampled low before SDA is allowed to float high, a bus  
collision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 16-34).  
16.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 16-33:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SCL  
SDA asserted low  
PEN  
BCLIF  
0’  
0’  
P
SSPIF  
FIGURE 16-34:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
0’  
0’  
P
SSPIF  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 215  
PIC18F85J11 FAMILY  
TABLE 16-4: REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TRISC3  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
TRISC1  
RBIF  
TMR1IF  
TMR1IE  
TMR1IP  
51  
53  
53  
53  
53  
53  
53  
54  
52  
52  
52  
52  
PSPIF  
PSPIE  
ADIF  
ADIE  
RC1IF  
RC1IE  
RC1IP  
PIE1  
IPR1  
PSPIP  
ADIP  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
TRISC7  
CMIF  
CMIE  
CMIP  
TRISC6  
LVDIF  
LVDIE  
LVDIP  
TRISC2  
PIE2  
IPR2  
TRISC  
TRISC5  
TRISC4  
TRISC0  
SSPBUF  
MSSP Receive Buffer/Transmit Register  
SSPADD MSSP Address Register (I2C™ Slave mode), MSSP Baud Rate Reload Register (I2C Master mode)  
SSPCON1  
SSPCON2  
WCOL  
GCEN  
GCEN  
SMP  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
SEN  
SEN  
BF  
ACKSTAT ACKDT  
ACKEN  
RCEN  
PEN  
RSEN  
(1)  
(1)  
(1)  
(1)  
(1)  
ACKSTAT ADMSK5 ADMSK4 ADMSK3 ADMSK2 ADMSK1  
SSPSTAT  
CKE D/A R/W UA  
P
S
52  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP module in I2C™ mode.  
Note 1: Alternate bit definitions for use in I2C Slave mode operations only.  
DS39774C-page 216  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The pins of the EUSART are multiplexed with the  
functions of PORTC (RC6/TX1/CK1 and RC7/RX1/DT1).  
In order to configure these pins as a EUSART:  
17.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• bit SPEN (RCSTA1<7>) must be set (= 1)  
• bit TRISC<7> must be set (= 1)  
PIC18F85J11 family devices have three serial I/O  
modules: the MSSP module, discussed in the previous  
chapter and two Universal Synchronous Asynchronous  
Receiver Transmitter (USART) modules. (Generically,  
the USART is also known as a Serial Communications  
Interface or SCI.) The EUSART can be configured as a  
full-duplex, asynchronous system that can communicate  
with peripheral devices, such as CRT terminals and per-  
sonal computers. It can also be configured as a  
half-duplex, synchronous system that can communicate  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs, etc.  
• bit TRISC<6> must be set (= 1)  
Note:  
The EUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
The driver for the TX1 output pin can also be optionally  
configured as an open-drain output. This feature allows  
the voltage level on the pin to be pulled to a higher level  
through an external pull-up resistor, and allows the  
output to communicate with external circuits without the  
need for additional level shifters.  
The open-drain output option is controlled by the U1OD  
bit (LATG<6>). Setting the bit configures the pin for  
open-drain operation.  
There are two distinct implementations of the USART  
module in these devices: the Enhanced USART  
(EUSART) discussed here and the Addressable  
USART discussed in the next chapter. For this device  
family, USART1 always refers to the EUSART, while  
USART2 is always the AUSART.  
17.1 Control Registers  
The operation of the Enhanced USART module is  
controlled through three registers:  
The EUSART and AUSART modules implement the  
same core features for serial communications; their  
basic operation is essentially the same. The EUSART  
module provides additional features, including Auto-  
matic Baud Rate Detection and calibration, automatic  
wake-up on Sync Break reception and 12-bit Break  
character transmit. These features make it ideally  
suited for use in Local Interconnect Network bus (LIN  
bus) systems.  
• Transmit Status and Control Register 1 (TXSTA1)  
• Receive Status and Control Register 1 (RCSTA1)  
• Baud Rate Control Register 1 (BAUDCON1)  
The registers are described in Register 17-1,  
Register 17-2 and Register 17-3.  
The EUSART can be configured in the following  
modes:  
• Asynchronous (full-duplex) with:  
- Auto-wake-up on character reception  
- Auto-baud calibration  
- 12-bit Break character transmission  
• Synchronous – Master (half-duplex) with  
selectable clock polarity  
• Synchronous – Slave (half-duplex) with selectable  
clock polarity  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 217  
PIC18F85J11 FAMILY  
REGISTER 17-1: TXSTA1: EUSART TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-Bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: AUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th Bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS39774C-page 218  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 17-2: RCSTA1: EUSART RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX1/DT1 and TX1/CK1 pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-Bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 9-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG1 register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th Bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 219  
PIC18F85J11 FAMILY  
REGISTER 17-3: BAUDCON1: BAUD RATE CONTROL REGISTER 1  
R/W-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCMT  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ABDOVF: Auto-Baud Acquisition Rollover Status bit  
1= A BRG rollover has occurred during Auto-Baud Rate Detect mode (must be cleared in software)  
0= No BRG rollover has occurred  
RCMT: Receive Operation Idle Status bit  
1= Receive operation is Idle  
0= Receive operation is active  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode.  
Synchronous mode:  
1= Idle state for clock (CK1) is a high level  
0= Idle state for clock (CK1) is a low level  
bit 3  
BRG16: 16-Bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGH1 and SPBRG1  
0= 8-bit Baud Rate Generator – SPBRG1 only (Compatible mode), SPBRGH1 value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= EUSART will continue to sample the RX1 pin – interrupt generated on falling edge; bit cleared in  
hardware on following rising edge  
0= RX1 pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character. Requires reception of a Sync field (55h);  
cleared in hardware upon completion.  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
DS39774C-page 220  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Asynchronous modes are shown in Table 17-2. It may  
be advantageous to use the high baud rate (BRGH = 1)  
or the 16-bit BRG to reduce the baud rate error, or  
achieve a slow baud rate for a fast oscillator frequency.  
17.2 EUSART Baud Rate Generator  
(BRG)  
The BRG is a dedicated, 8-bit or 16-bit generator that  
supports both the Asynchronous and Synchronous  
modes of the EUSART. By default, the BRG operates  
in 8-bit mode; setting the BRG16 bit (BAUDCON1<3>)  
selects 16-bit mode.  
Writing a new value to the SPBRGH1:SPBRG1 regis-  
ters causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
The SPBRGH1:SPBRG1 register pair controls the  
period of a free-running timer. In Asynchronous mode,  
BRGH (TXSTA1<2>) and BRG16 (BAUDCON1<3>) bits  
also control the baud rate. In Synchronous mode, BRGH  
is ignored. Table 17-1 shows the formula for computa-  
tion of the baud rate for different EUSART modes that  
only apply in Master mode (internally generated clock).  
17.2.1  
OPERATION IN POWER-MANAGED  
MODES  
The device clock is used to generate the desired baud  
rate. When one of the power-managed modes is  
entered, the new clock source may be operating at a  
different frequency. This may require an adjustment to  
the value in the SPBRG1 register pair.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGH1:SPBRG1 registers can  
be calculated using the formulas in Table 17-1. From  
this, the error in baud rate can be determined. An  
example calculation is shown in Example 17-1. Typical  
baud rates and error values for the various  
17.2.2  
SAMPLING  
The data on the RX1 pin is sampled three times by a  
majority detect circuit to determine if a high or low level  
is present at the RX1 pin.  
TABLE 17-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/EUSART Mode  
Baud Rate Formula  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-Bit/Asynchronous  
8-Bit/Asynchronous  
16-Bit/Asynchronous  
16-Bit/Asynchronous  
8-Bit/Synchronous  
16-Bit/Synchronous  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = Value of SPBRGH1:SPBRG1 register pair  
EXAMPLE 17-1: CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate = FOSC/(64 ([SPBRGH1:SPBRG1] + 1))  
Solving for SPBRGH1:SPBRG1:  
= ((FOSC/Desired Baud Rate)/64) – 1  
X
= ((16000000/9600)/64) – 1  
= [25.042] = 25  
Calculated Baud Rate = 16000000/(64 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
= (9615 – 9600)/9600 = 0.16%  
TABLE 17-2: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Reset Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA1  
RCSTA1  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
53  
53  
54  
54  
53  
BAUDCON1 ABDOVF RCMT  
ABDEN  
SPBRGH1  
SPBRG1  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 221  
PIC18F85J11 FAMILY  
TABLE 17-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
0.300  
1.201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
(decimal)  
SPBRG Actual  
Value  
(decimal)  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.403  
9.615  
19.230  
55.555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
DS39774C-page 222  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 17-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Value  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
0.300  
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 1, BRG16 = 1or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
Value  
SPBRG  
Value  
(decimal)  
%
Error  
%
%
%
Error  
Value  
(decimal)  
Rate  
(K)  
Value  
Rate  
(K)  
Rate  
(K)  
Error  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2.400  
9.6  
9.606  
9.596  
9.615  
9.615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19.230  
57.142  
117.647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
Value  
(decimal)  
%
Error  
%
Error  
%
Error  
Value  
Rate  
(K)  
Value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 223  
PIC18F85J11 FAMILY  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. The RC1IF interrupt is set  
once the fifth rising edge on RX1 is detected. The value  
in the RCREG1 needs to be read to clear the RC1IF  
interrupt. The contents of RCREG1 should be  
discarded.  
17.2.3  
AUTO-BAUD RATE DETECT  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
The automatic baud rate measurement sequence  
(Figure 17-1) begins whenever a Start bit is received  
and the ABDEN bit is set. The calculation is  
self-averaging.  
Note 1: If the WUE bit is set with the ABDEN bit,  
Auto-Baud Rate Detection will occur on  
the byte following the Break character.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible  
due to bit error rates. Overall system  
timing and communication baud rates  
must be taken into consideration when  
using the Auto-Baud Rate Detection  
feature.  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RX1 signal, the RX1 signal is timing the BRG.  
In ABD mode, the internal Baud Rate Generator is  
used as a counter to time the bit period of the incoming  
serial byte stream.  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The Auto-Baud Rate  
Detect must receive a byte with the value, 55h (ASCII  
“U”, which is also the LIN bus Sync character), in order  
to calculate the proper bit rate. The measurement is  
taken over both a low and high bit time in order to min-  
imize any effects caused by asymmetry of the incoming  
signal. After a Start bit, the SPBRG1 begins counting  
up, using the preselected clock source on the first rising  
edge of RX1. After eight bits on the RX1 pin, or the fifth  
rising edge, an accumulated value totalling the proper  
BRG period is left in the SPBRGH1:SPBRG1 register  
pair. Once the 5th edge is seen (this should correspond  
to the Stop bit), the ABDEN bit is automatically cleared.  
TABLE 17-4: BRG COUNTER CLOCK  
RATES  
BRG16 BRGH  
BRG Counter Clock  
0
0
1
0
1
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
0
1
1
Note:  
During the ABD sequence, SPBRG1 and  
SPBRGH1 are both used as a 16-bit  
counter, independent of the BRG16 setting.  
If a rollover of the BRG occurs (an overflow from FFFFh  
to 0000h), the event is trapped by the ABDOVF status bit  
(BAUDCON1<7>). It is set in hardware by BRG rollovers  
and can be set or cleared by the user in software. ABD  
mode remains active after rollover events and the  
ABDEN bit remains set (Figure 17-2).  
17.2.3.1  
ABD and EUSART Transmission  
Since the BRG clock is reversed during ABD acquisi-  
tion, the EUSART transmitter cannot be used during  
ABD. This means that whenever the ABDEN bit is set,  
TXREG1 cannot be written to. Users should also  
ensure that ABDEN does not become set during a  
transmit sequence. Failing to do this may result in  
unpredictable EUSART operation.  
While calibrating the baud rate period, the BRG regis-  
ters are clocked at 1/8th the preconfigured clock rate.  
Note that the BRG clock will be configured by the  
BRG16 and BRGH bits. Independent of the BRG16 bit  
setting, both the SPBRG1 and SPBRGH1 will be used  
as a 16-bit counter. This allows the user to verify that  
no carry occurred for 8-bit modes by checking for 00h  
in the SPBRGH1 register. Refer to Table 17-4 for  
counter clock rates to the BRG.  
DS39774C-page 224  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 17-1:  
BRG Value  
AUTOMATIC BAUD RATE CALCULATION  
XXXXh  
0000h  
001Ch  
Edge #5  
Stop bit  
Edge #2  
bit 3  
Edge #3  
bit 5  
bit 4  
Edge #4  
bit 7  
Edge #1  
bit 1  
RX1 pin  
Start  
bit 2  
bit 6  
bit 0  
BRG Clock  
Auto-Cleared  
Set by User  
ABDEN bit  
RC1IF bit  
(Interrupt)  
Read  
RCREG1  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRG1  
SPBRGH1  
Note: The ABD sequence requires the EUSART module to be configured in Asynchronous mode and WUE = 0.  
FIGURE 17-2:  
BRG OVERFLOW SEQUENCE  
BRG Clock  
ABDEN bit  
RX1 pin  
Start  
bit 0  
ABDOVF bit  
BRG Value  
FFFFh  
XXXXh  
0000h  
0000h  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 225  
PIC18F85J11 FAMILY  
Once the TXREG1 register transfers the data to the TSR  
register (occurs in one TCY), the TXREG1 register is  
empty and the TX1IF flag bit (PIR1<4>) is set. This inter-  
rupt can be enabled or disabled by setting or clearing the  
interrupt enable bit, TX1IE (PIE1<4>). TX1IF will be set  
regardless of the state of TX1IE; it cannot be cleared in  
software. TX1IF is also not cleared immediately upon  
loading TXREG1, but becomes valid in the second  
instruction cycle following the load instruction. Polling  
TX1IF immediately following a load of TXREG1 will  
return invalid results.  
17.3 EUSART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA1<4>). In this mode, the  
EUSART uses standard Non-Return-to-Zero (NRZ) for-  
mat (one Start bit, eight or nine data bits and one Stop  
bit). The most common data format is 8 bits. An  
on-chip, dedicated 8-bit/16-bit Baud Rate Generator  
can be used to derive standard baud rate frequencies  
from the oscillator.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but use the same data format and baud  
rate. The Baud Rate Generator produces a clock, either  
x16 or x64 of the bit shift rate, depending on the BRGH  
and BRG16 bits (TXSTA1<2> and BAUDCON1<3>).  
Parity is not supported by the hardware but can be  
implemented in software and stored as the 9th data bit.  
While TX1IF indicates the status of the TXREG1 regis-  
ter, another bit, TRMT (TXSTA1<1>), shows the status  
of the TSR register. TRMT is a read-only bit which is set  
when the TSR register is empty. No interrupt logic is  
tied to this bit so the user has to poll this bit in order to  
determine if the TSR register is empty.  
Note 1: The TSR register is not mapped in data  
When operating in Asynchronous mode, the EUSART  
module consists of the following important elements:  
memory so it is not available to the user.  
2: Flag bit, TX1IF, is set when enable bit,  
• Baud Rate Generator  
• Sampling Circuit  
TXEN, is set.  
To set up an Asynchronous Transmission:  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Auto-Wake-up on Sync Break Character  
• 12-Bit Break Character Transmit  
• Auto-Baud Rate Detection  
1. Initialize the SPBRGH1:SPBRG1 registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
3. If interrupts are desired, set enable bit, TX1IE.  
4. If 9-bit transmission is desired, set transmit bit,  
TX9; can be used as address/data bit.  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TX1IF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Load data to the TXREG1 register (starts  
transmission).  
8. If using interrupts, ensure that the GIE and PEIE bits  
in the INTCON register (INTCON<7:6>) are set.  
17.3.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
The EUSART transmitter block diagram is shown in  
Figure 17-3. The heart of the transmitter is the Transmit  
(Serial) Shift register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG1. The TXREG1 register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREG1 register (if available).  
FIGURE 17-3:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TX1IF  
TXREG1 Register  
8
TX1IE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR Register  
TX1 pin  
Interrupt  
Baud Rate CLK  
SPBRG1  
TXEN  
SPEN  
TRMT  
BRG16  
SPBRGH1  
TX9  
Baud Rate Generator  
TX9D  
DS39774C-page 226  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 17-4:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG1  
Word 1  
BRG Output  
(Shift Clock)  
TX1 (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TX1IF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 17-5:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG1  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX1 (pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TX1IF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 17-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
51  
53  
53  
53  
53  
53  
53  
54  
54  
53  
54  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF  
TMR1IF  
PIE1  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
RCSTA1  
TXREG1  
TXSTA1  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCMT  
ABDEN  
SPBRGH1  
SPBRG1  
LATG  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
U2OD  
U1OD  
LATG4  
LATG3  
LATG2  
LATG1  
LATG0  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 227  
PIC18F85J11 FAMILY  
17.3.2  
EUSART ASYNCHRONOUS  
RECEIVER  
17.3.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 17-6.  
The data is received on the RX1 pin and drives the data  
recovery block. The data recovery block is actually a  
high-speed shifter operating at x16 times the baud rate,  
whereas the main receive serial shifter operates at the  
bit rate or at FOSC. This mode would typically be used  
in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH1:SPBRG1 registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGH1:SPBRG1 registers for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RC1IP  
bit.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set enable bit, RC1IE.  
4. If 9-bit reception is desired, set bit, RX9.  
5. Enable the reception by setting bit, CREN.  
7. The RC1IF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RC1IE and GIE bits are set.  
6. Flag bit, RC1IF, will be set when reception is  
complete and an interrupt will be generated if  
enable bit, RC1IE, was set.  
8. Read the RCSTA1 register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA1 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG1 to determine if the device is  
being addressed.  
8. Read the 8-bit received data by reading the  
RCREG1 register.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit, CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 17-6:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
÷ 64  
or  
RSR Register  
• • •  
MSb  
LSb  
BRG16  
SPBRGH1 SPBRG1  
÷ 16  
Stop (8)  
7
1
0
Start  
or  
÷ 4  
Baud Rate Generator  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RX1  
RX9D  
RCREG1 Register  
FIFO  
SPEN  
8
Interrupt  
RC1IF  
RC1IE  
Data Bus  
DS39774C-page 228  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 17-7:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
Start  
RX1 (pin)  
bit 0 bit 1  
bit 7/8 Stop  
bit  
bit  
bit 0  
bit 7/8 Stop  
bit  
bit  
bit 7/8 Stop  
bit  
Rcv Shift Reg  
Rcv Buffer Reg  
Word 2  
RCREG1  
Word 1  
RCREG1  
RCREG1  
Read Rcv  
Buffer Reg  
RC1IF  
(Interrupt Flag)  
OERR bit  
CREN bit  
Note: This timing diagram shows three words appearing on the RX1 input. The RCREG1 (EUSART Receive register) is read after the third  
word causing the OERR (Overrun Error) bit to be set.  
TABLE 17-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
51  
53  
53  
53  
53  
53  
53  
54  
54  
53  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
RCREG1  
TXSTA1  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCMT  
ABDEN  
SPBRGH1  
SPBRG1  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 229  
PIC18F85J11 FAMILY  
End-of-Character (EOC) and cause data or framing  
errors. Therefore, to work properly, the initial character  
in the transmission must be all ‘0’s. This can be 00h  
(8 bytes) for standard RS-232 devices or 000h (12 bits)  
for LIN bus.  
17.3.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper byte reception cannot be per-  
formed. The auto-wake-up feature allows the controller  
to wake-up due to activity on the RX1/DT1 line, while  
the EUSART is operating in Asynchronous mode.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., XT or HS mode). The Sync  
Break (or Wake-up Signal) character must be of  
sufficient length and be followed by a sufficient interval  
to allow enough time for the selected oscillator to start  
and provide proper initialization of the EUSART.  
The auto-wake-up feature is enabled by setting the  
WUE bit (BAUDCON<1>). Once set, the typical receive  
sequence on RX1/DT1 is disabled and the EUSART  
remains in an Idle state, monitoring for a wake-up event  
independent of the CPU mode. A wake-up event  
consists of a high-to-low transition on the RX1/DT1  
line. (This coincides with the start of a Sync Break or a  
Wake-up Signal character for the LIN protocol.)  
17.3.4.2  
Special Considerations Using  
the WUE Bit  
The timing of WUE and RC1IF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
EUSART in an Idle mode. The wake-up event causes  
a receive interrupt by setting the RC1IF bit. The WUE  
bit is cleared after this when a rising edge is seen on  
RX1/DT1. The interrupt condition is then cleared by  
reading the RCREG1 register. Ordinarily, the data in  
RCREG1 will be dummy data and should be discarded.  
Following a wake-up event, the module generates an  
RC1IF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 17-8), and asynchronously, if the device is in  
Sleep mode (Figure 17-9). The interrupt condition is  
cleared by reading the RCREG1 register.  
The WUE bit is automatically cleared once a low-to-high  
transition is observed on the RX1 line following the  
wake-up event. At this point, the EUSART module is in  
Idle mode and returns to normal operation. This signals  
to the user that the Sync Break event is over.  
The fact that the WUE bit has been cleared (or is still  
set) and the RC1IF flag is set should not be used as an  
indicator of the integrity of the data in RCREG1. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
17.3.4.1  
Special Considerations Using  
Auto-Wake-up  
To assure that no actual data is lost, check the RCMT  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
Since auto-wake-up functions by sensing rising edge  
transitions on RX1/DT1, information with any state  
changes before the Stop bit may signal a false  
FIGURE 17-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
Bit set by user  
Auto-Cleared  
WUE bit(1)  
RX1/DT1 Line  
RC1IF  
Cleared due to user read of RCREG1  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 17-9:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
Bit set by user  
Auto-Cleared  
WUE bit(2)  
RX1/DT1 Line  
RC1IF  
Note 1  
Cleared due to user read of RCREG1  
Sleep Ends  
SLEEPCommand Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.  
This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
DS39774C-page 230  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
1. Configure the EUSART for the desired mode.  
17.3.5  
BREAK CHARACTER SEQUENCE  
2. Set the TXEN and SENDB bits to set up the  
Break character.  
The Enhanced USART module has the capability of  
sending the special Break character sequences that  
are required by the LIN bus standard. The Break char-  
acter transmit consists of a Start bit, followed by twelve  
0’ bits and a Stop bit. The Frame Break character is  
sent whenever the SENDB and TXEN bits  
(TXSTA1<3> and TXSTA1<5>) are set while the Trans-  
mit Shift register is loaded with data. Note that the value  
of data written to TXREG1 will be ignored and all ‘0’s  
will be transmitted.  
3. Load the TXREG1 with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG1 to load the Sync  
character into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the preconfigured mode.  
When the TXREG1 becomes empty, as indicated by the  
TX1IF, the next data byte can be written to TXREG1.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync char-  
acter in the LIN specification).  
17.3.6  
RECEIVING A BREAK CHARACTER  
The Enhanced USART module can receive a Break  
character in two ways.  
Note that the data value written to the TXREG1 for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
The first method forces configuration of the baud rate  
at a frequency of 9/13 the typical speed. This allows for  
the Stop bit transition to be at the correct sampling  
location (13 bits for Break versus Start bit and 8 data  
bits for typical data).  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmis-  
sion. See Figure 17-10 for the timing of the Break  
character sequence.  
The second method uses the auto-wake-up feature  
described in Section 17.3.4 “Auto-Wake-up on Sync  
Break Character”. By enabling this feature, the  
EUSART will sample the next two transitions on  
RX1/DT1, cause an RC1IF interrupt and receive the  
next data byte followed by another interrupt.  
17.3.5.1  
Break and Sync Transmit Sequence  
The following sequence will send a message frame  
header made up of a Break, followed by an Auto-Baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Rate Detect  
feature. For both methods, the user can set the ABDEN  
bit once the TX1IF interrupt is observed.  
FIGURE 17-10:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG1  
Dummy Write  
BRG Output  
(Shift Clock)  
TX1 (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TX1IF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB sampled here  
Auto-Cleared  
SENDB  
(Transmit Shift  
Reg. Empty Flag)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 231  
PIC18F85J11 FAMILY  
Once the TXREG1 register transfers the data to the  
TSR register (occurs in one TCYCLE), the TXREG1 is  
empty and the TX1IF flag bit (PIR1<4>) is set. The  
interrupt can be enabled or disabled by setting or clear-  
ing the interrupt enable bit, TX1IE (PIE1<4>). TX1IF is  
set regardless of the state of enable bit, TX1IE; it can-  
not be cleared in software. It will reset only when new  
data is loaded into the TXREG1 register.  
17.4 EUSART Synchronous  
Master Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA1<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit,  
SYNC (TXSTA1<4>). In addition, enable bit, SPEN  
(RCSTA1<7>), is set in order to configure the TX1 and  
RX1 pins to CK1 (clock) and DT1 (data) lines,  
respectively.  
While flag bit TX1IF indicates the status of the TXREG1  
register, another bit, TRMT (TXSTA1<1>), shows the  
status of the TSR register. TRMT is a read-only bit which  
is set when the TSR is empty. No interrupt logic is tied to  
this bit so the user has to poll this bit in order to deter-  
mine if the TSR register is empty. The TSR is not  
mapped in data memory so it is not available to the user.  
The Master mode indicates that the processor trans-  
mits the master clock on the CK1 line. Clock polarity is  
selected with the SCKP bit (BAUDCON1<4>). Setting  
SCKP sets the Idle state on CK1 as high, while clearing  
the bit sets the Idle state as low. This option is provided  
to support Microwire devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGH1:SPBRG1 registers for  
the appropriate baud rate. Set or clear the  
BRG16 bit, as required, to achieve the desired  
baud rate.  
17.4.1  
EUSART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
The EUSART transmitter block diagram is shown in  
Figure 17-3. The heart of the transmitter is the Transmit  
(Serial) Shift register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG1. The TXREG1 register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG1 (if available).  
3. If interrupts are desired, set enable bit, TX1IE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting bit, TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG1 register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 17-11:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
RC6/TX1/CK1 pin  
(SCKP = 0)  
RC6/TX1/CK1 pin  
(SCKP = 1)  
Write to  
TXREG1 Reg  
Write Word 1  
Write Word 2  
TX1IF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode, SPBRG1 = 0; continuous transmission of two 8-bit words.  
DS39774C-page 232  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 17-12:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX1/DT1 pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RC6/TX1/CK1 pin  
Write to  
TXREG1 Reg  
TX1IF bit  
TRMT bit  
TXEN bit  
TABLE 17-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
51  
53  
53  
53  
53  
53  
53  
54  
54  
53  
54  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
TXREG1  
TXSTA1  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCMT  
ABDEN  
SPBRGH1 EUSART Baud Rate Generator Register High Byte  
SPBRG1  
LATG  
EUSART Baud Rate Generator Register Low Byte  
U2OD U1OD LATG4 LATG3  
LATG2  
LATG1  
LATG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 233  
PIC18F85J11 FAMILY  
3. Ensure bits, CREN and SREN, are clear.  
4. If interrupts are desired, set enable bit, RC1IE.  
5. If 9-bit reception is desired, set bit, RX9.  
17.4.2  
EUSART SYNCHRONOUS  
MASTER RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTA1<5>), or the Continuous Receive  
Enable bit, CREN (RCSTA1<4>). Data is sampled on  
the RX1 pin on the falling edge of the clock.  
6. If a single reception is required, set bit, SREN.  
For continuous reception, set bit, CREN.  
7. Interrupt flag bit, RC1IF, will be set when  
reception is complete and an interrupt will be  
generated if the enable bit, RC1IE, was set.  
If enable bit, SREN, is set, only a single word is  
received. If enable bit, CREN, is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
8. Read the RCSTA1 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG1 register.  
To set up a Synchronous Master Reception:  
1. Initialize the SPBRGH1:SPBRG1 registers for the  
appropriate baud rate. Set or clear the BRG16 bit,  
as required, to achieve the desired baud rate.  
10. If any error occurred, clear the error by clearing  
bit, CREN.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
FIGURE 17-13:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX1/DT1  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RC6/TX1/CK1 pin  
(SCKP = 0)  
RC6/TX1/CK1 pin  
(SCKP = 1)  
Write to  
SREN bit  
SREN bit  
CREN bit  
0’  
0’  
RC1IF bit  
(Interrupt)  
Read  
RCREG1  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 17-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
51  
53  
53  
53  
53  
53  
53  
54  
54  
53  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
RCREG1  
TXSTA1  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCMT  
ABDEN  
SPBRGH1 EUSART Baud Rate Generator Register High Byte  
SPBRG1 EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
DS39774C-page 234  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
To set up a Synchronous Slave Transmission:  
17.5 EUSART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTA<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is sup-  
plied externally at the CK1 pin (instead of being supplied  
internally in Master mode). This allows the device to  
transfer or receive data while in any low-power mode.  
2. Clear bits, CREN and SREN.  
3. If interrupts are desired, set enable bit, TX1IE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting enable bit,  
TXEN.  
17.5.1  
EUSART SYNCHRONOUS SLAVE  
TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical except in the case of the Sleep  
mode.  
7. Start transmission by loading data to the  
TXREG1 register.  
If two words are written to the TXREG1 and then the  
SLEEPinstruction is executed, the following will occur:  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in the TXREG1  
register.  
c) Flag bit, TX1IF, will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG1 register will transfer the second  
word to the TSR and flag bit, TX1IF, will now be  
set.  
e) If enable bit, TX1IE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 17-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
51  
53  
53  
53  
53  
53  
53  
54  
54  
53  
54  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
TXREG1  
TXSTA1  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCMT  
ABDEN  
SPBRGH1 EUSART Baud Rate Generator Register High Byte  
SPBRG1  
LATG  
EUSART Baud Rate Generator Register Low Byte  
U2OD U1OD LATG4 LATG3  
LATG2  
LATG1  
LATG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 235  
PIC18F85J11 FAMILY  
To set up a Synchronous Slave Reception:  
17.5.2  
EUSART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical except in the case of Sleep or any  
Idle mode, and bit SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit, RC1IE.  
3. If 9-bit reception is desired, set bit, RX9.  
4. To enable reception, set enable bit, CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this low-power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREG1 register. If the RC1IE enable bit is set, the  
interrupt generated will wake the chip from the  
low-power mode. If the global interrupt is enabled, the  
program will branch to the interrupt vector.  
5. Flag bit, RC1IF, will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RC1IE, was set.  
6. Read the RCSTA1 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG1 register.  
8. If any error occurred, clear the error by clearing  
bit, CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 17-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
CREN  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF  
INT0IF  
RBIF  
51  
53  
53  
53  
53  
53  
53  
54  
54  
53  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RC1IF  
RC1IE  
RC1IP  
SREN  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA1  
RCREG1  
TXSTA1  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON1 ABDOVF  
RCMT  
ABDEN  
SPBRGH1 EUSART Baud Rate Generator Register High Byte  
SPBRG1 EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
DS39774C-page 236  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
18.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
Note:  
The AUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (AUSART)  
The driver for the TX2 output pin can also be optionally  
configured as an open-drain output. This feature allows  
the voltage level on the pin to be pulled to a higher level  
through an external pull-up resistor, and allows the  
output to communicate with external circuits without the  
need for additional level shifters.  
The Addressable Universal Synchronous Asynchro-  
nous Receiver Transmitter (AUSART) module is very  
similar in function to the Enhanced USART module  
discussed in the previous chapter. It is provided as an  
additional channel for serial communication with  
external devices for those situations that do not require  
Auto-Baud Detection or LIN bus support.  
The open-drain output option is controlled by the U2OD  
bit (LATG<7>). Setting this bit configures the pin for  
open-drain operation.  
The AUSART can be configured in the following modes:  
• Asynchronous (full-duplex)  
18.1 Control Registers  
• Synchronous – Master (half-duplex)  
• Synchronous – Slave (half-duplex)  
The operation of the Addressable USART module is  
controlled through two registers, TXSTA2 and  
RCSTA2. These are detailed in Register 18-1 and  
Register 18-2, respectively.  
The pins of the AUSART module are multiplexed with  
the functions of PORTG (RG1/TX2/CK2 and  
RG2/RX2/DT2, respectively). In order to configure  
these pins as an AUSART:  
• bit SPEN (RCSTA2<7>) must be set (= 1)  
• bit TRISG<2> must be set (= 1)  
• bit TRISG<1> must be cleared (= 0) for  
Asynchronous and Synchronous Master modes  
• bit TRISG<1> must be set (= 1) for Synchronous  
Slave mode  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 237  
PIC18F85J11 FAMILY  
REGISTER 18-1: TXSTA2: AUSART TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-Bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
bit 4  
SYNC: AUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th Bit of Transmit Data  
Can be address/data bit or parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS39774C-page 238  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 18-2: RCSTA2: AUSART RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX2/DT2 and TX2/CK2 pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-Bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-Bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 9-Bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG2 register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing the CREN bit)  
0= No overrun error  
RX9D: 9th Bit of Received Data  
This can be address/data bit or parity bit and must be calculated by user firmware.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 239  
PIC18F85J11 FAMILY  
