PIC18LF1320I/SOQTP [MICROCHIP]

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers;
PIC18LF1320I/SOQTP
型号: PIC18LF1320I/SOQTP
厂家: MICROCHIP    MICROCHIP
描述:

18/20/28-Pin High-Performance, Enhanced Flash Microcontrollers

微控制器
文件: 总308页 (文件大小:5130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F1220/1320  
Data Sheet  
18/20/28-Pin High-Performance,  
Enhanced Flash Microcontrollers  
with 10-Bit A/D and nanoWatt Technology  
© 2007 Microchip Technology Inc.  
DS39605F  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
d
r
i
I
d
I
r
c
i
r
h
T
E
p
DS39605F-page ii  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
18/20/28-Pin High-Performance, Enhanced Flash MCUs  
with 10-bit A/D and nanoWatt Technology  
Low-Power Features:  
Peripheral Highlights:  
• Power Managed modes:  
• High current sink/source 25 mA/25 mA  
• Three external interrupts  
- Run: CPU on, peripherals on  
- Idle: CPU off, peripherals on  
- Sleep: CPU off, peripherals off  
• Power Consumption modes:  
- PRI_RUN: 150 μA, 1 MHz, 2V  
- PRI_IDLE: 37 μA, 1 MHz, 2V  
- SEC_RUN: 14 μA, 32 kHz, 2V  
- SEC_IDLE: 5.8 μA, 32 kHz, 2V  
- RC_RUN: 110 μA, 1 MHz, 2V  
- RC_IDLE: 52 μA, 1 MHz, 2V  
- Sleep: 0.1 μA, 1 MHz, 2V  
• Enhanced Capture/Compare/PWM (ECCP) module:  
- One, two or four PWM outputs  
- Selectable polarity  
- Programmable dead time  
- Auto-Shutdown and Auto-Restart  
- Capture is 16-bit, max resolution 6.25 ns (TCY/16)  
- Compare is 16-bit, max resolution 100 ns (TCY)  
• Compatible 10-bit, up to 13-channel Analog-to-  
Digital Converter module (A/D) with programmable  
acquisition time  
• Enhanced USART module:  
- Supports RS-485, RS-232 and LIN 1.2  
- Auto-Wake-up on Start bit  
- Auto-Baud Detect  
• Timer1 Oscillator: 1.1 μA, 32 kHz, 2V  
• Watchdog Timer: 2.1 μA  
• Two-Speed Oscillator Start-up  
Oscillators:  
Special Microcontroller Features:  
• Four Crystal modes:  
• 100,000 erase/write cycle Enhanced Flash  
program memory typical  
- LP, XT, HS: up to 25 MHz  
- HSPLL: 4-10 MHz (16-40 MHz internal)  
• 1,000,000 erase/write cycle Data EEPROM  
memory typical  
• Two External RC modes, up to 4 MHz  
• Two External Clock modes, up to 40 MHz  
• Flash/Data EEPROM Retention: > 40 years  
• Self-programmable under software control  
• Priority levels for interrupts  
• Internal oscillator block:  
- 8 user-selectable frequencies: 31 kHz, 125 kHz,  
250 kHz, 500 kHz, 1 MHz, 2 MHz, 4 MHz, 8 MHz  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Programmable period from 41 ms to 131s  
- 2% stability over VDD and Temperature  
- 125 kHz to 8 MHz calibrated to 1%  
- Two modes select one or two I/O pins  
- OSCTUNE Allows user to shift frequency  
• Secondary oscillator using Timer1 @ 32 kHz  
• Fail-Safe Clock Monitor  
• Single-supply 5V In-Circuit Serial Programming™  
(ICSP™) via two pins  
- Allows for safe shutdown if peripheral clock stops  
• In-Circuit Debug (ICD) via two pins  
• Wide operating voltage range: 2.0V to 5.5V  
Program Memory  
Data Memory  
SRAM EEPROM  
10-bit  
A/D (ch)  
ECCP  
(PWM)  
Timers  
8/16-bit  
Device  
I/O  
EUSART  
Flash  
# Single-Word  
Instructions  
(bytes)  
(bytes)  
(bytes)  
PIC18F1220  
PIC18F1320  
4K  
8K  
2048  
4096  
256  
256  
256  
256  
16  
16  
7
7
1
1
Y
Y
1/3  
1/3  
© 2007 Microchip Technology Inc.  
DS39605F-page 1  
PIC18F1220/1320  
Pin Diagrams  
20-Pin SSOP  
18-Pin PDIP, SOIC  
RA0/AN0  
1
2
3
4
5
6
7
8
20  
19  
18  
17  
16  
15  
14  
13  
RB3/CCP1/P1A  
RA0/AN0  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
RB3/CCP1/P1A  
RB2/P1B/INT2  
RA1/AN1/LVDIN  
RB2/P1B/INT2  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
VDD  
RA1/AN1/LVDIN  
RA4/T0CKI  
RA4/T0CKI  
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
VDD/AVDD  
MCLR/VPP/RA5  
MCLR/VPP/RA5  
VSS  
AVSS  
VSS/AVSS  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RB0/AN4/INT0  
AVDD  
RB7/PGD/T1OSI/  
P1D/KBI3  
RB7/PGD/T1OSI/  
P1D/KBI3  
RB6/PGC/T1OSO/  
T13CKI/P1C/KBI2  
RA2/AN2/VREF-  
RB6/PGC/T1OSO/  
T13CKI/P1C/KBI2  
7
8
12  
11  
RA3/AN3/VREF+  
RB5/PGM/KBI1  
RB1/AN5/TX/  
CK/INT1  
RB4/AN6/RX/  
DT/KBI0  
RB5/PGM/KBI1  
RB0/AN4/INT0  
9
10  
9
12  
11  
RB4/AN6/RX/  
DT/KBI0  
RB1/AN5/TX/  
CK/INT1  
10  
28-Pin QFN  
MCLR/VPP/RA5  
21  
20  
19  
18  
17  
16  
15  
1
2
3
OSC1/CLKI/RA7  
OSC2/CLKO/RA6  
NC  
VSS  
NC  
VDD  
NC  
4
5
6
7
PIC18F1X20  
AVDD  
AVSS  
NC  
RB7/PGD/T1OSI/P1D/KBI3  
RB6/PGC/T1OSO/T13CKI/P1C/KBI2  
RA2/AN2/VREF-  
DS39605F-page 2  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 5  
2.0 Oscillator Configurations ............................................................................................................................................................ 11  
3.0 Power Managed Modes ............................................................................................................................................................. 19  
4.0 Reset.......................................................................................................................................................................................... 33  
5.0 Memory Organization................................................................................................................................................................. 41  
6.0 Flash Program Memory.............................................................................................................................................................. 57  
7.0 Data EEPROM Memory ............................................................................................................................................................. 67  
8.0 8 x 8 Hardware Multiplier............................................................................................................................................................ 71  
9.0 Interrupts .................................................................................................................................................................................... 73  
10.0 I/O Ports ..................................................................................................................................................................................... 87  
11.0 Timer0 Module ........................................................................................................................................................................... 99  
12.0 Timer1 Module ......................................................................................................................................................................... 103  
13.0 Timer2 Module ......................................................................................................................................................................... 109  
14.0 Timer3 Module ......................................................................................................................................................................... 111  
15.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 115  
16.0 Enhanced Addressable Universal Synchronous Asynchronous Receiver Transmitter (EUSART).......................................... 131  
17.0 10-Bit Analog-to-Digital Converter (A/D) Module ..................................................................................................................... 155  
18.0 Low-Voltage Detect.................................................................................................................................................................. 165  
19.0 Special Features of the CPU.................................................................................................................................................... 171  
20.0 Instruction Set Summary.......................................................................................................................................................... 191  
21.0 Development Support............................................................................................................................................................... 233  
22.0 Electrical Characteristics.......................................................................................................................................................... 237  
23.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 267  
24.0 Packaging Information.............................................................................................................................................................. 285  
Appendix A: Revision History............................................................................................................................................................. 291  
Appendix B: Device Differences ........................................................................................................................................................ 291  
Appendix C: Conversion Considerations ........................................................................................................................................... 292  
Appendix D: Migration from Baseline to Enhanced Devices.............................................................................................................. 292  
Appendix E: Migration from Mid-Range to Enhanced Devices.......................................................................................................... 293  
Appendix F: Migration from High-End to Enhanced Devices............................................................................................................. 293  
Index .................................................................................................................................................................................................. 295  
The Microchip Web Site..................................................................................................................................................................... 303  
Customer Change Notification Service .............................................................................................................................................. 303  
Customer Support.............................................................................................................................................................................. 303  
Reader Response.............................................................................................................................................................................. 304  
PIC18F1220/1320 Product Identification System .............................................................................................................................. 305  
© 2007 Microchip Technology Inc.  
DS39605F-page 3  
PIC18F1220/1320  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39605F-page 4  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Besides its availability as a clock source, the internal  
oscillator block provides a stable reference source that  
gives the family additional features for robust  
operation:  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a reference  
signal provided by the internal oscillator. If a clock fail-  
ure occurs, the controller is switched to the internal  
oscillator block, allowing for continued low-speed  
operation, or a safe application shutdown.  
• PIC18F1220  
• PIC18F1320  
This family offers the advantages of all PIC18 microcon-  
trollers – namely, high computational performance at an  
economical price – with the addition of high endurance  
Enhanced Flash program memory. On top of these fea-  
tures, the PIC18F1220/1320 family introduces design  
enhancements that make these microcontrollers a logical  
choice for many high-performance, power sensitive  
applications.  
Two-Speed Start-up: This option allows the internal  
oscillator to serve as the clock source from Power-  
on Reset, or wake-up from Sleep mode, until the  
primary clock source is available. This allows for  
code execution during what would otherwise be the  
clock start-up interval and can even allow an appli-  
cation to perform routine background activities and  
return to Sleep without returning to full power  
operation.  
1.1  
New Core Features  
1.1.1  
nanoWatt TECHNOLOGY  
All of the devices in the PIC18F1220/1320 family incor-  
porate a range of features that can significantly reduce  
power consumption during operation. Key items include:  
1.2  
Other Special Features  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the internal oscillator  
block, power consumption during code execution  
can be reduced by as much as 90%.  
Memory Endurance: The Enhanced Flash cells for  
both program memory and data EEPROM are rated  
to last for many thousands of erase/write cycles –  
up to 100,000 for program memory and 1,000,000  
for EEPROM. Data retention without refresh is  
conservatively estimated to be greater than  
40 years.  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled, but the peripherals are  
still active. In these states, power consumption can  
be reduced even further, to as little as 4% of normal  
operation requirements.  
Self-programmability: These devices can write to  
their own program memory spaces under internal  
software control. By using a bootloader routine  
located in the protected Boot Block at the top of pro-  
gram memory, it becomes possible to create an  
application that can update itself in the field.  
On-the-fly Mode Switching: The power managed  
modes are invoked by user code during operation,  
allowing the user to incorporate power-saving ideas  
into their application’s software design.  
Enhanced CCP module: In PWM mode, this  
module provides 1, 2 or 4 modulated outputs for  
controlling half-bridge and full-bridge drivers. Other  
features include auto-shutdown, for disabling PWM  
outputs on interrupt or other select conditions and  
auto-restart, to reactivate outputs once the condition  
has cleared.  
Lower Consumption in Key Modules: The power  
requirements for both Timer1 and the Watchdog  
Timer have been reduced by up to 80%, with typical  
values of 1.1 and 2.1 μA, respectively.  
1.1.2  
MULTIPLE OSCILLATOR OPTIONS  
AND FEATURES  
Enhanced USART: This serial communication  
module features automatic wake-up on Start bit and  
automatic baud rate detection and supports RS-232,  
RS-485 and LIN 1.2 protocols, making it ideally  
suited for use in Local Interconnect Network (LIN)  
bus applications.  
All of the devices in the PIC18F1220/1320 family offer  
nine different oscillator options, allowing users a wide  
range of choices in developing application hardware.  
These include:  
• Four Crystal modes, using crystals or ceramic  
resonators.  
10-bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period and  
thus, reduce code overhead.  
• Two External Clock modes, offering the option of  
using two pins (oscillator input and a divide-by-4  
clock output), or one pin (oscillator input, with the  
second pin reassigned as general I/O).  
• Two External RC Oscillator modes, with the same  
pin options as the External Clock modes.  
Extended Watchdog Timer (WDT): This enhanced  
version incorporates a 16-bit prescaler, allowing a  
time-out range from 4 ms to over 2 minutes that is  
stable across operating voltage and temperature.  
• An internal oscillator block, which provides an  
8 MHz clock (±2% accuracy) and an INTRC source  
(approximately 31 kHz, stable over temperature and  
VDD), as well as a range of 6 user-selectable clock  
frequencies (from 125 kHz to 4 MHz) for a total of  
8 clock frequencies.  
© 2007 Microchip Technology Inc.  
DS39605F-page 5  
PIC18F1220/1320  
A block diagram of the PIC18F1220/1320 device  
architecture is provided in Figure 1-1. The pinouts for  
this device family are listed in Table 1-2.  
1.3  
Details on Individual Family  
Members  
Devices in the PIC18F1220/1320 family are available  
in 18-pin, 20-pin and 28-pin packages. A block diagram  
for this device family is shown in Figure 1-1.  
The devices are differentiated from each other only in  
the amount of on-chip Flash program memory  
(4 Kbytes for the PIC18F1220 device, 8 Kbytes for the  
PIC18F1320 device). These and other features are  
summarized in Table 1-1.  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18F1220  
PIC18F1320  
Operating Frequency  
DC – 40 MHz  
DC – 40 MHz  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
4096  
8192  
2048  
4096  
256  
256  
Data EEPROM Memory (Bytes)  
Interrupt Sources  
256  
256  
15  
15  
I/O Ports  
Ports A, B  
Ports A, B  
Timers  
4
4
Enhanced Capture/Compare/PWM Modules  
Serial Communications  
10-bit Analog-to-Digital Module  
1
1
Enhanced USART  
7 input channels  
Enhanced USART  
7 input channels  
POR, BOR,  
POR, BOR,  
RESETInstruction, Stack Full,  
Stack Underflow (PWRT, OST), Stack Underflow (PWRT, OST),  
RESETInstruction, Stack Full,  
Resets (and Delays)  
MCLR (optional), WDT  
MCLR (optional), WDT  
Programmable Low-Voltage Detect  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
Yes  
Yes  
75 Instructions  
75 Instructions  
18-pin SDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
18-pin SDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
Packages  
DS39605F-page 6  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 1-1:  
PIC18F1220/1320 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Data Latch  
Table Pointer <2>  
inc/dec logic  
21  
8
8
8
8
RA0/AN0  
Data RAM  
21  
RA1/AN1/LVDIN  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
21  
Address Latch  
20  
PCLATU PCLATH  
PCU PCH PCL  
12(2)  
Address Latch  
Address<12>  
Program Memory  
(4 Kbytes)  
Program Counter  
4
BSR  
12  
FSR0  
4
PIC18F1220  
RA4/T0CKI  
Bank0, F  
(8 Kbytes)  
PIC18F1320  
MCLR/VPP/RA5(1)  
FSR1  
FSR2  
31 Level Stack  
Data Latch  
16  
12  
OSC2/CLKO/RA6(2)  
inc/dec  
logic  
OSC2/CLKI/RA7(2)  
Decode  
Table Latch  
8
ROM Latch  
PORTB  
RB0/AN4/INT0  
Instruction  
Register  
RB1/AN5/TX/CK/INT1  
RB2/P1B/INT2  
8
Instruction  
Decode &  
Control  
PRODH PRODL  
8 x 8 Multiply  
RB3/CCP1/P1A  
3
RB4/AN6/RX/DT/KBI0  
RB5/PGM/KBI1  
8
WREG  
8
BIT OP  
8
OSC1(2)  
OSC2(2)  
T1OSI  
Power-up  
Timer  
8
Timing  
Generation  
RB6/PGC/T1OSO/  
T13CKI/P1C/KBI2  
Oscillator  
Start-up Timer  
8
INTRC  
Oscillator  
RB7/PGD/T1OSI/  
P1D/KBI3  
ALU<8>  
Power-on  
Reset  
T1OSO  
8
Watchdog  
Timer  
Precision  
Voltage  
Reference  
Brown-out  
Reset  
Low-Voltage  
Programming  
MCLR(1)  
VDD, VSS  
Fail-Safe  
Clock Monitor  
In-Circuit  
Debugger  
Timer1  
Timer2  
Timer3  
A/D Converter  
Timer0  
Enhanced  
USART  
Enhanced  
CCP  
Data EEPROM  
Note 1: RA5 is available only when the MCLR Reset is disabled.  
2: OSC1, OSC2, CLKI and CLKO are only available in select oscillator modes and when these pins are not being used as digital  
I/O. Refer to Section 2.0 “Oscillator Configurations” for additional information.  
© 2007 Microchip Technology Inc.  
DS39605F-page 7  
PIC18F1220/1320  
TABLE 1-2:  
PIC18F1220/1320 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PDIP/  
SSOP QFN  
SOIC  
MCLR/VPP/RA5  
MCLR  
4
4
1
Master Clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active-low  
Reset to the device.  
I
ST  
VPP  
RA5  
P
I
ST  
Programming voltage input.  
Digital input.  
OSC1/CLKI/RA7  
OSC1  
16  
18  
21  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock source  
input. ST buffer when configured in RC mode,  
CMOS otherwise.  
I
I
ST  
CMOS  
ST  
CLKI  
RA7  
External clock source input. Always associated with  
pin function OSC1. (See related OSC1/CLKI,  
OSC2/CLKO pins.)  
I/O  
General purpose I/O pin.  
OSC2/CLKO/RA6  
OSC2  
15  
17  
20  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In RC, EC and INTRC modes, OSC2 pin outputs  
CLKO, which has 1/4 the frequency of OSC1 and  
denotes instruction cycle rate.  
CLKO  
RA6  
I/O  
ST  
General purpose I/O pin.  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
1
2
1
2
26  
27  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1/LVDIN  
RA1  
I/O  
ST  
Digital I/O.  
AN1  
LVDIN  
I
I
Analog  
Analog  
Analog input 1.  
Low-Voltage Detect input.  
RA2/AN2/VREF-  
RA2  
6
7
3
7
8
3
7
8
I/O  
I
I
ST  
Analog  
Analog  
Digital I/O.  
Analog input 2.  
A/D reference voltage (low) input.  
AN2  
VREF-  
RA3/AN3/VREF+  
RA3  
I/O  
I
I
ST  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D reference voltage (high) input.  
AN3  
VREF+  
RA4/T0CKI  
RA4  
28  
I/O  
I
ST/OD  
ST  
Digital I/O. Open-drain when configured as output.  
Timer0 external clock input.  
T0CKI  
RA5  
RA6  
RA7  
See the MCLR/VPP/RA5 pin.  
See the OSC2/CLKO/RA6 pin.  
See the OSC1/CLKI/RA7 pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST  
O
OD  
=
=
=
Schmitt Trigger input with CMOS levels  
Output  
Open-drain (no P diode to VDD)  
I
P
= Input  
= Power  
DS39605F-page 8  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 1-2:  
PIC18F1220/1320 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PDIP/  
SSOP QFN  
SOIC  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/AN4/INT0  
RB0  
8
9
9
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
External interrupt 0.  
AN4  
INT0  
RB1/AN5/TX/CK/INT1  
9
10  
10  
RB1  
AN5  
TX  
CK  
INT1  
I/O  
I
O
I/O  
I
TTL  
Analog  
ST  
ST  
Digital I/O.  
Analog input 5.  
EUSART asynchronous transmit.  
EUSART synchronous clock (see related RX/DT).  
External interrupt 1.  
RB2/P1B/INT2  
RB2  
17  
18  
10  
19  
20  
11  
23  
24  
12  
I/O  
O
I
TTL  
ST  
Digital I/O.  
Enhanced CCP1/PWM output.  
External interrupt 2.  
P1B  
INT2  
RB3/CCP1/P1A  
RB3  
I/O  
I/O  
O
TTL  
ST  
Digital I/O.  
CCP1  
P1A  
Capture 1 input/Compare 1 output/PWM 1 output.  
Enhanced CCP1/PWM output.  
RB4/AN6/RX/DT/KBI0  
RB4  
AN6  
RX  
DT  
KBI0  
I/O  
I
I
I/O  
I
TTL  
Analog  
ST  
ST  
TTL  
Digital I/O.  
Analog input 6.  
EUSART asynchronous receive.  
EUSART synchronous data (see related TX/CK).  
Interrupt-on-change pin.  
RB5/PGM/KBI1  
RB5  
11  
12  
12  
13  
13  
15  
I/O  
I/O  
I
TTL  
ST  
TTL  
Digital I/O.  
PGM  
KBI1  
Low-Voltage ICSP Programming enable pin.  
Interrupt-on-change pin.  
RB6/PGC/T1OSO/  
T13CKI/P1C/KBI2  
RB6  
I/O  
I/O  
O
I
O
I
TTL  
ST  
ST  
Digital I/O.  
PGC  
T1OSO  
T13CKI  
P1C  
In-Circuit Debugger and ICSP programming clock pin.  
Timer1 oscillator output.  
Timer1/Timer3 external clock output.  
Enhanced CCP1/PWM output.  
Interrupt-on-change pin.  
KBI2  
TTL  
RB7/PGD/T1OSI/  
P1D/KBI3  
RB7  
13  
14  
16  
I/O  
I/O  
I
O
I
TTL  
ST  
CMOS  
Digital I/O.  
PGD  
T1OSI  
P1D  
KBI3  
In-Circuit Debugger and ICSP programming data pin.  
Timer1 oscillator input.  
Enhanced CCP1/PWM output.  
Interrupt-on-change pin.  
TTL  
VSS  
VDD  
NC  
5
5, 6  
3, 5  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
No connect.  
14  
15, 16 17, 19  
18  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST  
O
OD  
=
=
=
Schmitt Trigger input with CMOS levels  
Output  
Open-drain (no P diode to VDD)  
I
P
= Input  
= Power  
© 2007 Microchip Technology Inc.  
DS39605F-page 9  
PIC18F1220/1320  
NOTES:  
DS39605F-page 10  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(XT, LP, HS OR HSPLL  
CONFIGURATION)  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Oscillator Types  
(1)  
C1  
C2  
OSC1  
The PIC18F1220 and PIC18F1320 devices can be  
operated in ten different oscillator modes. The user can  
program the configuration bits, FOSC3:FOSC0, in  
Configuration Register 1H to select one of these ten  
modes:  
To  
Internal  
Logic  
(3)  
RF  
XTAL  
Sleep  
(2)  
RS  
1. LP  
Low-Power Crystal  
(1)  
PIC18FXXXX  
2. XT  
Crystal/Resonator  
OSC2  
3. HS  
High-Speed Crystal/Resonator  
Note 1: See Table 2-1 and Table 2-2 for initial  
4. HSPLL  
High-Speed Crystal/Resonator  
with PLL enabled  
values of C1 and C2.  
2: A series resistor (RS) may be required for  
5. RC  
External Resistor/Capacitor with  
FOSC/4 output on RA6  
AT strip cut crystals.  
3: RF varies with the oscillator mode chosen.  
6. RCIO  
7. INTIO1  
8. INTIO2  
External Resistor/Capacitor with  
I/O on RA6  
Internal Oscillator with FOSC/4  
output on RA6 and I/O on RA7  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
Internal Oscillator with I/O on RA6  
and RA7  
Typical Capacitor Values Used:  
9. EC  
External Clock with FOSC/4 output  
External Clock with I/O on RA6  
10. ECIO  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
56 pF  
47 pF  
33 pF  
56 pF  
47 pF  
33 pF  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
HS  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
In XT, LP, HS or HSPLL Oscillator modes, a crystal or  
ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections.  
Capacitor values are for design guidance only.  
These capacitors were tested with the resonators  
listed below for basic start-up and operation. These  
values are not optimized.  
The oscillator design requires the use of a parallel cut  
crystal.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
Note:  
Use of a series cut crystal may give a  
frequency out of the crystal manufacturer’s  
specifications.  
See the notes following Table 2-2 for additional  
information.  
Resonators Used:  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
16.0 MHz  
© 2007 Microchip Technology Inc.  
DS39605F-page 11  
PIC18F1220/1320  
An external clock source may also be connected to the  
OSC1 pin in the HS mode, as shown in Figure 2-2.  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Typical Capacitor Values  
FIGURE 2-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS OSC  
CONFIGURATION)  
Crystal  
Freq  
Tested:  
Osc Type  
C1  
C2  
LP  
XT  
HS  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
4 MHz  
8 MHz  
20 MHz  
33 pF  
15 pF  
33 pF  
27 pF  
27 pF  
22 pF  
15 pF  
33 pF  
15 pF  
33 pF  
27 pF  
27 pF  
22 pF  
15 pF  
OSC1  
Clock from  
Ext. System  
PIC18FXXXX  
(HS Mode)  
OSC2  
Open  
2.3  
HSPLL  
Capacitor values are for design guidance only.  
A Phase Locked Loop (PLL) circuit is provided as an  
option for users who wish to use a lower frequency  
crystal oscillator circuit, or to clock the device up to its  
highest rated frequency from a crystal oscillator. This  
may be useful for customers who are concerned with  
EMI due to high-frequency crystals.  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
are not optimized.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
The HSPLL mode makes use of the HS mode oscillator  
for frequencies up to 10 MHz. A PLL then multiplies the  
oscillator output frequency by 4 to produce an internal  
clock frequency up to 40 MHz.  
See the notes following this table for additional  
information.  
The PLL is enabled only when the oscillator configura-  
tion bits are programmed for HSPLL mode. If  
programmed for any other mode, the PLL is not  
enabled.  
Crystals Used:  
32 kHz  
200 kHz  
1 MHz  
4 MHz  
8 MHz  
20 MHz  
FIGURE 2-3:  
PLL BLOCK DIAGRAM  
HS Oscillator Enable  
Note 1: Higher capacitance increases the stability  
of oscillator, but also increases the start-up  
time.  
PLL Enable  
(from Configuration Register 1H)  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use the  
HS mode or switch to a crystal oscillator.  
OSC2  
OSC1  
Phase  
Comparator  
FIN  
Crystal  
Osc  
FOUT  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
Loop  
Filter  
appropriate  
values  
of  
external  
components.  
÷4  
VCO  
4: RS may be required to avoid overdriving  
SYSCLK  
crystals with low drive level specification.  
5: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
DS39605F-page 12  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
2.4  
External Clock Input  
2.5  
RC Oscillator  
The EC and ECIO Oscillator modes require an external  
clock source to be connected to the OSC1 pin. There is  
no oscillator start-up time required after a Power-on  
Reset, or after an exit from Sleep mode.  
For timing insensitive applications, the “RC” and  
“RCIO” device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit due to  
normal manufacturing variation. Furthermore, the dif-  
ference in lead frame capacitance between package  
types will also affect the oscillation frequency, espe-  
cially for low CEXT values. The user also needs to take  
into account variation, due to tolerance of external  
R and C components used. Figure 2-6 shows how the  
R/C combination is connected.  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes, or to synchronize other  
logic. Figure 2-4 shows the pin connections for the EC  
Oscillator mode.  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION  
(EC CONFIGURATION)  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes, or to synchronize other  
logic.  
OSC1/CLKI  
Clock from  
Ext. System  
PIC18FXXXX  
OSC2/CLKO  
FOSC/4  
FIGURE 2-6:  
RC OSCILLATOR MODE  
VDD  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-5 shows the pin connections  
for the ECIO Oscillator mode.  
REXT  
Internal  
OSC1  
Clock  
CEXT  
VSS  
PIC18FXXXX  
FIGURE 2-5:  
EXTERNAL CLOCK INPUT  
OPERATION  
OSC2/CLKO  
FOSC/4  
(ECIO CONFIGURATION)  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
OSC1/CLKI  
PIC18FXXXX  
I/O (OSC2)  
Clock from  
Ext. System  
The RCIO Oscillator mode (Figure 2-7) functions like  
the RC mode, except that the OSC2 pin becomes an  
additional general purpose I/O pin. The I/O pin  
becomes bit 6 of PORTA (RA6).  
RA6  
FIGURE 2-7:  
RCIO OSCILLATOR MODE  
VDD  
REXT  
Internal  
OSC1  
Clock  
CEXT  
PIC18FXXXX  
VSS  
I/O (OSC2)  
RA6  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
© 2007 Microchip Technology Inc.  
DS39605F-page 13  
PIC18F1220/1320  
2.6.2  
INTRC OUTPUT FREQUENCY  
2.6  
Internal Oscillator Block  
The internal oscillator block is calibrated at the factory  
to produce an INTOSC output frequency of 8.0 MHz  
(see Table 22-6). This changes the frequency of the  
INTRC source from its nominal 31.25 kHz. Peripherals  
and features that depend on the INTRC source will be  
affected by this shift in frequency.  
The PIC18F1220/1320 devices include an internal  
oscillator block, which generates two different clock  
signals; either can be used as the system’s clock  
source. This can eliminate the need for external  
oscillator circuits on the OSC1 and/or OSC2 pins.  
The main output (INTOSC) is an 8 MHz clock source,  
which can be used to directly drive the system clock. It  
also drives a postscaler, which can provide a range of  
clock frequencies from 125 kHz to 4 MHz. The  
INTOSC output is enabled when a system clock  
frequency from 125 kHz to 8 MHz is selected.  
Once set during factory calibration, the INTRC  
frequency will remain within ±2% as temperature and  
VDD change across their full specified operating  
ranges.  
2.6.3  
OSCTUNE REGISTER  
The other clock source is the internal RC oscillator  
(INTRC), which provides a 31 kHz output. The INTRC  
oscillator is enabled by selecting the internal oscillator  
block as the system clock source, or when any of the  
following are enabled:  
The internal oscillator’s output has been calibrated at  
the factory, but can be adjusted in the user’s applica-  
tion. This is done by writing to the OSCTUNE register  
(Register 2-1). The tuning sensitivity is constant  
throughout the tuning range.  
• Power-up Timer  
When the OSCTUNE register is modified, the INTOSC  
and INTRC frequencies will begin shifting to the new  
frequency. The INTRC clock will reach the new  
frequency within 8 clock cycles (approximately  
8 * 32 μs = 256 μs). The INTOSC clock will stabilize  
within 1 ms. Code execution continues during this shift.  
There is no indication that the shift has occurred.  
Operation of features that depend on the INTRC clock  
source frequency, such as the WDT, Fail-Safe Clock  
Monitor and peripherals, will also be affected by the  
change in frequency.  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
• Two-Speed Start-up  
These features are discussed in greater detail in  
Section 19.0 “Special Features of the CPU”.  
The clock source frequency (INTOSC direct, INTRC  
direct or INTOSC postscaler) is selected by configuring  
the IRCF bits of the OSCCON register (Register 2-2).  
2.6.1  
INTIO MODES  
Using the internal oscillator as the clock source can  
eliminate the need for up to two external oscillator pins,  
which can then be used for digital I/O. Two distinct  
configurations are available:  
• In INTIO1 mode, the OSC2 pin outputs FOSC/4,  
while OSC1 functions as RA7 for digital input and  
output.  
• In INTIO2 mode, OSC1 functions as RA7 and  
OSC2 functions as RA6, both for digital input and  
output.  
DS39605F-page 14  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 2-1:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
011111= Maximum frequency  
000001  
000000= Center frequency. Oscillator module is running at the calibrated frequency.  
111111  
100000= Minimum frequency  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
PIC18F1220/1320 devices offer only the Timer1  
oscillator as a secondary oscillator. This oscillator, in all  
power managed modes, is often the time base for  
functions such as a real-time clock.  
2.7  
Clock Sources and Oscillator  
Switching  
Like previous PIC18 devices, the PIC18F1220/1320  
devices include a feature that allows the system clock  
source to be switched from the main oscillator to an  
alternate low-frequency clock source. PIC18F1220/  
1320 devices offer two alternate clock sources. When  
enabled, these give additional options for switching to  
the various power managed operating modes.  
Most often, a 32.768 kHz watch crystal is connected  
between the RB6/T1OSO and RB7/T1OSI pins. Like  
the LP mode oscillator circuit, loading capacitors are  
also connected from each pin to ground. These pins  
are also used during ICSP operations.  
The Timer1 oscillator is discussed in greater detail in  
Section 12.2 “Timer1 Oscillator”.  
Essentially, there are three clock sources for these  
devices:  
In addition to being a primary clock source, the internal  
oscillator block is available as a power managed  
mode clock source. The INTRC source is also used as  
the clock source for several special features, such as  
the WDT and Fail-Safe Clock Monitor.  
• Primary oscillators  
• Secondary oscillators  
• Internal oscillator block  
The primary oscillators include the External Crystal  
and Resonator modes, the External RC modes, the  
External Clock modes and the internal oscillator block.  
The particular mode is defined on POR by the contents  
of Configuration Register 1H. The details of these  
modes are covered earlier in this chapter.  
The clock sources for the PIC18F1220/1320 devices  
are shown in Figure 2-8. See Section 12.0 “Timer1  
Module” for further details of the Timer1 oscillator. See  
Section 19.1 “Configuration Bits” for configuration  
register details.  
The secondary oscillators are those external sources  
not connected to the OSC1 or OSC2 pins. These  
sources may continue to operate even after the  
controller is placed in a power managed mode.  
© 2007 Microchip Technology Inc.  
DS39605F-page 15  
PIC18F1220/1320  
when the internal oscillator block has stabilized and is  
providing the system clock in RC Clock modes or  
during Two-Speed Start-ups. The T1RUN bit  
(T1CON<6>) indicates when the Timer1 oscillator is  
providing the system clock in Secondary Clock modes.  
In power managed modes, only one of these three bits  
will be set at any time. If none of these bits are set, the  
INTRC is providing the system clock, or the internal  
oscillator block has just started and is not yet stable.  
2.7.1  
OSCILLATOR CONTROL REGISTER  
The OSCCON register (Register 2-2) controls several  
aspects of the system clock’s operation, both in full  
power operation and in power managed modes.  
The System Clock Select bits, SCS1:SCS0, select the  
clock source that is used when the device is operating in  
power managed modes. The available clock sources are  
the primary clock (defined in Configuration Register 1H),  
the secondary clock (Timer1 oscillator) and the internal  
oscillator block. The clock selection has no effect until a  
SLEEP instruction is executed and the device enters a  
power managed mode of operation. The SCS bits are  
cleared on all forms of Reset.  
The IDLEN bit controls the selective shutdown of the  
controller’s CPU in power managed modes. The uses  
of these bits are discussed in more detail in  
Section 3.0 “Power Managed Modes”.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON<3>). If the Timer1 oscillator  
is not enabled, then any attempt to select  
The Internal Oscillator Select bits, IRCF2:IRCF0, select  
the frequency output of the internal oscillator block that  
is used to drive the system clock. The choices are the  
INTRC source, the INTOSC source (8 MHz), or one of  
the six frequencies derived from the INTOSC  
postscaler (125 kHz to 4 MHz). If the internal oscillator  
block is supplying the system clock, changing the  
states of these bits will have an immediate change on  
the internal oscillator’s output.  
a
secondary clock source when  
executing a SLEEP instruction will be  
ignored.  
2: It is recommended that the Timer1 oscil-  
lator be operating and stable before exe-  
cuting the SLEEP instruction or a very  
long delay may occur while the Timer1  
oscillator starts.  
The OSTS, IOFS and T1RUN bits indicate which clock  
source is currently providing the system clock. The  
OSTS indicates that the Oscillator Start-up Timer has  
timed out and the primary clock is providing the system  
clock in Primary Clock modes. The IOFS bit indicates  
FIGURE 2-8:  
PIC18F1220/1320 CLOCK DIAGRAM  
PIC18F1220/1320  
Clock  
Control  
CONFIG1H<3:0>  
HSPLL  
OSCCON<1:0>  
Peripherals  
Primary Oscillator  
OSC2  
4 x PLL  
Sleep  
LP, XT, HS, RC, EC  
T1OSC  
OSC1  
Secondary Oscillator  
T1OSO  
Clock Source Option  
for Other Modules  
T1OSCEN  
Enable  
Oscillator  
T1OSI  
OSCCON<6:4>  
Internal Oscillator  
CPU  
8
OSCCON<6:4>  
111  
4 MHz  
110  
101  
Internal  
Oscillator  
Block  
2 MHz  
1 MHz  
IDLEN  
100  
011  
010  
001  
000  
500 kHz  
250 kHz  
125 kHz  
31 kHz  
8 MHz  
(INTOSC)  
INTRC  
Source  
WDT, FSCM  
DS39605F-page 16  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 2-2:  
OSCCON REGISTER  
R/W-0  
IDLEN  
R/W-0  
IRCF2  
R/W-0  
IRCF1  
R/W-0  
IRCF0  
R(1)  
R-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
OSTS  
IOFS  
bit 7  
bit 0  
bit 7  
IDLEN: Idle Enable bits  
1= Idle mode enabled; CPU core is not clocked in power managed modes  
0= Run mode enabled; CPU core is clocked in Run modes, but not Sleep mode  
bit 6-4 IRCF2:IRCF0: Internal Oscillator Frequency Select bits  
111= 8 MHz (8 MHz source drives clock directly)  
110= 4 MHz  
101= 2 MHz  
100= 1 MHz  
011= 500 kHz  
010= 250 kHz  
001= 125 kHz  
000= 31 kHz (INTRC source drives clock directly)  
bit 3  
bit 2  
OSTS: Oscillator Start-up Time-out Status bit  
1= Oscillator Start-up Timer time-out has expired; primary oscillator is running  
0= Oscillator Start-up Timer time-out is running; primary oscillator is not ready  
IOFS: INTOSC Frequency Stable bit  
1= INTOSC frequency is stable  
0= INTOSC frequency is not stable  
bit 1-0 SCS1:SCS0: System Clock Select bits  
1x= Internal oscillator block (RC modes)  
01= Timer1 oscillator (Secondary modes)  
00= Primary oscillator (Sleep and PRI_IDLE modes)  
Note 1: Depends on state of the IESO bit in Configuration Register 1H.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 17  
PIC18F1220/1320  
If the Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
2.7.2  
OSCILLATOR TRANSITIONS  
The PIC18F1220/1320 devices contain circuitry to  
prevent clocking “glitches” when switching between  
clock sources. A short pause in the system clock  
occurs during the clock switch. The length of this pause  
is between 8 and 9 clock periods of the new clock  
source. This ensures that the new clock source is  
stable and that its pulse width will not be less than the  
shortest pulse width of the two clock sources.  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The INTRC is required to support WDT operation. The  
Timer1 oscillator may be operating to support a real-  
time clock. Other features may be operating that do not  
require a system clock source (i.e., INTn pins, A/D  
conversions and others).  
Clock transitions are discussed in greater detail in  
Section 3.1.2 “Entering Power Managed Modes”.  
2.8  
Effects of Power Managed Modes  
on the Various Clock Sources  
2.9  
Power-up Delays  
Power-up delays are controlled by two timers, so that  
no external Reset circuitry is required for most applica-  
tions. The delays ensure that the device is kept in  
Reset until the device power supply is stable under nor-  
mal circumstances and the primary clock is operating  
and stable. For additional information on power-up  
delays, see Sections 4.1 through 4.5.  
When the device executes a SLEEP instruction, the  
system is switched to one of the power managed  
modes, depending on the state of the IDLEN and  
SCS1:SCS0 bits of the OSCCON register. See  
Section 3.0 “Power Managed Modes” for details.  
When PRI_IDLE mode is selected, the designated pri-  
mary oscillator continues to run without interruption.  
For all other power managed modes, the oscillator  
using the OSC1 pin is disabled. The OSC1 pin (and  
OSC2 pin, if used by the oscillator) will stop oscillating.  
The first timer is the Power-up Timer (PWRT), which  
provides a fixed delay on power-up (parameter 33,  
Table 22-8) if enabled in Configuration Register 2L.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in Reset until the  
crystal oscillator is stable (LP, XT and HS modes). The  
OST does this by counting 1024 oscillator cycles  
before allowing the oscillator to clock the device.  
In Secondary Clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and  
providing the system clock. The Timer1 oscillator may  
also run in all power managed modes if required to  
clock Timer1 or Timer3.  
When the HSPLL Oscillator mode is selected, the  
device is kept in Reset for an additional 2 ms following  
the HS mode OST delay, so the PLL can lock to the  
incoming clock frequency.  
In Internal Oscillator modes (RC_RUN and RC_IDLE),  
the internal oscillator block provides the system clock  
source. The INTRC output can be used directly to  
provide the system clock and may be enabled to  
support various special features, regardless of the  
power managed mode (see Section 19.2 “Watchdog  
Timer (WDT)” through Section 19.4 “Fail-Safe Clock  
Monitor”). The INTOSC output at 8 MHz may be used  
directly to clock the system, or may be divided down  
first. The INTOSC output is disabled if the system clock  
is provided directly from the INTRC output.  
There is a delay of 5 to 10 μs following POR while the  
controller becomes ready to execute instructions. This  
delay runs concurrently with any other delays. This  
may be the only delay that occurs when any of the EC,  
RC or INTIO modes are used as the primary clock  
source.  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
Oscillator Mode  
OSC2 Pin  
RC, INTIO1  
RCIO, INTIO2  
ECIO  
Floating, external resistor should pull high  
Floating, external resistor should pull high  
Floating, pulled by external clock  
At logic low (clock/4 output)  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
At logic low (clock/4 output)  
EC  
Floating, pulled by external clock  
LP, XT and HS  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
Note:  
See Table 4-1 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
DS39605F-page 18  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
For PIC18F1220/1320 devices, the power managed  
modes are invoked by using the existing SLEEP  
instruction. All modes exit to PRI_RUN mode when trig-  
gered by an interrupt, a Reset or a WDT time-out  
(PRI_RUN mode is the normal full power execution  
mode; the CPU and peripherals are clocked by the pri-  
mary oscillator source). In addition, power managed  
Run modes may also exit to Sleep mode, or their  
corresponding Idle mode.  
3.0  
POWER MANAGED MODES  
The PIC18F1220/1320 devices offer a total of six oper-  
ating modes for more efficient power management  
(see Table 3-1). These provide a variety of options for  
selective power conservation in applications where  
resources may be limited (i.e., battery powered  
devices).  
There are three categories of power managed modes:  
• Sleep mode  
• Idle modes  
• Run modes  
3.1  
Selecting Power Managed Modes  
Selecting a power managed mode requires deciding if  
the CPU is to be clocked or not and selecting a clock  
source. The IDLEN bit controls CPU clocking, while the  
SCS1:SCS0 bits select a clock source. The individual  
modes, bit settings, clock sources and affected  
modules are summarized in Table 3-1.  
These categories define which portions of the device  
are clocked and sometimes, what speed. The Run and  
Idle modes may use any of the three available clock  
sources (primary, secondary or INTOSC multiplexer);  
the Sleep mode does not use a clock source.  
The clock switching feature offered in other PIC18  
devices (i.e., using the Timer1 oscillator in place of the  
primary oscillator) and the Sleep mode offered by all  
PIC® devices (where all system clocks are stopped) are  
both offered in the PIC18F1220/1320 devices  
(SEC_RUN and Sleep modes, respectively). However,  
additional power managed modes are available that  
allow the user greater flexibility in determining what  
portions of the device are operating. The power man-  
aged modes are event driven; that is, some specific  
event must occur for the device to enter or (more  
particularly) exit these operating modes.  
3.1.1  
CLOCK SOURCES  
The clock source is selected by setting the SCS bits of  
the OSCCON register (Register 2-2). Three clock  
sources are available for use in power managed Idle  
modes: the primary clock (as configured in Configuration  
Register 1H), the secondary clock (Timer1 oscillator)  
and the internal oscillator block. The secondary and  
internal oscillator block sources are available for the  
power managed modes (PRI_RUN mode is the normal  
full power execution mode; the CPU and peripherals are  
clocked by the primary oscillator source).  
TABLE 3-1:  
Mode  
POWER MANAGED MODES  
OSCCON Bits  
Module Clocking  
Available Clock and Oscillator Source  
IDLEN SCS1:SCS0  
CPU  
Peripherals  
<7>  
<1:0>  
Sleep  
0
0
00  
00  
Off  
Off  
None – All clocks are disabled  
Primary – LP, XT, HS, HSPLL, RC, EC, INTRC(1)  
PRI_RUN  
Clocked  
Clocked  
This is the normal full power execution mode.  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
0
0
1
1
1
01  
1x  
00  
01  
1x  
Clocked  
Clocked  
Off  
Clocked  
Clocked  
Clocked  
Clocked  
Clocked  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(1)  
Primary – LP, XT, HS, HSPLL, RC, EC  
Secondary – Timer1 Oscillator  
Internal Oscillator Block(1)  
Off  
Off  
Note 1: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.  
© 2007 Microchip Technology Inc.  
DS39605F-page 19  
PIC18F1220/1320  
3.1.2  
ENTERING POWER MANAGED  
MODES  
Note 1: Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
In general, entry, exit and switching between power  
managed clock sources requires clock source  
switching. In each case, the sequence of events is the  
same.  
Any change in the power managed mode begins with  
loading the OSCCON register and executing a SLEEP  
instruction. The SCS1:SCS0 bits select one of three  
power managed clock sources; the primary clock (as  
defined in Configuration Register 1H), the secondary  
clock (the Timer1 oscillator) and the internal oscillator  
block (used in RC modes). Modifying the SCS bits will  
have no effect until a SLEEP instruction is executed.  
Entry to the power managed mode is triggered by the  
execution of a SLEEPinstruction.  
2: Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode; executing a SLEEP instruction is  
simply a trigger to place the controller into  
a power managed mode selected by the  
OSCCON register, one of which is Sleep  
mode.  
3.1.3  
MULTIPLE SLEEP COMMANDS  
The power managed mode that is invoked with the  
SLEEPinstruction is determined by the settings of the  
IDLEN and SCS bits at the time the instruction is exe-  
cuted. If another SLEEP instruction is executed, the  
device will enter the power managed mode specified by  
these same bits at that time. If the bits have changed,  
the device will enter the new power managed mode  
specified by the new bit settings.  
Figure 3-5 shows how the system is clocked while  
switching from the primary clock to the Timer1 oscilla-  
tor. When the SLEEPinstruction is executed, clocks to  
the device are stopped at the beginning of the next  
instruction cycle. Eight clock cycles from the new clock  
source are counted to synchronize with the new clock  
source. After eight clock pulses from the new clock  
source are counted, clocks from the new clock source  
resume clocking the system. The actual length of the  
pause is between eight and nine clock periods from the  
new clock source. This ensures that the new clock  
source is stable and that its pulse width will not be less  
than the shortest pulse width of the two clock sources.  
3.1.4  
COMPARISONS BETWEEN RUN  
AND IDLE MODES  
Clock source selection for the Run modes is identical to  
the corresponding Idle modes. When a SLEEPinstruc-  
tion is executed, the SCS bits in the OSCCON register  
are used to switch to a different clock source. As a  
result, if there is a change of clock source at the time a  
SLEEPinstruction is executed, a clock switch will occur.  
Three bits indicate the current clock source: OSTS and  
IOFS in the OSCCON register and T1RUN in the  
T1CON register. Only one of these bits will be set while  
in a power managed mode. When the OSTS bit is set,  
the primary clock is providing the system clock. When  
the IOFS bit is set, the INTOSC output is providing a  
stable 8 MHz clock source and is providing the system  
clock. When the T1RUN bit is set, the Timer1 oscillator  
is providing the system clock. If none of these bits are  
set, then either the INTRC clock source is clocking the  
system, or the INTOSC source is not yet stable.  
In Idle modes, the CPU is not clocked and is not run-  
ning. In Run modes, the CPU is clocked and executing  
code. This difference modifies the operation of the  
WDT when it times out. In Idle modes, a WDT time-out  
results in a wake from power managed modes. In Run  
modes, a WDT time-out results in a WDT Reset (see  
Table 3-2).  
During a wake-up from an Idle mode, the CPU starts  
executing code by entering the corresponding Run  
mode until the primary clock becomes ready. When the  
primary clock becomes ready, the clock source is auto-  
matically switched to the primary clock. The IDLEN and  
SCS bits are unchanged during and after the wake-up.  
If the internal oscillator block is configured as the pri-  
mary clock source in Configuration Register 1H, then  
both the OSTS and IOFS bits may be set when in  
PRI_RUN or PRI_IDLE modes. This indicates that the  
primary clock (INTOSC output) is generating a stable  
8 MHz output. Entering an RC power managed mode  
(same frequency) would clear the OSTS bit.  
Figure 3-2 shows how the system is clocked during the  
clock source switch. The example assumes the device  
was in SEC_IDLE or SEC_RUN mode when a wake is  
triggered (the primary clock was configured in HSPLL  
mode).  