geous to use the high baud rate (BRGH = 1) to reduce  
the baud rate error, or achieve a slow baud rate for a  
fast oscillator frequency.  
18.2 AUSART Baud Rate Generator  
(BRG)  
The BRG is a dedicated, 8-bit generator that supports  
both the Asynchronous and Synchronous modes of the  
AUSART.  
Writing a new value to the SPBRG2 register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before outputting  
the new baud rate.  
The SPBRG2 register controls the period of a  
free-running timer. In Asynchronous mode, bit BRGH  
(TXSTA<2>) also controls the baud rate. In Synchro-  
nous mode, BRGH is ignored. Table 18-1 shows the  
formula for computation of the baud rate for different  
AUSART modes, which only apply in Master mode  
(internally generated clock).  
18.2.1  
OPERATION IN POWER-MANAGED  
MODES  
The device clock is used to generate the desired baud  
rate. When one of the power-managed modes is  
entered, the new clock source may be operating at a  
different frequency. This may require an adjustment to  
the value in the SPBRG2 register.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG2 register can be calcu-  
lated using the formulas in Table 18-1. From this, the  
error in baud rate can be determined. An example  
calculation is shown in Example 18-1. Typical baud  
rates and error values for the various Asynchronous  
modes are shown in Table 18-2. It may be advanta-  
18.2.2  
SAMPLING  
The data on the RX2 pin is sampled three times by a  
majority detect circuit to determine if a high or low level  
is present at the RX2 pin.  
TABLE 18-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/AUSART Mode  
Baud Rate Formula  
SYNC  
BRGH  
0
0
1
0
1
x
Asynchronous  
Asynchronous  
Synchronous  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = Value of SPBRG2 register  
EXAMPLE 18-1: CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, BRGH = 0:  
Desired Baud Rate  
Solving for SPBRG2:  
X
=
FOSC/(64 ([SPBRG2] + 1))  
=
=
=
((FOSC/Desired Baud Rate)/64) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
Calculated Baud Rate = 16000000/(64 (25 + 1))  
=
=
=
9615  
Error  
(Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
(9615 – 9600)/9600 = 0.16%  
TABLE 18-2: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Reset  
Values on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA2  
RCSTA2  
SPBRG2  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
55  
55  
55  
ADDEN  
AUSART Baud Rate Generator Register  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used by the BRG.  
DS39774C-page 240  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES  
BRGH = 0  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
SPBRG  
Value  
(decimal)  
%
Error  
%
Error  
%
Error  
%
Error  
Value  
Rate  
(K)  
Value  
Rate  
(K)  
Value  
Rate  
(K)  
(decimal)  
(decimal)  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
BRGH = 0  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
Value  
(decimal)  
%
Error  
%
Error  
%
Error  
Value  
Rate  
(K)  
Value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
0.300  
1.201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
BRGH = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.403  
9.615  
19.230  
55.555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
BRGH = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
Value  
SPBRG Actual  
Value  
(decimal)  
SPBRG  
Value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 241  
PIC18F85J11 FAMILY  
Once the TXREG2 register transfers the data to the  
TSR register (occurs in one TCY), the TXREG2 register  
is empty and the TX2IF flag bit (PIR3<4>) is set. This  
interrupt can be enabled or disabled by setting or  
clearing the interrupt enable bit, TX2IE (PIE3<4>).  
TX2IF will be set regardless of the state of TX2IE; it  
cannot be cleared in software. TX2IF is also not  
cleared immediately upon loading TXREG2, but  
becomes valid in the second instruction cycle following  
the load instruction. Polling TX2IF immediately  
following a load of TXREG2 will return invalid results.  
18.3 AUSART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA2<4>). In this mode, the  
AUSART uses standard Non-Return-to-Zero (NRZ)  
format (one Start bit, eight or nine data bits and one  
Stop bit). The most common data format is 8 bits. An  
on-chip, dedicated, 8-bit Baud Rate Generator can be  
used to derive standard baud rate frequencies from the  
oscillator.  
The AUSART transmits and receives the LSb first. The  
AUSART’s transmitter and receiver are functionally  
independent but use the same data format and baud  
rate. The Baud Rate Generator produces a clock,  
either x16 or x64 of the bit shift rate, depending on the  
BRGH bit (TXSTA2<2>). Parity is not supported by the  
hardware but can be implemented in software and  
stored as the 9th data bit.  
While TX2IF indicates the status of the TXREG2  
register, another bit, TRMT (TXSTA2<1>), shows the  
status of the TSR register. TRMT is a read-only bit  
which is set when the TSR register is empty. No inter-  
rupt logic is tied to this bit so the user has to poll this bit  
in order to determine if the TSR register is empty.  
Note 1: The TSR register is not mapped in data  
When operating in Asynchronous mode, the AUSART  
module consists of the following important elements:  
memory so it is not available to the user.  
2: Flag bit, TX2IF, is set when enable bit,  
• Baud Rate Generator  
• Sampling Circuit  
TXEN, is set.  
To set up an Asynchronous Transmission:  
• Asynchronous Transmitter  
• Asynchronous Receiver  
1. Initialize the SPBRG2 register for the appropri-  
ate baud rate. Set or clear the BRGH bit, as  
required, to achieve the desired baud rate.  
18.3.1  
AUSART ASYNCHRONOUS  
TRANSMITTER  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
The AUSART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(Serial) Shift register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG2. The TXREG2 register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREG2 register (if available).  
3. If interrupts are desired, set enable bit, TX2IE.  
4. If 9-bit transmission is desired, set transmit bit,  
TX9; can be used as address/data bit.  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TX2IF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Load data to the TXREG2 register (starts  
transmission).  
8. If using interrupts, ensure that the GIE and PEIE bits  
in the INTCON register (INTCON<7:6>) are set.  
FIGURE 18-1:  
AUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG2 Register  
TX2IF  
TX2IE  
8
MSb  
(8)  
LSb  
Pin Buffer  
0
and Control  
TX2 pin  
TSR Register  
Interrupt  
Baud Rate CLK  
TXEN  
TRMT  
SPEN  
SPBRG2  
Baud Rate Generator  
TX9  
TX9D  
DS39774C-page 242  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 18-2:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG2  
Word 1  
BRG Output  
(Shift Clock)  
TX2 (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TX2IF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG2  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX2 (pin)  
bit 0  
bit 1  
bit 7/8  
Stop bit  
Start bit  
Word 2  
bit 0  
1 TCY  
Word 1  
TX2IF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 18-4: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP2IF  
CCP2IE  
CCP2IP  
FERR  
INT0IF  
CCP1IF  
CCP1IE  
CCP1IP  
OERR  
RBIF  
51  
53  
53  
53  
55  
55  
55  
55  
54  
RC2IF  
RC2IE  
RC2IP  
SREN  
PIE3  
IPR3  
RCSTA2  
TXREG2  
TXSTA2  
SPBRG2  
LATG  
SPEN  
RX9  
ADDEN  
RX9D  
AUSART Transmit Register  
CSRC TX9 TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
AUSART Baud Rate Generator Register  
U2OD U1OD LATG4  
LATG3  
LATG2  
LATG1  
LATG0  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 243  
PIC18F85J11 FAMILY  
18.3.2  
AUSART ASYNCHRONOUS  
RECEIVER  
18.3.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 18-4.  
The data is received on the RX2 pin and drives the data  
recovery block. The data recovery block is actually a  
high-speed shifter operating at x16 times the baud rate,  
whereas the main receive serial shifter operates at the  
bit rate or at FOSC. This mode would typically be used  
in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRG2 register for the appropriate  
baud rate. Set or clear the BRGH and BRG16  
bits, as required, to achieve the desired baud  
rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRG2 register for the appropriate  
baud rate. Set or clear the BRGH bit, as required,  
to achieve the desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RC2IP  
bit.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set enable bit, RC2IE.  
4. If 9-bit reception is desired, set bit, RX9.  
5. Enable the reception by setting bit, CREN.  
7. The RC2IF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RC2IE and GIE bits are set.  
6. Flag bit, RC2IF, will be set when reception is  
complete and an interrupt will be generated if  
enable bit, RC2IE, was set.  
8. Read the RCSTA2 register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA2 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG2 to determine if the device is  
being addressed.  
8. Read the 8-bit received data by reading the  
RCREG2 register.  
10. If any error occurred, clear the CREN bit.  
9. If any error occurred, clear the error by clearing  
enable bit, CREN.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 18-4:  
AUSART RECEIVE BLOCK DIAGRAM  
CREN  
FERR  
OERR  
x64 Baud Rate CLK  
SPBRG2  
÷ 64  
or  
MSb  
RSR Register  
• • •  
LSb  
÷ 16  
Stop (8)  
7
1
0
Start  
or  
÷ 4  
Baud Rate Generator  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RX2  
RCREG2 Register  
RX9D  
FIFO  
SPEN  
8
Interrupt  
RC2IF  
RC2IE  
Data Bus  
DS39774C-page 244  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 18-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX2 (pin)  
bit 0 bit 1  
bit 7/8 Stop  
bit  
bit 0  
bit 7/8 Stop  
bit  
bit 7/8 Stop  
bit  
Rcv Shift Reg  
Rcv Buffer Reg  
Word 2  
RCREG2  
Word 1  
RCREG2  
Read Rcv  
Buffer Reg  
RCREG2  
RC2IF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX2 input. The RCREG2 (AUSART Receive register) is read after the third  
word, causing the OERR (Overrun Error) bit to be set.  
TABLE 18-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP2IF  
INT0IF  
RBIF  
51  
53  
53  
53  
55  
55  
55  
55  
RC2IF  
RC2IE  
RC2IP  
SREN  
CCP1IF  
PIE3  
CCP2IE CCP1IE  
CCP2IP CCP1IP  
IPR3  
RCSTA2  
RCREG2  
TXSTA2  
SPBRG2  
SPEN  
RX9  
ADDEN  
FERR  
OERR  
RX9D  
AUSART Receive Register  
CSRC TX9 TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
AUSART Baud Rate Generator Register  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 245  
PIC18F85J11 FAMILY  
Once the TXREG2 register transfers the data to the  
TSR register (occurs in one TCYCLE), the TXREG2 is  
empty and the TX2IF flag bit (PIR3<4>) is set. The  
interrupt can be enabled or disabled by setting or clear-  
ing the interrupt enable bit, TX2IE (PIE3<4>). TX2IF is  
set regardless of the state of enable bit, TX2IE; it  
cannot be cleared in software. It will reset only when  
new data is loaded into the TXREG2 register.  
18.4 AUSART Synchronous  
Master Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA2<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit,  
SYNC (TXSTA2<4>). In addition, enable bit, SPEN  
(RCSTA2<7>), is set in order to configure the TX2 and  
RX2 pins to CK2 (clock) and DT2 (data) lines,  
respectively.  
While flag bit, TX2IF, indicates the status of the TXREG2  
register, another bit, TRMT (TXSTA2<1>), shows the  
status of the TSR register. TRMT is a read-only bit which  
is set when the TSR is empty. No interrupt logic is tied to  
this bit so the user has to poll this bit in order to deter-  
mine if the TSR register is empty. The TSR is not  
mapped in data memory so it is not available to the user.  
The Master mode indicates that the processor transmits  
the master clock on the CK2 line.  
To set up a Synchronous Master Transmission:  
18.4.1  
AUSART SYNCHRONOUS MASTER  
TRANSMISSION  
1. Initialize the SPBRG2 register for the appropriate  
baud rate.  
The AUSART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(Serial) Shift register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG2. The TXREG2 register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG2 (if available).  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit, TX2IE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting bit, TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG2 register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 18-6:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RX2/DT2 pin  
TX2/CK2 pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
Write to  
TXREG2 Reg  
Write Word 1  
Write Word 2  
TX2IF bit  
(Interrupt Flag)  
TRMT bit  
TXEN bit  
1’  
1’  
Note: Sync Master mode, SPBRG2 = 0; continuous transmission of two 8-bit words.  
DS39774C-page 246  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 18-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX2/DT2 pin  
bit 0  
bit 1  
bit 2  
bit 6  
bit 7  
TX2/CK2 pin  
Write to  
TXREG2 Reg  
TX2IF bit  
TRMT bit  
TXEN bit  
TABLE 18-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP2IF  
INT0IF  
RBIF  
51  
53  
53  
53  
55  
55  
55  
55  
54  
RC2IF  
RC2IE  
RC2IP  
SREN  
CCP1IF  
PIE3  
CCP2IE CCP1IE  
CCP2IP CCP1IP  
IPR3  
RCSTA2  
TXREG2  
TXSTA2  
SPBRG2  
LATG  
SPEN  
RX9  
ADDEN  
FERR  
BRGH  
LATG2  
OERR  
TRMT  
LATG1  
RX9D  
AUSART Transmit Register  
CSRC TX9 TXEN  
SYNC  
TX9D  
AUSART Baud Rate Generator Register  
U2OD U1OD LATG4  
LATG3  
LATG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 247  
PIC18F85J11 FAMILY  
4. If interrupts are desired, set enable bit, RC2IE.  
5. If 9-bit reception is desired, set bit, RX9.  
18.4.2  
AUSART SYNCHRONOUS  
MASTER RECEPTION  
6. If a single reception is required, set bit, SREN.  
For continuous reception, set bit, CREN.  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTA2<5>), or the Continuous Receive  
Enable bit, CREN (RCSTA2<4>). Data is sampled on  
the RX2 pin on the falling edge of the clock.  
7. Interrupt flag bit, RC2IF, will be set when  
reception is complete and an interrupt will be  
generated if the enable bit, RC2IE, was set.  
8. Read the RCSTA2 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
If enable bit, SREN, is set, only a single word is  
received. If enable bit, CREN, is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
9. Read the 8-bit received data by reading the  
RCREG2 register.  
To set up a Synchronous Master Reception:  
10. If any error occurred, clear the error by clearing  
bit, CREN.  
1. Initialize the SPBRG2 register for the appropriate  
baud rate.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
FIGURE 18-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RX2/DT2 pin  
TX2/CK2 pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RC2IF bit  
(Interrupt)  
Read  
RCREG2  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP2IF  
CCP2IE  
CCP2IP  
FERR  
INT0IF  
CCP1IF  
CCP1IE  
CCP1IP  
OERR  
RBIF  
51  
53  
53  
53  
55  
55  
55  
55  
RC2IF  
RC2IE  
RC2IP  
SREN  
PIE3  
IPR3  
RCSTA2  
SPEN  
RX9  
ADDEN  
RX9D  
RCREG2 AUSART Receive Register  
TXSTA2 CSRC TX9 TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
SPBRG2 AUSART Baud Rate Generator Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
DS39774C-page 248  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
To set up a Synchronous Slave Transmission:  
18.5 AUSART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTA2<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is  
supplied externally at the CK2 pin (instead of being  
supplied internally in Master mode). This allows the  
device to transfer or receive data while in any  
low-power mode.  
2. Clear bits, CREN and SREN.  
3. If interrupts are desired, set enable bit, TX2IE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting enable bit,  
TXEN.  
18.5.1  
AUSART SYNCHRONOUS  
SLAVE TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical except in the case of the Sleep  
mode.  
7. Start transmission by loading data to the  
TXREG2 register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREG2 and then the  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in the TXREG2  
register.  
c) Flag bit, TX2IF, will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG2 register will transfer the second  
word to the TSR and flag bit, TX2IF, will now be  
set.  
e) If enable bit, TX2IE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP2IF  
CCP2IE  
CCP2IP  
FERR  
INT0IF  
CCP1IF  
CCP1IE  
CCP1IP  
OERR  
RBIF  
51  
53  
53  
53  
55  
55  
55  
55  
54  
RC2IF  
RC2IE  
RC2IP  
SREN  
PIE3  
IPR3  
RCSTA2  
TXREG2  
TXSTA2  
SPBRG2  
LATG  
SPEN  
RX9  
ADDEN  
RX9D  
AUSART Transmit Register  
CSRC TX9 TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
AUSART Baud Rate Generator Register  
U2OD U1OD LATG4  
LATG3  
LATG2  
LATG1  
LATG0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 249  
PIC18F85J11 FAMILY  
To set up a Synchronous Slave Reception:  
18.5.2  
AUSART SYNCHRONOUS  
SLAVE RECEPTION  
1. Enable the synchronous master serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical except in the case of Sleep or any  
Idle mode, and bit, SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit, RC2IE.  
3. If 9-bit reception is desired, set bit, RX9.  
4. To enable reception, set enable bit, CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this low-power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREG2 register. If the RC2IE enable bit is set, the  
interrupt generated will wake the chip from the  
low-power mode. If the global interrupt is enabled, the  
program will branch to the interrupt vector.  
5. Flag bit, RC2IF, will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RC2IE, was set.  
6. Read the RCSTA2 register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG2 register.  
8. If any error occurred, clear the error by clearing  
bit, CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset  
Values  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR3  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX2IF  
TX2IE  
TX2IP  
CREN  
RBIE  
TMR0IF  
CCP2IF  
INT0IF  
RBIF  
51  
53  
53  
53  
55  
55  
55  
55  
RC2IF  
RC2IE  
RC2IP  
SREN  
CCP1IF  
PIE3  
CCP2IE CCP1IE  
CCP2IP CCP1IP  
IPR3  
RCSTA2  
RCREG2  
TXSTA2  
SPBRG2  
SPEN  
RX9  
ADDEN  
FERR  
OERR  
RX9D  
AUSART Receive Register  
CSRC TX9 TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
AUSART Baud Rate Generator Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
DS39774C-page 250  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The ADCON0 register, shown in Register 19-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 19-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 19-3, configures the A/D clock  
source, programmed acquisition time and justification.  
19.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) converter module has  
12 inputs for all PIC18F85J11 family devices. This  
module allows conversion of an analog input signal to  
a corresponding 10-bit digital number.  
The module has five registers:  
• A/D Result Register High Byte (ADRESH)  
• A/D Result Register Low Byte (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
REGISTER 19-1: ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
ADCAL  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADCAL: A/D Calibration bit  
1= Calibration is performed on next A/D conversion  
0= Normal A/D converter operation (no calibration is performed)  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
CHS3:CHS0: Analog Channel Select bits  
0000= Channel 00 (AN0)  
0001= Channel 01 (AN1)  
0010= Channel 02 (AN2)  
0011= Channel 03 (AN3)  
0100= Channel 04 (AN4)  
0101= Channel 05 (AN5)  
0110= Channel 06 (AN6)  
0111= Channel 07 (AN7)  
1000= Channel 08 (AN8)  
1001= Channel 09 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
11xx= Unused  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress  
0= A/D Idle  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 251  
PIC18F85J11 FAMILY  
REGISTER 19-2: ADCON1: A/D CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
VCFG1: Voltage Reference Configuration bit (VREF- source)  
1= VREF- (AN2)  
0= AVSS  
bit 4  
VCFG0: Voltage Reference Configuration bit (VREF+ source)  
1= VREF+ (AN3)  
0= AVDD  
bit 3-0  
PCFG3:PCFG0: A/D Port Configuration Control bits:  
PCFG<3:0> AN11 AN10 AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0  
0000  
0001  
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A = Analog input  
D = Digital I/O  
DS39774C-page 252  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 19-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT2:ACQT0: A/D Acquisition Time Select bits  
111= 20 TAD  
110= 16 TAD  
101= 12 TAD  
100= 8 TAD  
011= 6 TAD  
010= 4 TAD  
001= 2 TAD  
(1)  
000= 0 TAD  
bit 2-0  
ADCS2:ADCS0: A/D Conversion Clock Select bits  
111= FRC (clock derived from A/D RC oscillator)(1)  
110= FOSC/64  
101= FOSC/16  
100= FOSC/4  
011= FRC (clock derived from A/D RC oscillator)(1)  
010= FOSC/32  
001= FOSC/8  
000= FOSC/2  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D  
clock starts. This allows the SLEEPinstruction to be executed before starting a conversion.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 253  
PIC18F85J11 FAMILY  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(AVDD and AVSS), or the voltage level on the  
RA3/AN3/VREF+ and RA2/AN2/VREF- pins.  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH:ADRESL  
register pair, the GO/DONE bit (ADCON0<1>) is  
cleared and the A/D Interrupt Flag bit, ADIF, is set.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To  
operate in Sleep, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted. The value in the  
ADRESH:ADRESL register pair is not modified for a  
Power-on Reset. These registers will contain unknown  
data after a Power-on Reset.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
The block diagram of the A/D module is shown in  
Figure 19-1.  
Each port pin associated with the A/D converter can be  
configured as an analog input or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
FIGURE 19-1:  
A/D BLOCK DIAGRAM(1)  
CHS3:CHS0  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7  
0110  
AN6  
0101  
AN5  
0100  
AN4  
VAIN  
0011  
(Input Voltage)  
10-Bit  
A/D  
AN3  
Converter  
0010  
AN2  
0001  
VCFG1:VCFG0  
AN1  
0000  
AN0  
VDD  
VREF+  
VREF-  
Reference  
Voltage  
VSS  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39774C-page 254  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the  
conversion is started. The analog input channels must  
have their corresponding TRIS bits selected as inputs.  
To determine acquisition time, see Section 19.1 “A/D  
Acquisition Requirements”. After this acquisition  
time has elapsed, the A/D conversion can be started.  
An acquisition time can be programmed to occur  
between setting the GO/DONE bit and the actual start  
of the conversion.  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
• Set GO/DONE bit (ADCON0<1>)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear ADIF bit, if required.  
The following steps should be followed to do an A/D  
conversion:  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
FIGURE 19-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CPIN  
5 pF  
VAIN  
ILEAKAGE  
100 nA  
CHOLD = 25 pF  
VT = 0.6V  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
6V  
5V  
VDD 4V  
VT  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
3V  
RIC  
SS  
= Interconnect Resistance  
= Sampling Switch  
2V  
CHOLD  
RSS  
= Sample/Hold Capacitance (from DAC)  
= Sampling Switch Resistance  
1
2
3
4
Sampling Switch (kΩ)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 255  
PIC18F85J11 FAMILY  
To calculate the minimum acquisition time,  
Equation 19-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
19.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 19-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 kΩ. After the analog input channel is  
selected (changed), the channel must be sampled for  
at least the minimum acquisition time before starting a  
conversion.  
Equation 19-3 shows the calculation of the minimum  
required acquisition time, TACQ. This calculation is  
based on the following application system  
assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
=
=
=
=
25 pF  
2.5 kΩ  
1/2 LSb  
3V Rss = 2 kΩ  
85°C (system max.)  
Note: When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
EQUATION 19-1: A/D ACQUISITION TIME  
TACQ  
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
=
TAMP + TC + TCOFF  
EQUATION 19-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
TC  
=
=
(VREF – (VREF/2048)) • (1 – e(-TC/CHOLD(RIC + RSS + RS))  
)
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EQUATION 19-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
0.2 µs  
(Temp – 25°C)(0.02 µs/°C)  
(85°C – 25°C)(0.02 µs/°C)  
1.2 µs  
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 ms.  
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2048) µs  
-(25 pF) (1 kΩ + 2 kΩ + 2.5 kΩ) ln(0.0004883) µs  
1.05 µs  
TACQ  
=
0.2 µs + 1 µs + 1.2 µs  
2.4 µs  
DS39774C-page 256  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 19-1: TAD vs. DEVICE OPERATING  
FREQUENCIES  
19.2 Selecting and Configuring  
Automatic Acquisition Time  
AD Clock Source (TAD)  
Maximum  
Device  
Frequency  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set.  
Operation  
ADCS2:ADCS0  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(1)  
000  
100  
001  
101  
010  
110  
x11  
2.86 MHz  
5.71 MHz  
11.43 MHz  
22.86 MHz  
40.0 MHz  
40.0 MHz  
1.00 MHz(2)  
When the GO/DONE bit is set, sampling is stopped and  
a conversion begins. The user is responsible for ensur-  
ing the required acquisition time has passed between  
selecting the desired input channel and setting the  
GO/DONE bit. This occurs when the ACQT2:ACQT0  
bits (ADCON2<5:3>) remain in their Reset state (‘000’)  
and is compatible with devices that do not offer  
programmable acquisition times.  
If desired, the ACQT bits can be set to select a  
programmable acquisition time for the A/D module.  
When the GO/DONE bit is set, the A/D module contin-  
ues to sample the input for the selected acquisition  
time, then automatically begins a conversion. Since the  
acquisition time is programmed, there may be no need  
to wait for an acquisition time between selecting a  
channel and setting the GO/DONE bit.  
Note 1: The RC source has a typical TAD time of  
4 µs.  
2: For device frequencies above 1 MHz, the  
device must be in Sleep mode for the  
entire conversion or the A/D accuracy may  
be out of specification.  
19.4 Configuring Analog Port Pins  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
The ADCON1, TRISA, TRISF and TRISH registers  
control the operation of the A/D port pins. The port pins  
needed as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
19.3 Selecting the A/D Conversion  
Clock  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable.  
Note 1: When reading the PORT register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an  
analog input. Analog levels on a digitally  
configured input will be accurately  
converted.  
There are seven possible options for TAD:  
• 2 TOSC  
• 4 TOSC  
2: Analog levels on any pin defined as a  
digital input may cause the digital input  
buffer to consume current out of the  
device’s specification limits.  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC Oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible but greater than the  
minimum TAD (see parameter 130 in Table 25-24 for  
more information).  
Table 19-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 257  
PIC18F85J11 FAMILY  
19.5 A/D Conversions  
19.6 Use of the CCP2 Trigger  
Figure 19-3 shows the operation of the A/D converter  
after the GO/DONE bit has been set and the  
ACQT2:ACQT0 bits are cleared. A conversion is  
started after the following instruction to allow entry into  
Sleep mode before the conversion begins.  
An A/D conversion can be started by the “Special Event  
Trigger” of the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as ‘1011’ and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D acquisition  
and conversion, and the Timer1 (or Timer3) counter will  
be reset to zero. Timer1 (or Timer3) is reset to auto-  
matically repeat the A/D acquisition period with minimal  
software overhead (moving ADRESH/ADRESL to the  
desired location). The appropriate analog input  
channel must be selected and the minimum acquisition  
period is either timed by the user, or an appropriate  
TACQ time is selected before the Special Event Trigger  
sets the GO/DONE bit (starts a conversion).  
Figure 19-4 shows the operation of the A/D converter  
after the GO/DONE bit has been set, the  
ACQT2:ACQT0 bits have been set to ‘010’ and a  
4 TAD acquisition time has been selected before the  
conversion starts.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D Result register  
pair will NOT be updated with the partially completed  
A/D  
conversion  
sample.  
This  
means  
the  
ADRESH:ADRESL registers will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADRESH:ADRESL registers).  
If the A/D module is not enabled (ADON is cleared), the  
Special Event Trigger will be ignored by the A/D module  
but will still reset the Timer1 (or Timer3) counter.  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can be  
started. After this wait, acquisition on the selected  
channel is automatically started.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 19-3:  
A/D CONVERSION TAD CYCLES (ACQT2:ACQT0 = 000, TACQ = 0)  
TCY TAD  
TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5  
b7  
b6  
b4  
b1  
b0  
b9  
b8  
b5  
b3  
b2  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO/DONE bit  
Next Q4: ADRESH/ADRESL are loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 19-4:  
A/D CONVERSION TAD CYCLES (ACQT2:ACQT0 = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
7
8
9
10  
b1  
11  
b0  
1
2
3
4
1
2
3
4
5
6
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Conversion starts  
(Holding capacitor is disconnected)  
Set GO/DONE bit  
(Holding capacitor continues  
acquiring input)  
Next Q4: ADRESH:ADRESL are loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is reconnected to analog input.  
DS39774C-page 258  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
If the A/D is expected to operate while the device is in  
a power-managed mode, the ACQT2:ACQT0 and  
ADCS2:ADCS0 bits in ADCON2 should be updated in  
accordance with the power-managed mode clock that  
will be used. After the power-managed mode is entered  
(either of the power-managed Run modes), an A/D  
acquisition or conversion may be started. Once an  
acquisition or conversion is started, the device should  
continue to be clocked by the same power-managed  
mode clock source until the conversion has been com-  
pleted. If desired, the device may be placed into the  
corresponding power-managed Idle mode during the  
conversion.  
19.7 A/D Converter Calibration  
The A/D converter in the PIC18F85J11 family of  
devices includes a self-calibration feature which com-  
pensates for any offset generated within the module.  
The calibration process is automated and is initiated by  
setting the ADCAL bit (ADCON0<7>). The next time  
the GO/DONE bit is set, the module will perform a  
“dummy” conversion (that is, with reading none of the  
input channels) and store the resulting value internally  
to compensate for offset. Thus, subsequent offsets will  
be compensated.  
The calibration process assumes that the device is in a  
relatively steady-state operating condition. If A/D  
calibration is used, it should be performed after each  
device Reset or if there are other major changes in  
operating conditions.  
If the power-managed mode clock frequency is less  
than 1 MHz, the A/D RC clock source should be  
selected.  
Operation in the Sleep mode requires the A/D RC clock  
to be selected. If bits, ACQT2:ACQT0, are set to ‘000’  
and a conversion is started, the conversion will be  
delayed one instruction cycle to allow execution of the  
SLEEPinstruction and entry to Sleep mode. The IDLEN  
and SCS<1:0> bits in the OSCCON register must have  
already been cleared prior to starting the conversion.  
19.8 Operation in Power-Managed  
Modes  
The selection of the automatic acquisition time and A/D  
conversion clock is determined in part by the clock  
source and frequency while in a power-managed  
mode.  
TABLE 19-2: SUMMARY OF A/D REGISTERS  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TX1IF  
TX1IE  
TX1IP  
TX2IF  
TX2IE  
TX2IP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
CCP1IF  
CCP1IE  
CCP1IP  
RBIF  
TMR1IF  
TMR1IE  
TMR1IP  
51  
53  
53  
53  
53  
53  
53  
53  
53  
53  
53  
53  
54  
54  
54  
54  
54  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RC1IF  
RC1IE  
RC1IP  
RC2IF  
RC2IE  
RC2IP  
PIE1  
IPR1  
PIR3  
CCP2IF  
CCP2IE  
CCP2IP  
PIE3  
IPR3  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCP2CON  
PORTA  
TRISA  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ADCAL  
CHS3  
VCFG1  
ACQT2  
DC2B1  
RA5  
CHS2  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0 GO/DONE ADON  
PCFG2  
ADCS2  
PCFG1  
ADCS1  
PCFG0  
ADCS0  
ADFM  
RA7(1)  
RA6(1)  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0  
RA4  
TRISA4  
RF4  
RA3  
TRISA3  
RF3  
RA2  
TRISA2  
RF2  
RA1  
TRISA1  
RF1  
RA0  
TRISA0  
TRISA7(1) TRISA6(1) TRISA5  
PORTF  
TRISF  
RF7  
RF6  
RF5  
TRISF5  
TRISF4  
TRISF5  
TRISF4  
TRISF3  
TRISF2  
TRISF1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal  
oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are  
disabled and these bits read as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 259  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 260  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The CMCON register (Register 20-1) selects the  
comparator input and output configuration. Block  
diagrams of the various comparator configurations are  
shown in Figure 20-1.  
20.0 COMPARATOR MODULE  
The analog comparator module contains two  
comparators that can be configured in a variety of  
ways. The inputs can be selected from the analog  
inputs multiplexed with pins RF1 through RF6, as well  
as the on-chip voltage reference (see Section 21.0  
“Comparator Voltage Reference Module”). The digi-  
tal outputs (normal or inverted) are available at the pin  
level and can also be read through the control register.  
REGISTER 20-1: CMCON: COMPARATOR MODULE CONTROL REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-1  
CM2  
R/W-1  
CM1  
R/W-1  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RF5/AN10/CVREF  
C2 VIN- connects to RF3/AN8  
0= C1 VIN- connects to RF6/AN11  
C2 VIN- connects to RF4/AN9  
bit 2-0  
CM2:CM0: Comparator Mode bits  
Figure 20-1 shows the Comparator modes and the CM2:CM0 bit settings.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 261  
PIC18F85J11 FAMILY  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
Section 25.0 “Electrical Characteristics”.  
20.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors, shown in Figure 20-1. Bits CM2:CM0 of the  
CMCON register are used to select these modes. The  
TRISF register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change;  
otherwise, a false interrupt may occur.  
a
FIGURE 20-1:  
COMPARATOR I/O OPERATING MODES  
Comparator Outputs Disabled  
CM2:CM0 = 000  
Comparators Off (POR Default Value)  
CM2:CM0 = 111  
A
D
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
RF4/AN9  
RF3/AN8  
A
A
D
D
VIN-  
VIN-  
RF4/AN9  
RF3/AN8  
VIN+  
VIN+  
Two Independent Comparators  
CM2:CM0 = 010  
Two Independent Comparators with Outputs  
CM2:CM0 = 011  
A
A
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
C1OUT  
C2OUT  
C1OUT  
C2OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF5/AN10/  
CVREF  
RF5/AN10/  
CVREF  
RF2/AN7/C1OUT*  
A
A
VIN-  
RF4/AN9  
RF3/AN8  
A
A
RF4/AN9  
RF3/AN8  
VIN-  
VIN+  
VIN+  
RF1/AN6/C2OUT*  
Two Common Reference Comparators  
CM2:CM0 = 100  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 101  
A
A
VIN-  
VIN-  
RF6/AN11  
RF6/AN11  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
VIN+  
VIN+  
A
A
RF5/AN10/  
CVREF  
RF5/AN10  
CVREF  
RF2/AN7/C1OUT*  
A
D
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
RF3/AN8  
A
D
VIN-  
VIN+  
C2OUT  
C2  
VIN+  
RF1/AN6/C2OUT*  
Four Inputs Multiplexed to Two Comparators  
CM2:CM0 = 110  
One Independent Comparator with Output  
CM2:CM0 = 001  
A
RF6/AN11  
A
A
VIN-  
RF6/AN11  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
RF5/AN10/  
CVREF  
VIN+  
RF5/AN10/  
CVREF  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
A
RF2/AN7/C1OUT*  
RF4/AN9  
RF3/AN8  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
VIN-  
RF4/AN9  
Off (Read as ‘0’)  
C2  
VIN+  
D
RF3/AN8  
CVREF  
From VREF module  
A = Analog Input, port reads zeros always  
D = Digital Input  
CIS (CMCON<3>) is the Comparator Input Switch  
* Setting the TRISF<2:1> bits will disable the comparator outputs by configuring the pins as inputs.  
DS39774C-page 262  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
20.3.2  
INTERNAL REFERENCE SIGNAL  
20.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference from the  
comparator voltage reference module. This module is  
described in more detail in Section 21.0 “Comparator  
Voltage Reference Module”.  
A single comparator is shown in Figure 20-2, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 20-2 represent  
the uncertainty due to input offsets and response time.  
The internal reference is only available in the mode  
where four inputs are multiplexed to two comparators  
(CM2:CM0 = 110). In this mode, the internal voltage  
reference is applied to the VIN+ pin of both  
comparators.  
20.3 Comparator Reference  
20.4 Comparator Response Time  
Depending on the comparator operating mode, either  
an external or internal voltage reference may be used.  
The analog signal present at VIN- is compared to the  
signal at VIN+ and the digital output of the comparator  
is adjusted accordingly (Figure 20-2).  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal ref-  
erence is changed, the maximum delay of the internal  