DS39605F-page 20  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 3-2:  
COMPARISON BETWEEN POWER MANAGED MODES  
Power  
Managed  
Mode  
Clock during Wake-up  
(while primary becomes  
ready)  
WDT Time-out  
causes a ...  
Peripherals are  
Clocked by ...  
CPU is Clocked by ...  
Sleep  
Not clocked (not running) Wake-up  
Not clocked  
None or INTOSC multiplexer  
if Two-Speed Start-up or  
Fail-Safe Clock Monitor are  
enabled  
Any Idle mode Not clocked (not running) Wake-up  
Primary, Secondary or Unchanged from Idle mode  
INTOSC multiplexer  
(CPU operates as in  
corresponding Run mode)  
Any Run mode Primary or secondary  
clocks or INTOSC  
Reset  
Primary or secondary Unchanged from Run mode  
clocks or INTOSC  
multiplexer  
multiplexer  
If the Idle Enable bit, IDLEN (OSCCON<7>), is set to a  
1’ when a SLEEP instruction is executed, the  
peripherals will be clocked from the clock source  
selected using the SCS1:SCS0 bits; however, the CPU  
will not be clocked. Since the CPU is not executing  
instructions, the only exits from any of the Idle modes  
are by interrupt, WDT time-out or a Reset.  
3.2  
Sleep Mode  
The power managed Sleep mode in the PIC18F1220/  
1320 devices is identical to that offered in all other PIC  
microcontrollers. It is entered by clearing the IDLEN  
and SCS1:SCS0 bits (this is the Reset state) and  
executing the SLEEPinstruction. This shuts down the  
primary oscillator and the OSTS bit is cleared (see  
Figure 3-1).  
When a wake event occurs, CPU execution is delayed  
approximately 10 μs while it becomes ready to execute  
code. When the CPU begins executing code, it is  
clocked by the same clock source as was selected in  
the power managed mode (i.e., when waking from  
RC_IDLE mode, the internal oscillator block will clock  
the CPU and peripherals until the primary clock source  
becomes ready – this is essentially RC_RUN mode).  
This continues until the primary clock source becomes  
ready. When the primary clock becomes ready, the  
OSTS bit is set and the system clock source is  
switched to the primary clock (see Figure 3-4). The  
IDLEN and SCS bits are not affected by the wake-up.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the system will not be clocked  
until the primary clock source becomes ready (see  
Figure 3-2), or it will be clocked from the internal  
oscillator block if either the Two-Speed Start-up or the  
Fail-Safe Clock Monitor are enabled (see Section 19.0  
“Special Features of the CPU”). In either case, the  
OSTS bit is set when the primary clock is providing the  
system clocks. The IDLEN and SCS bits are not  
affected by the wake-up.  
3.3  
Idle Modes  
While in any Idle mode or the Sleep mode, a WDT  
time-out will result in a WDT wake-up to full power  
operation.  
The IDLEN bit allows the microcontroller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Clearing IDLEN allows the CPU to be clocked.  
Setting IDLEN disables clocks to the CPU, effectively  
stopping program execution (see Register 2-2). The  
peripherals continue to be clocked regardless of the  
setting of the IDLEN bit.  
There is one exception to how the IDLEN bit functions.  
When all the low-power OSCCON bits are cleared  
(IDLEN:SCS1:SCS0 = 000), the device enters Sleep  
mode upon the execution of the SLEEPinstruction. This  
is both the Reset state of the OSCCON register and the  
setting that selects Sleep mode. This maintains  
compatibility with other PIC devices that do not offer  
power managed modes.  
© 2007 Microchip Technology Inc.  
DS39605F-page 21  
PIC18F1220/1320  
FIGURE 3-1:  
TIMING TRANSITION FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-2:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1 Q2 Q3 Q4 Q1 Q2  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
PC + 8  
Wake Event  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
DS39605F-page 22  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
When a wake event occurs, the CPU is clocked from  
the primary clock source. A delay of approximately  
10 μs is required between the wake event and code  
execution starts. This is required to allow the CPU to  
become ready to execute instructions. After the wake-  
up, the OSTS bit remains set. The IDLEN and SCS bits  
are not affected by the wake-up (see Figure 3-4).  
3.3.1  
PRI_IDLE MODE  
This mode is unique among the three Low-Power Idle  
modes, in that it does not disable the primary system  
clock. For timing sensitive applications, this allows for  
the fastest resumption of device operation with its more  
accurate primary clock source, since the clock source  
does not have to “warm up” or transition from another  
oscillator.  
PRI_IDLE mode is entered by setting the IDLEN bit,  
clearing the SCS bits and executing a SLEEPinstruc-  
tion. Although the CPU is disabled, the peripherals  
continue to be clocked from the primary clock source  
specified in Configuration Register 1H. The OSTS bit  
remains set in PRI_IDLE mode (see Figure 3-3).  
FIGURE 3-3:  
TRANSITION TIMING TO PRI_IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-4:  
TRANSITION TIMING FOR WAKE FROM PRI_IDLE MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
CPU Start-up Delay  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC  
Wake Event  
© 2007 Microchip Technology Inc.  
DS39605F-page 23  
PIC18F1220/1320  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After a 10 μs  
delay following the wake event, the CPU begins exe-  
cuting code, being clocked by the Timer1 oscillator. The  
microcontroller operates in SEC_RUN mode until the  
primary clock becomes ready. When the primary clock  
becomes ready, a clock switchback to the primary clock  
occurs (see Figure 3-6). When the clock switch is com-  
plete, the T1RUN bit is cleared, the OSTS bit is set and  
the primary clock is providing the system clock. The  
IDLEN and SCS bits are not affected by the wake-up.  
The Timer1 oscillator continues to run.  
3.3.2  
SEC_IDLE MODE  
In SEC_IDLE mode, the CPU is disabled, but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered by setting the Idle bit,  
modifying bits, SCS1:SCS0 = 01 and executing a  
SLEEPinstruction. When the clock source is switched  
(see Figure 3-5) to the Timer1 oscillator, the primary  
oscillator is shut down, the OSTS bit is cleared and the  
T1RUN bit is set.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when the  
SLEEPinstruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_IDLE mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, peripheral clocks will be delayed  
until the oscillator has started; in such sit-  
uations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
FIGURE 3-5:  
TIMING TRANSITION FOR ENTRY TO SEC_IDLE MODE  
Q1 Q2 Q3 Q4 Q1  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-6:  
TIMING TRANSITION FOR WAKE FROM SEC_RUN MODE (HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
T1OSI  
OSC1  
(1)  
TOST  
(1)  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
Wake from Interrupt Event  
DS39605F-page 24  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
instruction was executed and the INTOSC source was  
already stable, the IOFS bit will remain set. If the IRCF  
bits are all clear, the INTOSC output is not enabled and  
the IOFS bit will remain clear; there will be no indication  
of the current clock source.  
3.3.3  
RC_IDLE MODE  
In RC_IDLE mode, the CPU is disabled, but the periph-  
erals continue to be clocked from the internal oscillator  
block using the INTOSC multiplexer. This mode allows  
for controllable power conservation during Idle periods.  
When a wake event occurs, the peripherals continue to  
be clocked from the INTOSC multiplexer. After a 10 μs  
delay following the wake event, the CPU begins exe-  
cuting code, being clocked by the INTOSC multiplexer.  
The microcontroller operates in RC_RUN mode until  
the primary clock becomes ready. When the primary  
clock becomes ready, a clock switchback to the primary  
clock occurs (see Figure 3-8). When the clock switch is  
complete, the IOFS bit is cleared, the OSTS bit is set  
and the primary clock is providing the system clock.  
The IDLEN and SCS bits are not affected by the wake-  
up. The INTRC source will continue to run if either the  
WDT or the Fail-Safe Clock Monitor is enabled.  
This mode is entered by setting the IDLEN bit, setting  
SCS1 (SCS0 is ignored) and executing a SLEEP  
instruction. The INTOSC multiplexer may be used to  
select a higher clock frequency by modifying the IRCF  
bits before executing the SLEEPinstruction. When the  
clock source is switched to the INTOSC multiplexer  
(see Figure 3-7), the primary oscillator is shut down  
and the OSTS bit is cleared.  
If the IRCF bits are set to a non-zero value (thus,  
enabling the INTOSC output), the IOFS bit becomes  
set after the INTOSC output becomes stable, in about  
1 ms. Clocks to the peripherals continue while the  
INTOSC source stabilizes. If the IRCF bits were  
previously at a non-zero value before the SLEEP  
FIGURE 3-7:  
TIMING TRANSITION TO RC_IDLE MODE  
Q1 Q2 Q3 Q4 Q1  
1
2
3
4
5
6
7
8
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-8:  
TIMING TRANSITION FOR WAKE FROM RC_RUN MODE (RC_RUN TO PRI_RUN)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q4  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
TOST  
(1)  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC + 6  
PC  
PC + 2  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
Wake from Interrupt Event  
© 2007 Microchip Technology Inc.  
DS39605F-page 25  
PIC18F1220/1320  
SEC_RUN mode is entered by clearing the IDLEN bit,  
setting SCS1:SCS0 = 01 and executing a SLEEP  
instruction. The system clock source is switched to the  
Timer1 oscillator (see Figure 3-9), the primary oscilla-  
tor is shut down, the T1RUN bit (T1CON<6>) is set and  
the OSTS bit is cleared.  
3.4  
Run Modes  
If the IDLEN bit is clear when a SLEEP instruction is  
executed, the CPU and peripherals are both clocked  
from the source selected using the SCS1:SCS0 bits.  
While these operating modes may not afford the power  
conservation of Idle or Sleep modes, they do allow the  
device to continue executing instructions by using a  
lower frequency clock source. RC_RUN mode also  
offers the possibility of executing code at a frequency  
greater than the primary clock.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when the  
SLEEPinstruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_RUN mode will not occur. If the  
Timer1 oscillator is enabled, but not yet  
running, system clocks will be delayed  
until the oscillator has started; in such  
situations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
Wake-up from a power managed Run mode can be  
triggered by an interrupt, or any Reset, to return to full  
power operation. As the CPU is executing code in Run  
modes, several additional exits from Run modes are  
possible. They include exit to Sleep mode, exit to a cor-  
responding Idle mode and exit by executing a RESET  
instruction. While the device is in any of the power  
managed Run modes, a WDT time-out will result in a  
WDT Reset.  
When a wake event occurs, the peripherals and CPU  
continue to be clocked from the Timer1 oscillator while  
the primary clock is started. When the primary clock  
becomes ready, a clock switchback to the primary clock  
occurs (see Figure 3-6). When the clock switch is com-  
plete, the T1RUN bit is cleared, the OSTS bit is set and  
the primary clock is providing the system clock. The  
IDLEN and SCS bits are not affected by the wake-up.  
The Timer1 oscillator continues to run.  
3.4.1  
PRI_RUN MODE  
The PRI_RUN mode is the normal full power execution  
mode. If the SLEEPinstruction is never executed, the  
microcontroller operates in this mode (a SLEEPinstruc-  
tion is executed to enter all other power managed  
modes). All other power managed modes exit to  
PRI_RUN mode when an interrupt or WDT time-out  
occur.  
Firmware can force an exit from SEC_RUN mode. By  
clearing the T1OSCEN bit (T1CON<3>), an exit from  
SEC_RUN back to normal full power operation is trig-  
gered. The Timer1 oscillator will continue to run and  
provide the system clock, even though the T1OSCEN  
bit is cleared. The primary clock is started. When the  
primary clock becomes ready, a clock switchback to the  
primary clock occurs (see Figure 3-6). When the clock  
switch is complete, the Timer1 oscillator is disabled, the  
T1RUN bit is cleared, the OSTS bit is set and the pri-  
mary clock is providing the system clock. The IDLEN  
and SCS bits are not affected by the wake-up.  
There is no entry to PRI_RUN mode. The OSTS bit is  
set. The IOFS bit may be set if the internal oscillator  
block is the primary clock source (see Section 2.7.1  
“Oscillator Control Register”).  
3.4.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high accuracy clock source.  
FIGURE 3-9:  
TIMING TRANSITION FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 2  
DS39605F-page 26  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
3.4.3  
RC_RUN MODE  
Note:  
Caution should be used when modifying a  
single IRCF bit. If VDD is less than 3V, it is  
possible to select a higher clock speed  
than is supported by the low VDD.  
Improper device operation may result if  
the VDD/FOSC specifications are violated.  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator block using the  
INTOSC multiplexer and the primary clock is shut  
down. When using the INTRC source, this mode pro-  
vides the best power conservation of all the Run  
modes, while still executing code. It works well for user  
applications which are not highly timing sensitive, or do  
not require high-speed clocks at all times.  
If the IRCF bits are all clear, the INTOSC output is not  
enabled and the IOFS bit will remain clear; there will be  
no indication of the current clock source. The INTRC  
source is providing the system clocks.  
If the primary clock source is the internal oscillator  
block (either of the INTIO1 or INTIO2 oscillators), there  
are no distinguishable differences between PRI_RUN  
and RC_RUN modes during execution. However, a  
clock switch delay will occur during entry to and exit  
from RC_RUN mode. Therefore, if the primary clock  
source is the internal oscillator block, the use of  
RC_RUN mode is not recommended.  
If the IRCF bits are changed from all clear (thus,  
enabling the INTOSC output), the IOFS bit becomes  
set after the INTOSC output becomes stable. Clocks to  
the system continue while the INTOSC source  
stabilizes, in approximately 1 ms.  
If the IRCF bits were previously at a non-zero value  
before the SLEEP instruction was executed and the  
INTOSC source was already stable, the IOFS bit will  
remain set.  
This mode is entered by clearing the IDLEN bit, setting  
SCS1 (SCS0 is ignored) and executing a SLEEP  
instruction. The IRCF bits may select the clock  
frequency before the SLEEP instruction is executed.  
When the clock source is switched to the INTOSC  
multiplexer (see Figure 3-10), the primary oscillator is  
shut down and the OSTS bit is cleared.  
When a wake event occurs, the system continues to be  
clocked from the INTOSC multiplexer while the primary  
clock is started. When the primary clock becomes  
ready, a clock switch to the primary clock occurs (see  
Figure 3-8). When the clock switch is complete, the  
IOFS bit is cleared, the OSTS bit is set and the primary  
clock is providing the system clock. The IDLEN and  
SCS bits are not affected by the wake-up. The INTRC  
source will continue to run if either the WDT or the  
Fail-Safe Clock Monitor is enabled.  
The IRCF bits may be modified at any time to immedi-  
ately change the system clock speed. Executing a  
SLEEPinstruction is not required to select a new clock  
frequency from the INTOSC multiplexer.  
FIGURE 3-10:  
TIMING TRANSITION TO RC_RUN MODE  
Q4 Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
4
5
6
7
8
INTRC  
OSC1  
Clock Transition  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
© 2007 Microchip Technology Inc.  
DS39605F-page 27  
PIC18F1220/1320  
3.4.4  
EXIT TO IDLE MODE  
3.5  
Wake from Power Managed Modes  
An exit from a power managed Run mode to its  
corresponding Idle mode is executed by setting the  
IDLEN bit and executing a SLEEPinstruction. The CPU  
is halted at the beginning of the instruction following the  
SLEEPinstruction. There are no changes to any of the  
clock source status bits (OSTS, IOFS or T1RUN).  
While the CPU is halted, the peripherals continue to be  
clocked from the previously selected clock source.  
An exit from any of the power managed modes is trig-  
gered by an interrupt, a Reset or a WDT time-out. This  
section discusses the triggers that cause exits from  
power managed modes. The clocking subsystem  
actions are discussed in each of the power managed  
modes (see Sections 3.2 through 3.4).  
Note:  
If application code is timing sensitive, it  
should wait for the OSTS bit to become set  
before continuing. Use the interval during  
the low-power exit sequence (before  
OSTS is set) to perform timing insensitive  
“housekeeping” tasks.  
3.4.5  
EXIT TO SLEEP MODE  
An exit from a power managed Run mode to Sleep  
mode is executed by clearing the IDLEN and  
SCS1:SCS0 bits and executing a SLEEP instruction.  
The code is no different than the method used to invoke  
Sleep mode from the normal operating (full power)  
mode.  
Device behavior during Low-Power mode exits is  
summarized in Table 3-3.  
3.5.1  
EXIT BY INTERRUPT  
The primary clock and internal oscillator block are  
disabled. The INTRC will continue to operate if the  
WDT is enabled. The Timer1 oscillator will continue to  
run, if enabled in the T1CON register (Register 12-1).  
All clock source status bits are cleared (OSTS, IOFS  
and T1RUN).  
Any of the available interrupt sources can cause the  
device to exit a power managed mode and resume full  
power operation. To enable this functionality, an inter-  
rupt source must be enabled by setting its enable bit in  
one of the INTCON or PIE registers. The exit sequence  
is initiated when the corresponding interrupt flag bit is  
set. On all exits from Low-Power mode by interrupt,  
code execution branches to the interrupt vector if the  
GIE/GIEH bit (INTCON<7>) is set. Otherwise, code  
execution continues or resumes without branching  
(see Section 9.0 “Interrupts”).  
DS39605F-page 28  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 3-3:  
ACTIVITY AND EXIT DELAY ON WAKE FROM SLEEP MODE OR ANY IDLE MODE  
(BY CLOCK SOURCES)  
Power  
Managed  
Mode Exit  
Delay  
Activity during Wake-up from  
Power Managed Mode  
ClockReady  
Status Bit  
(OSCCON)  
Clock in Power Primary System  
Managed Mode  
Clock  
Exit by Interrupt  
Exit by Reset  
LP, XT, HS  
HSPLL  
EC, RC, INTRC(1)  
INTOSC(2)  
CPU and peripherals Not clocked or  
OSTS  
Primary System  
Clock  
(PRI_IDLE mode)  
clocked by primary  
clock and executing  
instructions.  
Two-Speed Start-up  
(if enabled)(3)  
5-10 μs(5)  
.
IOFS  
LP, XT, HS  
OST  
OST + 2 ms  
5-10 μs(5)  
1 ms(4)  
CPU and peripherals  
clocked by selected  
power managed mode  
clock and executing  
instructions until  
OSTS  
HSPLL  
T1OSC or  
INTRC(1)  
EC, RC, INTRC(1)  
INTOSC(2)  
IOFS  
primary clock source  
becomes ready.  
LP, XT, HS  
OST  
OSTS  
HSPLL  
OST + 2 ms  
5-10 μs(5)  
None  
INTOSC(2)  
EC, RC, INTRC(1)  
INTOSC(2)  
IOFS  
LP, XT, HS  
OST  
Not clocked or  
OSTS  
Two-Speed Start-up (if  
enabled) until primary  
clock source becomes  
HSPLL  
OST + 2 ms  
5-10 μs(5)  
1 ms(4)  
Sleep mode  
EC, RC, INTRC(1)  
INTOSC(2)  
ready(3)  
.
IOFS  
Note 1: In this instance, refers specifically to the INTRC clock source.  
2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.  
3: Two-Speed Start-up is covered in greater detail in Section 19.3 “Two-Speed Start-up”.  
4: Execution continues during the INTOSC stabilization period.  
5: Required delay when waking from Sleep and all Idle modes. This delay runs concurrently with any other  
required delays (see Section 3.3 “Idle Modes”).  
© 2007 Microchip Technology Inc.  
DS39605F-page 29  
PIC18F1220/1320  
3.5.2  
EXIT BY RESET  
3.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Normally, the device is held in Reset by the Oscillator  
Start-up Timer (OST) until the primary clock (defined in  
Configuration Register 1H) becomes ready. At that  
time, the OSTS bit is set and the device begins  
executing code.  
Certain exits from power managed modes do not  
invoke the OST at all. These are:  
• PRI_IDLE mode, where the primary clock source  
is not stopped; or  
Code execution can begin before the primary clock  
becomes ready. If either the Two-Speed Start-up (see  
Section 19.3 “Two-Speed Start-up”) or Fail-Safe  
Clock Monitor (see Section 19.4 “Fail-Safe Clock  
Monitor”) are enabled in Configuration Register 1H,  
the device may begin execution as soon as the Reset  
source has cleared. Execution is clocked by the  
INTOSC multiplexer driven by the internal oscillator  
block. Since the OSCCON register is cleared following  
all Resets, the INTRC clock source is selected. A  
higher speed clock may be selected by modifying the  
IRCF bits in the OSCCON register. Execution is  
clocked by the internal oscillator block until either the  
primary clock becomes ready, or a power managed  
mode is entered before the primary clock becomes  
ready; the primary clock is then shut down.  
• the primary clock source is not any of LP, XT, HS  
or HSPLL modes.  
In these cases, the primary clock source either does  
not require an oscillator start-up delay, since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (RC, EC and INTIO  
Oscillator modes).  
However, a fixed delay (approximately 10 μs) following  
the wake event is required when leaving Sleep and Idle  
modes. This delay is required for the CPU to prepare  
for execution. Instruction execution resumes on the first  
clock cycle following this delay.  
3.6  
INTOSC Frequency Drift  
The factory calibrates the internal oscillator block  
output (INTOSC) for 8 MHz (see Table 22-6). However,  
this frequency may drift as VDD or temperature  
changes, which can affect the controller operation in a  
variety of ways.  
3.5.3  
EXIT BY WDT TIME-OUT  
A WDT time-out will cause different actions, depending  
on which power managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in a wake from the  
power managed mode (see Sections 3.2 through 3.4).  
It is possible to adjust the INTOSC frequency by  
modifying the value in the OSCTUNE register  
(Register 2-1). This has the side effect that the INTRC  
clock source frequency is also affected. However, the  
features that use the INTRC source often do not require  
an exact frequency. These features include the Fail-Safe  
Clock Monitor, the Watchdog Timer and the RC_RUN/  
RC_IDLE modes when the INTRC clock source is  
selected.  
If the device is executing code (all Run modes), the  
time-out will result in a WDT Reset (see Section 19.2  
“Watchdog Timer (WDT)”).  
The WDT timer and postscaler are cleared by  
executing a SLEEPor CLRWDTinstruction, the loss of a  
currently selected clock source (if the Fail-Safe Clock  
Monitor is enabled) and modifying the IRCF bits in the  
OSCCON register if the internal oscillator block is the  
system clock source.  
Being able to adjust the INTOSC requires knowing  
when an adjustment is required, in which direction it  
should be made and in some cases, how large a  
change is needed. Three examples follow but other  
techniques may be used.  
DS39605F-page 30  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
3.6.1  
EXAMPLE – EUSART  
3.6.3  
EXAMPLE – CCP IN CAPTURE  
MODE  
An adjustment may be indicated when the EUSART  
begins to generate framing errors, or receives data with  
errors while in Asynchronous mode. Framing errors  
indicate that the system clock frequency is too high –  
try decrementing the value in the OSCTUNE register to  
reduce the system clock frequency. Errors in data may  
suggest that the system clock speed is too low –  
increment OSCTUNE.  
A CCP module can use free running Timer1 (or  
Timer3), clocked by the internal oscillator block and an  
external event with a known period (i.e., AC power  
frequency). The time of the first event is captured in the  
CCPRxH:CCPRxL registers and is recorded for use  
later. When the second event causes a capture, the  
time of the first event is subtracted from the time of the  
second event. Since the period of the external event is  
known, the time difference between events can be  
calculated.  
3.6.2  
EXAMPLE – TIMERS  
This technique compares system clock speed to some  
reference clock. Two timers may be used; one timer is  
clocked by the peripheral clock, while the other is  
clocked by a fixed reference source, such as the  
Timer1 oscillator.  
If the measured time is much greater than the  
calculated time, the internal oscillator block is running  
too fast – decrement OSCTUNE. If the measured time  
is much less than the calculated time, the internal  
oscillator block is running too slow – increment  
OSCTUNE.  
Both timers are cleared, but the timer clocked by the  
reference generates interrupts. When an interrupt  
occurs, the internally clocked timer is read and both  
timers are cleared. If the internally clocked timer value  
is greater than expected, then the internal oscillator  
block is running too fast – decrement OSCTUNE.  
© 2007 Microchip Technology Inc.  
DS39605F-page 31  
PIC18F1220/1320  
NOTES:  
DS39605F-page 32  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal  
operation. Status bits from the RCON register  
(Register 4-1), RI, TO, PD, POR and BOR, are set or  
cleared differently in different Reset situations, as  
indicated in Table 4-2. These bits are used in software  
to determine the nature of the Reset. See Table 4-3 for  
a full description of the Reset states of all registers.  
4.0  
RESET  
The PIC18F1220/1320 devices differentiate between  
various kinds of Reset:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
d) Watchdog Timer (WDT) Reset (during  
execution)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 4-1.  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses.  
g) Stack Full Reset  
h) Stack Underflow Reset  
The MCLR pin is not driven low by any internal Resets,  
including the WDT.  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state”, depending on the type of Reset that occurred.  
The MCLR input provided by the MCLR pin can be  
disabled with the MCLRE bit in Configuration  
Register 3H (CONFIG3H<7>).  
FIGURE 4-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack  
Pointer  
Stack Full/Underflow Reset  
External Reset  
MCLRE  
MCLR  
( )_IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
BOR  
VDD  
Brown-out  
Reset  
S
OST/PWRT  
OST  
10-bit Ripple Counter  
1024 Cycles  
Chip_Reset  
R
Q
OSC1  
32 μs  
65.5 ms  
PWRT  
11-bit Ripple Counter  
INTRC(1)  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 4-1 for time-out situations.  
© 2007 Microchip Technology Inc.  
DS39605F-page 33  
PIC18F1220/1320  
4.1  
Power-on Reset (POR)  
4.3  
Oscillator Start-up Timer (OST)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected. To take advantage of the POR  
circuitry, just tie the MCLR pin through a resistor (1k to  
10 kΩ) to VDD. This will eliminate external RC compo-  
nents usually needed to create a Power-on Reset  
delay. A minimum rise rate for VDD is specified  
(parameter D004). For a slow rise time, see Figure 4-2.  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter 33). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP, HS and  
HSPLL modes and only on Power-on Reset, or on exit  
from most low-power modes.  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
4.4  
PLL Lock Time-out  
With the PLL enabled in its PLL mode, the time-out  
sequence following a Power-on Reset is slightly  
different from other oscillator modes. A portion of the  
Power-up Timer is used to provide a fixed time-out that  
is sufficient for the PLL to lock to the main oscillator fre-  
quency. This PLL lock time-out (TPLL) is typically 2 ms  
and follows the Oscillator Start-up Time-out.  
FIGURE 4-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
VDD  
VDD  
D
4.5  
Brown-out Reset (BOR)  
A configuration bit, BOR, can disable (if clear/  
programmed), or enable (if set) the Brown-out Reset  
circuitry. If VDD falls below VBOR (parameter D005) for  
greater than TBOR (parameter 35), the brown-out situa-  
tion will reset the chip. A Reset may not occur if VDD  
falls below VBOR for less than TBOR. The chip will  
remain in Brown-out Reset until VDD rises above VBOR.  
If the Power-up Timer is enabled, it will be invoked after  
VDD rises above VBOR; it then will keep the chip in  
Reset for an additional time delay, TPWRT  
(parameter 33). If VDD drops below VBOR while the  
Power-up Timer is running, the chip will go back into a  
Brown-out Reset and the Power-up Timer will be initial-  
ized. Once VDD rises above VBOR, the Power-up Timer  
will execute the additional time delay. Enabling BOR  
Reset does not automatically enable the PWRT.  
R
R1  
MCLR  
PIC18FXXXX  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kΩ is recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 1 kΩ will limit any current flowing into  
MCLR from external capacitor C, in the event  
of MCLR/VPP pin breakdown due to Electro-  
static Discharge (ESD) or Electrical  
Overstress (EOS).  
4.6  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, after the POR pulse has cleared, PWRT time-out  
is invoked (if enabled). Then, the OST is activated. The  
total time-out will vary based on oscillator configuration  
and the status of the PWRT. For example, in RC mode  
with the PWRT disabled, there will be no time-out at all.  
Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and  
Figure 4-7 depict time-out sequences on power-up.  
4.2  
Power-up Timer (PWRT)  
The Power-up Timer (PWRT) of the PIC18F1220/1320 is  
an 11-bit counter, which uses the INTRC source as the  
clock input. This yields a count of 2048 x 32 μs = 65.6 ms.  
While the PWRT is counting, the device is held in Reset.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameter 33 for details.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, all time-outs will expire. Bring-  
ing MCLR high will begin execution immediately  
(Figure 4-5). This is useful for testing purposes or to  
synchronize more than one PIC18FXXXX device  
operating in parallel.  
The PWRT is enabled by clearing configuration bit,  
PWRTEN.  
Table 4-2 shows the Reset conditions for some Special  
Function Registers, while Table 4-3 shows the Reset  
conditions for all the registers.  
DS39605F-page 34  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 4-1:  
Oscillator  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2) and Brown-out  
PWRTEN = 0 PWRTEN = 1  
Exit from  
Low-Power Mode  
Configuration  
HSPLL  
66 ms(1) + 1024 TOSC + 2 ms(2)  
66 ms(1) + 1024 TOSC  
66 ms(1)  
1024 TOSC + 2 ms(2)  
1024 TOSC  
1024 TOSC + 2 ms(2)  
1024 TOSC  
HS, XT, LP  
EC, ECIO  
5-10 μs(3)  
5-10 μs(3)  
RC, RCIO  
66 ms(1)  
66 ms(1)  
5-10 μs(3)  
5-10 μs(3)  
INTIO1, INTIO2  
5-10 μs(3)  
5-10 μs(3)  
Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.  
2: 2 ms is the nominal time required for the 4x PLL to lock.  
3: The program memory bias start-up time is always invoked on POR, wake-up from Sleep, or on any exit  
from power managed mode that disables the CPU and instruction execution.  
REGISTER 4-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-1  
POR  
R/W-1  
BOR  
bit 7  
Note: Refer to Section 5.14 “RCON Register” for bit definitions.  
bit 0  
TABLE 4-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
RESETInstruction  
Brown-out  
0000h  
0000h  
0000h  
0000h  
0--1 1100  
0--0 uuuu  
0--1 11u-  
0--u 1uuu  
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
MCLR during Power Managed  
Run modes  
MCLR during Power Managed  
Idle modes and Sleep  
0000h  
0000h  
0--u 10uu  
0--u 0uuu  
u
u
1
0
0
u
u
u
u
u
u
u
u
u
u
u
WDT Time-out during Full  
Power or Power Managed Run  
MCLR during Full Power  
Execution  
Stack Full Reset (STVR = 1)  
0000h  
0--u uuuu  
u
u
u
u
u
1
u
u
1
Stack Underflow Reset  
(STVR = 1)  
Stack Underflow Error (not an  
actual Reset, STVR = 0)  
0000h  
PC + 2  
PC + 2  
u--u uuuu  
u--u 00uu  
u--u u0uu  
u
u
u
u
0
u
u
0
0
u
u
u
u
u
u
u
u
u
1
u
u
WDT Time-out during Power  
Managed Idle or Sleep  
Interrupt Exit from Power  
Managed modes  
Legend: u= unchanged, x= unknown, – = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
© 2007 Microchip Technology Inc.  
DS39605F-page 35  
PIC18F1220/1320  
TABLE 4-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
WDT Reset  
RESET Instruction  
Stack Resets  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
TOSU  
1220  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu -u-u(1)  
uu-u u-uu(1)  
N/A  
TOSH  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
FSR1H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---- 0000  
uuuu uuuu  
---- uuuu  
uuuu uuuu  
FSR1L  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the Oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 5 of PORTA is enabled if MCLR is disabled.  
DS39605F-page 36  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 4-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
RESET Instruction  
Stack Resets  
BSR  
1220  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
---- 0000  
N/A  
---- 0000  
N/A  
---- uuuu  
N/A  
INDF2  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0000 q000  
--00 0101  
---- ---0  
0--1 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
xxxx xxxx  
00-0 0000  
-000 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0000 q000  
--00 0101  
---- ---0  
0--q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
uuuu uuuu  
00-0 0000  
-000 0000  
0-00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu qquu  
--uu uuuu  
---- ---u  
u--u qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-u uuuu  
-uuu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
PWM1CON  
ECCPAS  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the Oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 5 of PORTA is enabled if MCLR is disabled.  
© 2007 Microchip Technology Inc.  
DS39605F-page 37  
PIC18F1220/1320  
TABLE 4-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESET Instruction  
Stack Resets  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
TMR3H  
TMR3L  
T3CON  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
BAUDCTL  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR2  
1220  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
1320  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
-1-1 0-00  
0000 0000  
0000 0000  
0000 0000  
xx-0 x000  
1--1 -11-  
0--0 -00-  
0--0 -00-  
-111 -111  
-000 -000  
-000 -000  
--00 0000  
1111 1111  
11-1 1111(5)  
xxxx xxxx  
xx-x xxxx(5)  
xxxx xxxx  
xx0x 0000(5,6)  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
-1-1 0-00  
0000 0000  
0000 0000  
0000 0000  
uu-0 u000  
1--1 -11-  
0--0 -00-  
0--0 -00-  
-111 -111  
-000 -000  
-000 -000  
--00 0000  
1111 1111  
11-1 1111(5)  
uuuu uuuu  
uu-u uuuu(5)  
uuuu uuuu  
uu0u 0000(5,6)  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-u u-uu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uu-0 u000  
u--u -uu-  
u--u -uu-(1)  
u--u -uu-  
-uuu -uuu  
-uuu -uuu(1)  
-uuu -uuu  
--uu uuuu  
uuuu uuuu  
uu-u uuuu(5)  
uuuu uuuu  
uu-u uuuu(5)  
uuuu uuuu  
uuuu uuuu(5,6)  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
1220  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
OSCTUNE  
TRISB  
TRISA(5)  
LATB  
LATA(5)  
PORTB  
PORTA(5,6)  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 4-2 for Reset value for specific condition.  
5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the Oscillator mode selected. When  
not enabled as PORTA pins, they are disabled and read ‘0’.  
6: Bit 5 of PORTA is enabled if MCLR is disabled.  
DS39605F-page 38  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 4-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
© 2007 Microchip Technology Inc.  
DS39605F-page 39  
PIC18F1220/1320  
FIGURE 4-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 4-7:  
TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
DS39605F-page 40  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
5.1  
Program Memory Organization  
5.0  
MEMORY ORGANIZATION  
A 21-bit program counter is capable of addressing the  
2-Mbyte program memory space. Accessing a location  
between the physically implemented memory and the  
2-Mbyte address will cause a read of all ‘0’s (a NOP  
instruction).  
There are three memory types in Enhanced MCU  
devices. These memory types are:  
• Program Memory  
• Data RAM  
• Data EEPROM  
The PIC18F1220 has 4 Kbytes of Flash memory and  
can store up to 2,048 single-word instructions.  
Data and program memory use separate busses,  
which allows for concurrent access of these types.  
The PIC18F1320 has 8 Kbytes of Flash memory and  
can store up to 4,096 single-word instructions.  
Additional detailed information for Flash program mem-  
ory and data EEPROM is provided in Section 6.0  
“Flash Program Memory” and Section 7.0 “Data  
EEPROM Memory”, respectively.  
The Reset vector address is at 0000h and the interrupt  
vector addresses are at 0008h and 0018h.  
The program memory maps for the PIC18F1220 and  
PIC18F1320 devices are shown in Figure 5-1 and  
Figure 5-2, respectively.  
FIGURE 5-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F1320  
FIGURE 5-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F1220  
PC<20:0>  
PC<20:0>  
21  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
Reset Vector  
Stack Level 31  
Reset Vector  
0000h  
0000h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
On-Chip  
Program Memory  
On-Chip  
Program Memory  
0FFFh  
1000h  
1FFFh  
2000h  
Read ‘0’  
Read ‘0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
© 2007 Microchip Technology Inc.  
DS39605F-page 41  
PIC18F1220/1320  
5.2.2  
RETURN STACK POINTER  
(STKPTR)  
5.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed, or an interrupt  
is Acknowledged. The PC value is pulled off the stack  
on a RETURN, RETLWor a RETFIEinstruction. PCLATU  
and PCLATH are not affected by any of the RETURNor  
CALLinstructions.  
The STKPTR register (Register 5-1) contains the stack  
pointer value, the STKFUL (Stack Full) status bit and  
the STKUNF (Stack Underflow) status bits. The value  
of the Stack Pointer can be 0 through 31. The Stack  
Pointer increments before values are pushed onto the  
stack and decrements after values are popped off the  
stack. At Reset, the Stack Pointer value will be zero.  
The user may read and write the Stack Pointer value.  
This feature can be used by a Real-Time Operating  
System for return stack maintenance.  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit stack pointer, with the Stack Pointer initialized to  
00000B after all Resets. There is no RAM associated  
with Stack Pointer, 00000B. This is only a Reset value.  
During a CALLtype instruction, causing a push onto the  
stack, the Stack Pointer is first incremented and the  
RAM location pointed to by the Stack Pointer  
(STKPTR) register is written with the contents of the PC  
(already pointing to the instruction following the CALL).  
During a RETURNtype instruction, causing a pop from  
the stack, the contents of the RAM location pointed to  
by the STKPTR are transferred to the PC and then the  
Stack Pointer is decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVR (Stack Overflow  
Reset Enable) configuration bit. (Refer to Section 19.1  
“Configuration Bits” for a description of the device  
configuration bits.) If STVR is set (default), the 31st  
push will push the (PC + 2) value onto the stack, set the  
STKFUL bit and reset the device. The STKFUL bit will  
remain set and the Stack Pointer will be set to zero.  
The stack space is not part of either program or data  
space. The Stack Pointer is readable and writable and  
the address on the top of the stack is readable and  
writable through the top-of-stack Special File  
Registers. Data can also be pushed to or popped from  
the stack using the top-of-stack SFRs. Status bits  
indicate if the stack is full, has overflowed or  
underflowed.  
If STVR is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and STKPTR will remain at 31.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the Stack  
Pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or a POR occurs.  
5.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL, hold the  
contents of the stack location pointed to by the  
STKPTR register (Figure 5-3). This allows users to  
implement a software stack if necessary. After a CALL,  
RCALLor interrupt, the software can read the pushed  
value by reading the TOSU, TOSH and TOSL registers.  
These values can be placed on a user defined software  
stack. At return time, the software can replace the  
TOSU, TOSH and TOSL and do a return.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset, as the contents  
of the SFRs are not affected.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 5-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00010  
00011  
001A34h 00010  
000D58h 00001  
00000  
Top-of-Stack  
DS39605F-page 42  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 5-1:  
STKPTR REGISTER  
R/C-0 R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKFUL STKUNF  
bit 7  
bit 0  
bit 7(1)  
bit 6(1)  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented  
‘0’ = Bit is cleared  
C = Clearable only bit  
x = Bit is unknown  
5.2.3  
PUSH AND POP INSTRUCTIONS  
5.2.4  
STACK FULL/UNDERFLOW RESETS  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack, without disturbing normal program execu-  
tion, is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the Stack Pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place data or a return address  
on the stack.  
These Resets are enabled by programming the STVR  
bit in Configuration Register 4L. When the STVR bit is  
cleared, a full or underflow condition will set the appro-  
priate STKFUL or STKUNF bit, but not cause a device  
Reset. When the STVR bit is set, a full or underflow  
condition will set the appropriate STKFUL or STKUNF  
bit and then cause a device Reset. The STKFUL or  
STKUNF bits are cleared by the user software or a  
Power-on Reset.  
The ability to pull the TOS value off of the stack and  
replace it with the value that was previously pushed  
onto the stack, without disturbing normal execution, is  
achieved by using the POPinstruction. The POPinstruc-  
tion discards the current TOS by decrementing the  
Stack Pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
© 2007 Microchip Technology Inc.  
DS39605F-page 43  
PIC18F1220/1320  
5.3  
Fast Register Stack  
5.4  
PCL, PCLATH and PCLATU  
A “fast return” option is available for interrupts. A fast  
register stack is provided for the Status, WREG and  
BSR registers and is only one in depth. The stack is not  
readable or writable and is loaded with the current  
value of the corresponding register when the processor  
vectors for an interrupt. The values in the registers are  
then loaded back into the working registers, if the  
RETFIE, FAST instruction is used to return from the  
interrupt.  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21-bits  
wide. The low byte, known as the PCL register, is both  
readable and writable. The high byte, or PCH register,  
contains the PC<15:8> bits and is not directly readable  
or writable. Updates to the PCH register may be per-  
formed through the PCLATH register. The upper byte is  
called PCU. This register contains the PC<20:16> bits  
and is not directly readable or writable. Updates to the  
PCU register may be performed through the PCLATU  
register.  
All interrupt sources will push values into the stack  
registers. If both low and high priority interrupts are  
enabled, the stack registers cannot be used reliably to  
return from low priority interrupts. If a high priority inter-  
rupt occurs while servicing a low priority interrupt, the  
stack register values stored by the low priority interrupt  
will be overwritten. Users must save the key registers  
in software during a low priority interrupt.  
The contents of PCLATH and PCLATU will be  
transferred to the program counter by any operation  
that writes PCL. Similarly, the upper two bytes of the  
program counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 5.8.1  
“Computed GOTO”).  
If interrupt priority is not used, all interrupts may use the  
fast register stack for returns from interrupt.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSB of PCL is fixed to a value of ‘0’.  
The PC increments by 2 to address sequential  
instructions in the program memory.  
If no interrupts are used, the fast register stack can be  
used to restore the Status, WREG and BSR registers at  
the end of a subroutine call. To use the fast register  
stack for a subroutine call, a CALL LABEL, FAST  
instruction must be executed to save the Status,  
WREG and BSR registers to the fast register stack. A  
RETURN, FASTinstruction is then executed to restore  
these registers from the fast register stack.  
The CALL, RCALL, GOTOand program branch instruc-  
tions write to the program counter directly. For these  
instructions, the contents of PCLATH and PCLATU are  
not transferred to the program counter.  
Example 5-1 shows a source code example that uses  
the fast register stack during a subroutine call and  
return.  
EXAMPLE 5-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
SUB1  
RETURN, FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
DS39605F-page 44  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
5.5  
Clocking Scheme/Instruction  
Cycle  
5.6  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 5-2).  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the  
Program Counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 5-4.  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 5-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC  
PC + 2  
PC + 4  
OSC2/CLKO  
(RC Mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
EXAMPLE 5-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction  
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.  
© 2007 Microchip Technology Inc.  
DS39605F-page 45  
PIC18F1220/1320  
The CALL and GOTO instructions have the absolute  
program memory address embedded into the instruc-  
tion. Since instructions are always stored on word  
boundaries, the data contained in the instruction is a  
word address. The word address is written to  
PC<20:1>, which accesses the desired byte address in  
program memory. Instruction #2 in Figure 5-5 shows  
how the instruction ‘GOTO 000006h’ is encoded in the  
program memory. Program branch instructions, which  
encode a relative address offset, operate in the same  
manner. The offset value stored in a branch instruction  
represents the number of single-word instructions that  
the PC will be offset by. Section 20.0 “Instruction Set  
Summary” provides further details of the instruction  
set.  
5.7  
Instructions in Program Memory  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 5-5 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read ‘0’ (see Section 5.4 “PCL,  
PCLATH and PCLATU”).  
FIGURE 5-5:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
MOVLW  
GOTO  
055h  
000006h  
Instruction 3:  
MOVFF  
123h, 456h  
instruction is executed by itself (first word was skipped),  
it will execute as a NOP. This action is necessary when  
the two-word instruction is preceded by a conditional  
instruction that results in a skip operation. A program  
example that demonstrates this concept is shown in  
Example 5-3. Refer to Section 20.0 “Instruction Set  
Summary” for further details of the instruction set.  
5.7.1  
TWO-WORD INSTRUCTIONS  
PIC18F1220/1320 devices have four two-word  
instructions: MOVFF, CALL, GOTOand LFSR. The second  
word of these instructions has the 4 MSBs set to ‘1’s and  
is decoded as a NOPinstruction. The lower 12 bits of the  
second word contain data to be used by the instruction.  
If the first word of the instruction is executed, the data in  
the second word is accessed. If the second word of the  
EXAMPLE 5-3:  
TWO-WORD INSTRUCTIONS  
CASE 1:  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
0010 0100 0000 0000 ADDWF  
REG3  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
0010 0100 0000 0000 ADDWF  
REG3  
; continue code  
DS39605F-page 46  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
5.8  
Look-up Tables  
5.9  
Data Memory Organization  
Look-up tables are implemented two ways:  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 5-6  
shows the data memory organization for the  
PIC18F1220/1320 devices.  
• Computed GOTO  
Table Reads  
5.8.1  
COMPUTED GOTO  
The data memory map is divided into as many as  
16 banks that contain 256 bytes each. The lower 4 bits  
of the Bank Select Register (BSR<3:0>) select which  
bank will be accessed. The upper 4 bits for the BSR are  
not implemented.  
A computed GOTOis accomplished by adding an offset  
to the program counter (see Example 5-4).  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW 0xnn  
instructions, that returns the value 0xnnto the calling  
function.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the user’s appli-  
cation. The SFRs start at the last location of Bank 15  
(FFFh) and extend towards F80h. Any remaining space  
beyond the SFRs in the Bank may be implemented as  
GPRs. GPRs start at the first location of Bank 0 and  
grow upwards. Any read of an unimplemented location  
will read as ‘0’s.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSB = 0).  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of a  
File Select Register (FSRn) and a corresponding Indi-  
rect File Operand (INDFn). Each FSR holds a 12-bit  
address value that can be used to access any location  
in the Data Memory map without banking. See  
Section 5.12 “Indirect Addressing, INDF and FSR  
Registers” for indirect addressing details.  
EXAMPLE 5-4:  
COMPUTED GOTO USING  
AN OFFSET VALUE  
MOVFW  
CALL  
OFFSET  
TABLE  
ORG  
TABLE  
0xnn00  
ADDWF  
RETLW  
RETLW  
RETLW  
.
PCL  
0xnn  
0xnn  
0xnn  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction  
that moves a value from one register to another.  
.
.
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 5.10  
“Access Bank” provides a detailed description of the  
Access RAM.  
5.8.2  
TABLE READS/TABLE WRITES  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
Look-up table data may be stored two bytes per pro-  
gram word by using table reads and writes. The Table  
Pointer (TBLPTR) register specifies the byte address  
and the Table Latch (TABLAT) register contains the  
data that is read from or written to program memory.  
Data is transferred to/from program memory, one byte  
at a time.  
5.9.1  
GENERAL PURPOSE  
REGISTER FILE  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
The table read/table write operation is discussed  
further in Section 6.1 “Table Reads and Table  
Writes”.  
Data RAM is available for use as GPR registers by all  
instructions. The second half of Bank 15 (F80h to  
FFFh) contains SFRs. All other banks of data memory  
contain GPRs, starting with Bank 0.  
© 2007 Microchip Technology Inc.  
DS39605F-page 47  
PIC18F1220/1320  
FIGURE 5-6:  
DATA MEMORY MAP FOR PIC18F1220/1320 DEVICES  
BSR<3:0>  
Data Memory Map  
000h  
07Fh  
080h  
0FFh  
00h  
FFh  
Access RAM  
GPR  
= 0000  
Bank 0  
Access Bank  
00h  
Access RAM Low  
7Fh  
80h  
= 0001  
= 1110  
Access RAM High  
(SFRs)  
Bank 1  
to  
Bank 14  
Unused  
Read ‘00h’  
FFh  
When a = 0,  
The BSR is ignored and the  
Access Bank is used.  
The first 128 bytes are  
General Purpose RAM  
(from Bank 0).  
EFFh  
F00h  
F7Fh  
F80h  
FFFh  
00h  
FFh  
Unused  
SFR  
= 1111  
The second 128 bytes are  
Special Function Registers  
(from Bank 15).  
Bank 15  
When a = 1,  
The BSR specifies the Bank  
used by the instruction.  
DS39605F-page 48  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The SFRs can be classified into two sets: those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
5.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 5-1 and Table 5-2.  
The SFRs are typically distributed among the peripherals  
whose functions they control.  
The unused SFR locations will be unimplemented and  
read as ‘0’s.  
TABLE 5-1:  
Address  
FFFh  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F1220/1320 DEVICES  
Name  
TOSU  
Address  
Name  
INDF2(2)  
Address  
FBFh  
FBEh  
FBDh  
FBCh  
FBBh  
FBAh  
FB9h  
Name  
Address  
F9Fh  
F9Eh  
F9Dh  
F9Ch  
F9Bh  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
Name  
IPR1  
PIR1  
PIE1  
FDFh  
CCPR1H  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
TOSH  
FDEh POSTINC2(2)  
FDDh POSTDEC2(2)  
FDCh PREINC2(2)  
FDBh PLUSW2(2)  
CCPR1L  
TOSL  
CCP1CON  
STKPTR  
PCLATU  
PCLATH  
PCL  
OSCTUNE  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
FSR2H  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
FF9h  
FF8h  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0(2)  
FB8h  
FF7h  
FB7h PWM1CON  
FF6h  
FB6h  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
ECCPAS  
FF5h  
FF4h  
FF3h  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR1H  
TMR1L  
T1CON  
TMR2  
TMR3H  
TMR3L  
T3CON  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
BAUDCTL  
EEADR  
EEDATA  
EECON2  
EECON1  
TRISB  
TRISA  
FF2h  
FF1h  
FF0h  
FEFh  
FEEh POSTINC0(2)  
FEDh POSTDEC0(2)  
FECh PREINC0(2)  
FEBh PLUSW0(2)  
PR2  
FEAh  
FE9h  
FE8h  
FE7h  
FE6h POSTINC1(2)  
FE5h POSTDEC1(2)  
FE4h PREINC1(2)  
FE3h PLUSW1(2)  
FSR0H  
FSR0L  
WREG  
INDF1(2)  
T2CON  
LATB  
LATA  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
IPR2  
PIR2  
PORTB  
PORTA  
PIE2  
Note 1: Unimplemented registers are read as ‘0’.  
2: This is not a physical register.  
© 2007 Microchip Technology Inc.  
DS39605F-page 49  
PIC18F1220/1320  
TABLE 5-2:  
File Name  
TOSU  
REGISTER FILE SUMMARY (PIC18F1220/1320)  
Value on  
POR, BOR  
Details on  
page:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
36, 42  
36, 42  
36, 42  
36, 43  
36, 44  
36, 44  
36, 44  
36, 60  
36, 60  
36, 60  
36, 60  
36, 71  
36, 71  
36, 75  
36, 76  
36, 77  
36, 53  
36, 53  
36, 53  
36, 53  
36, 53  
36, 53  
36, 53  
36  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
bit 21(3)  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INTEDG1  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
RBPU  
INTEDG0  
INT1IP  
INT2IP  
INT1IE  
INT2IF  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
POSTINC0  
N/A  
POSTDEC0 Uses contents of FSR0 to address data memory– value of FSR0 post-decremented (not a physical register)  
N/A  
PREINC0  
PLUSW0  
FSR0H  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 offset by W (not a physical register)  
N/A  
N/A  
Indirect Data Memory Address Pointer 0 High  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
36, 53  
36, 53  
36, 53  
36, 53  
36, 53  
36, 53  
36, 53  
37, 52  
37, 53  
37, 53  
37, 53  
37, 53  
37, 53  
37, 53  
37, 53  
37, 55  
37, 101  
37, 101  
37, 99  
37, 17  
37, 167  
37, 180  
POSTINC1  
N/A  
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
N/A  
PREINC1  
PLUSW1  
FSR1H  
FSR1L  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 offset by W (not a physical register)  
N/A  
N/A  
Indirect Data Memory Address Pointer 1 High  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
POSTINC2  
N/A  
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
N/A  
PREINC2  
PLUSW2  
FSR2H  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)  
N/A  
N/A  
Indirect Data Memory Address Pointer 2 High  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0000 q000  
--00 0101  
--- ---0  
FSR2L  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
TMR0L  
T0CON  
TMR0ON  
IDLEN  
T08BIT  
IRCF2  
T0CS  
IRCF1  
IVRST  
T0SE  
IRCF0  
LVDEN  
PSA  
OSTS  
LVDL3  
T0PS2  
IOFS  
LVDL2  
T0PS1  
SCS1  
LVDL1  
T0PS0  
SCS0  
OSCCON  
LVDCON  
WDTCON  
LVDL0  
SWDTEN  
RCON  
IPEN  
RI  
TO  
PD  
POR  
BOR  
0--1 11q0 35, 56, 84  
Legend: x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read ‘0’  
in all other oscillator modes.  
2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
4: The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’. Otherwise, RA5 reads ‘0’. This bit is read-only.  
DS39605F-page 50  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 5-2:  
REGISTER FILE SUMMARY (PIC18F1220/1320) (CONTINUED)  
Value on  
POR, BOR  
Details on  
page:  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1H  
TMR1L  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
37, 108  
37, 108  
37, 103  
37, 109  
37, 109  
37, 109  
37, 164  
37, 164  
37, 155  
37, 156  
37, 157  
37. 116  
37, 116  
37, 115  
37, 126  
37, 127  
38, 113  
38, 113  
38, 111  
38  
T1CON  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0 T1OSCEN  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON  
TMR2  
Timer2 Register  
PR2  
Timer2 Period Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
T2CON  
T2CKPS0 -000 0000  
xxxx xxxx  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
PWM1CON  
ECCPAS  
TMR3H  
TMR3L  
A/D Result Register High Byte  
A/D Result Register Low Byte  
xxxx xxxx  
VCFG1  
VCFG0  
PCFG6  
CHS2  
PCFG4  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0  
ADCS0  
00-0 0000  
-000 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
0000 0000  
0000 0000  
PCFG5  
ACQT2  
ADFM  
ADCS1  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
P1M1  
P1M0  
PDC6  
DC1B1  
PDC5  
DC1B0  
PDC4  
CCP1M3  
PDC3  
CCP1M2  
PDC2  
CCP1M1  
PDC1  
CCP1M0  
PDC0  
PRSEN  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0  
Timer3 Register High Byte  
PSSAC1  
PSSAC0  
PSSBD1  
PSSBD0  
Timer3 Register Low Byte  
T3CON  
RD16  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON  
SPBRGH  
SPBRG  
RCREG  
EUSART Baud Rate Generator High Byte  
EUSART Baud Rate Generator Low Byte  
EUSART Receive Register  
38, 135  
38, 143,  
142  
TXREG  
EUSART Transmit Register  
0000 0000  
38, 140,  
142  
TXSTA  
RCSTA  
BAUDCTL  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR2  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
0000 0010  
0000 000x  
-1-1 0-00  
0000 0000  
0000 0000  
38, 132  
38, 133  
38  
RCIDL  
ABDEN  
EEPROM Address Register  
EEPROM Data Register  
38, 67  
38, 70  
EEPROM Control Register 2 (not a physical register)  
0000 0000 38, 58, 67  
xx-0 x000 38, 59, 68  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
TXIP  
TXIF  
TXIE  
TUN4  
WRERR  
WREN  
LVDIP  
WR  
RD  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
TUN1  
1--1 -11-  
0--0 -00-  
0--0 -00-  
-111 -111  
-000 -000  
-000 -000  
--00 0000  
1111 1111  
11-1 1111  
xxxx xxxx  
xx-x xxxx  
xxxx xxxx  
xx0x 0000  
38, 83  
38, 79  
38, 81  
38, 82  
38, 78  
38, 80  
38, 15  
38, 98  
38, 89  
38, 98  
38, 89  
38, 98  
38, 89  
PIR2  
LVDIF  
PIE2  
LVDIE  
IPR1  
ADIP  
ADIF  
ADIE  
RCIP  
RCIF  
RCIE  
TUN5  
CCP1IP  
CCP1IF  
CCP1IE  
TUN2  
TMR1IP  
TMR1IF  
TMR1IE  
TUN0  
PIR1  
PIE1  
OSCTUNE  
TRISB  
TRISA  
LATB  
TUN3  
Data Direction Control Register for PORTB  
TRISA7(2)  
TRISA6(1)  
Data Direction Control Register for PORTA  
Read/Write PORTB Data Latch  
LATA<7>(2) LATA<6>(1)  
LATA  
Read/Write PORTA Data Latch  
PORTB  
PORTA  
Read PORTB pins, Write PORTB Data Latch  
RA7(2) RA6(1) RA5(4)  
Read PORTA pins, Write PORTA Data Latch  
Legend: x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator mode only and read ‘0’  
in all other oscillator modes.  
2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read ‘0’ in all other modes.  
3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.  
4: The RA5 port bit is only available when MCLRE fuse (CONFIG3H<7>) is programmed to ‘0’. Otherwise, RA5 reads ‘0’. This bit is read-only.  
© 2007 Microchip Technology Inc.  
DS39605F-page 51  
PIC18F1220/1320  
5.10  
Access Bank  
5.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement  
which is very useful for C compiler code optimization.  
The techniques used by the C compiler may also be  
useful for programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into as many as sixteen banks. When using  
direct addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ‘0’s and  
writes will have no effect (see Figure 5-7).  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
A MOVLBinstruction has been provided in the instruction  
set to assist in selecting banks.  
• Faster evaluation/control of SFRs (no banking)  
If the currently selected bank is not implemented, any  
read will return all ‘0’s and all writes are ignored. The  
Status register bits will be set/cleared as appropriate for  
the instruction performed.  
The Access Bank is comprised of the last 128 bytes in  
Bank 15 (SFRs) and the first 128 bytes in Bank 0.  
These two sections will be referred to as Access RAM  
High and Access RAM Low, respectively. Figure 5-6  
indicates the Access RAM areas.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank. This bit is denoted as the ‘a’ bit (for  
access bit).  
A MOVFFinstruction ignores the BSR, since the 12-bit  
addresses are embedded into the instruction word.  
Section 5.12 “Indirect Addressing, INDF and FSR  
Registers” provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
When forced in the Access Bank (a = 0), the last  
address in Access RAM Low is followed by the first  
address in Access RAM High. Access RAM High maps  
the Special Function Registers, so these registers can  
be accessed without any software overhead. This is  
useful for testing status flags and modifying control bits.  
FIGURE 5-7:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<7:4>  
BSR<3:0>  
7
0
0
0
0
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
000h  
Data  
Memory(1)  
0FFh  
1FFh  
EFFh  
FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 5-1.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the registers  
of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
DS39605F-page 52  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all ‘0’s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
Status bits are not affected.  
5.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. An FSR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 5-8  
shows how the fetched instruction is modified prior to  
being executed.  
5.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated with  
it, plus four additional register addresses. Performing an  
operation using one of these five registers determines  
how the FSR will be modified during indirect addressing.  
Indirect addressing is possible by using one of the  
INDF registers. Any instruction, using the INDF regis-  
ter, actually accesses the register pointed to by the File  
Select Register, FSR. Reading the INDF register itself,  
indirectly (FSR = 0), will read 00h. Writing to the INDF  
register indirectly, results in a no operation (NOP). The  
FSR register contains a 12-bit address, which is shown  
in Figure 5-9.  
When data access is performed using one of the five  
INDFn locations, the address selected will configure  
the FSRn register to:  
• Do nothing to FSRn after an indirect access (no  
change) – INDFn  
• Auto-decrement FSRn after an indirect access  
(post-decrement) – POSTDECn  
• Auto-increment FSRn after an indirect access  
(post-increment) – POSTINCn  
The INDFn register is not a physical register. Address-  
ing INDFn actually addresses the register whose  
address is contained in the FSRn register (FSRn is a  
pointer). This is indirect addressing.  
• Auto-increment FSRn before an indirect access  
(pre-increment) – PREINCn  
• Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) – PLUSWn  
Example 5-5 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
EXAMPLE 5-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
When using the auto-increment or auto-decrement  
features, the effect on the FSR is not reflected in the  
Status register. For example, if the indirect address  
causes the FSR to equal ‘0’, the Z bit will not be set.  
LFSR  
FSR0,0x100  
POSTINC0  
;
NEXT  
CLRF  
; Clear INDF  
; register then  
; inc pointer  
; All done with  
; Bank1?  
Auto-incrementing or auto-decrementing an FSR affects  
all 12 bits. That is, when FSRnL overflows from an  
increment, FSRnH will be incremented automatically.  
BTFSS FSR0H, 1  
Adding these features allows the FSRn to be used as a  
stack pointer, in addition to its uses for table operations  
in data memory.  
GOTO  
CONTINUE  
NEXT  
; NO, clear next  
; YES, continue  
Each FSR has an address associated with it that  
performs an indexed indirect access. When a data  
access to this INDFn location (PLUSWn) occurs, the  
FSRn is configured to add the signed value in the  
WREG register and the value in FSR to form the  
address before an indirect access. The FSR value is  
not changed. The WREG offset range is -128 to +127.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12-bit wide. To store the 12 bits of  
addressing information, two 8-bit registers are required:  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
If an FSR register contains a value that points to one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(Status bits are not affected).  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data. If an instruction writes a  
value to INDF0, the value will be written to the address  
pointed to by FSR0H:FSR0L. A read from INDF1 reads  
the data from the address pointed to by  
FSR1H:FSR1L. INDFn can be used in code anywhere  
an operand can be used.  
If an indirect addressing write is performed when the tar-  
get address is an FSRnH or FSRnL register, the data is  
written to the FSR register, but no pre- or post-increment/  
decrement is performed.  
© 2007 Microchip Technology Inc.  
DS39605F-page 53  
PIC18F1220/1320  
FIGURE 5-8:  
INDIRECT ADDRESSING OPERATION  
0h  
RAM  
Instruction  
Executed  
Opcode  
Address  
12  
FFFh  
File Address = Access of an Indirect Addressing Register  
BSR<3:0>  
12  
12  
Instruction  
Fetched  
4
8
Opcode  
File  
FSR  
FIGURE 5-9:  
INDIRECT ADDRESSING  
Indirect Addressing  
FSRnH:FSRnL  
3
0
7
0
0
11  
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 5-1.  
DS39605F-page 54  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
It is recommended that only BCF, BSF, SWAPF, MOVFF  
and MOVWFinstructions are used to alter the Status reg-  
ister, because these instructions do not affect the Z, C,  
DC, OV or N bits in the Status register.  
5.13 Status Register  
The Status register, shown in Register 5-2, contains the  
arithmetic status of the ALU. As with any other SFR, it  
can be the operand for any instruction.  
For other instructions that do not affect Status bits, see  
the instruction set summaries in Table 20-1.  
If the Status register is the destination for an instruction  
that affects the Z, DC, C, OV or N bits, the results of the  
instruction are not written; instead, the status is  
updated according to the instruction performed. There-  
fore, the result of an instruction with the Status register  
as its destination may be different than intended. As an  
example, CLRFSTATUSwill set the Z bit and leave the  
remaining Status bits unchanged (‘000u u1uu’).  
Note:  
The C and DC bits operate as the borrow  
and digit borrow bits, respectively, in  
subtraction.  
REGISTER 5-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
N
bit 7  
bit 0  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the  
7-bit magnitude, which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the  
2’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit  
is loaded with either the bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the  
2’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit  
is loaded with either the high or low-order bit of the source register.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 55  
PIC18F1220/1320  
5.14 RCON Register  
Note 1: If the BOR configuration bit is set (Brown-  
out Reset enabled), the BOR bit is ‘1’ on  
a Power-on Reset. After a Brown-out  
Reset has occurred, the BOR bit will be  
cleared and must be set by firmware to  
indicate the occurrence of the next  
Brown-out Reset.  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device Reset. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
2: It is recommended that the POR bit be set  
after  
a Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
REGISTER 5-3:  
RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESETinstruction was executed causing a device Reset  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Cleared by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605F-page 56  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
6.0  
FLASH PROGRAM MEMORY  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Table read operations retrieve data from program  
memory and place it into TABLAT in the data RAM  
space. Figure 6-1 shows the operation of a table read  
with program memory and data RAM.  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A “Bulk Erase” operation  
may not be issued from user code.  
Table write operations store data from TABLAT in the  
data memory space into holding registers in program  
memory. The procedure to write the contents of the  
holding registers into program memory is detailed in  
Section 6.5 “Writing to Flash Program Memory”.  
Figure 6-2 shows the operation of a table write with  
program memory and data RAM.  
While writing or erasing program memory, instruction  
fetches cease until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block  
can start and end at any byte address. If a table write is  
being used to write executable code into program  
memory, program instructions will need to be word  
aligned (TBLPTRL<0> = 0).  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
6.1  
Table Reads and Table Writes  
The EEPROM on-chip timer controls the write and  
erase times. The write and erase voltages are gener-  
ated by an on-chip charge pump rated to operate over  
the voltage range of the device for byte or word  
operations.  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data  
RAM:  
Table Read (TBLRD)  
Table Write (TBLWT)  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
© 2007 Microchip Technology Inc.  
DS39605F-page 57  
PIC18F1220/1320  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of eight holding registers, the address of which is determined by  
TBLPTRL<2:0>. The process for physically writing data to the program memory array is discussed  
in Section 6.5 “Writing to Flash Program Memory”.  
The WREN bit enables and disables erase and write  
operations. When set, erase and write operations are  
allowed. When clear, erase and write operations are  
disabled – the WR bit cannot be set while the WREN bit  
is clear. This process helps to prevent accidental writes  
to memory due to errant (unexpected) code execution.  
6.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
Firmware should keep the WREN bit clear at all times,  
except when starting erase or write operations. Once  
firmware has set the WR bit, the WREN bit may be  
cleared. Clearing the WREN bit will not affect the  
operation in progress.  
6.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
The WRERR bit is set when a write operation is  
interrupted by a Reset. In these situations, the user can  
check the WRERR bit and rewrite the location. It will be  
necessary to reload the data and address registers  
(EEDATA and EEADR) as these registers have cleared  
as a result of the Reset.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bit, EEPGD, determines if the access will be to  
program or data EEPROM memory. When clear,  
operations will access the data EEPROM memory.  
When set, program memory is accessed.  
Control bits, RD and WR, start read and erase/write  
operations, respectively. These bits are set by firmware  
and cleared by hardware at the completion of the  
operation.  
Control bit, CFGS, determines if the access will be to  
the configuration registers, or to program memory/data  
EEPROM memory. When set, subsequent operations  
access configuration registers. When CFGS is clear,  
the EEPGD bit selects either program Flash or data  
EEPROM memory.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
table read instructions. See Section 6.3 “Reading the  
Flash Program Memory” regarding table reads.  
The FREE bit controls program memory erase opera-  
tions. When the FREE bit is set, the erase operation is  
initiated on the next WR command. When FREE is  
clear, only writes are enabled.  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when the write is complete. It must  
be cleared in software.  
DS39605F-page 58  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 6-1:  
EECON1 REGISTER  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access program Flash memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EE or Configuration Select bit  
1= Access configuration registers  
0= Access program Flash or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation – TBLPTR<5:0> are ignored)  
0= Perform write only  
bit 3  
WRERR: EEPROM Error Flag bit  
1= A write operation was prematurely terminated (any Reset during self-timed programming)  
0= The write operation completed normally  
Note:  
When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Write Enable bit  
1= Allows erase or write cycles  
0= Inhibits erase or write cycles  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle completed  
bit 0  
RD: Read Control bit  
1= Initiates a memory read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Read completed  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
S = Settable only  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
© 2007 Microchip Technology Inc.  
DS39605F-page 59  
PIC18F1220/1320  
6.2.2  
TABLAT – TABLE LATCH REGISTER  
6.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The table latch is used to hold 8-bit  
data during data transfers between program memory  
and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRD is executed, all 22 bits of the Table  
Pointer determine which byte is read from program or  
configuration memory into TABLAT.  
6.2.3  
TBLPTR – TABLE POINTER  
REGISTER  
When a TBLWTis executed, the three LSbs of the Table  
Pointer (TBLPTR<2:0>) determine which of the eight  
program memory holding registers is written to. When  
the timed write to program memory (long write) begins,  
the 19 MSbs of the Table Pointer (TBLPTR<21:3>) will  
determine which program memory block of 8 bytes is  
written to (TBLPTR<2:0> are ignored). For more detail,  
see Section 6.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. Setting the 22nd bit allows  
access to the device ID, the user ID and the  
configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer (TBLPTR<21:6>) point to  
the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The Table Pointer (TBLPTR) register is used by the  
TBLRDand TBLWTinstructions. These instructions can  
update the TBLPTR in one of four ways based on the  
table operation. These operations are shown in  
Table 6-1. These operations on the TBLPTR only affect  
the low-order 21 bits.  
Figure 6-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 6-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE – TBLPTR<21:6>  
LONG WRITE – TBLPTR<21:3>  
READ or WRITE – TBLPTR<21:0>  
DS39605F-page 60  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
shows the interface between the internal program  
memory and the TABLAT.  
6.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and place it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
TBLPTR points to a byte address in program space.  
Executing a TBLRDinstruction places the byte pointed  
to into TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
Odd (High) Byte  
Even (Low) Byte  
TBLPTR  
TBLPTR  
LSB = 0  
LSB = 1  
Instruction Register  
(IR)  
TABLAT  
Read Register  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
READ_WORD  
TBLRD*+  
MOVFW  
; read into TABLAT and increment TBLPTR  
; get data  
TABLAT  
MOVWF  
WORD_EVEN  
TBLRD*+  
MOVFW  
; read into TABLAT and increment TBLPTR  
; get data  
TABLAT  
MOVWF  
WORD_ODD  
© 2007 Microchip Technology Inc.  
DS39605F-page 61  
PIC18F1220/1320  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing Flash Program Memory  
The minimum erase block size is 32 words or 64 bytes  
under firmware control. Only through the use of an  
external programmer, or through ICSP control, can  
larger blocks of program memory be bulk erased. Word  
erase in Flash memory is not supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer with address of row being  
erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program  
memory;  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the Flash  
program memory. The CFGS bit must be clear to  
access program Flash and data EEPROM memory.  
The WREN bit must be set to enable write operations.  
The FREE bit is set to select an erase operation. The  
WR bit is set as part of the required instruction  
sequence (as shown in Example 6-2) and starts the  
actual erase operation. It is not necessary to load the  
TABLAT register with any data as it is ignored.  
4. Write 55h to EECON2.  
5. Write AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
8. Execute a NOP.  
For protection, the write initiate sequence using  
EECON2 must be used.  
9. Re-enable interrupts.  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, EEPGD  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
; point to FLASH program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
; write 55H  
Required  
Sequence  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
DS39605F-page 62  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWT instruction must be executed 8 times for  
each programming operation. All of the table write  
operations will essentially be short writes, because only  
the holding registers are written. At the end of updating  
8 registers, the EECON1 register must be written to, to  
start the programming operation with a long write.  
6.5  
Writing to Flash Program Memory  
The programming block size is 4 words or 8 bytes.  
Word or byte programming is not supported.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 8 holding registers used by the table writes for  
programming.  
The long write is necessary for programming the  
internal Flash. Instruction execution is halted while in a  
long write cycle. The long write will be terminated by  
the internal programming timer.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx2  
TBLPTR = xxxxx7  
Holding Register  
TBLPTR = xxxxx1  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
8. Disable interrupts.  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
3. Load Table Pointer with address being erased.  
13. Execute a NOP.  
14. Re-enable interrupts.  
4. Do the row erase procedure (see Section 6.4.1  
“Flash Program Memory Erase Sequence”).  
15. Repeat steps 6-14 seven times to write  
64 bytes.  
5. Load Table Pointer with address of first byte  
being written.  
16. Verify the memory (table read).  
6. Write the first 8 bytes into the holding registers  
with auto-increment.  
This procedure will require about 18 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 6-3.  
7. Set the EECON1 register for the write operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program  
memory;  
• set WREN bit to enable byte writes.  
© 2007 Microchip Technology Inc.  
DS39605F-page 63  
PIC18F1220/1320  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
D'64  
; number of bytes in erase block  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
; 6 LSB = 0  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT, and inc  
; get data  
; store data and increment FSR0  
; done?  
TABLAT, W  
POSTINC0  
DECFSZ COUNTER  
GOTO  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word and increment FSR0  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BSF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1, CFGS  
EECON1, EEPGD  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
; load TBLPTR with the base  
; address of the memory block  
; 6 LSB = 0  
; point to PROG/EEPROM memory  
; point to FLASH program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
; Required sequence  
; write 55H  
EECON2  
AAh  
EECON2  
EECON1, WR  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
BUFFER_ADDR_HIGH  
FSR0H  
MOVLW  
MOVWF  
BUFFER_ADDR_LOW  
FSR0L  
PROGRAM_LOOP  
MOVLW  
8
; number of bytes in holding register  
MOVWF  
COUNTER  
DS39605F-page 64  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
WRITE_WORD_TO_HREGS  
MOVF  
MOVWF  
TBLWT+*  
POSTINC0, W  
TABLAT  
; get low byte of buffer data and increment FSR0  
; present data to table latch  
; short write  
; to internal TBLWT holding register, increment  
TBLPTR  
DECFSZ COUNTER  
; loop until buffers are full  
GOTO  
PROGRAM_MEMORY  
WRITE_WORD_TO_HREGS  
BCF  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
; disable interrupts  
; required sequence  
; write 55H  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write AAH  
; start program (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
; loop until done  
DECFSZ COUNTER_HI  
GOTO PROGRAM_LOOP  
BCF  
EECON1, WREN  
; disable write to memory  
6.5.2  
WRITE VERIFY  
6.6  
Flash Program Operation During  
Code Protection  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
See Section 19.0 “Special Features of the CPU” for  
details on code protection of Flash program memory.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. The WRERR bit is set when a  
write operation is interrupted by a MCLR Reset, or a  
WDT Time-out Reset during normal operation. In these  
situations, users can check the WRERR bit and rewrite  
the location.  
TABLE 6-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Value on  
Value on:  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) --00 0000 --00 0000  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000u  
TABLAT  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
EECON2 EEPROM Control Register 2 (not a physical register)  
Program Memory Table Latch  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
EECON1  
IPR2  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
WREN  
LVDIP  
LVDIF  
LVDIE  
WR  
RD  
xx-0 x000 uu-0 u000  
1--1 -11- 1--1 -11-  
0--0 -00- 0--0 -00-  
0--0 -00- 0--0 -00-  
TMR3IP  
TMR3IF  
TMR3IE  
PIR2  
PIE2  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
© 2007 Microchip Technology Inc.  
DS39605F-page 65  
PIC18F1220/1320  
NOTES:  
DS39605F-page 66  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Control bit, CFGS, determines if the access will be to  
the configuration registers or to program memory/data  
EEPROM memory. When set, subsequent operations  
access configuration registers. When CFGS is clear,  
the EEPGD bit selects either program Flash or data  
EEPROM memory.  
7.0  
DATA EEPROM MEMORY  
The data EEPROM is readable and writable during  
normal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
The WREN bit enables and disables erase and write  
operations. When set, erase and write operations are  
allowed. When clear, erase and write operations are  
disabled – the WR bit cannot be set while the WREN bit  
is clear. This mechanism helps to prevent accidental  
writes to memory due to errant (unexpected) code  
execution.  
There are four SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
Firmware should keep the WREN bit clear at all times,  
except when starting erase or write operations. Once  
firmware has set the WR bit, the WREN bit may be  
cleared. Clearing the WREN bit will not affect the  
operation in progress.  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed.  
These devices have 256 bytes of data EEPROM with  
an address range from 00h to FFh.  
The WRERR bit is set when a write operation is  
interrupted by a Reset. In these situations, the user can  
check the WRERR bit and rewrite the location. It is  
necessary to reload the data and address registers  
(EEDATA and EEADR), as these registers have  
cleared as a result of the Reset.  
The EEPROM data memory is rated for high erase/  
write cycle endurance. A byte write automatically  
erases the location and writes the new data (erase-  
before-write). The write time is controlled by an on-chip  
timer. The write time will vary with voltage and  
temperature, as well as from chip to chip. Please  
refer to parameter D122 (Table 22-1 in Section 22.0  
“Electrical Characteristics”) for exact limits.  
Control bits, RD and WR, start read and erase/write  
operations, respectively. These bits are set by firmware  
and cleared by hardware at the completion of the  
operation.  
The RD bit cannot be set when accessing program  
memory (EEPGD = 1). Program memory is read using  
table read instructions. See Section 6.1 “Table Reads  
and Table Writes” regarding table reads.  
7.1  
EEADR  
The address register can address 256 bytes of data  
EEPROM.  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when write is complete. It must be  
cleared in software.  
7.2  
EECON1 and EECON2 Registers  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bit, EEPGD, determines if the access will be to  
program or data EEPROM memory. When clear,  
operations will access the data EEPROM memory.  
When set, program memory is accessed.  
© 2007 Microchip Technology Inc.  
DS39605F-page 67  
PIC18F1220/1320  
REGISTER 7-1:  
EECON1 REGISTER  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access program Flash memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access configuration or calibration registers  
0= Access program Flash or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: EEPROM Error Flag bit  
1= A write operation was prematurely terminated  
(MCLR or WDT Reset during self-timed erase or program operation)  
0= The write operation completed normally  
Note:  
When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Erase/Write Enable bit  
1= Allows erase/write cycles  
0= Inhibits erase/write cycles  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle, or a program memory erase cycle, or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle is completed  
bit 0  
RD: Read Control bit  
1= Initiates a memory read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Read completed  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
S = Settable only  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
DS39605F-page 68  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
After a write sequence has been initiated, EECON1,  
EEADR and EEDATA cannot be modified. The WR bit  
will be inhibited from being set unless the WREN bit is  
set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
7.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD  
control bit (EECON1<7>) and then set control bit, RD  
(EECON1<0>). The data is available for the very next  
instruction cycle; therefore, the EEDATA register can  
be read by the next instruction. EEDATA will hold this  
value until another read operation, or until it is written to  
by the user (during a write operation).  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Interrupt Flag bit  
(EEIF) is set. The user may either enable this interrupt  
or poll this bit. EEIF must be cleared by software.  
7.5  
Write Verify  
7.4  
Writing to the Data EEPROM  
Memory  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
To write an EEPROM data location, the address must  
first be written to the EEADR register and the data  
written to the EEDATA register. The sequence in  
Example 7-2 must be followed to initiate the write cycle.  
The write will not begin if this sequence is not exactly  
followed (write 55h to EECON2, write AAh to EECON2,  
then set WR bit) for each byte. It is strongly recom-  
mended that interrupts be disabled during this  
code segment.  
7.6  
Protection Against Spurious Write  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times, except when updating the  
EEPROM. The WREN bit is not cleared by hardware.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch or software malfunction.  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOVLW  
MOVWF  
BCF  
BSF  
MOVF  
DATA_EE_ADDR  
EEADR  
EECON1, EEPGD  
EECON1, RD  
EEDATA, W  
;
; Data Memory Address to read  
; Point to DATA memory  
; EEPROM Read  
; W = EEDATA  
EXAMPLE 7-2:  
DATA EEPROM WRITE  
MOVLW  
MOVWF  
DATA_EE_ADDR  
EEADR  
;
; Data Memory Address to write  
MOVLW  
MOVWF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
DATA_EE_DATA  
EEDATA  
EECON1, EEPGD  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
;
; Data Memory Value to write  
; Point to DATA memory  
; Enable writes  
; Disable Interrupts  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Enable Interrupts  
Required  
Sequence  
BSF  
SLEEP  
BCF  
; Wait for interrupt to signal write complete  
; Disable writes  
EECON1, WREN  
© 2007 Microchip Technology Inc.  
DS39605F-page 69  
PIC18F1220/1320  
7.7  
Operation During Code-Protect  
7.8  
Using the Data EEPROM  
Data EEPROM memory has its own code-protect bits in  
configuration words. External read and write  
operations are disabled if either of these mechanisms  
are enabled.  
The data EEPROM is a high endurance, byte address-  
able array that has been optimized for the storage of fre-  
quently changing information (e.g., program variables or  
other data that are updated often). Frequently changing  
values will typically be updated more often than specifi-  
cation D124. If this is not the case, an array refresh must  
be performed. For this reason, variables that change  
infrequently (such as constants, IDs, calibration, etc.)  
should be stored in Flash program memory.  
The microcontroller itself can both read and write to the  
internal data EEPROM, regardless of the state of the  
code-protect configuration bit. Refer to Section 19.0  
“Special Features of the CPU” for additional  
information.  
A simple data EEPROM refresh routine is shown in  
Example 7-3.  
Note: If data EEPROM is only used to store  
constants and/or data that changes rarely,  
an array refresh is likely not required. See  
specification D124.  
EXAMPLE 7-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
BCF  
BCF  
BCF  
BSF  
EEADR  
; Start at address 0  
EECON1, CFGS  
EECON1, EEPGD  
INTCON, GIE  
EECON1, WREN  
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Wait for write to complete  
Loop  
BSF  
EECON1, RD  
55h  
EECON2  
AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BTFSC  
BRA  
INCFSZ EEADR, F  
; Increment address  
BRA  
Loop  
; Not zero, do it again  
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
EEADR  
EEDATA  
GIE/GIEH PEIE/GIEL TMR0IE  
EEPROM Address Register  
EEPROM Data Register  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1  
IPR2  
EEPGD  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
RD  
xx-0 x000 uu-0 u000  
1--1 -11- 1--1 -11-  
0--0 -00- 0--0 -00-  
0--0 -00- 0--0 -00-  
LVDIP  
LVDIF  
LVDIE  
TMR3IP  
TMR3IF  
TMR3IE  
PIR2  
PIE2  
Legend: x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used during Flash/EEPROM access.  
DS39605F-page 70  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
8.0  
8.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
• Higher computational throughput  
• Reduces code size requirements for multiply  
algorithms  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18F1220/1320 devices. By making the multiply  
a hardware operation, it completes in a single instruc-  
tion cycle. This is an unsigned multiply that gives a  
16-bit result. The result is stored into the 16-bit product  
register pair (PRODH:PRODL). The multiplier does not  
affect any flags in the Status register.  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
Table 8-1 shows a performance comparison between  
Enhanced devices using the single-cycle hardware  
multiply and performing the same function without the  
hardware multiply.  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 μs  
100 ns  
9.1 μs  
600 ns  
24.2 μs  
2.8 μs  
25.4 μs  
4 μs  
27.6 μs  
400 ns  
36.4 μs  
2.4 μs  
69 μs  
1 μs  
91 μs  
6 μs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
Without hardware multiply  
Hardware multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 μs  
11.2 μs  
102.6 μs  
16 μs  
242 μs  
28 μs  
254 μs  
40 μs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
8.2  
Operation  
Example 8-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
MOVF  
MULWF  
ARG1, W  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
© 2007 Microchip Technology Inc.  
DS39605F-page 71  
PIC18F1220/1320  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 8-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
(-1 ARG1H<7> ARG2H:ARG2L 2  
16  
RES3:RES0  
16  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 2 ) +  
)
16  
8
(ARG1H ARG2L 2 ) +  
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L)  
8
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3,F  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
ARG1H, W  
;
MULWF  
ARG2L  
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
;
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs’ Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
ARG1H, W  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39605F-page 72  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
compatible with PIC mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit,  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit, which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in Compatibility mode.  
9.0  
INTERRUPTS  
The PIC18F1220/1320 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high priority  
level or a low priority level. The high priority interrupt  
vector is at 000008h and the low priority interrupt vector  
is at 000018h. High priority interrupt events will  
interrupt any low priority interrupts that may be in  
progress.  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High priority interrupt sources can interrupt a low  
priority interrupt. Low priority interrupts are not  
processed while high priority interrupts are in progress.  
There are ten registers which are used to control  
interrupt operation. These registers are:  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
• PIR1, PIR2  
• PIE1, PIE2  
• IPR1, IPR2  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
It is recommended that the Microchip header files  
supplied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or  
GIEL, if priority levels are used), which re-enables  
interrupts.  
In general, each interrupt source has three bits to  
control its operation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
• Priority bit to select high priority or low priority  
(INT0 has no priority bit and is always high priority)  
Note:  
Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all  
interrupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will  
vector immediately to address 000008h or 000018h,  
depending on the priority bit setting. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
© 2007 Microchip Technology Inc.  
DS39605F-page 73  
PIC18F1220/1320  
FIGURE 9-1:  
INTERRUPT LOGIC  
Wake-up if in Low-Power Mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
INT0IF  
INT0IE  
GIEH/GIE  
ADIF  
ADIE  
ADIP  
IPEN  
IPEN  
RCIF  
RCIE  
RCIP  
GIEL/PEIE  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
ADIF  
ADIE  
ADIP  
RBIF  
RBIE  
RBIP  
GIEL\PEIE  
GIE\GIEH  
RCIF  
RCIE  
RCIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS39605F-page 74  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
9.1  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
interrupt enable bit. User software should  
ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt.  
This feature allows for software polling.  
The INTCON registers are readable and writable  
registers, which contain various enable, priority and  
flag bits.  
REGISTER 9-1:  
INTCON REGISTER  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
GIE/GIEH PEIE/GIEL  
bit 7  
TMR0IE  
INT0IE  
TMR0IF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note:  
A mismatch condition will continue to set this bit. Reading PORTB will end the  
mismatch condition and allow the bit to be cleared.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 75  
PIC18F1220/1320  
REGISTER 9-2:  
INTCON2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
INTEDG0 INTEDG1 INTEDG2  
TMR0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global interrupt enable bit. User software  
should ensure the appropriate interrupt flag bits are clear prior to enabling an  
interrupt. This feature allows for software polling.  
DS39605F-page 76  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 9-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note:  
Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global interrupt enable bit. User software  
should ensure the appropriate interrupt flag bits are clear prior to enabling an  
interrupt. This feature allows for software polling.  
© 2007 Microchip Technology Inc.  
DS39605F-page 77  
PIC18F1220/1320  
9.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are two Peripheral Interrupt  
Request (Flag) registers (PIR1, PIR2).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt and after servicing  
that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
U-0  
R/W-0  
ADIF  
R-0  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
bit 5  
bit 4  
RCIF: EUSART Receive Interrupt Flag bit  
1= The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The EUSART receive buffer is empty  
TXIF: EUSART Transmit Interrupt Flag bit  
1= The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The EUSART transmit buffer is full  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605F-page 78  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
OSCFIF  
bit 7  
U-0  
U-0  
R/W-0  
EEIF  
U-0  
R/W-0  
LVDIF  
R/W-0  
U-0  
TMR3IF  
bit 0  
bit 7  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTOSC (must be cleared in software)  
0= System clock operating  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared in software)  
0= The write operation is not complete or has not been started  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low-Voltage Detect trip point  
bit 1  
bit 0  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 79  
PIC18F1220/1320  
9.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are two Peripheral  
Interrupt Enable registers (PIE1, PIE2). When  
IPEN = 0, the PEIE bit must be set to enable any of  
these peripheral interrupts.  
REGISTER 9-6:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
U-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
U-0  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5  
bit 4  
RCIE: EUSART Receive Interrupt Enable bit  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
TXIE: EUSART Transmit Interrupt Enable bit  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
bit 1  
bit 0  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605F-page 80  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 9-7:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSCFIE  
bit 7  
U-0  
U-0  
R/W-0  
EEIE  
U-0  
R/W-0  
LVDIE  
R/W-0  
U-0  
TMR3IE  
bit 0  
bit 7  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 1  
bit 0  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enabled  
0= Disabled  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 81  
PIC18F1220/1320  
9.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are two Peripheral  
Interrupt Priority registers (IPR1, IPR2). Using the  
priority bits requires that the Interrupt Priority Enable  
(IPEN) bit be set.  
REGISTER 9-8:  
IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
U-0  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
U-0  
R/W-1  
R/W-1  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
TMR2IP  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
RCIP: EUSART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: EUSART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605F-page 82  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 9-9:  
IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
OSCFIP  
bit 7  
U-0  
U-0  
R/W-1  
EEIP  
U-0  
R/W-1  
LVDIP  
R/W-1  
U-0  
TMR3IP  
bit 0  
bit 7  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 83  
PIC18F1220/1320  
9.5  
RCON Register  
The RCON register contains bits used to determine the  
cause of the last Reset or wake-up from a low-power  
mode. RCON also contains the bit that enables  
interrupt priorities (IPEN).  
REGISTER 9-10: RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 5-3.  
TO: Watchdog Time-out Flag bit  
For details of bit operation, see Register 5-3.  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 5-3.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 5-3.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 5-3.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
DS39605F-page 84  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
9.6  
INTn Pin Interrupts  
9.7  
TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/INT2 pins are edge-triggered: either rising if the  
corresponding INTEDGx bit is set in the INTCON2 reg-  
ister, or falling if the INTEDGx bit is clear. When a valid  
edge appears on the RBx/INTx pin, the corresponding  
flag bit, INTxF, is set. This interrupt can be disabled by  
clearing the corresponding enable bit, INTxE. Flag bit,  
INTxF, must be cleared in software in the Interrupt  
Service Routine before re-enabling the interrupt. All  
external interrupts (INT0, INT1 and INT2) can wake-up  
the processor from low-power modes if bit INTxE was  
set prior to going into low-power modes. If the Global  
Interrupt Enable bit, GIE, is set, the processor will  
branch to the interrupt vector following wake-up.  
In 8-bit mode (which is the default), an overflow  
(FFh 00h) in the TMR0 register will set flag bit,  
TMR0IF. In 16-bit mode, an overflow (FFFFh 0000h)  
in the TMR0H:TMR0L registers will set flag bit,  
TMR0IF. The interrupt can be enabled/disabled by  
setting/clearing enable bit, TMR0IE (INTCON<5>).  
Interrupt priority for Timer0 is determined by the value  
contained in the interrupt priority bit, TMR0IP  
(INTCON2<2>). See Section 11.0 “Timer0 Module”  
for further details on the Timer0 module.  
9.8  
PORTB Interrupt-on-Change  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the interrupt priority bits, INT1IP  
(INTCON3<6>) and INT2IP (INTCON3<7>). There is  
no priority bit associated with INT0. It is always a high  
priority interrupt source.  
9.9  
Context Saving During Interrupts  
During interrupts, the return PC address is saved on the  
stack. Additionally, the WREG, Status and BSR registers  
are saved on the fast return stack. If a fast return from  
interrupt is not used (see Section 5.3 “Fast Register  
Stack”), the user may need to save the WREG, Status  
and BSR registers on entry to the Interrupt Service  
Routine. Depending on the user’s application, other  
registers may also need to be saved. Example 9-1  
saves and restores the WREG, Status and BSR  
registers during an Interrupt Service Routine.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
© 2007 Microchip Technology Inc.  
DS39605F-page 85  
PIC18F1220/1320  
NOTES:  
DS39605F-page 86  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The Data Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register read and write the latched output value for  
PORTA.  
10.0 I/O PORTS  
Depending on the device selected and features  
enabled, there are up to five ports available. Some pins  
of the I/O ports are multiplexed with an alternate  
function from the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin.  
The sixth pin of PORTA (MCLR/VPP/RA5) is an input  
only pin. Its operation is controlled by the MCLRE  
configuration bit in Configuration Register 3H  
(CONFIG3H<7>). When selected as a port pin  
(MCLRE = 0), it functions as a digital input only pin; as  
such, it does not have TRIS or LAT bits associated with  
its operation. Otherwise, it functions as the device’s  
Master Clear input. In either configuration, RA5 also  
functions as the programming voltage input during  
programming.  
Each port has three registers for its operation. These  
registers are:  
• TRIS register (data direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch)  
The Data Latch (LATA) register is useful for read-  
modify-write operations on the value that the I/O pins  
are driving.  
Note:  
On a Power-on Reset, RA5 is enabled as a  
digital input only if Master Clear functionality  
is disabled.  
A simplified model of a generic I/O port without the  
interfaces to other peripherals is shown in Figure 10-1.  
Pins RA6 and RA7 are multiplexed with the main oscil-  
lator pins; they are enabled as oscillator or I/O pins by  
the selection of the main oscillator in Configuration  
Register 1H (see Section 19.1 “Configuration Bits”  
for details). When they are not used as port pins, RA6  
and RA7 and their associated TRIS and LAT bits are  
read as ‘0’.  
FIGURE 10-1:  
GENERIC I/O PORT  
OPERATION  
RD LAT  
Data  
Bus  
D
Q
The other PORTA pins are multiplexed with analog  
inputs, the analog VREF+ and VREF- inputs and the LVD  
input. The operation of pins RA3:RA0 as A/D converter  
inputs is selected by clearing/setting the control bits in  
the ADCON1 register (A/D Control Register 1).  
I/O pin(1)  
WR LAT  
or Port  
CK  
Data Latch  
D
Q
Note:  
On a Power-on Reset, RA3:RA0 are  
configured as analog inputs and read as  
0’. RA4 is always a digital pin.  
WR TRIS  
RD TRIS  
CK  
TRIS Latch  
Input  
Buffer  
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open-drain output. All other PORTA pins have TTL  
input levels and full CMOS output drivers.  
Q
D
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
EN  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
EXAMPLE 10-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
LATA  
0x7F  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
10.1 PORTA, TRISA and LATA  
Registers  
CLRF  
PORTA is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
ADCON1 ; for digital inputs  
0xD0  
; Value used to  
; initialize data  
; direction  
; Set RA<3:0> as outputs  
; RA<7:4> as inputs  
MOVWF  
TRISA  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
© 2007 Microchip Technology Inc.  
DS39605F-page 87  
PIC18F1220/1320  
FIGURE 10-2:  
BLOCK DIAGRAM OF  
RA3:RA0 PINS  
FIGURE 10-4:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
RD LATA  
RD LATA  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
WR LATA  
or  
PORTA  
WR LATA  
or  
PORTA  
VDD  
Q
I/O pin(1)  
Q
Data Latch  
CK  
CK  
P
N
Data Latch  
I/O pin(1)  
N
D
Q
Q
VSS  
D
Q
WR TRISA  
RD TRISA  
Schmitt  
Trigger  
Input  
WR TRISA  
CK  
VSS  
Q
CK  
Analog  
Input  
Mode  
TRIS Latch  
TRIS Latch  
Buffer  
RD TRISA  
Schmitt  
Trigger  
Input  
Q
D
Q
D
Buffer  
EN  
EN  
RD PORTA  
RD PORTA  
TMR0 Clock Input  
Note 1: I/O pins have protection diodes to VDD and VSS.  
To A/D Converter and LVD Modules  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 10-5:  
BLOCK DIAGRAM OF  
OSC1/CLKI/RA7 PIN  
FIGURE 10-3:  
BLOCK DIAGRAM OF  
OSC2/CLKO/RA6 PIN  
RA7 Enable  
RA6 Enable  
To Oscillator  
Data  
Bus  
Data  
Bus  
RD LATA  
RD LATA  
D
WR LATA  
or  
Q
Q
D
WR LATA  
or  
Q
Q
VDD  
P
VDD  
P
PORTA  
PORTA  
CK  
CK  
Data Latch  
Data Latch  
I/O pin(1)  
N
N
I/O pin(1)  
D
Q
D
Q
WR  
TRISA  
WR  
TRISA  
VSS  
VSS  
CK  
Q
CK  
Q
TRIS Latch  
TRIS Latch  
Schmitt  
Trigger  
Input  
RD  
TRISA  
RD  
TRISA  
Schmitt  
Trigger  
Input  
Buffer  
ECIO or  
RA7  
Enable  
RCIO  
Enable  
Buffer  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS39605F-page 88  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 10-6:  
MCLR/VPP/RA5 PIN BLOCK DIAGRAM  
MCLRE  
Data Bus  
MCLR/VPP/RA5  
RD TRISA  
Schmitt  
Trigger  
RD LATA  
Latch  
Q
D
EN  
RD PORTA  
High-Voltage Detect  
HV  
Internal MCLR  
Filter  
Low-Level  
MCLR Detect  
TABLE 10-1: PORTA FUNCTIONS  
Name  
RA0/AN0  
Bit#  
Buffer  
Function  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or analog input.  
RA1/AN1/LVDIN  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output port pin, analog input or Low-Voltage Detect input.  
Input/output port pin, analog input or VREF-.  
Input/output port pin, analog input or VREF+.  
Input/output port pin or external clock input for Timer0.  
Output is open-drain type.  
MCLR/VPP/RA5  
bit 5  
ST  
Master Clear input or programming voltage input (if MCLR is enabled); input  
only port pin or programming voltage input (if MCLR is disabled).  
OSC2/CLKO/RA6  
OSC1/CLKI/RA7  
bit 6  
bit 7  
ST  
ST  
OSC2, clock output or I/O pin.  
OSC1, clock input or I/O pin.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
LATA  
RA7(1)  
LATA7(1) LATA6(1)  
TRISA7(1) TRISA6(1)  
RA6(1)  
RA5(2)  
RA4  
RA3  
RA2  
RA1  
RA0 xx0x 0000 uu0u 0000  
xx-x xxxx uu-u uuuu  
11-1 1111 11-1 1111  
LATA Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1  
PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 -000 0000 -000 0000  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: RA7:RA6 and their associated latch and data direction bits are enabled as I/O pins based on oscillator  
configuration; otherwise, they are read as ‘0’.  
2: RA5 is an input only if MCLR is disabled.  
© 2007 Microchip Technology Inc.  
DS39605F-page 89  
PIC18F1220/1320  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
10.2 PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
b) Clear flag bit, RBIF.  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit, RBIF, to be cleared.  
The Data Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register read and write the latched output value for  
PORTB.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
LATB  
0x70  
; Initialize PORTB by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
FIGURE 10-7:  
BLOCK DIAGRAM OF  
RB0/AN4/INT0 PIN  
CLRF  
VDD  
RBPU(2)  
Weak  
Pull-up  
P
Analog Input Mode  
Data Bus  
MOVLW  
MOVWF  
MOVLW  
; Set RB0, RB1, RB4 as  
ADCON1 ; digital I/O pins  
0xCF  
D
Q
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
I/O  
WR LATB  
or PORTB  
pin(1)  
CK  
Data Latch  
MOVWF  
TRISB  
D
Q
WR TRISB  
CK  
TRIS Latch  
TTL  
Input  
Buffer  
Pins RB0-RB2 are multiplexed with INT0-INT2; pins  
RB0, RB1 and RB4 are multiplexed with A/D inputs;  
pins RB1 and RB4 are multiplexed with EUSART; and  
pins RB2, RB3, RB6 and RB7 are multiplexed with  
ECCP.  