voltage reference must be considered when using the  
comparator outputs. Otherwise, the maximum delay of  
the comparators should be used (see Section 25.0  
“Electrical Characteristics”).  
FIGURE 20-2:  
SINGLE COMPARATOR  
VIN+  
VIN-  
+
20.5 Comparator Outputs  
Output  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RF1 and RF2  
I/O pins. When enabled, multiplexors in the output path  
of the RF1 and RF2 pins will switch and the output of  
each pin will be the unsynchronized output of the  
comparator. The uncertainty of each of the  
comparators is related to the input offset voltage and  
the response time given in the specifications.  
Figure 20-3 shows the comparator output block  
diagram.  
VIN-  
VIN+  
Output  
The TRISF bits will still function as output enables/  
disables for the RF1 and RF2 pins while in this mode.  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<5:4>).  
20.3.1  
EXTERNAL REFERENCE SIGNAL  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a  
digital input may cause the input buffer to  
consume more current than is specified.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 263  
PIC18F85J11 FAMILY  
FIGURE 20-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port pins  
To RF1 or  
RF2 pin  
-
Bus  
Data  
D
Q
CxINV  
Read CMCON  
EN  
Set  
CMIF  
bit  
D
Q
EN  
CL  
From  
Other  
Comparator  
Reset  
20.6 Comparator Interrupts  
20.7 Comparator Operation  
During Sleep  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR2<6>) is the Comparator Interrupt Flag. The  
CMIF bit must be reset by clearing it. Since it is also  
possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional if enabled. This interrupt will  
wake-up the device from Sleep mode when enabled.  
Each operational comparator will consume additional  
current, as shown in the comparator specifications. To  
minimize power consumption while in Sleep mode, turn  
off the comparators (CM2:CM0 = 111) before entering  
Sleep. If the device wakes up from Sleep, the contents  
of the CMCON register are not affected.  
Both the CMIE bit (PIE2<6>) and the PEIE bit  
(INTCON<6>) must be set to enable the interrupt. In  
addition, the GIE bit (INTCON<7>) must also be set. If  
any of these bits are clear, the interrupt is not enabled,  
though the CMIF bit will still be set if an interrupt  
condition occurs.  
20.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator modules to be turned off  
(CM2:CM0 = 111). However, the input pins (RF3  
through RF6) are configured as analog inputs by  
default on device Reset. The I/O configuration for these  
pins is determined by the setting of the PCFG3:PCFG0  
bits (ADCON1<3:0>). Therefore, device current is  
minimized when analog inputs are present at Reset  
time.  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR2<6>)  
interrupt flag may not get set.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit, CMIF.  
A mismatch condition will continue to set flag bit, CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit, CMIF, to be cleared.  
DS39774C-page 264  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kΩ is  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
20.9 Analog Input Connection  
Considerations  
A simplified circuit for an analog input is shown in  
Figure 20-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
FIGURE 20-4:  
COMPARATOR ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
Comparator  
Input  
ILEAKAGE  
500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend: CPIN  
=
=
Input Capacitance  
Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
BCLIF  
BCLIE  
BCLIP  
CIS  
TMR0IF  
LVDIF  
LVDIE  
LVDIP  
CM2  
INT0IF  
TMR3IF  
TMR3IE  
TMR3IP  
CM1  
RBIF  
51  
53  
53  
53  
53  
53  
54  
54  
54  
OSCFIF  
OSCFIE  
OSCFIP  
C2OUT  
CVREN  
RF7  
CMIF  
CMIE  
PIE2  
IPR2  
CMIP  
CMCON  
CVRCON  
PORTF  
LATF  
C1OUT  
CVROE  
RF6  
C2INV  
CVRR  
RF5  
C1INV  
CVRSS  
RF4  
CM0  
CVR0  
CVR3  
RF3  
CVR2  
RF2  
CVR1  
RF1  
LATF7  
LATF6  
TRISF6  
LATF5  
TRISF5  
LATF4  
TRISF4  
LATF3  
TRISF3  
LATF2  
TRISF2  
LATF1  
TRISF1  
TRISF  
TRISF7  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 265  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 266  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The range to be used is selected by the CVRR bit  
(CVRCON<5>). The primary difference between the  
ranges is the size of the steps selected by the CVREF  
Selection bits (CVR3:CVR0), with one range offering  
finer resolution. The equations used to calculate the  
output of the comparator voltage reference are as  
follows:  
21.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The comparator voltage reference is a 16-tap resistor  
ladder network that provides a selectable reference  
voltage. Although its primary purpose is to provide a  
reference for the analog comparators, it may also be  
used independently of them.  
If CVRR = 1:  
CVREF = ((CVR3:CVR0)/24) x (CVRSRC)  
A block diagram of the module is shown in Figure 21-1.  
The resistor ladder is segmented to provide two ranges  
of CVREF values and has a power-down function to  
conserve power when the reference is not being used.  
The module’s supply reference can be provided from  
either device VDD/VSS or an external voltage reference.  
If CVRR = 0:  
CVREF = (CVRSRC/4) + ((CVR3:CVR0)/32) x  
(CVRSRC)  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF- that are multiplexed with RA2 and RA3. The  
voltage source is selected by the CVRSS bit  
(CVRCON<4>).  
21.1 Configuring the Comparator  
Voltage Reference  
The comparator voltage reference module is controlled  
through the CVRCON register (Register 21-1). The  
comparator voltage reference provides two ranges of  
output voltage, each with 16 distinct levels.  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output (see Table 25-3 in Section 25.0 “Electrical  
Characteristics”).  
REGISTER 21-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
R/W-0  
CVROE(1)  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit(1)  
1= CVREF voltage level is also output on the RF5/AN10/CVREF pin  
0= CVREF voltage is disconnected from the RF5/AN10/CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0 to 0.667 CVRSRC, with CVRSRC/24 step size (low range)  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size (high range)  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = (VREF+) – (VREF-)  
0= Comparator reference source, CVRSRC = VDD – VSS  
CVR3:CVR0: Comparator VREF Value Selection bits (0 (CVR3:CVR0) 15)  
When CVRR = 1:  
CVREF = ((CVR3:CVR0)/24) (CVRSRC)  
When CVRR = 0:  
CVREF = (CVRSRC/4) + ((CVR3:CVR0)/32) (CVRSRC)  
Note 1: CVROE overrides the TRISF<5> bit setting.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 267  
PIC18F85J11 FAMILY  
FIGURE 21-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
VREF+  
VDD  
8R  
CVRSS = 0  
CVR3:CVR0  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
21.2 Comparator Voltage Reference  
Accuracy/Error  
21.4 Effects of a Reset  
A device Reset disables the comparator voltage  
reference by clearing bit, CVREN (CVRCON<7>). This  
Reset also disconnects the reference from the RA2 pin  
by clearing bit, CVROE (CVRCON<6>) and selects the  
high-voltage range by clearing bit, CVRR  
(CVRCON<5>). The CVR<3:0> value select bits are  
also cleared.  
The full range of comparator voltage reference cannot  
be realized due to the construction of the module. The  
transistors on the top and bottom of the resistor ladder  
network (Figure 21-1) keep CVREF from approaching the  
reference source rails. The voltage reference is derived  
from the reference source; therefore, the CVREF output  
changes with fluctuations in that source. The tested  
absolute accuracy of the voltage reference can be found  
in Section 25.0 “Electrical Characteristics”.  
21.5 Connection Considerations  
The comparator voltage reference module operates  
independently of the comparator module. The output of  
the reference generator may be connected to the RF5  
pin if the CVROE bit is set. Enabling the voltage refer-  
ence output onto RA2 when it is configured as a digital  
input will increase current consumption. Connecting  
RF5 as a digital output with CVRSS enabled will also  
increase current consumption.  
21.3 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the comparator  
voltage reference should be disabled.  
The RF5 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, a buffer must be used on the comparator volt-  
age reference output for external connections to VREF.  
Figure 21-2 shows an example buffering technique.  
DS39774C-page 268  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 21-2:  
COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
PIC18F85J11  
(1)  
R
CVREF  
Module  
+
CVREF Output  
RF5  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the Comparator Voltage Reference bits, CVRCON<5> and CVRCON<3:0>.  
TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Reset  
Values  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CVRCON  
CMCON  
TRISF  
CVREN  
C2OUT  
TRISF7  
CVROE  
C1OUT  
TRISF6  
CVRR  
C2INV  
CVRSS  
C1INV  
CVR3  
CIS  
CVR2  
CM2  
CVR1  
CM1  
CVR0  
CM0  
53  
53  
54  
TRISF5 TRISF4  
TRISF3  
TRISF2  
TRISF1  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used with the comparator voltage reference.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 269  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 270  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
22.1.1  
CONSIDERATIONS FOR  
CONFIGURING THE PIC18F85J11  
FAMILY DEVICES  
22.0 SPECIAL FEATURES OF THE  
CPU  
PIC18F85J11 family devices include several features  
intended to maximize reliability and minimize cost  
through elimination of external components. These are:  
Devices of the PIC18F85J11 family do not use persistent  
memory registers to store configuration information. The  
configuration bytes are implemented as volatile memory  
which means that configuration data must be  
programmed each time the device is powered up.  
• Oscillator Selection  
• Resets:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Configuration data is stored in the four words at the top  
of the on-chip program memory space, known as the  
Flash Configuration Words. It is stored in program  
memory in the same order shown in Table 22-2, with  
CONFIG1L at the lowest address and CONFIG3H at  
the highest. The data is automatically loaded in the  
proper Configuration registers during device power-up.  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor  
• Two-Speed Start-up  
• Code Protection  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
• In-Circuit Serial Programming  
The oscillator can be configured for the application  
depending on frequency, power, accuracy and cost. All  
of the options are discussed in detail in Section 2.0  
“Oscillator Configurations”.  
The volatile memory cells used for the Configuration  
bits always reset to ‘1’ on Power-on Resets. For all  
other types of Reset events, the previously  
programmed values are maintained and used without  
reloading from program memory.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
The four Most Significant bits of CONFIG1H,  
CONFIG2H and CONFIG3H in program memory  
should also be ‘1111’. This makes these Configuration  
Words appear to be NOP instructions in the remote  
event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘1’s to these  
locations has no effect on device operation.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, the PIC18F85J11 family of  
devices have a configurable Watchdog Timer which is  
controlled in software.  
The inclusion of an internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure.  
Two-Speed Start-up enables code to be executed  
almost immediately on start-up while the primary clock  
source completes its start-up delays.  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written to again. Changing  
a device configuration requires that power to the device  
be cycled.  
All of these features are enabled and configured by  
setting the appropriate Configuration register bits.  
TABLE 22-1: MAPPING OF THE FLASH  
CONFIGURATION WORDS TO  
THE CONFIGURATION  
22.1 Configuration Bits  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select  
various device configurations. These bits are mapped  
starting at program memory location 300000h. A  
complete list is shown in Table 22-2. A detailed  
explanation of the various bit functions is provided in  
Register 22-1 through Register 22-6.  
REGISTERS  
Configuration  
Configuration  
Byte  
Code Space  
Address  
Register  
Address  
CONFIG1L  
CONFIG1H  
CONFIG2L  
CONFIG2H  
CONFIG3L  
CONFIG3H  
XXXF8h  
XXXF9h  
XXXFAh  
XXXFBh  
XXXFCh  
XXXFDh  
300000h  
300001h  
300002h  
300003h  
300004h  
300005h  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 271  
PIC18F85J11 FAMILY  
TABLE 22-2: CONFIGURATION BITS AND DEVICE IDs  
Default/  
Unprogrammed  
Value(1)  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300000h CONFIG1L  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
300004h CONFIG3L(4)  
300005h CONFIG3H  
3FFFFEh DEVID1  
DEBUG  
XINST  
STVREN  
WDTEN  
111- ---1  
---- 01--  
11-- -111  
(2)  
(2)  
(2)  
(2)  
(3)  
CP0  
IESO  
FCMEN  
FOSC2  
FOSC1  
FOSC0  
(2)  
(2)  
(2)  
(2)  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 ---- 1111  
WAIT  
BW  
EMB1  
EMB0  
EASHFT  
1111 1---  
(2)  
(2)  
(2)  
(2)  
CCP2MX ---- ---1  
(5)  
(5)  
DEV2  
DEV1  
DEV9  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
xxxx xxxx  
0000 10x1  
3FFFFFh DEVID2  
DEV10  
Legend:  
x= unknown, – = unimplemented. Shaded cells are unimplemented, read as ‘0’.  
Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset  
states, the configuration bytes maintain their previously programmed states.  
2: The value of these bits in program memory should always be ‘1’. This ensures that the location is executed as a NOPif it  
is accidentally executed.  
3: This bit should always be maintained as ‘0’.  
4: CONFIG3L is implemented in 80-pin devices only.  
5: See Register 22-7 and Register 22-8 for DEVID values. These registers are read-only and cannot be programmed by  
the user.  
DS39774C-page 272  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 22-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)  
R/WO-1  
DEBUG  
R/WO-1  
XINST  
R/WO-1  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
WDTEN  
STVREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled; RB6 and RB7 configured as general purpose I/O pins  
0= Background debugger enabled; RB6 and RB7 are dedicated to in-circuit debug  
XINST: Extended Instruction Set Enable bit  
1= Instruction set extension and Indexed Addressing mode enabled  
0= Instruction set extension and Indexed Addressing mode disabled (Legacy mode)  
STVREN: Stack Overflow/Underflow Reset Enable bit  
1= Reset on stack overflow/underflow enabled  
0= Reset on stack overflow/underflow disabled  
bit 4-1  
bit 0  
Unimplemented: Read as ‘0’  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on SWDTEN bit)  
REGISTER 22-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
CP0  
U-0  
U-0  
(1)  
(1)  
(1)  
(1)  
(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-4  
bit 3  
Unimplemented: Read as ‘1(1)  
Unimplemented: Read as ‘0(2)  
CP0: Code Protection bit  
bit 2  
1= Program memory is not code-protected  
0= Program memory is code-protected  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: The value of these bits in program memory should always be ‘1’. This ensures that the location is  
executed as a NOPif it is accidentally executed.  
2: This bit should always be maintained as ‘0’.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 273  
PIC18F85J11 FAMILY  
REGISTER 22-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)  
R/WO-1  
IESO  
R/WO-1  
FCMEN  
U-0  
U-0  
U-0  
R/WO-1  
FOSC2  
R/WO-1  
FOSC1  
R/WO-1  
FOSC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7  
bit 6  
IESO: Two-Speed Start-up (Internal/External Oscillator Switchover) Control bit  
1= Two-Speed Start-up enabled  
0= Two-Speed Start-up disabled  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5-3  
bit 2-0  
Unimplemented: Read as ‘0’  
FOSC2:FOSC0: Oscillator Selection bits  
111= OSC1/OSC2 as primary; EC oscillator with CLKO function and software controlled  
PLL (ECPLL)  
110= OSC1/OSC2 as primary; EC oscillator with CLKO function (EC)  
101= OSC1/OSC2 as primary; HS oscillator with software controlled PLL (HSPLL)  
100= OSC1/OSC2 as primary; HS oscillator (HS)  
011= INTOSC with CLKO as primary; port function on RA7; EC oscillator with CLKO function and  
software controlled PLL (ECPLL)  
010= INTOSC with CLKO as primary; port function on RA7; EC oscillator with CLKO function  
001= INTOSC as primary with port function on RA6/RA7; HS oscillator with software controlled  
PLL (HSPLL)  
000= INTOSC as primary with port function on RA6/RA7; HS oscillator (HS)  
DS39774C-page 274  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 22-4:  
CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
R/WO-1  
R/WO-1  
R/WO-1  
(1)  
(1)  
(1)  
(1)  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘1(1)  
WDTPS3:WDTPS0: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
Note 1: The value of these bits in program memory should always be ‘1’. This ensures that the location is  
executed as a NOPif it is accidentally executed.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 275  
PIC18F85J11 FAMILY  
REGISTER 22-5: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)(1)  
R/WO-1  
WAIT  
R/WO-1  
BW  
R/WO-1  
EMB1  
R/WO-1  
EMB0  
R/WO-1  
EASHFT  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7  
WAIT: External Bus Wait Enable bit  
1= Wait selections from MEMCON.WAIT<1:0> are unavailable and the device will not wait  
0= Wait programmed by MEMCON.WAIT<1:0>  
bit 6  
BW: Data Bus Width Select bit  
1= 16-Bit External Bus mode  
0= 8-Bit External Bus mode  
bit 5-4  
EMB1:EMB0: External Memory Bus Configuration bits  
00= Extended Microcontroller mode – 20-Bit Address mode  
01= Extended Microcontroller mode – 16-Bit Address mode  
10= Extended Microcontroller mode – 12-Bit Address mode  
11= Microcontroller mode – external bus disabled  
bit 3  
EASHFT: External Address Bus Shift Enable bit  
1= Address shifting enabled – external address bus is shifted to start at 000000h  
0= Address shifting disabled – external address bus reflects the PC value  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: CONFIG3L and its associated bits are implemented only in 80-pin devices.  
REGISTER 22-6: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WO-1  
(1)  
(1)  
(1)  
(1)  
CCP2MX  
bit 7  
bit 0  
Legend:  
R = Readable bit  
WO = Write-Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 7-1  
bit 0  
Unimplemented: Read as ‘1(1)  
CCP2MX: CCP2 MUX bit  
1= CCP2 is multiplexed with RC1  
0= CCP2 is multiplexed with RE7 in Microcontroller mode (all devices) or with RB3 in Extended  
Microcontroller mode (80-pin devices only)  
Note 1: The value of these bits in program memory should always be ‘1’. This ensures that the location is  
executed as a NOPif it is accidentally executed.  
DS39774C-page 276  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
REGISTER 22-7: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F85J11 FAMILY DEVICES  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
Legend:  
R = Read-only bit  
bit 7-5  
DEV2:DEV0: Device ID bits  
111= PIC18F85J11  
101= PIC18F84J11  
100= PIC18F83J11  
011= PIC18F65J11  
001= PIC18F64J11  
000= PIC18F63J11  
bit 4-0  
REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision.  
REGISTER 22-8: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F85J11 FAMILY DEVICES  
R
R
R
R
R
R
R
R
DEV10(1)  
DEV9(1)  
DEV8(1)  
DEV7(1)  
DEV6(1)  
DEV5(1)  
DEV4(1)  
DEV3(1)  
bit 7  
bit 0  
Legend:  
R = Read-only bit  
bit 7-0  
DEV10:DEV3: Device ID bits(1)  
These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.  
0011 1001 = PIC18F6XJ11/8XJ11 devices  
Note 1: The values for DEV10:DEV3 may be shared with other device families. The specific device is always  
identified by using the entire DEV10:DEV0 bit sequence.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 277  
PIC18F85J11 FAMILY  
22.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For PIC18F85J11 family devices, the WDT is driven by  
the INTRC oscillator. When the WDT is enabled, the  
clock source is also enabled. The nominal WDT period is  
4 ms and has the same stability as the INTRC oscillator.  
2: When a CLRWDTinstruction is executed,  
the postscaler count will be cleared.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is  
selected by a multiplexor, controlled by the WDTPS bits  
in Configuration Register 2H. Available periods range  
from 4 ms to 131.072 seconds (2.18 minutes). The  
WDT and postscaler are cleared whenever a SLEEPor  
CLRWDT instruction is executed, or a clock failure  
(primary or Timer1 oscillator) has occurred.  
22.2.1  
CONTROL REGISTER  
The WDTCON register (Register 22-9) is a readable  
and writable register. The SWDTEN bit enables or dis-  
ables WDT operation. This allows software to override  
the WDTEN Configuration bit and enable the WDT only  
if it has been disabled by the Configuration bit.  
FIGURE 22-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
INTRC Control  
WDT Counter  
Wake-up from  
Power-Managed  
Modes  
÷128  
INTRC Oscillator  
WDT  
Reset  
Reset  
CLRWDT  
All Device Resets  
Programmable Postscaler  
1:1 to 1:32,768  
WDT  
4
WDTPS3:WDTPS0  
Sleep  
REGISTER 22-9: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
R/W-0  
REGSLP(1)  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN(2)  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
REGSLP: Voltage Regulator Low-Power Operation Enable bit  
1= On-chip regulator enters low-power operation when device enters Sleep mode  
0= On-chip regulator continues to operate normally in Sleep mode  
bit 6-1  
bit 0  
Unimplemented: Read as ‘0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit(1)  
1= Watchdog Timer is on  
0= Watchdog Timer is off  
Note 1: The REGSLP bit is automatically cleared when a Low-Voltage Detect condition occurs.  
2: This bit has no effect if the Configuration bit, WDTEN, is enabled.  
TABLE 22-3: SUMMARY OF WATCHDOG TIMER REGISTERS  
ResetValues  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
WDTCON  
IPEN  
CM  
RI  
TO  
PD  
POR  
BOR  
52  
52  
REGSLP  
SWDTEN  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer.  
DS39774C-page 278  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 22-2:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
22.3 On-Chip Voltage Regulator  
All of the PIC18F85J11 family devices power their core  
digital logic at a nominal 2.5V. For designs that are  
required to operate at a higher typical voltage, such as  
3.3V, all devices in the PIC18F85J11 family incorporate  
an on-chip regulator that allows the device to run its  
core logic from VDD.  
Regulator Enabled (ENVREG tied to VDD):  
3.3V  
PIC18F85J11  
VDD  
ENVREG  
VDDCORE/VCAP  
VSS  
The regulator is controlled by the ENVREG pin. Tying  
VDD to the pin enables the regulator, which in turn, pro-  
vides power to the core from the other VDD pins. When  
the regulator is enabled, a low-ESR filter capacitor must  
be connected to the VDDCORE/VCAP pin (Figure 22-2).  
This helps to maintain the stability of the regulator. The  
recommended value for the filter capacitor is provided in  
Section 25.3 “DC Characteristics: PIC18F85J11  
Family (Industrial)”.  
CF  
Regulator Disabled (ENVREG tied to ground):  
(1)  
(1)  
2.5V  
3.3V  
If ENVREG is tied to VSS, the regulator is disabled. In  
this case, separate power for the core logic at a nominal  
2.5V must be supplied to the device on the  
VDDCORE/VCAP pin to run the I/O pins at higher voltage  
levels, typically 3.3V. Alternatively, the VDDCORE/VCAP  
and VDD pins can be tied together to operate at a lower  
nominal voltage. Refer to Figure 22-2 for possible  
configurations.  
PIC18F85J11  
VDD  
ENVREG  
VDDCORE/VCAP  
VSS  
22.3.1  
VOLTAGE REGULATION AND  
LOW-VOLTAGE DETECTION  
Regulator Disabled (VDD tied to VDDCORE):  
When it is enabled, the on-chip regulator provides a  
constant voltage of 2.5V nominal to the digital core  
logic. The regulator can provide this level from a VDD of  
about 2.5V, all the way up to the device’s VDDMAX. It  
does not have the capability to boost VDD levels below  
2.5V.  
(1)  
2.5V  
PIC18F85J11  
VDD  
ENVREG  
VDDCORE/VCAP  
VSS  
In order to prevent “brown-out” conditions, the regulator  
enters Tracking mode when the voltage drops too low  
for the regulator. In Tracking mode, the regulator output  
follows VDD, with a typical voltage drop of 100 mV.  
The on-chip regulator includes a simple Low-Voltage  
Detect (LVD) circuit. If VDD drops too low to maintain  
approximately 2.45V on VDDCORE, the circuit sets the  
Low-Voltage Detect Interrupt Flag, LVDIF (PIR2<2>),  
and clears the REGSLP (WDTCON<7>) bit if it was set.  
Note 1: These are typical operating voltages. Refer  
to Section 25.1 “DC Characteristics:  
Supply Voltage” for the full operating  
ranges of VDD and VDDCORE.  
This can be used to generate an interrupt and put the  
application into a low-power operational mode or to  
trigger an orderly shutdown. Low-Voltage Detection is  
only available when the regulator is enabled.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 279  
PIC18F85J11 FAMILY  
22.3.2  
ON-CHIP REGULATOR AND BOR  
22.3.4  
OPERATION IN SLEEP MODE  
When the on-chip regulator is enabled, PIC18F85J11  
family devices also have a simple Brown-out Reset  
capability. If the voltage supplied to the regulator falls to  
a level that is inadequate to maintain a regulated output  
for full-speed operation, the regulator Reset circuitry  
will generate a Brown-out Reset. This event is captured  
by the BOR flag bit (RCON<0>).  
When enabled, the on-chip regulator always consumes  
a small incremental amount of current over IDD. This  
includes when the device is in Sleep mode, even  
though the core digital logic does not require power. To  
provide additional savings in applications where power  
resources are critical, the regulator can be configured  
to automatically disable itself whenever the device  
goes into Sleep mode. This feature is controlled by the  
REGSLP bit (WDTCON<7>). Setting this bit disables  
the regulator in Sleep mode and reduces its current  
consumption to a minimum.  
The operation of the Brown-out Reset is described in  
more detail in Section 4.4 “Brown-out Reset (BOR)”  
and Section 4.4.1 “Detecting BOR”.  
22.3.3  
POWER-UP REQUIREMENTS  
Substantial Sleep-mode power savings can be  
obtained by setting the REGSLP bit, but this will  
increase device wake-up time to ensure the regulator  
has enough time to stabilize.  
The on-chip regulator is designed to meet the power-up  
requirements for the device. If the application does not  
use the regulator, then strict power-up conditions must  
be adhered to. While powering up, VDDCORE must  
never exceed VDD by 0.3 volts.  
The REGSLP bit is cleared automatically by hardware  
when a Low-Voltage Detect condition occurs. The  
REGSLP bit can be set again in software, which would  
keep the voltage regulator in Low-Power mode. This is  
not recommended, however, if any write operations to  
the Flash will be performed.  
DS39774C-page 280  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
22.4.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
22.4 Two-Speed Start-up  
The Two-Speed Start-up feature helps to minimize the  
latency period, from oscillator start-up to code execu-  
tion, by allowing the microcontroller to use the INTRC  
oscillator as a clock source until the primary clock  
source is available. It is enabled by setting the IESO  
Configuration bit.  
While using the INTRC oscillator in Two-Speed  
Start-up, the device still obeys the normal command  
sequences for entering power-managed modes,  
including serial SLEEP instructions (refer to  
Section 3.1.4 “Multiple Sleep Commands”). In  
practice, this means that user code can change the  
SCS1:SCS0 bit settings or issue SLEEP instructions  
before the OST times out. This would allow an applica-  
tion to briefly wake-up, perform routine “housekeeping”  
tasks and return to Sleep before the device starts to  
operate from the primary oscillator.  
Two-Speed Start-up should be enabled only if the  
primary oscillator mode is HS or HSPLL  
(Crystal-Based) modes. Since the EC and ECPLL  
modes do not require an Oscillator Start-up Timer  
delay, Two-Speed Start-up should be disabled.  
When enabled, Resets and wake-ups from Sleep mode  
cause the device to configure itself to run from the inter-  
nal oscillator block as the clock source, following the  
time-out of the Power-up Timer, after a Power-on Reset  
is enabled. This allows almost immediate code  
execution while the primary oscillator starts and the  
OST is running. Once the OST times out, the device  
automatically switches to PRI_RUN mode.  
User code can also check if the primary clock source is  
currently providing the device clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the clock. Otherwise,  
the internal oscillator block is providing the clock during  
wake-up from Reset or Sleep mode.  
In all other power-managed modes, Two-Speed  
Start-up is not used. The device will be clocked by the  
currently selected clock source until the primary clock  
source becomes available. The setting of the IESO bit  
is ignored.  
FIGURE 22-3:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2  
Q3  
Q3  
Q1  
Q2  
INTRC  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
Wake from Interrupt Event  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 281  
PIC18F85J11 FAMILY  
During switchover, the postscaler frequency from the  
internal oscillator block may not be sufficiently stable  
for timing sensitive applications. In these cases, it may  
be desirable to select another clock configuration and  
enter an alternate power-managed mode. This can be  
done to attempt a partial recovery or execute a  
controlled shutdown. See Section 3.1.4 “Multiple  
Sleep Commands” and Section 22.4.1 “Special  
Considerations for Using Two-Speed Start-up” for  
more details.  
22.5 Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) allows the  
microcontroller to continue operation in the event of an  
external oscillator failure by automatically switching the  
device clock to the internal oscillator block. The FSCM  
function is enabled by setting the FCMEN Configuration  
bit.  
When FSCM is enabled, the INTRC oscillator runs at  
all times to monitor clocks to peripherals and provides  
a backup clock in the event of a clock failure. Clock  
monitoring (shown in Figure 22-4) is accomplished by  
creating a sample clock signal which is the INTRC out-  
put divided by 64. This allows ample time between  
FSCM sample clocks for a peripheral clock edge to  
occur. The peripheral device clock and the sample  
clock are presented as inputs to the Clock Monitor latch  
(CM). The CM is set on the falling edge of the device  
clock source but cleared on the rising edge of the  
sample clock.  
The FSCM will detect failures of the primary or secondary  
clock sources only. If the internal oscillator block fails, no  
failure would be detected, nor would any action be  
possible.  
22.5.1  
FSCM AND THE WATCHDOG TIMER  
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a  
separate divider and counter, disabling the WDT has  
no effect on the operation of the INTRC oscillator when  
the FSCM is enabled.  
FIGURE 22-4:  
FSCM BLOCK DIAGRAM  
As already noted, the clock source is switched to the  
INTRC clock when a clock failure is detected. This may  
mean a substantial change in the speed of code execu-  
tion. If the WDT is enabled with a small prescale value,  
a decrease in clock speed allows a WDT time-out to  
occur and a subsequent device Reset. For this reason,  
Fail-Safe Clock Monitor events also reset the WDT and  
postscaler, allowing it to start timing from when execu-  
tion speed was changed and decreasing the likelihood  
of an erroneous time-out.  
Clock Monitor  
Latch (CM)  
(edge-triggered)  
Peripheral  
Clock  
S
C
Q
Q
INTRC  
Source  
÷ 64  
488 Hz  
(2.048 ms)  
(32 μs)  
If the interrupt is disabled, subsequent interrupts while  
in Idle mode will cause the CPU to begin executing  
instructions while being clocked by the INTRC source.  
Clock  
Failure  
Detected  
Clock failure is tested for on the falling edge of the  
sample clock. If a sample clock falling edge occurs  
while CM is still set, a clock failure has been detected  
(Figure 22-5). This causes the following:  
• the FSCM generates an oscillator fail interrupt by  
setting bit, OSCFIF (PIR2<7>);  
• the device clock source is switched to the internal  
oscillator block (OSCCON is not updated to show  
the current clock source – this is the fail-safe  
condition); and  
• the WDT is reset.  
DS39774C-page 282  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 22-5:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
Device  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The device clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
22.5.2  
EXITING FAIL-SAFE OPERATION  
22.5.4  
POR OR WAKE-UP FROM SLEEP  
The fail-safe condition is terminated by either a device  
Reset or by entering a power-managed mode. On  
Reset, the controller starts the primary clock source  
specified in Configuration Register 2H (with any  
required start-up delays that are required for the oscil-  
lator mode, such as OST or PLL timer). The INTRC  
oscillator provides the device clock until the primary  
clock source becomes ready (similar to a Two-Speed  
Start-up). The clock source is then switched to the  
primary clock (indicated by the OSTS bit in the  
OSCCON register becoming set). The Fail-Safe Clock  
Monitor then resumes monitoring the peripheral clock.  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or low-power Sleep mode. When the primary  
device clock is either EC or INTRC mode, monitoring  
can begin immediately following these events.  
For HS or HSPLL modes, the situation is somewhat  
different. Since the oscillator may require a start-up  
time considerably longer than the FSCM sample clock  
time, a false clock failure may be detected. To prevent  
this, the internal oscillator block is automatically config-  
ured as the device clock and functions until the primary  
clock is stable (the OST and PLL timers have timed  
out). This is identical to Two-Speed Start-up mode.  
Once the primary clock is stable, the INTRC returns to  
its role as the FSCM source.  
The primary clock source may never become ready  
during start-up. In this case, operation is clocked by the  
INTOSC multiplexor. The OSCCON register will remain  
in its Reset state until a power-managed mode is  
entered.  
Note:  
The same logic that prevents false  
oscillator failure interrupts on POR, or  
wake from Sleep, will also prevent the  
detection of the oscillator’s failure to start  
at all following these events. This can be  
avoided by monitoring the OSTS bit and  
using a timing routine to determine if the  
oscillator is taking too long to start. Even  
so, no oscillator failure interrupt will be  
flagged.  
22.5.3  
FSCM INTERRUPTS IN  
POWER-MANAGED MODES  
By entering a power-managed mode, the clock  
multiplexor selects the clock source selected by the  
OSCCON register. Fail-Safe Clock Monitoring of the  
power-managed clock source resumes in the  
power-managed mode.  
If an oscillator failure occurs during power-managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTRC multiplexor. An automatic transition back  
to the failed clock source will not occur.  
As noted in Section 22.4.1 “Special Considerations  
for Using Two-Speed Start-up”, it is also possible to  
select another clock configuration and enter an alternate  
power-managed mode while waiting for the primary  
clock to become stable. When the new power-managed  
mode is selected, the primary clock is disabled.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 283  
PIC18F85J11 FAMILY  
22.6 Program Verification and  
Code Protection  
22.7  
In-Circuit Serial Programming  
PIC18F85J11 family microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
For all devices in the PIC18F85J11 family of devices,  
the on-chip program memory space is treated as a  
single block. Code protection for this block is controlled  
by one Configuration bit, CP0. This bit inhibits external  
reads and writes to the program memory space. It has  
no direct effect in normal execution mode.  
22.6.1  
CONFIGURATION REGISTER  
PROTECTION  
22.8 In-Circuit Debugger  
The Configuration registers are protected against  
untoward changes or reads in two ways. The primary  
protection is the write-once feature of the Configuration  
bits which prevents reconfiguration once the bit has  
been programmed during a power cycle. To safeguard  
against unpredictable events, Configuration bit  
changes resulting from individual cell level disruptions  
(such as ESD events) will cause a parity error and  
trigger a device Reset.  
When the DEBUG Configuration bit is programmed to  
0’, the in-circuit debugger functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB® IDE. When the microcontroller has this  
feature enabled, some resources are not available for  
general use. Table 22-4 shows which resources are  
required by the background debugger.  
The data for the Configuration registers is derived from  
the Flash Configuration Words in program memory.  
When the CP0 bit is set, the source data for device  
configuration is also protected as a consequence.  
TABLE 22-4: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
2 levels  
Stack:  
Program Memory:  
Data Memory:  
512 bytes  
10 bytes  
DS39774C-page 284  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
The literal instructions may use some of the following  
operands:  
23.0 INSTRUCTION SET SUMMARY  
The PIC18F85J11 family of devices incorporate the  
standard set of 75 PIC18 core instructions, as well as  
an extended set of 8 new instructions for the optimiza-  
tion of code that is recursive or that utilizes a software  
stack. The extended set is discussed later in this  
section.  
• A literal value to be loaded into a File Select  
Register (specified by ‘k’).  