RD TRISB  
RD LATB  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit, RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
Q
D
EN  
RD PORTB  
Schmitt Trigger  
Buffer  
INTx  
Note:  
On a Power-on Reset, RB4:RB0 are  
configured as analog inputs by default and  
read as ‘0’; RB7:RB5 are configured as  
digital inputs.  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2<7>).  
Four of the PORTB pins (RB7:RB4) have an interrupt-  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are OR’ed together to generate the RB Port Change  
Interrupt with Flag bit, RBIF (INTCON<0>).  
DS39605F-page 90  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 10-8:  
BLOCK DIAGRAM OF RB1/AN5/TX/CK/INT1 PIN  
EUSART Enable  
1
0
TX/CK Data  
TX/CK TRIS  
VDD  
Weak  
RBPU(2)  
Analog Input Mode  
P
Pull-up  
Data Latch  
Data Bus  
D
Q
RB1 pin(1)  
WR LATB  
or  
PORTB  
CK  
TRIS Latch  
D
Q
WR TRISB  
CK  
TTL  
Input  
Buffer  
RD TRISB  
RD LATB  
Q
D
RD PORTB  
EN  
RD PORTB  
Schmitt  
Trigger  
Input  
Buffer  
INT1/CK Input  
Analog Input  
Mode  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
© 2007 Microchip Technology Inc.  
DS39605F-page 91  
PIC18F1220/1320  
FIGURE 10-9:  
BLOCK DIAGRAM OF RB2/P1B/INT2 PIN  
VDD  
Weak  
RBPU(2)  
P
Pull-up  
P1B Enable  
P1B Data  
1
0
P1B/D Tri-State  
Auto-Shutdown  
Data Latch  
Data Bus  
D
Q
RB2 pin(1)  
WR LATB or  
PORTB  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRISB  
CK  
RD TRISB  
RD LATB  
D
Q
RD PORTB  
EN  
Schmitt  
Trigger  
RD PORTB  
INT2 Input  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
DS39605F-page 92  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 10-10:  
BLOCK DIAGRAM OF RB3/CCP1/P1A PIN  
ECCP1(3) pin Output Enable  
ECCP1(4) pin Input Enable  
RBPU(2)  
VDD  
Weak  
P
Pull-up  
P1A/C Tri-State Auto-Shutdown  
ECCP1/P1A Data Out  
VDD  
P
1
0
RD LATB  
Data Bus  
D
Q
WR LATB or  
PORTB  
RB3 pin  
Q
CK  
Data Latch  
N
D
Q
Q
VSS  
WR TRISB  
CK  
TTL Input  
Buffer  
TRIS Latch  
RD TRISB  
Q
D
EN  
RD PORTB  
ECCP1 Input  
Schmitt  
Trigger  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
3: ECCP1 pin output enable active for any PWM mode and Compare mode, where CCP1M<3:0> = 1000or 1001.  
4: ECCP1 pin input enable active for Capture mode only.  
© 2007 Microchip Technology Inc.  
DS39605F-page 93  
PIC18F1220/1320  
FIGURE 10-11:  
BLOCK DIAGRAM OF RB4/AN6/RX/DT/KBI0 PIN  
EUSART Enabled  
VDD  
RBPU(2)  
Analog Input Mode  
DT TRIS  
Weak  
P
Pull-up  
DT Data  
1
0
RD LATB  
Data Bus  
D
Q
Q
WR LATB or  
PORTB  
RB4 pin  
CK  
Data Latch  
D
Q
Q
WR TRISB  
CK  
TRIS Latch  
TTL  
Input  
Buffer  
RD TRISB  
Q
D
Q1  
EN  
RD PORTB  
Set RBIF  
Q
D
From other  
RB7:RB4 pins  
RD PORTB  
Q3  
EN  
Schmitt  
Trigger  
RX/DT Input  
Analog Input  
Mode  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
DS39605F-page 94  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 10-12:  
BLOCK DIAGRAM OF RB5/PGM/KBI1 PIN  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
D
Q
I/O pin(1)  
WR LATB  
or PORTB  
CK  
TRIS Latch  
D
Q
WR TRISB  
TTL  
CK  
Input  
Buffer  
ST  
Buffer  
RD TRISB  
RD LATB  
Latch  
Q
D
RD PORTB  
Set RBIF  
EN  
Q1  
Q
D
RD PORTB  
Q3  
From other  
RB7:RB5 and  
RB4 pins  
EN  
RB7:RB5 in Serial Programming Mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit  
(INTCON2<7>).  
© 2007 Microchip Technology Inc.  
DS39605F-page 95  
PIC18F1220/1320  
FIGURE 10-13:  
BLOCK DIAGRAM OF RB6/PGC/T1OSO/T13CKI/P1C/KBI2 PIN  
ECCP1 P1C/D Enable  
VDD  
Weak  
RBPU(2)  
P
Pull-up  
P1B/D Tri-State Auto-Shutdown  
P1C Data  
1
0
RD LATB  
Data Bus  
D
Q
Q
WR LATB or  
PORTB  
RB6 pin  
CK  
Data Latch  
D
Q
Q
WR TRISB  
CK  
Timer1  
Oscillator  
TRIS Latch  
From RB7 pin  
TTL  
Buffer  
Schmitt  
Trigger  
RD TRISB  
T1OSCEN  
Q
D
Q1  
EN  
RD PORTB  
Set RBIF  
Q
D
From other  
RB7:RB4 pins  
RD PORTB  
Q3  
EN  
PGC  
T13CKI  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
DS39605F-page 96  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 10-14:  
BLOCK DIAGRAM OF RB7/PGD/T1OSI/P1D/KBI3 PIN  
VDD  
Weak  
ECCP1 P1C/D Enable  
RBPU(2)  
P
Pull-up  
P1B/D Tri-State Auto-Shutdown  
P1D Data  
To RB6 pin  
1
0
RD LATB  
Data Bus  
D
Q
Q
WR LATB or  
PORTB  
RB7 pin  
CK  
Data Latch  
D
Q
Q
WR TRISB  
T1OSCEN  
CK  
TRIS Latch  
TTL  
Input  
Buffer  
Schmitt  
Trigger  
RD TRISB  
Q
D
Q1  
EN  
RD PORTB  
Set RBIF  
Q
D
From other  
RB7:RB4 pins  
RD PORTB  
Q3  
EN  
PGD  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
© 2007 Microchip Technology Inc.  
DS39605F-page 97  
PIC18F1220/1320  
TABLE 10-3: PORTB FUNCTIONS  
Name  
RB0/AN4/INT0  
Bit#  
Buffer  
Function  
bit 0  
TTL(1)/ST(2) Input/output port pin, analog input or external interrupt  
input 0.  
RB1/AN5/TX/CK/INT1  
bit 1  
TTL(1)/ST(2) Input/output port pin, analog input, Enhanced USART  
Asynchronous Transmit, Addressable USART  
Synchronous Clock or external interrupt input 1.  
RB2/P1B/INT2  
bit 2  
bit 3  
bit 4  
TTL(1)/ST(2) Input/output port pin or external interrupt input 2.  
Internal software programmable weak pull-up.  
TTL(1)/ST(3) Input/output port pin or Capture1 input/Compare1 output/  
PWM output. Internal software programmable weak pull-up.  
TTL(1)/ST(4) Input/output port pin (with interrupt-on-change), analog input,  
Enhanced USART Asynchronous Receive or Addressable  
USART Synchronous Data.  
RB3/CCP1/P1A  
RB4/AN6/RX/DT/KBI0  
RB5/PGM/KBI1  
bit 5  
TTL(1)/ST(5) Input/output port pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
Low-Voltage ICSP enable pin.  
RB6/PGC/T1OSO/T13CKI/  
P1C/KBI2  
bit 6 TTL(1)/ST(5,6) Input/output port pin (with interrupt-on-change), Timer1/  
Timer3 clock input or Timer1oscillator output.  
Internal software programmable weak pull-up.  
Serial programming clock.  
RB7/PGD/T1OSI/P1D/KBI3  
bit 7  
TTL(1)/ST(5) Input/output port pin (with interrupt-on-change) or Timer1  
oscillator input. Internal software programmable weak pull-up.  
Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a TTL input when configured as a port input pin.  
2: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
3: This buffer is a Schmitt Trigger input when configured as the CCP1 input.  
4: This buffer is a Schmitt Trigger input when used as EUSART receive input.  
5: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
6: This buffer is a TTL input when used as the T13CKI input.  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxq qqqq  
xxxx xxxx  
1111 1111  
0000 000x  
1111 -1-1  
uuuu uuuu  
uuuu uuuu  
1111 1111  
0000 000u  
1111 -1-1  
11-0 0-00  
-000 0000  
LATB Data Output Register  
TRISB  
PORTB Data Direction Register  
GIE/GIEH PEIE/GIEL TMR0IE  
INTCON  
INTCON2  
INTCON3  
ADCON1  
Legend:  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
RBIP  
RBPU  
INT2IP  
INTEDG0 INTEDG1 INTEDG2  
TMR0IP  
INT1IP  
PCFG6  
INT2IE  
PCFG4  
INT1IE  
INT2IF  
INT1IF 11-0 0-00  
PCFG5  
PCFG3 PCFG2 PCFG1 PCFG0 -000 0000  
x= unknown, u= unchanged, q= value depends on condition. Shaded cells are not used by PORTB.  
DS39605F-page 98  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Figure 11-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
11.0 TIMER0 MODULE  
The Timer0 module has the following features:  
• Software selectable as an 8-bit or 16-bit timer/  
counter  
The T0CON register (Register 11-1) is a readable and  
writable register that controls all the aspects of Timer0,  
including the prescale selection.  
• Readable and writable  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
• Interrupt-on-overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
bit 2-0 T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 Prescale value  
110= 1:128 Prescale value  
101= 1:64 Prescale value  
100= 1:32 Prescale value  
011= 1:16 Prescale value  
010= 1:8 Prescale value  
001= 1:4 Prescale value  
000= 1:2 Prescale value  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 99  
PIC18F1220/1320  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
TMR0  
FOSC/4  
0
1
RA4/T0CKI  
pin  
8
1
Sync with  
Internal  
Clocks  
Programmable  
Prescaler  
0
(2 TCY Delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS  
Note:  
Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
RA4/T0CKI  
pin  
FOSC/4  
0
1
Sync with  
Internal  
Clocks  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
1
TMR0L  
Programmable  
Prescaler  
0
8
(2 TCY Delay)  
T0SE  
3
Read TMR0L  
Write TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note:  
Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale.  
DS39605F-page 100  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
11.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on-the-fly” during  
program execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
11.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h in 8-bit mode, or FFFFh  
to 0000h in 16-bit mode. This overflow sets the TMR0IF  
bit. The interrupt can be masked by clearing the  
TMR0IE bit. The TMR0IF bit must be cleared in soft-  
ware by the Timer0 module Interrupt Service Routine  
before re-enabling this interrupt. The TMR0 interrupt  
cannot awaken the processor from Low-Power Sleep  
mode, since the timer requires clock cycles even when  
T0CS is set.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the  
rising edge.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
11.4 16-Bit Mode Timer Reads  
and Writes  
11.2 Prescaler  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 11-2). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16 bits of Timer0, without  
having to verify that the read of the high and low byte  
were valid due to a rollover between successive reads  
of the high and low byte.  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not readable or writable.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, x, ..., etc.) will clear the prescaler  
count.  
A write to the high byte of Timer0 must also take place  
through the TMR0H Buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16 bits of Timer0 to be  
updated at once.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
TMR0H  
INTCON  
T0CON  
TRISA  
Timer0 Module Low Byte Register  
Timer0 Module High Byte Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 000x 0000 000u  
1111 1111 1111 1111  
11-1 1111 11-1 1111  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
PSA  
TMR0IF INT0IF  
T0PS2 T0PS1  
RBIF  
TMR0ON  
T08BIT  
T0CS  
T0SE  
T0PS0  
(1)  
(1)  
RA7  
RA6  
PORTA Data Direction Register  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as 0. Shaded cells are not used by Timer0.  
Note 1: RA6 and RA7 are enabled as I/O pins, depending on the oscillator mode selected in Configuration Word 1H.  
© 2007 Microchip Technology Inc.  
DS39605F-page 101  
PIC18F1220/1320  
NOTES:  
DS39605F-page 102  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Register 12-1 details the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module and contains the Timer1 Oscillator Enable bit  
(T1OSCEN). Timer1 can be enabled or disabled by  
setting or clearing control bit, TMR1ON (T1CON<0>).  
12.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
• 16-bit timer/counter  
(two 8-bit registers: TMR1H and TMR1L)  
The Timer1 oscillator can be used as a secondary clock  
source in power managed modes. When the T1RUN bit  
is set, the Timer1 oscillator is providing the system  
clock. If the Fail-Safe Clock Monitor is enabled and the  
Timer1 oscillator fails while providing the system clock,  
polling the T1RUN bit will indicate whether the clock is  
being provided by the Timer1 oscillator or another  
source.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module special event trigger  
• Status of system clock operation  
Figure 12-1 is a simplified block diagram of the Timer1  
module.  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications, with only a minimal  
addition of external components and code overhead.  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
bit 6  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of TImer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
T1RUN: Timer1 System Clock Status bit  
1= System clock is derived from Timer1 oscillator  
0= System clock is derived from another source  
bit 5-4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RB6/PGC/T1OSO/T13CKI/P1C/KBI2 (on the rising edge)  
0= Internal clock (Fosc/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 103  
PIC18F1220/1320  
When TMR1CS = 0, Timer1 increments every instruc-  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input, or the  
Timer1 oscillator, if enabled.  
12.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RB7/PGD/T1OSI/P1D/KBI3 and RB6/T1OSO/  
T13CKI/P1C/KBI2 pins become inputs. That is, the  
TRISB7:TRISB6 values are ignored and the pins read  
as ‘0’.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
Timer1 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (see  
Section 15.4.4 “Special Event Trigger”).  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag bit  
Synchronized  
TMR1  
CLR  
0
Clock Input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
On/Off  
T1SYNC  
1
T13CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Oscillator  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
(1)  
0
2
Peripheral Clocks  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off. This eliminates  
power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
TMR1  
8
0
CLR  
Timer 1  
High Byte  
TMR1L  
Flag bit  
1
TMR1ON  
on/off  
T1SYNC  
T1OSC  
T13CKI/T1OSO  
1
Synchronize  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
det  
FOSC/4  
Internal  
Clock  
Enable  
0
(1)  
T1OSI  
Oscillator  
2
Peripheral Clocks  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39605F-page 104  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 12-3:  
EXTERNAL  
12.2 Timer1 Oscillator  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit, T1OSCEN (T1CON<3>). The oscil-  
lator is a low-power oscillator rated for 32 kHz crystals.  
It will continue to run during all power managed modes.  
The circuit for a typical LP oscillator is shown in  
Figure 12-3. Table 12-1 shows the capacitor selection  
for the Timer1 oscillator.  
C1  
22 pF  
PIC18FXXXX  
PGD  
PGD/T1OSI  
XTAL  
32.768 kHz  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
PGC/T1OSO  
C2  
22 pF  
PGC  
Note:  
The Timer1 oscillator shares the T1OSI  
and T1OSO pins with the PGD and PGC  
pins used for programming and  
debugging.  
Note:  
See the Notes with Table 12-1 for additional  
information about capacitor selection.  
When using the Timer1 oscillator, In-Circuit  
Serial Programming (ICSP) may not  
function correctly (high voltage or low  
voltage), or the In-Circuit Debugger (ICD)  
may not communicate with the controller.  
As a result of using either ICSP or ICD, the  
Timer1 crystal may be damaged.  
TABLE 12-1: CAPACITOR SELECTION FOR  
THE TIMER OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
22 pF(1)  
22 pF(1)  
Note 1: Microchip suggests this value as a starting  
point in validating the oscillator circuit.  
Oscillator operation should then be tested  
to ensure expected performance under  
all expected conditions (VDD and  
temperature).  
If ICSP or ICD operations are required, the  
crystal should be disconnected from the  
circuit (disconnect either lead), or installed  
after programming. The oscillator loading  
capacitors may remain in-circuit during  
ICSP or ICD operation.  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
4: Capacitor values are for design guidance  
only.  
© 2007 Microchip Technology Inc.  
DS39605F-page 105  
PIC18F1220/1320  
12.3 Timer1 Oscillator Layout  
Considerations  
12.5 Resetting Timer1 Using a CCP  
Trigger Output  
The Timer1 oscillator circuit draws very little power  
during operation. Due to the low-power nature of the  
oscillator, it may also be sensitive to rapidly changing  
signals in close proximity.  
If the CCP module is configured in Compare mode  
to generate  
a
“special  
event  
trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1 and start an A/D conversion, if the A/D mod-  
ule is enabled (see Section 15.4.4 “Special Event  
Trigger” for more information).  
The oscillator circuit, shown in Figure 12-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
Note:  
The special event triggers from the CCP1  
module will not set interrupt flag bit,  
TMR1IF (PIR1<0>).  
If a high-speed circuit must be located near the oscilla-  
tor (such as the CCP1 pin in output compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 12-4, may be helpful when used on a  
single sided PCB, or in addition to a ground plane.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
In the event that a write to Timer1 coincides with a  
special event trigger from CCP1, the write will take  
precedence.  
FIGURE 12-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED  
GUARD RING  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ter pair effectively becomes the period register for  
Timer1.  
RA1  
RB2  
12.6 Timer1 16-Bit Read/Write Mode  
RA4  
C2  
X1  
C3  
OSC1  
OSC2  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16 bits of  
Timer1 without having to determine whether a read of  
the high byte, followed by a read of the low byte, is  
valid, due to a rollover between reads.  
MCLR  
C1  
VSS  
VDD  
RA2  
RA3  
RB7  
RB6  
C4  
X2  
C5  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
RB0  
RB5  
Note: Not drawn to scale.  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
12.4 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled/disabled by  
setting/clearing Timer1 Interrupt Enable bit, TMR1IE  
(PIE1<0>).  
DS39605F-page 106  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to pre-  
load it; the simplest method is to set the MSb of TMR1H  
with a BSFinstruction. Note that the TMR1L register is  
never preloaded or altered; doing so may introduce  
cumulative error over many cycles.  
12.7 Using Timer1 as a  
Real-Time Clock  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 12.2 “Timer1 Oscillator”,  
above), gives users the option to include RTC function-  
ality to their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1), as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
The application code routine, RTCisr, shown in  
Example 12-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1 reg-  
ister pair to overflow, triggers the interrupt and calls the  
routine, which increments the seconds counter by one;  
additional counters for minutes and hours are  
incremented as the previous counter overflow.  
EXAMPLE 12-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
0x80  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1OSC  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
BSF  
BCF  
INCF  
MOVLW  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
CPFSGT secs  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
CPFSGT mins  
RETURN  
; No, done  
CLRF  
INCF  
MOVLW  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
CPFSGT hours  
RETURN  
; No, done  
MOVLW  
MOVWF  
RETURN  
.01  
hours  
; Reset hours to 1  
; Done  
© 2007 Microchip Technology Inc.  
DS39605F-page 107  
PIC18F1220/1320  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -111 -111 -111 -111  
PIE1  
TXIE  
TXIP  
IPR1  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CON  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 u0uu uuuu  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
DS39605F-page 108  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
Timer2 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits,  
T2CKPS1:T2CKPS0 (T2CON<1:0>). The match out-  
put of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit, TMR2IF (PIR1<1>)).  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match with PR2  
Timer2 has a control register shown in Register 13-1.  
TMR2 can be shut off by clearing control bit, TMR2ON  
(T2CON<2>), to minimize power consumption.  
Figure 13-1 is a simplified block diagram of the Timer2  
module. Register 13-1 shows the Timer2 Control  
register. The prescaler and postscaler selection of  
Timer2 are controlled by this register.  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
• A write to the TMR2 register  
• A write to the T2CON register  
• Any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 109  
PIC18F1220/1320  
13.2 Timer2 Interrupt  
13.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon Reset.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module, which optionally uses  
it to generate the shift clock.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
(1)  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS1:T2CKPS0  
4
TOUTPS3:TOUTPS0  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR2IF  
TMR1IF -000 -000 -000 -000  
TMR1IE -000 -000 -000 -000  
TMR1IP -111 -111 -111 -111  
0000 0000 0000 0000  
PIE1  
TXIE  
TXIP  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
Legend:  
DS39605F-page 110  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Figure 14-1 is a simplified block diagram of the Timer3  
module.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 14-1 shows the Timer3 Control register. This  
register controls the operating mode of the Timer3  
module and sets the CCP clock source.  
• 16-bit timer/counter  
(two 8-bit registers; TMR3H and TMR3L)  
Register 12-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 Oscillator  
Enable bit (T1OSCEN), which can be a clock source for  
Timer3.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
bit 6  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
Unimplemented: Read as ‘0’  
bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T3CCP1: Timer3 and Timer1 to CCP1 Enable bits  
1= Timer3 is the clock source for compare/capture CCP module  
0= Timer1 is the clock source for compare/capture CCP module  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI  
(on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 111  
PIC18F1220/1320  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
14.1 Timer3 Operation  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RB7/PGD/T1OSI/P1D/KBI3 and RB6/PGC/  
T1OSO/T13CKI/P1C/KBI2 pins become inputs. That  
is, the TRISB7:TRISB6 value is ignored and the pins  
are read as ‘0’.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>).  
Timer3 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (see  
Section 15.4.4 “Special Event Trigger”).  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Event Trigger  
T3CCPx  
TMR3IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
0
Flag bit  
CLR  
TMR3H  
T1OSC  
TMR3L  
1
TMR3ON  
On/Off  
T3SYNC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
Peripheral Clocks  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Event Trigger  
T3CCPx  
Synchronized  
Clock Input  
8
TMR3  
Set TMR3IF Flag bit  
on Overflow  
0
CLR  
Timer3  
High Byte  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
Peripheral  
Clocks  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39605F-page 112  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
14.2 Timer1 Oscillator  
14.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN (T1CON<3>) bit. The oscillator is a low-  
power oscillator rated for 32 kHz crystals. See  
Section 12.2 “Timer1 Oscillator” for further details.  
If the CCP module is configured in Compare mode  
to  
generate  
a
“special  
event  
trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer3. See Section 15.4.4 “Special Event Trigger”  
for more information.  
14.3 Timer3 Interrupt  
Note:  
The special event triggers from the CCP  
module will not set interrupt flag bit,  
TMR3IF (PIR1<0>).  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit, TMR3IF  
(PIR2<1>). This interrupt can be enabled/disabled by  
setting/clearing TMR3 Interrupt Enable bit, TMR3IE  
(PIE2<1>).  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer3 is running in Asynchronous Counter mode,  
this Reset operation may not work. In the event that a  
write to Timer3 coincides with a special event trigger  
from CCP1, the write will take precedence. In this mode  
of operation, the CCPR1H:CCPR1L register pair  
effectively becomes the period register for Timer3.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
OSCFIF  
OSCFIE  
OSCFIP  
EEIF  
EEIE  
EEIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
0--0 -00- 0--0 -00-  
0--0 -00- 0--0 -00-  
1--1 -11- 1--1 -11-  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Legend:  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
RD16  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 u0uu uuuu  
T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0-00 0000 u-uu uuuu  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
© 2007 Microchip Technology Inc.  
DS39605F-page 113  
PIC18F1220/1320  
NOTES:  
DS39605F-page 114  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The control register for CCP1 is shown in Register 15-1.  
15.0 ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULE  
In addition to the expanded functions of the CCP1CON  
register, the ECCP module has two additional  
registers associated with Enhanced PWM operation  
and auto-shutdown features:  
The Enhanced CCP module is implemented as a  
standard CCP module with Enhanced PWM  
capabilities. These capabilities allow for 2 or 4 output  
channels, user-selectable polarity, dead-band control  
and automatic shutdown and restart and are discussed  
in detail in Section 15.5 “Enhanced PWM Mode”.  
• PWM1CON  
• ECCPAS  
REGISTER 15-1: CCP1CON REGISTER FOR ENHANCED CCP OPERATION  
R/W-0  
P1M1  
R/W-0  
P1M0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
bit 7-6  
P1M1:P1M0: PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11:  
00= Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01= Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as  
port pins  
11= Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DC1B1:DC1B0: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M3:CCP1M0: ECCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (ECCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (ECCP1IF bit is set)  
1001= Compare mode, clear output on match (ECCP1IF bit is set)  
1010= Compare mode, generate software interrupt on match (ECCP1IF bit is set,  
ECCP1 pin returns to port pin operation)  
1011= Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1 or  
TMR3 and starts an A/D conversion if the A/D module is enabled)  
1100= PWM mode; P1A, P1C active-high; P1B, P1D active-high  
1101= PWM mode; P1A, P1C active-high; P1B, P1D active-low  
1110= PWM mode; P1A, P1C active-low; P1B, P1D active-high  
1111= PWM mode; P1A, P1C active-low; P1B, P1D active-low  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 115  
PIC18F1220/1320  
To configure I/O pins as PWM outputs, the proper PWM  
mode must be selected by setting the P1Mn and  
15.1 ECCP Outputs  
The Enhanced CCP module may have up to four  
outputs, depending on the selected operating mode.  
These outputs, designated P1A through P1D, are  
multiplexed with I/O pins on PORTB. The pin  
assignments are summarized in Table 15-1.  
CCP1Mn  
bits  
(CCP1CON<7:6>  
and  
<3:0>,  
respectively). The appropriate TRISB direction bits for  
the port pins must also be set as outputs.  
TABLE 15-1: PIN ASSIGNMENTS FOR VARIOUS ECCP MODES  
CCP1CON  
Configuration  
ECCP Mode  
RB3  
RB2  
RB6  
RB7  
Compatible CCP  
Dual PWM  
00xx 11xx  
10xx 11xx  
x1xx 11xx  
CCP1  
P1A  
RB2/INT2 RB6/PGC/T1OSO/T13CKI/KBI2  
RB7/PGD/T1OSI/KBI3  
RB7/PGD/T1OSI/KBI3  
P1D  
P1B  
P1B  
RB6/PGC/T1OSO/T13CKI/KBI2  
P1C  
Quad PWM  
P1A  
Legend:  
x= Don’t care. Shaded cells indicate pin assignments not used by ECCP in a given mode.  
Note 1: TRIS register values must be configured appropriately.  
15.3.1  
CCP PIN CONFIGURATION  
15.2 CCP Module  
In Capture mode, the RB3/CCP1/P1A pin should be  
configured as an input by setting the TRISB<3> bit.  
Capture/Compare/PWM Register 1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
Note:  
If the RB3/CCP1/P1A is configured as an  
output, a write to the port can cause a  
capture condition.  
TABLE 15-2: CCP MODE – TIMER  
RESOURCE  
15.3.2  
TIMER1/TIMER3 MODE SELECTION  
CCP Mode  
Timer Resource  
The timers that are to be used with the capture feature  
(either Timer1 and/or Timer3) must be running in Timer  
mode or Synchronized Counter mode. In Asynchro-  
nous Counter mode, the capture operation may not  
work. The timer to be used with the CCP module is  
selected in the T3CON register.  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
15.3 Capture Mode  
15.3.3  
SOFTWARE INTERRUPT  
In Capture mode, CCPR1H:CCPR1L captures the 16-bit  
value of the TMR1 or TMR3 registers when an event  
occurs on pin RB3/CCP1/P1A. An event is defined as  
one of the following:  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit,  
CCP1IE (PIE1<2>), clear while changing capture  
modes to avoid false interrupts and should clear the  
flag bit, CCP1IF, following any such change in  
operating mode.  
• every falling edge  
• every rising edge  
• every 4th rising edge  
• every 16th rising edge  
The event is selected by control bits, CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit, CCP1IF (PIR1<2>), is set; it must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value is overwritten by the new captured value.  
DS39605F-page 116  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
15.3.4  
CCP PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
Reset will clear the prescaler counter.  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
MOVLW  
CCP1CON  
NEW_CAPT_PS  
; Turn CCP module off  
; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
; Load CCP1CON with  
; this value  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a
non-zero prescaler. Example 15-1 shows the  
MOVWF  
CCP1CON  
FIGURE 15-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
Set Flag bit CCP1IF  
T3CCP1  
T3CCP1  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP1 pin  
CCPR1H  
TMR1  
Enable  
and  
Edge Detect  
TMR1H  
CCP1CON<3:0>  
Q’s  
15.4.2  
TIMER1/TIMER3 MODE SELECTION  
15.4 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode  
or Synchronized Counter mode if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against either the TMR1 register  
pair value, or the TMR3 register pair value. When a  
match occurs, the RB3/CCP1/P1A pin:  
• Is driven high  
15.4.3  
SOFTWARE INTERRUPT MODE  
• Is driven low  
When generate software interrupt is chosen, the RB3/  
CCP1/P1A pin is not affected. CCP1IF is set and an  
interrupt is generated (if enabled).  
Toggles output (high-to-low or low-to-high)  
• Remains unchanged (interrupt only)  
The action on the pin is based on the value of control  
bits, CCP1M3:CCP1M0. At the same time, interrupt  
flag bit, CCP1IF, is set.  
15.4.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
15.4.1  
CCP PIN CONFIGURATION  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
The user must configure the RB3/CCP1/P1A pin as an  
output by clearing the TRISB<3> bit.  
Note:  
Clearing the CCP1CON register will force  
the RB3/CCP1/P1A compare output latch  
to the default low level. This is not the  
PORTB I/O data latch.  
The special event trigger also sets the GO/DONE bit  
(ADCON0<1>). This starts a conversion of the  
currently selected A/D channel if the A/D is on.  
© 2007 Microchip Technology Inc.  
DS39605F-page 117  
PIC18F1220/1320  
FIGURE 15-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3, but does not set Timer1 or Timer3 interrupt flag bit  
and set bit GO/DONE (ADCON0<2>), which starts an A/D conversion.  
Special Event Trigger  
Set Flag bit CCP1IF  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RB3/CCP1/P1A pin  
TRISB<3>  
Output Enable  
1
CCP1CON<3:0>  
Mode Select  
0
T3CCP1  
TMR1H TMR1L  
TMR3H TMR3L  
TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR2IF  
TMR1IF -000 -000 -000 -000  
PIE1  
TXIE  
TXIP  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -111 -111 -111 -111  
1111 1111 1111 1111  
IPR1  
TRISB  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTB Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0000 0000 uuuu uuuu  
Capture/Compare/PWM Register 1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCPR1H Capture/Compare/PWM Register 1 (MSB)  
CCP1CON  
TMR3L  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR3H  
T3CON  
RD16  
T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0-00 0000 u-uu uuuu  
CHS2 CHS1 CHS0 GO/DONE ADON 00-0 0000 00-0 0000  
ADCON0  
Legend:  
VCFG1  
VCFG0  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by Capture and Timer1.  
DS39605F-page 118  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
15.5.2  
PWM DUTY CYCLE  
15.5 Enhanced PWM Mode  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is  
calculated by the equation:  
The Enhanced PWM Mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is an upwardly compatible version of  
the standard CCP module and offers up to four outputs,  
designated P1A through P1D. Users are also able to  
select the polarity of the signal (either active-high or  
active-low). The module’s output mode and polarity are  
configured by setting the P1M1:P1M0 and  
CCP1M3CCP1M0 bits of the CCP1CON register  
(CCP1CON<7:6> and CCP1CON<3:0>, respectively).  
EQUATION 15-2: PWM DUTY CYCLE  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
Figure 15-3 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when Timer2 resets) in order to prevent  
glitches on any of the outputs. The exception is the PWM  
Delay register, ECCP1DEL, which is loaded at either the  
duty cycle boundary or the boundary period (whichever  
comes first). Because of the buffering, the module waits  
until the assigned timer resets instead of starting imme-  
diately. This means that Enhanced PWM waveforms do  
not exactly match the standard PWM waveforms, but  
are instead offset by one full instruction cycle (4 TOSC).  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not copied into  
CCPR1H until a match between PR2 and TMR2 occurs  
(i.e., the period is complete). In PWM mode, CCPR1H  
is a read-only register.  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation. When the CCPR1H and 2-bit latch match  
TMR2, concatenated with an internal 2-bit Q clock or  
two bits of the TMR2 prescaler, the CCP1 pin is  
cleared. The maximum PWM resolution (bits) for a  
given PWM frequency is given by the equation:  
As before, the user must manually configure the  
appropriate TRIS bits for output.  
EQUATION 15-3: PWM RESOLUTION  
15.5.1  
PWM PERIOD  
FOSC  
log  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
equation:  
(
)
FPWM  
bits  
PWM Resolution (max) =  
log(2)  
EQUATION 15-1: PWM PERIOD  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
PWM frequency is defined as 1/[PWM period]. When  
TMR2 is equal to PR2, the following three events occur  
on the next increment cycle:  
15.5.3  
PWM OUTPUT CONFIGURATIONS  
The P1M1:P1M0 bits in the CCP1CON register allow  
one of four configurations:  
• TMR2 is cleared  
• Single Output  
• The CCP1 pin is set (if PWM duty cycle = 0%, the  
CCP1 pin will not be set)  
• Half-Bridge Output  
• Full-Bridge Output, Forward mode  
• Full-Bridge Output, Reverse mode  
• The PWM duty cycle is copied from CCPR1L into  
CCPR1H  
The Single Output mode is the Standard PWM mode  
discussed in Section 15.5 “Enhanced PWM Mode”.  
The Half-Bridge and Full-Bridge Output modes are  
covered in detail in the sections that follow.  
Note:  
The Timer2 postscaler (see Section 13.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
The general relationship of the outputs in all  
configurations is summarized in Figure 15-4.  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz  
156.25 kHz  
312.50 kHz  
416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
© 2007 Microchip Technology Inc.  
DS39605F-page 119  
PIC18F1220/1320  
FIGURE 15-3:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
CCP1CON<5:4>  
P1M1<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
CCP1/P1A  
RB3/CCP1/P1A  
RB2/P1B/INT2  
TRISB<3>  
TRISB<2>  
TRISB<6>  
TRISB<7>  
CCPR1H (Slave)  
Comparator  
P1B  
Output  
Controller  
R
Q
RB6/PGC/T1OSO/T13CKI/  
P1C/KBI2  
P1C  
(Note 1)  
TMR2  
S
P1D  
RB7/PGD/T1OSI/P1D/KBI3  
Comparator  
PR2  
Clear Timer,  
set CCP1 pin and  
latch D.C.  
CCP1DEL  
Note:  
The 8-bit TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the  
10-bit time base.  
FIGURE 15-4:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)  
0
PR2+1  
Duty  
Cycle  
SIGNAL  
CCP1CON<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
(Half-Bridge)  
00  
10  
(1)  
(1)  
Delay  
Delay  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
DS39605F-page 120  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 15-5:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
0
PR2+1  
Duty  
Cycle  
SIGNAL  
CCP1CON<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
(Half-Bridge)  
00  
10  
(1)  
(1)  
Delay  
Delay  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
Note 1: Dead-band delay is programmed using the PWM1CON register (Section 15.5.6 “Programmable Dead-Band  
Delay”).  
© 2007 Microchip Technology Inc.  
DS39605F-page 121  
PIC18F1220/1320  
The TRISB<3> and TRISB<2> bits must be cleared to  
configure P1A and P1B as outputs.  
15.5.4  
HALF-BRIDGE MODE  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The PWM output  
signal is output on the RB3/CCP1/P1A pin, while the  
complementary PWM output signal is output on the  
RB2/P1B/INT2 pin (Figure 15-6). This mode can be  
used for half-bridge applications, as shown in  
Figure 15-7, or for full-bridge applications, where four  
power switches are being modulated with two PWM  
signals.  
FIGURE 15-6:  
HALF-BRIDGE PWM  
OUTPUT (ACTIVE-HIGH)  
Period  
Period  
Duty Cycle  
P1A  
P1B  
td  
In Half-Bridge Output mode, the programmable dead-  
band delay can be used to prevent shoot-through  
current in half-bridge power devices. The value of bits,  
PDC6:PDC0 (PWM1CON<6:0>), sets the number of  
instruction cycles before the output is driven active. If the  
value is greater than the duty cycle, the corresponding  
output remains inactive during the entire cycle. See  
Section 15.5.6 “Programmable Dead-Band Delay”  
for more details of the dead-band delay operations.  
td  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
FIGURE 15-7:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
Standard Half-Bridge Circuit (“Push-Pull”)  
PIC18F1220/1320  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18F1220/1320  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
V-  
DS39605F-page 122  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The TRISB<3:2> and TRISB<7:6> bits must be cleared  
to make the P1A, P1B, P1C and P1D pins output.  
15.5.5  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as  
outputs; however, only two outputs are active at a time.  
In the Forward mode, pin RB3/CCP1/P1A is continu-  
ously active and pin RB7/PGD/T1OSI/P1D/KBI3 is  
modulated. In the Reverse mode, pin RB6/PGC/  
T1OSO/T13CKI/P1C/KBI2 is continuously active and  
pin RB2/P1B/INT2 is modulated. These are illustrated  
in Figure 15-8.  
FIGURE 15-8:  
FULL-BRIDGE PWM OUTPUT (ACTIVE-HIGH)  
Forward Mode  
Period  
P1A  
Duty Cycle  
P1B  
P1C  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Duty Cycle  
P1A  
P1B  
P1C  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
© 2007 Microchip Technology Inc.  
DS39605F-page 123  
PIC18F1220/1320  
FIGURE 15-9:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18F1220/1320  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
Load  
P1B  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
Figure 15-11 shows an example where the PWM direc-  
tion changes from forward to reverse, at a near 100%  
duty cycle. At time t1, the output P1A and P1D become  
inactive, while output P1C becomes active. In this  
example, since the turn-off time of the power devices is  
longer than the turn-on time, a shoot-through current  
may flow through power devices QC and QD (see  
Figure 15-9) for the duration of ‘t’. The same phenom-  
enon will occur to power devices QA and QB for PWM  
direction change from reverse to forward.  
15.5.5.1  
Direction Change in Full-Bridge Mode  
In the Full-Bridge Output mode, the P1M1 bit in the  
CCP1CON register allows the user to control the  
Forward/Reverse direction. When the application  
firmware changes this direction control bit, the module  
will assume the new direction on the next PWM cycle.  
Just before the end of the current PWM period, the  
modulated outputs (P1B and P1D) are placed in their  
inactive state, while the unmodulated outputs (P1A and  
P1C) are switched to drive in the opposite direction.  
This occurs in a time interval of (4 TOSC * (Timer2  
Prescale Value) before the next PWM period begins.  
The Timer2 prescaler will be either 1,4 or 16, depend-  
ing on the value of the T2CKPS bit (T2CON<1:0>).  
During the interval from the switch of the unmodulated  
outputs to the beginning of the next period, the  
modulated outputs (P1B and P1D) remain inactive.  
This relationship is shown in Figure 15-10.  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
1. Reduce PWM for  
changing directions.  
a PWM period before  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
Note that in the Full-Bridge Output mode, the ECCP  
module does not provide any dead-band delay. In  
general, since only one output is modulated at all times,  
dead-band delay is not required. However, there is a  
situation where a dead-band delay might be required.  
This situation occurs when both of the following  
conditions are true:  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn-off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn-on time.  
DS39605F-page 124  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 15-10:  
PWM DIRECTION CHANGE (ACTIVE-HIGH)  
(1)  
PWM Period  
PWM Period  
SIGNAL  
P1A  
P1B  
DC  
P1C  
P1D  
(2)  
One Timer2 Count  
DC  
Note 1: The direction bit in the CCP1 Control register (CCP1CON<7>) is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C toggle one Timer2 count before the end of the current PWM cycle.  
The modulated P1B and P1D signals are inactive at this time.  
FIGURE 15-11:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE (ACTIVE-HIGH)  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
DC  
P1C  
P1D  
DC  
t
ON  
External Switch C  
External Switch D  
t
OFF  
Potential  
Shoot-Through  
Current  
t = t  
– t  
ON  
OFF  
Note 1:  
t
is the turn-on delay of power switch QC and its driver.  
ON  
2: t  
is the turn-off delay of power switch QD and its driver.  
OFF  
© 2007 Microchip Technology Inc.  
DS39605F-page 125  
PIC18F1220/1320  
A shutdown event can be caused by the INT0, INT1 or  
INT2 pins (or any combination of these three sources).  
The auto-shutdown feature can be disabled by not  
selecting any auto-shutdown sources. The auto-  
shutdown sources to be used are selected using the  
ECCPAS2:ECCPAS0 bits (bits <6:4> of the ECCPAS  
register).  
15.5.6  
PROGRAMMABLE DEAD-BAND  
DELAY  
In half-bridge applications where all power switches are  
modulated at the PWM frequency at all times, the  
power switches normally require more time to turn off  
than to turn on. If both the upper and lower power  
switches are switched at the same time (one turned on  
and the other turned off), both switches may be on for  
a short period of time until one switch completely turns  
off. During this brief interval, a very high current (shoot-  
through current) may flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from flow-  
ing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
When a shutdown occurs, the output pins are  
asynchronously placed in their shutdown states, spec-  
ified by the PSSAC1:PSSAC0 and PSSBD1:PSSBD0  
bits (ECCPAS<3:0>). Each pin pair (P1A/P1C and  
P1B/P1D) may be set to drive high, drive low or be tri-  
stated (not driving). The ECCPASE bit (ECCPAS<7>)  
is also set to hold the Enhanced PWM outputs in their  
shutdown states.  
The ECCPASE bit is set by hardware when a shutdown  
event occurs. If automatic restarts are not enabled, the  
ECCPASE bit is cleared by firmware when the cause of  
the shutdown clears. If automatic restarts are enabled,  
the ECCPASE bit is automatically cleared when the  
cause of the auto-shutdown has cleared.  
In the Half-Bridge Output mode, a digitally programmable  
dead-band delay is available to avoid shoot-through  
current from destroying the bridge power switches. The  
delay occurs at the signal transition from the non-active  
state to the active state. See Figure 15-6 for an illustra-  
tion. The lower seven bits of the PWM1CON register  
(Register 15-2) sets the delay period in terms of  
microcontroller instruction cycles (TCY or 4 TOSC).  
If the ECCPASE bit is set when a PWM period begins,  
the PWM outputs remain in their shutdown state for that  
entire PWM period. When the ECCPASE bit is cleared,  
the PWM outputs will return to normal operation at the  
beginning of the next PWM period.  
15.5.7  
ENHANCED PWM  
AUTO-SHUTDOWN  
Note:  
Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
When the ECCP is programmed for any of the  
Enhanced PWM modes, the active output pins may be  
configured for auto-shutdown. Auto-shutdown immedi-  
ately places the Enhanced PWM output pins into a  
defined shutdown state when a shutdown event  
occurs.  
REGISTER 15-2: PWM1CON: PWM CONFIGURATION REGISTER  
R/W-0  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
PRSEN  
bit 7  
bit 0  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event  
goes away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal should  
transition active and the actual time it transitions active.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605F-page 126  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 15-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM/AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0 R/W-0  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-2  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
0= ECCP outputs are operating  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
ECCPAS2: ECCP Auto-Shutdown bit 2  
0= INT0 pin has no effect  
1= INT0 pin low causes shutdown  
ECCPAS1: ECCP Auto-Shutdown bit 1  
0= INT2 pin has no effect  
1= INT2 pin low causes shutdown  
ECCPAS0: ECCP Auto-Shutdown bit 0  
0= INT1 pin has no effect  
1= INT1 pin low causes shutdown  
PSSACn: Pins A and C Shutdown State Control bits  
00= Drive Pins A and C to ‘0’  
01= Drive Pins A and C to ‘1’  
1x= Pins A and C tri-state  
bit 1-0  
PSSBDn: Pins B and D Shutdown State Control bits  
00= Drive Pins B and D to ‘0’  
01= Drive Pins B and D to ‘1’  
1x= Pins B and D tri-state  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 127  
PIC18F1220/1320  
15.5.7.1  
Auto-Shutdown and  
Automatic Restart  
15.5.8  
START-UP CONSIDERATIONS  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external pull-  
up and/or pull-down resistors on the PWM output pins.  
When the microcontroller is released from Reset, all of  
the I/O pins are in the high-impedance state. The  
external circuits must keep the power switch devices in  
the off state, until the microcontroller drives the I/O pins  
with the proper signal levels, or activates the PWM  
output(s).  
The auto-shutdown feature can be configured to allow  
automatic restarts of the module, following a shutdown  
event. This is enabled by setting the PRSEN bit of the  
PWM1CON register (PWM1CON<7>).  
In Shutdown mode with PRSEN = 1(Figure 15-12), the  
ECCPASE bit will remain set for as long as the cause  
of the shutdown continues. When the shutdown  
condition clears, the ECCPASE bit is automatically  
cleared. If PRSEN = 0(Figure 15-13), once a shutdown  
condition occurs, the ECCPASE bit will remain set until  
it is cleared by firmware. Once ECCPASE is cleared,  
the Enhanced PWM will resume at the beginning of the  
next PWM period.  
The CCP1M1:CCP1M0 bits (CCP1CON<1:0>) allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output  
pins (P1A/P1C and P1B/P1D). The PWM output  
polarities must be selected before the PWM pins are  
configured as outputs. Changing the polarity configura-  
tion while the PWM pins are configured as outputs is  
not recommended, since it may result in damage to the  
application circuits.  
Note:  
Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
Independent of the PRSEN bit setting, the ECCPASE  
bit cannot be cleared as long as the cause of the  
shutdown persists.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is initialized.  
Enabling the PWM pins for output at the same time as  
the ECCP module may cause damage to the application  
circuit. The ECCP module must be enabled in the proper  
output mode and complete a full PWM cycle, before con-  
figuring the PWM pins as outputs. The completion of a  
full PWM cycle is indicated by the TMR2IF bit being set  
as the second PWM period begins.  
The Auto-Shutdown mode can be forced by writing a ‘1’  
to the ECCPASE bit.  
FIGURE 15-12:  
PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)  
PWM Period  
PWM Period  
PWM Period  
PWM Activity  
Dead Time  
Duty Cycle  
Dead Time  
Duty Cycle  
Dead Time  
Duty Cycle  
Shutdown Event  
ECCPASE bit  
FIGURE 15-13:  
PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)  
PWM Period  
PWM Period  
PWM Period  
PWM Activity  
Dead Time  
Duty Cycle  
Dead Time  
Duty Cycle  
Dead Time  
Duty Cycle  
Shutdown Event  
ECCPASE bit  
ECCPASE  
Cleared by Firmware  
DS39605F-page 128  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
15.5.9  
SETUP FOR PWM OPERATION  
15.5.10 OPERATION IN LOW-POWER  
MODES  
The following steps should be taken when configuring  
the ECCP1 module for PWM operation:  
In the Low-Power Sleep mode, all clock sources are  
disabled. Timer2 will not increment and the state of the  
module will not change. If the ECCP pin is driving a  
value, it will continue to drive that value. When the  
device wakes up, it will continue from this state. If Two-  
Speed Start-ups are enabled, the initial start-up  
frequency may not be stable if the INTOSC is being  
used.  
1. Configure the PWM pins P1A and P1B (and  
P1C and P1D, if used) as inputs by setting the  
corresponding TRISB bits.  
2. Set the PWM period by loading the PR2 register.  
3. Configure the ECCP module for the desired  
PWM mode and configuration by loading the  
CCP1CON register with the appropriate values:  
In PRI_IDLE mode, the primary clock will continue to  
clock the ECCP module without change.  
• Select one of the available output  
configurations and direction with the  
P1M1:P1M0 bits.  
In all other low-power modes, the selected low-power  
mode clock will clock Timer2. Other low-power mode  
clocks will most likely be different than the primary  
clock frequency.  
• Select the polarities of the PWM output  
signals with the CCP1M3:CCP1M0 bits.  
4. Set the PWM duty cycle by loading the CCPR1L  
register and CCP1CON<5:4> bits.  
15.5.10.1 Operation with Fail-Safe  
Clock Monitor  
5. For Half-Bridge Output mode, set the dead-  
band delay by loading PWM1CON<6:0> with  
the appropriate value.  
If the Fail-Safe Clock Monitor is enabled  
(CONFIG1H<6> is programmed), a clock failure will  
force the device into the Low-Power RC_RUN mode  
and the OSCFIF bit (PIR2<7>) will be set. The ECCP  
will then be clocked from the INTRC clock source,  
which may have a different clock frequency than the  
primary clock. By loading the IRCF2:IRCF0 bits on  
Resets, the user can enable the INTOSC at a high  
clock speed in the event of a clock failure.  
6. If auto-shutdown operation is required, load the  
ECCPAS register:  
• Select the auto-shutdown sources using the  
ECCPAS<2:0> bits.  
• Select the shutdown states of the PWM  
output pins using PSSAC1:PSSAC0 and  
PSSBD1:PSSBD0 bits.  
• Set the ECCPASE bit (ECCPAS<7>).  
See the previous section for additional details.  
7. If auto-restart operation is required, set the  
PRSEN bit (PWM1CON<7>).  
15.5.11 EFFECTS OF A RESET  
8. Configure and start TMR2:  
Both power-on and subsequent Resets will force all  
ports to input mode and the CCP registers to their  
Reset states.  
• Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit (PIR1<1>).  
• Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
This forces the Enhanced CCP module to reset to a  
state compatible with the standard CCP module.  
• Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>).  
9. Enable PWM outputs after a new PWM cycle  
has started:  
• Wait until TMR2 overflows (TMR2IF bit is set).  
• Enable the CCP1/P1A, P1B, P1C and/or P1D  
pin outputs by clearing the respective TRISB  
bits.  
• Clear the ECCPASE bit (ECCPAS<7>).  
© 2007 Microchip Technology Inc.  
DS39605F-page 129  
PIC18F1220/1320  
TABLE 15-5: REGISTERS ASSOCIATED WITH ENHANCED PWM AND TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 000x 0000 000u  
0--1 11qq 0--q qquu  
IPEN  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -111 -111 -111 -111  
0000 0000 0000 0000  
PIE1  
IPR1  
TMR2  
Timer2 Module Register  
Timer2 Module Period Register  
PR2  
1111 1111 1111 1111  
T2CON  
TRISB  
CCPR1H  
CCPR1L  
CCP1CON  
ECCPAS  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
PORTB Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Enhanced Capture/Compare/PWM Register 1 High Byte  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
PWM1CON PRSEN  
PDC6  
IRCF2  
PDC5  
IRCF1  
PDC4  
IRCF0  
PDC3  
OSTS  
PDC2  
IOFS  
PDC1  
SCS1  
PDC0  
SCS0  
0000 0000 uuuu uuuu  
0000 qq00 0000 qq00  
OSCCON  
IDLEN  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’.  
Shaded cells are not used by the ECCP module in Enhanced PWM mode.  
DS39605F-page 130  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
16.1 Asynchronous Operation in Power  
Managed Modes  
16.0 ENHANCED ADDRESSABLE  
UNIVERSAL SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
The EUSART may operate in Asynchronous mode  
while the peripheral clocks are being provided by the  
internal oscillator block. This makes it possible to  
remove the crystal or resonator that is commonly  
connected as the primary clock on the OSC1 and  
OSC2 pins.  
The Enhanced Addressable Universal Synchronous  
Asynchronous Receiver Transmitter (EUSART) mod-  
ule can be configured as a full-duplex asynchronous  
system that can communicate with peripheral devices,  
such as CRT terminals and personal computers. It can  
also be configured as a half-duplex synchronous  
system that can communicate with peripheral devices,  
such as A/D or D/A integrated circuits, serial  
EEPROMs, etc.  
The factory calibrates the internal oscillator block out-  
put (INTOSC) for 8 MHz (see Table 22-6). However,  
this frequency may drift as VDD or temperature  
changes and this directly affects the asynchronous  
baud rate. Two methods may be used to adjust the  
baud rate clock, but both require a reference clock  
source of some kind.  
The Enhanced Addressable USART module  
implements additional features, including automatic  
baud rate detection and calibration, automatic wake-up  
on Sync Break reception and 12-bit Break character  
transmit. These features make it ideally suited for use  
in Local Interconnect Network (LIN) bus systems.  
The first (preferred) method uses the OSCTUNE  
register to adjust the INTOSC output back to 8 MHz.  
Adjusting the value in the OSCTUNE register allows for  
fine resolution changes to the system clock source (see  
Section 3.6 “INTOSC Frequency Drift” for more  
information).  
The EUSART can be configured in the following  
modes:  
The other method adjusts the value in the Baud Rate  
Generator (BRG). There may not be fine enough  
resolution when adjusting the Baud Rate Generator to  
compensate for a gradual change in the peripheral  
clock frequency.  
• Asynchronous (full duplex) with:  
- Auto-wake-up on character reception  
- Auto-baud calibration  
- 12-bit Break character transmission  
• Synchronous – Master (half duplex) with  
selectable clock polarity  
• Synchronous – Slave (half duplex) with selectable  
clock polarity  
The RB1/AN5/TX/CK/INT1 and RB4/AN6/RX/DT/KBI0  
pins must be configured as follows for use with the  
Universal Synchronous Asynchronous Receiver  
Transmitter:  
• SPEN (RCSTA<7>) bit must be set ( = 1),  
• PCFG6:PCFG5 (ADCON1<5:6>) must be set ( = 1),  
• TRISB<4> bit must be set ( = 1) and  
• TRISB<1> bit must be set ( = 1).  
Note:  
The EUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
The operation of the Enhanced USART module is  
controlled through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCTL)  
These are detailed in on the following pages in  
Register 16-1, Register 16-2 and Register 16-3,  
respectively.  
© 2007 Microchip Technology Inc.  
DS39605F-page 131  
PIC18F1220/1320  
REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
bit 3  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR Idle  
0= TSR busy  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605F-page 132  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, generates RCIF interrupt and loads RCREG when RX9D is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 133  
PIC18F1220/1320  
REGISTER 16-3: BAUDCTL: BAUD RATE CONTROL REGISTER  
U-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
RCIDL: Receive Operation Idle Status bit  
1= Receiver is Idle  
0= Receiver is busy  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode.  
Synchronous mode:  
1= Idle state for clock (CK) is a high level  
0= Idle state for clock (CK) is a low level  
bit 3  
BRG16: 16-bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGH and SPBRG  
0= 8-bit Baud Rate Generator – SPBRG only (Compatible mode), SPBRGH value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= EUSART will continue to sample the RX pin – interrupt generated on falling edge; bit  
cleared in hardware on following rising edge  
0= RX pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character – requires reception of a Sync byte  
(55h); cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605F-page 134  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
16.2.1  
POWER MANAGED MODE  
OPERATION  
16.2 EUSART Baud Rate Generator  
(BRG)  
The system clock is used to generate the desired baud  
rate; however, when a power managed mode is  
entered, the clock source may be operating at a differ-  
ent frequency than in PRI_RUN mode. In Sleep mode,  
no clocks are present and in PRI_IDLE mode, the  
primary clock source continues to provide clocks to the  
Baud Rate Generator; however, in other power  
managed modes, the clock frequency will probably  
change. This may require the value in SPBRG to be  
adjusted.  
The BRG is a dedicated 8-bit or 16-bit generator, that  
supports both the Asynchronous and Synchronous  
modes of the EUSART. By default, the BRG operates  
in 8-bit mode; setting the BRG16 bit (BAUDCTL<3>)  
selects 16-bit mode.  
The SPBRGH:SPBRG register pair controls the period  
of a free running timer. In Asynchronous mode, bits  
BRGH (TXSTA<2>) and BRG16 also control the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 16-1 shows the formula for computation of the  
baud rate for different EUSART modes which only  
apply in Master mode (internally generated clock).  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit  
and make sure that the receive operation is Idle before  
changing the system clock.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGH:SPBRG registers can be  
calculated using the formulas in Table 16-1. From this,  
the error in baud rate can be determined. An example  
calculation is shown in Example 16-1. Typical baud  
rates and error values for the various asynchronous  
modes are shown in Table 16-2. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG to reduce the baud rate error, or  
achieve a slow baud rate for a fast oscillator frequency.  
16.2.2  
SAMPLING  
The data on the RB4/AN6/RX/DT/KBI0 pin is sampled  
three times by a majority detect circuit to determine if a  
high or a low level is present at the RX pin.  
Writing a new value to the SPBRGH:SPBRG registers  
causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
TABLE 16-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/EUSART Mode  
Baud Rate Formula  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = value of SPBRGH:SPBRG register pair  
EXAMPLE 16-1: CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate FOSC/(64 ([SPBRGH:SPBRG] + 1))  
Solving for SPBRGH:SPBRG:  
=
X
=
=
=
((FOSC/Desired Baud Rate)/64) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
Calculated Baud Rate= 16000000/(64 (25 + 1))  
=
=
=
9615  
Error  
(Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
(9615 – 9600)/9600 = 0.16%  
© 2007 Microchip Technology Inc.  
DS39605F-page 135  
PIC18F1220/1320  
TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
0000 -010  
0000 -00x  
0000 -010  
0000 -00x  
-1-1 0-00  
0000 0000  
0000 0000  
RCSTA  
BAUDCTL  
RCIDL  
ABDEN -1-1 0-00  
0000 0000  
SPBRGH Baud Rate Generator Register High Byte  
SPBRG  
Baud Rate Generator Register Low Byte  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
0000 0000  
Legend:  
TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
300  
1201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
DS39605F-page 136  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
2.4  
9.6  
255  
129  
42  
129  
64  
2.441  
9.615  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2403  
9615  
19230  
55555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.766  
1.73  
0.16  
0.94  
-1.36  
9.615  
0.16  
0.16  
-1.36  
-1.36  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
19.531  
56.818  
125.000  
21  
21  
10  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
300  
1201  
2403  
9615  
19230  
55555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
300  
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
© 2007 Microchip Technology Inc.  
DS39605F-page 137  
PIC18F1220/1320  
TABLE 16-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
300  
1200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2400  
9.6  
9.606  
9.596  
9.615  
9615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19230  
57142  
117647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
300  
1201  
2403  
9615  
19230  
55555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
300  
1201  
2403  
9615  
19230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
DS39605F-page 138  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
16.2.3  
AUTO-BAUD RATE DETECT  
Note 1: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible  
due to bit error rates. Overall system  
timing and communication baud rates  
must be taken into consideration when  
using the Auto-Baud Rate Detection  
feature.  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
The automatic baud rate measurement sequence  
(Figure 16-1) begins whenever a Start bit is received and  
the ABDEN bit is set. The calculation is self-averaging.  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG. In  
ABD mode, the internal Baud Rate Generator is used  
as a counter to time the bit period of the incoming serial  
byte stream.  
16.2.4  
RECEIVING A SYNC (AUTO-BAUD  
RATE DETECT)  
To receive a Sync (Auto-Baud Rate Detect):  
1. Configure the EUSART for asynchronous receive.  
TXEN should remain clear. SPBRGH:SPBRG  
may be left as is. The controller should operate in  
either PRI_RUN or PRI_IDLE.  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The Auto-Baud Detect  
must receive a byte with the value 55h (ASCII “U”,  
which is also the LIN bus Sync character), in order to  
calculate the proper bit rate. The measurement is taken  
over both a low and a high bit time in order to minimize  
any effects caused by asymmetry of the incoming sig-  
nal. After a Start bit, the SPBRG begins counting up  
using the preselected clock source on the first rising  
edge of RX. After eight bits on the RX pin, or the fifth  
rising edge, an accumulated value totalling the proper  
BRG period is left in the SPBRGH:SPBRG registers.  
Once the 5th edge is seen (should correspond to the  
Stop bit), the ABDEN bit is automatically cleared.  
2. Enable RXIF interrupts. Set RCIE, PEIE, GIE.  
3. Enable Auto-Baud Rate Detect. Set ABDEN.  
4. When the next RCIF interrupt occurs, the  
received baud rate has been measured. Read  
RCREG to clear RCIF and discard. Check  
SPBRGH:SPBRG for  
a valid value. The  
EUSART is ready for normal communications.  
Return from the interrupt. Allow the primary  
clock to run (PRI_RUN or PRI_IDLE).  
5. Process subsequent RCIF interrupts normally  
as in asynchronous reception. Remain in  
PRI_RUN or PRI_IDLE until communications  
are complete.  
While calibrating the baud rate period, the BRG  
registers are clocked at 1/8th the preconfigured clock  
rate. Note that the BRG clock will be configured by the  
BRG16 and BRGH bits. Independent of the BRG16 bit  
setting, both the SPBRG and SPBRGH will be used as  
a 16-bit counter. This allows the user to verify that no  
carry occurred for 8-bit modes, by checking for 00h in  
the SPBRGH register. Refer to Table 16-4 for counter  
clock rates to the BRG.  
TABLE 16-4: BRG COUNTER CLOCK  
RATES  
BRG16 BRGH  
BRG Counter Clock  
0
0
1
1
0
1
0
1
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. The RCIF interrupt is set  
once the fifth rising edge on RX is detected. The value  
in the RCREG needs to be read to clear the RCIF  
interrupt. RCREG content should be discarded.  
Note: During the ABD sequence, SPBRG and  
SPBRGH are both used as a 16-bit counter,  
independent of BRG16 setting.  
© 2007 Microchip Technology Inc.  
DS39605F-page 139  
PIC18F1220/1320  
FIGURE 16-1:  
AUTOMATIC BAUD RATE CALCULATION  
XXXXh  
0000h  
001Ch  
Edge #5  
Stop Bit  
BRG Value  
Edge #1  
Edge #2  
Bit 3  
Edge #3  
Bit 5  
Edge #4  
Bit 7  
Bit 6  
RX pin  
Bit 1  
Start  
Bit 0  
Bit 2  
Bit 4  
BRG Clock  
Auto-Cleared  
Set by User  
ABDEN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode and WUE = 0.  
16.3.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
16.3 EUSART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA<4>). In this mode, the  
EUSART uses standard Non-Return-to-Zero (NRZ) for-  
mat (one Start bit, eight or nine data bits and one Stop  
bit). The most common data format is 8 bits. An on-chip  
dedicated 8-bit/16-bit Baud Rate Generator can be  
used to derive standard baud rate frequencies from the  
oscillator.  
The EUSART transmitter block diagram is shown in  
Figure 16-2. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREG register (if available).  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but use the same data format and baud  
rate. The Baud Rate Generator produces a clock, either  
x16 or x64 of the bit shift rate, depending on the BRGH  
and BRG16 bits (TXSTA<2> and BAUDCTL<3>). Parity  
is not supported by the hardware, but can be  
implemented in software and stored as the 9th data bit.  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCY), the TXREG register is  
empty and flag bit, TXIF (PIR1<4>), is set. This interrupt  
can be enabled/disabled by setting/clearing enable bit,  
TXIE (PIE1<4>). Flag bit, TXIF, will be set, regardless of  
the state of enable bit, TXIE, and cannot be cleared in  
software. Flag bit, TXIF, is not cleared immediately upon  
loading the Transmit Buffer register, TXREG. TXIF  
becomes valid in the second instruction cycle following  
the load instruction. Polling TXIF immediately following a  
load of TXREG will return invalid results.  
Asynchronous mode is available in all low-power  
modes; it is available in Sleep mode only when auto-  
wake-up on Sync Break is enabled. When in PRI_IDLE  
mode, no changes to the Baud Rate Generator values  
are required; however, other low-power mode clocks  
may operate at another frequency than the primary  
clock. Therefore, the Baud Rate Generator values may  
need to be adjusted.  
While flag bit, TXIF, indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. Status bit, TRMT, is a read-  
only bit, which is set when the TSR register is empty.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit in order to determine if the TSR register is  
empty.  
When operating in Asynchronous mode, the EUSART  
module consists of the following important elements:  
• Baud Rate Generator  
• Sampling Circuit  
Note 1: The TSR register is not mapped in data  
• Asynchronous Transmitter  
• Asynchronous Receiver  
memory, so it is not available to the user.  
2: Flag bit, TXIF, is set when enable bit,  
• Auto-Wake-up on Sync Break Character  
• 12-bit Break Character Transmit  
• Auto-Baud Rate Detection  
TXEN, is set.  
DS39605F-page 140  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
To set up an Asynchronous Transmission:  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
FIGURE 16-2:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG Register  
TXIF  
TXIE  
8
RB1/AN5/TX/CK/INT1 pin  
LSb  
MSb  
(8)  
Pin Buffer  
0
and Control  
TSR Register  
Interrupt  
Baud Rate CLK  
SPBRG  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGH  
TX9  
TX9D  
Baud Rate Generator  
FIGURE 16-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RB1/AN5/TX/  
CK/INT1 (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
© 2007 Microchip Technology Inc.  
DS39605F-page 141  
PIC18F1220/1320  
FIGURE 16-4:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RB1/AN5/TX/  
CK/INT1 (pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
Word 2  
1 TCY  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 16-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
-000 -000 -000 -000  
-000 -000 -000 -000  
-111 -111 -111 -111  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
-1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
0000 0000 0000 0000  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
SCKP BRG16  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN  
SPBRGH Baud Rate Generator Register High Byte  
SPBRG  
Baud Rate Generator Register Low Byte  
Legend:  
x= unknown, – = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
DS39605F-page 142  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
16.3.2  
EUSART ASYNCHRONOUS  
RECEIVER  
16.3.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 16-5.  
The data is received on the RB4/AN6/RX/DT/KBI0 pin  
and drives the data recovery block. The data recovery  
block is actually a high-speed shifter, operating at x16  
times the baud rate, whereas the main receive serial  
shifter operates at the bit rate or at FOSC. This mode  
would typically be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
7. The RCIF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RCIE and GIE bits are set.  
6. Flag bit, RCIF, will be set when reception is  
complete and an interrupt will be generated if  
enable bit RCIE was set.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG to determine if the device is being  
addressed.  
10. If any error occurred, clear the CREN bit.  
8. Read the 8-bit received data by reading the  
RCREG register.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 16-5:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
SPBRGH SPBRG  
÷ 64  
RSR Register  
• • •  
MSb  
Stop  
LSb  
Start  
BRG16  
or  
÷ 16  
(8)  
7
1
0
or  
Baud Rate Generator  
÷ 4  
RX9  
RB4/AN6/RX/DT/KBI0  
Pin Buffer  
and Control  
Data  
Recovery  
RX9D  
RCREG Register  
FIFO  
SPEN  
8
Interrupt  
RCIF  
RCIE  
Data Bus  
© 2007 Microchip Technology Inc.  
DS39605F-page 143  
PIC18F1220/1320  
To set up an Asynchronous Transmission:  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (see Section 16.2 “EUSART  
Baud Rate Generator (BRG)”).  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
FIGURE 16-6:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit 0 bit 1  
bit 7/8  
bit 7/8 Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after  
the third word, causing the OERR (overrun) bit to be set.  
TABLE 16-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x  
0000 000u  
-000 -000  
-000 -000  
-111 -111  
0000 000x  
0000 0000  
0000 0010  
-1-1 0-00  
0000 0000  
0000 0000  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000  
CCP1IP TMR2IP TMR1IP -111 -111  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN FERR  
OERR  
RX9D  
0000 000x  
0000 0000  
0000 0010  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP BRG16  
ABDEN -1-1 0-00  
0000 0000  
SPBRGH Baud Rate Generator Register High Byte  
SPBRG  
Baud Rate Generator Register Low Byte  
0000 0000  
Legend:  
x= unknown, – = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
DS39605F-page 144  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
and cause data or framing errors. To work properly,  
therefore, the initial character in the transmission must  
be all ‘0’s. This can be 00h (8 bytes) for standard RS-232  
devices, or 000h (12 bits) for LIN bus.  
16.3.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper byte reception cannot be per-  
formed. The auto-wake-up feature allows the controller  
to wake-up due to activity on the RX/DT line while the  
EUSART is operating in Asynchronous mode.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., LP, XT or HS/PLL mode). The  
Sync Break (or Wake-up Signal) character must be of  
sufficient length and be followed by a sufficient period,  
to allow enough time for the selected oscillator to start  
and provide proper initialization of the EUSART.  
The auto-wake-up feature is enabled by setting the  
WUE bit (BAUDCTL<1>). Once set, the typical receive  
sequence on RX/DT is disabled and the EUSART  
remains in an Idle state, monitoring for a wake-up event  
independent of the CPU mode. A wake-up event con-  
sists of a high-to-low transition on the RX/DT line. (This  
coincides with the start of a Sync Break or a Wake-up  
Signal character for the LIN protocol.)  
16.3.4.2  
Special Considerations Using  
the WUE Bit  
The timing of WUE and RCIF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
EUSART in an Idle mode. The wake-up event causes  
a receive interrupt by setting the RCIF bit. The WUE bit  
is cleared after this when a rising edge is seen on RX/  
DT. The interrupt condition is then cleared by reading  
the RCREG register. Ordinarily, the data in RCREG will  
be dummy data and should be discarded.  
Following a wake-up event, the module generates an  
RCIF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 16-7) and asynchronously if the device is in  
Sleep mode (Figure 16-8). The interrupt condition is  
cleared by reading the RCREG register.  
The WUE bit is automatically cleared once a low-to-high  
transition is observed on the RX line, following the wake-  
up event. At this point, the EUSART module is in Idle  
mode and returns to normal operation. This signals to  
the user that the Sync Break event is over.  
The fact that the WUE bit has been cleared (or is still  
set) and the RCIF flag is set should not be used as an  
indicator of the integrity of the data in RCREG. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
16.3.4.1  
Special Considerations Using  
Auto-Wake-up  
Since auto-wake-up functions by sensing rising edge  
transitions on RX/DT, information with any state changes  
before the Stop bit may signal a false end-of-character  
FIGURE 16-7:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit  
Cleared by hardware  
Bit Set by User  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 16-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit  
Enters Sleep  
Cleared by hardware  
Bit Set by User  
RX/DT Line  
RCIF  
Note 1  
Cleared due to User Read of RCREG  
Sleep Ends  
Note 1: If the wake-up event requires a long oscillator warm-up time, the WUE bit may be cleared while the primary clock is still starting.  
2: The EUSART remains in Idle while the WUE bit is set.  
© 2007 Microchip Technology Inc.  
DS39605F-page 145  
PIC18F1220/1320  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
16.3.5  
BREAK CHARACTER SEQUENCE  
The Enhanced USART module has the capability of  
sending the special Break character sequences that  
are required by the LIN bus standard. The Break char-  
acter transmit consists of a Start bit, followed by twelve  
0’ bits and a Stop bit. The Frame Break character is  
sent whenever the SENDB and TXEN bits (TXSTA<3>  
and TXSTA<5>) are set while the Transmit Shift  
register is loaded with data. Note that the value of data  
written to TXREG will be ignored and all ‘0’s will be  
transmitted.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. Set the SENDB bit.  
7. Load a byte into TXREG. This triggers sending a  
Break signal. The Break signal is complete  
when TRMT is set. SENDB will also be cleared.  
See Figure 16-9 for the timing of the Break signal  
sequence.  
16.3.6  
RECEIVING A BREAK CHARACTER  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
The Enhanced USART module can receive a Break  
character in two ways.  
The first method forces configuration of the baud rate  
at a frequency of 9/13 the typical speed. This allows for  
the Stop bit transition to be at the correct sampling  
location (12 bits for Break versus Start bit and 8 data  
bits for typical data).  
Note that the data value written to the TXREG for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmis-  
sion. See Figure 16-9 for the timing of the Break  
character sequence.  
The second method uses the auto-wake-up feature  
described in Section 16.3.4 “Auto-Wake-up on Sync  
Break Character”. By enabling this feature, the  
EUSART will sample the next two transitions on RX/DT,  
cause an RCIF interrupt and receive the next data byte  
followed by another interrupt.  
16.3.5.1  
Transmitting A Break Signal  
The Enhanced USART module has the capability of  
sending the Break signal that is required by the LIN bus  
standard. The Break signal consists of a Start bit,  
followed by twelve ‘0’ bits and a Stop bit. The Break sig-  
nal is sent whenever the SENDB (TXSTA<3>) and  
TXEN (TXSTA<5>) bits are set and TXREG is loaded  
with data. The data written to TXREG will be ignored  
and all ‘0’s will be transmitted.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Rate Detect  
feature. For both methods, the user can set the ABD bit  
before placing the EUSART in its Sleep mode.  
16.3.6.1  
Transmitting a Break Sync  
The following sequence will send a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus master.  
SENDB is automatically cleared by hardware when the  
Break signal has been sent. This allows the user to  
preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to set up the  
Break character.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal  
transmission.  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
To send a Break Signal:  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the preconfigured mode. When the  
TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
1. Configure the EUSART for asynchronous trans-  
missions (steps 1-5). Initialize the SPBRG register  
for the appropriate baud rate. If a high-speed baud  
rate is desired, set bit BRGH (see Section 16.2  
“EUSART Baud Rate Generator (BRG)”).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit TXIE.  
DS39605F-page 146  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
7. Enable Auto-Baud Rate Detect. Set ABDEN.  
16.3.6.2  
Receiving a Break Sync  
8. Return from the interrupt. Allow the primary  
clock to start and stabilize (PRI_RUN or  
PRI_IDLE).  
To receive a Break Sync:  
1. Configure the EUSART for asynchronous  
transmit and receive. TXEN should remain  
clear. SPBRGH:SPBRG may be left as is.  
9. When the next RCIF interrupt occurs, the  
received baud rate has been measured. Read  
RCREG to clear RCIF and discard. Check  
2. Enable auto-wake-up. Set WUE.  
3. Enable RXIF interrupts. Set RCIE, PEIE, GIE.  
SPBRGH:SPBRG for  
a valid value. The  
4. The controller may be placed in any power  
managed mode.  
EUSART is ready for normal communications.  
Return from the interrupt. Allow the primary  
clock to run (PRI_RUN or PRI_IDLE).  
5. An RCIF will be generated at the beginning of  
the Break signal. When the interrupt is received,  
read RCREG to clear RCIF and discard. Allow  
the controller to return to PRI_RUN mode.  
10. Process subsequent RCIF interrupts normally  
as in asynchronous reception. TXEN should  
now be set if transmissions are needed. TXIF  
and TXIE may be set if transmit interrupts are  
desired. Remain in PRI_RUN or PRI_IDLE until  
communications are complete. Clear TXEN and  
return to step 2.  
6. Wait for the RX line to go high at the end of the  
Break signal. Wait for any of the following: WUE  
to clear automatically (poll), RB4/RX to go high  
(poll) or for RBIF to be set (poll or interrupt). If  
RBIF is used, check to be sure that RB4/RX is  
high before continuing.  
FIGURE 16-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
Start Bit  
Bit 0  
Bit 1  
Break  
Bit 11  
Stop Bit  
TXIF bit  
TRMT bit  
SENDB  
© 2007 Microchip Technology Inc.  
DS39605F-page 147  
PIC18F1220/1320  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCYCLE), the TXREG is empty  
and interrupt bit, TXIF (PIR1<4>), is set. The interrupt  
can be enabled/disabled by setting/clearing enable bit,  
TXIE (PIE1<4>). Flag bit, TXIF, will be set, regardless  
of the state of enable bit, TXIE and cannot be cleared  
in software. It will reset only when new data is loaded  
into the TXREG register.  
16.4 EUSART Synchronous Master  
Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit,  
SYNC (TXSTA<4>). In addition, enable bit, SPEN  
(RCSTA<7>), is set in order to configure the RB1/AN5/  
TX/CK/INT1 and RB4/AN6/RX/DT/KBI0 I/O pins to CK  
(clock) and DT (data) lines, respectively.  
While flag bit, TXIF, indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. TRMT is a read-only bit,  
which is set when the TSR is empty. No interrupt logic is  
tied to this bit, so the user has to poll this bit in order to  
determine if the TSR register is empty. The TSR is not  
mapped in data memory, so it is not available to the user.  
The Master mode indicates that the processor trans-  
mits the master clock on the CK line. Clock polarity is  
selected with the SCKP bit (BAUDCTL<5>); setting  
SCKP sets the Idle state on CK as high, while clearing  
the bit sets the Idle state as low. This option is provided  
to support Microwire devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
16.4.1  
EUSART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
The EUSART transmitter block diagram is shown in  
Figure 16-2. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available).  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 16-10:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RB4/AN6/RX/  
DT/KBI0 pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
RB1/AN5/TX/  
CK/INT1 pin  
(SCKP = 0)  
RB1/AN5/TX/  
CK/INT1 pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
TXEN bit  
1’  
1’  
Note:  
Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
DS39605F-page 148  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 16-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RB4/AN6/RX/DT/KBI0 pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RB1/AN5/TX/CK/INT1 pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
-000 -000  
-000 -000  
-111 -111  
0000 -00x  
0000 0000  
0000 0010  
-1-1 0-00  
0000 0000  
0000 0000  
0000 000u  
-000 -000  
-000 -000  
-111 -111  
0000 -00x  
0000 0000  
0000 0010  
-1-1 0-00  
0000 0000  
0000 0000  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB  
SCKP BRG16  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN  
SPBRGH Baud Rate Generator Register High Byte  
SPBRG  
Baud Rate Generator Register Low Byte  
Legend:  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
© 2007 Microchip Technology Inc.  
DS39605F-page 149  
PIC18F1220/1320  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
16.4.2  
EUSART SYNCHRONOUS MASTER  
RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTA<5>), or the Continuous Receive  
Enable bit, CREN (RCSTA<4>). Data is sampled on the  
RB4/AN6/RX/DT/KBI0 pin on the falling edge of the  
clock.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit, RCIF, will be set when reception  
is complete and an interrupt will be generated if  
the enable bit, RCIE, was set.  
If enable bit, SREN, is set, only a single word is  
received. If enable bit, CREN, is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
8. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
To set up a Synchronous Master Reception:  
10. If any error occurred, clear the error by clearing  
bit CREN.  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
FIGURE 16-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RB4/AN6/RX/  
DT/KBI0 pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RB1/AN5/TX/  
CK/INT1 pin  
(SCKP = 0)  
RB1/AN5/TX/  
CK/INT1 pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
DS39605F-page 150  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -111 -111 -111 -111  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
-1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
0000 0000 0000 0000  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN  
SPBRGH Baud Rate Generator Register High Byte  
SPBRG  
Baud Rate Generator Register Low Byte  
Legend:  
x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
© 2007 Microchip Technology Inc.  
DS39605F-page 151  
PIC18F1220/1320  
To set up a Synchronous Slave Transmission:  
16.5 EUSART Synchronous  
Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTA<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is  
supplied externally at the RB1/AN5/TX/CK/INT1 pin  
(instead of being supplied internally in Master mode).  
This allows the device to transfer or receive data while  
in any low-power mode.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
16.5.1  
EUSART SYNCHRONOUS  
SLAVE TRANSMIT  
7. Start transmission by loading data to the TXREG  
register.  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the Sleep  
mode.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in the TXREG  
register.  
c) Flag bit, TXIF, will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit, TXIF, will now be  
set.  
e) If enable bit, TXIE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -111 -111 -111 -111  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB  
SCKP BRG16  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN -1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
SPBRGH Baud Rate Generator Register High Byte  
SPBRG Baud Rate Generator Register Low Byte  
0000 0000 0000 0000  
Legend: x= unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
DS39605F-page 152  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
To set up a Synchronous Slave Reception:  
16.5.2  
EUSART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep, or any  
Idle mode and bit SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this low-power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREG register; if the RCIE enable bit is set, the inter-  
rupt generated will wake the chip from low-power  
mode. If the global interrupt is enabled, the program will  
branch to the interrupt vector.  
5. Flag bit, RCIF, will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RCIE, was set.  
6. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF -000 -000 -000 -000  
CCP1IE TMR2IE TMR1IE -000 -000 -000 -000  
CCP1IP TMR2IP TMR1IP -111 -111 -111 -111  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCTL  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN -1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
SPBRGH Baud Rate Generator Register High Byte  
SPBRG Baud Rate Generator Register Low Byte  
0000 0000 0000 0000  
Legend: x= unknown, = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
© 2007 Microchip Technology Inc.  
DS39605F-page 153  
PIC18F1220/1320  
NOTES:  
DS39605F-page 154  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The module has five registers:  
17.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
The Analog-to-Digital (A/D) converter module has  
seven inputs for the PIC18F1220/1320 devices. This  
module allows conversion of an analog input signal to  
a corresponding 10-bit digital number.  
A new feature for the A/D converter is the addition of  
programmable acquisition time. This feature allows the  
user to select a new channel for conversion and to set  
the GO/DONE bit immediately. When the GO/DONE bit  
is set, the selected channel is sampled for the pro-  
grammed acquisition time before a conversion is actu-  
ally started. This removes the firmware overhead that  
may have been required to allow for an acquisition  
(sampling) period (see Register 17-3 and Section 17.3  
“Selecting and Configuring Automatic Acquisition  
Time”).  
The ADCON0 register, shown in Register 17-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 17-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 17-3, configures the A/D clock  
source, programmed acquisition time and justification.  
REGISTER 17-1: ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
R/W-0  
U-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
VCFG1  
VCFG0  
GO/DONE  
bit 7  
bit 0  
bit 7-6 VCFG<1:0>: Voltage Reference Configuration bits  
A/D VREF+  
AVDD  
A/D VREF-  
AVSS  
00  
01  
10  
11  
External VREF+  
AVDD  
AVSS  
External VREF-  
External VREF-  
External VREF+  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-2 CHS2:CHS0: Analog Channel Select bits  
000= Channel 0 (AN0)  
001= Channel 1 (AN1)  
010= Channel 2 (AN2)  
011= Channel 3 (AN3)  
100= Channel 4 (AN4)  
101= Channel 5 (AN5)  
110= Channel 6 (AN6)  
111= Unimplemented(1)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress  
0= A/D Idle  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled  
Note 1: Performing a conversion on unimplemented channels returns full-scale results.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 155  
PIC18F1220/1320  
REGISTER 17-2: ADCON1: A/D CONTROL REGISTER 1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2 PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
PCFG6: A/D Port Configuration bit – AN6  
1= Pin configured as a digital port  
0= Pin configured as an analog channel – digital input disabled and reads ‘0’  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PCFG5: A/D Port Configuration bit – AN5  
1= Pin configured as a digital port  
0= Pin configured as an analog channel – digital input disabled and reads ‘0’  
PCFG4: A/D Port Configuration bit – AN4  
1= Pin configured as a digital port  
0= Pin configured as an analog channel – digital input disabled and reads ‘0’  
PCFG3: A/D Port Configuration bit – AN3  
1= Pin configured as a digital port  
0= Pin configured as an analog channel – digital input disabled and reads ‘0’  
PCFG2: A/D Port Configuration bit – AN2  
1= Pin configured as a digital port  
0= Pin configured as an analog channel – digital input disabled and reads ‘0’  
PCFG1: A/D Port Configuration bit – AN1  
1= Pin configured as a digital port  
0= Pin configured as an analog channel – digital input disabled and reads ‘0’  
PCFG0: A/D Port Configuration bit – AN0  
1= Pin configured as a digital port  
0= Pin configured as an analog channel – digital input disabled and reads ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS39605F-page 156  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 17-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT2:ACQT0: A/D Acquisition Time Select bits  
(1)  
000= 0 TAD  
001= 2 TAD  
010= 4 TAD  
011= 6 TAD  
100= 8 TAD  
101= 12 TAD  
110= 16 TAD  
111= 20 TAD  
bit 2-0  
ADCS2:ADCS0: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock derived from A/D RC oscillator)(1)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock derived from A/D RC oscillator)(1)  
Note:  
If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is  
added before the A/D clock starts. This allows the SLEEPinstruction to be executed  
before starting a conversion.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 157  
PIC18F1220/1320  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(AVDD and AVSS), or the voltage level on the  
RA3/AN3/VREF+ and RA2/AN2/VREF- pins.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted.  
Each port pin associated with the A/D converter can be  
configured as an analog input, or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH/ADRESL  
registers, the GO/DONE bit (ADCON0 register) is  
cleared and A/D Interrupt Flag bit, ADIF, is set. The block  
diagram of the A/D module is shown in Figure 17-1.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To oper-  
ate in Sleep, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
FIGURE 17-1:  
A/D BLOCK DIAGRAM  
AVDD  
CHS2:CHS0  
111  
110  
AN6(1)  
101  
AN5  
100  
AN4  
VAIN  
011  
(Input Voltage)  
10-bit  
Converter  
A/D  
AN3/VREF+  
010  
AN2/VREF-  
001  
VCFG1:VCFG0  
AN1  
000  
AVDD  
AN0  
x0  
x1  
1x  
VREFH  
VREFL  
Reference  
Voltage  
0x  
AVSS  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS39605F-page 158  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The value in the ADRESH/ADRESL registers is not  
modified for a Power-on Reset. The ADRESH/ADRESL  
registers will contain unknown data after a Power-on  
Reset.  
To do an A/D Conversion:  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 17.1  
“A/D Acquisition Requirements”. After this acquisi-  
tion time has elapsed, the A/D conversion can be  
started. An acquisition time can be programmed to  
occur between setting the GO/DONE bit and the actual  
start of the conversion.  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
• Set GO/DONE bit (ADCON0 register)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit, ADIF, if required.  
7. For the next conversion, go to step 1 or step 2,  
as required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before the next acquisition starts.  
FIGURE 17-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
VAIN  
ILEAKAGE  
± 500 nA  
CHOLD = 120 pF  
VT = 0.6V  
5 pF  
VSS  
Legend:  
CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
3V  
ILEAKAGE = leakage current at the pin due to  
various junctions  
RIC  
= interconnect resistance  
= sampling switch  
2V  
SS  
CHOLD  
RSS  
= sample/hold capacitance (from DAC)  
= sampling switch resistance  
5
6
7
8 9 10 11  
Sampling Switch (kΩ)  
© 2007 Microchip Technology Inc.  
DS39605F-page 159  
PIC18F1220/1320  
Example 17-1 shows the calculation of the minimum  
required acquisition time, TACQ. This calculation is  
based on the following application system  
assumptions:  
17.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 17-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 kΩ. After the analog input channel is  
selected (changed), the channel must be sampled for  
at least the minimum acquisition time before starting a  
conversion.  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 kΩ  
1/2 LSb  
5V RSS = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
17.2 A/D VREF+ and VREF- References  
If external voltage references are used instead of the  
internal AVDD and AVSS sources, the source imped-  
ance of the VREF+ and VREF- voltage sources must be  
considered. During acquisition, currents supplied by  
these sources are insignificant. However, during  
conversion, the A/D module sinks and sources current  
through the reference sources.  
Note:  
When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
In order to maintain the A/D accuracy, the voltage  
reference source impedances should be kept low to  
reduce voltage changes. These voltage changes occur  
as reference currents flow through the reference  
source impedance. The maximum recommended  
impedance of the VREF+ and VREF- external  
reference voltage sources is 250Ω.  
To calculate the minimum acquisition time,  
Equation 17-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
EQUATION 17-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 17-2: A/D MINIMUM CHARGING TIME  
(-TC/CHOLD(RIC + RSS + RS))  
VHOLD = (ΔVREF – (ΔVREF/2048)) • (1 – e  
)
or  
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EXAMPLE 17-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
=
=
TAMP + TC + TCOFF  
5 μs  
TCOFF = (Temp – 25ºC)(0.05 μs/ºC)  
(50ºC – 25ºC)(0.05 μs/ºC)  
1.25 μs  
Temperature coefficient is only required for temperatures > 25ºC. Below 25ºC, TCOFF = 0 μs.  
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2047) μs  
-(120 pF) (1 kΩ + 7 kΩ + 2.5 kΩ) ln(0.0004883) μs  
9.61 μs  
5 μs + 1.25 μs + 9.61 μs  
12.86 μs  
TACQ  
=
DS39605F-page 160  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
17.3 Selecting and Configuring  
Automatic Acquisition Time  
17.4 Selecting the A/D Conversion  
Clock  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
When the GO/DONE bit is set, sampling is stopped and  
a conversion begins. The user is responsible for ensur-  
ing the required acquisition time has passed between  
selecting the desired input channel and setting the  
GO/DONE bit. This occurs when the ACQT2:ACQT0  
bits (ADCON2<5:3>) remain in their Reset state (‘000’)  
and is compatible with devices that do not offer  
programmable acquisition times.  
• 2 TOSC  
• 4 TOSC  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC oscillator  
If desired, the ACQT bits can be set to select a  
programmable acquisition time for the A/D module.  
When the GO/DONE bit is set, the A/D module contin-  
ues to sample the input for the selected acquisition  
time, then automatically begins a conversion. Since the  
acquisition time is programmed, there may be no need  
to wait for an acquisition time between selecting a  
channel and setting the GO/DONE bit.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible, but greater than the  
minimum TAD (approximately 2 μs, see parameter 130  
for more information).  
Table 17-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
TABLE 17-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS2:ADCS0  
PIC18F1220/1320  
PIC18LF1220/1320(4)  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(3)  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.50 MHz  
5.00 MHz  
10.0 MHz  
20.0 MHz  
40.0 MHz  
1.00 MHz(1)  
666 kHz  
1.33 MHz  
2.66 MHz  
5.33 MHz  
10.65 MHz  
21.33 MHz  
1.00 MHz(2)  
Note 1: The RC source has a typical TAD time of 4 μs.  
2: The RC source has a typical TAD time of 6 μs.  
3: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D  
accuracy may be out of specification.  
4: Low-power devices only.  
© 2007 Microchip Technology Inc.  
DS39605F-page 161  
PIC18F1220/1320  
17.5 Operation in Low-Power Modes  
17.6 Configuring Analog Port Pins  
The selection of the automatic acquisition time and the  
A/D conversion clock is determined, in part, by the low-  
power mode clock source and frequency while in a  
low-power mode.  
The ADCON1, TRISA and TRISB registers all configure  
the A/D port pins. The port pins needed as analog inputs  
must have their corresponding TRIS bits set (input). If  
the TRIS bit is cleared (output), the digital output level  
(VOH or VOL) will be converted.  
If the A/D is expected to operate while the device is  
in  
a
low-power mode, the ACQT2:ACQT0 and  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
ADCS2:ADCS0 bits in ADCON2 should be updated in  
accordance with the low-power mode clock that will be  
used. After the low-power mode is entered (either of  
the Run modes), an A/D acquisition or conversion may  
be started. Once an acquisition or conversion is  
started, the device should continue to be clocked by the  
same low-power mode clock source until the conver-  
sion has been completed. If desired, the device may be  
placed into the corresponding low-power (ANY)_IDLE  
mode during the conversion.  
Note 1: When reading the Port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins con-  
figured as digital inputs will convert an  
analog input. Analog levels on a digitally  
configured input will be accurately  
converted.  
2: Analog levels on any pin defined as a  
digital input may cause the digital input  
buffer to consume current out of the  
device’s specification limits.  
If the low-power mode clock frequency is less than  
1 MHz, the A/D RC clock source should be selected.  
Operation in the Low-Power Sleep mode requires the  
A/D RC clock to be selected. If bits, ACQT2:ACQT0, are  
set to ‘000’ and a conversion is started, the conversion  
will be delayed one instruction cycle to allow execution  
of the SLEEPinstruction and entry to Low-Power Sleep  
mode. The IDLEN and SCS bits in the OSCCON register  
must have already been cleared prior to starting the  
conversion.  
DS39605F-page 162  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D Result register  
pair will NOT be updated with the partially completed  
17.7 A/D Conversions  
Figure 17-3 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT2:ACQT0  
bits are cleared. A conversion is started after the follow-  
ing instruction to allow entry into Low-Power Sleep  
mode before the conversion begins.  
A/D  
conversion  
sample.  
This  
means  
the  
ADRESH:ADRESL registers will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADRESH:ADRESL registers).  
Figure 17-4 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT2:ACQT0  
bits are set to ‘010’ and selecting a 4 TAD acquisition  
time before the conversion starts.  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can  
be started. After this wait, acquisition on the selected  
channel is automatically started.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 17-3:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY TAD  
TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
b7  
b6  
b4  
b1  
b0  
b2  
b9  
b8  
b5  
b3  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 17-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
7
8
9
10  
b1  
11  
b0  
1
2
3
4
1
2
3
4
5
6
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Conversion Starts  
(Holding capacitor is disconnected)  
Set GO bit  
(Holding capacitor continues  
acquiring input)  
Next Q4: ADRESH:ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is reconnected to analog input.  
© 2007 Microchip Technology Inc.  
DS39605F-page 163  
PIC18F1220/1320  
software overhead (moving ADRESH/ADRESL to the  
desired location). The appropriate analog input  
channel must be selected and the minimum acquisition  
period is either timed by the user, or an appropriate  
TACQ time selected before the “special event trigger”  
sets the GO/DONE bit (starts a conversion).  
17.8 Use of the CCP1 Trigger  
An A/D conversion can be started by the “special event  
trigger” of the CCP1 module. This requires that the  
CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be pro-  
grammed as ‘1011’ and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D acquisition  
and conversion and the Timer1 (or Timer3) counter will  
be reset to zero. Timer1 (or Timer3) is reset to auto-  
matically repeat the A/D acquisition period with minimal  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D  
module, but will still reset the Timer1 (or Timer3)  
counter.  
TABLE 17-2: SUMMARY OF A/D REGISTERS  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PIR1  
PIE1  
IPR1  
PIR2  
PIE2  
IPR2  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
CCP1IF  
CCP1IE  
CCP1IP  
LVDIF  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
TMR1IF -000 -000 -000 -000  
TMR1IE -000 -000 -000 -000  
TMR1IP -111 -111 -111 -111  
OSCFIF  
OSCFIE  
OSCFIP  
0--0 -00- 0--0 -00-  
0--0 -00- 0--0 -00-  
LVDIE  
LVDIP  
1--1 -11- 1--1 -11-  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
VCFG1  
VCFG0  
PCFG6  
CHS2  
PCFG4  
ACQT1  
RA4  
CHS1  
CHS0 GO/DONE ADON  
00-0 0000 00-0 0000  
PCFG5  
ACQT2  
PCFG3 PCFG2  
ACQT0 ADCS2  
PCFG1  
ADCS1  
RA1  
PCFG0 -000 0000 -000 0000  
ADCS0 0-00 0000 0-00 0000  
ADFM  
(3)  
(2)  
(1)  
RA7  
RA6  
RA5  
RA3  
RA2  
RA0  
qq0x 0000 uu0u 0000  
qq-1 1111 11-1 1111  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
(3)  
(2)  
TRISA7  
TRISA6  
PORTA Data Direction Register  
PORTB  
TRISB  
Read PORTB pins, Write LATB Latch  
PORTB Data Direction Register  
PORTB Output Data Latch  
LATB  
Legend:  
x= unknown, u= unchanged, q= depends on CONFIG1H<3:0>, – = unimplemented, read as ‘0’.  
Shaded cells are not used for A/D conversion.  
Note 1: RA5 port bit is available only as an input pin when the MCLRE bit in the configuration register is ‘0’.  
2: RA6 and TRISA6 are available only when the primary oscillator mode selection offers RA6 as a port pin; otherwise, RA6  
always reads ‘0’, TRISA6 always reads ‘1’ and writes to both are ignored (see CONFIG1H<3:0>).  
3: RA7 and TRISA7 are available only when the internal RC oscillator is configured as the primary oscillator in  
CONFIG1H<3:0>; otherwise, RA7 always reads ‘0’, TRISA7 always reads ‘1’ and writes to both are ignored.  
DS39605F-page 164  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Figure 18-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shut down the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference, TB TA, is the total  
time for shutdown.  
18.0 LOW-VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do “housekeeping tasks”, before the device  
voltage exits the valid operating range. This can be  
done using the Low-Voltage Detect module.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower then the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
The block diagram for the LVD module is shown in  
Figure 18-2 (following page). A comparator uses an  
internally generated reference voltage as the set point.  
When the selected tap output of the device voltage  
crosses the set point (is lower than), the LVDIF bit is set.  
Each node in the resistor divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the 1.2V  
internal reference voltage generated by the voltage  
reference module. The comparator then generates an  
interrupt signal setting the LVDIF bit. This voltage is  
software programmable to any one of 16 values (see  
Figure 18-2). The trip point is selected by  
programming the LVDL3:LVDL0 bits (LVDCON<3:0>).  
The Low-Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be turned  
off by the software, which minimizes the current  
consumption for the device.  
FIGURE 18-1:  
TYPICAL LOW-VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend: VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
© 2007 Microchip Technology Inc.  
DS39605F-page 165  
PIC18F1220/1320  
FIGURE 18-2:  
LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVD Control  
Register  
LVDIF  
Internally Generated  
LVDEN  
Reference Voltage  
1.2V  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when bits,  
LVDL3:LVDL0, are set to ‘1111’. In this state, the com-  
parator input is multiplexed from the external input pin,  
LVDIN (Figure 18-3). This gives users flexibility,  
because it allows them to configure the Low-Voltage  
Detect interrupt to occur at any voltage in the valid  
operating range.  
FIGURE 18-3:  
LOW-VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVD Control  
Register  
LVDIN  
LVDEN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS39605F-page 166  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
18.1 Control Register  
The Low-Voltage Detect Control register controls the  
operation of the Low-Voltage Detect circuitry.  