• The desired FSR register to load the literal value  
into (specified by ‘f’).  
• No operand required (specified by ‘—’).  
The control instructions may use some of the following  
operands:  
23.1 Standard Instruction Set  
• A program memory address (specified by ‘n’).  
The standard PIC18 instruction set adds many  
enhancements to the previous PIC® MCU instruction  
sets, while maintaining an easy migration from these  
PIC MCU instruction sets. Most instructions are a  
single program memory word (16 bits), but there are  
four instructions that require two program memory  
locations.  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’).  
• The mode of the table read and table write  
instructions (specified by ‘m’).  
• No operand required (specified by ‘—’).  
All instructions are a single word, except for four  
double-word instructions. These instructions were  
made double-word to contain the required information  
in 32 bits. In the second word, the 4 MSbs are ‘1’s. If  
this second word is executed as an instruction (by  
itself), it will execute as a NOP.  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type,  
and one or more operands, which further specify the  
operation of the instruction.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
All single-word instructions are executed in a single  
instruction cycle unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Byte-Oriented operations  
Bit-Oriented operations  
Literal operations  
Control operations  
The PIC18 instruction set summary in Table 23-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 23-1 shows the opcode field  
descriptions.  
The double-word instructions execute in two instruction  
cycles.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 µs.  
Two-word branch instructions (if true) would take 3 µs.  
Most byte-oriented instructions have three operands:  
1. The File Select Register (specified by ‘f’).  
2. The destination of the result (specified by ‘d’).  
3. The accessed memory (specified by ‘a’).  
Figure 23-1 shows the general formats that the instruc-  
tions can have. All examples use the convention ‘nnh’  
to represent a hexadecimal number.  
The File Select Register designator, ‘f’, specifies which  
File Select Register is to be used by the instruction.  
The destination designator, ‘d’, specifies where the  
result of the operation is to be placed. If ‘d’ is zero, the  
result is placed in the WREG register. If ‘d’ is one, the  
result is placed in the File Select Register specified in  
the instruction.  
The instruction set summary, shown in Table 23-2, lists  
the standard instructions recognized by the Microchip  
MPASMTM Assembler.  
Section 23.1.1 “Standard Instruction Set” provides  
a description of each instruction.  
All bit-oriented instructions have three operands:  
1. The File Select Register (specified by ‘f’).  
2. The bit in the File Select Register (specified by  
‘b’).  
3. The accessed memory (specified by ‘a’).  
The bit field designator, ‘b’, selects the number of the bit  
affected by the operation, while the File Select Register  
designator, ‘f’, represents the number of the file in  
which the bit is located.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 285  
PIC18F85J11 FAMILY  
TABLE 23-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit:  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
Bit address within an 8-bit File Select Register (0 to 7).  
Bank Select Register. Used to select the current RAM bank.  
ALU STATUS bits: Carry, Digit Carry, Zero, Overflow, Negative.  
BSR  
C, DC, Z, OV, N  
d
Destination select bit:  
d = 0: store result in WREG  
d = 1: store result in File Select Register f  
dest  
f
Destination: either the WREG register or the specified register file location.  
8-bit register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).  
12-bit register file address (000h to FFFh). This is the source address.  
12-bit register file address (000h to FFFh). This is the destination address.  
Global Interrupt Enable bit.  
f
s
f
d
GIE  
k
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions or the direct address for  
Call/Branch and Return instructions.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Power-Down bit.  
PCH  
PCLATH  
PCLATU  
PD  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit:  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
TBLPTR  
TABLAT  
TO  
21-bit Table Pointer (points to a program memory location).  
8-bit Table Latch.  
Time-out bit.  
TOS  
u
Top-of-Stack.  
Unused or unchanged.  
Watchdog Timer.  
WDT  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’). The assembler will generate code with x = 0. It is the recommended form of use for  
compatibility with all Microchip software tools.  
z
7-bit offset value for Indirect Addressing of register files (source).  
7-bit offset value for Indirect Addressing of register files (destination).  
Optional argument.  
s
z
d
{
}
[text]  
(text)  
[expr]<n>  
Indicates an Indexed Address.  
The contents of text.  
Specifies bit nof the register indicated by the pointer, expr.  
Assigned to.  
< >  
Register bit field.  
In the set of.  
italics  
User-defined term (font is Courier New).  
DS39774C-page 286  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 23-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-Oriented File Select Register operations  
15 10  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
OPCODE  
d
a
f (FILE #)  
d = 0for result destination to be WREG register  
d = 1for result destination to be File Select Register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit File Select Register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit File Select Register address  
Bit-Oriented File Select Register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in File Select Register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit File Select Register address  
Literal operations  
15  
8
7
0
MOVLW 7Fh  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTOand Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
S
n<7:0> (literal)  
0
1111  
S = Fast bit  
n<19:8> (literal)  
15  
15  
11 10  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
n<7:0> (literal)  
8 7  
OPCODE  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 287  
PIC18F85J11 FAMILY  
TABLE 23-2: PIC18F85J11 FAMILY INSTRUCTION SET  
16-bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb LSb  
BYTE-ORIENTED OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
ANDWF f, d, a AND WREG with f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CLRF  
f, a  
Clear f  
COMF  
f, d, a Complement f  
CPFSEQ f, a  
CPFSGT f, a  
CPFSLT f, a  
Compare f with WREG, Skip =  
Compare f with WREG, Skip >  
Compare f with WREG, Skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
DECF  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ f, d, a Decrement f, Skip if 0  
DCFSNZ f, d, a Decrement f, Skip if Not 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
INCF  
f, d, a Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
f , f  
Move f (source) to  
1st word  
s
d
s
f (destination) 2nd word  
d
MOVWF f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
0101 01da ffff ffff C, DC, Z, OV, N  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
RRNCF  
SETF  
f, a  
f, a  
1, 2  
1, 2  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
f, a  
Set f  
1, 2  
SUBFWB f, d, a Subtract f from WREG with  
Borrow  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N 1, 2  
0101 10da ffff ffff C, DC, Z, OV, N  
SUBWFB f, d, a Subtract WREG from f with  
Borrow  
SWAPF  
TSTFSZ f, a  
XORWF f, d, a Exclusive OR WREG with f  
f, d, a Swap Nibbles in f  
1
0011 10da ffff ffff None  
4
1, 2  
Test f, Skip if 0  
1 (2 or 3) 0110 011a ffff ffff None  
0001 10da ffff ffff Z, N  
1
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
DS39774C-page 288  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 23-2: PIC18F85J11 FAMILY INSTRUCTION SET (CONTINUED)  
16-bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb LSb  
BIT-ORIENTED OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, b, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
Call Subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
Go to Address  
1st word  
2nd word  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
Pop Top of Return Stack (TOS)  
Push Top of Return Stack (TOS)  
Relative Call  
1
1
1
1
2
1
2
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
Software Device Reset  
Return from Interrupt Enable  
s
RETLW  
RETURN  
SLEEP  
k
s
Return with Literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 289  
PIC18F85J11 FAMILY  
TABLE 23-2: PIC18F85J11 FAMILY INSTRUCTION SET (CONTINUED)  
16-bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add Literal and WREG  
AND Literal with WREG  
Inclusive OR Literal with WREG  
Move Literal (12-bit) 2nd word  
1
1
1
2
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
to FSR(f)  
1st word  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
Move Literal to BSR<3:0>  
Move Literal to WREG  
Multiply Literal with WREG  
Return with Literal in WREG  
Subtract WREG from Literal  
Exclusive OR Literal with WREG  
1
1
1
2
1
1
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with Post-Increment  
Table Read with Post-Decrement  
Table Read with Pre-Increment  
Table Write  
Table Write with Post-Increment  
Table Write with Post-Decrement  
Table Write with Pre-Increment  
2
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
DS39774C-page 290  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
23.1.1  
STANDARD INSTRUCTION SET  
ADDLW  
ADD Literal to W  
ADDWF  
ADD W to f  
Syntax:  
ADDLW k  
Syntax:  
ADDWF f {,d {,a}}  
Operands:  
Operation:  
0 k 255  
(W) + k W  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000 1111  
Operation:  
(W) + (f) dest  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are added to the  
8-bit literal ‘k’ and the result is placed  
in W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
ADDLW  
15h  
Before Instruction  
10h  
After Instruction  
25h  
W
=
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWF  
REG, 0, 0  
Before Instruction  
W
REG  
=
=
17h  
0C2h  
After Instruction  
W
REG  
=
=
0D9h  
0C2h  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 291  
PIC18F85J11 FAMILY  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND Literal with W  
Syntax:  
ADDWFC f {,d {,a}}  
Syntax:  
ANDLW k  
0 k 255  
(W) .AND. k W  
N, Z  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are ANDed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data memory  
location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
ANDLW  
05Fh  
Before Instruction  
W
=
A3h  
03h  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWFC  
REG, 0, 1  
Before Instruction  
Carry bit =  
1
02h  
4Dh  
REG  
W
=
=
After Instruction  
Carry bit =  
0
02h  
50h  
REG  
W
=
=
DS39774C-page 292  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
ANDWF  
AND W with f  
BC  
Branch if Carry  
Syntax:  
ANDWF f {,d {,a}}  
Syntax:  
BC n  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ’1’, then the program  
Description:  
The contents of W are ANDed with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Words:  
Cycles:  
1
1
No  
No  
No  
operation  
No  
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
ANDWF  
REG, 0, 0  
Example:  
HERE  
BC  
5
Before Instruction  
Before Instruction  
W
REG  
=
=
17h  
C2h  
PC  
=
address (HERE)  
1;  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
W
REG  
=
=
02h  
C2h  
address (HERE + 12)  
0;  
address (HERE + 2)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 293  
PIC18F85J11 FAMILY  
BCF  
Bit Clear f  
BN  
Branch if Negative  
Syntax:  
BCF f, b {,a}  
Syntax:  
BN n  
Operands:  
0 f 255  
0 b 7  
a [0, 1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
None  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
Description:  
Bit ‘b’ in register ‘f’ is cleared.  
program will branch.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BCF  
FLAG_REG, 7, 0  
Before Instruction  
FLAG_REG = C7h  
After Instruction  
FLAG_REG = 47h  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
DS39774C-page 294  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
BNC n  
Syntax:  
BNN n  
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘0’,  
(PC) + 2 + 2n PC  
if Negative bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the program  
Description:  
If the Negative bit is ‘0’, then the  
will branch.  
program will branch.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
0;  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
0;  
address (Jump)  
1;  
address (Jump)  
1;  
address (HERE + 2)  
address (HERE + 2)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 295  
PIC18F85J11 FAMILY  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
BNOV n  
Syntax:  
BNZ n  
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘0’,  
(PC) + 2 + 2n PC  
if Zero bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
Description:  
If the Zero bit is ‘0’, then the program  
program will branch.  
will branch.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
0;  
address (Jump)  
1;  
address (Jump)  
1;  
address (HERE + 2)  
address (HERE + 2)  
DS39774C-page 296  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
BRA  
Unconditional Branch  
BSF  
Bit Set f  
Syntax:  
BRA n  
Syntax:  
BSF f, b {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0, 1]  
Operation:  
1f<b>  
None  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
Add the 2’s complement number, ‘2n’,  
to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
1
2
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
HERE  
BRA Jump  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
Example:  
BSF  
FLAG_REG, 7, 1  
0Ah  
8Ah  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 297  
PIC18F85J11 FAMILY  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
BTFSC f, b {,a}  
Syntax:  
BTFSS f, b {,a}  
Operands:  
0 f 255  
0 b 7  
a [0, 1]  
Operands:  
0 f 255  
0 b < 7  
a [0, 1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the next  
instruction is skipped. If bit ‘b’ is ‘0’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the next  
instruction is skipped. If bit ‘b’ is ‘1’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction set  
is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
1;  
address (FALSE)  
address (TRUE)  
DS39774C-page 298  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
BTG f, b {,a}  
Syntax:  
BOV n  
Operands:  
0 f 255  
0 b < 7  
a [0, 1]  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted.  
program will branch.  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BTG  
PORTC, 4, 0  
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
=
0111 0101 [75h]  
0110 0101 [65h]  
Example:  
HERE  
BOV Jump  
Before Instruction  
=
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 299  
PIC18F85J11 FAMILY  
BZ  
Branch if Zero  
CALL  
Subroutine Call  
Syntax:  
BZ n  
Syntax:  
CALL k {,s}  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0, 1]  
if Zero bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>;  
if s = 1,  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the program  
will branch.  
Status Affected:  
None  
The 2’s complement number, ‘2n’, is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return address  
Words:  
Cycles:  
1
(PC+ 4) is pushed onto the return stack.  
If ‘s’ = 1, the W, STATUS and BSR  
registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs (default). Then, the  
20-bit value, ‘k’, is loaded into  
PC<20:1>. CALLis a two-cycle  
instruction.  
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
‘k’<7:0>,  
stack  
’k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
Before Instruction  
No  
No  
No  
No  
PC  
=
address (HERE)  
operation  
operation  
operation  
operation  
After Instruction  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
1;  
Example:  
HERE  
CALL THERE,1  
address (Jump)  
0;  
Before Instruction  
PC  
After Instruction  
address (HERE + 2)  
=
address (HERE)  
PC  
=
address (THERE)  
TOS  
WS  
=
=
=
address (HERE + 4)  
W
BSRS  
STATUSS =  
BSR  
STATUS  
DS39774C-page 300  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
CLRF f {,a}  
Syntax:  
CLRWDT  
None  
Operands:  
0 f 255  
a [0, 1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1TO,  
Operation:  
000h f,  
1Z  
1PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits, TO  
and PD, are set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
No  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
CLRWDT  
Before Instruction  
Q Cycle Activity:  
Q1  
WDT Counter  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
?
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Data  
Write  
register ‘f’  
=
=
=
=
00h  
0
1
register ‘f’  
PD  
1
Example:  
CLRF  
FLAG_REG,1  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
5Ah  
00h  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 301  
PIC18F85J11 FAMILY  
CPFSEQ  
Compare f with W, Skip if f = W  
COMF  
Complement f  
Syntax:  
CPFSEQ f {,a}  
Syntax:  
COMF f {,d {,a}}  
Operands:  
0 f 255  
a [0, 1]  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
(f) – (W),  
skip if (f) = (W)  
(unsigned comparison)  
Operation:  
f dest  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
complemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Example:  
COMF  
REG, 0, 0  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Before Instruction  
Decode  
REG  
=
13h  
After Instruction  
If skip:  
Q1  
REG  
W
=
=
13h  
ECh  
Q2  
No  
Q3  
No  
Q4  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG, 0  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
=
=
HERE  
?
?
W
REG  
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
=
W;  
Address (EQUAL)  
W;  
Address (NEQUAL)  
DS39774C-page 302  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
CPFSGT  
Compare f with W, Skip if f > W  
CPFSLT  
Compare f with W, Skip if f < W  
Syntax:  
CPFSGT f {,a}  
Syntax:  
CPFSLT f {,a}  
Operands:  
0 f 255  
a [0, 1]  
Operands:  
0 f 255  
a [0, 1]  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
Operation:  
(f) – (W),  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of the W by  
performing an unsigned subtraction.  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
Process  
Data  
No  
operation  
1(2)  
register ‘f’  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Decode  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
No  
Q3  
No  
Q4  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
Before Instruction  
PC  
W
=
=
Address (HERE)  
Example:  
HERE  
NGREATER  
GREATER  
CPFSGT REG, 0  
:
:
?
After Instruction  
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
W;  
Before Instruction  
PC  
W
=
=
Address (HERE)  
Address (NLESS)  
?
After Instruction  
If REG  
PC  
If REG  
PC  
>
=
=
W;  
Address (GREATER)  
W;  
Address (NGREATER)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 303  
PIC18F85J11 FAMILY  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
DAW  
None  
Syntax:  
DECF f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
If [W<3:0> > 9] or [DC = 1], then  
(W<3:0>) + 6 W<3:0>;  
else  
Operation:  
(f) – 1dest  
(W<3:0>) W<3:0>  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> > 9] or [C = 1], then  
(W<7:4>) + 6 W<7:4>;  
C = 1;  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
else  
(W<7:4>) W<7:4>  
Status Affected:  
Encoding:  
C
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in W,  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register W  
Process  
Data  
Write  
W
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
DAW  
Before Instruction  
W
=
A5h  
0
0
Example:  
DECF  
CNT,  
1, 0  
C
=
=
DC  
Before Instruction  
After Instruction  
CNT  
Z
=
01h  
0
W
=
=
=
05h  
1
0
=
C
After Instruction  
DC  
CNT  
Z
=
=
00h  
1
Example 2:  
Before Instruction  
W
=
=
=
CEh  
0
0
C
DC  
After Instruction  
W
=
=
=
34h  
1
0
C
DC  
DS39774C-page 304  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
DECFSZ  
Decrement f, Skip if 0  
DCFSNZ  
Decrement f, Skip if Not 0  
Syntax:  
DECFSZ f {,d {,a}}  
Syntax:  
DCFSNZ f {,d {,a}}  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
(f) – 1dest,  
skip if result = 0  
Operation:  
(f) – 1dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
Process  
Data  
Write to  
destination  
register ‘f’  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
After Instruction  
=
Address (HERE)  
=
?
CNT  
=
CNT – 1  
0;  
If CNT  
=
=
=
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP – 1  
0;  
PC  
Address (CONTINUE)  
0;  
If CNT  
PC  
Address (ZERO)  
0;  
Address (HERE + 2)  
Address (NZERO)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 305  
PIC18F85J11 FAMILY  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
GOTO k  
Syntax:  
INCF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
0 k 1048575  
k PC<20:1>  
None  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
(f) + 1dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
kkk  
k kkk  
kkkk  
kkkk  
kkkk  
7
0
8
k
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional branch  
Description:  
The contents of register ‘f’ are  
anywhere within entire 2-Mbyte memory  
range. The 20-bit value, ‘k’, is loaded  
into PC<20:1>. GOTOis always a  
two-cycle instruction.  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
2
2
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
GOTO THERE  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
PC  
=
Address (THERE)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
INCF  
CNT, 1, 0  
Before Instruction  
CNT  
Z
=
FFh  
0
?
?
=
=
=
C
DC  
After Instruction  
CNT  
Z
=
00h  
1
1
=
=
=
C
DC  
1
DS39774C-page 306  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
INFSNZ  
Increment f, Skip if Not 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
INFSNZ f {,d {,a}}  
Syntax:  
INCFSZ f {,d {,a}}  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
(f) + 1dest,  
skip if result 0  
Operation:  
(f) + 1dest,  
skip if result = 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0100  
10da  
ffff  
ffff  
0011  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’. (default)  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
=
=
=
0;  
=
=
=
0;  
Address (NZERO)  
0;  
Address (ZERO)  
Address (ZERO)  
0;  
Address (NZERO)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 307  
PIC18F85J11 FAMILY  
IORLW  
Inclusive OR Literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
IORLW k  
Syntax:  
IORWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .OR. k W  
N, Z  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
eight-bit literal ‘k’. The result is placed  
in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
IORLW  
35h  
Before Instruction  
W
=
9Ah  
BFh  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
IORWF RESULT, 0, 1  
Before Instruction  
RESULT =  
13h  
91h  
W
=
After Instruction  
RESULT =  
13h  
93h  
W
=
DS39774C-page 308  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
LFSR f, k  
Syntax:  
MOVF f {,d {,a}}  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into the  
File Select Register pointed to by ‘f’.  
Description:  
The contents of register ‘f’ are moved to  
a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
Location ‘f’ can be anywhere in the  
256-byte bank.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Example:  
LFSR 2, 3ABh  
After Instruction  
FSR2H  
FSR2L  
=
=
03h  
ABh  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
Example:  
MOVF  
REG, 0, 0  
Before Instruction  
REG  
W
=
=
22h  
FFh  
After Instruction  
REG  
W
=
=
22h  
22h  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 309  
PIC18F85J11 FAMILY  
MOVFF  
Move f to f  
MOVFF f ,f  
MOVLB  
Move Literal to Low Nibble in BSR  
Syntax:  
Syntax:  
MOVLW k  
0 k 255  
k BSR  
None  
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The eight-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR). The value  
of BSR<7:4> always remains ‘0’  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
s
d
Description:  
The contents of source register, ‘f ’, are  
regardless of the value of k :k .  
s
7 4  
moved to destination register, ‘f ’.  
d
Words:  
Cycles:  
1
1
Location of source, ‘f ’, can be  
s
anywhere in the 4096-byte data space  
(000h to FFFh) and location of  
Q Cycle Activity:  
Q1  
destination, ‘f ’, can also be anywhere  
d
Q2  
Q3  
Q4  
from 000h to FFFh.  
Decode  
Read  
Process  
Data  
Write literal  
‘k’ to BSR  
Either source or destination can be W  
(a useful special situation).  
literal ‘k’  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
Example:  
MOVLB  
5
Before Instruction  
BSR Register =  
After Instruction  
BSR Register =  
02h  
05h  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
33h  
11h  
After Instruction  
REG1  
REG2  
=
=
33h  
33h  
DS39774C-page 310  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
MOVLW  
Move Literal to W  
MOVWF  
Move W to f  
Syntax:  
MOVLW k  
0 k 255  
k W  
Syntax:  
MOVWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
0 f 255  
a [0, 1]  
Operation:  
(W) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight-bit literal ‘k’ is loaded into W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
MOVLW  
5Ah  
After Instruction  
W
=
5Ah  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG, 0  
Before Instruction  
W
REG  
=
=
4Fh  
FFh  
After Instruction  
W
REG  
=
=
4Fh  
4Fh  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 311  
PIC18F85J11 FAMILY  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
MULLW k  
Syntax:  
MULWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
a [0, 1]  
(W) x k PRODH:PRODL  
None  
Operation:  
(W) x (f) PRODH:PRODL  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried  
out between the contents of W and the  
8-bit literal ‘k’. The 16-bit result is  
placed in the PRODH:PRODL register  
pair. PRODH contains the high byte.  
Description:  
An unsigned multiplication is carried out  
between the contents of W and the  
register file location, ‘f’. The 16-bit result is  
stored in the PRODH:PRODL register  
pair. PRODH contains the high byte. Both  
W and ‘f’ are unchanged.  
W is unchanged.  
None of the Status flags are affected.  
None of the Status flags are affected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result  
is possible but not detected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result is  
possible but not detected.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’ and the extended instruction set  
is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Example:  
MULLW  
0C4h  
Words:  
Cycles:  
1
1
Before Instruction  
W
PRODH  
PRODL  
=
=
=
E2h  
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
PRODH  
PRODL  
=
=
=
E2h  
ADh  
08h  
registers  
PRODH:  
PRODL  
Example:  
MULWF  
REG, 1  
Before Instruction  
W
=
=
=
=
C4h  
REG  
B5h  
?
PRODH  
PRODL  
?
After Instruction  
W
=
=
=
=
C4h  
B5h  
8Ah  
94h  
REG  
PRODH  
PRODL  
DS39774C-page 312  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
NEGF f {,a}  
Syntax:  
NOP  
Operands:  
0 f 255  
a [0, 1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
None  
No operation  
None  
Operation:  
(f) + 1f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in the  
data memory location ‘f’.  
Description:  
Words:  
No operation.  
1
1
Cycles:  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
operation  
Q4  
Decode  
No  
operation  
No  
operation  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
None.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [3Ah]  
1100 0110 [C6h]  
=
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 313  
PIC18F85J11 FAMILY  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
POP  
Syntax:  
PUSH  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
(TOS) bit bucket  
(PC + 2) TOS  
None  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implementing a  
software stack by modifying TOS and  
then pushing it onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
PUSH  
No  
No  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PC + 2 onto  
return stack  
operation  
operation  
Example:  
POP  
Example:  
PUSH  
GOTO  
NEW  
Before Instruction  
Before Instruction  
TOS  
Stack (1 level down)  
TOS  
PC  
=
=
345Ah  
0124h  
=
=
0031A2h  
014332h  
After Instruction  
After Instruction  
PC  
=
=
=
0126h  
0126h  
345Ah  
TOS  
TOS  
PC  
=
=
014332h  
NEW  
Stack (1 level down)  
DS39774C-page 314  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
RCALL n  
Syntax:  
RESET  
None  
Operands:  
Operation:  
-1024 n 1023  
Operands:  
Operation:  
(PC) + 2 TOS,  
(PC) + 2 + 2n PC  
Reset all registers and flags that are  
affected by a MCLR Reset.  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number, ‘2n’, to the PC. Since the PC  
will have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
No  
No  
Reset  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
PUSH PC  
to stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
PC  
TOS =  
=
Address (HERE)  
=
Address (Jump)  
Address (HERE + 2)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 315  
PIC18F85J11 FAMILY  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
RETFIE {s}  
Syntax:  
RETLW k  
Operands:  
Operation:  
s [0, 1]  
Operands:  
Operation:  
0 k 255  
(TOS) PC,  
k W,  
1GIE/GIEH or PEIE/GIEL;  
if s = 1,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged  
Description:  
W is loaded with the eight-bit literal ‘k’.  
The program counter is loaded from the  
top of the stack (the return address).  
The high address latch (PCLATH)  
remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers, WS,  
STATUSS and BSRS, are loaded into  
their corresponding registers, W,  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
POP PC  
from stack,  
write to W  
STATUS and BSR. If ‘s’ = 0, no update  
of these registers occurs (default).  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
2
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
POP PC  
from stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
Example:  
RETFIE  
1
After Interrupt  
:
PC  
=
=
=
=
=
TOS  
WS  
RETLW kn  
; End of table  
W
BSR  
STATUS  
BSRS  
STATUSS  
1
Before Instruction  
GIE/GIEH, PEIE/GIEL  
W
=
07h  
After Instruction  
W
=
value of kn  
DS39774C-page 316  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
RETURN {s}  
Syntax:  
RLCF f {,d {,a}}  
Operands:  
Operation:  
s [0, 1]  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
(TOS) PC;  
if s = 1,  
(WS) W,  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry flag.  
If ‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in register  
‘f’ (default).  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’= 1, the contents of the shadow  
registers, WS, STATUSS and BSRS,  
are loaded into their corresponding  
registers, W, STATUS and BSR. If  
‘s’ = 0, no update of these registers  
occurs (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
POP PC  
register f  
C
from stack  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
RETURN  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction:  
PC = TOS  
Example:  
RLCF  
REG, 0, 0  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
1100 1100  
1
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 317  
PIC18F85J11 FAMILY  
RLNCF  
Rotate Left f (No Carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
RLNCF f {,d {,a}}  
Syntax:  
RRCF f {,d {,a}}  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in W.  
If ‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
Example:  
RRCF  
REG, 0, 0  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
0111 0011  
0
DS39774C-page 318  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
RRNCF  
Rotate Right f (No Carry)  
SETF  
Set f  
Syntax:  
RRNCF f {,d {,a}}  
Syntax:  
SETF f {,a}  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operands:  
0 f 255  
a [0, 1]  
Operation:  
FFh f  
None  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If ‘a’  
is ‘1’, then the bank will be selected as  
per the BSR value (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG,1  
Q Cycle Activity:  
Q1  
Before Instruction  
REG  
After Instruction  
REG  
=
=
5Ah  
FFh  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 319  
PIC18F85J11 FAMILY  
SLEEP  
Enter Sleep Mode  
SUBFWB  
Subtract f from W with Borrow  
Syntax:  
SLEEP  
None  
Syntax:  
SUBFWB f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
00h WDT,  
0WDT postscaler,  
1TO,  
Operation:  
(W) – (f) – (C) dest  
0PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored in  
W. If ‘d’ is ‘1’, the result is stored in  
register ‘f’ (default).  
Description:  
The Power-Down status bit (PD) is  
cleared. The Time-out status bit (TO)  
is set. The Watchdog Timer and its  
postscaler are cleared.  
The processor is put into Sleep mode  
with the oscillator stopped.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing mode  
whenever f 95 (5Fh). See  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Words:  
Cycles:  
1
1
Example:  
SLEEP  
Before Instruction  
TO  
PD  
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
TO  
PD  
=
=
1†  
0
Example 1:  
SUBFWB  
REG, 1, 0  
If WDT causes wake-up, this bit is cleared.  
Before Instruction  
REG  
W
C
=
=
=
3
2
1
After Instruction  
REG  
W
C
=
FF  
2
=
=
=
=
0
Z
0
1
N
; result is negative  
Example 2:  
Before Instruction  
SUBFWB  
REG, 0, 0  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
=
2
3
1
0
0
=
=
=
=
Z
N
; result is positive  
Example 3:  
Before Instruction  
SUBFWB  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
=
0
2
1
1
0
=
=
=
=
Z
; result is zero  
N
DS39774C-page 320  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
SUBLW  
Subtract W from Literal  
SUBWF  
Subtract W from f  
Syntax:  
SUBLW k  
Syntax:  
SUBWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
Words:  
Cycles:  
1
1
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’ (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example 1:  
SUBLW 02h  
Before Instruction  
W
C
=
=
01h  
?
After Instruction  
W
C
Z
=
01h  
=
=
=
1
0
0
; result is positive  
Words:  
Cycles:  
1
1
N
Example 2:  
SUBLW 02h  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
C
=
=
02h  
?
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
C
Z
=
00h  
Example 1:  
SUBWF  
REG, 1, 0  
=
=
=
1
1
0
; result is zero  
Before Instruction  
N
REG  
W
C
=
=
=
3
2
?
Example 3:  
SUBLW 02h  
Before Instruction  
After Instruction  
W
C
=
=
03h  
?
REG  
W
C
=
1
2
1
0
0
=
=
=
=
; result is positive  
After Instruction  
Z
W
C
Z
=
FFh ; (2’s complement)  
N
=
=
=
0
0
1
; result is negative  
Example 2:  
Before Instruction  
SUBWF  
REG, 0, 0  
N
REG  
W
C
=
=
=
2
2
?
After Instruction  
REG  
W
C
=
2
0
1
1
0
=
=
=
=
; result is zero  
Z
N
Example 3:  
Before Instruction  
SUBWF  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
?
After Instruction  
REG  
W
C
=
FFh ; (2’s complement)  
2
0
0
1
=
=
=
=
; result is negative  
Z
N
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 321  
PIC18F85J11 FAMILY  
SUBWFB  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
SUBWFB f {,d {,a}}  
Syntax:  
SWAPF f {,d {,a}}  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
(f) – (W) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0101  
10da  
ffff  
ffff  
Status Affected:  
Encoding:  
None  
Description:  
Subtract W and the Carry flag (borrow)  
from register ‘f’ (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of register  
‘f’ are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
Write to  
destination  
Decode  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Before Instruction  
REG  
W
C
=
=
=
19h  
0Dh  
1
(0001 1001)  
(0000 1101)  
Example:  
SWAPF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
=
53h  
35h  
After Instruction  
REG  
W
C
=
0Ch  
0Dh  
1
0
0
(0000 1011)  
(0000 1101)  
=
=
=
=
REG  
=
Z
N
; result is positive  
Example 2:  
Before Instruction  
SUBWFB REG, 0, 0  
REG  
W
C
=
=
=
1Bh  
1Ah  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
C
=
1Bh  
00h  
1
1
0
(0001 1011)  
=
=
=
=
Z
; result is zero  
N
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
W
C
=
=
=
03h  
0Eh  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
F5h  
(1111 0100)  
; [2’s comp]  
W
C
Z
=
=
=
=
0Eh  
0
0
(0000 1101)  
N
1
; result is negative  
DS39774C-page 322  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
Syntax:  
TBLRD ( *; *+; *-; +*)  
None  
Example 1:  
TBLRD *+ ;  
Operands:  
Operation:  
Before Instruction  
TABLAT  
=
=
=
55h  
00A356h  
34h  
if TBLRD *,  
TBLPTR  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) + 1TBLPTR  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1TBLPTR  
if TBLRD +*,  
(TBLPTR) + 1TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT  
MEMORY(00A356h)  
After Instruction  
TABLAT  
TBLPTR  
=
=
34h  
00A357h  
Example 2:  
TBLRD +* ;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
AAh  
01A357h  
12h  
MEMORY(01A357h)  
MEMORY(01A358h)  
After Instruction  
34h  
TABLAT  
TBLPTR  
=
=
34h  
01A358h  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range.  
TBLPTR<0> = 0:Least Significant Byte of  
program memory word  
TBLPTR<0> = 1:Most Significant Byte of  
program memory word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 323  
PIC18F85J11 FAMILY  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
TBLWT ( *; *+; *-; +*)  
None  
Example 1:  
TBLWT *+;  
Operands:  
Operation:  
Before Instruction  
if TBLWT*,  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A356h  
(TABLAT) Holding Register;  
TBLPTR – No Change  
if TBLWT*+,  
(TABLAT) Holding Register;  
(TBLPTR) + 1TBLPTR  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) – 1TBLPTR  
if TBLWT+*,  
(TBLPTR) + 1TBLPTR;  
(TABLAT) Holding Register  
=
FFh  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A357h  
=
55h  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
34h  
01389Ah  
HOLDING REGISTER  
(01389Ah)  
Status Affected: None  
=
=
FFh  
FFh  
Encoding:  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
HOLDING REGISTER  
(01389Bh)  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
=
=
34h  
01389Bh  
HOLDING REGISTER  
(01389Ah)  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program Memory  
(P.M.). (Refer to Section 5.0 “Memory  