REGISTER 18-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5  
bit 4  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low-Voltage Detect logic will generate the interrupt flag at the specified  
voltage range  
0= Indicates that the Low-Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
LVDEN: Low-Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0 LVDL3:LVDL0: Low-Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.04V-5.15V  
1101= 3.76V-4.79V  
1100= 3.58V-4.56V  
1011= 3.41V-4.34V  
1010= 3.23V-4.11V  
1001= 3.14V-4.00V  
1000= 2.96V-3.77V  
0111= 2.70V-3.43V  
0110= 2.53V-3.21V  
0101= 2.43V-3.10V  
0100= 2.25V-2.86V  
0011= 2.16V-2.75V  
0010= 1.99V-2.53V  
0001= Reserved  
0000= Reserved  
Note:  
LVDL3:LVDL0 modes, which result in a trip point below the valid operating voltage  
of the device, are not tested.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2007 Microchip Technology Inc.  
DS39605F-page 167  
PIC18F1220/1320  
The following steps are needed to set up the LVD  
module:  
18.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be  
constantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods, where the voltage is checked. After  
doing the check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register), which selects the desired  
LVD trip point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set, until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 18-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 18-4:  
LOW-VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set.  
VDD  
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIVRST  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIVRST  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS39605F-page 168  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
18.2.1  
REFERENCE VOLTAGE SET POINT  
18.3 Operation During Sleep  
The internal reference voltage of the LVD module may  
be used by other internal circuitry (the programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires a time to become stable before a low-voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter 36. The low-voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 18-4.  
When enabled, the LVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from Sleep. Device execution will continue from the  
interrupt vector address if interrupts have been globally  
enabled.  
18.4 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the LVD module to be turned off.  
18.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter D022B.  
© 2007 Microchip Technology Inc.  
DS39605F-page 169  
PIC18F1220/1320  
NOTES:  
DS39605F-page 170  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The inclusion of an internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure. Two-  
Speed Start-up enables code to be executed almost  
immediately on start-up, while the primary clock source  
completes its start-up delays.  
19.0 SPECIAL FEATURES OF  
THE CPU  
PIC18F1220/1320 devices include several features  
intended to maximize system reliability, minimize cost  
through elimination of external components and offer  
code protection. These are:  
• Oscillator Selection  
• Resets:  
All of these features are enabled and configured by  
setting the appropriate configuration register bits.  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
19.1 Configuration Bits  
The configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select vari-  
ous device configurations. These bits are mapped  
starting at program memory location 300000h.  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor  
• Two-Speed Start-up  
• Code Protection  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h-3FFFFFh),  
which can only be accessed using table reads and  
table writes.  
• ID Locations  
• In-Circuit Serial Programming  
Programming the configuration registers is done in a  
manner similar to programming the Flash memory. The  
EECON1 register WR bit starts a self-timed write to the  
configuration register. In normal operation mode, a  
TBLWT instruction, with the TBLPTR pointing to the  
configuration register, sets up the address and the data  
for the configuration register write. Setting the WR bit  
starts a long write to the configuration register. The con-  
figuration registers are written a byte at a time. To write  
or erase a configuration cell, a TBLWTinstruction can  
write a ‘1’ or a ‘0’ into the cell. For additional details on  
Flash programming, refer to Section 6.5 “Writing to  
Flash Program Memory”.  
Several oscillator options are available to allow the part  
to fit the application. The RC oscillator option saves  
system cost, while the LP crystal option saves power.  
These are discussed in detail in Section 2.0 “Oscillator  
Configurations”.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, PIC18F1220/1320 devices  
have a Watchdog Timer, which is either permanently  
enabled via the configuration bits, or software  
controlled (if configured as disabled).  
TABLE 19-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
IESO  
FSCM  
FOSC3  
BORV1  
FOSC2  
BORV0  
FOSC1  
BOR  
FOSC0  
PWRTEN  
WDT  
11-- 1111  
---- 1111  
---1 1111  
1--- ----  
1--- -1-1  
---- --11  
11-- ----  
---- --11  
111- ----  
---- --11  
-1-- ----  
WDTPS3 WDTPS2 WDTPS1 WDTPS0  
300005h CONFIG3H MCLRE  
300006h CONFIG4L DEBUG  
LVP  
STVR  
CP0  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
CPD  
CP1  
CPB  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD  
WRTB  
WRTC  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
(1)  
(1)  
3FFFFEh DEVID1  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
xxxx xxxx  
(1)  
3FFFFFh DEVID2  
0000 0111  
Legend:  
x= unknown, u= unchanged, – = unimplemented. Shaded cells are unimplemented, read as ‘0’.  
Note 1: See Register 19-14 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.  
© 2007 Microchip Technology Inc.  
DS39605F-page 171  
PIC18F1220/1320  
REGISTER 19-1: CONFIG1H:CONFIGURATIONREGISTER1HIGH(BYTEADDRESS300001h)  
R/P-1  
IESO  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
FSCM  
FOSC3  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
bit 7  
bit 6  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode enabled  
0= Internal External Switchover mode disabled  
FSCM: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5-4 Unimplemented: Read as ‘0’  
bit 3-0 FOSC<3:0>: Oscillator Selection bits  
11xx= External RC oscillator, CLKO function on RA6  
1001= Internal RC oscillator, CLKO function on RA6 and port function on RA7  
1000= Internal RC oscillator, port function on RA6 and port function on RA7  
0111= External RC oscillator, port function on RA6  
0110= HS oscillator, PLL enabled (clock frequency = 4 x FOSC1)  
0101= EC oscillator, port function on RA6  
0100= EC oscillator, CLKO function on RA6  
0010= HS oscillator  
0001= XT oscillator  
0000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
DS39605F-page 172  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 19-2: CONFIG2L:CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
BOR  
R/P-1  
PWRTEN  
bit 0  
BORV1  
BORV0  
bit 7  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3-2 BORV1:BORV0: Brown-out Reset Voltage bits  
11= Reserved  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOR: Brown-out Reset Enable bit(1)  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRTEN: Power-up Timer Enable bit(1)  
1= PWRT disabled  
0= PWRT enabled  
Note 1: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to  
be independently controlled.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
© 2007 Microchip Technology Inc.  
DS39605F-page 173  
PIC18F1220/1320  
REGISTER 19-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-5 Unimplemented: Read as ‘0’  
bit 4-1 WDTPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDT: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39605F-page 174  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 19-4: CONFIG3H:CONFIGURATIONREGISTER3HIGH(BYTEADDRESS300005h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
MCLRE  
bit 7  
bit 0  
bit 7  
MCLRE: MCLR Pin Enable bit  
1= MCLR pin enabled, RA5 input pin disabled  
0= RA5 input pin enabled, MCLR disabled  
bit 6-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 19-5: CONFIG4L:CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS300006h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
STVR  
DEBUG  
bit 7  
bit 0  
bit 7  
DEBUG: Background Debugger Enable bit (see note)  
1= Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins  
0= Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug  
bit 6-3 Unimplemented: Read as ‘0’  
bit 2  
LVP: Low-Voltage ICSP Enable bit  
1= Low-Voltage ICSP enabled  
0= Low-Voltage ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVR: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
Note:  
The Timer1 oscillator shares the T1OSI and T1OSO pins with the PGD and PGC  
pins used for programming and debugging.  
When using the Timer1 oscillator, In-Circuit Serial Programming (ICSP) may not  
function correctly (high voltage or low voltage), or the In-Circuit Debugger (ICD) may  
not communicate with the controller. As a result of using either ICSP or ICD, the  
Timer1 crystal may be damaged.  
If ICSP or ICD operations are required, the crystal should be disconnected from the  
circuit (disconnect either lead) or installed after programming. The oscillator loading  
capacitors may remain in-circuit during ICSP or ICD operation.  
© 2007 Microchip Technology Inc.  
DS39605F-page 175  
PIC18F1220/1320  
REGISTER 19-6: CONFIG5L:CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS300008h)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
R/C-1  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
bit 7-2 Unimplemented: Read as ‘0’  
bit 1  
bit 0  
bit 1  
bit 0  
CP1: Code Protection bit (PIC18F1320)  
1= Block 1 (001000-001FFFh) not code-protected  
0= Block 1 (001000-001FFFh) code-protected  
CP0: Code Protection bit (PIC18F1320)  
1= Block 0 (00200-000FFFh) not code-protected  
0= Block 0 (00200-000FFFh) code-protected  
CP1: Code Protection bit (PIC18F1220)  
1= Block 1 (000800-000FFFh) not code-protected  
0= Block 1 (000800-000FFFh) code-protected  
CP0: Code Protection bit (PIC18F1220)  
1= Block 0 (000200-0007FFh) not code-protected  
0= Block 0 (000200-0007FFh) code-protected  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 19-7: CONFIG5H:CONFIGURATIONREGISTER5HIGH(BYTEADDRESS300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code-protected  
0= Data EEPROM code-protected  
CPB: Boot Block Code Protection bit  
1= Boot Block (000000-0001FFh) not code-protected  
0= Boot Block (000000-0001FFh) code-protected  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39605F-page 176  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 19-8: CONFIG6L:CONFIGURATIONREGISTER6LOW(BYTEADDRESS30000Ah)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
WRT1  
WRT0  
bit 7  
bit 0  
bit 7-2 Unimplemented: Read as ‘0’  
bit 1  
bit 0  
bit 1  
bit 0  
WRT1: Write Protection bit (PIC18F1320)  
1= Block 1 (001000-001FFFh) not write-protected  
0= Block 1 (001000-001FFFh) write-protected  
WRT0: Write Protection bit (PIC18F1320)  
1= Block 0 (00200-000FFFh) not write-protected  
0= Block 0 (00200-000FFFh) write-protected  
WRT1: Write Protection bit (PIC18F1220)  
1= Block 1 (000800-000FFFh) not write-protected  
0= Block 1 (000800-000FFFh) write-protected  
WRT0: Write Protection bit (PIC18F1220)  
1= Block 0 (000200-0007FFh) not write-protected  
0= Block 0 (000200-0007FFh) write-protected  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 19-9: CONFIG6H:CONFIGURATION REGISTER6 HIGH(BYTEADDRESS30000Bh)  
R/P-1  
R/P-1  
R-1  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
WRTC  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write-protected  
0= Data EEPROM write-protected  
WRTB: Boot Block Write Protection bit  
1= Boot Block (000000-0001FFh) not write-protected  
0= Boot Block (000000-0001FFh) write-protected  
WRTC: Configuration Register Write Protection bit  
1= Configuration registers (300000-3000FFh) not write-protected  
0= Configuration registers (300000-3000FFh) write-protected  
Note:  
This bit is read-only in normal execution mode; it can be written only in Program mode.  
bit 4-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
© 2007 Microchip Technology Inc.  
DS39605F-page 177  
PIC18F1220/1320  
REGISTER 19-10: CONFIG7L:CONFIGURATIONREGISTER7LOW(BYTEADDRESS30000Ch)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
EBTR1  
EBTR0  
bit 7  
bit 0  
bit 7-2 Unimplemented: Read as ‘0’  
bit 1  
bit 0  
bit 1  
bit 0  
EBTR1: Table Read Protection bit (PIC18F1320)  
1= Block 1 (001000-001FFFh) not protected from table reads executed in other blocks  
0= Block 1 (001000-001FFFh) protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit (PIC18F1320)  
1= Block 0 (00200-000FFFh) not protected from table reads executed in other blocks  
0= Block 0 (00200-000FFFh) protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit (PIC18F1220)  
1= Block 1 (000800-000FFFh) not protected from table reads executed in other blocks  
0= Block 1 (000800-000FFFh) protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit (PIC18F1220)  
1= Block 0 (000200-0007FFh) not protected from table reads executed in other blocks  
0= Block 0 (000200-0007FFh) protected from table reads executed in other blocks  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 19-11: CONFIG7H:CONFIGURATION REGISTER7 HIGH(BYTEADDRESS30000Dh)  
U-0  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot Block (000000-0001FFh) not protected from table reads executed in other blocks  
0= Boot Block (000000-0001FFh) protected from table reads executed in other blocks  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS39605F-page 178  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
REGISTER 19-12: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F1220/1320 DEVICES  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
bit 7-5 DEV2:DEV0: Device ID bits  
111= PIC18F1220  
110= PIC18F1320  
bit 4-0 REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision.  
Legend:  
R = Read-only bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 19-13: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F1220/1320 DEVICES  
R
R
R
R
R
R
R
R
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
bit 7  
bit 0  
bit 7-0 DEV10:DEV3: Device ID bits  
These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the  
part number.  
0000 0111= PIC18F1220/1320 devices  
Note:  
These values for DEV10:DEV3 may be shared with other devices. The specific  
device is always identified by using the entire DEV10:DEV0 bit sequence.  
Legend:  
R = Read-only bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
© 2007 Microchip Technology Inc.  
DS39605F-page 179  
PIC18F1220/1320  
19.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For PIC18F1220/1320 devices, the WDT is driven by the  
INTRC source. When the WDT is enabled, the clock  
source is also enabled. The nominal WDT period is 4 ms  
and has the same stability as the INTRC oscillator.  
2: Changing the setting of the IRCF bits  
(OSCCON<6:4>) clears the WDT and  
postscaler counts.  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is selected  
by a multiplexer, controlled by bits in Configuration  
Register 2H. Available periods range from 4 ms to  
131.072 seconds (2.18 minutes). The WDT and  
postscaler are cleared when any of the following events  
occur: execute a SLEEPor CLRWDTinstruction, the IRCF  
bits (OSCCON<6:4>) are changed or a clock failure has  
occurred.  
3: When a CLRWDT instruction is executed  
the postscaler count will be cleared.  
19.2.1  
CONTROL REGISTER  
Register 19-14 shows the WDTCON register. This is a  
readable and writable register, which contains a control  
bit that allows software to override the WDT enable  
configuration bit, only if the configuration bit has  
disabled the WDT.  
Adjustments to the internal oscillator clock period using  
the OSCTUNE register also affect the period of the  
WDT by the same factor. For example, if the INTRC  
period is increased by 3%, then the WDT period is  
increased by 3%.  
FIGURE 19-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
WDTEN  
INTRC Control  
WDT Counter  
Wake-up  
from Sleep  
÷125  
INTRC Oscillator  
(31 kHz)  
CLRWDT  
All Device  
Resets  
WDT  
Reset  
Reset  
WDT  
Programmable Postscaler  
1:1 to 1:32,768  
4
WDTPS<3:0>  
Sleep  
REGISTER 19-14: WDTCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1 Unimplemented: Read as ‘0’  
bit 0  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is off  
Note:  
This bit has no effect if the configuration bit, WDTEN (CONFIG2H<0>), is enabled.  
Legend:  
R = Readable bit  
W = Writable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
DS39605F-page 180  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 19-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
WDTPS3  
WDTPS2  
WDTPS2  
PD  
WDTPS0  
POR  
WDTEN  
BOR  
RI  
TO  
WDTCON  
Legend:  
SWDTEN  
Shaded cells are not used by the Watchdog Timer.  
In all other power managed modes, Two-Speed Start-up  
is not used. The device will be clocked by the currently  
selected clock source until the primary clock source  
becomes available. The setting of the IESO bit is  
ignored.  
19.3 Two-Speed Start-up  
The Two-Speed Start-up feature helps to minimize the  
latency period from oscillator start-up to code execution  
by allowing the microcontroller to use the INTRC oscil-  
lator as a clock source until the primary clock source is  
available. It is enabled by setting the IESO bit in  
Configuration Register 1H (CONFIG1H<7>).  
19.3.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
Two-Speed Start-up is available only if the primary oscil-  
lator mode is LP, XT, HS or HSPLL (crystal-based  
modes). Other sources do not require an OST start-up  
delay; for these, Two-Speed Start-up is disabled.  
While using the INTRC oscillator in Two-Speed Start-  
up, the device still obeys the normal command  
sequences for entering power managed modes, includ-  
ing serial SLEEP instructions (refer to Section 3.1.3  
“Multiple Sleep Commands”). In practice, this means  
that user code can change the SCS1:SCS0 bit settings  
and issue SLEEPcommands before the OST times out.  
This would allow an application to briefly wake-up, per-  
form routine “housekeeping” tasks and return to Sleep  
before the device starts to operate from the primary  
oscillator.  
When enabled, Resets and wake-ups from Sleep mode  
cause the device to configure itself to run from the  
internal oscillator block as the clock source, following  
the time-out of the Power-up Timer after a Power-on  
Reset is enabled. This allows almost immediate code  
execution while the primary oscillator starts and the  
OST is running. Once the OST times out, the device  
automatically switches to PRI_RUN mode.  
User code can also check if the primary clock source is  
currently providing the system clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the system clock.  
Otherwise, the internal oscillator block is providing the  
clock during wake-up from Reset or Sleep mode.  
Because the OSCCON register is cleared on Reset  
events, the INTOSC (or postscaler) clock source is not  
initially available after a Reset event; the INTRC clock  
is used directly at its base frequency. To use a higher  
clock speed on wake-up, the INTOSC or postscaler  
clock sources can be selected to provide a higher clock  
speed by setting bits, IFRC2:IFRC0, immediately after  
Reset. For wake-ups from Sleep, the INTOSC or  
postscaler clock sources can be selected by setting  
IFRC2:IFRC0 prior to entering Sleep mode.  
FIGURE 19-2:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2  
INTOSC  
Multiplexer  
OSC1  
(1)  
TOST  
(1)  
TPLL  
PLL Clock  
Output  
1
2
3
4
5
6
7
8
Clock Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 4  
PC  
PC + 2  
PC + 6  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
Wake from Interrupt Event  
© 2007 Microchip Technology Inc.  
DS39605F-page 181  
PIC18F1220/1320  
Since the postscaler frequency from the internal oscil-  
lator block may not be sufficiently stable, it may be  
desirable to select another clock configuration and  
enter an alternate power managed mode (see  
Section 19.3.1 “Special Considerations for Using  
Two-Speed Start-up” and Section 3.1.3 “Multiple  
Sleep Commands” for more details). This can be  
done to attempt a partial recovery, or execute a  
controlled shutdown.  
19.4 Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) allows the micro-  
controller to continue operation, in the event of an  
external oscillator failure, by automatically switching  
the system clock to the internal oscillator block. The  
FSCM function is enabled by setting the Fail-Safe  
Clock Monitor Enable bit, FSCM (CONFIG1H<6>).  
When FSCM is enabled, the INTRC oscillator runs at  
all times to monitor clocks to peripherals and provide  
an instant backup clock in the event of a clock failure.  
Clock monitoring (shown in Figure 19-3) is accom-  
plished by creating a sample clock signal, which is the  
INTRC output divided by 64. This allows ample time  
between FSCM sample clocks for a peripheral clock  
edge to occur. The peripheral system clock and the  
sample clock are presented as inputs to the Clock  
Monitor latch (CM). The CM is set on the falling edge of  
the system clock source, but cleared on the rising edge  
of the sample clock.  
To use a higher clock speed on wake-up, the INTOSC  
or postscaler clock sources can be selected to provide  
a higher clock speed by setting bits, IFRC2:IFRC0,  
immediately after Reset. For wake-ups from Sleep, the  
INTOSC or postscaler clock sources can be selected  
by setting IFRC2:IFRC0 prior to entering Sleep mode.  
Adjustments to the internal oscillator block, using the  
OSCTUNE register, also affect the period of the FSCM  
by the same factor. This can usually be neglected, as  
the clock frequency being monitored is generally much  
higher than the sample clock frequency.  
The FSCM will detect failures of the primary or second-  
ary clock sources only. If the internal oscillator block  
fails, no failure would be detected, nor would any action  
be possible.  
FIGURE 19-3:  
FSCM BLOCK DIAGRAM  
Clock Monitor  
Latch (CM)  
(edge-triggered)  
Peripheral  
Clock  
S
Q
19.4.1  
FSCM AND THE WATCHDOG TIMER  
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a  
separate divider and counter, disabling the WDT has  
no effect on the operation of the INTRC oscillator when  
the FSCM is enabled.  
INTRC  
Source  
C
Q
÷ 64  
(32 μs)  
488 Hz  
(2.048 ms)  
As already noted, the clock source is switched to the  
INTOSC clock when a clock failure is detected.  
Depending on the frequency selected by the  
IRCF2:IRCF0 bits, this may mean a substantial change  
in the speed of code execution. If the WDT is enabled  
with a small prescale value, a decrease in clock speed  
allows a WDT time-out to occur and a subsequent  
device Reset. For this reason, Fail-Safe Clock events  
also reset the WDT and postscaler, allowing it to start  
timing from when execution speed was changed and  
decreasing the likelihood of an erroneous time-out.  
Clock  
Failure  
Detected  
Clock failure is tested for on the falling edge of the sam-  
ple clock. If a sample clock falling edge occurs while  
CM is still set, a clock failure has been detected  
(Figure 19-4). This causes the following:  
• the FSCM generates an oscillator fail interrupt by  
setting bit, OSCFIF (PIR2<7>);  
• the system clock source is switched to the internal  
oscillator block (OSCCON is not updated to show  
the current clock source – this is the Fail-Safe  
condition); and  
• the WDT is reset.  
DS39605F-page 182  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
19.4.2  
EXITING FAIL-SAFE OPERATION  
19.4.3  
FSCM INTERRUPTS IN POWER  
MANAGED MODES  
The Fail-Safe condition is terminated by either a device  
Reset, or by entering a power managed mode. On  
Reset, the controller starts the primary clock source  
specified in Configuration Register 1H (with any  
required start-up delays that are required for the  
oscillator mode, such as OST or PLL timer). The  
INTOSC multiplexer provides the system clock until the  
primary clock source becomes ready (similar to a Two-  
Speed Start-up). The clock system source is then  
switched to the primary clock (indicated by the OSTS  
bit in the OSCCON register becoming set). The Fail-  
Safe Clock Monitor then resumes monitoring the  
peripheral clock.  
As previously mentioned, entering a power managed  
mode clears the Fail-Safe condition. By entering a  
power managed mode, the clock multiplexer selects  
the clock source selected by the OSCCON register.  
Fail-Safe monitoring of the power managed clock  
source resumes in the power managed mode.  
If an oscillator failure occurs during power managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTOSC multiplexer. An automatic transition  
back to the failed clock source will not occur.  
The primary clock source may never become ready  
during start-up. In this case, operation is clocked by the  
INTOSC multiplexer. The OSCCON register will remain  
in its Reset state until a power managed mode is  
entered.  
If the interrupt is disabled, the device will not exit the  
power managed mode on oscillator failure. Instead, the  
device will continue to operate as before, but clocked  
by the INTOSC multiplexer. While in Idle mode, subse-  
quent interrupts will cause the CPU to begin executing  
instructions while being clocked by the INTOSC multi-  
plexer. The device will not transition to a different clock  
source until the Fail-Safe condition is cleared.  
Entering a power managed mode by loading the  
OSCCON register and executing a SLEEP instruction  
will clear the Fail-Safe condition. When the Fail-Safe  
condition is cleared, the clock monitor will resume  
monitoring the peripheral clock.  
FIGURE 19-4:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
System  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in  
this example have been chosen for clarity.  
© 2007 Microchip Technology Inc.  
DS39605F-page 183  
PIC18F1220/1320  
19.4.4  
POR OR WAKE FROM SLEEP  
Note:  
The same logic that prevents false oscilla-  
tor failure interrupts on POR or wake from  
Sleep will also prevent the detection of the  
oscillator’s failure to start at all following  
these events. This can be avoided by  
monitoring the OSTS bit and using a  
timing routine to determine if the oscillator  
is taking too long to start. Even so, no  
oscillator failure interrupt will be flagged.  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or Low-Power Sleep mode. When the primary  
system clock is EC, RC or INTRC modes, monitoring  
can begin immediately following these events.  
For oscillator modes involving a crystal or resonator  
(HS, HSPLL, LP or XT), the situation is somewhat dif-  
ferent. Since the oscillator may require a start-up time  
considerably longer than the FCSM sample clock time,  
a false clock failure may be detected. To prevent this,  
the internal oscillator block is automatically configured  
as the system clock and functions until the primary  
clock is stable (the OST and PLL timers have timed  
out). This is identical to Two-Speed Start-up mode.  
Once the primary clock is stable, the INTRC returns to  
its role as the FSCM source  
As noted in Section 19.3.1 “Special Considerations  
for Using Two-Speed Start-up”, it is also possible to  
select another clock configuration and enter an alter-  
nate power managed mode while waiting for the  
primary system clock to become stable. When the new  
powered managed mode is selected, the primary clock  
is disabled.  
DS39605F-page 184  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Each of the three blocks has three protection bits  
associated with them. They are:  
19.5 Program Verification and  
Code Protection  
• Code-Protect bit (CPn)  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other PIC  
devices.  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
Figure 19-5 shows the program memory organization  
for 4 and 8-Kbyte devices and the specific code protec-  
tion bit associated with each block. The actual locations  
of the bits are summarized in Table 19-3.  
The user program memory is divided into three blocks.  
One of these is a boot block of 512 bytes. The remain-  
der of the memory is divided into two blocks on binary  
boundaries.  
FIGURE 19-5:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18F1220/1320  
MEMORY SIZE/DEVICE  
Block Code  
Protection  
Controlled By:  
Block Code  
Protection  
Controlled By:  
Address  
Range  
4 Kbytes  
8 Kbytes  
Address  
Range  
(PIC18F1220) (PIC18F1320)  
000000h  
0001FFh  
000000h  
0001FFh  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
Boot Block  
Block 0  
Boot Block  
Block 0  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000200h  
000200h  
0007FFh  
000800h  
CP1, WRT1, EBTR1  
Block 1  
000FFFh  
001000h  
000FFFh  
001000h  
Block 1  
CP1, WRT1, EBTR1  
(Unimplemented  
Memory Space)  
Unimplemented  
001FFFh  
002000h  
Read ‘0’s  
Unimplemented  
(Unimplemented  
Memory Space)  
Read ‘0’s  
1FFFFFh  
1FFFFFh  
TABLE 19-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CPD  
CPB  
CP1  
CP0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
WRT1  
WRT0  
CONFIG6H WRTD  
WRTB  
WRTC  
CONFIG7L  
CONFIG7H  
EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
© 2007 Microchip Technology Inc.  
DS39605F-page 185  
PIC18F1220/1320  
19.5.1  
PROGRAM MEMORY  
CODE PROTECTION  
Note:  
Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code pro-  
tection bits are only set to ‘1’ by a full Chip  
Erase or Block Erase function. The full  
Chip Erase and Block Erase functions can  
only be initiated via ICSP or an external  
programmer.  
The program memory may be read to, or written from,  
any location using the table read and table write  
instructions. The device ID may be read with table  
reads. The configuration registers may be read and  
written with the table read and table write instructions.  
In normal execution mode, the CPn bits have no direct  
effect. CPn bits inhibit external reads and writes. A  
block of user memory may be protected from table  
writes if the WRTn configuration bit is ‘0’. The EBTRn  
bits control table reads. For a block of user memory  
with the EBTRn bit set to ‘0’, a table read instruction  
that executes from within that block is allowed to read.  
A table read instruction that executes from a location  
outside of that block is not allowed to read and will  
result in reading ‘0’s. Figures 19-6 through 19-8  
illustrate table write and table read protection.  
FIGURE 19-6:  
TABLE WRITE (WRTn) DISALLOWED: PIC18F1320  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 0002FFh  
WRT0, EBTR0 = 01  
PC = 0007FEh  
TBLWT *  
TBLWT *  
000FFFh  
001000h  
PC = 0017FEh  
WRT1, EBTR1 = 11  
001FFFh  
Results: All table writes disabled to Blockn whenever WRTn = 0.  
DS39605F-page 186  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 19-7:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED: PIC18F1320  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 0002FFh  
WRT0, EBTR0 = 10  
000FFFh  
001000h  
PC = 001FFEh  
TBLRD *  
WRT1, EBTR1 = 11  
001FFFh  
Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.  
TABLAT register returns a value of ‘0’.  
FIGURE 19-8:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED: PIC18F1320  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 0002FFh  
PC = 0007FEh  
WRT0, EBTR0 = 10  
TBLRD *  
000FFFh  
001000h  
WRT1, EBTR1 = 11  
001FFFh  
Results: Table reads permitted within Blockn, even when EBTRBn = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
© 2007 Microchip Technology Inc.  
DS39605F-page 187  
PIC18F1220/1320  
19.5.2  
DATA EEPROM  
CODE PROTECTION  
TABLE 19-4: ICSP/ICD CONNECTIONS  
Signal  
Pin  
RB7/PGD/T1OSI/ Shared with T1OSC – protect  
P1D/KBI3 crystal  
Notes  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits external writes to data EEPROM. The  
CPU can continue to read and write data EEPROM,  
regardless of the protection bit settings.  
PGD  
PGC  
RB6/PGC/T1OSO/ Shared with T1OSC – protect  
T13CKI/P1C/KBI2 crystal  
MCLR  
VDD  
MCLR/VPP/RA5  
VDD  
VSS  
19.5.3  
CONFIGURATION REGISTER  
PROTECTION  
VSS  
PGM  
RB5/PGM/KBI1  
Optional – pull RB5 low is  
LVP enabled  
The configuration registers can be write-protected. The  
WRTC bit controls protection of the configuration  
registers. In normal execution mode, the WRTC bit is  
readable only. WRTC can only be written via ICSP or  
an external programmer.  
19.8 In-Circuit Debugger  
When the DEBUG bit in configuration register,  
CONFIG4L, is programmed to a ‘0’, the In-Circuit  
Debugger functionality is enabled. This function allows  
simple debugging functions when used with MPLAB®  
IDE. When the microcontroller has this feature  
enabled, some resources are not available for general  
use. Table 19-5 shows which resources are required by  
the background debugger.  
19.6 ID Locations  
Eight memory locations (200000h-200007h) are  
designated as ID locations, where the user can store  
checksum or other code identification numbers. These  
locations are both readable and writable during normal  
execution through the TBLRDand TBLWTinstructions,  
or during program/verify. The ID locations can be read  
when the device is code-protected.  
TABLE 19-5: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
Stack:  
2 levels  
512 bytes  
10 bytes  
19.7  
In-Circuit Serial Programming  
Program Memory:  
Data Memory:  
PIC18F1220/1320 microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed (see Table 19-4).  
To use the In-Circuit Debugger function of the  
microcontroller, the design must implement In-Circuit  
Serial Programming connections to MCLR/VPP, VDD,  
VSS, RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip, or one of the  
third party development tool companies (see the note fol-  
lowing Section 19.7 “In-Circuit Serial Programming”  
for more information).  
Note:  
The Timer1 oscillator shares the T1OSI  
and T1OSO pins with the PGD and PGC  
pins used for programming and  
debugging.  
When using the Timer1 oscillator, In-Circuit  
Serial Programming (ICSP) may not  
function correctly (high voltage or low  
voltage), or the In-Circuit Debugger (ICD)  
may not communicate with the controller.  
As a result of using either ICSP or ICD, the  
Timer1 crystal may be damaged.  
If ICSP or ICD operations are required, the  
crystal should be disconnected from the  
circuit (disconnect either lead), or installed  
after programming. The oscillator loading  
capacitors may remain in-circuit during  
ICSP or ICD operation.  
DS39605F-page 188  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
If Low-Voltage Programming mode will not be used, the  
LVP bit can be cleared and RB5/PGM/KBI1 becomes  
available as the digital I/O pin RB5. The LVP bit may be  
set or cleared only when using standard high-voltage  
programming (VIHH applied to the MCLR/VPP/RA5 pin).  
Once LVP has been disabled, only the standard high-  
voltage programming is available and must be used to  
program the device.  
19.9 Low-Voltage ICSP Programming  
The LVP bit in configuration register, CONFIG4L,  
enables Low-Voltage Programming (LVP). When LVP  
is enabled, the microcontroller can be programmed  
without requiring high voltage being applied to the  
MCLR/VPP/RA5 pin, but the RB5/PGM/KBI1 pin is then  
dedicated to controlling Program mode entry and is not  
available as a general purpose I/O pin.  
Memory that is not code-protected can be erased,  
using either a Block Erase, or erased row by row, then  
written at any specified VDD. If code-protected memory  
is to be erased, a Block Erase is required. If a Block  
Erase is to be performed when using Low-Voltage  
Programming, the device must be supplied with VDD of  
4.5V to 5.5V.  
LVP is enabled in erased devices.  
While programming using LVP, VDD is applied to the  
MCLR/VPP/RA5 pin as in normal execution mode. To  
enter Programming mode, VDD is applied to the PGM  
pin.  
Note 1: High-voltage programming is always  
available, regardless of the state of the  
LVP bit or the PGM pin, by applying VIHH  
to the MCLR pin.  
2: When Low-Voltage Programming is  
enabled, the RB5 pin can no longer be  
used as a general purpose I/O pin.  
3: When LVP is enabled, externally pull the  
PGM pin to VSS to allow normal program  
execution.  
© 2007 Microchip Technology Inc.  
DS39605F-page 189  
PIC18F1220/1320  
NOTES:  
DS39605F-page 190  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
The control instructions may use some of the following  
operands:  
20.0 INSTRUCTION SET SUMMARY  
The PIC18 instruction set adds many enhancements to  
the previous PIC instruction sets, while maintaining an  
easy migration from these PIC instruction sets.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
Most instructions are a single program memory word  
(16 bits), but there are three instructions that require  
two program memory locations.  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
All instructions are a single word, except for three  
double-word instructions. These three instructions  
were made double-word instructions so that all the  
required information is available in these 32 bits. In the  
second word, the 4 MSbs are ‘1’s. If this second word  
is executed as an instruction (by itself), it will execute  
as a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 20-1 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 20-1 shows the opcode field  
descriptions.  
The double-word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 μs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 μs.  
Two-word branch instructions (if true) would take 3 μs.  
2. The destination of the result  
(specified by ‘d’)  
3. The accessed memory  
(specified by ‘a’)  
The file register designator ‘f’ specifies which file  
register is to be used by the instruction.  
Figure 20-1 shows the general formats that the  
instructions can have.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If ‘d’ is zero, the  
result is placed in the WREG register. If ‘d’ is one, the  
result is placed in the file register specified in the  
instruction.  
All examples use the format ‘nnh’ to represent a hexa-  
decimal number, where ‘h’ signifies a hexadecimal  
digit.  
The Instruction Set Summary, shown in Table 20-1,  
lists the instructions recognized by the Microchip  
Assembler (MPASMTM). Section 20.2 “Instruction  
Set” provides a description of each instruction.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
2. The bit in the file register  
(specified by ‘b’)  
20.1 Read-Modify-Write Operations  
3. The accessed memory  
(specified by ‘a’)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified and  
the result is stored according to either the instruction or  
the destination designator ‘d’. A read operation is  
performed on a register even if the instruction writes to  
that register.  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register desig-  
nator ‘f’ represents the number of the file in which the  
bit is located.  
The literal instructions may use some of the following  
operands:  
For example, a “BCF PORTB,1” instruction will read  
PORTB, clear bit 1 of the data, then write the result  
back to PORTB. The read operation would have the  
unintended result that any condition that sets the RBIF  
flag would be cleared. The R-M-W operation may also  
copy the level of an input pin to its corresponding output  
latch.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
© 2007 Microchip Technology Inc.  
DS39605F-page 191  
PIC18F1220/1320  
TABLE 20-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7).  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination either the WREG register or the specified register file location.  
8-bit register file address (0x00 to 0xFF).  
fs  
12-bit register file address (0x000 to 0xFFF). This is the source address.  
12-bit register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
fd  
k
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for  
call/branch and return instructions.  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or unchanged.  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’).  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
21-bit Table Pointer (points to a program memory location).  
8-bit Table Latch.  
TABLAT  
TOS  
Top-of-Stack.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Global Interrupt Enable bit.  
Watchdog Timer.  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit.  
PD  
Power-down bit.  
C, DC, Z, OV, N  
ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
Optional.  
[
]
)
(
Contents.  
< >  
Assigned to.  
Register bit field.  
In the set of.  
italics  
User defined term (font is Courier).  
DS39605F-page 192  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 20-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
OPCODE  
9
8
7
0
ADDWF MYREG, W, B  
d
a
f (FILE #)  
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
© 2007 Microchip Technology Inc.  
DS39605F-page 193  
PIC18F1220/1320  
TABLE 20-1: PIC18FXXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CPFSEQ f, a  
CPFSGT f, a  
CPFSLT f, a  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
DECF  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ f, d, a Decrement f, Skip if 0  
DCFSNZ f, d, a Decrement f, Skip if Not 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
INCF  
f, d, a Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word  
fd (destination) 2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
RRNCF  
SETF  
f, a  
f, a  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
1, 2  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ f, a  
f, d, a Swap nibbles in f  
Test f, skip if 0  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
XORWF f, d, a Exclusive OR WREG with f  
1
0001 10da ffff ffff Z, N  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39605F-page 194  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 20-1: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
Call subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
1
1
1
1
2
1
2
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device Reset  
Return from interrupt enable  
s
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
© 2007 Microchip Technology Inc.  
DS39605F-page 195  
PIC18F1220/1320  
TABLE 20-1: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
AND literal with WREG  
Inclusive OR literal with WREG  
Move literal (12-bit) 2nd word  
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
1
1
2
to FSRx  
1st word  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
1
1
1
2
1
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table read with post-increment  
Table read with post-decrement  
Table read with pre-increment  
Table write  
Table write with post-increment  
Table write with post-decrement  
Table write with pre-increment  
2 (5)  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared  
if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS39605F-page 196  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
20.2 Instruction Set  
ADDLW  
ADD literal to W  
ADDWF  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are added to the  
8-bit literal ‘k’ and the result is  
placed in W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected. If ‘a’ is ‘1’,  
the BSR is used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
ADDLW  
0x15  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
=
0x10  
After Instruction  
W
=
0x25  
ADDWF  
REG, W  
Example:  
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
After Instruction  
W
REG  
=
=
0xD9  
0xC2  
© 2007 Microchip Technology Inc.  
DS39605F-page 197  
PIC18F1220/1320  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are AND’ed with  
the 8-bit literal ‘k’. The result is  
placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data  
memory location ‘f’. If ‘d’ is ‘0’, the  
result is placed in W. If ‘d’ is ‘1’, the  
result is placed in data memory  
location ‘f’. If ‘a’ is ‘0’, the Access  
Bank will be selected. If ‘a’ is ‘1’, the  
BSR will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
=
0xA3  
0x03  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
ADDWFC  
REG, W  
Example:  
Before Instruction  
Carry bit =  
1
REG  
W
=
0x02  
0x4D  
=
After Instruction  
Carry bit =  
0
0x02  
0x50  
REG  
W
=
=
DS39605F-page 198  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
ANDWF  
AND W with f  
BC  
Branch if Carry  
Syntax:  
[ label ] ANDWF  
f [,d [,a]]  
Syntax:  
[ label ] BC  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ‘1’, then the  
Description:  
The contents of W are AND’ed with  
register ‘f’. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank will be  
selected. If ‘a’ is ‘1’, the BSR will  
not be overridden (default).  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
ANDWF  
REG, W  
Example:  
Before Instruction  
If No Jump:  
Q1  
W
REG  
=
=
0x17  
0xC2  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
After Instruction  
W
REG  
=
=
0x02  
0xC2  
HERE  
BC JUMP  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
=
=
=
=
1;  
PC  
address (JUMP)  
If Carry  
PC  
0;  
address (HERE + 2)  
© 2007 Microchip Technology Inc.  
DS39605F-page 199  
PIC18F1220/1320  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in register ‘f’ is cleared. If ‘a’  
is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
BCF  
FLAG_REG, 7  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
FLAG_REG  
=
=
0xC7  
0x47  
If No Jump:  
Q1  
After Instruction  
FLAG_REG  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
=
=
=
=
1;  
PC  
address (Jump)  
If Negative  
PC  
0;  
address (HERE + 2)  
DS39605F-page 200  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if Carry bit is ‘0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if Negative bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the  
program will branch.  
Description:  
If the Negative bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
=
=
=
=
0;  
If Negative  
=
=
=
=
0;  
PC  
address (Jump)  
PC  
address (Jump)  
If Carry  
PC  
1;  
If Negative  
PC  
1;  
address (HERE + 2)  
address (HERE + 2)  
© 2007 Microchip Technology Inc.  
DS39605F-page 201  
PIC18F1220/1320  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if Zero bit is ‘0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if Overflow bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
program will branch.  
Description:  
If the Zero bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
=
=
=
=
0;  
If Zero  
=
=
=
=
0;  
PC  
address (Jump)  
PC  
address (Jump)  
If Overflow  
PC  
1;  
If Zero  
PC  
1;  
address (HERE + 2)  
address (HERE + 2)  
DS39605F-page 202  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
None  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
Description:  
Add the 2’s complement number  
‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG  
=
=
0x0A  
0x8A  
Before Instruction  
After Instruction  
FLAG_REG  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
© 2007 Microchip Technology Inc.  
DS39605F-page 203  
PIC18F1220/1320  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the  
next instruction is skipped.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the  
next instruction is skipped.  
If bit ‘b’ is ‘0’, then the next  
If bit ‘b’ is ‘1’, then the next  
instruction fetched during the current  
instruction execution is discarded  
and a NOPis executed instead,  
making this a two-cycle instruction. If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
instruction fetched during the current  
instruction execution is discarded  
and a NOPis executed instead,  
making this a two-cycle instruction. If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1  
Example:  
Example:  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
=
=
=
=
0;  
If FLAG<1>  
=
=
=
=
0;  
PC  
address (TRUE)  
1;  
PC  
address (FALSE)  
1;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
address (FALSE)  
address (TRUE)  
DS39605F-page 204  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if Overflow bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ‘f’  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
BTG  
PORTB,  
4
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction:  
PORTB  
=
0111 0101 [0x75]  
If No Jump:  
Q1  
After Instruction:  
Q2  
Q3  
Q4  
PORTB  
=
0110 0101 [0x65]  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BOV JUMP  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
=
=
=
=
1;  
PC  
address (JUMP)  
If Overflow  
PC  
0;  
address (HERE + 2)  
© 2007 Microchip Technology Inc.  
DS39605F-page 205  
PIC18F1220/1320  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(Status) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then  
a two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return  
address (PC + 4) is pushed onto  
the return stack. If ‘s’ = 1, the W,  
Words:  
Cycles:  
1
1(2)  
Status and BSR registers are also  
pushed into their respective  
Q Cycle Activity:  
If Jump:  
shadow registers, WS, STATUSS  
and BSRS. If ‘s’ = 0, no update  
occurs (default). Then, the 20-bit  
value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
‘k’<7:0>,  
stack  
‘k’<19:8>,  
Write to PC  
Before Instruction  
PC  
=
address (HERE)  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
After Instruction  
If Zero  
=
=
=
=
1;  
PC  
address (Jump)  
HERE  
CALL THERE, FAST  
Example:  
If Zero  
PC  
0;  
address (HERE + 2)  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
PC  
=
=
=
=
address (THERE)  
TOS  
WS  
address (HERE + 4)  
W
BSR  
BSRS  
STATUSS = Status  
DS39605F-page 206  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits,  
TO and PD, are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
CLRWDT  
Example:  
CLRF  
FLAG_REG  
Example:  
Before Instruction  
WDT Counter  
=
?
Before Instruction  
FLAG_REG  
=
=
0x5A  
0x00  
After Instruction  
After Instruction  
FLAG_REG  
WDT Counter  
WDT Postscaler  
TO  
PD  
=
=
=
=
0x00  
0
1
1
© 2007 Microchip Technology Inc.  
DS39605F-page 207  
PIC18F1220/1320  
COMF  
Complement f  
CPFSEQ  
Compare f with W, skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
Operation:  
(f) dest  
skip if (f) = (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
If ‘f’ = W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
1(2)  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
COMF  
REG, W  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x13  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
REG  
=
0x13  
W
=
0xEC  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
=
=
HERE  
?
?
W
REG  
After Instruction  
If REG  
=
=
=
W;  
PC  
Address (EQUAL)  
If REG  
PC  
W;  
Address (NEQUAL)  
DS39605F-page 208  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
CPFSGT  
Compare f with W, skip if f > W  
CPFSLT  
Compare f with W, skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
If the contents of ‘f’ are greater than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead, making  
this a two-cycle instruction. If ‘a’ is  
0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
If the contents of ‘f’ are less than  
the contents of W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’  
is ‘1’, the BSR will not be  
overridden (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip and followed by 2-word instruction:  
No  
No  
No  
No  
Q1  
Q2  
Q3  
Q4  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG  
:
:
Example:  
HERE  
CPFSGT REG  
Example:  
NGREATER  
GREATER  
:
:
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Before Instruction  
After Instruction  
PC  
=
=
Address (HERE)  
?
W
If REG  
<
=
=
W;  
PC  
Address (LESS)  
W;  
After Instruction  
If REG  
PC  
If REG  
>
=
=
W;  
Address (NLESS)  
PC  
Address (GREATER)  
W;  
If REG  
PC  
Address (NGREATER)  
© 2007 Microchip Technology Inc.  
DS39605F-page 209  
PIC18F1220/1320  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[ label ] DAW  
Syntax:  
[ label ] DECF f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
(W<3:0>) W<3:0>;  
Operation:  
(f) – 1 dest  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> > 9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
else  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
(W<7:4>) W<7:4>;  
Status Affected:  
Encoding:  
C, DC  
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in  
W, resulting from the earlier addi-  
tion of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result. The  
Carry bit may be set by DAWregard-  
less of its setting prior to the DAW  
instruction.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Words:  
Cycles:  
1
1
DECF  
CNT  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
CNT  
Z
=
0x01  
0
Decode  
Read  
register W  
Process  
Data  
Write  
W
=
After Instruction  
DAW  
Example 1:  
CNT  
Z
=
=
0x00  
1
Before Instruction  
W
=
=
=
0xA5  
0
0
C
DC  
After Instruction  
W
=
=
=
0x05  
1
0
C
DC  
Example 2:  
Before Instruction  
W
=
=
=
0xCE  
0
0
C
DC  
After Instruction  
W
=
=
=
0x34  
1
0
C
DC  
DS39605F-page 210  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
DECFSZ  
Decrement f, skip if 0  
DCFSNZ  
Decrement f, skip if not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
If the result is ‘0’, the next instruc-  
tion, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
If the result is not ‘0’, the next  
instruction, which is already  
fetched, is discarded and a NOPis  
executed instead, making it a two-  
cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
TEMP  
PC  
=
Address (HERE)  
=
?
After Instruction  
After Instruction  
CNT  
=
=
=
=
CNT – 1  
0;  
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP – 1,  
0;  
If CNT  
PC  
Address (CONTINUE)  
0;  
Address (ZERO)  
0;  
If CNT  
PC  
Address (HERE + 2)  
Address (NZERO)  
© 2007 Microchip Technology Inc.  
DS39605F-page 211  
PIC18F1220/1320  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
[ label ] INCF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
branch anywhere within the entire  
2-Mbyte memory range. The 20-bit  
value ‘k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
GOTO THERE  
Example:  
INCF  
CNT  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
=
0xFF  
Z
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
=
=
=
=
0x00  
Z
1
1
1
C
DC  
DS39605F-page 212  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
INCFSZ  
Increment f, skip if 0  
INFSNZ  
Increment f, skip if not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]]  
Syntax:  
[ label ] INFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
If the result is ‘0’, the next instruc-  
tion, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
If the result is not ‘0’, the next  
instruction, which is already  
fetched, is discarded and a NOPis  
executed instead, making it a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT  
HERE  
ZERO  
NZERO  
INFSNZ REG  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT + 1  
REG  
If REG  
PC  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
Address (NZERO)  
0;  
Address (ZERO)  
© 2007 Microchip Technology Inc.  
DS39605F-page 213  
PIC18F1220/1320  
IORLW  
Inclusive OR literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] IORWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) .OR. k W  
N, Z  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of W are OR’ed with  
the eight-bit literal ‘k’. The result is  
placed in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If  
‘d’ is ‘0’, the result is placed in W. If  
‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
IORLW  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
W
=
0x9A  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
0xBF  
IORWF RESULT, W  
Example:  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS39605F-page 214  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]]  
Operands:  
0 f 2  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
0 k 4095  
Operation:  
k FSRf  
Operation:  
f dest  
N, Z  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into  
the file select register pointed to  
by ‘f’.  
Description:  
The contents of register ‘f’ are  
moved to a destination dependent  
upon the status of ‘d’. If ‘d’ is ‘f’, the  
result is placed in W. If ‘d’ is ‘f’, the  
result is placed back in register ‘f’  
(default). Location ‘f’ can be any-  
where in the 256-byte bank. If ‘a’ is  
0’, the Access Bank will be  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write literal  
‘k’ MSB to  
FSRfH  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Words:  
Cycles:  
1
1
LFSR 2, 0x3AB  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
Decode  
Read  
register ‘f’  
Process  
Data  
Write W  
MOVF  
REG, W  
Example:  
Before Instruction  
REG  
W
=
=
0x22  
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
© 2007 Microchip Technology Inc.  
DS39605F-page 215  
PIC18F1220/1320  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[ label ] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
0 fs 4095  
0 fd 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
(fs) fd  
None  
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
Description:  
The 8-bit literal ‘k’ is loaded into  
the Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register ‘fs’  
are moved to destination register  
‘fd’. Location of source ‘fs’ can be  
anywhere in the 4096-byte data  
space (000h to FFFh) and location  
of destination ‘fd’ can also be  
anywhere from 000h to FFFh.  
Either source or destination can be  
W (a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write  
literal ‘k’ to  
BSR  
MOVLB  
5
Example:  
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register.  
The MOVFFinstruction should not  
be used to modify interrupt settings  
while any interrupt is enabled (see  
page 73).  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33,  
0x33  
DS39605F-page 216  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
MOVLW  
Move literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k W  
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
None  
None  
Status Affected:  
Encoding:  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
Description:  
The eight-bit literal ‘k’ is loaded  
into W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x5A  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
MOVWF  
REG  
Example:  
Before Instruction  
W
REG  
=
=
0x4F  
0xFF  
After Instruction  
W
REG  
=
=
0x4F  
0x4F  
© 2007 Microchip Technology Inc.  
DS39605F-page 217  
PIC18F1220/1320  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
Description:  
An unsigned multiplication is  
carried out between the contents  
of W and the 8-bit literal ‘k’. The  
16-bit result is placed in the  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
W is unchanged.  
None of the Status flags are  
affected.  
Note that neither Overflow nor  
Carry is possible in this opera-  
tion. A Zero result is possible but  
not detected.  
Description:  
An unsigned multiplication is  
carried out between the contents  
of W and the register file location  
‘f’. The 16-bit result is stored in  
the PRODH:PRODL register  
pair. PRODH contains the high  
byte.  
Both W and ‘f’ are unchanged.  
None of the Status flags are  
affected.  
Note that neither Overflow nor  
Carry is possible in this opera-  
tion. A Zero result is possible,  
but not detected. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If  
‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
MULLW  
0xC4  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
PRODH  
PRODL  
=
=
=
0xE2  
registers  
PRODH:  
PRODL  
?
?
After Instruction  
W
PRODH  
PRODL  
=
=
=
0xE2  
0xAD  
0x08  
MULWF  
REG  
Example:  
Before Instruction  
W
=
=
=
=
0xC4  
0xB5  
?
?
REG  
PRODH  
PRODL  
After Instruction  
W
=
=
=
=
0xC4  
0xB5  
0x8A  
0x94  
REG  
PRODH  
PRODL  
DS39605F-page 218  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
Operands:  
0 f 255  
a [0,1]  
Operands:  
None  
Operation:  
No operation  
None  
Operation:  
(f) + 1 f  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in  
the data memory location ‘f’. If ‘a’ is  
0’, the Access Bank will be  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
NEGF  
REG, 1  
Example:  
Before Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
After Instruction  
REG  
=
© 2007 Microchip Technology Inc.  
DS39605F-page 219  
PIC18F1220/1320  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(TOS) bit bucket  
None  
(PC + 2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
Description:  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the  
previous value that was pushed  
onto the return stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Description:  
The PC + 2 is pushed onto the top  
of the return stack. The previous  
TOS value is pushed down on the  
stack.  
This instruction allows implement-  
ing a software stack by modifying  
TOS and then pushing it onto the  
return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Push  
No  
No  
PC + 2 onto  
return stack  
operation  
operation  
Decode  
No  
operation  
Pop TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
NEW  
Before Instruction  
Before Instruction  
TOS  
PC  
=
=
0x00345A  
0x000124  
TOS  
=
=
0x0031A2  
0x014332  
Stack (1 level down)  
After Instruction  
After Instruction  
PC  
=
=
=
0x000126  
0x000126  
0x00345A  
TOS  
TOS  
PC  
=
=
0x014332  
NEW  
Stack (1 level down)  
DS39605F-page 220  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that  
are affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First,  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
return address (PC + 2) is pushed  
onto the stack. Then, add the 2’s  
complement number ‘2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the new  
address will be PC + 2 + 2n. This  
instruction is a two-cycle instruction.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
Reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers =  
Q Cycle Activity:  
Q1  
Reset Value  
Reset Value  
Q2  
Q3  
Q4  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
PC  
=
Address (Jump)  
Address (HERE + 2)  
TOS =  
© 2007 Microchip Technology Inc.  
DS39605F-page 221  
PIC18F1220/1320  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
k W,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) Status,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
W is loaded with the eight-bit literal  
‘k’. The program counter is loaded  
from the top of the stack (the return  
address). The high address latch  
(PCLATH) remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is  
popped and Top-of-Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting either the high  
or low priority global interrupt  
enable bit. If ‘s’ = 1, the contents of  
the shadow registers, WS,  
STATUSS and BSRS, are loaded  
into their corresponding registers,  
W, Status and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Pop PC  
from stack,  
Write to W  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
CALL TABLE ; W contains table  
; offset value  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
; W now has  
; table value  
Decode  
No  
operation  
No  
operation  
Pop PC  
from stack  
:
TABLE  
ADDWF PCL ; W = offset  
Set GIEH or  
GIEL  
RETLW k0  
RETLW k1  
:
; Begin table  
;
No  
operation  
No  
operation  
No  
operation  
No  
operation  
:
RETLW kn  
; End of table  
RETFIE  
1
Example:  
After Interrupt  
Before Instruction  
PC  
W
=
=
=
=
=
TOS  
WS  
W
=
0x07  
BSR  
Status  
GIE/GIEH, PEIE/GIEL  
BSRS  
STATUSS  
1
After Instruction  
W
=
value of kn  
DS39605F-page 222  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
[ label ] RLCF f [,d [,a]]  
Operands:  
Operation:  
Operands:  
Operation:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
(STATUSS) Status,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Return from subroutine. The stack  
is popped and the top of the stack  
is loaded into the program counter.  
If ‘s’= 1, the contents of the shadow  
registers, WS, STATUSS and  
BSRS, are loaded into their corre-  
sponding registers, W, Status and  
BSR. If ‘s’ = 0, no update of these  
registers occurs (default).  
Words:  
Cycles:  
1
2
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
Pop PC  
from stack  
Q2  
Q3  
Q4  
No  
No  
No  
No  
Decode  
Read  
Process  
Write to  
operation  
operation  
operation  
operation  
register ‘f’  
Data  
destination  
RLCF  
REG, W  
Example:  
RETURN  
Example:  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Interrupt  
PC  
=
TOS  
After Instruction  
REG  
=
=
=
1110 0110  
1100 1100  
1
W
C
© 2007 Microchip Technology Inc.  
DS39605F-page 223  
PIC18F1220/1320  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [,d [,a]]  
Syntax:  
[ label ] RRCF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left. If ‘d’ is ‘0’,  
the result is placed in W. If ‘d’ is ‘1’,  
the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
RLNCF  
REG  
Example:  
Before Instruction  
RRCF  
REG, W  
Example:  
REG  
=
1010 1011  
0101 0111  
After Instruction  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
=
=
1110 0110  
0111 0011  
0
W
C
DS39605F-page 224  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
None  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified  
0100  
00da  
ffff  
ffff  
register are set to FFh. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is  
1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
SETF  
REG  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
=
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
REG  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
RRNCF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
1101 0111  
After Instruction  
REG  
=
1110 1011  
RRNCF REG, W  
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
© 2007 Microchip Technology Inc.  
DS39605F-page 225  
PIC18F1220/1320  
SLEEP  
Enter Sleep mode  
SUBFWB  
Subtract f from W with borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored in register ‘f’ (default). If ‘a’ is  
0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ is ‘1’, then the bank will be  
selected as per the BSR value  
(default).  
Description:  
The Power-down status bit (PD) is  
cleared. The Time-out status bit  
(TO) is set. The Watchdog Timer  
and its postscaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
SLEEP  
Example:  
Before Instruction  
SUBFWB REG  
Example 1:  
TO  
PD  
=
=
?
?
Before Instruction  
After Instruction  
REG  
W
C
=
=
=
0x03  
0x02  
0x01  
TO  
PD  
=
=
1†  
0
After Instruction  
† If WDT causes wake-up, this bit is cleared.  
REG  
W
C
=
=
=
=
=
0xFF  
0x02  
0x00  
0x00  
Z
N
0x01  
; result is negative  
REG, 0, 0  
SUBFWB  
Example 2:  
Before Instruction  
REG  
=
=
=
2
5
1
W
C
After Instruction  
REG  
W
C
=
=
=
=
=
2
3
1
0
0
Z
N
; result is positive  
SUBFWB  
REG, 1, 0  
Example 3:  
Before Instruction  
REG  
=
=
=
1
2
0
W
C
After Instruction  
REG  
W
C
=
=
=
=
=
0
2
1
1
0
Z
; result is zero  
N
DS39605F-page 226  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
SUBWF  
Subtract W from f  
SUBLW  
Subtract W from literal  
Syntax:  
[ label ] SUBWF f [,d [,a]]  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed  
in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is ‘0’,  
the result is stored in W. If ‘d’ is  
1’, the result is stored back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
SUBLW 0x02  
Example 1:  
Words:  
Cycles:  
1
1
Before Instruction  
W
C
=
=
1
?
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
C
Z
=
=
=
=
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
1
0
0
; result is positive  
N
SUBWF REG  
Example 1:  
SUBLW 0x02  
Example 2:  
Before Instruction  
Before Instruction  
REG  
W
C
=
=
=
3
2
?
W
C
=
=
2
?
After Instruction  
After Instruction  
REG  
W
C
=
=
=
=
=
1
2
1
0
0
W
C
Z
=
=
=
=
0
1
1
0
; result is zero  
; result is positive  
Z
N
N
SUBLW 0x02  
Example 3:  
SUBWF REG, W  
Example 2:  
Before Instruction  
Before Instruction  
W
C
=
=
3
?
REG  
W
=
=
=
2
2
?
After Instruction  
C
W
C
Z
=
=
=
=
FF ; (2’s complement)  
After Instruction  
0
0
1
; result is negative  
REG  
W
C
=
=
=
=
=
2
0
1
1
0
N
; result is zero  
Z
N
SUBWF REG  
Example 3:  
Before Instruction  
REG  
W
C
=
=
=
0x01  
0x02  
?
After Instruction  
REG  
W
C
=
=
=
=
=
0xFFh ;(2’s complement)  
0x02  
0x00 ;result is negative  
0x00  
0x01  
Z
N
© 2007 Microchip Technology Inc.  
DS39605F-page 227  
PIC18F1220/1320  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SWAPF  
Swap f  
[ label ] SUBWFB f [,d [,a]]  
Syntax:  
[ label ] SWAPF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected: N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
Encoding:  
0101  
10da  
ffff  
ffff  
0011  
10da  
ffff  
ffff  
Description:  
Subtract W and the Carry flag  
(borrow) from register ‘f’ (2’s comple-  
ment method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default). If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ is ‘1’, then the bank will be  
selected as per the BSR value  
(default).  
Description:  
The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is  
1’, the result is placed in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
SUBWFB REG, 1, 0  
Example 1:  
SWAPF  
REG  
Example:  
Before Instruction  
Before Instruction  
REG  
=
=
=
0x19  
0x0D  
0x01  
(0001 1001)  
(0000 1101)  
REG  
=
0x53  
0x35  
W
C
After Instruction  
After Instruction  
REG  
=
REG  
=
=
=
=
=
0x0C  
0x0D  
0x01  
0x00  
0x00  
(0000 1011)  
(0000 1101)  
W
C
Z
N
; result is positive  
SUBWFB REG, 0, 0  
Example 2:  
Before Instruction  
REG  
W
=
=
=
0x1B  
0x1A  
0x00  
(0001 1011)  
(0001 1010)  
C
After Instruction  
REG  
W
C
=
=
=
=
=
0x1B  
0x00  
0x01  
0x01  
0x00  
(0001 1011)  
Z
; result is zero  
N
SUBWFB REG, 1, 0  
Example 3:  
Before Instruction  
REG  
W
=
=
=
0x03  
0x0E  
0x01  
(0000 0011)  
(0000 1101)  
C
After Instruction  
REG  
=
0xF5  
(1111 0100)  
; [2’s comp]  
W
=
=
=
=
0x0E  
0x00  
0x00  
0x01  
(0000 1101)  
C
Z
N
; result is negative  
DS39605F-page 228  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Example 1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) + 1 TBLPTR;  
if TBLRD *-,  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
TBLRD +* ;  
Example 2:  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) + 1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
0xAA  
0x01A357  
0x12  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
0x34  
After Instruction  
Status Affected: None  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
0000  
0000  
0000  
10nn  
nn = 0*  
= 1*+  
Encoding:  
= 2*-  
= 3+*  
Description:  
This instruction is used to read the  
contents of Program Memory (P.M.). To  
address the program memory, a pointer  
called Table Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2-Mbyte address  
range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
© 2007 Microchip Technology Inc.  
DS39605F-page 229  
PIC18F1220/1320  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
[ label ] TBLWT ( *; *+; *-; +*)  
Words: 1  
Cycles: 2  
Q Cycle Activity:  
Q1  
Operands:  
Operation:  
None  
if TBLWT*,  
(TABLAT) Holding Register;  
TBLPTR – No Change;  
if TBLWT*+,  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
(TABLAT) Holding Register;  
(TBLPTR) + 1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) – 1 TBLPTR;  
if TBLWT+*,  
No  
operation  
No  
operation  
(Read  
No  
operation  
No  
operation  
(Write to  
Holding  
Register)  
TABLAT)  
(TBLPTR) + 1 TBLPTR;  
(TABLAT) Holding Register;  
Example 1:  
TBLWT *+;  
Before Instruction  
Status Affected: None  
TABLAT  
TBLPTR  
=
=
0x55  
0000  
0000  
0000  
11nn  
nn = 0*  
= 1*+  
= 2*-  
= 3+*  
Encoding:  
0x00A356  
HOLDING REGISTER  
(0x00A356)  
=
0xFF  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x00A356)  
=
=
0x55  
0x00A357  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is  
written to. The holding registers are  
used to program the contents of  
Program Memory (P.M.). (Refer  
to Section 6.0 “Flash Program  
Memory” for additional details on  
programming Flash memory.)  
=
0x55  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389A  
=
=
0xFF  
0xFF  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2-Mbyte address  
range. The LSb of the TBLPTR  
selects which byte of the program  
memory location to access.  
After Instruction (table write completion)  
TABLAT  
=
0x34  
TBLPTR  
=
0x01389B  
HOLDING REGISTER  
(0x01389A)  
=
=
0xFF  
0x34  
HOLDING REGISTER  
(0x01389B)  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program  
Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
DS39605F-page 230  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TSTFSZ  
Test f, skip if 0  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW k  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 k 255  
(W) .XOR. k W  
N, Z  
Operation:  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
The contents of W are XOR’ed  
with the 8-bit literal ‘k’. The result  
is placed in W.  
Description:  
If ‘f’ = 0, the next instruction,  
fetched during the current  
instruction execution is discarded  
and a NOPis executed, making this  
a two-cycle instruction. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1(2)  
Example:  
XORLW 0xAF  
= 0xB5  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Before Instruction  
W
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x1A  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT  
:
:
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
PC  
Address (ZERO)  
0x00,  
If CNT  
PC  
Address (NZERO)  
© 2007 Microchip Technology Inc.  
DS39605F-page 231  
PIC18F1220/1320  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W  
with register ‘f’. If ‘d’ is ‘0’, the result  
is stored in W. If ‘d’ is ‘1’, the result  
is stored back in the register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
XORWF  
REG  
Example:  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS39605F-page 232  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
21.1 MPLAB Integrated Development  
Environment Software  
21.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
DS39605F-page 233  
PIC18F1220/1320  
21.2 MPASM Assembler  
21.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
21.6 MPLAB SIM Software Simulator  
21.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 family of microcontrollers and the  
dsPIC30, dsPIC33 and PIC24 family of digital signal  
controllers. These compilers provide powerful integra-  
tion capabilities, superior code optimization and ease  
of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
21.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS39605F-page 234  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
21.7 MPLAB ICE 2000  
High-Performance  
21.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
21.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
21.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC® and MCU devices. It debugs and  
programs PIC® and dsPIC® Flash microcontrollers with  
the easy-to-use, powerful graphical user interface of the  
MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high speed, noise tolerant, low-  
voltage differential signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
DS39605F-page 235  
PIC18F1220/1320  
21.11 PICSTART Plus Development  
Programmer  
21.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
21.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart® battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
and the latest “Product Selector Guide” (DS00148) for  
the complete list of demonstration, development and  
evaluation kits.  
DS39605F-page 236  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4) .......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2007 Microchip Technology Inc.  
DS39605F-page 237  
PIC18F1220/1320  
FIGURE 22-1:  
PIC18F1220/1320 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18F1X20  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
Frequency  
FIGURE 22-2:  
PIC18LF1220/1320 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LF1X20  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
4 MHz  
Frequency  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz  
Note: VDDAPPMIN is the minimum voltage of the PIC® device in the application.  
DS39605F-page 238  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 22-3:  
PIC18F1220/1320 VOLTAGE-FREQUENCY GRAPH (EXTENDED)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18F1X20-E  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
25 MHz  
Frequency  
© 2007 Microchip Technology Inc.  
DS39605F-page 239  
PIC18F1220/1320  
22.1 DC Characteristics: Supply Voltage  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic  
Supply Voltage  
Min  
Typ  
Max Units  
Conditions  
VDD  
D001  
PIC18LF1220/1320 2.0  
PIC18F1220/1320 4.2  
5.5  
5.5  
V
V
V
HS, XT, RC and LP Oscillator mode  
D002  
D003  
D004  
VDR  
RAM Data Retention  
1.5  
(1)  
Voltage  
VPOR  
SVDD  
VBOR  
VDD Start Voltage to ensure  
0.7  
V
See Section 4.1 “Power-on Reset (POR)”  
for details.  
internal Power-on Reset signal  
VDD Rise Rate to ensure  
0.05  
V/ms See Section 4.1 “Power-on Reset (POR)”  
internal Power-on Reset signal  
for details.  
Brown-out Reset Voltage  
D005D  
PIC18LF1220/1320 Industrial Low Voltage (-10°C to +85°C)  
BORV1:BORV0 = 11  
BORV1:BORV0 = 10  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
N/A  
2.50  
3.88  
4.18  
N/A  
2.72  
4.22  
4.54  
N/A  
2.94  
4.56  
4.90  
V
V
V
V
Reserved  
(Note 2)  
(Note 2)  
D005F  
PIC18LF1220/1320 Industrial Low Voltage (-40°C to -10°C)  
BORV1:BORV0 = 11  
BORV1:BORV0 = 10  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
N/A  
2.34  
3.63  
3.90  
N/A  
2.72  
4.22  
4.54  
N/A  
3.10  
4.81  
5.18  
V
V
V
V
Reserved  
(Note 2)  
(Note 2)  
D005G  
D005H  
D005J  
PIC18F1220/1320 Industrial (-10°C to +85°C)  
BORV1:BORV0 = 1x  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
N/A  
3.88  
4.18  
N/A  
4.22  
4.54  
N/A  
4.56  
4.90  
V
V
V
Reserved  
(Note 2)  
(Note 2)  
PIC18F1220/1320 Industrial (-40°C to -10°C)  
BORV1:BORV0 = 1x  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
N/A  
N/A  
3.90  
N/A  
N/A  
4.54  
N/A  
N/A  
5.18  
V
V
V
Reserved  
Reserved  
(Note 2)  
PIC18F1220/1320 Extended (-10°C to +85°C)  
BORV1:BORV0 = 1x  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
N/A  
3.88  
4.18  
N/A  
4.22  
4.54  
N/A  
4.56  
4.90  
V
V
V
Reserved  
(Note 3)  
(Note 3)  
D005K  
PIC18F1220/1320 Extended (-40°C to -10°C, +85°C to +125°C)  
BORV1:BORV0 = 1x  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
N/A  
N/A  
3.90  
N/A  
N/A  
4.54  
N/A  
N/A  
5.18  
V
V
V
Reserved  
Reserved  
(Note 3)  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.  
2: When BOR is on and BORV<1:0> = 0x, the device will operate correctly at 40 MHz for any VDD at which the BOR allows  
execution (low-voltage and industrial devices only).  
3: When BOR is on and BORV<1:0> = 0x, the device will operate correctly at 25 MHz for any VDD at which the BOR allows  
execution (extended devices only).  
DS39605F-page 240  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Power-Down Current (IPD)  
Typ  
Max Units  
Conditions  
(1)  
PIC18LF1220/1320 0.1  
0.5  
0.5  
1.9  
0.5  
0.5  
1.9  
2.0  
2.0  
6.5  
50  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V,  
(Sleep mode)  
0.1  
0.2  
PIC18LF1220/1320 0.1  
VDD = 3.0V,  
(Sleep mode)  
0.1  
+ 25°C  
+85°C  
-40°C  
0.3  
All devices 0.1  
0.1  
0.4  
+25°C  
+85°C  
+125°C  
VDD = 5.0V,  
(Sleep mode)  
Extended devices 11.2  
(2,3)  
Supply Current (IDD)  
PIC18LF1220/1320  
8
40  
40  
40  
68  
68  
68  
80  
80  
80  
80  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
9
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
11  
25  
25  
20  
55  
55  
50  
50  
PIC18LF1220/1320  
All devices  
FOSC = 31 kHz  
(RC_RUN mode,  
+25°C  
+85°C  
-40°C  
Internal oscillator source)  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
Extended devices  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
© 2007 Microchip Technology Inc.  
DS39605F-page 241  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
PIC18LF1220/1320 140  
220  
220  
220  
330  
330  
330  
550  
550  
550  
650  
600  
600  
600  
900  
900  
900  
1.8  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
-40°C  
145  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
155  
PIC18LF1220/1320 215  
FOSC = 1 MHz  
(RC_RUN mode,  
225  
235  
Internal oscillator source)  
All devices 385  
390  
VDD = 5.0V  
405  
Extended devices 410  
PIC18LF1220/1320 410  
425  
VDD = 2.0V  
VDD = 3.0V  
435  
PIC18LF1220/1320 650  
FOSC = 4 MHz  
(RC_RUN mode,  
670  
680  
Internal oscillator source)  
All devices 1.2  
1.2  
1.2  
1.8  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
1.8  
Extended devices 1.2  
1.8  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39605F-page 242  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
PIC18LF1220/1320 4.7  
8
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
5.0  
8
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
VDD = 2.0V  
VDD = 3.0V  
5.8  
11  
PIC18LF1220/1320 7.0  
11  
FOSC = 31 kHz  
(RC_IDLE mode,  
7.8  
8.7  
11  
15  
Internal oscillator source)  
All devices  
12  
14  
14  
25  
75  
85  
95  
16  
16  
VDD = 5.0V  
22  
Extended devices  
PIC18LF1220/1320  
75  
150  
150  
150  
180  
180  
180  
380  
380  
380  
435  
VDD = 2.0V  
VDD = 3.0V  
PIC18LF1220/1320 110  
FOSC = 1 MHz  
(RC_IDLE mode,  
125  
135  
All devices 180  
195  
Internal oscillator source)  
VDD = 5.0V  
200  
Extended devices 350  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
© 2007 Microchip Technology Inc.  
DS39605F-page 243  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
PIC18LF1220/1320 140  
275  
275  
275  
375  
375  
375  
800  
800  
800  
800  
250  
250  
250  
350  
350  
350  
1.0  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
-40°C  
140  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
150  
PIC18LF1220/1320 220  
FOSC = 4 MHz  
(RC_IDLE mode,  
220  
220  
Internal oscillator source)  
All devices 390  
400  
VDD = 5.0V  
380  
Extended devices 410  
PIC18LF1220/1320 150  
150  
VDD = 2.0V  
VDD = 3.0V  
160  
PIC18LF1220/1320 340  
FOSC = 1 MHZ  
(PRI_RUN mode,  
EC oscillator)  
300  
280  
All devices 0.72  
0.63  
1.0  
+25°C  
+85°C  
+125°C  
VDD = 5.0V  
0.58  
1.0  
Extended devices 0.53  
1.0  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39605F-page 244  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
PIC18LF1220/1320 415  
600  
600  
600  
1.0  
1.0  
1.0  
2.0  
2.0  
2.0  
2.0  
9.0  
10.0  
μA  
μA  
-40°C  
425  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
435  
μA  
PIC18LF1220/1320 0.87  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
FOSC = 4 MHz  
(PRI_RUN mode,  
EC oscillator)  
0.75  
+25°C  
+85°C  
-40°C  
0.75  
All devices 1.6  
1.6  
+25°C  
+85°C  
+125°C  
+125°C  
+125°C  
VDD = 5.0V  
1.5  
Extended devices 1.5  
Extended devices 6.3  
9.7  
VDD = 4.2V  
VDD = 5.0V  
FOSC = 25 MHz  
(PRI_RUN mode,  
EC oscillator)  
All devices 9.4  
12  
12  
12  
15  
15  
15  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
9.5  
VDD = 4.2V  
VDD = 5.0V  
FOSC = 40 MHZ  
(PRI_RUN mode,  
EC oscillator)  
9.6  
All devices 11.9  
12.1  
12.2  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
© 2007 Microchip Technology Inc.  
DS39605F-page 245  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
PIC18LF1220/1320  
35  
35  
35  
55  
50  
60  
50  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
-40°C  
50  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
60  
PIC18LF1220/1320  
80  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
80  
+25°C  
+85°C  
-40°C  
100  
150  
150  
150  
300  
180  
180  
180  
280  
280  
280  
525  
525  
525  
800  
3.0  
All devices 105  
110  
+25°C  
+85°C  
+125°C  
-40°C  
VDD = 5.0V  
115  
Extended devices 125  
PIC18LF1220/1320 135  
140  
+25°C  
+85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
140  
PIC18LF1220/1320 215  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
225  
+25°C  
+85°C  
-40°C  
230  
All devices 410  
420  
430  
+25°C  
+85°C  
+125°C  
+125°C  
+125°C  
VDD = 5.0V  
Extended devices 450  
Extended devices 2.2  
2.7  
VDD = 4.2V  
VDD = 5.0V  
FOSC = 25 MHz  
(PRI_IDLE mode,  
EC oscillator)  
3.5  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39605F-page 246  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
All devices 3.2  
4.1  
4.1  
4.1  
5.1  
5.1  
5.1  
9
mA  
mA  
mA  
mA  
mA  
mA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
3.2  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
VDD = 4.2 V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
FOSC = 40 MHz  
(PRI_IDLE mode,  
EC oscillator)  
3.3  
All devices 4.0  
4.1  
4.1  
PIC18LF1220/1320 5.1  
5.8  
9
7.9  
11  
12  
12  
14  
20  
20  
25  
PIC18LF1220/1320 7.9  
(4)  
FOSC = 32 kHz  
8.9  
(SEC_RUN mode,  
Timer1 as clock)  
10.5  
All devices 12.5  
16.3  
18.4  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
© 2007 Microchip Technology Inc.  
DS39605F-page 247  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Supply Current (IDD)  
Typ  
Max Units  
Conditions  
(2,3)  
PIC18LF1220/1320 9.2  
15  
15  
18  
30  
30  
35  
80  
80  
80  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-10°C  
9.6  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
12.7  
PIC18LF1220/1320  
All devices  
22  
21  
20  
50  
45  
45  
(4)  
FOSC = 32 kHz  
(SEC_IDLE mode,  
Timer1 as clock)  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
DS39605F-page 248  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.2 DC Characteristics: Power-Down and Supply Current  
PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
No.  
Device  
Typ  
Max Units  
Conditions  
Module Differential Currents (ΔIWDT, ΔIBOR, ΔILVD, ΔIOSCB, ΔIAD)  
D022  
(ΔIWDT)  
Watchdog Timer 1.5  
4.0  
4.0  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
2.2  
3.1  
2.5  
3.3  
4.7  
3.7  
4.5  
6.1  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
5.0  
+85°C  
6.0  
-40°C  
6.0  
+25°C  
7.0  
+85°C  
10.0  
10.0  
13.0  
35.0  
45.0  
25.0  
35.0  
45.0  
3.5  
-40°C  
+25°C  
+85°C  
D022A  
(ΔIBOR)  
Brown-out Reset  
19  
24  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
D022B  
(ΔILVD)  
Low-Voltage Detect 8.5  
16  
20  
D025  
(ΔIOSCB)  
Timer1 Oscillator 1.7  
(4)  
(4)  
1.8  
3.5  
+25°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
32 kHz on Timer1  
32 kHz on Timer1  
32 kHz on Timer1  
2.1  
4.5  
+85°C  
2.2  
4.5  
-40°C  
2.6  
4.5  
+25°C  
2.8  
5.5  
+85°C  
3.0  
6.0  
-40°C  
(4)  
3.3  
6.0  
+25°C  
3.6  
7.0  
+85°C  
D026  
(ΔIAD)  
A/D Converter 1.0  
3.0  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 5.0V  
1.0  
2.0  
1.0  
4.0  
A/D on, not converting  
10.0  
8.0  
μA -40°C to +125°C  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta  
current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading  
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on  
the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated  
by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.  
4: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature  
crystals are available at a much higher cost.  
© 2007 Microchip Technology Inc.  
DS39605F-page 249  
PIC18F1220/1320  
22.3 DC Characteristics: PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
VSS  
0.15 VDD  
0.8  
V
V
V
V
V
VDD < 4.5V  
D030A  
D031  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
MCLR  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.3 VDD  
D032  
D032A  
OSC1(inXT, HSandLPmodes)  
and T1OSI  
D033  
OSC1 (in RC and EC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2 VDD  
V
VIH  
D040  
with TTL buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
V
V
VDD < 4.5V  
D040A  
4.5V VDD 5.5V  
D041  
D042  
D042A  
with Schmitt Trigger buffer  
MCLR, OSC1 (EC mode)  
0.8 VDD  
0.8 VDD  
1.6 VDD  
VDD  
VDD  
VDD  
V
V
V
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D043  
D060  
OSC1 (RC mode)(1)  
Input Leakage Current(2,3)  
I/O ports  
0.9 VDD  
VDD  
1
V
IIL  
μA VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR  
5
5
μA VSS VPIN VDD  
μA VSS VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070  
IPURB  
50  
400  
μA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
DS39605F-page 250  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.3 DC Characteristics: PIC18F1220/1320 (Industrial)  
PIC18LF1220/1320 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
VOH  
VOD  
Output Low Voltage  
D080  
D083  
I/O ports  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO  
(RC mode)  
Output High Voltage(3)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
D090  
D092  
D150  
I/O ports  
VDD – 0.7  
VDD – 0.7  
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO  
(RC mode)  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
RA4 pin  
Open-Drain High Voltage  
8.5  
Capacitive Loading Specs  
on Output Pins  
D100(4)  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes  
when external clock is  
used to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC timing  
specifications  
pF In I2C mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
© 2007 Microchip Technology Inc.  
DS39605F-page 251  
PIC18F1220/1320  
TABLE 22-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Internal Program Memory  
Programming Specifications(1)  
D110  
D112  
D113  
VPP  
IPP  
Voltage on MCLR/VPP pin  
Current into MCLR/VPP pin  
9.00  
13.25  
5
V
(Note 2)  
μA  
mA  
IDDP  
Supply Current during  
Programming  
10  
Data EEPROM Memory  
D120  
ED  
Byte Endurance  
100K  
VMIN  
1M  
E/W -40°C to +85°C  
D121 VDRW VDD for Read/Write  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122 TDEW Erase/Write Cycle Time  
D123 TRETD Characteristic Retention  
4
ms  
40  
Year Provided no other  
specifications are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles before Refresh(3)  
1M  
10M  
E/W -40°C to +85°C  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10K  
100K  
E/W -40°C to +85°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
VIE  
VDD for Block Erase  
4.5  
4.5  
5.5  
5.5  
V
V
Using ICSP port  
Using ICSP port  
D132A VIW  
VDD for Externally Timed Erase  
or Write  
D132B VPEW VDD for Self-Timed Write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D133  
TIE  
ICSP™ Block Erase Cycle Time  
1
4
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
D133A TIW  
Self-Timed Write Cycle Time  
2
ms  
D134 TRETD Characteristic Retention  
40  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: These specifications are for programming the on-chip program memory through the use of table write  
instructions.  
2: The pin may be kept in this range at times other than programming, but it is not recommended.  
3: Refer to Section 7.8 “Using the Data EEPROM” for a more detailed discussion on data EEPROM  
endurance.  
DS39605F-page 252  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 22-4:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 22-2: LOW-VOLTAGE DETECT CHARACTERISTICS  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D420D  
LVD Voltage on VDD Transition High-to-Low  
PIC18LF1220/1320 LVDL<3:0> = 0000  
LVDL<3:0> = 0001  
Industrial Low Voltage (-10°C to +85°C)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Reserved  
Reserved  
LVDL<3:0> = 0010  
2.08  
2.26  
2.35  
2.55  
2.64  
2.82  
3.09  
3.29  
3.38  
3.56  
3.75  
3.93  
4.23  
2.26  
2.45  
2.55  
2.77  
2.87  
3.07  
3.36  
3.57  
3.67  
3.87  
4.07  
4.28  
4.60  
2.44  
2.65  
2.76  
2.99  
3.10  
3.31  
3.63  
3.86  
3.96  
4.18  
4.40  
4.62  
4.96  
LVDL<3:0> = 0011  
LVDL<3:0> = 0100  
LVDL<3:0> = 0101  
LVDL<3:0> = 0110  
LVDL<3:0> = 0111  
LVDL<3:0> = 1000  
LVDL<3:0> = 1001  
LVDL<3:0> = 1010  
LVDL<3:0> = 1011  
LVDL<3:0> = 1100  
LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Legend:  
Shading of rows is to assist in readability of the table.  
Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.  
© 2007 Microchip Technology Inc.  
DS39605F-page 253  
PIC18F1220/1320  
TABLE 22-2: LOW-VOLTAGE DETECT CHARACTERISTICS (CONTINUED)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
D420F  
LVD Voltage on VDD Transition High-to-Low  
PIC18LF1220/1320 LVDL<3:0> = 0000  
LVDL<3:0> = 0001  
Industrial Low Voltage (-40°C to -10°C)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Reserved  
Reserved  
LVDL<3:0> = 0010  
1.99  
2.16  
2.25  
2.43  
2.53  
2.70  
2.96  
3.14  
3.23  
3.41  
3.58  
3.76  
4.04  
2.26  
2.45  
2.55  
2.77  
2.87  
3.07  
3.36  
3.57  
3.67  
3.87  
4.07  
4.28  
4.60  
2.53  
2.75  
2.86  
3.10  
3.21  
3.43  
3.77  
4.00  
4.11  
4.34  
4.56  
4.79  
5.15  
LVDL<3:0> = 0011  
LVDL<3:0> = 0100  
LVDL<3:0> = 0101  
LVDL<3:0> = 0110  
LVDL<3:0> = 0111  
LVDL<3:0> = 1000  
LVDL<3:0> = 1001  
LVDL<3:0> = 1010  
LVDL<3:0> = 1011  
LVDL<3:0> = 1100  
LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
LVD Voltage on VDD Transition High-to-Low  
PIC18F1220/1320 LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Industrial (-10°C to +85°C)  
3.93  
4.23  
4.28  
4.60  
4.62  
4.96  
V
V
D420G  
D420H  
D420J  
LVD Voltage on VDD Transition High-to-Low  
PIC18F1220/1320 LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Industrial (-40°C to -10°C)  
3.76  
4.04  
4.28  
4.60  
4.79  
5.15  
V
V
LVD Voltage on VDD Transition High-to-Low  
PIC18F1220/1320 LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Extended (-10°C to +85°C)  
3.94  
4.23  
4.28  
4.60  
4.62  
4.96  
V
V
LVD Voltage on VDD Transition High-to-Low  
PIC18F1220/1320 LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
Extended (-40°C to -10°C, +85°C to +125°C)  
3.77  
4.05  
4.28  
4.60  
4.79  
5.15  
V
V
D420K  
Legend:  
Shading of rows is to assist in readability of the table.  
Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.  
DS39605F-page 254  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.4 AC (Timing) Characteristics  
22.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T13CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (High-Impedance)  
Low  
Valid  
High-Impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
© 2007 Microchip Technology Inc.  
DS39605F-page 255  
PIC18F1220/1320  
22.4.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 22-3  
apply to all timing specifications unless otherwise  
noted. Figure 22-5 specifies the load conditions for the  
timing specifications.  
TABLE 22-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 22.1 and  
Section 22.3.  
LF parts operate for industrial temperatures only.  
FIGURE 22-5:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
VSS  
DS39605F-page 256  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
22.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 22-6:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
3
4
3
4
2
TABLE 22-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
DC  
40  
MHz EC, ECIO (LF and Industrial)  
DC  
DC  
DC  
DC  
1
25  
4
MHz EC, ECIO (Extended)  
MHz RC oscillator  
Oscillator Frequency(1)  
1
MHz XT oscillator  
25  
10  
33  
MHz HS oscillator  
MHz HS + PLL oscillator  
kHz LP Oscillator mode  
DC  
25  
1
TOSC  
External CLKI Period(1)  
Oscillator Period(1)  
ns  
ns  
ns  
ns  
EC, ECIO (LF and Industrial)  
EC, ECIO (Extended)  
RC oscillator  
40  
250  
1000  
XT oscillator  
25  
100  
1000  
ns  
ns  
HS oscillator  
HS + PLL oscillator  
30  
100  
30  
2.5  
10  
μs  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
LP oscillator  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
2
3
TCY  
Instruction Cycle Time(1)  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions, with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
© 2007 Microchip Technology Inc.  
DS39605F-page 257  
PIC18F1220/1320  
TABLE 22-5: PLL CLOCK TIMING SPECIFICATIONS, HS/HSPLL MODE (VDD = 4.2V TO 5.5V)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
F10  
FOSC Oscillator Frequency Range  
FSYS On-Chip VCO System Frequency  
TPLL PLL Start-up Time (Lock Time)  
ΔCLK CLKO Stability (Jitter)  
4
10  
40  
2
MHz HS and HSPLL mode only  
MHz HSPLL mode only  
F11  
F12  
F13  
16  
-2  
ms  
%
HSPLL mode only  
HSPLL mode only  
+2  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 22-6: INTERNAL RC ACCURACY: PIC18F1220/1320 (INDUSTRIAL)  
PIC18LF1220/1320 (INDUSTRIAL)  
PIC18LF1220/1320  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18F1220/1320  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial)  
Param  
No.  
Device  
Min  
Typ  
Max  
Units  
Conditions  
(1)  
INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz  
PIC18LF1220/1320  
-2  
-5  
+/-1  
2
5
%
%
%
%
%
%
+25°C  
VDD = 2.7-3.3V  
-10°C to +85°C VDD = 2.7-3.3V  
-40°C to +85°C VDD = 2.7-3.3V  
-10  
-2  
10  
2
PIC18F1220/1320PIC18F  
1220/1320  
+/-1  
+25°C  
VDD = 4.5-5.5V  
-5  
5
-10°C to +85°C VDD = 4.5-5.5V  
-40°C to +85°C VDD = 4.5-5.5V  
-10  
10  
(2)  
INTRC Accuracy @ Freq = 31 kHz  
PIC18LF1220/1320 26.562  
35.938  
35.938  
kHz -40°C to +85°C VDD = 2.7-3.3V  
kHz -40°C to +85°C VDD = 4.5-5.5V  
PIC18F1220/1320PIC18F 26.562  
1220/1320  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature and VDD drift.  
2: INTRC frequency after calibration.  
3: Change of INTRC frequency as VDD changes.  
DS39605F-page 258  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 22-7:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
18  
19  
16  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Refer to Figure 22-5 for load conditions.  
Note:  
TABLE 22-7: CLKO AND I/O TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TosH2ckL OSC1to CLKO↓  
TosH2ckH OSC1to CLKO↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
19  
TckR  
TckF  
CLKO Rise Time  
CLKO Fall Time  
TckL2ioV CLKOto Port Out Valid  
TioV2ckH Port In Valid before CLKO↑  
TckH2ioI Port In Hold after CLKO↑  
TosH2ioV OSC1(Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns  
0.25 TCY + 25  
ns  
ns  
ns  
ns  
ns  
ns  
0
150  
TosH2ioI OSC1(Q2 cycle) to Port  
PIC18F1X20  
100  
200  
0
Input Invalid (I/O in hold time)  
PIC18LF1X20  
TioV2osH Port Input Valid to OSC1↑  
(I/O in setup time)  
20  
TioR  
TioF  
Port Output Rise Time  
PIC18F1X20  
PIC18LF1X20  
PIC18F1X20  
PIC18LF1X20  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
20A  
21  
Port Output Fall Time  
21A  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
© 2007 Microchip Technology Inc.  
DS39605F-page 259  
PIC18F1220/1320  
FIGURE 22-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 22-5 for load conditions.  
FIGURE 22-9:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
DS39605F-page 260  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 22-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
μs  
31  
Watchdog Timer Time-out Period  
(No postscaler)  
3.48  
4.00  
4.71  
ms  
32  
33  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
65.5  
2
1024 TOSC  
ms  
μs  
TOSC = OSC1 period  
132  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
μs VDD BVDD (see D005)  
μs  
TIVRST  
Time for Internal Reference  
Voltage to become stable  
20  
50  
37  
TLVD  
Low-Voltage Detect Pulse Width  
200  
μs  
VDD VLVD  
FIGURE 22-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T13CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 22-5 for load conditions.  
© 2007 Microchip Technology Inc.  
DS39605F-page 261  
PIC18F1220/1320  
TABLE 22-9: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
47  
Tt1H  
Tt1L  
T13CKI High Time Synchronous, no prescaler  
Synchronous, PIC18F1X20  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
with prescaler  
PIC18LF1X20  
25  
Asynchronous PIC18F1X20  
PIC18LF1X20  
30  
50  
T13CKI Low Time Synchronous, no prescaler  
0.5 TCY + 5  
Synchronous, PIC18F1X20  
with prescaler  
PIC18LF1X20  
10  
25  
30  
50  
Asynchronous PIC18F1X20  
PIC18LF1X20  
Tt1P  
Ft1  
T13CKI Input  
Period  
Synchronous  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T13CKI Oscillator Input Frequency Range  
48  
Tcke2tmrI Delay from External T13CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
FIGURE 22-11:  
CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note:  
Refer to Figure 22-5 for load conditions.  
DS39605F-page 262  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
TABLE 22-10: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
50  
51  
TccL  
CCPx Input Low No prescaler  
Time  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
With prescaler PIC18F1X20  
10  
PIC18LF1X20  
20  
TccH  
CCPx Input High No prescaler  
Time  
0.5 TCY + 20  
With prescaler PIC18F1X20  
PIC18LF1X20  
10  
20  
52  
53  
TccP  
TccR  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
CCPx Output Fall Time  
CCPx Output Fall Time  
PIC18F1X20  
PIC18LF1X20  
PIC18F1X20  
PIC18LF1X20  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
FIGURE 22-12:  
EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RB1/AN5/TX/  
CK/INT1 pin  
121  
121  
RB4/AN6/RX/  
DT/KBI0 pin  
120  
Refer to Figure 22-5 for load conditions.  
122  
Note:  
TABLE 22-11: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (MASTER & SLAVE)  
Clock High to Data Out Valid  
PIC18F1X20  
PIC18LF1X20  
PIC18F1X20  
PIC18LF1X20  
PIC18F1X20  
PIC18LF1X20  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock Out Rise Time and Fall Time  
(Master mode)  
50  
Data Out Rise Time and Fall Time  
20  
50  
© 2007 Microchip Technology Inc.  
DS39605F-page 263  
PIC18F1220/1320  
FIGURE 22-13:  
EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RB1/AN5/TX/  
CK/INT1 pin  
125  
RB4/AN6/RX/  
DT/KBI0 pin  
126  
Note:  
Refer to Figure 22-5 for load conditions.  
TABLE 22-12: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (MASTER & SLAVE)  
Data Hold before CK(DT hold time)  
Data Hold after CK(DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
TABLE 22-13: A/D CONVERTER CHARACTERISTICS: PIC18F1220/1320 (INDUSTRIAL)  
PIC18LF1220/1320 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10  
bit ΔVREF 3.0V  
A03  
A04  
A06  
A07  
A10  
A20  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
<±1  
<±1  
<±1  
<±1  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
EDL  
EOFF  
EGN  
Gain Error  
Monotonicity  
guaranteed(2)  
ΔVREF Reference Voltage Range  
3
AVDD – AVSS  
V
For 10-bit resolution  
(VREFH – VREFL)  
A21  
A22  
A25  
A28  
A29  
A30  
VREFH Reference Voltage High  
VREFL Reference Voltage Low  
AVSS + 3.0V  
AVSS – 0.3V  
VREFL  
AVDD + 0.3V  
AVDD – 3.0V  
VREFH  
V
V
For 10-bit resolution  
For 10-bit resolution  
VAIN  
Analog Input Voltage  
Analog Supply Voltage  
Analog Supply Voltage  
V
AVDD  
AVSS  
ZAIN  
VDD – 0.3  
VSS – 0.3  
VDD + 0.3  
VSS + 0.3  
2.5  
V
V
Recommended Impedance of  
Analog Voltage Source  
kΩ  
A40  
A50  
IAD  
A/D Conversion PIC18F1X20  
180  
90  
μA Average current  
Current (VDD)  
consumption when  
PIC18LF1X20  
μA  
A/D is on (Note 1)  
IREF  
VREF Input Current (Note 3)  
±5  
±150  
μA During VAIN acquisition.  
μA During A/D conversion  
cycle.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
specification includes any such leakage from the A/D module.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
3: VREFH current is from RA3/AN3/VREF+ pin or AVDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF- pin or AVSS, whichever is selected as the VREFL source.  
DS39605F-page 264  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 22-14:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
A/D CLK(1)  
132  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 22-14: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
PIC18F1X20  
1.6  
3.0  
2.0  
3.0  
11  
20(5)  
20(5)  
6.0  
μs TOSC based, VREF 3.0V  
μs TOSC based, VREF full range  
μs A/D RC mode  
PIC18LF1X20  
PIC18F1X20  
PIC18LF1X20  
9.0  
μs A/D RC mode  
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including acquisition time) (Note 1)  
Acquisition Time (Note 3)  
12  
TAD  
15  
10  
μs -40°C Temp +125°C  
μs 0°C Temp +125°C  
135  
136  
TSWC  
TAMP  
Switching Time from Convert Sample  
Amplifier Settling Time (Note 2)  
1
(Note 4)  
μs This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 17.0 “10-Bit Analog-to-Digital Converter (A/D) Module” for minimum conditions when input  
voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage, when the voltage changes full scale after  
the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels is 50Ω.  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
© 2007 Microchip Technology Inc.  
DS39605F-page 265  
PIC18F1220/1320  
NOTES:  
DS39605F-page 266  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean – 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 23-1:  
TYPICAL IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, +25°C  
0.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.4  
0.3  
0.2  
0.1  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
FIGURE 23-2:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, -40°C TO +85°C  
0.7  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
© 2007 Microchip Technology Inc.  
DS39605F-page 267  
PIC18F1220/1320  
FIGURE 23-3:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C  
0.7  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
FIGURE 23-4:  
TYPICAL IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, +25°C  
2.0  
Typical:  
statistical mean @ 25°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
1.0  
1.5  
2.0  
2.5  
(MHz)  
3.0  
3.5  
4.0  
F
OSC  
DS39605F-page 268  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-5:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C  
2.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2.0  
1.5  
1.0  
0.5  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
FIGURE 23-6:  
TYPICAL IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, +25°C  
16  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
14  
12  
10  
8
5.5V  
5.0V  
4.5V  
4.0V  
6
3.5V  
4
3.0V  
2
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
F
(MHz)  
OSC  
© 2007 Microchip Technology Inc.  
DS39605F-page 269  
PIC18F1220/1320  
FIGURE 23-7:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_RUN, EC MODE, -40°C TO +125°C  
16  
Typical:  
statistical mean @ 25°C  
14  
12  
10  
8
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.0V  
4.5V  
3.5V  
6
4
3.0V  
2
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 23-8:  
TYPICAL IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, +25°C  
0.035  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.000  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
DS39605F-page 270  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-9:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, -40°C TO +85°C  
0.045  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.000  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
FIGURE 23-10:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, -40°C TO +125°C  
0.100  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.000  
0.00  
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
0.18  
0.20  
FOSC (MHz)  
© 2007 Microchip Technology Inc.  