Organization” for additional details on  
programming Flash memory.)  
=
=
FFh  
34h  
HOLDING REGISTER  
(01389Bh)  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory.  
TBLPTR has a 2-Mbyte address range.  
The LSb of the TBLPTR selects which  
byte of the program memory location to  
access.  
TBLPTR<0> = 0:Least Significant Byte  
of program memory  
word  
TBLPTR<0> = 1:Most Significant Byte  
of program memory  
word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
Decode  
operation operation operation  
No  
No No No  
operation operation operation operation  
(Read  
TABLAT)  
(Write to  
Holding  
Register)  
DS39774C-page 324  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TSTFSZ  
Test f, Skip if 0  
XORLW  
Exclusive OR Literal with W  
Syntax:  
TSTFSZ f {,a}  
Syntax:  
XORLW k  
0 k 255  
(W) .XOR. k W  
N, Z  
Operands:  
0 f 255  
a [0, 1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction fetched  
during the current instruction execution  
is discarded and a NOPis executed,  
making this a two-cycle instruction.  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Example:  
XORLW  
0AFh  
Before Instruction  
W
=
B5h  
1Ah  
After Instruction  
Words:  
Cycles:  
1
W
=
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
PC  
If CNT  
PC  
=
=
=
00h,  
Address (ZERO)  
00h,  
Address (NZERO)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 325  
PIC18F85J11 FAMILY  
XORWF  
Exclusive OR W with f  
Syntax:  
XORWF f {,d {,a}}  
Operands:  
0 f 255  
d [0, 1]  
a [0, 1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in the register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 23.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
AFh  
B5h  
After Instruction  
REG  
W
=
=
1Ah  
B5h  
DS39774C-page 326  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
A summary of the instructions in the extended instruc-  
tion set is provided in Table 23-3. Detailed descriptions  
are provided in Section 23.2.2 “Extended Instruction  
Set”. The opcode field descriptions in Table 23-1  
(page 286) apply to both the standard and extended  
PIC18 instruction sets.  
23.2 Extended Instruction Set  
In addition to the standard 75 instructions of the PIC18  
instruction set, the PIC18F85J11 family of devices also  
provides an optional extension to the core CPU func-  
tionality. The added features include eight additional  
instructions that augment Indirect and Indexed  
Addressing operations and the implementation of  
Indexed Literal Offset Addressing for many of the  
standard PIC18 instructions.  
Note:  
The instruction set extension and the  
Indexed Literal Offset Addressing mode  
were designed for optimizing applications  
written in C. The user may likely never use  
these instructions directly in the assem-  
bler. The syntax for these commands is  
provided as a reference for users who may  
be reviewing code that has been  
generated by a compiler.  
The additional features of the extended instruction set  
are enabled by default on unprogrammed devices.  
Users must properly set or clear the XINST Configura-  
tion bit during programming to enable or disable these  
features.  
The instructions in the extended set can all be  
classified as literal operations, which either manipulate  
the File Select Registers, or use them for Indexed  
Addressing. Two of the instructions, ADDFSR and  
SUBFSR, each have an additional special instantiation  
for using FSR2. These versions (ADDULNK and  
SUBULNK) allow for automatic return after execution.  
23.2.1  
EXTENDED INSTRUCTION SYNTAX  
Most of the extended instructions use indexed argu-  
ments, using one of the File Select Registers and some  
offset to specify a source or destination register. When  
an argument for an instruction serves as part of  
Indexed Addressing, it is enclosed in square brackets  
(“[ ]”). This is done to indicate that the argument is used  
as an index or offset. The MPASM™ Assembler will  
flag an error if it determines that an index or offset value  
is not bracketed.  
The extended instructions are specifically implemented  
to optimize re-entrant program code (that is, code that  
is recursive or that uses a software stack) written in  
high-level languages, particularly C. Among other  
things, they allow users working in high-level  
languages to perform certain operations on data  
structures more efficiently. These include:  
When the extended instruction set is enabled, brackets  
are also used to indicate index arguments in  
byte-oriented and bit-oriented instructions. This is in  
addition to other changes in their syntax. For more  
details, see Section 23.2.3.1 “Extended Instruction  
Syntax with Standard PIC18 Commands”.  
• Dynamic allocation and deallocation of software  
stack space when entering and leaving  
subroutines  
• Function Pointer invocation  
Note:  
In the past, square brackets have been  
used to denote optional arguments in the  
PIC18 and earlier instruction sets. In this  
text, and going forward, optional arguments  
are denoted by braces (“{ }”).  
• Software Stack Pointer manipulation  
• Manipulation of variables located in a software  
stack  
TABLE 23-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET  
Mnemonic,  
16-Bit Instruction Word  
Status  
Description  
Cycles  
Operands  
Affected  
MSb  
LSb  
ADDFSR f, k  
Add Literal to FSR  
Add Literal to FSR2 and Return  
Call Subroutine using WREG  
1
2
2
2
1110 1000 ffkk kkkk  
1110 1000 11kk kkkk  
0000 0000 0001 0100  
1110 1011 0zzz zzzz  
1111 ffff ffff ffff  
1110 1011 1zzz zzzz  
1111 xxxx xzzz zzzz  
1110 1010 kkkk kkkk  
1110 1001 ffkk kkkk  
1110 1001 11kk kkkk  
None  
None  
None  
None  
ADDULNK  
CALLW  
k
MOVSF  
zs, fd Move zs (source) to 1st word  
fd (destination) 2nd word  
MOVSS  
zs, zd Move zs (source) to 1st word  
zd (destination) 2nd word  
2
None  
PUSHL  
k
Store Literal at FSR2, Decrement FSR2  
Subtract Literal from FSR  
Subtract Literal from FSR2 and Return  
1
1
2
None  
None  
None  
SUBFSR  
SUBULNK  
f, k  
k
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 327  
PIC18F85J11 FAMILY  
23.2.2  
EXTENDED INSTRUCTION SET  
ADDFSR  
Add Literal to FSR  
ADDULNK  
Add Literal to FSR2 and Return  
Syntax:  
ADDFSR f, k  
Syntax:  
ADDULNK k  
Operands:  
0 k 63  
f [ 0, 1, 2 ]  
FSR(f) + k FSR(f)  
Operands:  
Operation:  
0 k 63  
FSR2 + k FSR2,  
(TOS) PC  
Operation:  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
1000  
ffkk  
kkkk  
1110  
1000  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of the FSR specified by ‘f’.  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Words:  
1
1
Cycles:  
The instruction takes two cycles to  
execute; a NOPis performed during  
the second cycle.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
This may be thought of as a special  
case of the ADDFSRinstruction,  
where f = 3 (binary ‘11’); it operates  
only on FSR2.  
Example:  
ADDFSR 2, 23h  
Words:  
1
2
Before Instruction  
FSR2  
After Instruction  
FSR2  
Cycles:  
=
03FFh  
0422h  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
=
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
ADDULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
0422h  
(TOS)  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
DS39774C-page 328  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
CALLW  
Subroutine Call Using WREG  
MOVSF  
Move Indexed to f  
Syntax:  
CALLW  
None  
Syntax:  
MOVSF [z ], f  
s
d
Operands:  
Operation:  
Operands:  
0 z 127  
s
0 f 4095  
d
(PC + 2) TOS,  
(W) PCL,  
Operation:  
((FSR2) + z ) f  
s
d
(PCLATH) PCH,  
(PCLATU) PCU  
Status Affected:  
None  
Encoding:  
1st word (source)  
2nd word (destin.)  
Status Affected:  
Encoding:  
None  
1110  
1111  
1011  
ffff  
0zzz  
ffff  
zzzz  
ffff  
s
d
0000  
0000  
0001  
0100  
Description  
First, the return address (PC + 2) is  
pushed onto the return stack. Next, the  
contents of W are written to PCL; the  
existing value is discarded. Then, the  
contents of PCLATH and PCLATU are  
latched into PCH and PCU,  
respectively. The second cycle is  
executed as a NOPinstruction while the  
new next instruction is fetched.  
Description:  
The contents of the source register are  
moved to destination register, ‘f ’. The  
d
actual address of the source register is  
determined by adding the 7-bit literal  
offset, ‘z ’, in the first word to the value  
s
of FSR2. The address of the destination  
register is specified by the 12-bit literal,  
‘f ’, in the second word. Both addresses  
d
can be anywhere in the 4096-byte data  
space (000h to FFFh).  
Unlike CALL, there is no option to  
update W, STATUS or BSR.  
The MOVSFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Words:  
Cycles:  
1
2
If the resultant source address points to  
an Indirect Addressing register, the  
value returned will be 00h.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
WREG  
Push PC to  
stack  
No  
operation  
Words:  
Cycles:  
2
2
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
source addr source addr source reg  
Determine  
Read  
Example:  
HERE  
CALLW  
Before Instruction  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
PC  
=
address (HERE)  
PCLATH =  
PCLATU =  
10h  
00h  
06h  
No dummy  
read  
W
=
After Instruction  
PC  
=
001006h  
TOS  
=
address (HERE + 2)  
Example:  
MOVSF  
[05h], REG2  
PCLATH =  
PCLATU =  
W
10h  
00h  
06h  
Before Instruction  
=
FSR2  
=
80h  
33h  
Contents  
of 85h  
REG2  
=
=
11h  
After Instruction  
FSR2  
=
80h  
Contents  
of 85h  
REG2  
=
=
33h  
33h  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 329  
PIC18F85J11 FAMILY  
MOVSS  
Move Indexed to Indexed  
PUSHL  
Store Literal at FSR2, Decrement FSR2  
Syntax:  
MOVSS [z ], [z ]  
Syntax:  
PUSHL k  
s
d
Operands:  
0 z 127  
s
Operands:  
Operation:  
0 k 255  
0 z 127  
d
k (FSR2),  
FSR2 – 1FSR2  
Operation:  
((FSR2) + z ) ((FSR2) + z )  
s d  
Status Affected:  
None  
Status Affected:  
Encoding:  
None  
Encoding:  
1st word (source)  
2nd word (dest.)  
1111  
1010  
kkkk  
kkkk  
1110  
1111  
1011  
xxxx  
1zzz  
xzzz  
zzzz  
zzzz  
s
d
Description:  
The 8-bit literal ‘k’ is written to the data  
memory address specified by FSR2.  
FSR2 is decremented by 1 after the  
operation.  
Description  
The contents of the source register are  
moved to the destination register. The  
addresses of the source and destination  
registers are determined by adding the  
This instruction allows users to push  
values onto a software stack.  
7-bit literal offsets, ‘z ’ or ‘z ’,  
s
d
respectively, to the value of FSR2. Both  
registers can be located anywhere in  
the 4096-byte data memory space  
(000h to FFFh).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
The MOVSSinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
data  
Write to  
destination  
If the resultant source address points to  
an Indirect Addressing register, the  
value returned will be 00h. If the  
Example:  
PUSHL 08h  
resultant destination address points to  
an Indirect Addressing register, the  
instruction will execute as a NOP.  
Before Instruction  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01ECh  
00h  
Words:  
2
2
After Instruction  
Cycles:  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01EBh  
08h  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
Determine  
Read  
source addr source addr source reg  
Decode  
Determine  
dest addr  
Determine  
dest addr  
Write  
to dest reg  
Example:  
MOVSS [05h], [06h]  
Before Instruction  
FSR2  
=
=
=
80h  
33h  
11h  
Contents  
of 85h  
Contents  
of 86h  
After Instruction  
FSR2  
=
=
=
80h  
33h  
33h  
Contents  
of 85h  
Contents  
of 86h  
DS39774C-page 330  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
SUBFSR  
Subtract Literal from FSR  
SUBULNK  
Subtract Literal from FSR2 and Return  
Syntax:  
SUBFSR f, k  
0 k 63  
f [ 0, 1, 2 ]  
FSRf – k FSRf  
None  
Syntax:  
SUBULNK k  
Operands:  
Operands:  
Operation:  
0 k 63  
FSR2 – k FSR2,  
(TOS) PC  
Operation:  
Status Affected: None  
Status Affected:  
Encoding:  
Encoding:  
1110  
1001  
11kk  
kkkk  
1110  
1001  
ffkk  
kkkk  
Description:  
The 6-bit literal, ‘k’, is subtracted from  
the contents of the FSR2. A RETURNis  
then executed by loading the PC with  
the TOS.  
Description:  
The 6-bit literal, ‘k’, is subtracted  
from the contents of the FSR  
specified by ‘f’.  
Words:  
1
1
The instruction takes two cycles to  
execute; a NOPis performed during the  
second cycle.  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
This may be thought of as a special case  
of the SUBFSRinstruction, where f = 3  
(binary ‘11’); it operates only on FSR2.  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Words:  
1
2
Example:  
SUBFSR 2, 23h  
03FFh  
Cycles:  
Before Instruction  
FSR2  
After Instruction  
FSR2  
Q Cycle Activity:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
=
03DCh  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
SUBULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
03DCh  
(TOS)  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 331  
PIC18F85J11 FAMILY  
23.2.3  
BYTE-ORIENTED AND  
BIT-ORIENTED INSTRUCTIONS IN  
INDEXED LITERAL OFFSET MODE  
23.2.3.1  
Extended Instruction Syntax with  
Standard PIC18 Commands  
When the extended instruction set is enabled, the File  
Select Register argument, ‘f’, in the standard,  
byte-oriented and bit-oriented commands is replaced  
with the literal offset value, ‘k’. As already noted, this  
occurs only when ‘f’ is less than or equal to 5Fh. When  
an offset value is used, it must be indicated by square  
brackets (“[ ]”). As with the extended instructions, the  
use of brackets indicates to the compiler that the value  
is to be interpreted as an index or an offset. Omitting  
the brackets, or using a value greater than 5Fh within  
the brackets, will generate an error in the MPASM  
Assembler.  
Note: Enabling the PIC18 instruction set exten-  
sion may cause legacy applications to  
behave erratically or fail entirely.  
In addition to eight new commands in the extended set,  
enabling the extended instruction set also enables  
Indexed Literal Offset Addressing (Section 5.6.1  
“Indexed Addressing with Literal Offset”). This has  
a significant impact on the way that many commands of  
the standard PIC18 instruction set are interpreted.  
When the extended set is disabled, addresses embed-  
ded in opcodes are treated as literal memory locations:  
either as a location in the Access Bank (a = 0) or in a  
GPR bank designated by the BSR (a = 1). When the  
extended instruction set is enabled and a = 0, however,  
a File Select Register argument of 5Fh or less is inter-  
preted as an offset from the pointer value in FSR2 and  
not as a literal address. For practical purposes, this  
means that all instructions that use the Access RAM bit  
as an argument – that is, all byte-oriented and  
bit-oriented instructions, or almost half of the core  
PIC18 instructions – may behave differently when the  
extended instruction set is enabled.  
If the index argument is properly bracketed for Indexed  
Literal Offset Addressing, the Access RAM argument is  
never specified; it will automatically be assumed to be  
0’. This is in contrast to standard operation (extended  
instruction set disabled) when ‘a’ is set on the basis of  
the target address. Declaring the Access RAM bit in  
this mode will also generate an error in the MPASM  
Assembler.  
The destination argument, ‘d’, functions as before.  
In the latest versions of the MPASM Assembler,  
language support for the extended instruction set must  
be explicitly invoked. This is done with either the  
command line option, /y, or the PE directive in the  
source listing.  
When the content of FSR2 is 00h, the boundaries of  
the Access RAM are essentially remapped to their  
original values. This may be useful in creating  
backward-compatible code. If this technique is used,  
it may be necessary to save the value of FSR2 and  
restore it when moving back and forth between C and  
assembly routines in order to preserve the Stack  
Pointer. Users must also keep in mind the syntax  
requirements of the extended instruction set (see  
Section 23.2.3.1 “Extended Instruction Syntax  
with Standard PIC18 Commands”).  
23.2.4  
CONSIDERATIONS WHEN  
ENABLING THE EXTENDED  
INSTRUCTION SET  
It is important to note that the extensions to the instruc-  
tion set may not be beneficial to all users. In particular,  
users who are not writing code that uses a software  
stack may not benefit from using the extensions to the  
instruction set.  
Although the Indexed Literal Offset mode can be very  
useful for dynamic stack and pointer manipulation, it  
can also be very annoying if a simple arithmetic opera-  
tion is carried out on the wrong register. Users who are  
accustomed to the PIC18 programming must keep in  
mind that, when the extended instruction set is  
enabled, register addresses of 5Fh or less are used for  
Indexed Literal Offset Addressing.  
Additionally, the Indexed Literal Offset Addressing  
mode may create issues with legacy applications  
written to the PIC18 assembler. This is because  
instructions in the legacy code may attempt to address  
registers in the Access Bank below 5Fh. Since these  
addresses are interpreted as literal offsets to FSR2  
when the instruction set extension is enabled, the  
application may read or write to the wrong data  
addresses.  
Representative examples of typical byte-oriented and  
bit-oriented instructions in the Indexed Literal Offset  
mode are provided on the following page to show how  
execution is affected. The operand conditions shown in  
the examples are applicable to all instructions of these  
types.  
When porting an application to the PIC18F85J11 family,  
it is very important to consider the type of code. A large,  
re-entrant application that is written in C and would ben-  
efit from efficient compilation will do well when using the  
instruction set extensions. Legacy applications that  
heavily use the Access Bank will most likely not benefit  
from using the extended instruction set.  
DS39774C-page 332  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
ADD W to Indexed  
(Indexed Literal Offset mode)  
Bit Set Indexed  
BSF  
ADDWF  
(Indexed Literal Offset mode)  
Syntax:  
ADDWF [k] {,d}  
Syntax:  
BSF [k], b  
Operands:  
0 k 95  
d [0, 1]  
Operands:  
0 f 95  
0 b 7  
Operation:  
(W) + ((FSR2) + k) dest  
Operation:  
1((FSR2) + k)<b>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0010  
01d0  
kkkk  
kkkk  
1000  
bbb0  
kkkk  
kkkk  
Description:  
The contents of W are added to the  
contents of the register indicated by  
FSR2, offset by the value, ‘k’.  
Description:  
Bit ‘b’ of the register indicated by FSR2,  
offset by the value, ‘k’, is set.  
Words:  
Cycles:  
1
1
If ‘d’ is ‘0’, the result is stored in W. If ‘d’  
is ‘1’, the result is stored back in  
register ‘f’ (default).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Example:  
BSF  
[FLAG_OFST], 7  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write to  
destination  
Before Instruction  
FLAG_OFST  
FSR2  
Contents  
of 0A0Ah  
=
=
0Ah  
0A00h  
Example:  
ADDWF  
[OFST],0  
=
55h  
D5h  
Before Instruction  
After Instruction  
W
=
=
=
17h  
Contents  
of 0A0Ah  
OFST  
FSR2  
2Ch  
=
0A00h  
Contents  
of 0A2Ch  
=
20h  
After Instruction  
Set Indexed  
(Indexed Literal Offset mode)  
SETF  
W
=
=
37h  
20h  
Contents  
of 0A2Ch  
Syntax:  
SETF [k]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 95  
FFh ((FSR2) + k)  
None  
0110  
1000  
kkkk  
kkkk  
The contents of the register indicated by  
FSR2, offset by ‘k’, are set to FFh.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write  
register  
Example:  
SETF  
[OFST]  
2Ch  
Before Instruction  
OFST  
=
=
FSR2  
0A00h  
Contents  
of 0A2Ch  
=
00h  
After Instruction  
Contents  
of 0A2Ch  
=
FFh  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 333  
PIC18F85J11 FAMILY  
To develop software for the extended instruction set,  
the user must enable support for the instructions and  
the Indexed Addressing mode in their language tool(s).  
Depending on the environment being used, this may be  
done in several ways:  
23.2.5  
SPECIAL CONSIDERATIONS WITH  
MICROCHIP MPLAB® IDE TOOLS  
The latest versions of Microchip’s software tools have  
been designed to fully support the extended instruction  
set for the PIC18F85J11 family. This includes the  
MPLAB C18 C Compiler, MPASM assembly language  
and MPLAB Integrated Development Environment  
(IDE).  
• A menu option or dialog box within the  
environment that allows the user to configure the  
language tool and its settings for the project  
• A command line option  
When selecting  
a
target device for software  
• A directive in the source code  
development, MPLAB IDE will automatically set default  
Configuration bits for that device. The default setting for  
the XINST Configuration bit is ‘0’, disabling the  
extended instruction set and Indexed Literal Offset  
Addressing. For proper execution of applications  
developed to take advantage of the extended  
instruction set, XINST must be set during  
programming.  
These options vary between different compilers,  
assemblers and development environments. Users are  
encouraged to review the documentation accompany-  
ing their development systems for the appropriate  
information.  
DS39774C-page 334  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
24.1 MPLAB Integrated Development  
Environment Software  
24.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 335  
PIC18F85J11 FAMILY  
24.2 MPASM Assembler  
24.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
24.6 MPLAB SIM Software Simulator  
24.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
24.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS39774C-page 336  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
24.7 MPLAB ICE 2000  
High-Performance  
24.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
24.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
24.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 337  
PIC18F85J11 FAMILY  
24.11 PICSTART Plus Development  
Programmer  
24.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
24.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS39774C-page 338  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
25.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +100°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any digital only I/O pin or MCLR with respect to VSS (except VDD) ........................................... -0.3V to 6.0V  
Voltage on any combined digital and analog pin with respect to VSS (except VDD and MCLR)...... -0.3V to (VDD + 0.3V)  
Voltage on VDDCORE with respect to VSS................................................................................................... -0.3V to 2.75V  
Voltage on VDD with respect to VSS ........................................................................................................... -0.3V to 3.6V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Maximum output current sunk by PORTA<7:6> and any PORTB and PORTC I/O pins.........................................25 mA  
Maximum output current sunk by any PORTD, PORTE and PORTJ I/O pins ..........................................................8 mA  
Maximum output current sunk by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins ............................2 mA  
Maximum output current sourced by PORTA<7:6> and any PORTB and PORTC I/O pins ...................................25 mA  
Maximum output current sourced by any PORTD, PORTE and PORTJ I/O pins.....................................................8 mA  
Maximum output current sourced by PORTA<5:0> and any PORTF, PORTG and PORTH I/O pins .......................2 mA  
Maximum current sunk by all ports combined.......................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 339  
PIC18F85J11 FAMILY  
FIGURE 25-1:  
PIC18F85J11 FAMILY VOLTAGE-FREQUENCY GRAPH,  
REGULATOR ENABLED (INDUSTRIAL)(1)  
4.0V  
3.5V  
3.6V  
3.0V  
2.5V  
2.0V  
PIC18F6XJ11/8XJ11  
2.35V  
0
8 MHz  
40 MHz  
Frequency  
Note 1: When the on-chip regulator is enabled, its BOR circuit will automatically trigger a device Reset  
before VDD reaches a level at which full-speed operation is not possible.  
FIGURE 25-2:  
PIC18F85J11 FAMILY VOLTAGE-FREQUENCY GRAPH,  
REGULATOR DISABLED (INDUSTRIAL)(1,2)  
3.00V  
2.75V  
2.7V  
2.50V  
PIC18F6XJ11/8XJ11  
2.35V  
2.25V  
2.00V  
8 MHz  
40 MHz  
Frequency  
Note 1: For frequencies between 4 MHz and 40 MHz, FMAX = (51.42 MHz/V) * (VDDCORE – 2V) + 4 MHz.  
2: When the on-chip voltage regulator is disabled, VDD and VDDCORE must be maintained so that  
VDDCORE VDD 3.6V.  
DS39774C-page 340  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
25.1 DC Characteristics: Supply Voltage  
PIC18F85J11 Family (Industrial)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
Symbol  
No.  
Characteristic  
Supply Voltage  
Min  
Typ  
Max  
Units  
Conditions  
D001  
VDD  
VDDCORE  
3.6  
3.6  
V
V
ENVREG tied to VSS  
ENVREG tied to VDD  
2.0  
D001B VDDCORE External Supply for  
2.0  
2.70  
V
ENVREG tied to VSS  
Microcontroller Core  
D001C AVDD  
D001D AVSS  
Analog Supply Voltage  
VDD – 0.3  
VDD + 0.3  
VSS + 0.3  
V
V
V
Analog Ground Potential VSS – 0.3  
D002  
VDR  
RAM Data Retention  
Voltage(1)  
1.5  
D003  
VPOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
0.7  
V
See Section 4.3 “Power-on  
Reset (POR)” for details  
D004  
D005  
SVDD  
VBOR  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms See Section 4.3 “Power-on  
Reset (POR)” for details  
Brown-out Reset Voltage  
1.9  
V
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 341  
PIC18F85J11 FAMILY  
25.2 DC Characteristics: Power-Down and Supply Current  
PIC18F85J11 Family (Industrial)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Typ Max Units  
Conditions  
Power-Down Current (IPD)(1)  
All devices 0.2  
0.9  
0.9  
5
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
VDDCORE = 2.0V  
(Sleep mode)(4)  
0.1  
2.4  
All devices 0.5  
0.9  
0.9  
5
VDD = 2.5V,  
VDDCORE = 2.5V  
(Sleep mode)(4)  
0.1  
2.7  
All devices 2.7  
6
VDD = 3.3V  
3.5  
6.7  
6
(Sleep mode)(5)  
12  
Legend: TBD = To Be Determined  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended tem-  
perature crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG tied to VSS).  
5: Voltage regulator enabled (ENVREG tied to VDD).  
DS39774C-page 342  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
25.2 DC Characteristics: Power-Down and Supply Current  
PIC18F85J11 Family (Industrial) (Continued)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Supply Current (IDD)(2)  
Typ Max Units  
Conditions  
All devices 6.5  
16  
16  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
VDD = 2.0V,  
7
+25°C  
VDDCORE = 2.0V(4)  
9.5  
20  
+85°C  
-40°C  
FOSC = 31 kHz  
(RC_RUN mode,  
internal oscillator  
source)  
All devices 10  
18  
VDD = 2.5V,  
10.5  
18  
+25°C  
VDDCORE = 2.5V(4)  
12.5  
24  
+85°C  
-40°C  
All devices 41  
100  
100  
110  
750  
750  
840  
850  
850  
910  
900  
900  
990  
52  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 3.3V(5)  
71  
All devices 359  
VDD = 2.0V,  
387  
VDDCORE = 2.0V(4)  
407  
FOSC = 1 MHz  
(INTOSC_RUN mode,  
internal oscillator  
source)  
All devices 438  
VDD = 2.5V,  
470  
VDDCORE = 2.5V(4)  
491  
All devices 486  
526  
VDD = 3.3V(5)  
564  
All devices 0.76 1.45 mA  
0.84 1.45 mA  
VDD = 2.0V,  
VDDCORE = 2.0V(4)  
0.9  
1.6  
mA  
FOSC = 4 MHz  
(INTOSC_RUN mode,  
internal oscillator  
source)  
All devices 1.1  
1.63 mA  
VDD = 2.5V,  
1.18 1.63 mA  
1.24 1.75 mA  
VDDCORE = 2.5V(4)  
All devices 1.25 1.86 mA  
1.29 1.86 mA  
VDD = 3.3V(5)  
1.37 1.94 mA  
Legend: TBD = To Be Determined  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended tem-  
perature crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG tied to VSS).  
5: Voltage regulator enabled (ENVREG tied to VDD).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 343  
PIC18F85J11 FAMILY  
25.2 DC Characteristics: Power-Down and Supply Current  
PIC18F85J11 Family (Industrial) (Continued)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Supply Current (IDD)(2)  
Typ Max Units  
Conditions  
All devices 2.4  
8
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
VDD = 2.0V,  
2.5  
8
+25°C  
VDDCORE = 2.0V(4)  
4.8  
12  
+85°C  
-40°C  
FOSC = 31 kHz  
(RC_IDLE mode,  
internal oscillator  
source)  
All devices 3.2  
9
VDD = 2.5V,  
3.2  
9
+25°C  
VDDCORE = 2.5V(4)  
6
14  
+85°C  
-40°C  
All devices 62  
82  
42  
82  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 3.3V(5)  
59  
97  
All devices 251  
570  
570  
590  
610  
610  
650  
710  
710  
790  
760  
760  
800  
850  
850  
900  
950  
950  
VDD = 2.0V,  
264  
VDDCORE = 2.0V(4)  
272  
FOSC = 1 MHz  
(INTOSC_IDLE mode,  
internal oscillator  
source)  
All devices 284  
VDD = 2.5V,  
284  
VDDCORE = 2.5V(4)  
293  
All devices 295  
323  
VDD = 3.3V(5)  
392  
All devices 368  
VDD = 2.0V,  
362  
VDDCORE = 2.0V(4)  
370  
All devices 400  
410  
FOSC = 4 MHz  
(INTOSC_IDLE mode,  
internal oscillator  
source)  
VDD = 2.5V,  
VDDCORE = 2.5V(4)  
418  
All devices 460  
462  
VDD = 3.3V(5)  
486 1,000 µA  
Legend: TBD = To Be Determined  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended tem-  
perature crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG tied to VSS).  
5: Voltage regulator enabled (ENVREG tied to VDD).  
DS39774C-page 344  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
25.2 DC Characteristics: Power-Down and Supply Current  
PIC18F85J11 Family (Industrial) (Continued)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Supply Current (IDD)(2)  
Typ Max Units  
Conditions  
All devices 165  
490  
490  
490  
670  
670  
670  
850  
850  
850  
2.2  
2.2  
2.2  
2.5  
2.5  
2.5  
3.0  
3.0  
3.0  
14  
µA  
µA  
-40°C  
VDD = 2.0V,  
180  
+25°C  
VDDCORE = 2.0V(4)  
200  
µA  
+85°C  
-40°C  
All devices 256  
µA  
FOSC = 1 MHZ  
(PRI_RUN mode,  
EC oscillator)  
VDD = 2.5V,  
260  
µA  
+25°C  
VDDCORE = 2.5V(4)  
280  
µA  
+85°C  
-40°C  
All devices 460  
µA  
456  
µA  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 3.3V(5)  
482  
µA  
All devices 0.63  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD = 2.0V,  
0.68  
VDDCORE = 2.0V(4)  
0.74  
All devices 0.91  
FOSC = 4 MHz  
(PRI_RUN mode,  
EC oscillator)  
VDD = 2.5V,  
1.04  
VDDCORE = 2.5V(4)  
1.04  
All devices 1.32  
1.32  
VDD = 3.3V(5)  
1.41  
All devices 7.47  
5.81  
VDD = 2.5V,  
14  
VDDCORE = 2.5V(4)  
FOSC = 40 MHZ  
(PRI_RUN mode,  
EC oscillator)  
6.32  
13  
All devices 8.84  
8.66  
18  
18  
VDD = 3.3V(5)  
7.97  
16  
Legend: TBD = To Be Determined  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended tem-  
perature crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG tied to VSS).  
5: Voltage regulator enabled (ENVREG tied to VDD).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 345  
PIC18F85J11 FAMILY  
25.2 DC Characteristics: Power-Down and Supply Current  
PIC18F85J11 Family (Industrial) (Continued)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Supply Current (IDD)(2)  
Typ Max Units  
Conditions  
All devices 2.8  
3.8  
3.8  
4.5  
mA  
mA  
mA  
-40°C  
FOSC = 4 MHZ,  
16 MHz internal  
(PRI_RUN mode,  
HSPLL oscillator)  
VDD = 2.0V,  
3.02  
3.01  
+25°C  
VDDCORE = 2.0V(4)  
+85°C  
All devices 4.5  
5.4  
5.6  
5.6  
mA  
mA  
mA  
-40°C  
FOSC = 4 MHZ,  
16 MHz internal  
(PRI_RUN mode,  
HSPLL oscillator)  
VDD = 2.5V,  
4.8  
+25°C  
VDDCORE = 2.5V(4)  
+85°C  
4.54  
All devices 5.72  
6.7  
6.5  
6.5  
mA  
mA  
mA  
-40°C  
FOSC = 4 MHZ,  
16 MHz internal  
(PRI_RUN mode,  
HSPLL oscillator)  
VDD = 3.3V(5)  
+25°C  
+85°C  
5.55  
5.3  
All devices 7.4  
8.5  
8.5  
7.5  
mA  
mA  
mA  
-40°C  
FOSC = 10 MHZ,  
40 MHz internal  
(PRI_RUN mode,  
HSPLL oscillator)  
VDD = 2.5V,  
+25°C  
7.23  
6.55  
VDDCORE = 2.5V(4)  
+85°C  
All devices 9.74 11.6  
9.43 11.6  
mA  
mA  
-40°C  
FOSC = 10 MHZ,  
40 MHz internal  
(PRI_RUN mode,  
HSPLL oscillator)  
VDD = 3.3V(5)  
+25°C  
+85°C  
8.89 10.5 mA  
Legend: TBD = To Be Determined  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended tem-  
perature crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG tied to VSS).  
5: Voltage regulator enabled (ENVREG tied to VDD).  
DS39774C-page 346  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
25.2 DC Characteristics: Power-Down and Supply Current  
PIC18F85J11 Family (Industrial) (Continued)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Supply Current (IDD)(2)  
Typ Max Units  
Conditions  
All devices 50  
120  
120  
130  
480  
300  
270  
550  
500  
460  
850  
850  
800  
950  
950  
900  
1.3  
1.2  
1.2  
8
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
VDD = 2.0V,  
51  
+25°C  
VDDCORE = 2.0V(4)  
54  
+85°C  
-40°C  
All devices 223  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
VDD = 2.5V,  
134  
+25°C  
VDDCORE = 2.5V(4)  
110  
+85°C  
-40°C  
All devices 307  
254  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 3.3V(5)  
194  
All devices 307  
VDD = 2.0V,  
200  
VDDCORE = 2.0V(4)  
202  
All devices 483  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
VDD = 2.5V,  
318  
VDDCORE = 2.5V(4)  
343  
All devices 0.52  
0.47  
VDD = 3.3V(5)  
0.47  
All devices 2.38  
2.04  
VDD = 2.5V,  
8
VDDCORE = 2.5V(4)  
FOSC = 40 MHz  
(PRI_IDLE mode,  
EC oscillator)  
2.52  
9
All devices 3.02  
2.99  
10  
10  
VDD = 3.3V(5)  
4.23  
11  
Legend: TBD = To Be Determined  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended tem-  
perature crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG tied to VSS).  
5: Voltage regulator enabled (ENVREG tied to VDD).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 347  
PIC18F85J11 FAMILY  
25.2 DC Characteristics: Power-Down and Supply Current  
PIC18F85J11 Family (Industrial) (Continued)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Supply Current (IDD)(2)  
Typ Max Units  
Conditions  
All devices 10.5  
22  
28  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-10°C  
VDD = 2.0V,  
13.4  
+25°C  
VDDCORE = 2.0V(4)  
17.6  
40  
+70°C  
-10°C  
FOSC = 32 kHz(3)  
(SEC_RUN mode,  
Timer1 as clock)  
All devices 13.2  
30  
VDD = 2.5V,  
16.2  
35  
+25°C  
VDDCORE = 2.5V(4)  
20.7  
50  
+70°C  
-10°C  
All devices 39  
120  
150  
190  
15  
58  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
VDD = 3.3V(5)  
75  
All devices 5.7  
8.9  
VDD = 2.0V,  
20  
VDDCORE = 2.0V(4)  
12.8  
26  
FOSC = 32 kHz(3)  
(SEC_IDLE mode,  
Timer1 as clock)  
All devices 6.6  
9.7  
17  
VDD = 2.5V,  
24  
VDDCORE = 2.5V(4)  
13.7  
30  
All devices 39  
115  
52.8 145  
72.7 185  
VDD = 3.3V(5)  
Legend: TBD = To Be Determined  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended tem-  
perature crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG tied to VSS).  
5: Voltage regulator enabled (ENVREG tied to VDD).  
DS39774C-page 348  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
25.2 DC Characteristics: Power-Down and Supply Current  
PIC18F85J11 Family (Industrial) (Continued)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Typ Max Units  
Conditions  
Module Differential Currents (ΔIWDT, ΔIOSCB, ΔIAD)  
D022  
Watchdog Timer 1.6  
4
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
VDD = 2.0V,  
(ΔIWDT)  
1.7  
1.6  
2.5  
2.5  
2.3  
3.8  
2.6  
2.4  
4
4
5
5
5
6
6
6
12.5  
12.5  
18  
12.5  
12.5  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C to  
+85°C  
VDDCORE = 2.0V(4)  
VDD = 2.5V,  
VDDCORE = 2.5V(4)  
VDD = 3.3V(5)  
D025  
(ΔIOSCB)  
Timer1 Oscillator 6.6  
VDD = 2.0V,  
32 kHz on Timer1(3)  
7.9  
11.5  
7.2  
8.1  
11.9 18.5  
7
9
11  
1
VDDCORE = 2.0V(4)  
VDD = 2.5V,  
32 kHz on Timer1(3)  
32 kHz on Timer1(3)  
VDDCORE = 2.5V(4)  
12.5  
12.5  
18.5  
1.5  
VDD = 3.3V(5)  
D026  
(ΔIAD)  
A/D Converter  
VDD = 2.0V,  
VDDCORE = 2.0V(4)  
1
1
1.5  
1.5  
µA  
µA  
-40°C to  
+85°C  
VDD = 2.5V,  
A/D on, not converting  
VDDCORE = 2.5V(4)  
VDD = 3.3V(5)  
-40°C to  
Legend: TBD = To Be Determined  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended tem-  
perature crystals are available at a much higher cost.  
4: Voltage regulator disabled (ENVREG tied to VSS).  
5: Voltage regulator enabled (ENVREG tied to VDD).  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 349  
PIC18F85J11 FAMILY  
25.3 DC Characteristics: PIC18F85J11 Family (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
All I/O ports:  
with TTL buffer  
with Schmitt Trigger buffer  
MCLR  
D030  
D031  
D032  
D033  
D033A  
VSS  
VSS  
VSS  
VSS  
VSS  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.2 VDD  
V
V
V
V
V
OSC1  
OSC1  
HS, HSPLL modes  
EC, ECPLL modes(1)  
D034  
T13CKI  
VSS  
0.3  
V
VIH  
Input High Voltage  
I/O ports with analog functions:  
with TTL buffer  
D040  
D041  
0.25 VDD + 0.8V  
0.8 VDD  
VDD  
VDD  
V
V
VDD < 3.3V  
with Schmitt Trigger buffer  
Digital only I/O ports:  
with TTL buffer  
Dxxx  
0.25 VDD + 0.8V  
2.0  
5.5  
5.5  
V
V
V
V
V
V
VDD < 3.3V  
DxxxA  
Dxxx  
3.3V VDD 3.6V  
with Schmitt Trigger buffer  
0.8 VDD  
0.8 VDD  
0.7 VDD  
0.8 VDD  
5.5  
D042  
D043  
D043A  
MCLR  
OSC1  
OSC1  
VDD  
VDD  
VDD  
HS, HSPLL modes  
EC, ECPLL modes  
D044  
T13CKI  
1.6  
VDD  
V
IIL  
Input Leakage Current(1)  
D060  
I/O ports  
1
µA VSS VPIN VDD,  
pin at high-impedance  
D061  
D063  
MCLR  
1
1
µA Vss VPIN VDD  
µA Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070  
IPURB  
30  
240  
µA VDD = 3.3V, VPIN = VSS  
Note 1: Negative current is defined as current sourced by the pin.  
DS39774C-page 350  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
25.3 DC Characteristics: PIC18F85J11 Family (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
D080  
I/O ports:  
PORTA, PORTF, PORTG,  
PORTH  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 2 mA, VDD = 3.3V,  
-40°C to +85°C  
PORTD, PORTE, PORTJ  
IOL = 3.4 mA, VDD = 3.3V,  
-40°C to +85°C  
PORTB, PORTC  
IOL = 3.4 mA, VDD = 3.3V,  
-40°C to +85°C  
D083  
D090  
OSC2/CLKO  
IOL = 1.6 mA, VDD = 3.3V,  
(EC, ECPLL modes)  
Output High Voltage(1)  
-40°C to +85°C  
VOH  
I/O ports:  
V
V
PORTA, PORTF, PORTG,  
PORTH  
2.4  
2.4  
2.4  
2.4  
IOH = -2 mA, VDD = 3.3V,  
-40°C to +85°C  
IOH = -2 mA, VDD = 3.3V,  
-40°C to +85°C  
PORTD, PORTE, PORTJ  
V
V
V
PORTB, PORTC  
IOH = -2 mA, VDD = 3.3V,  
-40°C to +85°C  
D092  
D100  
OSC2/CLKO  
(INTOSC, EC, ECPLL modes)  
IOH = -1 mA, VDD = 3.3V,  
-40°C to +85°C  
Capacitive Loading Specs  
on Output Pins  
COSC2 OSC2 pin  
15  
pF In HS mode when  
external clock is used to drive  
OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF To meet the AC Timing  
Specifications  
pF I2C™ Specification  
400  
Note 1: Negative current is defined as current sourced by the pin.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 351  
PIC18F85J11 FAMILY  
TABLE 25-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
100  
1k  
E/W -40°C to +85°C  
VPR  
VDD for Read  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW VDD for Self-Timed Write  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D133A TIW  
Self-Timed Write Cycle Time  
2.8  
ms  
D134 TRETD Characteristic Retention  
20  
Year Provided no other  
specifications are violated  
D135  
IDDP  
Supply Current during  
Programming  
3
7
1
mA  
D1xxx TWE  
Writes per Erase Cycle  
Per one physical word  
address  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
DS39774C-page 352  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 25-2: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V VDD 3.6V, -40°C TA +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
0
5.0  
10  
AVDD – 1.5  
mV  
V
D301  
D302  
300  
VICM  
Input Common Mode Voltage*  
Common Mode Rejection Ratio*  
Response Time*(1)  
CMRR  
TRESP  
55  
dB  
ns  
µs  
150  
400  
301  
TMC2OV Comparator Mode Change to  
Output Valid*  
10  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (AVDD – 1.5)/2, while the other input transitions  
from VSS to VDD.  
TABLE 25-3: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V VDD 3.6V, -40°C TA +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
Resolution  
VDD/24  
2k  
VDD/32  
1/2  
LSb  
LSb  
Ω
D311  
D312  
310  
VRAA  
VRUR  
TSET  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
10  
µs  
Note 1: Settling time measured while CVRR = 1and CVR3:CVR0 bits transition from ‘0000’ to ‘1111’.  
TABLE 25-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C TA +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
VRGOUT Regulator Output Voltage*  
External Filter Capacitor Value*  
2.5  
10  
V
CEFC  
4.7  
µF  
Capacitor must be low-ESR  
*
These parameters are characterized but not tested. Parameter numbers not yet assigned for these  
specifications.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 353  
PIC18F85J11 FAMILY  
25.4 AC (Timing) Characteristics  
25.4.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T13CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (High-impedance)  
Low  
Valid  
High-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
DS39774C-page 354  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
25.4.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 25-5  
apply to all timing specifications unless otherwise  
noted. Figure 25-3 specifies the load conditions for the  
timing specifications.  
TABLE 25-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
Operating voltage VDD range as described in Section 25.1 and Section 25.3.  
-40°C TA +85°C for industrial  
FIGURE 25-3:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1  
VDD/2  
Load Condition 2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except RA6/OSC2/CLKO  
and including D and E outputs as ports  
CL = 15 pF for RA6/OSC2/CLKO  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 355  
PIC18F85J11 FAMILY  
25.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 25-4:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
3
4
4
3
2
TABLE 25-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
1
FOSC  
External CLKI Frequency(1)  
Oscillator Frequency(1)  
External CLKI Period(1)  
Oscillator Period(1)  
DC  
DC  
25  
40  
40  
MHz ECPLL Oscillator mode  
MHz HSPLL Oscillator mode  
TOSC  
TCY  
ns  
ns  
ns  
ns  
EC Oscillator mode  
HS Oscillator mode  
TCY = 4/FOSC, Industrial  
EC Oscillator mode  
25  
250  
2
3
Instruction Cycle Time(1)  
100  
10  
TOSL,  
TOSH  
External Clock in (OSC1)  
High or Low Time  
4
TOSR,  
TOSF  
External Clock in (OSC1)  
Rise or Fall Time  
7.5  
ns  
EC Oscillator mode  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
DS39774C-page 356  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 25-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.15V TO 3.6V)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
F10  
F11  
F12  
F13  
FOSC Oscillator Frequency Range  
4
10  
40  
2
MHz HS mode only  
FSYS On-Chip VCO System Frequency  
16  
-2  
MHz HS mode only  
trc  
PLL Start-up Time (Lock Time)  
ms  
%
ΔCLK CLKO Stability (Jitter)  
+2  
Data in “Typ” column is at 3.3V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 25-8: INTERNAL RC ACCURACY (INTOSC AND INTRC SOURCES)  
PIC18F85J11 Family  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Min  
Typ  
Max  
Units  
Conditions  
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz, 31 kHz(1)  
All devices  
-2  
-5  
+/-1  
2
5
%
%
%
+25°C  
VDD = 2.7-3.3V  
VDD = 2.0-3.3V  
VDD = 2.0-3.3V  
-10°C to +85°C  
-40°C to +85°C  
-10  
+/-1  
10  
INTRC Accuracy @ Freq = 31 kHz(1)  
All devices 26.562  
35.938  
kHz  
-40°C to +85°C  
VDD = 2.0-3.3V  
Legend: TBD = To Be Determined  
Note 1: The accuracy specification of the 31 kHz clock is determined by which source is providing it at a given  
time. When INTSRC (OSCTUNE<7>) is ‘1’, use the INTOSC accuracy specification. When INTSRC is ‘0’,  
use the INTRC accuracy specification.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 357  
PIC18F85J11 FAMILY  
FIGURE 25-5:  
CLKO AND I/O TIMING  
Q4  
Q1  
Q2  
Q3  
OSC1  
11  
10  
CLKO  
12  
13  
14  
18  
19  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
Old Value  
New Value  
20, 21  
Refer to Figure 25-3 for load conditions.  
Note:  
TABLE 25-9: CLKO AND I/O TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TOSH2CKL OSC1 to CLKO ↓  
TOSH2CKH OSC1 to CLKO ↑  
75  
75  
15  
15  
50  
200  
200  
30  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
11  
12  
13  
14  
15  
16  
17  
18  
TCKR  
TCKF  
CLKO Rise Time  
CLKO Fall Time  
30  
TCKL2IOV CLKO to Port Out Valid  
TIOV2CKH Port In Valid before CLKO ↑  
TCKH2IOI Port In Hold after CLKO ↑  
TOSH2IOV OSC1 (Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns  
0.25 TCY + 25  
ns  
ns  
ns  
ns  
0
150  
TOSH2IOI OSC1 (Q2 cycle) to Port Input Invalid  
100  
(I/O in hold time)  
19  
TIOV2OSH Port Input Valid to OSC1 ↑  
0
ns  
(I/O in setup time)  
20  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
6
5
ns  
ns  
ns  
ns  
21  
Port Output Fall Time  
22†  
23†  
INTx Pin High or Low Time  
RB7:RB4 Change INTx High or Low Time  
TCY  
TCY  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in EC mode, where CLKO output is 4 x TOSC.  
DS39774C-page 358  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 25-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
Oscillator  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 25-3 for load conditions.  
TABLE 25-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
(Note 1)  
30  
TMCL  
TWDT  
MCLR Pulse Width (low)  
2 TCY  
3.4  
10 TCY  
4.0  
31  
Watchdog Timer Time-out Period  
(no postscaler)  
4.6  
ms  
32  
33  
34  
TOST  
Oscillator Start-up Timer Period  
1024 TOSC  
45.8  
65.5  
2
1024 TOSC  
85.2  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
ms  
µs  
TIOZ  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
38  
TCSD  
CPU Start-up Time  
10  
µs  
200  
µs Voltage regulator  
enabled and put to  
Sleep  
39  
TIOBST Time for INTOSC to Stabilize  
1
µs  
Note 1: To ensure device Reset, MCLR must be low for at least 2 TCY or 400 µs, which ever is lower.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 359  
PIC18F85J11 FAMILY  
FIGURE 25-7:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T13CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 25-3 for load conditions.  
TABLE 25-11: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
TT0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4,..., 256)  
45  
46  
47  
TT1H  
TT1L  
TT1P  
T13CKI High Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
Synchronous, with prescaler  
10  
Asynchronous  
30  
0.5 TCY + 5  
10  
T13CKI Low Synchronous, no prescaler  
Time  
Synchronous, with prescaler  
Asynchronous  
30  
T13CKI Input Synchronous  
Period  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
FT1  
T13CKI Oscillator Input Frequency Range  
48  
TCKE2TMRI Delay from External T13CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
DS39774C-page 360  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 25-8:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1, CCP2 MODULES)  
CCPx  
(Capture Mode)  
51  
50  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note:  
Refer to Figure 25-3 for load conditions.  
TABLE 25-12: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1, CCP2 MODULES)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TCCL  
CCPx Input Low No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
Time  
With prescaler  
10  
0.5 TCY + 20  
10  
51  
52  
TCCH  
TCCP  
CCPx Input  
High Time  
No prescaler  
With prescaler  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
53  
54  
TCCR  
TCCF  
CCPx Output Fall Time  
CCPx Output Fall Time  
25  
25  
ns  
ns  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 361  
PIC18F85J11 FAMILY  
FIGURE 25-9:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - - 1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
73  
Note: Refer to Figure 25-3 for load conditions.  
TABLE 25-13: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
TCY  
ns  
71  
TSCH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single byte  
Continuous  
Single byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
76  
78  
79  
80  
TDOR  
TDOF  
TSCR  
TSCF  
SDO Data Output Rise Time  
25  
25  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
SDO Data Output Fall Time  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge  
TSCL2DOV  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39774C-page 362  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 25-10:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
bit 6 - - - - - - 1  
MSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
Note: Refer to Figure 25-3 for load conditions.  
TABLE 25-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
TSCH  
Characteristic  
Min  
Max Units Conditions  
71  
SCK Input High Time  
Continuous  
Single byte  
Continuous  
Single byte  
1.25 TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
76  
78  
79  
80  
TDOR  
TDOF  
TSCR  
TSCF  
SDO Data Output Rise Time  
25  
25  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
SDO Data Output Fall Time  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge  
TSCL2DOV  
81  
TDOV2SCH, SDO Data Output Setup to SCK Edge  
TDOV2SCL  
TCY  
ns  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 363  
PIC18F85J11 FAMILY  
FIGURE 25-11:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
78  
SCK  
(CKP = 1)  
80  
SDO  
SDI  
MSb  
LSb  
bit 6 - - - - - - 1  
75, 76  
77  
MSb In  
74  
bit 6 - - - - 1  
LSb In  
73  
Note:  
Refer to Figure 25-3 for load conditions.  
TABLE 25-15: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
3 TCY  
ns  
70A  
71  
TSSL2WB SS to Write to SSPBUF  
3 TCY  
1.25 TCY + 30  
40  
ns  
TSCH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
ns  
71A  
72  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
1.25 TCY + 30  
40  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
76  
77  
78  
79  
80  
TDOR  
TDOF  
SDO Data Output Rise Time  
SDO Data Output Fall Time  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TSSH2DOZ SS to SDO Output High-Impedance  
TSCR  
TSCF  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge  
TSCL2DOV  
83  
TSCH2SSH, SS after SCK Edge  
TSCL2SSH  
1.5 TCY + 40  
ns  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS39774C-page 364  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 25-12:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
SDO  
SDI  
LSb  
MSb  
bit 6 - - - - - - 1  
bit 6 - - - - 1  
77  
75, 76  
MSb In  
74  
LSb In  
Note: Refer to Figure 25-3 for load conditions.  
TABLE 25-16: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
3 TCY  
ns  
70A  
71  
TSSL2WB SS to Write to SSPBUF  
3 TCY  
ns  
TSCH  
TSCL  
TB2B  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCK Input Low Time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
75  
76  
77  
78  
79  
80  
TDOR  
TDOF  
SDO Data Output Rise Time  
SDO Data Output Fall Time  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TSSH2DOZ SS to SDO Output High-Impedance  
TSCR  
TSCF  
SCK Output Rise Time (Master mode)  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge  
TSCL2DOV  
82  
83  
TSSL2DOV SDO Data Output Valid after SS Edge  
50  
ns  
ns  
TSCH2SSH, SS after SCK Edge  
TSCL2SSH  
1.5 TCY + 40  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 365  
PIC18F85J11 FAMILY  
FIGURE 25-13:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
91  
93  
90  
92  
SDA  
Start  
Condition  
Stop  
Condition  
Note: Refer to Figure 25-3 for load conditions.  
TABLE 25-17: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
DS39774C-page 366  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
FIGURE 25-14:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
92  
91  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 25-3 for load conditions.  
TABLE 25-18: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock High Time  
Clock Low Time  
4.0  
0.6  
μs  
μs  
400 kHz mode  
MSSP module  
100 kHz mode  
400 kHz mode  
MSSP module  
1.5 TCY  
4.7  
101  
TLOW  
μs  
μs  
1.3  
1.5 TCY  
102  
103  
TR  
SDA and SCL Rise Time 100 kHz mode  
400 kHz mode  
1000  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
TF  
SDA and SCL Fall Time  
100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
Start Condition Setup Time 100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
μs  
pF  
Only relevant for Repeated  
Start condition  
91  
THD:STA Start Condition Hold Time 100 kHz mode  
400 kHz mode  
After this period, the first clock  
pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0
0.9  
TSU:DAT Data Input Setup Time  
250  
100  
4.7  
0.6  
(Note 2)  
TSU:STO Stop Condition Setup Time 100 kHz mode  
400 kHz mode  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid from Clock  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
3500  
(Note 1)  
Bus Free Time  
4.7  
1.3  
Time the bus must be free before  
a new transmission can start  
Bus Capacitive Loading  
400  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2
2
2: A Fast mode I C™ bus device can be used in a Standard mode I C bus system, but the requirement, TSU:DAT 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line,  
2
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I C bus specification), before the SCL line  
is released.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 367  
PIC18F85J11 FAMILY  
FIGURE 25-15:  
MSSP I2C™ BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
93  
91  
90  
92  
SDA  
Start  
Condition  
Stop  
Condition  
Note: Refer to Figure 25-3 for load conditions.  
TABLE 25-19: MSSP I2C™ BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start  
condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
FIGURE 25-16:  
MSSP I2C™ BUS DATA TIMING  
102  
103  
100  
101  
SCL  
90  
106  
92  
107  
91  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 25-3 for load conditions.  
DS39774C-page 368  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 25-20: MSSP I2C™ BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
100  
101  
102  
103  
90  
THIGH  
Clock High  
Time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
TLOW  
TR  
Clock Low Time 100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
SDA and SCL 100 kHz mode  
Rise Time  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
400 kHz mode  
20 + 0.1 CB  
ns  
1 MHz mode(1)  
ns  
TF  
SDA and SCL 100 kHz mode  
Fall Time  
20 + 0.1 CB  
ns  
CB is specified to be from  
10 to 400 pF  
400 kHz mode  
1 MHz mode(1)  
ns  
ns  
TSU:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1)  
ms Only relevant for Repeated  
Setup Time  
Start condition  
400 kHz mode 2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
91  
THD:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode 2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
0
0
0.9  
ms  
ns  
TBD  
250  
100  
TBD  
TSU:DAT Data Input  
Setup Time  
ns  
ns  
ns  
ms  
ms  
ms  
ns  
ns  
ns  
(Note 2)  
TSU:STO Stop Condition 100 kHz mode 2(TOSC)(BRG + 1)  
Setup Time  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
3500  
1000  
Bus Free Time 100 kHz mode  
4.7  
1.3  
TBD  
ms Time the bus must be free  
before a new transmission  
400 kHz mode  
1 MHz mode(1)  
ms  
can start  
ms  
Bus Capacitive Loading  
400  
pF  
Legend: TBD = To Be Determined  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the  
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the  
SCL line is released.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 369  
PIC18F85J11 FAMILY  
FIGURE 25-17:  
EUSART/AUSART SYNCHRONOUSTRANSMISSION (MASTER/SLAVE)TIMING  
TXx/CKx  
pin  
121  
121  
RXx/DTx  
pin  
120  
Note: Refer to Figure 25-3 for load conditions.  
122  
TABLE 25-21: EUSART/AUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TCKH2DTV SYNC XMIT (MASTER and SLAVE)  
Clock High to Data Out Valid  
40  
20  
20  
ns  
ns  
ns  
121  
122  
TCKRF  
TDTRF  
Clock Out Rise Time and Fall Time (Master mode)  
Data Out Rise Time and Fall Time  
FIGURE 25-18:  
EUSART/AUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
TXx/CKx  
pin  
125  
RXx/DTx  
pin  
126  
Note: Refer to Figure 25-3 for load conditions.  
TABLE 25-22: EUSART/AUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER and SLAVE)  
Data Hold before CKx (DTx hold time)  
10  
15  
ns  
ns  
126  
TCKL2DTL Data Hold after CKx (DTx hold time)  
DS39774C-page 370  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
TABLE 25-23: A/D CONVERTER CHARACTERISTICS: PIC18F85J11 FAMILY (INDUSTRIAL)  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
A01  
NR  
Resolution  
10  
bits  
A03  
A04  
A06  
A07  
A10  
A20  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
< 1  
< 1  
< 3  
< 3  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
EDL  
EOFF  
EGN  
Gain Error  
Monotonicity  
Guaranteed(1)  
VSS VAIN VREF  
ΔVREF Reference Voltage Range  
2.0  
3
V
V
VDD < 3.0V  
VDD 3.0V  
(VREFH – VREFL)  
A21  
A22  
A25  
A30  
VREFH Reference Voltage High  
VSS  
VREFH  
VDD – 3.0V  
VREFH  
V
V
VREFL  
VAIN  
Reference Voltage Low  
Analog Input Voltage  
VSS – 0.3V  
VREFL  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
2.5  
kΩ  
A50  
IREF  
VREF Input Current(2)  
5
150  
µA During VAIN acquisition  
µA During A/D conversion  
cycle  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF- pin or VSS, whichever is selected as the VREFL source.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 371  
PIC18F85J11 FAMILY  
FIGURE 25-19:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
OLD_DATA  
NEW_DATA  
TCY (Note 1)  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEPinstruction  
to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 25-24: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
µs  
130  
TAD  
A/D Clock Period  
0.7  
TBD  
11  
25.0(1)  
TOSC based, VREF 3.0V  
1
µs A/D RC mode  
131  
132  
TCNV  
TACQ  
Conversion Time  
12  
TAD  
(not including acquisition time)(2)  
Acquisition Time(3)  
1.4  
µs -40°C to +85°C  
135  
TSWC  
TDIS  
Switching Time from Convert Sample  
(Note 4)  
TBD  
Discharge Time  
0.2  
µs  
Legend: TBD = To Be Determined  
Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2: ADRES registers may be read on the following TCY cycle.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50Ω.  
4: On the following cycle of the device clock.  
DS39774C-page 372  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
26.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and tables are not available at this time.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 373  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 374  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
27.0 PACKAGING INFORMATION  
27.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
18F65J11  
-I/PT  
0710017  
e
3
80-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18F85J11  
-I/PT  
0710017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 375  
PIC18F85J11 FAMILY  
27.2 Package Details  
The following sections give the technical details of the packages.  
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
A1  
β
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
64  
MAX  
Number of Leads  
N
e
Lead Pitch  
0.50 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
D
E1  
D1  
c
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
0.22  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-085B  
DS39774C-page 376  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
123  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
80  
MAX  
Number of Leads  
Lead Pitch  
N
e
0.50 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
14.00 BSC  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
0.22  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-092B  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 377  
PIC18F85J11 FAMILY  
NOTES:  
DS39774C-page 378  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
APPENDIX A: REVISION HISTORY  
APPENDIX B: MIGRATION  
BETWEEN HIGH-END  
DEVICE FAMILIES  
Revision A (October 2006)  
Original data sheet for PIC18F85J11 family devices.  
Devices in the PIC18F85J11 and PIC18F8722 families  
are very similar in their functions and feature sets. How-  
ever, there are some potentially important differences  
which should be considered when migrating an applica-  
tion across device families to achieve a new design goal.  
These are summarized in Table B-1. The areas of  
difference which could have a major impact on migration  
are discussed in greater detail later in this section.  
Revision B (March 2007)  
Updated power-down and supply current electrical  
characteristics and package detail drawings.  
Revision C (April 2007)  
Updated electrical characteristics.  
TABLE B-1:  
NOTABLE DIFFERENCES BETWEEN PIC18F85J11 AND PIC18F8722 FAMILIES  
Characteristic  
PIC18F85J11 Family  
PIC18F8722 Family  
Operating Frequency  
Supply Voltage  
40 MHz @ 2.15V  
2.0V-3.6V, dual voltage requirement  
Low  
40 MHz @ 4.2V  
2.0V-5.5V  
Operating Current  
Program Memory Endurance  
I/O Sink/Source at 25 mA  
Input Voltage Tolerance on I/O pins  
I/O  
Lower  
1,000 write/erase cycles (typical)  
PORTB and PORTC only  
5.5V on digital only pins  
68 (RF0 is not available)  
100,000 write/erase cycles (typical)  
All ports  
VDD on all I/O pins  
70  
Pull-ups  
PORTB, PORTD, PORTE  
and PORTJ  
PORTB  
Oscillator Options  
Limited options (EC, HS, PLL,  
flexible INTRC)  
More options (EC, HS, XT, LP, RC,  
PLL, flexible INTRC)  
Program Memory Retention  
Self-Writes to Program Memory  
Programming Time (normalized)  
Programming Entry  
20 years (minimum)  
Available  
40 years (minimum)  
Available  
156 µs/byte (10 ms/64-byte block)  
Low voltage, key sequence  
Single block, all or nothing  
15.6 µs/byte (1 ms/64)  
VPP and LVP  
Code Protection  
Multiple code protection blocks  
Configuration Words  
Stored in last 4 words of program  
memory space  
Stored in configuration space,  
starting at 300000h  
Power-up Timer  
Data EEPROM  
BOR  
Always on  
Use self-programming  
Simple BOR with voltage regulator  
Simple LVD with voltage regulator  
12  
Configurable  
Available  
Programmable BOR  
Available  
LVD  
A/D Channels  
16  
A/D Calibration  
Microprocessor mode (EMB)  
External Memory Addressing  
In-Circuit Emulation  
Required  
Not required  
Available  
Self-calibration feature  
Address shifting available  
Not available  
Address shifting not available  
Available  
© 2007 Microchip Technology Inc.  
DS39774C-page 379  
PIC18F85J11 FAMILY  
B.1  
Power Requirement Differences  
B.3  
Oscillator Differences  
The most significant difference between the  
PIC18F85J11 and PIC18F8722 device families is the  
power requirements. PIC18F85J11 devices are  
designed on a smaller process; this results in lower  
maximum voltage and higher leakage current.  
PIC18F8722 and PIC18F85J11 family devices share a  
similar range of oscillator options. The major difference  
is that PIC18F85J11 family devices support a smaller  
number of primary (external) oscillator options, namely  
HS and EC Oscillator modes.  
The operating voltage range for PIC18F85J11 devices is  
2.0V to 3.6V. In addition, these devices have split power  
requirements: one for the core logic and one for the I/O.  
One of the VDD pins is separated for the core logic supply,  
VDDCORE. This pin has specific voltage and capacitor  
requirements as described in Section 25.0 “Electrical  
Characteristics”.  
While both device families have an internal PLL that  
can be used with the primary oscillators, the PLL for the  
PIC18F85J11 family is not enabled as a device  
configuration option. Instead, it must be enabled in  
software.  
The clocking differences should be considered when  
making a conversion between the PIC18F8722 and  
PIC18F85J11 device families.  
The current specifications for PIC18F85J11 devices  
are yet to be determined.  
B.4  
Peripherals  
B.2  
Pin Differences  
Peripherals must also be considered when making a  
conversion between the PIC18F85J11 and the  
PIC18F8722:  
There are several differences in the pinout between the  
PIC18F85J11 and the PIC18F8722 families:  
• Input voltage tolerance  
• Output current capabilities  
• Available I/O  
External Memory Bus: The External Memory  
Bus (EMB) on the PIC18F85J11 does not support  
Microcontroller mode; however, it does support  
external address offset.  
Pins on the PIC18F85J11 that have digital only input  
capability will tolerate voltages up to 5.5V and are thus  
tolerant to voltages above VDD. Table 10-1 in  
Section 10.1 “I/O Port Pin Capabilities” contains the  
complete list.  
A/D Converter: There are only 12 channels on  
PIC18F85J11 devices. The converters for these  
devices also require a calibration step prior to  
normal operation.  
Data EEPROM: PIC18F85J11 devices do not  
In addition to input differences, there are output differ-  
ences as well. PIC18F85J11 devices have three  
classes of pin output current capability: high, medium  
and low. Not all I/O pins can source or sink equal levels  
of current. Only PORTB and PORTC support the  
25 mA source/sink capability that is supported by all  
output pins on the PIC18F8722. Table 10-2 in  
Section 10.1 “I/O Port Pin Capabilities” contains the  
complete list of output capabilities.  
have this module.  
BOR: PIC18F85J11 devices do not have a  
programmable BOR. Simple Brown-out Reset  
capability is provided through the use of the  
internal voltage regulator.  
LVD: PIC18F85J11 devices do not have a  
separate programmable LVD module. Simple,  
Low-Voltage Detection capability with a config-  
urable interrupt is provided through the use of the  
internal voltage regulator.  
There are additional differences in how some pin func-  
tions are implemented on PIC18F85J11 devices. First,  
the MCLR pin is dedicated only to MCLR and cannot be  
configured as an input (RG5). Finally, RF0 does not  
exist on PIC18F85J11 devices.  
All of these pin differences (including power pin  
differences) should be accounted for when making a  
conversion between PIC18F8722 and PIC18F85J11  
devices.  
DS39774C-page 380  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
INDEX  
Baud Rate Generator (BRG) ................................... 240  
Associated Registers ....................................... 240  
Baud Rate Error, Calculating ........................... 240  
Baud Rates, Asynchronous Modes ................. 241  
High Baud Rate Select (BRGH Bit) ................. 240  
Operation in Power-Managed Modes .............. 240  
Sampling ......................................................... 240  
Control Registers ..................................................... 237  
Synchronous Master Mode ...................................... 246  
Associated Registers, Receive ........................ 248  
Associated Registers, Transmit ....................... 247  
Reception ........................................................ 248  
Transmission ................................................... 246  
Synchronous Slave Mode ........................................ 249  
Associated Registers, Receive ........................ 250  
Associated Registers, Transmit ....................... 249  
Reception ........................................................ 250  
Transmission ................................................... 249  
Auto-Wake-up on Sync Break Character ......................... 230  
A
A/D ................................................................................... 251  
A/D Converter Interrupt, Configuring ....................... 255  
Acquisition Requirements ........................................ 256  
ADCAL Bit ................................................................ 259  
ADCON0 Register .................................................... 251  
ADCON1 Register .................................................... 251  
ADCON2 Register .................................................... 251  
ADRESH Register ............................................ 251, 254  
ADRESL Register .................................................... 251  
Analog Port Pins, Configuring .................................. 257  
Associated Registers ............................................... 259  
Automatic Acquisition Time ...................................... 257  
Configuring the Module ............................................ 255  
Conversion Clock (TAD) ........................................... 257  
Conversion Requirements ....................................... 372  
Conversion Status (GO/DONE Bit) .......................... 254  
Conversions ............................................................. 258  
Converter Calibration ............................................... 259  
Converter Characteristics ........................................ 371  
Operation in Power-Managed Modes ...................... 259  
Special Event Trigger (CCP2) .................................. 258  
Use of the CCP2 Trigger .......................................... 258  
Absolute Maximum Ratings ............................................. 339  
AC (Timing) Characteristics ............................................. 354  
Load Conditions for Device Timing  
B
Baud Rate Generator ...................................................... 203  
BC .................................................................................... 293  
BCF ................................................................................. 294  
BF .................................................................................... 207  
BF Status Flag ................................................................. 207  
Block Diagrams  
Specifications ................................................... 355  
Parameter Symbology ............................................. 354  
Temperature and Voltage  
16-Bit Byte Select Mode ............................................ 99  
16-Bit Byte Write Mode .............................................. 97  
16-Bit Word Write Mode ............................................ 98  
8-Bit Multiplexed Mode ............................................ 101  
A/D ........................................................................... 254  
Analog Input Model .................................................. 255  
AUSART Receive .................................................... 244  
AUSART Transmit ................................................... 242  
Baud Rate Generator .............................................. 203  
Capture Mode Operation ......................................... 166  
Comparator Analog Input Model .............................. 265  
Comparator I/O Operating Modes ........................... 262  
Comparator Output .................................................. 264  
Comparator Voltage Reference ............................... 268  
Comparator Voltage Reference  
Output Buffer Example .................................... 269  
Compare Mode Operation ....................................... 167  
Connections for On-Chip Voltage Regulator ........... 279  
Device Clock .............................................................. 29  
EUSART Receive .................................................... 228  
EUSART Transmit ................................................... 226  
External Power-on Reset Circuit  
Specifications ................................................... 355  
Timing Conditions .................................................... 355  
ACKSTAT ........................................................................ 207  
ACKSTAT Status Flag ..................................................... 207  
ADCAL Bit ........................................................................ 259  
ADCON0 Register ............................................................ 251  
GO/DONE Bit ........................................................... 254  
ADCON1 Register ............................................................ 251  
ADCON2 Register ............................................................ 251  
ADDFSR .......................................................................... 328  
ADDLW ............................................................................ 291  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter (AUSART). See AUSART.  
ADDULNK ........................................................................ 328  
ADDWF ............................................................................ 291  
ADDWFC ......................................................................... 292  
ADRESH Register ............................................................ 251  
ADRESL Register .................................................... 251, 254  
Analog-to-Digital Converter. See A/D.  
ANDLW ............................................................................ 292  
ANDWF ............................................................................ 293  
Assembler  
MPASM Assembler .................................................. 336  
AUSART  
(Slow VDD Power-up) ........................................ 47  
Fail-Safe Clock Monitor ........................................... 282  
Generic I/O Port Operation ...................................... 123  
Interrupt Logic .......................................................... 108  
2
MSSP (I C Master Mode) ........................................ 201  
Asynchronous Mode ................................................ 242  
Associated Registers, Receive ........................ 245  
Associated Registers, Transmit ....................... 243  
Receiver ........................................................... 244  
Setting up 9-Bit Mode with  
2
MSSP (I C Mode) .................................................... 182  
MSSP (SPI Mode) ................................................... 173  
On-Chip Reset Circuit ................................................ 45  
PIC18F6XJ11 ............................................................ 10  
PIC18F8XJ11 ............................................................ 11  
PLL ............................................................................ 34  
Address Detect ........................................ 244  
Transmitter ....................................................... 242  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 381  
PIC18F85J11 FAMILY  
PORTD and PORTE (Parallel Slave Port) ...............144  
PWM Operation (Simplified) ....................................169  
Reads From Flash Program Memory .........................87  
Single Comparator ...................................................263  
Table Read Operation ................................................83  
Table Write Operation ................................................84  
Table Writes to Flash Program Memory ....................89  
Timer0 in 16-Bit Mode ..............................................148  
Timer0 in 8-Bit Mode ................................................148  
Timer1 (16-Bit Read/Write Mode) ............................152  
Timer1 (8-Bit Mode) .................................................152  
Timer2 ......................................................................158  
Timer3 (16-Bit Read/Write Mode) ............................160  
Timer3 (8-Bit Mode) .................................................160  
Watchdog Timer .......................................................278  
BN ....................................................................................294  
BNC ..................................................................................295  
BNN ..................................................................................295  
BNOV ...............................................................................296  
BNZ ..................................................................................296  
BOR. See Brown-out Reset.  
Code Examples  
16 x 16 Signed Multiply Routine .............................. 106  
16 x 16 Unsigned Multiply Routine .......................... 106  
8 x 8 Signed Multiply Routine .................................. 105  
8 x 8 Unsigned Multiply Routine .............................. 105  
Changing Between Capture Prescalers ................... 166  
Computed GOTO Using an Offset Value ................... 63  
Erasing a Flash Program Memory Row ..................... 88  
Fast Register Stack ................................................... 63  
How to Clear RAM (Bank 1) Using  
Indirect Addressing ............................................ 76  
Implementing a Real-Time Clock Using  
a Timer1 Interrupt Service ............................... 155  
Initializing PORTA .................................................... 124  
Initializing PORTB .................................................... 126  
Initializing PORTC ................................................... 128  
Initializing PORTD ................................................... 131  
Initializing PORTE .................................................... 134  
Initializing PORTF .................................................... 137  
Initializing PORTG ................................................... 139  
Initializing PORTH ................................................... 141  
Initializing PORTJ .................................................... 142  
Loading the SSPBUF (SSPSR) Register ................. 176  
Reading a Flash Program Memory Word .................. 87  
Saving STATUS, WREG and BSR  
BOV ..................................................................................299  
BRA ..................................................................................297  
BRG. See Baud Rate Generator.  
BRGH Bit  
TXSTA1 Register .....................................................221  
TXSTA2 Register .....................................................240  
Brown-out Reset (BOR) .....................................................47  
and On-Chip Voltage Regulator ...............................280  
Detecting ....................................................................47  
BSF ..................................................................................297  
BTFSC .............................................................................298  
BTFSS ..............................................................................298  
BTG ..................................................................................299  
BZ .....................................................................................300  
Registers in RAM ............................................. 122  
Writing to Flash Program Memory ............................. 90  
Code Protection ............................................................... 271  
COMF .............................................................................. 302  
Comparator ...................................................................... 261  
Analog Input Connection Considerations ................ 265  
Associated Registers ............................................... 265  
Configuration ........................................................... 262  
Effects of a Reset .................................................... 264  
Interrupts ................................................................. 264  
Operation ................................................................. 263  
Operation During Sleep ........................................... 264  
Outputs .................................................................... 263  
Reference ................................................................ 263  
External Signal ................................................ 263  
Internal Signal .................................................. 263  
Response Time ........................................................ 263  
Comparator Specifications ............................................... 353  
Comparator Voltage Reference ....................................... 267  
Accuracy and Error .................................................. 268  
Associated Registers ............................................... 269  
Configuring .............................................................. 267  
Connection Considerations ...................................... 268  
Effects of a Reset .................................................... 268  
Operation During Sleep ........................................... 268  
Compare (CCP Module) .................................................. 167  
Associated Registers ............................................... 168  
CCPR2 Register ...................................................... 167  
CCPx Pin Configuration ........................................... 167  
Software Interrupt .................................................... 167  
Special Event Trigger ...................................... 161, 167  
Timer1/Timer3 Mode Selection ................................ 167  
Compare (CCP2 Module)  
C
C Compilers  
MPLAB C18 .............................................................336  
MPLAB C30 .............................................................336  
CALL ................................................................................300  
CALLW .............................................................................329  
Capture (CCP Module) .....................................................166  
Associated Registers ...............................................168  
CCPR2H:CCPR2L Registers ...................................166  
CCPx Pin Configuration ...........................................166  
Software Interrupt ....................................................166  
Timer1/Timer3 Mode Selection ................................166  
Capture/Compare/PWM (CCP) ........................................163  
Capture Mode. See Capture.  
CCPRxH Register ....................................................164  
CCPRxL Register .....................................................164  
CCPx Mode and Timer Resources ..........................164  
Compare Mode. See Compare.  
Configuration ............................................................164  
Interaction of CCP1 and CCP2 for  
Timer Resources ..............................................165  
Interconnect Configurations .....................................164  
Clock Sources ....................................................................31  
Default System Clock on Reset .................................32  
Selection Using OSCCON Register ...........................32  
CLRF ................................................................................301  
CLRWDT ..........................................................................301  
Special Event Trigger .............................................. 258  
Computed GOTO ............................................................... 63  
Configuration Bits ............................................................ 271  
Configuration Bits, Device IDs  
Associated Registers ............................................... 272  
DS39774C-page 382  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
Configuration Register Protection .................................... 284  
Core Features  
Equations  
A/D Acquisition Time ............................................... 256  
A/D Minimum Charging Time .................................. 256  
Calculating the Minimum Required  
Easy Migration ............................................................. 8  
Extended Instruction Set .............................................. 7  
External Memory Bus ................................................... 7  
Memory Options ........................................................... 7  
nanoWatt Technology .................................................. 7  
Oscillator Options and Features .................................. 7  
CPFSEQ .......................................................................... 302  
CPFSGT .......................................................................... 303  
CPFSLT ........................................................................... 303  
Crystal Oscillator/Ceramic Resonator ................................ 33  
Customer Change Notification Service ............................ 391  
Customer Notification Service .......................................... 391  
Customer Support ............................................................ 391  
Acquisition Time .............................................. 256  
Errata ................................................................................... 5  
EUSART  
Asynchronous Mode ................................................ 226  
Associated Registers, Receive ........................ 229  
Associated Registers, Transmit ....................... 227  
Auto-Wake-up on Sync Break ......................... 230  
Break Character Sequence ............................. 231  
Receiver .......................................................... 228  
Setting up 9-Bit Mode with  
Address Detect ........................................ 228  
Transmitter ...................................................... 226  
Baud Rate Generator (BRG) ................................... 221  
Associated Registers ....................................... 221  
Auto-Baud Rate Detect .................................... 224  
Baud Rate Error, Calculating ........................... 221  
Baud Rates, Asynchronous Modes ................. 222  
High Baud Rate Select (BRGH Bit) ................. 221  
Operation in Power-Managed Modes .............. 221  
Sampling ......................................................... 221  
Control Registers ..................................................... 217  
Synchronous Master Mode ...................................... 232  
Associated Registers, Receive ........................ 234  
Associated Registers, Transmit ....................... 233  
Reception ........................................................ 234  
Transmission ................................................... 232  
Synchronous Slave Mode ........................................ 235  
Associated Registers, Receive ........................ 236  
Associated Registers, Transmit ....................... 235  
Reception ........................................................ 236  
Transmission ................................................... 235  
Extended Instruction Set ................................................. 327  
ADDFSR .................................................................. 328  
ADDULNK ............................................................... 328  
CALLW .................................................................... 329  
Considerations when Enabling ................................ 332  
MOVSF .................................................................... 329  
MOVSS .................................................................... 330  
PUSHL ..................................................................... 330  
SUBFSR .................................................................. 331  
SUBULNK ................................................................ 331  
Syntax ...................................................................... 327  
Use with MPLAB IDE Tools ..................................... 334  
Extended Microcontroller Mode ......................................... 96  
External Memory Bus ........................................................ 93  
16-Bit Byte Select Mode ............................................ 99  
16-Bit Byte Write Mode .............................................. 97  
16-Bit Data Width Modes ........................................... 96  
16-Bit Mode Timing ................................................. 100  
16-Bit Word Write Mode ............................................ 98  
21-Bit Addressing ...................................................... 95  
8-Bit Data Width Mode ............................................ 101  
8-Bit Mode Timing ................................................... 102  
Address and Data Line Usage (table) ....................... 95  
Address and Data Width ............................................ 95  
Address Shifting ........................................................ 95  
and Program Memory Modes .................................... 96  
Control ....................................................................... 94  
I/O Port Functions ...................................................... 93  
D
Data Addressing Modes ..................................................... 76  
Comparing Addressing Modes with the  
Extended Instruction Set Enabled ..................... 80  
Direct .......................................................................... 76  
Indexed Literal Offset ................................................. 79  
BSR ................................................................... 81  
Instructions Affected .......................................... 79  
Mapping Access Bank ....................................... 81  
Indirect ....................................................................... 76  
Inherent and Literal .................................................... 76  
Data Memory ..................................................................... 66  
Access Bank .............................................................. 69  
Bank Select Register (BSR) ....................................... 66  
Extended Instruction Set ............................................ 79  
General Purpose Registers ........................................ 69  
Memory Maps  
PIC18FX3J11/X4J11 Devices ........................... 67  
PIC18FX5J11 Devices ....................................... 68  
Special Function Registers ................................ 70  
Special Function Registers ........................................ 70  
DAW ................................................................................. 304  
DC and AC Characteristics  
Graphs and Tables .................................................. 373  
DC Characteristics  
PIC18F85J11 Family ............................................... 350  
Power-Down and Supply Current ............................ 342  
Supply Voltage ......................................................... 341  
DCFSNZ .......................................................................... 305  
DECF ............................................................................... 304  
DECFSZ ........................................................................... 305  
Default System Clock ......................................................... 32  
Details on Individual Family Members ................................. 8  
Development Support ...................................................... 335  
Device Overview .................................................................. 7  
Features (64-Pin Devices) ........................................... 9  
Features (80-Pin Devices) ........................................... 9  
Direct Addressing ............................................................... 77  
E
Effect on Standard PIC18 Instructions ............................. 332  
Effects of Power-Managed Modes on  
Various Clock Sources ............................................... 36  
Electrical Characteristics .................................................. 339  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART). See EUSART.  
ENVREG Pin .................................................................... 279  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 383  
PIC18F85J11 FAMILY  
Operation in Power-Managed Modes ......................103  
Wait States .................................................................96  
Weak Pull-ups on Port Pins .......................................96  
External Oscillator Modes ..................................................33  
EC Modes ..................................................................34  
HS Modes ..................................................................33  
Clock Synchronization and the CKP Bit ................... 197  
Effects of a Reset .................................................... 211  
General Call Address Support ................................. 200  
2
I C Clock Rate w/BRG ............................................. 203  
Master Mode ............................................................ 201  
Baud Rate Generator ...................................... 203  
Operation ......................................................... 202  
Reception ........................................................ 207  
Repeated Start Condition Timing .................... 206  
Start Condition Timing ..................................... 205  
Transmission ................................................... 207  
Multi-Master Communication, Bus Collision  
F
Fail-Safe Clock Monitor ............................................ 271, 282  
Exiting Fail-Safe Operation ......................................283  
Interrupts in Power-Managed Modes .......................283  
POR or Wake-up From Sleep ..................................283  
WDT During Oscillator Failure .................................282  
Fast Register Stack ............................................................63  
Firmware Instructions .......................................................285  
Flash Configuration Words ...............................................271  
Mapping ...................................................................271  
Flash Program Memory ......................................................83  
Associated Registers .................................................91  
Control Registers .......................................................84  
EECON1 and EECON2 .....................................84  
TABLAT (Table Latch) Register .........................86  
TBLPTR (Table Pointer) Register ......................86  
Erase Sequence ........................................................88  
Erasing .......................................................................88  
Operation During Code-Protect .................................91  
Reading ......................................................................87  
Table Pointer  
and Arbitration ................................................. 211  
Multi-Master Mode ................................................... 211  
Operation ................................................................. 187  
Read/Write Bit Information (R/W Bit) ............... 187, 189  
Registers ................................................................. 182  
Serial Clock (SCK/SCL) ........................................... 189  
Slave Mode .............................................................. 187  
Addressing ....................................................... 187  
Addressing Masking ........................................ 188  
Reception ........................................................ 189  
Transmission ................................................... 189  
Sleep Operation ....................................................... 211  
Stop Condition Timing ............................................. 210  
INCF ................................................................................ 306  
INCFSZ ............................................................................ 307  
In-Circuit Debugger .......................................................... 284  
In-Circuit Serial Programming (ICSP) ...................... 271, 284  
Indexed Literal Offset Addressing  
and Standard PIC18 Instructions ............................. 332  
Indexed Literal Offset Mode ............................................. 332  
Indirect Addressing ............................................................ 77  
INFSNZ ............................................................................ 307  
Initialization Conditions for all Registers ...................... 51–55  
Instruction Cycle ................................................................ 64  
Clocking Scheme ....................................................... 64  
Flow/Pipelining ........................................................... 64  
Instruction Set .................................................................. 285  
ADDLW .................................................................... 291  
ADDWF .................................................................... 291  
ADDWF (Indexed Literal Offset Mode) .................... 333  
ADDWFC ................................................................. 292  
ANDLW .................................................................... 292  
ANDWF .................................................................... 293  
BC ............................................................................ 293  
BCF ......................................................................... 294  
BN ............................................................................ 294  
BNC ......................................................................... 295  
BNN ......................................................................... 295  
BNOV ...................................................................... 296  
BNZ ......................................................................... 296  
BOV ......................................................................... 299  
BRA ......................................................................... 297  
BSF .......................................................................... 297  
BSF (Indexed Literal Offset Mode) .......................... 333  
BTFSC ..................................................................... 298  
BTFSS ..................................................................... 298  
BTG ......................................................................... 299  
BZ ............................................................................ 300  
CALL ........................................................................ 300  
CLRF ....................................................................... 301  
CLRWDT ................................................................. 301  
COMF ...................................................................... 302  
CPFSEQ .................................................................. 302  
Boundaries Based on Operation ........................86  
Table Pointer Boundaries ..........................................86  
Table Reads and Table Writes ..................................83  
Write Sequence .........................................................89  
Writing ........................................................................89  
Unexpected Termination ....................................91  
Write Verify ........................................................91  
FSCM. See Fail-Safe Clock Monitor.  
G
GOTO ...............................................................................306  
H
Hardware Multiplier ..........................................................105  
Introduction ..............................................................105  
Operation .................................................................105  
Performance Comparison ........................................105  
I
I/O Ports ...........................................................................123  
Input Voltage Considerations ...................................123  
Open-Drain Outputs .................................................124  
Output Pin Drive .......................................................123  
Pin Capabilities ........................................................123  
Pull-up Configuration ...............................................124  
2
I C Mode (MSSP) ............................................................182  
Acknowledge Sequence Timing ...............................210  
Associated Registers ...............................................216  
Baud Rate Generator ...............................................203  
Bus Collision  
During a Repeated Start Condition ..................214  
During a Stop Condition ...................................215  
Clock Arbitration .......................................................204  
Clock Stretching .......................................................196  
10-Bit Slave Receive Mode (SEN = 1) .............196  
10-Bit Slave Transmit Mode .............................196  
7-Bit Slave Receive Mode (SEN = 1) ...............196  
7-Bit Slave Transmit Mode ...............................196  
DS39774C-page 384  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
CPFSGT .................................................................. 303  
CPFSLT ................................................................... 303  
DAW ......................................................................... 304  
DCFSNZ .................................................................. 305  
DECF ....................................................................... 304  
DECFSZ ................................................................... 305  
General Format ........................................................ 287  
GOTO ...................................................................... 306  
INCF ......................................................................... 306  
INCFSZ .................................................................... 307  
INFSNZ .................................................................... 307  
IORLW ..................................................................... 308  
IORWF ..................................................................... 308  
LFSR ........................................................................ 309  
MOVF ....................................................................... 309  
MOVFF .................................................................... 310  
MOVLB .................................................................... 310  
MOVLW ................................................................... 311  
MOVWF ................................................................... 311  
MULLW .................................................................... 312  
MULWF .................................................................... 312  
NEGF ....................................................................... 313  
NOP ......................................................................... 313  
Opcode Field Descriptions ....................................... 286  
PIC18F85J11 Family (table) .................................... 288  
POP ......................................................................... 314  
PUSH ....................................................................... 314  
RCALL ..................................................................... 315  
RESET ..................................................................... 315  
RETFIE .................................................................... 316  
RETLW .................................................................... 316  
RETURN .................................................................. 317  
RLCF ........................................................................ 317  
RLNCF ..................................................................... 318  
RRCF ....................................................................... 318  
RRNCF .................................................................... 319  
SETF ........................................................................ 319  
SETF (Indexed Literal Offset Mode) ........................ 333  
SLEEP ..................................................................... 320  
Standard Instructions ............................................... 285  
SUBFWB .................................................................. 320  
SUBLW .................................................................... 321  
SUBWF .................................................................... 321  
SUBWFB .................................................................. 322  
SWAPF .................................................................... 322  
TBLRD ..................................................................... 323  
TBLWT ..................................................................... 324  
TSTFSZ ................................................................... 325  
XORLW .................................................................... 325  
XORWF .................................................................... 326  
Interrupt Sources ............................................................. 271  
A/D Conversion Complete ....................................... 255  
Capture Complete (CCP) ........................................ 166  
Compare Complete (CCP) ...................................... 167  
Interrupt-on-Change (RB7:RB4) .............................. 126  
TMR1 Overflow ........................................................ 151  
TMR2 to PR2 Match (PWM) .................................... 169  
TMR3 Overflow ........................................................ 159  
Interrupts ......................................................................... 107  
During, Context Saving ............................................ 122  
INTx Pin ................................................................... 122  
PORTB, Interrupt-on-Change .................................. 122  
TMR0 ....................................................................... 122  
Interrupts, Flag Bits  
Interrupt-on-Change (RB7:RB4)  
Flag (RBIF Bit) ................................................. 126  
INTOSC, INTRC. See Internal Oscillator Block.  
IORLW ............................................................................. 308  
IORWF ............................................................................. 308  
IPR Registers ................................................................... 118  
L
LFSR ............................................................................... 309  
M
Master Clear (MCLR) ......................................................... 47  
Master Synchronous Serial Port (MSSP). See MSSP.  
Memory Organization ........................................................ 57  
Data Memory ............................................................. 66  
Program Memory ....................................................... 57  
Memory Programming Requirements .............................. 352  
Microchip Internet Web Site ............................................. 391  
Microcontroller Mode ......................................................... 96  
Migration Between High-End Device Families ................. 379  
Oscillator Differences .............................................. 380  
Peripherals .............................................................. 380  
Pin Differences ........................................................ 380  
Power Requirement Differences .............................. 380  
MOVF .............................................................................. 309  
MOVFF ............................................................................ 310  
MOVLB ............................................................................ 310  
MOVLW ........................................................................... 311  
MOVSF ............................................................................ 329  
MOVSS ............................................................................ 330  
MOVWF ........................................................................... 311  
MPLAB ASM30 Assembler, Linker, Librarian .................. 336  
MPLAB ICD 2 In-Circuit Debugger .................................. 337  
MPLAB ICE 2000 High-Performance  
Universal In-Circuit Emulator ................................... 337  
MPLAB Integrated Development  
Environment Software ............................................. 335  
MPLAB PM3 Device Programmer ................................... 337  
MPLAB REAL ICE In-Circuit Emulator System ............... 337  
MPLINK Object Linker/MPLIB Object Librarian ............... 336  
MSSP  
ACK Pulse ....................................................... 187, 189  
Control Registers (general) ..................................... 173  
Module Overview ..................................................... 173  
SPI Master/Slave Connection .................................. 177  
SSPBUF Register .................................................... 178  
SSPSR Register ...................................................... 178  
MULLW ............................................................................ 312  
MULWF ............................................................................ 312  
INTCON Register  
RBIF Bit .................................................................... 126  
INTCON Registers ........................................................... 109  
2
Inter-Integrated Circuit. See I C Mode.  
Internal Oscillator Block ..................................................... 35  
Adjustment ................................................................. 35  
INTOSC Frequency Drift ............................................ 35  
INTOSC Output Frequency ........................................ 35  
OSC1, OSC2 Pin Configuration ................................. 35  
Internal RC Oscillator  
Use with WDT .......................................................... 278  
Internal Voltage Regulator Specifications ........................ 353  
Internet Address ............................................................... 391  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 385  
PIC18F85J11 FAMILY  
RD2/AD2/PSP2 ......................................................... 22  
RD2/PSP2 ................................................................. 15  
RD3/AD3/PSP3 ......................................................... 22  
RD3/PSP3 ................................................................. 15  
RD4/AD4/PSP4 ......................................................... 22  
RD4/PSP4 ................................................................. 15  
RD5/AD5/PSP5 ......................................................... 22  
RD5/PSP5 ................................................................. 15  
RD6/AD6/PSP6 ......................................................... 22  
RD6/PSP6 ................................................................. 15  
RD7/AD7/PSP7 ......................................................... 22  
RD7/PSP7 ................................................................. 15  
RE0/RD ..................................................................... 16  
RE0/RD/AD8 .............................................................. 23  
RE1/WR ..................................................................... 16  
RE1/WR/AD9 ............................................................. 23  
RE2/AD10/CS ............................................................ 23  
RE2/CS ...................................................................... 16  
RE3 ............................................................................ 16  
RE3/AD11 .................................................................. 23  
RE4 ............................................................................ 16  
RE4/AD12 .................................................................. 23  
RE5 ............................................................................ 16  
RE5/AD13 .................................................................. 23  
RE6 ............................................................................ 16  
RE6/AD14 .................................................................. 23  
RE7/AD15/CCP2 ....................................................... 23  
RE7/CCP2 ................................................................. 16  
RF1/AN6/C2OUT ................................................. 17, 24  
RF2/AN7/C1OUT ................................................. 17, 24  
RF3/AN8 .............................................................. 17, 24  
RF4/AN9 .............................................................. 17, 24  
RF5/AN10/CVREF ................................................ 17, 24  
RF6/AN11 ............................................................ 17, 24  
RF7/AN5/SS ........................................................ 17, 24  
RG0 ..................................................................... 18, 25  
RG1/TX2/CK2 ...................................................... 18, 25  
RG2/RX2/DT2 ...................................................... 18, 25  
RG3 ..................................................................... 18, 25  
RG4 ..................................................................... 18, 25  
RH0/A16 .................................................................... 26  
RH1/A17 .................................................................... 26  
RH2/A18 .................................................................... 26  
RH3/A19 .................................................................... 26  
RH4 ........................................................................... 26  
RH5 ........................................................................... 26  
RH6 ........................................................................... 26  
RH7 ........................................................................... 26  
RJ0/ALE .................................................................... 27  
RJ1/OE ...................................................................... 27  
RJ2/WRL ................................................................... 27  
RJ3/WRH ................................................................... 27  
RJ4/BA0 .................................................................... 27  
RJ5/CE ...................................................................... 27  
RJ6/LB ....................................................................... 27  
RJ7/UB ...................................................................... 27  
VDD ...................................................................... 18, 27  
VDDCORE/VCAP ..................................................... 18, 27  
VSS ...................................................................... 18, 27  
Pinout I/O Descriptions  
N
NEGF ...............................................................................313  
NOP .................................................................................313  
O
Oscillator Configuration ......................................................29  
EC ..............................................................................29  
ECPLL ........................................................................29  
HS ..............................................................................29  
HSPLL ........................................................................29  
Internal Oscillator Block .............................................35  
INTOSC .....................................................................29  
INTRC ........................................................................29  
Oscillator Selection ..........................................................271  
Oscillator Start-up Timer (OST) .........................................36  
Oscillator Switching ............................................................31  
Oscillator Transitions ..........................................................32  
Oscillator, Timer1 ..................................................... 151, 161  
Oscillator, Timer3 .............................................................159  
P
Packaging ........................................................................375  
Details ......................................................................376  
Marking ....................................................................375  
Parallel Slave Port (PSP) .................................................144  
Associated Registers ...............................................146  
RE0/RD Pin ..............................................................144  
RE1/WR Pin .............................................................144  
RE2/CS Pin ..............................................................144  
PICSTART Plus Development Programmer ....................338  
PIE Registers ...................................................................115  
Pin Functions  
AVDD ....................................................................18, 27  
AVSS ....................................................................18, 27  
ENVREG .............................................................. 18, 27  
MCLR ................................................................... 12, 19  
RA0/AN0 .............................................................. 12, 19  
RA1/AN1 .............................................................. 12, 19  
RA2/AN2/VREF- .................................................... 12, 19  
RA3/AN3/VREF+ ................................................... 12, 19  
RA4/T0CKI ........................................................... 12, 19  
RA5/AN4 .............................................................. 12, 19  
RA6/OSC2/CLKO ................................................ 12, 19  
RA7/OSC1/CLKI .................................................. 12, 19  
RB0/INT0 ............................................................. 13, 20  
RB1/INT1 ............................................................. 13, 20  
RB2/INT2 ............................................................. 13, 20  
RB3/INT3 ...................................................................13  
RB3/INT3/CCP2 .........................................................20  
RB4/KBI0 ............................................................. 13, 20  
RB5/KBI1 ............................................................. 13, 20  
RB6/KBI2/PGC .................................................... 13, 20  
RB7/KBI3/PGD .................................................... 13, 20  
RC0/T1OSO/T13CKI ...........................................14, 21  
RC1/T1OSI/CCP2 ................................................ 14, 21  
RC2/CCP1 ........................................................... 14, 21  
RC3/SCK/SCL ..................................................... 14, 21  
RC4/SDI/SDA ...................................................... 14, 21  
RC5/SDO ............................................................. 14, 21  
RC6/TX1/CK1 ...................................................... 14, 21  
RC7/RX1/DT1 ...................................................... 14, 21  
RD0/AD0/PSP0 ..........................................................22  
RD0/PSP0 ..................................................................15  
RD1/AD1/PSP1 ..........................................................22  
RD1/PSP1 ..................................................................15  
PIC18F6XJ11 ............................................................ 12  
PIC18F8XJ11 ............................................................ 19  
PIR Registers ................................................................... 112  
DS39774C-page 386  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
PLL ..................................................................................... 34  
ECPLL Oscillator Mode .............................................. 34  
HSPLL Oscillator Mode .............................................. 34  
POP ................................................................................. 314  
POR. See Power-on Reset.  
Idle Modes ................................................................. 41  
PRI_IDLE .......................................................... 42  
RC_IDLE ........................................................... 43  
SEC_IDLE ......................................................... 42  
Multiple Sleep Commands ......................................... 38  
Run Modes ................................................................ 38  
PRI_RUN ........................................................... 38  
RC_RUN ............................................................ 40  
SEC_RUN ......................................................... 38  
Selecting .................................................................... 37  
Sleep Mode ............................................................... 41  
Summary (table) ........................................................ 37  
Power-on Reset (POR) ...................................................... 47  
Power-up Delays ............................................................... 36  
Power-up Timer (PWRT) ............................................. 36, 48  
Time-out Sequence ................................................... 48  
Prescaler, Capture ........................................................... 166  
Prescaler, Timer0 ............................................................ 149  
Prescaler, Timer2 ............................................................ 170  
PRI_IDLE Mode ................................................................. 42  
PRI_RUN Mode ................................................................. 38  
Program Counter ............................................................... 61  
PCL, PCH and PCU Registers .................................. 61  
PCLATH and PCLATU Registers .............................. 61  
Program Memory  
PORTA  
Associated Registers ............................................... 125  
LATA Register .......................................................... 124  
PORTA Register ...................................................... 124  
TRISA Register ........................................................ 124  
PORTB  
Associated Registers ............................................... 127  
LATB Register .......................................................... 126  
PORTB Register ...................................................... 126  
RB7:RB4 Interrupt-on-Change  
Flag (RBIF Bit) ................................................. 126  
TRISB Register ........................................................ 126  
PORTC  
Associated Registers ............................................... 130  
LATC Register ......................................................... 128  
PORTC Register ...................................................... 128  
RC3/SCK/SCL Pin ................................................... 189  
TRISC Register ........................................................ 128  
PORTD ............................................................................ 144  
Associated Registers ............................................... 133  
LATD Register ......................................................... 131  
PORTD Register ...................................................... 131  
TRISD Register ........................................................ 131  
PORTE  
Associated Registers ............................................... 136  
LATE Register .......................................................... 134  
PORTE Register ...................................................... 134  
RE0/RD Pin .............................................................. 144  
RE1/WR Pin ............................................................. 144  
RE2/CS Pin .............................................................. 144  
TRISE Register ........................................................ 134  
PORTF  
Associated Registers ............................................... 138  
LATF Register .......................................................... 137  
PORTF Register ...................................................... 137  
TRISF Register ........................................................ 137  
PORTG  
Associated Registers ............................................... 140  
LATG Register ......................................................... 139  
PORTG Register ...................................................... 139  
TRISG Register ........................................................ 139  
PORTH  
Extended Instruction Set ........................................... 78  
Flash Configuration Words ........................................ 58  
Hard Memory Vectors ................................................ 58  
Instructions ................................................................ 65  
Two-Word .......................................................... 65  
Interrupt Vector .......................................................... 58  
Look-up Tables .......................................................... 63  
Memory Maps ............................................................ 57  
Hard Vectors and  
Configuration Words .................................. 58  
Modes ........................................................................ 59  
Extended Microcontroller ................................... 59  
Extended Microcontroller  
(Address Shifting) ...................................... 60  
Memory Access (table) ...................................... 60  
Microcontroller ................................................... 59  
Reset Vector .............................................................. 58  
Program Memory Modes  
Operation of the External Memory Bus ..................... 96  
Program Verification and Code Protection ...................... 284  
Programming, Device Instructions ................................... 285  
PSP.See Parallel Slave Port.  
Associated Registers ............................................... 141  
LATH Register ......................................................... 141  
PORTH Register ...................................................... 141  
TRISH Register ........................................................ 141  
PORTJ  
PSPMODE Bit (PSPCON Register) ................................. 144  
Pulse-Width Modulation. See PWM (CCP Module).  
PUSH ............................................................................... 314  
PUSH and POP Instructions .............................................. 62  
PUSHL ............................................................................. 330  
PWM (CCP Module)  
Associated Registers ............................................... 143  
LATJ Register .......................................................... 142  
PORTJ Register ....................................................... 142  
TRISJ Register ......................................................... 142  
Power-Managed Modes ..................................................... 37  
and SPI Operation ................................................... 181  
Clock Sources ............................................................ 37  
Clock Transitions and Status Indicators ..................... 38  
Entering ...................................................................... 37  
Exiting Idle and Sleep Modes .................................... 43  
By Interrupt ........................................................ 43  
By Reset ............................................................ 43  
By WDT Time-out .............................................. 43  
Without an Oscillator Start-up Delay .................. 43  
Associated Registers ............................................... 171  
Duty Cycle ............................................................... 170  
Example Frequencies/Resolutions .......................... 170  
Period ...................................................................... 169  
Setup for PWM Operation ....................................... 171  
TMR2 to PR2 Match ................................................ 169  
Q
Q Clock ............................................................................ 170  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 387  
PIC18F85J11 FAMILY  
TXSTA1 (EUSART Transmit Status  
and Control) ..................................................... 218  
TXSTA2 (AUSART Transmit Status  
R
RAM. See Data Memory.  
RC_IDLE Mode ..................................................................43  
RC_RUN Mode ..................................................................40  
RCALL ..............................................................................315  
RCON Register  
Bit Status During Initialization ....................................50  
Reader Response ............................................................392  
Register File .......................................................................69  
Register File Summary ................................................. 71–74  
Registers  
and Control) ..................................................... 238  
WDTCON (Watchdog Timer Control) ...................... 278  
RESET ............................................................................. 315  
Reset ................................................................................. 45  
Brown-out Reset (BOR) ............................................. 45  
MCLR Reset, During Power-Managed Modes .......... 45  
MCLR Reset, Normal Operation ................................ 45  
Power-on Reset (POR) .............................................. 45  
RESET Instruction ..................................................... 45  
Stack Full Reset ......................................................... 45  
Stack Underflow Reset .............................................. 45  
Watchdog Timer (WDT) Reset .................................. 45  
Resets .............................................................................. 271  
Brown-out Reset (BOR) ........................................... 271  
Oscillator Start-up Timer (OST) ............................... 271  
Power-on Reset (POR) ............................................ 271  
Power-up Timer (PWRT) ......................................... 271  
RETFIE ............................................................................ 316  
RETLW ............................................................................ 316  
RETURN .......................................................................... 317  
Return Address Stack ........................................................ 61  
Return Stack Pointer (STKPTR) ........................................ 62  
RLCF ............................................................................... 317  
RLNCF ............................................................................. 318  
RRCF ............................................................................... 318  
RRNCF ............................................................................ 319  
ADCON0 (A/D Control 0) .........................................251  
ADCON1 (A/D Control 1) .........................................252  
ADCON2 (A/D Control 2) .........................................253  
BAUDCON1 (Baud Rate Control 1) .........................220  
CCPxCON (CCPx Control) ......................................163  
CMCON (Comparator Control) ................................261  
CONFIG1H (Configuration 1 High) ..........................273  
CONFIG1L (Configuration 1 Low) ............................273  
CONFIG2H (Configuration 2 High) ..........................275  
CONFIG2L (Configuration 2 Low) ............................274  
CONFIG3H (Configuration 3 High) ..........................276  
CONFIG3L (Configuration 3 Low) ......................59, 276  
CVRCON (Comparator Voltage  
Reference Control) ...........................................267  
DEVID1 (Device ID Register 1) ................................277  
DEVID2 (Device ID Register 2) ................................277  
EECON1 (EEPROM Control 1) ..................................85  
INTCON (Interrupt Control) ......................................109  
INTCON2 (Interrupt Control 2) .................................110  
INTCON3 (Interrupt Control 3) .................................111  
IPR1 (Peripheral Interrupt Priority 1) ........................118  
IPR2 (Peripheral Interrupt Priority 2) ........................119  
IPR3 (Peripheral Interrupt Priority 3) ........................120  
MEMCON (External Memory Bus Control) ................94  
OSCCON (Oscillator Control) ....................................30  
OSCTUNE (Oscillator Tuning) ...................................31  
PIE1 (Peripheral Interrupt Enable 1) ........................115  
PIE2 (Peripheral Interrupt Enable 2) ........................116  
PIE3 (Peripheral Interrupt Enable 3) ........................117  
PIR1 (Peripheral Interrupt  
S
SCK ................................................................................. 173  
SDI ................................................................................... 173  
SDO ................................................................................. 173  
SEC_IDLE Mode ............................................................... 42  
SEC_RUN Mode ................................................................ 38  
Serial Clock, SCK ............................................................ 173  
Serial Data In (SDI) .......................................................... 173  
Serial Data Out (SDO) ..................................................... 173  
Serial Peripheral Interface. See SPI Mode.  
SETF ................................................................................ 319  
Slave Select (SS) ............................................................. 173  
SLEEP ............................................................................. 320  
Sleep  
Request (Flag) 1) .............................................112  
PIR2 (Peripheral Interrupt  
Request (Flag) 2) .............................................113  
PIR3 (Peripheral Interrupt  
Request (Flag) 3) .............................................114  
PSPCON (Parallel Slave Port Control) ....................145  
RCON (Reset Control) ....................................... 46, 121  
RCSTA1 (EUSART Receive  
OSC1 and OSC2 Pin States ...................................... 36  
Software Simulator (MPLAB SIM) ................................... 336  
Special Event Trigger. See Compare (CCP Module).  
Special Features of the CPU ........................................... 271  
SPI Mode (MSSP)  
Associated Registers ............................................... 181  
Bus Mode Compatibility ........................................... 181  
Effects of a Reset .................................................... 181  
Enabling SPI I/O ...................................................... 177  
Master Mode ............................................................ 178  
Master/Slave Connection ......................................... 177  
Operation ................................................................. 176  
Operation in Power-Managed Modes ...................... 181  
Serial Clock .............................................................. 173  
Serial Data In ........................................................... 173  
Serial Data Out ........................................................ 173  
Slave Mode .............................................................. 179  
Slave Select ............................................................. 173  
Slave Select Synchronization .................................. 179  
SPI Clock ................................................................. 178  
Typical Connection .................................................. 177  
Status and Control) ..........................................219  
RCSTA2 (AUSART Receive  
Status and Control) ..........................................239  
2
SSPCON1 (MSSP Control 1, I C Mode) .................184  
SSPCON1 (MSSP Control 1, SPI Mode) .................175  
SSPCON2 (MSSP Control 2,  
2
I C Master Mode) .............................................185  
2
SSPCON2 (MSSP Control 2, I C Slave Mode) .......186  
2
SSPSTAT (MSSP Status, I C Mode) .......................183  
SSPSTAT (MSSP Status, SPI Mode) ......................174  
STATUS .....................................................................75  
STKPTR (Stack Pointer) ............................................62  
T0CON (Timer0 Control) ..........................................147  
T1CON (Timer1 Control) ..........................................151  
T2CON (Timer2 Control) ..........................................157  
T3CON (Timer3 Control) ..........................................159  
DS39774C-page 388  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
SS .................................................................................... 173  
SSPOV ............................................................................. 207  
SSPOV Status Flag ......................................................... 207  
SSPSTAT Register  
Timing Diagrams  
A/D Conversion ....................................................... 372  
Acknowledge Sequence .......................................... 210  
Asynchronous Reception ................................. 229, 245  
Asynchronous Transmission ........................... 227, 243  
Asynchronous Transmission  
(Back-to-Back) ......................................... 227, 243  
Automatic Baud Rate Calculation ............................ 225  
Auto-Wake-up Bit (WUE) During  
Normal Operation ............................................ 230  
Auto-Wake-up Bit (WUE) During Sleep ................... 230  
Baud Rate Generator with Clock Arbitration ............ 204  
BRG Overflow Sequence ........................................ 225  
BRG Reset Due to SDA Arbitration During  
R/W Bit ............................................................. 187, 189  
Stack Full/Underflow Resets .............................................. 63  
STATUS Register .............................................................. 75  
SUBFSR .......................................................................... 331  
SUBFWB .......................................................................... 320  
SUBLW ............................................................................ 321  
SUBULNK ........................................................................ 331  
SUBWF ............................................................................ 321  
SUBWFB .......................................................................... 322  
SWAPF ............................................................................ 322  
Start Condition ................................................. 213  
Bus Collision During a Repeated Start  
Condition (Case 1) ........................................... 214  
Bus Collision During a Repeated Start  
Condition (Case 2) ........................................... 214  
Bus Collision During a Start  
Condition (SCL = 0) ......................................... 213  
Bus Collision During a Stop  
Condition (Case 1) ........................................... 215  
Bus Collision During a Stop  
Condition (Case 2) ........................................... 215  
Bus Collision During Start  
Condition (SDA Only) ...................................... 212  
Bus Collision for Transmit and Acknowledge .......... 211  
Capture/Compare/PWM (CCP1, CCP2) .................. 361  
CLKO and I/O .......................................................... 358  
Clock Synchronization ............................................. 197  
Clock/Instruction Cycle .............................................. 64  
EUSART/AUSART Synchronous Receive  
(Master/Slave) ................................................. 370  
EUSART/AUSART Synchronous Transmission  
(Master/Slave) ................................................. 370  
Example SPI Master Mode (CKE = 0) ..................... 362  
Example SPI Master Mode (CKE = 1) ..................... 363  
Example SPI Slave Mode (CKE = 0) ....................... 364  
Example SPI Slave Mode (CKE = 1) ....................... 365  
External Clock (All Modes Except PLL) ................... 356  
External Memory Bus for Sleep (Extended  
T
Table Pointer Operations (table) ........................................ 86  
Table Reads/Table Writes ................................................. 63  
TBLRD ............................................................................. 323  
TBLWT ............................................................................. 324  
Timer0 .............................................................................. 147  
Associated Registers ............................................... 149  
Clock Source Select (T0CS Bit) ............................... 148  
Interrupt .................................................................... 149  
Operation ................................................................. 148  
Prescaler .................................................................. 149  
Switching Assignment ...................................... 149  
Prescaler Assignment (PSA Bit) .............................. 149  
Prescaler Select (T0PS2:T0PS0 Bits) ..................... 149  
Prescaler. See Prescaler, Timer0.  
Reads and Writes in 16-Bit Mode ............................ 148  
Source Edge Select (T0SE Bit) ................................ 148  
Timer1 .............................................................................. 151  
16-Bit Read/Write Mode ........................................... 153  
Associated Registers ............................................... 155  
Interrupt .................................................................... 154  
Operation ................................................................. 152  
Oscillator .......................................................... 151, 153  
Layout Considerations ..................................... 154  
Oscillator, as Secondary Clock .................................. 31  
Overflow Interrupt .................................................... 151  
Resetting, Using the CCPx  
Special Event Trigger ...................................... 154  
TMR1H Register ...................................................... 151  
TMR1L Register ....................................................... 151  
Use as a Clock Source ............................................ 153  
Use as a Real-Time Clock ....................................... 154  
Timer2 .............................................................................. 157  
Associated Registers ............................................... 158  
Interrupt .................................................................... 158  
Operation ................................................................. 157  
Output ...................................................................... 158  
PR2 Register ............................................................ 169  
TMR2 to PR2 Match Interrupt .................................. 169  
Timer3 .............................................................................. 159  
16-Bit Read/Write Mode ........................................... 161  
Associated Registers ............................................... 161  
Interrupt .................................................................... 161  
Operation ................................................................. 160  
Oscillator .......................................................... 159, 161  
Overflow Interrupt .................................................... 159  
Special Event Trigger (CCP) .................................... 161  
TMR3H Register ...................................................... 159  
TMR3L Register ....................................................... 159  
Microcontroller Mode) .............................. 100, 102  
External Memory Bus for TBLRD (Extended  
Microcontroller Mode) .............................. 100, 102  
Fail-Safe Clock Monitor ........................................... 283  
First Start Bit Timing ................................................ 205  
2
I C Bus Data ............................................................ 367  
2
I C Bus Start/Stop Bits ............................................ 366  
2
I C Master Mode (7 or 10-Bit Transmission) ........... 208  
2
I C Master Mode (7-Bit Reception) ......................... 209  
2
I C Slave Mode (10-Bit Reception, SEN = 0) .......... 193  
2
I C Slave Mode (10-Bit Reception, SEN = 0,  
ADMSK = 01001) ............................................ 194  
I C Slave Mode (10-Bit Reception, SEN = 1) .......... 199  
I C Slave Mode (10-Bit Transmission) .................... 195  
I C Slave Mode (7-Bit Reception, SEN = 0) ............ 190  
2
2
2
2
I C Slave Mode (7-Bit Reception, SEN = 0,  
ADMSK = 01011) ............................................ 191  
I C Slave Mode (7-Bit Reception, SEN = 1) ............ 198  
I C Slave Mode (7-Bit Transmission) ...................... 192  
I C Slave Mode General Call Address Sequence  
2
2
2
(7 or 10-Bit Address Mode) ............................. 200  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 389  
PIC18F85J11 FAMILY  
2
I C Stop Condition Receive or  
Example SPI Mode Requirements  
Transmit Mode .................................................210  
(Master Mode, CKE = 0) .................................. 362  
Example SPI Mode Requirements  
(Master Mode, CKE = 1) .................................. 363  
Example SPI Mode Requirements  
(Slave Mode, CKE = 0) .................................... 364  
Example SPI Slave Mode  
2
MSSP I C Bus Data .................................................368  
2
MSSP I C Bus Start/Stop Bits .................................368  
Parallel Slave Port (PSP) Read ...............................146  
Parallel Slave Port (PSP) Write ...............................145  
PWM Output ............................................................169  
Repeated Start Condition .........................................206  
Reset, Watchdog Timer (WDT), Oscillator Start-up  
Timer (OST) and Power-up Timer (PWRT) .....359  
Send Break Character Sequence ............................231  
Slave Synchronization .............................................179  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) ............................................49  
SPI Mode (Master Mode) .........................................178  
SPI Mode (Slave Mode, CKE = 0) ...........................180  
SPI Mode (Slave Mode, CKE = 1) ...........................180  
Synchronous Reception  
Requirements (CKE = 1) ................................. 365  
External Clock Requirements .................................. 356  
2
I C Bus Data Requirements (Slave Mode) .............. 367  
2
I C Bus Start/Stop Bits Requirements  
(Slave Mode) ................................................... 366  
Internal RC Accuracy ............................................... 357  
2
MSSP I C Bus Data Requirements ......................... 369  
2
MSSP I C Bus Start/Stop Bits Requirements .......... 368  
PLL Clock ................................................................ 357  
Reset, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer and Brown-out  
(Master Mode, SREN) .............................. 234, 248  
Synchronous Transmission .............................. 232, 246  
Synchronous Transmission  
(Through TXEN) .......................................233, 247  
Time-out Sequence on Power-up  
Reset Requirements ........................................ 359  
Timer0 and Timer1 External  
Clock Requirements ........................................ 360  
Top-of-Stack Access .......................................................... 61  
TSTFSZ ........................................................................... 325  
Two-Speed Start-up ................................................. 271, 281  
Two-Word Instructions  
(MCLR Not Tied to VDD), Case 1 .......................49  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD), Case 2 .......................49  
Time-out Sequence on Power-up  
Example Cases .......................................................... 65  
V
(MCLR Tied to VDD, VDD Rise < TPWRT) ...........48  
Timer0 and Timer1 External Clock ..........................360  
Transition for Entry to Idle Mode ................................42  
Transition for Entry to SEC_RUN Mode ....................39  
Transition for Entry to Sleep Mode ............................41  
Transition for Two-Speed Start-up  
(INTRC to HSPLL) ...........................................281  
Transition for Wake From Idle to Run Mode ..............42  
Transition for Wake From Sleep (HSPLL) .................41  
Transition From RC_RUN Mode to  
VDDCORE/VCAP Pin .......................................................... 279  
Voltage Reference Specifications .................................... 353  
Voltage Regulator (On-Chip) ........................................... 279  
Brown-out Reset (BOR) ........................................... 280  
Low-Voltage Detection (LVD) .................................. 279  
Operation in Sleep Mode ......................................... 280  
Power-up Requirements .......................................... 280  
W
Watchdog Timer (WDT) ........................................... 271, 278  
Associated Registers ............................................... 278  
Control Register ....................................................... 278  
Programming Considerations .................................. 278  
WCOL ...................................................... 205, 206, 207, 210  
WCOL Status Flag ................................... 205, 206, 207, 210  
WWW Address ................................................................ 391  
WWW, On-Line Support ...................................................... 5  
PRI_RUN Mode .................................................40  
Transition From SEC_RUN Mode to  
PRI_RUN Mode (HSPLL) ..................................39  
Transition to RC_RUN Mode .....................................40  
Timing Diagrams and Specifications  
Capture/Compare/PWM Requirements  
(CCP1, CCP2) .................................................361  
CLKO and I/O Requirements ...................................358  
EUSART/AUSART Synchronous Receive  
Requirements ...................................................370  
EUSART/AUSART Synchronous Transmission  
Requirements ...................................................370  
X
XORLW ............................................................................ 325  
XORWF ........................................................................... 326  
DS39774C-page 390  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following informa-  
tion:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata, appli-  
cation notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers should contact their distributor, representa-  
tive or field application engineer (FAE) for support.  
Local sales offices are also available to help custom-  
ers. A listing of sales offices and locations is included in  
the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of Micro-  
chip sales offices, distributors and factory repre-  
sentatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a spec-  
ified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change Notifi-  
cation and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 391  
PIC18F85J11 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
DS39774C  
Literature Number:  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F85J11 Family  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39774C-page 392  
Preliminary  
© 2007 Microchip Technology Inc.  
PIC18F85J11 FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC18F85J11-I/PT 301 = Industrial temp.,  
TQFP package, QTP pattern #301.  
PIC18F63J11T-I/PT = Tape and reel, Industrial  
temp., TQFP package.  
b)  
Device  
PIC18F63J11/64J11/65J11(1)  
PIC18F83J11/84J11/85J11(1)  
,
,
PIC18F63J11/64J11/65J11T(2)  
PIC18F83J11/84J11/85J11T(2)  
,
Temperature Range  
Package  
I
= -40°C to +85°C (Industrial)  
PT = TQFP (Thin Quad Flatpack)  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Note 1:  
2:  
F
T
=
=
Standard Voltage Range  
In Tape and Reel  
© 2007 Microchip Technology Inc.  
Preliminary  
DS39774C-page 393  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS39774C-page 394  
Preliminary  
© 2007 Microchip Technology Inc.  

相关型号:

PIC18F83J11-I/PT

64/80-Pin High-Performance Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F83J90

LCD PIC18F Microcontroller with 8K bytes of Flash and 1024 bytes of RAM. These devices are easily
MICROCHIP

PIC18F83J90-I/PT

64/80-Pin, High-Performance Microcontrollers with LCD Driver and nanoWatt Technology
MICROCHIP

PIC18F8410

64/80-Pin High-Performance, Flash Microcontrollers with 10-bit A/D and nanoWatt Technology Product Brief
MICROCHIP

PIC18F8410-E/PT

8-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP80, 12 X 12 MM, 1 MM, LEAD FREE, QFP-80
MICROCHIP

PIC18F8410E/PTQTP

64/80-Pin Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F8410E/PTSQTP

64/80-Pin Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F8410I/PTQTP

64/80-Pin Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F8410I/PTSQTP

64/80-Pin Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F8410TE/PTQTP

64/80-Pin Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F8410TE/PTSQTP

64/80-Pin Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F8410TI/PTQTP

64/80-Pin Flash Microcontrollers with nanoWatt Technology
MICROCHIP