DS39605F-page 271  
PIC18F1220/1320  
FIGURE 23-11:  
TYPICAL IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, +25°C  
600  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
500  
400  
300  
200  
100  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
1.0  
1.5  
2.0  
2.5  
(MHz)  
3.0  
3.5  
4.0  
F
OSC  
FIGURE 23-12:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, -40°C TO +125°C  
600  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
500  
400  
300  
200  
100  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
DS39605F-page 272  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-13:  
TYPICAL IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, +25°C  
6.0  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 23-14:  
MAXIMUM IDD vs. FOSC OVER VDD PRI_IDLE, EC MODE, -40°C TO +125°C  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
© 2007 Microchip Technology Inc.  
DS39605F-page 273  
PIC18F1220/1320  
FIGURE 23-15:  
TYPICAL IPD vs. VDD (+25°C), 125 kHz TO 8 MHz RC_RUN MODE,  
ALL PERIPHERALS DISABLED  
3000  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
8 MHz  
2500  
2000  
1500  
1000  
500  
250 kHz and 500 kHz curves are  
bounded by 125 kHz and 1 MHz  
4 MHz  
2 MHz  
1 MHz  
125 kHz  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 23-16:  
MAXIMUM IPD vs. VDD (-40°C TO +125°C), 125 kHz TO 8 MHz RC_RUN MODE,  
ALL PERIPHERALS DISABLED  
3500  
8 MHz  
3000  
2500  
250 kHz and 500 kHz curves are  
bounded by 125 kHz and 1 MHz  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2000  
1500  
1000  
500  
0
4 MHz  
2 MHz  
1 MHz  
125 kHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39605F-page 274  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-17:  
TYPICAL AND MAXIMUM IPD vs. VDD (-40°C TO +125°C), 31.25 kHz RC_RUN MODE,  
ALL PERIPHERALS DISABLED  
100  
Max (+125°C)  
Max (+85°C)  
Typ (+25°C)  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 23-18:  
TYPICAL IPD vs. VDD (+25°C), 125 kHz TO 8 MHz RC_IDLE MODE,  
ALL PERIPHERALS DISABLED  
800  
750  
700  
650  
250 kHz and 500 kHz curves are  
bounded by 125 kHz and 1 MHz  
8 MHz  
4 MHz  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
2 MHz  
1 MHz  
125 kHz  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS39605F-page 275  
PIC18F1220/1320  
FIGURE 23-19:  
MAXIMUM IPD vs. VDD (-40°C TO +125°C), 125 kHz TO 8 MHz RC_IDLE MODE,  
ALL PERIPHERALS DISABLED  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
8 MHz  
250 kHz and 500 kHz curves are  
bounded by 125 kHz and 1 MHz  
4 MHz  
2 MHz  
1 MHz  
125 kHz  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 23-20:  
TYPICAL AND MAXIMUM IPD vs. VDD (-40°C TO +125°C), 31.25 kHz RC_IDLE MODE,  
ALL PERIPHERALS DISABLED  
100  
Max (+125°C)  
Max (+85°C)  
Typ (+25°C)  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39605F-page 276  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-21:  
IPD SEC_RUN MODE, -10°C TO +70°C, 32.768 kHz XTAL, 2 x 22 pF,  
ALL PERIPHERALS DISABLED  
80  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
70  
60  
50  
40  
30  
20  
10  
0
Max (+70°C)  
Typ (+25°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 23-22:  
IPD SEC_IDLE MODE, -10°C TO +70°C, 32.768 kHz, 2 x 22 pF,  
ALL PERIPHERALS DISABLED  
20  
18  
16  
14  
12  
10  
8
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+70°C)  
Typ (+25°C)  
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2007 Microchip Technology Inc.  
DS39605F-page 277  
PIC18F1220/1320  
FIGURE 23-23:  
TOTAL IPD, -40°C TO +125°C SLEEP MODE, ALL PERIPHERALS DISABLED  
100  
Max (+125°C)  
Max (+85°C)  
10  
1
0.1  
0.01  
Typ (+25°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.001  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 23-24:  
VOH vs. IOH OVER TEMPERATURE (-40°C TO +125°C), VDD = 3.0V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (+125°C)  
Typ (+25°C)  
Min (+125°C)  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
DS39605F-page 278  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-25:  
VOH vs. IOH OVER TEMPERATURE (-40°C TO +125°C), VDD = 5.0V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (+125°C)  
Typ (+25°C)  
Min (+125°C)  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 23-26:  
VOL vs. IOL OVER TEMPERATURE (-40°C TO +125°C), VDD = 3.0V  
3.0  
Max (+125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (+85°C)  
Typ (+25°C)  
Min (+125°C)  
0.0  
0
5
10  
15  
20  
25  
IOL (-mA)  
© 2007 Microchip Technology Inc.  
DS39605F-page 279  
PIC18F1220/1320  
FIGURE 23-27:  
VOL vs. IOL OVER TEMPERATURE (-40°C TO +125°C), VDD = 5.0V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Max (+125°C)  
Max (+85°C)  
Typ (+25°C)  
Min (+125°C)  
0.0  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 23-28:  
ΔIPD TIMER1 OSCILLATOR, -10°C TO +70°C SLEEP MODE,  
TMR1 COUNTER DISABLED  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (-10°C to +70°C)  
Typ (+25°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS39605F-page 280  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-29:  
ΔIPD FSCM vs. VDD OVER TEMPERATURE PRI_IDLE MODE,  
EC OSCILLATOR AT 32 kHz, -40°C TO +125°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max (-40°C)  
Typ (+25°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
FIGURE 23-30:  
ΔIPD WDT, -40°C TO +125°C SLEEP MODE, ALL PERIPHERALS DISABLED  
14  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
12  
10  
8
Max (+125°C)  
6
Max (+85°C)  
Typ (+25°C)  
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
© 2007 Microchip Technology Inc.  
DS39605F-page 281  
PIC18F1220/1320  
FIGURE 23-31:  
ΔIPD LVD vs. VDD SLEEP MODE, LVDL3:LVDL0 = 0001 (2V)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+125°C)  
Max (+85°C)  
Typ (+25°C)  
Low-Voltage Detection Range  
5
0
Normal Operating Range  
3.5 4.0  
2.0  
2.5  
3.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 23-32:  
ΔIPD BOR vs. VDD, -40°C TO +125°C SLEEP MODE,  
BORV1:BORV0 = 11 (2V)  
40  
35  
30  
25  
20  
15  
10  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+125°C)  
Typ (+25°C)  
Device may be in Reset  
5
0
Device is Operating  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD (V)  
DS39605F-page 282  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
FIGURE 23-33:  
ΔIPD A/D, -40°C TO +125°C SLEEP MODE, A/D ENABLED (NOT CONVERTING)  
10  
Max (+125°C)  
1
Max (+85°C)  
0.1  
0.01  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Typ (+25°C)  
0.001  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 23-34:  
AVERAGE FOSC vs. VDD FOR VARIOUS R’s EXTERNAL RC MODE,  
C = 20 pF, TEMPERATURE = +25°C  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Operation above 4 MHz is not recomended  
5.1K  
10K  
33K  
100K  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
© 2007 Microchip Technology Inc.  
DS39605F-page 283  
PIC18F1220/1320  
FIGURE 23-35:  
AVERAGE FOSC vs. VDD FOR VARIOUS R’s EXTERNAL RC MODE,  
C = 100 pF, TEMPERATURE = +25°C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
5.1K  
10K  
33K  
100K  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
FIGURE 23-36:  
AVERAGE FOSC vs. VDD FOR VARIOUS R’s EXTERNAL RC MODE,  
C = 300 pF, TEMPERATURE = +25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
5.1K  
10K  
33K  
100K  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
DS39605F-page 284  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
24.0 PACKAGING INFORMATION  
24.1 Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18F1320-I/P  
0710017  
e3  
18-Lead SOIC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC18F1220-  
E/SO  
e
3
0710017  
YYWWNNN  
20-Lead SSOP  
Example  
E/SS  
XXXXXXXXXXX  
XXXXXXXXXXX  
PIC18F1220-  
e
3
YYWWNNN  
0710017  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
18F1320  
3
e
-I/ML  
0710017  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS39605F-page 285  
PIC18F1220/1320  
24.2 Package Details  
The following sections give the technical details of the packages.  
18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
2
3
1
D
E
A2  
A
L
c
A1  
b1  
e
b
eB  
Units  
INCHES  
NOM  
18  
Dimension Limits  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
.100 BSC  
Top to Seating Plane  
A
.210  
.195  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.880  
.115  
.008  
.045  
.014  
.130  
.310  
.250  
.900  
.130  
.010  
.060  
.018  
.325  
.280  
.920  
.150  
.014  
.070  
.022  
.430  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
b1  
b
Lower Lead Width  
Overall Row Spacing §  
eB  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-007B  
DS39605F-page 286  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
18-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
α
h
h
c
φ
A2  
A
β
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
18  
1.27 BSC  
Overall Height  
A
2.65  
Molded Package Thickness  
Standoff §  
A2  
A1  
E
2.05  
0.10  
0.30  
Overall Width  
10.30 BSC  
Molded Package Width  
Overall Length  
E1  
D
h
7.50 BSC  
11.55 BSC  
Chamfer (optional)  
Foot Length  
0.25  
0.40  
0.75  
1.27  
L
Footprint  
L1  
φ
1.40 REF  
Foot Angle  
0°  
0.20  
0.31  
5°  
8°  
Lead Thickness  
Lead Width  
c
0.33  
0.51  
15°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-051B  
© 2007 Microchip Technology Inc.  
DS39605F-page 287  
PIC18F1220/1320  
20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
20  
0.65 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
A
1.75  
2.00  
1.85  
A2  
A1  
E
1.65  
0.05  
7.40  
5.00  
6.90  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
7.80  
5.30  
7.20  
0.75  
1.25 REF  
8.20  
5.60  
7.50  
0.95  
E1  
D
L
Footprint  
L1  
c
Lead Thickness  
Foot Angle  
0.09  
0°  
0.25  
8°  
φ
4°  
Lead Width  
b
0.22  
0.38  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-072B  
DS39605F-page 288  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN]  
with 0.55 mm Contact Length  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Pins  
N
e
28  
Pitch  
0.65 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
E
0.02  
Contact Thickness  
Overall Width  
0.20 REF  
6.00 BSC  
3.70  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
E2  
D
3.65  
4.20  
6.00 BSC  
3.70  
D2  
b
3.65  
0.23  
0.50  
0.20  
4.20  
0.35  
0.70  
0.30  
L
0.55  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-105B  
© 2007 Microchip Technology Inc.  
DS39605F-page 289  
PIC18F1220/1320  
NOTES:  
DS39605F-page 290  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Revision F (February 2007)  
APPENDIX A: REVISION HISTORY  
This revision includes updates to the packaging  
diagrams.  
Revision A (August 2002)  
Original data sheet for PIC18F1220/1320 devices.  
APPENDIX B: DEVICE  
DIFFERENCES  
Revision B (November 2002)  
This revision includes significant changes to  
Section 2.0, Section 3.0 and Section 19.0, as well as  
updates to the Electrical Specifications in Section 22.0  
and includes minor corrections to the data sheet text.  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Revision C (May 2004)  
This revision includes updates to the Electrical Specifi-  
cations in Section 22.0, the DC and AC Characteristics  
Graphs and Tables in Section 23.0 and includes minor  
corrections to the data sheet text.  
Revision D (October 2006)  
This revision includes updates to the packaging  
diagrams.  
Revision E (January 2007)  
This revision includes updates to the packaging  
diagrams.  
TABLE B-1:  
DEVICE DIFFERENCES  
Features  
PIC18F1220  
PIC18F1320  
Program Memory (Bytes)  
Program Memory (Instructions)  
Interrupt Sources  
4096  
8192  
2048  
4096  
15  
Ports A, B  
1
15  
Ports A, B  
1
I/O Ports  
Enhanced Capture/Compare/PWM Modules  
10-bit Analog-to-Digital Module  
7 input channels  
7 input channels  
18-pin SDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
18-pin SDIP  
18-pin SOIC  
20-pin SSOP  
28-pin QFN  
Packages  
© 2007 Microchip Technology Inc.  
DS39605F-page 291  
PIC18F1220/1320  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
ENHANCED DEVICES  
This appendix discusses the considerations for con-  
verting from previous versions of a device to the ones  
listed in this data sheet. Typically, these changes are  
due to the differences in the process technology used.  
An example of this type of conversion is from a  
PIC16C74A to a PIC16C74B.  
This section discusses how to migrate from a baseline  
device (i.e., PIC16C5X) to an enhanced MCU device  
(i.e., PIC18FXXX).  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
Not Applicable  
Not Currently Available  
DS39605F-page 292  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
APPENDIX E: MIGRATION FROM  
MID-RANGE TO  
APPENDIX F: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
ENHANCED DEVICES  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18C442”. The changes discussed, while device  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
A detailed discussion of the migration pathway and  
differences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18FXXX) is provided in AN726, “PIC17CXXX to  
PIC18CXXX Migration”.  
This Application Note is available as Literature Number  
DS00726.  
This Application Note is available as Literature Number  
DS00716.  
© 2007 Microchip Technology Inc.  
DS39605F-page 293  
PIC18F1220/1320  
NOTES:  
DS39605F-page 294  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
INDEX  
Generic I/O Port Operation ........................................ 87  
Low-Voltage Detect (LVD) ....................................... 166  
Low-Voltage Detect (LVD) with External Input ........ 166  
MCLR/VPP/RA5 Pin ................................................... 89  
On-Chip Reset Circuit ................................................ 33  
OSC1/CLKI/RA7 Pin .................................................. 88  
OSC2/CLKO/RA6 Pin ................................................ 88  
PIC18F1220/1320 ....................................................... 7  
PLL ............................................................................ 12  
RA3:RA0 Pins ............................................................ 88  
RA4/T0CKI Pin .......................................................... 88  
RB0/AN4/INT0 Pin ..................................................... 90  
RB1/AN5/TX/CK/INT1 Pin ......................................... 91  
RB2/P1B/INT2 Pin ..................................................... 92  
RB3/CCP1/P1A Pin ................................................... 93  
RB4/AN6/RX/DT/KBI0 Pin ......................................... 94  
RB5/PGM/KBI1 Pin .................................................... 95  
RB6/PGC/T1OSO/T13CKI/P1C/KBI2 Pin .................. 96  
RB7/PGD/T1OSI/P1D/KBI3 Pin ................................. 97  
Reads from Flash Program Memory .......................... 61  
System Clock ............................................................. 16  
Table Read Operation ............................................... 57  
Table Write Operation ................................................ 58  
Table Writes to Flash Program Memory .................... 63  
Timer0 in 16-Bit Mode ............................................. 100  
Timer0 in 8-Bit Mode ............................................... 100  
Timer1 ..................................................................... 104  
Timer1 (16-Bit Read/Write Mode) ............................ 104  
Timer2 ..................................................................... 110  
Timer3 ..................................................................... 112  
Timer3 (16-bit Read/Write Mode) ............................ 112  
WDT ........................................................................ 180  
BN .................................................................................... 200  
BNC ................................................................................. 201  
BNN ................................................................................. 201  
BNOV ............................................................................... 202  
BNZ .................................................................................. 202  
BOR. See Brown-out Reset.  
A
A/D ................................................................................... 155  
A/D Converter Interrupt, Configuring ....................... 159  
Acquisition Requirements ........................................ 160  
ADCON0 Register .................................................... 155  
ADCON1 Register .................................................... 155  
ADCON2 Register .................................................... 155  
ADRESH Register .................................................... 155  
ADRESH/ADRESL Registers .................................. 158  
ADRESL Register .................................................... 155  
Analog Port Pins, Configuring .................................. 162  
Associated Registers ............................................... 164  
Configuring the Module ............................................ 159  
Conversion Clock (Tad) ........................................... 161  
Conversion Requirements ....................................... 265  
Conversion Status (GO/DONE Bit) .......................... 158  
Conversions ............................................................. 163  
Converter Characteristics ........................................ 264  
Operation in Low-Power Modes ............................... 162  
Selecting, Configuring Automatic  
Acquisition Time ............................................... 161  
Special Event Trigger (CCP) .................................... 117  
Special Event Trigger (CCP1) .................................. 164  
Use of the CCP1 Trigger .......................................... 164  
Vref+ and Vref- References ..................................... 160  
Absolute Maximum Ratings ............................................. 237  
AC (Timing) Characteristics ............................................. 255  
Conditions ................................................................ 256  
Load Conditions for Device  
Timing Specifications ....................................... 256  
Parameter Symbology ............................................. 255  
Temperature and Voltage Specifications ................. 256  
ADCON0 Register ............................................................ 155  
GO/DONE Bit ........................................................... 158  
ADCON1 Register ............................................................ 155  
ADCON2 Register ............................................................ 155  
ADDLW ............................................................................ 197  
ADDWF ............................................................................ 197  
ADDWFC ......................................................................... 198  
ADRESH Register ............................................................ 155  
ADRESH/ADRESL Registers ........................................... 158  
ADRESL Register ............................................................ 155  
Analog-to-Digital Converter. See A/D.  
BOV ................................................................................. 205  
BRA ................................................................................. 203  
Break Character (12-bit) Transmit and Receive .............. 146  
Brown-out Reset (BOR) ..............................................34, 171  
BSF .................................................................................. 203  
BTFSC ............................................................................. 204  
BTFSS ............................................................................. 204  
BTG ................................................................................. 205  
BZ .................................................................................... 206  
ANDLW ............................................................................ 198  
ANDWF ............................................................................ 199  
Assembler  
MPASM Assembler .................................................. 234  
Auto-Wake-up on Sync Break Character ......................... 145  
C
C Compilers  
B
MPLAB C18 ............................................................. 234  
MPLAB C30 ............................................................. 234  
CALL ................................................................................ 206  
Capture (CCP Module) .................................................... 116  
CCP Pin Configuration ............................................. 116  
CCPR1H:CCPR1L Registers ................................... 116  
Software Interrupt .................................................... 116  
Timer1/Timer3 Mode Selection ................................ 116  
Capture, Compare, Timer1 and Timer3  
BC .................................................................................... 199  
BCF .................................................................................. 200  
Block Diagrams  
A/D ........................................................................... 158  
Analog Input Model .................................................. 159  
Capture Mode Operation ......................................... 117  
Compare Mode Operation ....................................... 118  
Enhanced PWM ....................................................... 120  
EUSART Receive .................................................... 143  
EUSART Transmit ................................................... 141  
Fail-Safe Clock Monitor ............................................ 182  
Associated Registers ............................................... 118  
© 2007 Microchip Technology Inc.  
DS39605F-page 295  
PIC18F1220/1320  
Capture/Compare/PWM (CCP)  
Data Memory ..................................................................... 47  
General Purpose Registers ....................................... 47  
Map for PIC18F1220/1320 Devices ........................... 48  
Special Function Registers ........................................ 49  
DAW ................................................................................ 210  
DC and AC Characteristics  
Capture Mode. See Capture.  
CCP1 ........................................................................116  
CCPR1H Register ............................................116  
CCPR1L Register ............................................116  
Compare Mode. See Compare.  
Timer Resources ......................................................116  
Clock Sources ....................................................................15  
Selection Using OSCCON Register ...........................16  
Clocking Scheme ...............................................................45  
CLRF ................................................................................207  
CLRWDT ..........................................................................207  
Code Examples  
Graphs and Tables .................................................. 267  
DC Characteristics ........................................................... 250  
Power-Down and Supply Current ............................ 241  
Supply Voltage ......................................................... 240  
DCFSNZ .......................................................................... 211  
DECF ............................................................................... 210  
DECFSZ .......................................................................... 211  
Details on Individual Family Members ................................. 6  
Development Support ...................................................... 233  
Device Differences ........................................................... 291  
Direct Addressing ............................................................... 54  
16 x 16 Signed Multiply Routine .................................72  
16 x 16 Unsigned Multiply Routine .............................72  
8 x 8 Signed Multiply Routine .....................................71  
8 x 8 Unsigned Multiply Routine .................................71  
Changing Between Capture Prescalers ...................117  
Computed GOTO Using an Offset Value ...................47  
Data EEPROM Read .................................................69  
Data EEPROM Refresh Routine ................................70  
Data EEPROM Write ..................................................69  
Erasing a Flash Program Memory Row .....................62  
Fast Register Stack ....................................................44  
How to Clear RAM (Bank 1) Using  
E
Effects of Power Managed Modes on  
Various Clock Sources .............................................. 18  
Electrical Characteristics .................................................. 237  
Enhanced Capture/Compare/PWM (ECCP) .................... 115  
Outputs .................................................................... 116  
PWM Mode. See PWM (ECCP Module).  
Enhanced PWM Mode. See PWM (ECCP Module). ........ 119  
Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) ............................. 131  
Equations  
16 x 16 Signed Multiplication Algorithm ..................... 72  
16 x 16 Unsigned Multiplication Algorithm ................. 72  
A/D Minimum Charging Time ................................... 160  
Acquisition Time ...................................................... 160  
Errata ................................................................................... 4  
EUSART  
Indirect Addressing ............................................53  
Implementing a Real-Time Clock Using a  
Timer1 Interrupt Service ..................................107  
Initializing PORTA ......................................................87  
Initializing PORTB ......................................................90  
Reading a Flash Program Memory Word ...................61  
Saving Status, WREG and  
BSR Registers in RAM .......................................85  
Writing to Flash Program Memory ....................... 6465  
Code Protection ...............................................................171  
COMF ...............................................................................208  
Compare (CCP Module) ...................................................117  
CCP Pin Configuration .............................................117  
CCPR1 Register .......................................................117  
Software Interrupt .....................................................117  
Special Event Trigger ....................................... 113, 117  
Timer1/Timer3 Mode Selection ................................117  
Compare (CCP1 Module)  
Asynchronous Mode ................................................ 140  
12-bit Break Transmit and Receive ................. 146  
Associated Registers, Receive ........................ 144  
Associated Registers, Transmit ....................... 142  
Auto-Wake-up on Sync Break ......................... 145  
Receiver .......................................................... 143  
Setting up 9-bit Mode with  
Address Detect ........................................ 143  
Transmitter ....................................................... 140  
Baud Rate Generator (BRG) ................................... 135  
Associated Registers ....................................... 136  
Auto-Baud Rate Detect .................................... 139  
Baud Rate Error, Calculating ........................... 135  
Baud Rates, Asynchronous Modes ................. 136  
High Baud Rate Select (BRGH Bit) ................. 135  
Power Managed Mode Operation .................... 135  
Sampling .......................................................... 135  
Serial Port Enable (SPEN Bit) ................................. 131  
Synchronous Master Mode ...................................... 148  
Associated Registers, Reception ..................... 151  
Associated Registers, Transmit ....................... 149  
Reception ........................................................ 150  
Transmission ................................................... 148  
Synchronous Slave Mode ........................................ 152  
Associated Registers, Receive ........................ 153  
Associated Registers, Transmit ....................... 152  
Reception ........................................................ 153  
Transmission ................................................... 152  
Special Event Trigger ...............................................164  
Computed GOTO ...............................................................47  
Configuration Bits .............................................................171  
Context Saving During Interrupts .......................................85  
Conversion Considerations ..............................................292  
CPFSEQ ..........................................................................208  
CPFSGT ...........................................................................209  
CPFSLT ...........................................................................209  
Customer Change Notification Service ............................302  
Customer Notification Service ..........................................302  
Customer Support ............................................................302  
D
Data EEPROM Memory .....................................................67  
Associated Registers .................................................70  
EEADR Register ........................................................67  
EECON1 Register ......................................................67  
EECON2 Register ......................................................67  
Operation During Code-Protect ..................................70  
Protection Against Spurious Write .............................69  
Reading ......................................................................69  
Using ..........................................................................70  
Write Verify .................................................................69  
Writing ........................................................................69  
DS39605F-page 296  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
BRA ......................................................................... 203  
BSF .......................................................................... 203  
BTFSC ..................................................................... 204  
BTFSS ..................................................................... 204  
BTG ......................................................................... 205  
BZ ............................................................................ 206  
CALL ........................................................................ 206  
CLRF ....................................................................... 207  
CLRWDT ................................................................. 207  
COMF ...................................................................... 208  
CPFSEQ .................................................................. 208  
CPFSGT .................................................................. 209  
CPFSLT ................................................................... 209  
DAW ........................................................................ 210  
DCFSNZ .................................................................. 211  
DECF ....................................................................... 210  
DECFSZ .................................................................. 211  
General Format ........................................................ 193  
GOTO ...................................................................... 212  
INCF ........................................................................ 212  
INCFSZ .................................................................... 213  
INFSNZ .................................................................... 213  
IORLW ..................................................................... 214  
IORWF ..................................................................... 214  
LFSR ....................................................................... 215  
MOVF ...................................................................... 215  
MOVFF .................................................................... 216  
MOVLB .................................................................... 216  
MOVLW ................................................................... 217  
MOVWF ................................................................... 217  
MULLW .................................................................... 218  
MULWF .................................................................... 218  
NEGF ....................................................................... 219  
NOP ......................................................................... 219  
POP ......................................................................... 220  
PUSH ....................................................................... 220  
RCALL ..................................................................... 221  
RESET ..................................................................... 221  
RETFIE .................................................................... 222  
RETLW .................................................................... 222  
RETURN .................................................................. 223  
RLCF ....................................................................... 223  
RLNCF ..................................................................... 224  
RRCF ....................................................................... 224  
RRNCF .................................................................... 225  
SETF ....................................................................... 225  
SLEEP ..................................................................... 226  
SUBFWB ................................................................. 226  
SUBLW .................................................................... 227  
SUBWF .................................................................... 227  
SUBWFB ................................................................. 228  
SWAPF .................................................................... 228  
TBLRD ..................................................................... 229  
TBLWT .................................................................... 230  
TSTFSZ ................................................................... 231  
XORLW ................................................................... 231  
XORWF ................................................................... 232  
Summary Table ....................................................... 194  
F
Fail-Safe Clock Monitor .................................................... 171  
Exiting Operation ..................................................... 183  
Interrupts in Power Managed Modes ....................... 183  
POR or Wake from Sleep ........................................ 184  
WDT During Oscillator Failure ................................. 182  
Fail-Safe Clock Monitor (FSCM) ...................................... 182  
Fast Register Stack ............................................................ 44  
Firmware Instructions ....................................................... 191  
Flash Program Memory ...................................................... 57  
Associated Registers ................................................. 65  
Control Registers ....................................................... 58  
Erase Sequence ........................................................ 62  
Erasing ....................................................................... 62  
Operation During Code-Protect ................................. 65  
Reading ...................................................................... 61  
Table Latch ................................................................ 60  
Table Pointer .............................................................. 60  
Boundaries Based on Operation ........................ 60  
Table Pointer Boundaries .......................................... 60  
Table Reads and Table Writes .................................. 57  
Write Sequence ......................................................... 63  
Writing to .................................................................... 63  
Unexpected Termination .................................... 65  
Write Verify ........................................................ 65  
G
GOTO ............................................................................... 212  
H
Hardware Multiplier ............................................................ 71  
Introduction ................................................................ 71  
Operation ................................................................... 71  
Performance Comparison .......................................... 71  
I
I/O Ports ............................................................................. 87  
ID Locations ............................................................. 171, 188  
INCF ................................................................................. 212  
INCFSZ ............................................................................ 213  
In-Circuit Debugger .......................................................... 188  
In-Circuit Serial Programming (ICSP) ...................... 171, 188  
Indirect Addressing ............................................................ 54  
INDF and FSR Registers ........................................... 53  
Operation ................................................................... 53  
Indirect Addressing Operation ............................................ 54  
Indirect File Operand .......................................................... 47  
INFSNZ ............................................................................ 213  
Initialization Conditions for All Registers ...................... 3638  
Instruction Cycle ................................................................. 45  
Instruction Flow/Pipelining ................................................. 45  
Instruction Set .................................................................. 191  
ADDLW .................................................................... 197  
ADDWF .................................................................... 197  
ADDWFC ................................................................. 198  
ANDLW .................................................................... 198  
ANDWF .................................................................... 199  
BC ............................................................................ 199  
BCF .......................................................................... 200  
BN ............................................................................ 200  
BNC ......................................................................... 201  
BNN ......................................................................... 201  
BNOV ....................................................................... 202  
BNZ .......................................................................... 202  
BOV ......................................................................... 205  
INTCON Register  
RBIF Bit ..................................................................... 90  
INTCON Registers ............................................................. 75  
© 2007 Microchip Technology Inc.  
DS39605F-page 297  
PIC18F1220/1320  
Internal Oscillator Block .....................................................14  
Adjustment .................................................................14  
INTIO Modes ..............................................................14  
INTRC Output Frequency ..........................................14  
OSCTUNE Register ...................................................14  
Internal RC Oscillator  
MPLAB PM3 Device Programmer ................................... 235  
MPLAB REAL ICE In-Circuit Emulator System ................ 235  
MPLINK Object Linker/MPLIB Object Librarian ............... 234  
MULLW ............................................................................ 218  
MULWF ............................................................................ 218  
N
Use with WDT ..........................................................180  
Internet Address ...............................................................302  
Interrupt Sources ..............................................................171  
A/D Conversion Complete ........................................159  
Capture Complete (CCP) .........................................116  
Compare Complete (CCP) .......................................117  
Interrupt-on-Change (RB7:RB4) ................................90  
INTn Pin .....................................................................85  
PORTB, Interrupt-on-Change ....................................85  
TMR0 .........................................................................85  
TMR0 Overflow ........................................................101  
TMR1 Overflow ........................................................103  
TMR2 to PR2 Match .................................................110  
TMR2 to PR2 Match (PWM) ............................ 109, 119  
TMR3 Overflow ................................................ 111, 113  
Interrupts ............................................................................73  
Enable Bits  
NEGF ............................................................................... 219  
New Core Features  
Multiple Oscillator Options and Features ..................... 5  
nanoWatt Technology .................................................. 5  
NOP ................................................................................. 219  
O
Opcode Field Descriptions ............................................... 192  
OPTION_REG Register  
PSA Bit .................................................................... 101  
T0CS Bit .................................................................. 101  
T0PS2:T0PS0 Bits ................................................... 101  
T0SE Bit ................................................................... 101  
Oscillator Configuration ...................................................... 11  
Crystal/Ceramic Resonator ........................................ 11  
EC .............................................................................. 11  
ECIO .......................................................................... 11  
External Clock Input ................................................... 13  
HS .............................................................................. 11  
HSPLL ..................................................................11, 12  
INTIO1 ....................................................................... 11  
INTIO2 ....................................................................... 11  
LP .............................................................................. 11  
RC .........................................................................11, 13  
RCIO .......................................................................... 11  
XT .............................................................................. 11  
Oscillator Selection .......................................................... 171  
Oscillator Start-up Timer (OST) ............................18, 34, 171  
Oscillator Switching ............................................................ 15  
Oscillator Transitions ......................................................... 18  
Oscillator, Timer1 ......................................................103, 113  
Oscillator, Timer3 ............................................................. 111  
Other Special Features ........................................................ 5  
(CCP1IE Bit) ....................................................116  
Flag Bits  
CCP1 Flag (CCP1IF Bit) ..................................116  
CCP1IF Flag (CCP1IF Bit) ...............................117  
Interrupt-on-Change (RB7:RB4)  
Flag (RBIF Bit) ...........................................90  
Logic ...........................................................................74  
INTOSC Frequency Drift ....................................................30  
IORLW .............................................................................214  
IORWF .............................................................................214  
IPR Registers .....................................................................82  
L
LFSR ................................................................................215  
Low-Voltage Detect ..........................................................165  
Characteristics .........................................................253  
Effects of a Reset .....................................................169  
Operation .................................................................168  
Current Consumption .......................................169  
P
Packaging ........................................................................ 285  
Details ...................................................................... 286  
Marking Information ................................................. 285  
PICSTART Plus Development Programmer .................... 236  
PIE Registers ..................................................................... 80  
Pin Functions  
Reference Voltage Set Point ............................169  
Operation During Sleep ............................................169  
LVD. See Low-Voltage Detect. ........................................165  
M
Memory Organization .........................................................41  
Data Memory ..............................................................47  
Program Memory .......................................................41  
Memory Programming Requirements ..............................252  
Microchip Internet Web Site .............................................302  
Migration from Baseline to Enhanced Devices ................292  
Migration from High-End to Enhanced Devices ...............293  
Migration from Mid-Range to Enhanced Devices .............293  
MOVF ...............................................................................215  
MOVFF .............................................................................216  
MOVLB .............................................................................216  
MOVLW ............................................................................217  
MOVWF ...........................................................................217  
MPLAB ASM30 Assembler, Linker, Librarian ..................234  
MPLAB ICD 2 In-Circuit Debugger ...................................235  
MPLAB ICE 2000 High-Performance  
MCLR/Vpp/RA5 ........................................................... 8  
OSC1/CLKI/RA7 .......................................................... 8  
OSC2/CLKO/RA6 ........................................................ 8  
RA0/AN0 ...................................................................... 8  
RA1/AN1/LVDIN .......................................................... 8  
RA2/AN2/Vref- ............................................................. 8  
RA3/AN3/VREF+ ........................................................... 8  
RA4/T0CKI ................................................................... 8  
RB0/AN4/INT0 ............................................................. 9  
RB1/AN5/TX/CK/INT1 ................................................. 9  
RB2/P1B/INT2 ............................................................. 9  
RB3/CCP1/P1A ........................................................... 9  
RB4/AN6/RX/DT/KBI0 ................................................. 9  
RB5/PGM/KBI1 ............................................................ 9  
RB6/PGC/T1OSO/T13CKI/P1C/KBI2 .......................... 9  
RB7/PGD/T1OSI/P1D/KBI3 ......................................... 9  
Vdd .............................................................................. 9  
Vss ............................................................................... 9  
Universal In-Circuit Emulator ...................................235  
MPLAB Integrated Development  
Environment Software ..............................................233  
DS39605F-page 298  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Pinout I/O Descriptions  
Duty Cycle ............................................................... 119  
Example Frequencies/Resolutions .......................... 119  
Period ...................................................................... 119  
TMR2 to PR2 Match .........................................109, 119  
PWM (ECCP Module) ...................................................... 119  
Associated Registers ............................................... 130  
Direction Change in Full-Bridge Output Mode ......... 124  
Effects of a Reset .................................................... 129  
Enhanced PWM Auto-Shutdown ............................. 126  
Full-Bridge Application Example .............................. 124  
Full-Bridge PWM Output (Active-High) Diagram ..... 123  
Half-Bridge Output (Active-High) Diagram ............... 122  
Half-Bridge Output Mode Applications Example ...... 122  
Operation in Low-Power Modes .............................. 129  
Output Configurations .............................................. 119  
Output Relationships (Active-High) .......................... 120  
Output Relationships (Active-Low) .......................... 121  
Programmable Dead-Band Delay ............................ 126  
PWM Direction Change (Active-High) Diagram ....... 125  
PWM Direction Change at Near  
PIC18F1220/1320 ........................................................ 8  
PIR Registers ..................................................................... 78  
PLL Lock Time-out ............................................................. 34  
Pointer, FSR ....................................................................... 53  
POP .................................................................................. 220  
POR. See Power-on Reset.  
PORTA  
Associated Registers ................................................. 89  
Functions ................................................................... 89  
LATA Register ............................................................ 87  
PORTA Register ........................................................ 87  
TRISA Register .......................................................... 87  
PORTB  
Associated Registers ................................................. 98  
Functions ................................................................... 98  
LATB Register ............................................................ 90  
PORTB Register ........................................................ 90  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF Bit) ........................................................... 90  
TRISB Register .......................................................... 90  
Postscaler  
100% Duty Cycle (Active-High) Diagram ......... 125  
Setup for PWM Operation ........................................ 129  
Start-up Considerations ........................................... 128  
Timer2 ...................................................................... 109  
WDT  
Q
Assignment (PSA Bit) ...................................... 101  
Rate Select (T0PS2:T0PS0 Bits) ..................... 101  
Power Managed Modes ..................................................... 19  
Comparison between Run and Idle Modes ................ 20  
Entering ...................................................................... 20  
Idle Modes ................................................................. 21  
Multiple Sleep Commands ......................................... 20  
Run Modes ................................................................. 26  
Selecting .................................................................... 19  
Sleep Mode ................................................................ 21  
Summary (table) ........................................................ 19  
Wake from .................................................................. 28  
Power-on Reset (POR) .............................................. 34, 171  
Power-up Delays ................................................................ 18  
Power-up Timer (PWRT) .......................................18, 34, 171  
Prescaler  
Capture .................................................................... 117  
Timer0 ...................................................................... 101  
Assignment (PSA Bit) ...................................... 101  
Rate Select (T0PS2:T0PS0 Bits) ..................... 101  
Timer2 ...................................................................... 119  
Product Identification System ........................................... 304  
Program Counter  
Q Clock ............................................................................ 119  
R
RAM. See Data Memory.  
RCALL ............................................................................. 221  
RCIO Oscillator .................................................................. 13  
RCON Register  
Bit Status During Initialization .................................... 35  
RCSTA Register  
SPEN Bit .................................................................. 131  
Reader Response ............................................................ 303  
Register File ....................................................................... 47  
Register File Summary .................................................5051  
Registers  
ADCON0 (A/D Control 0) ......................................... 155  
ADCON1 (A/D Control 1) ......................................... 156  
ADCON2 (A/D Control 2) ......................................... 157  
BAUDCTL (Baud Rate Control) ............................... 134  
CCP1CON (Enhanced CCP1 Control) .................... 115  
CONFIG1H (Configuration 1 High) .......................... 172  
CONFIG2H (Configuration 2 High) .......................... 174  
CONFIG2L (Configuration 2 Low) ........................... 173  
CONFIG3H (Configuration 3 High) .......................... 175  
CONFIG4L (Configuration 4 Low) ........................... 175  
CONFIG5H (Configuration 5 High) .......................... 176  
CONFIG5L (Configuration 5 Low) ........................... 176  
CONFIG6H (Configuration 6 High) .......................... 177  
CONFIG6L (Configuration 6 Low) ........................... 177  
CONFIG7H (Configuration 7 High) .......................... 178  
CONFIG7L (Configuration 7 Low) ........................... 178  
DEVID1 (Device ID 1) .............................................. 179  
DEVID2 (Device ID 2) .............................................. 179  
ECCPAS (ECCP Auto-Shutdown Control) .............. 127  
EECON1 (Data EEPROM Control 1) ....................59, 68  
INTCON (Interrupt Control) ........................................ 75  
INTCON2 (Interrupt Control 2) ................................... 76  
INTCON3 (Interrupt Control 3) ................................... 77  
IPR1 (Peripheral Interrupt Priority 1) ......................... 82  
IPR2 (Peripheral Interrupt Priority 2) ......................... 83  
LVDCON (LVD Control) ........................................... 167  
OSCCON (Oscillator Control) .................................... 17  
PCL Register .............................................................. 44  
PCLATH Register ...................................................... 44  
PCLATU Register ...................................................... 44  
Program Memory  
Instructions in ............................................................. 46  
Interrupt Vector .......................................................... 41  
Map and Stack for PIC18F1220 ................................. 41  
Map and Stack for PIC18F1320 ................................. 41  
Reset Vector .............................................................. 41  
Program Verification and Code Protection ....................... 185  
Associated Registers ............................................... 185  
Configuration Register ............................................. 188  
Data EEPROM ......................................................... 188  
Program Memory ..................................................... 186  
Programming, Device Instructions ................................... 191  
PUSH ............................................................................... 220  
PUSH and POP Instructions .............................................. 43  
PWM (CCP Module)  
CCPR1H:CCPR1L Registers ................................... 119  
© 2007 Microchip Technology Inc.  
DS39605F-page 299  
PIC18F1220/1320  
OSCTUNE (Oscillator Tuning) ...................................15  
PIE1 (Peripheral Interrupt Enable 1) ..........................80  
PIE2 (Peripheral Interrupt Enable 2) ..........................81  
PIR1 (Peripheral Interrupt Request (Flag) 1) .............78  
PIR2 (Peripheral Interrupt Request (Flag) 2) .............79  
PWM1CON (PWM Configuration) ............................126  
RCON (Reset Control) ......................................... 56, 84  
RCSTA (Receive Status and Control) ......................133  
Status .........................................................................55  
STKPTR (Stack Pointer) ............................................43  
T0CON (Timer0 Control) ............................................99  
T1CON (Timer 1 Control) .........................................103  
T2CON (Timer 2 Control) .........................................109  
T3CON (Timer3 Control) ..........................................111  
TXSTA (Transmit Status and Control) .....................132  
WDTCON (Watchdog Timer Control) .......................180  
RESET .............................................................................221  
Reset .......................................................................... 33, 171  
RETFIE ............................................................................222  
RETLW .............................................................................222  
RETURN ..........................................................................223  
Return Address Stack ........................................................42  
and Associated Registers ..........................................42  
Return Stack Pointer (STKPTR) ........................................42  
Revision History ...............................................................291  
RLCF ................................................................................223  
RLNCF .............................................................................224  
RRCF ...............................................................................224  
RRNCF .............................................................................225  
Timer1 .............................................................................. 103  
16-Bit Read/Write Mode .......................................... 106  
Associated Registers ............................................... 108  
Interrupt ................................................................... 106  
Operation ................................................................. 104  
Oscillator ...........................................................103, 105  
Layout Considerations ..................................... 106  
Overflow Interrupt .................................................... 103  
Resetting, Using a Special Event Trigger  
Output (CCP) ................................................... 106  
Special Event Trigger (CCP) ................................... 117  
TMR1H Register ...................................................... 103  
TMR1L Register ....................................................... 103  
Use as a Real-Time Clock ....................................... 107  
Timer2 .............................................................................. 109  
Associated Registers ............................................... 110  
Operation ................................................................. 109  
Output ...................................................................... 110  
Postscaler. See Postscaler, Timer2.  
PR2 Register ....................................................109, 119  
Prescaler. See Prescaler, Timer2.  
TMR2 Register ......................................................... 109  
TMR2 to PR2 Match Interrupt ...................109, 110, 119  
Timer3 .............................................................................. 111  
Associated Registers ............................................... 113  
Operation ................................................................. 112  
Oscillator ...........................................................111, 113  
Overflow Interrupt .............................................111, 113  
Special Event Trigger (CCP) ................................... 113  
TMR3H Register ...................................................... 111  
TMR3L Register ....................................................... 111  
Timing Diagrams  
S
SETF ................................................................................225  
SLEEP ..............................................................................226  
Sleep  
OSC1 and OSC2 Pin States ......................................18  
Software Simulator (MPLAB SIM) ....................................234  
Special Event Trigger. See Compare  
A/D Conversion ........................................................ 265  
Asynchronous Reception ......................................... 144  
Asynchronous Transmission .................................... 141  
Asynchronous Transmission (Back to Back) ........... 142  
Auto-Wake-up Bit (WUE) During  
Special Features of the CPU ............................................171  
Configuration Registers .................................... 172178  
Special Function Registers ................................................49  
Map ............................................................................49  
Stack Full/Underflow Resets ..............................................43  
SUBFWB ..........................................................................226  
SUBLW ............................................................................227  
SUBWF ............................................................................227  
SUBWFB ..........................................................................228  
SWAPF ............................................................................228  
Normal Operation ............................................ 145  
Auto-Wake-up Bit (WUE) During Sleep ................... 145  
Brown-out Reset (BOR) ........................................... 260  
Capture/Compare/PWM (All CCP Modules) ............ 262  
CLKO and I/O .......................................................... 259  
Clock/Instruction Cycle .............................................. 45  
EUSART Synchronous Receive  
(Master/Slave) ................................................. 264  
EUSART SynchronousTransmission  
(Master/Slave) ................................................. 263  
External Clock (All Modes Except PLL) ................... 257  
Fail-Safe Clock Monitor ........................................... 183  
Low-Voltage Detect ................................................. 168  
Low-Voltage Detect Characteristics ......................... 253  
PWM Auto-Shutdown (PRSEN = 0,  
T
TABLAT Register ...............................................................60  
Table Pointer Operations (table) ........................................60  
TBLPTR Register ...............................................................60  
TBLRD .............................................................................229  
TBLWT .............................................................................230  
Time-out Sequence ............................................................34  
Timer0 ................................................................................99  
16-Bit Mode Timer Reads and Writes ......................101  
Associated Registers ...............................................101  
Clock Source Edge Select (T0SE Bit) ......................101  
Clock Source Select (T0CS Bit) ...............................101  
Operation .................................................................101  
Overflow Interrupt .....................................................101  
Prescaler. See Prescaler, Timer0.  
Auto-Restart Disabled) .................................... 128  
PWM Auto-Shutdown (PRSEN = 1,  
Auto-Restart Enabled) ..................................... 128  
Reset, Watchdog Timer (WDT), Oscillator Start-up  
Timer (OST) and Power-up Timer (PWRT) ..... 260  
Send Break Character Sequence ............................ 147  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) ............................................ 40  
Synchronous Reception  
(Master Mode, SREN) ..................................... 150  
Synchronous Transmission ..................................... 148  
Synchronous Transmission (Through TXEN) .......... 149  
Switching Prescaler Assignment ..............................101  
DS39605F-page 300  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
Time-out Sequence on POR w/PLL Enabled  
(MCLR Tied to VDD) ........................................... 40  
Time-out Sequence on Power-up  
(MCLR Not Tied to Vdd), Case 1 ....................... 39  
Time-out Sequence on Power-up  
Top-of-Stack Access .......................................................... 42  
TSTFSZ ........................................................................... 231  
Two-Speed Start-up ..................................................171, 181  
Two-Word Instructions ....................................................... 46  
Example Cases .......................................................... 46  
TXSTA Register  
(MCLR Not Tied to Vdd), Case 2 ....................... 39  
Time-out Sequence on Power-up  
BRGH Bit ................................................................. 135  
(MCLR Tied to Vdd, Vdd Rise pwrt) ................... 39  
Timer0 and Timer1 External Clock .......................... 261  
Transition for Entry to SEC_IDLE Mode .................... 24  
Transition for Entry to SEC_RUN Mode .................... 26  
Transition for Entry to Sleep Mode ............................ 22  
Transition for Two-Speed Start-up  
(INTOSC to HSPLL) ......................................... 181  
Transition for Wake from PRI_IDLE Mode ................. 23  
Transition for Wake from RC_RUN Mode  
W
Watchdog Timer (WDT) ............................................171, 180  
Associated Registers ............................................... 181  
Control Register ....................................................... 180  
During Oscillator Failure .......................................... 182  
Programming Considerations .................................. 180  
WWW Address ................................................................ 302  
WWW, On-Line Support ...................................................... 4  
(RC_RUN to PRI_RUN) ..................................... 25  
Transition for Wake from SEC_RUN Mode  
X
XORLW ............................................................................ 231  
XORWF ........................................................................... 232  
(HSPLL) ............................................................. 24  
Transition for Wake from Sleep (HSPLL) ................... 22  
Transition to PRI_IDLE Mode .................................... 23  
Transition to RC_IDLE Mode ..................................... 25  
Transition to RC_RUN Mode ..................................... 27  
Timing Diagrams and Specifications ................................ 257  
Capture/Compare/PWM Requirements  
(All CCP Modules) ........................................... 263  
CLKO and I/O Requirements ................................... 259  
EUSART Synchronous Receive Requirements ....... 264  
EUSART Synchronous  
Transmission Requirements ............................ 263  
External Clock Requirements .................................. 257  
Internal RC Accuracy ............................................... 258  
PLL Clock, HS/HSPLL Mode  
(VDD = 4.2V to 5.5V) ........................................ 258  
Reset, Watchdog Timer, Oscillator  
Start-up Timer, Power-up Timer and  
Brown-out Reset Requirements ....................... 261  
Timer0 and Timer1 External Clock  
Requirements ................................................... 262  
© 2007 Microchip Technology Inc.  
DS39605F-page 301  
PIC18F1220/1320  
NOTES:  
DS39605F-page 302  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
DS39605F-page 303  
PIC18F1220/1320  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F1220/1320  
DS39605F  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39605F-page 304  
© 2007 Microchip Technology Inc.  
PIC18F1220/1320  
PIC18F1220/1320 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC18LF1320-I/P 301 = Industrial  
temp., PDIP package, Extended  
VDD limits, QTP pattern #301.  
(1)  
b) PIC18LF1220-I/SO  
=
Industrial  
Device  
PIC18F1220/1320  
PIC18F1220/1320T  
,
(2)  
temp., SOIC package, Extended  
VDD limits.  
;
VDD range 4.2V to 5.5V  
(1)  
PIC18LF1220/1320  
PIC18LF1220/1320T  
,
(2)  
;
VDD range 2.5V to 5.5V  
Note 1: F = Standard Voltage range  
Temperature  
Range  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
LF = Wide Voltage Range  
2:  
T
= in tape and reel – SOIC  
package only  
Package  
Pattern  
SO = SOIC  
PDIP  
SS = SSOP  
ML = QFN  
P
=
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
© 2007 Microchip Technology Inc.  
DS39605F-page 305  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS39605F-page 306  
© 2007 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY