PIC18LF4450-E/PT [MICROCHIP]

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology; 28 /40/ 44引脚,高性能, 12 MIPS ,增强型闪存, USB微控制器采用纳瓦技术
PIC18LF4450-E/PT
型号: PIC18LF4450-E/PT
厂家: MICROCHIP    MICROCHIP
描述:

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
28 /40/ 44引脚,高性能, 12 MIPS ,增强型闪存, USB微控制器采用纳瓦技术

闪存 微控制器
文件: 总324页 (文件大小:5692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F2450/4450  
Data Sheet  
24/40/44-Pin High-Performance,  
12 MIPS, Enhanced Flash,  
USB Microcontrollers  
with nanoWatt Technology  
© 2008 Microchip Technology Inc.  
DS39760D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, rfPIC and SmartShunt are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
32  
PICDEM.net, PICtail, PIC logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39760D-page ii  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
28/40/44-Pin High-Performance, 12 MIPS, Enhanced Flash,  
USB Microcontrollers with nanoWatt Technology  
Universal Serial Bus Features:  
Peripheral Highlights:  
• USB V2.0 Compliant  
• High-Current Sink/Source: 25 mA/25 mA  
• Three External Interrupts  
• Low Speed (1.5 Mb/s) and Full Speed (12 Mb/s)  
• Supports Control, Interrupt, Isochronous and  
Bulk Transfers  
• Three Timer modules (Timer0 to Timer2)  
• Capture/Compare/PWM (CCP) module:  
- Capture is 16-bit, max. resolution 5.2 ns  
- Compare is 16-bit, max. resolution 83.3 ns  
- PWM output: PWM resolution is 1 to 10-bit  
• Enhanced USART module:  
• Supports Up to 32 Endpoints (16 bidirectional)  
• 256-Byte Dual Access RAM for USB  
• On-Chip USB Transceiver with On-Chip Voltage  
Regulator  
• Interface for Off-Chip USB Transceiver  
- LIN bus support  
• 10-Bit, Up to 13-Channel Analog-to-Digital Converter  
module (A/D):  
Power-Managed Modes:  
- Up to 100 ksps sampling rate  
- Programmable acquisition time  
• Run: CPU on, Peripherals on  
• Idle: CPU off, Peripherals on  
• Sleep: CPU off, Peripherals off  
Special Microcontroller Features:  
• Idle mode Currents Down to 5.8 μA Typical  
• Sleep mode Currents Down to 0.1 μA Typical  
• Timer1 Oscillator: 1.8 μA Typical, 32 kHz, 2V  
• Watchdog Timer: 2.1 μA Typical  
• C Compiler Optimized Architecture with Optional  
Extended Instruction Set  
• Flash Memory Retention: > 40 Years  
• Self-Programmable under Software Control  
• Priority Levels for Interrupts  
• Two-Speed Oscillator Start-up  
• 8 x 8 Single-Cycle Hardware Multiplier  
• Extended Watchdog Timer (WDT):  
- Programmable period from 4 ms to 131s  
• Programmable Code Protection  
Flexible Oscillator Structure:  
• Four Crystal modes, including High-Precision PLL  
for USB  
• Two External Clock modes, up to 48 MHz  
• Internal 31 kHz Oscillator  
• Single-Supply In-Circuit Serial Programming™  
(ICSP™) via Two Pins  
• Secondary Oscillator using Timer1 @ 32 kHz  
• In-Circuit Debug (ICD) via Two Pins  
• Dual Oscillator Options allow Microcontroller and  
USB module to Run at Different Clock Speeds  
• Optional Dedicated ICD/ICSP Port  
(44-pin TQFP devices only)  
• Fail-Safe Clock Monitor:  
• Wide Operating Voltage Range (2.0V to 5.5V)  
- Allows for safe shutdown if any clock stops  
Program Memory  
Data  
Memory  
SRAM  
(bytes)  
10-Bit A/D  
(ch)  
Timers  
8/16-Bit  
Device  
I/O  
CCP  
EUSART  
Flash  
(bytes)  
# Single-Word  
Instructions  
PIC18F2450  
PIC18F4450  
16K  
16K  
8192  
8192  
768*  
768*  
23  
34  
10  
13  
1
1
1
1
1/2  
1/2  
*
Includes 256 bytes of dual access RAM used by USB module and shared with data memory.  
© 2008 Microchip Technology Inc.  
DS39760D-page 1  
PIC18F2450/4450  
Pin Diagrams  
28-Pin SPDIP, SOIC  
MCLR/VPP/RE3  
RA0/AN0  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
RB7/KBI3/PGD  
RB6/KBI2/PGC  
RB5/KBI1/PGM  
RB4/AN11/KBI0  
RB3/AN9/VPO  
RB2/AN8/INT2/VMO  
RB1/AN10/INT1  
RB0/AN12/INT0  
VDD  
RA1/AN1  
3
4
5
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI/RCV  
RA5/AN4/HLVDIN  
VSS  
6
7
8
9
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/UOE  
RC2/CCP1  
10  
11  
12  
13  
14  
VSS  
RC7/RX/DT  
RC6/TX/CK  
RC5/D+/VP  
RC4/D-/VM  
VUSB  
28-Pin QFN  
28272625242322  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI/RCV  
RA5/AN4/HLVDIN  
VSS  
1
2
3
4
5
6
7
21  
RB3/AN9/VPO  
RB2/AN8/INT2/VMO  
RB1/AN10/INT1  
RB0/AN12/INT0  
VDD  
20  
19  
18  
17  
16  
15  
PIC18F2450  
OSC1/CLKI  
OSC2/CLKO/RA6  
VSS  
RC7/RX/DT  
8
9 10 111213 14  
DS39760D-page 2  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Pin Diagrams (Continued)  
40-Pin PDIP  
MCLR/VPP/RE3  
1
2
3
4
5
6
7
8
RB7/KBI3/PGD  
RB6/KBI2/PGC  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RA0/AN0  
RA1/AN1  
RA2/AN2/VREF-  
RB5/KBI1/PGM  
RB4/AN11/KBI0  
RB3/AN9/VPO  
RA3/AN3/VREF+  
RA4/T0CKI/RCV  
RB2/AN8/INT2/VMO  
RA5/AN4/HLVDIN  
RE0/AN5  
RB1/AN10/INT1  
RB0/AN12/INT0  
VDD  
RE1/AN6  
RE2/AN7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
VDD  
VSS  
RD7  
RD6  
RD5  
RD4  
RC7/RX/DT  
RC6/TX/CK  
RC5/D+/VP  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI/UOE  
RC2/CCP1  
VUSB  
RD0  
RC4/D-/VM  
RD3  
RD1  
RD2  
44-Pin QFN  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
OSC2/CLKO/RA6  
OSC1/CLKI  
VSS  
AVSS  
VDD  
RC7/RX/DT  
RD4  
RD5  
RD6  
RD7  
VSS  
PIC18F4450  
AVDD  
RE2/AN7  
RE1/AN6  
RE0/AN5  
RA5/AN4/HLVDIN  
RA4/T0CKI/RCV  
AVDD  
VDD  
RB0/AN12/INT0  
RB1/AN10/INT1  
RB2/AN8/INT2/VMO  
10  
11  
© 2008 Microchip Technology Inc.  
DS39760D-page 3  
PIC18F2450/4450  
Pin Diagrams (Continued)  
44-Pin TQFP  
(1)  
NC/ICRST(1)/ICVPP  
RC7/RX/DT  
1
2
3
4
5
6
7
8
9
10  
11  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC0/T1OSO/T1CKI  
OSC2/CLKO/RA6  
OSC1/CLKI  
VSS  
RD4  
RD5  
RD6  
RD7  
VSS  
VDD  
PIC18F4450  
VDD  
RE2/AN7  
RE1/AN6  
RE0/AN5  
RA5/AN4/HLVDIN  
RA4/T0CKI/RCV  
RB0/AN12/INT0  
RB1/AN10/INT1  
RB2/AN8/INT2/VMO  
RB3/AN9/VPO  
Note 1: Special ICPORT features are available in select circumstances. For more information, see  
Section 18.9 “Special ICPORT Features (Designated Packages Only)”.  
DS39760D-page 4  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Oscillator Configurations ............................................................................................................................................................ 23  
3.0 Power-Managed Modes ............................................................................................................................................................. 33  
4.0 Reset.......................................................................................................................................................................................... 41  
5.0 Memory Organization................................................................................................................................................................. 53  
6.0 Flash Program Memory.............................................................................................................................................................. 73  
7.0 8 x 8 Hardware Multiplier............................................................................................................................................................ 83  
8.0 Interrupts .................................................................................................................................................................................... 85  
9.0 I/O Ports ..................................................................................................................................................................................... 99  
10.0 Timer0 Module ......................................................................................................................................................................... 111  
11.0 Timer1 Module ......................................................................................................................................................................... 115  
12.0 Timer2 Module ......................................................................................................................................................................... 121  
13.0 Capture/Compare/PWM (CCP) Module ................................................................................................................................... 123  
14.0 Universal Serial Bus (USB) ...................................................................................................................................................... 129  
15.0 Enhanced Universal Synchronous Receiver Transmitter (EUSART)....................................................................................... 153  
16.0 10-Bit Analog-to-Digital Converter (A/D) Module ..................................................................................................................... 175  
17.0 High/Low-Voltage Detect (HLVD)............................................................................................................................................. 185  
18.0 Special Features of the CPU.................................................................................................................................................... 191  
19.0 Instruction Set Summary.......................................................................................................................................................... 213  
20.0 Development Support............................................................................................................................................................... 263  
21.0 Electrical Characteristics.......................................................................................................................................................... 267  
22.0 Packaging Information.............................................................................................................................................................. 295  
Appendix A: Revision History............................................................................................................................................................. 307  
Appendix B: Device Differences ........................................................................................................................................................ 308  
Appendix C: Conversion Considerations ........................................................................................................................................... 309  
Appendix D: Migration From Baseline to Enhanced Devices ............................................................................................................ 309  
Appendix E: Migration From Mid-Range to Enhanced Devices......................................................................................................... 310  
Appendix F: Migration From High-End to Enhanced Devices............................................................................................................ 310  
Index ................................................................................................................................................................................................. 311  
The Microchip Web Site..................................................................................................................................................................... 319  
Customer Change Notification Service .............................................................................................................................................. 319  
Customer Support.............................................................................................................................................................................. 319  
Reader Response.............................................................................................................................................................................. 320  
Product Identification System ............................................................................................................................................................ 321  
© 2008 Microchip Technology Inc.  
DS39760D-page 5  
PIC18F2450/4450  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39760D-page 6  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
1.1.3  
MULTIPLE OSCILLATOR OPTIONS  
AND FEATURES  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the following devices:  
All of the devices in the PIC18F2450/4450 family offer  
twelve different oscillator options, allowing users a wide  
range of choices in developing application hardware.  
These include:  
• PIC18F2450  
• PIC18F4450  
This family of devices offers the advantages of all  
PIC18 microcontrollers – namely, high computational  
performance at an economical price – with the addi-  
tion of high-endurance, Enhanced Flash program  
memory. In addition to these features, the  
PIC18F2450/4450 family introduces design enhance-  
ments that make these microcontrollers a logical  
choice for many high-performance, power sensitive  
applications.  
• Four Crystal modes using crystals or ceramic  
resonators.  
• Four External Clock modes, offering the option of  
using two pins (oscillator input and a divide-by-4  
clock output) or one pin (oscillator input, with the  
second pin reassigned as general I/O).  
• An INTRC source (approximately 31 kHz, stable  
over temperature and VDD). This option frees an  
oscillator pin for use as an additional general  
purpose I/O.  
1.1  
New Core Features  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to both the High-Speed Crystal and  
External Oscillator modes, which allows a wide  
range of clock speeds from 4 MHz to 48 MHz.  
1.1.1  
nanoWatt TECHNOLOGY  
All of the devices in the PIC18F2450/4450 family  
incorporate a range of features that can significantly  
reduce power consumption during operation. Key  
items include:  
• Asynchronous dual clock operation, allowing the  
USB module to run from a high-frequency  
oscillator while the rest of the microcontroller is  
clocked from an internal low-power oscillator.  
Alternate Run Modes: By clocking the controller  
from the Timer1 source or the internal RC  
oscillator, power consumption during code  
execution can be reduced by as much as 90%.  
The internal oscillator provides a stable reference  
source that gives the family additional features for  
robust operation:  
Multiple Idle Modes: The controller can also run  
with its CPU core disabled but the peripherals still  
active. In these states, power consumption can be  
reduced even further, to as little as 4% of normal  
operation requirements.  
Fail-Safe Clock Monitor: This option constantly  
monitors the main clock source against a  
reference signal provided by the internal  
oscillator. If a clock failure occurs, the controller is  
switched to the internal oscillator, allowing for  
continued low-speed operation or a safe  
application shutdown.  
On-the-Fly Mode Switching: The power-  
managed modes are invoked by user code during  
operation, allowing the user to incorporate  
power-saving ideas into their application’s  
software design.  
Two-Speed Start-up: This option allows the  
internal oscillator to serve as the clock source  
from Power-on Reset, or wake-up from Sleep  
mode, until the primary clock source is available.  
Low Consumption in Key Modules: The  
power requirements for both Timer1 and the  
Watchdog Timer are minimized. See  
Section 21.0 “Electrical Characteristics” for  
values.  
1.1.2  
UNIVERSAL SERIAL BUS (USB)  
Devices in the PIC18F2450/4450 family incorporate a  
fully featured Universal Serial Bus communications  
module that is compliant with the USB Specification  
Revision 2.0. The module supports both low-speed and  
full-speed communication for all supported data  
transfer types. It also incorporates its own on-chip  
transceiver and 3.3V regulator and supports the use of  
external transceivers and voltage regulators.  
© 2008 Microchip Technology Inc.  
DS39760D-page 7  
PIC18F2450/4450  
1.2  
Other Special Features  
1.3  
Details on Individual Family  
Members  
Memory Endurance: The Enhanced Flash cells  
for program memory are rated to last for many  
thousands of erase/write cycles – up to 100,000.  
Devices in the PIC18F2450/4450 family are available  
in 28-pin and 40/44-pin packages. Block diagrams for  
the two groups are shown in Figure 1-1 and Figure 1-2.  
Self-Programmability: These devices can write  
to their own program memory spaces under  
internal software control. By using a bootloader  
routine, located in the protected Boot Block at the  
top of program memory, it becomes possible to  
create an application that can update itself in the  
field.  
The devices are differentiated from each other in the  
following two ways:  
1. A/D channels (10 for 28-pin devices, 13 for  
40/44-pin devices).  
2. I/O ports (3 bidirectional ports and 1 input only  
port on 28-pin devices, 5 bidirectional ports on  
40/44-pin devices).  
Extended Instruction Set: The PIC18F2450/  
4450 family introduces an optional extension to  
the PIC18 instruction set, which adds 8 new  
instructions and an Indexed Literal Offset  
Addressing mode. This extension, enabled as a  
device configuration option, has been specifically  
designed to optimize re-entrant application code  
originally developed in high-level languages such  
as C.  
All other features for devices in this family are identical.  
These are summarized in Table 1-1.  
The pinouts for all devices are listed in Table 1-2 and  
Table 1-3.  
Like all Microchip PIC18 devices, members of the  
PIC18F2450/4450 family are available as both standard  
and low-voltage devices. Standard devices with  
Enhanced Flash memory, designated with an “F” in the  
part number (such as PIC18F2450), accommodate an  
operating VDD range of 4.2V to 5.5V. Low-voltage parts,  
designated by “LF” (such as PIC18LF2450), function  
over an extended VDD range of 2.0V to 5.5V.  
Enhanced Addressable USART: This serial  
communication module is capable of standard  
RS-232 operation and provides support for the LIN  
bus protocol. Other enhancements include  
Automatic Baud Rate Detection and a 16-bit Baud  
Rate Generator for improved resolution.  
10-Bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated, without waiting for a sampling period and  
thus, reducing code overhead.  
• Dedicated ICD/ICSP Port: These devices  
introduce the use of debugger and programming  
pins that are not multiplexed with other micro-  
controller features. Offered as an option in select  
packages, this feature allows users to develop I/O  
intensive applications while retaining the ability to  
program and debug in the circuit.  
DS39760D-page 8  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18F2450  
PIC18F4450  
Operating Frequency  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Interrupt Sources  
DC – 48 MHz  
DC – 48 MHz  
16384  
16384  
8192  
8192  
768  
768  
13  
13  
I/O Ports  
Ports A, B, C, (E)  
Ports A, B, C, D, E  
Timers  
3
3
Capture/Compare/PWM Modules  
Enhanced USART  
1
1
1
1
Universal Serial Bus (USB) Module  
10-Bit Analog-to-Digital Module  
Resets (and Delays)  
1
1
10 Input Channels  
13 Input Channels  
POR, BOR,  
RESETInstruction,  
Stack Full,  
POR, BOR,  
RESETInstruction,  
Stack Full,  
Stack Underflow (PWRT, OST),  
MCLR (optional),  
WDT  
Stack Underflow (PWRT, OST),  
MCLR (optional),  
WDT  
Programmable Low-Voltage Detect  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
Yes  
Yes  
75 Instructions;  
75 Instructions;  
83 with Extended Instruction Set 83 with Extended Instruction Set  
enabled  
enabled  
Packages  
28-Pin SPDIP  
28-Pin SOIC  
28-Pin QFN  
40-Pin PDIP  
44-Pin QFN  
44-Pin TQFP  
© 2008 Microchip Technology Inc.  
DS39760D-page 9  
PIC18F2450/4450  
FIGURE 1-1:  
PIC18F2450 (28-PIN) BLOCK DIAGRAM  
Data Bus<8>  
Table Pointer<21>  
PORTA  
RA0/AN0  
RA1/AN1  
Data Latch  
8
8
inc/dec logic  
21  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI/RCV  
RA5/AN4/HLVDIN  
OSC2/CLKO/RA6  
Data Memory  
(2 Kbytes)  
PCLATU PCLATH  
Address Latch  
20  
PCU PCH PCL  
Program Counter  
12  
Data Address<12>  
31 Level Stack  
STKPTR  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Address Latch  
Access  
Bank  
Program Memory  
(24/32 Kbytes)  
12  
Data Latch  
PORTB  
RB0/AN12/INT0  
RB1/AN10/INT1  
RB2/AN8/INT2/VMO  
RB3/AN9/VPO  
RB4/AN11/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
inc/dec  
logic  
8
Table Latch  
Address  
Decode  
ROM Latch  
IR  
Instruction Bus <16>  
8
Instruction  
Decode &  
Control  
State Machine  
Control Signals  
PRODH PRODL  
8 x 8 Multiply  
PORTC  
RC0/T1OSO/T1CKI  
RC1/T1OSI/UOE  
RC2/CCP1  
RC4/D-/VM  
RC5/D+/VP  
3
8
OSC1(2)  
OSC2(2)  
T1OSI  
Power-up  
Timer  
Internal  
Oscillator  
Block  
BITOP  
8
W
8
8
Oscillator  
Start-up Timer  
RC6/TX/CK  
RC7/RX/DT  
INTRC  
Oscillator  
8
8
Power-on  
Reset  
ALU<8>  
8
Watchdog  
Timer  
T1OSO  
Brown-out  
Reset  
MCLR(1)  
VDD, VSS  
Single-Supply  
Programming  
In-Circuit  
Fail-Safe  
Clock Monitor  
Debugger  
PORTE  
Band Gap  
Reference  
USB Voltage  
Regulator  
VUSB  
MCLR/VPP/RE3(1)  
BOR  
HLVD  
ADC  
10-Bit  
Timer0  
Timer1  
Timer2  
EUSART  
CCP1  
USB  
Note 1: RE3 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer  
to Section 2.0 “Oscillator Configurations” for additional information.  
DS39760D-page 10  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 1-2:  
PIC18F4450 (40/44-PIN) BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
Table Pointer<21>  
RA0/AN0  
RA1/AN1  
Data Latch  
8
8
inc/dec logic  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI/RCV  
RA5/AN4/HLVDIN  
OSC2/CLKO/RA6  
Data Memory  
(2 Kbytes)  
PCLATU PCLATH  
21  
Address Latch  
20  
PCU PCH PCL  
Program Counter  
12  
Data Address<12>  
PORTB  
PORTC  
PORTD  
31 Level Stack  
STKPTR  
RB0/AN12/INT0  
RB1/AN10/INT1  
RB2/AN8/INT2/VMO  
RB3/AN9/VPO  
RB4/AN11/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
4
BSR  
12  
4
Address Latch  
Access  
Bank  
FSR0  
FSR1  
FSR2  
Program Memory  
(24/32 Kbytes)  
12  
Data Latch  
inc/dec  
logic  
8
Table Latch  
Address  
Decode  
ROM Latch  
IR  
Instruction Bus <16>  
RC0/T1OSO/T1CKI  
RC1/T1OSI/UOE  
RC2/CCP1  
RC4/D-/VM  
RC5/D+/VP  
RC6/TX/CK  
RC7/RX/DT  
8
Instruction  
Decode &  
Control  
State Machine  
Control Signals  
PRODH PRODL  
8 x 8 Multiply  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
3
VDD, VSS  
8
Internal  
Oscillator  
Block  
Power-up  
Timer  
OSC1(2)  
OSC2(2)  
T1OSI  
BITOP  
8
W
8
8
Oscillator  
Start-up Timer  
INTRC  
Oscillator  
8
8
Power-on  
Reset  
T1OSO  
ALU<8>  
8
Watchdog  
Timer  
ICPGC(3)  
ICPGD(3)  
ICPORTS(3)  
ICRST(3)  
MCLR(1)  
Single-Supply  
Programming  
Brown-out  
Reset  
PORTE  
In-Circuit  
Debugger  
RE0/AN5  
RE1/AN6  
Fail-Safe  
Clock Monitor  
Band Gap  
Reference  
RE2/AN7  
MCLR/VPP/RE3(1)  
USB Voltage  
Regulator  
VUSB  
BOR  
HLVD  
Timer0  
Timer1  
Timer2  
ADC  
10-Bit  
EUSART  
CCP1  
USB  
Note 1: RE3 is multiplexed with MCLR and is only available when the MCLR Resets are disabled.  
2: OSC1/CLKI and OSC2/CLKO are only available in select oscillator modes and when these pins are not being used as digital I/O. Refer  
to Section 2.0 “Oscillator Configurations” for additional information.  
3: These pins are only available on 44-pin TQFP under certain conditions. Refer to Section 18.9 “Special ICPORT Features (Designated  
Packages Only)” for additional information.  
© 2008 Microchip Technology Inc.  
DS39760D-page 11  
PIC18F2450/4450  
TABLE 1-2:  
PIC18F2450 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
SPDIP,  
QFN  
SOIC  
MCLR/VPP/RE3  
MCLR  
1
26  
Master Clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an active-low  
Reset to the device.  
I
ST  
ST  
VPP  
RE3  
P
I
Programming voltage input.  
Digital input.  
OSC1/CLKI  
OSC1  
9
6
7
Oscillator crystal or external clock input.  
I
I
Analog  
Analog  
Oscillator crystal input or external clock source input.  
External clock source input. Always associated with pin  
function OSC1. (See OSC2/CLKO pin.)  
CLKI  
OSC2/CLKO/RA6  
OSC2  
10  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or resonator  
in Crystal Oscillator mode.  
In select modes, OSC2 pin outputs CLKO which has  
1/4 the frequency of OSC1 and denotes the instruction  
cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General purpose I/O pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
DS39760D-page 12  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 1-2:  
PIC18F2450 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
PORTA is a bidirectional I/O port.  
SPDIP,  
QFN  
SOIC  
RA0/AN0  
RA0  
2
3
4
27  
28  
1
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
5
6
2
3
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D reference voltage (high) input.  
AN3  
VREF+  
RA4/T0CKI/RCV  
RA4  
I/O  
I
I
ST  
ST  
TTL  
Digital I/O.  
Timer0 external clock input.  
External USB transceiver RCV input.  
T0CKI  
RCV  
RA5/AN4/HLVDIN  
RA5  
7
4
I/O  
TTL  
Digital I/O.  
AN4  
HLVDIN  
I
I
Analog  
Analog  
Analog input 4.  
High/Low-Voltage Detect input.  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
© 2008 Microchip Technology Inc.  
DS39760D-page 13  
PIC18F2450/4450  
TABLE 1-2:  
PIC18F2450 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
SPDIP,  
QFN  
SOIC  
PORTB is a bidirectional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/AN12/INT0  
RB0  
21  
22  
23  
18  
19  
20  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 12.  
External interrupt 0.  
AN12  
INT0  
RB1/AN10/INT1  
RB1  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 10.  
External interrupt 1.  
AN10  
INT1  
RB2/AN8/INT2/VMO  
RB2  
AN8  
INT2  
VMO  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 8.  
External interrupt 2.  
External USB transceiver VMO output.  
O
RB3/AN9/VPO  
RB3  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
I/O  
I
O
TTL  
Analog  
Digital I/O.  
Analog input 9.  
External USB transceiver VPO output.  
AN9  
VPO  
RB4/AN11/KBI0  
RB4  
I/O  
I
I
TTL  
Analog  
TTL  
Digital I/O.  
Analog input 11.  
Interrupt-on-change pin.  
AN11  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
Low-Voltage ICSP™ Programming enable pin.  
KBI1  
PGM  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
DS39760D-page 14  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 1-2:  
PIC18F2450 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Pin Name  
Description  
SPDIP,  
QFN  
SOIC  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
11  
12  
8
9
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/UOE  
RC1  
I/O  
I
O
ST  
CMOS  
Digital I/O.  
Timer1 oscillator input.  
External USB transceiver OE output.  
T1OSI  
UOE  
RC2/CCP1  
RC2  
13  
15  
10  
12  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture 1 input/Compare 1 output/PWM1 output.  
RC4/D-/VM  
RC4  
D-  
VM  
I
I/O  
I
TTL  
TTL  
Digital input.  
USB differential minus line (input/output).  
External USB transceiver VM input.  
RC5/D+/VP  
16  
17  
18  
13  
14  
15  
RC5  
D+  
VP  
I
TTL  
TTL  
Digital input.  
USB differential plus line (input/output).  
External USB transceiver VP input.  
I/O  
O
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
EUSART asynchronous transmit.  
EUSART synchronous clock (see RX/DT).  
RC7/RX/DT  
RC7  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
EUSART asynchronous receive.  
EUSART synchronous data (see TX/CK).  
RX  
DT  
RE3  
11  
P
See MCLR/VPP/RE3 pin.  
VUSB  
14  
Internal USB 3.3V voltage regulator. Output, positive supply  
for internal USB transceiver.  
VSS  
VDD  
8, 19 5, 16  
20 17  
P
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
CMOS = CMOS compatible input or output  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
I
= Input  
O
P
= Power  
© 2008 Microchip Technology Inc.  
DS39760D-page 15  
PIC18F2450/4450  
TABLE 1-3:  
Pin Name  
PIC18F4450 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
MCLR/VPP/RE3  
MCLR  
1
18  
18  
Master Clear (input) or programming voltage (input).  
Master Clear (Reset) input. This pin is an  
active-low Reset to the device.  
Programming voltage input.  
I
ST  
VPP  
RE3  
P
I
ST  
Digital input.  
OSC1/CLKI  
OSC1  
13  
14  
32  
33  
30  
31  
Oscillator crystal or external clock input.  
I
I
Analog  
Analog  
Oscillator crystal input or external clock source input.  
External clock source input. Always associated with  
pin function OSC1. (See OSC2/CLKO pin.)  
CLKI  
OSC2/CLKO/RA6  
OSC2  
Oscillator crystal or clock output.  
O
O
Oscillator crystal output. Connects to crystal or  
resonator in Crystal Oscillator mode.  
In select modes, OSC2 pin outputs CLKO which has  
1/4 the frequency of OSC1 and denotes the instruction  
cycle rate.  
CLKO  
RA6  
I/O  
TTL  
General purpose I/O pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No  
Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.  
DS39760D-page 16  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 1-3:  
Pin Name  
PIC18F4450 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
2
3
4
19  
20  
21  
19  
20  
21  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (low) input.  
RA3/AN3/VREF+  
RA3  
5
6
22  
23  
24  
22  
23  
24  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D reference voltage (high) input.  
AN3  
VREF+  
RA4/T0CKI/RCV  
RA4  
I/O  
I
I
ST  
ST  
TTL  
Digital I/O.  
Timer0 external clock input.  
External USB transceiver RCV input.  
T0CKI  
RCV  
RA5/AN4/HLVDIN  
RA5  
7
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 4.  
High/Low-Voltage Detect input.  
AN4  
HLVDIN  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No  
Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.  
© 2008 Microchip Technology Inc.  
DS39760D-page 17  
PIC18F2450/4450  
TABLE 1-3:  
Pin Name  
PIC18F4450 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTB is a bidirectional I/O port. PORTB can be  
software programmed for internal weak pull-ups on all  
inputs.  
RB0/AN12/INT0  
RB0  
33  
34  
35  
9
8
9
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 12.  
External interrupt 0.  
AN12  
INT0  
RB1/AN10/INT1  
RB1  
10  
11  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 10.  
External interrupt 1.  
AN10  
INT1  
RB2/AN8/INT2/VMO  
10  
RB2  
AN8  
INT2  
VMO  
I/O  
I
I
TTL  
Analog  
ST  
Digital I/O.  
Analog input 8.  
External interrupt 2.  
External USB transceiver VMO output.  
O
RB3/AN9/VPO  
RB3  
36  
37  
38  
39  
40  
12  
14  
15  
16  
17  
11  
14  
15  
16  
17  
I/O  
I
O
TTL  
Analog  
Digital I/O.  
Analog input 9.  
External USB transceiver VPO output.  
AN9  
VPO  
RB4/AN11/KBI0  
RB4  
I/O  
I
I
TTL  
Analog  
TTL  
Digital I/O.  
Analog input 11.  
Interrupt-on-change pin.  
AN11  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
Low-Voltage ICSP™ Programming enable pin.  
KBI1  
PGM  
RB6/KBI2/PGC  
RB6  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming clock pin.  
KBI2  
PGC  
RB7/KBI3/PGD  
RB7  
I/O  
I
I/O  
TTL  
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
In-Circuit Debugger and ICSP programming data pin.  
KBI3  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No  
Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.  
DS39760D-page 18  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 1-3:  
Pin Name  
PIC18F4450 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
15  
16  
34  
35  
32  
35  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1 external clock input.  
T1OSO  
T1CKI  
RC1/T1OSI/UOE  
RC1  
I/O  
I
O
ST  
CMOS  
Digital I/O.  
Timer1 oscillator input.  
External USB transceiver OE output.  
T1OSI  
UOE  
RC2/CCP1  
RC2  
17  
23  
36  
42  
36  
42  
I/O  
I/O  
ST  
ST  
Digital I/O.  
CCP1  
Capture 1 input/Compare 1 output/PWM1 output.  
RC4/D-/VM  
RC4  
D-  
VM  
I
I/O  
I
TTL  
TTL  
Digital input.  
USB differential minus line (input/output).  
External USB transceiver VM input.  
RC5/D+/VP  
24  
25  
26  
43  
44  
1
43  
44  
1
RC5  
D+  
VP  
I
I/O  
I
TTL  
TTL  
Digital input.  
USB differential plus line (input/output).  
External USB transceiver VP input.  
RC6/TX/CK  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX  
CK  
EUSART asynchronous transmit.  
EUSART synchronous clock (see RX/DT).  
RC7/RX/DT  
RC7  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
EUSART asynchronous receive.  
EUSART synchronous data (see TX/CK).  
RX  
DT  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No  
Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.  
© 2008 Microchip Technology Inc.  
DS39760D-page 19  
PIC18F2450/4450  
TABLE 1-3:  
Pin Name  
PIC18F4450 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTD is a bidirectional I/O port.  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
19  
20  
21  
22  
27  
28  
29  
30  
38  
39  
40  
41  
2
38  
39  
40  
41  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Digital I/O.  
Digital I/O.  
Digital I/O.  
Digital I/O.  
Digital I/O.  
Digital I/O.  
Digital I/O.  
3
3
4
4
5
5
Digital I/O.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No  
Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.  
DS39760D-page 20  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 1-3:  
Pin Name  
PIC18F4450 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin Buffer  
Type Type  
Description  
PDIP QFN TQFP  
PORTE is a bidirectional I/O port.  
RE0/AN5  
RE0  
8
9
25  
26  
27  
25  
26  
27  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 5.  
AN5  
RE1/AN6  
RE1  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 6.  
AN6  
RE2/AN7  
RE2  
10  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 7.  
AN7  
RE3  
VSS  
P
See MCLR/VPP/RE3 pin.  
12, 31 6, 30, 6, 29  
31  
Ground reference for logic and I/O pins.  
VDD  
11, 32 7, 8, 7, 28  
28, 29  
P
P
Positive supply for logic and I/O pins.  
VUSB  
18  
37  
37  
Internal USB 3.3V voltage regulator output. Positive  
supply for internal USB transceiver.  
NC/ICCK/ICPGC(1)  
ICCK  
12  
No Connect or dedicated ICD/ICSP™ port clock.  
In-Circuit Debugger clock.  
I/O  
I/O  
ST  
ST  
ICPGC  
ICSP programming clock.  
NC/ICDT/ICPGD(1)  
13  
13  
33  
34  
No Connect or dedicated ICD/ICSP port clock.  
In-Circuit Debugger data.  
ICDT  
ICPGD  
I/O  
I/O  
ST  
ST  
ICSP programming data.  
(1)  
NC/ICRST/ICVPP  
No Connect or dedicated ICD/ICSP port Reset.  
Master Clear (Reset) input.  
ICRST  
ICVPP  
NC/ICPORTS(1)  
ICPORTS  
I
P
Programming voltage input.  
P
No Connect or 28-pin device emulation.  
Enable 28-pin device emulation when connected  
to VSS.  
NC  
No Connect.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
= Output  
CMOS = CMOS compatible input or output  
I
= Input  
O
P
= Power  
Note 1: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No  
Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.  
© 2008 Microchip Technology Inc.  
DS39760D-page 21  
PIC18F2450/4450  
NOTES:  
DS39760D-page 22  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
2.2  
Oscillator Types  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
PIC18F2450/4450 devices can be operated in twelve  
distinct oscillator modes. In contrast with the non-USB  
PIC18 enhanced microcontrollers, four of these modes  
involve the use of two oscillator types at once. Users  
can program the FOSC3:FOSC0 Configuration bits to  
select one of these modes:  
Overview  
Devices in the PIC18F2450/4450 family incorporate a  
different oscillator and microcontroller clock system  
than the non-USB PIC18F devices. The addition of the  
USB module, with its unique requirements for a stable  
clock source, make it necessary to provide a separate  
clock source that is compliant with both USB low-speed  
and full-speed specifications.  
1. XT  
2. XTPLL Crystal/Resonator with PLL Enabled  
3. HS High-Speed Crystal/Resonator  
Crystal/Resonator  
4. HSPLL High-Speed Crystal/Resonator  
with PLL Enabled  
To accommodate these requirements, PIC18F2450/  
4450 devices include a new clock branch to provide a  
48 MHz clock for full-speed USB operation. Since it is  
driven from the primary clock source, an additional  
system of prescalers and postscalers has been added  
to accommodate a wide range of oscillator frequencies.  
An overview of the oscillator structure is shown in  
Figure 2-1.  
5. EC  
External Clock with FOSC/4 Output  
External Clock with I/O on RA6  
6. ECIO  
7. ECPLL External Clock with PLL Enabled  
and FOSC/4 Output on RA6  
8. ECPIO External Clock with PLL Enabled,  
I/O on RA6  
9. INTHS Internal Oscillator used as  
Microcontroller Clock Source, HS  
Other oscillator features used in PIC18 enhanced  
microcontrollers, such as the internal RC oscillator and  
clock switching, remain the same. They are discussed  
later in this chapter.  
Oscillator used as USB Clock Source  
10. INTXT Internal Oscillator used as  
Microcontroller Clock Source, XT  
Oscillator used as USB Clock Source  
2.1.1  
OSCILLATOR CONTROL  
11. INTIO  
Internal Oscillator used as  
The operation of the oscillator in PIC18F2450/4450  
devices is controlled through two Configuration registers  
and two control registers. Configuration registers,  
CONFIG1L and CONFIG1H, select the oscillator mode  
and USB prescaler/postscaler options. As Configuration  
bits, these are set when the device is programmed and  
left in that configuration until the device is  
reprogrammed.  
Microcontroller Clock Source, EC  
Oscillator used as USB Clock Source,  
Digital I/O on RA6  
12. INTCKO Internal Oscillator used as  
Microcontroller Clock Source, EC  
Oscillator used as USB Clock Source,  
FOSC/4 Output on RA6  
The OSCCON register (Register 2-1) selects the Active  
Clock mode; it is primarily used in controlling clock  
switching in power-managed modes. Its use is  
discussed in Section 2.4.1 “Oscillator Control  
Register”.  
© 2008 Microchip Technology Inc.  
DS39760D-page 23  
PIC18F2450/4450  
Because of the timing requirements imposed by USB,  
an internal clock of either 6 MHz or 48 MHz is required  
while the USB module is enabled. Fortunately, the  
microcontroller and other peripherals are not required  
to run at this clock speed when using the primary  
oscillator. There are numerous options to achieve the  
USB module clock requirement and still provide flexi-  
bility for clocking the rest of the device from the primary  
oscillator source. These are detailed in Section 2.3  
“Oscillator Settings for USB”.  
2.2.1  
OSCILLATOR MODES AND  
USB OPERATION  
Because of the unique requirements of the USB  
module, a different approach to clock operation is  
necessary. In previous PIC® microcontrollers, all core  
and peripheral clocks were driven by a single oscillator  
source; the usual sources were primary, secondary or  
the internal oscillator. With PIC18F2450/4450 devices,  
the primary oscillator becomes part of the USB module  
and cannot be associated to any other clock source.  
Thus, the USB module must be clocked from the  
primary clock source; however, the microcontroller  
core and other peripherals can be separately clocked  
from the secondary or internal oscillators as before.  
FIGURE 2-1:  
PIC18F2450/4450 CLOCK DIAGRAM  
PIC18F2450/4450  
PLLDIV<2:0>  
USB Clock Source  
÷ 12  
÷ 10  
111  
110  
USBDIV  
÷ 6  
÷ 5  
÷ 4  
÷ 3  
101  
(4 MHz Input Only)  
0
1
Primary Oscillator  
100  
011  
010  
96 MHz  
PLL  
÷ 2  
OSC2  
OSC1  
Sleep  
÷ 2  
÷ 1  
FSEN  
001  
000  
1
HSPLL, ECPLL,  
XTPLL, ECPIO  
USB  
Peripheral  
CPUDIV<1:0>  
0
÷ 4  
÷ 6  
11  
10  
÷ 4  
÷ 3  
÷ 2  
CPUDIV<1:0>  
01  
00  
÷ 4  
11  
÷ 3  
10  
CPU  
XT, HS, EC, ECIO  
1
÷ 2  
01  
0
Primary  
Clock  
÷ 1  
00  
IDLEN  
Peripherals  
FOSC3:FOSC0  
Secondary Oscillator  
T1OSO  
T1OSI  
T1OSC  
T1OSCEN  
Enable  
Oscillator  
OSCCON<6:4>  
Internal Oscillator  
Clock  
Control  
Internal RC Oscillator  
31.25 kHz  
FOSC3:FOSC0  
OSCCON<1:0>  
Clock Source Option  
for Other Modules  
WDT, PWRT, FSCM  
and Two-Speed Start-up  
DS39760D-page 24  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
2.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
In HS, HSPLL, XT and XTPLL Oscillator modes, a  
crystal or ceramic resonator is connected to the OSC1  
and OSC2 pins to establish oscillation. Figure 2-2  
shows the pin connections.  
Typical Capacitor Values  
Crystal  
Freq  
Tested:  
Osc Type  
C1  
C2  
XT  
HS  
4 MHz  
4 MHz  
8 MHz  
20 MHz  
27 pF  
27 pF  
22 pF  
15 pF  
27 pF  
27 pF  
22 pF  
15 pF  
The oscillator design requires the use of a parallel cut  
crystal.  
Note:  
Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturer’s  
specifications.  
Capacitor values are for design guidance only.  
These capacitors were tested with the crystals listed  
below for basic start-up and operation. These values  
are not optimized.  
FIGURE 2-2:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(XT, HS OR HSPLL  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
CONFIGURATION)  
(1)  
C1  
OSC1  
To  
Internal  
Logic  
See the notes following this table for additional  
information.  
(3)  
RF  
XTAL  
Crystals Used:  
Sleep  
(2)  
RS  
(1)  
4 MHz  
8 MHz  
20 MHz  
PIC18FXXXX  
C2  
OSC2  
Note 1: See Table 2-1 and Table 2-2 for initial values of  
C1 and C2.  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
Note 1: Higher capacitance increases the stability  
of oscillator but also increases the start-up  
time.  
3: RF varies with the oscillator mode chosen.  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use the  
HS mode or switch to a crystal oscillator.  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
Typical Capacitor Values Used:  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
Mode  
Freq  
OSC1  
OSC2  
XT  
HS  
4.0 MHz  
33 pF  
33 pF  
8.0 MHz  
16.0 MHz  
27 pF  
22 pF  
27 pF  
22 pF  
appropriate  
values  
of  
external  
components.  
Capacitor values are for design guidance only.  
4: Rs may be required to avoid overdriving  
crystals with low drive level specification.  
These capacitors were tested with the resonators  
listed below for basic start-up and operation. These  
values are not optimized.  
5: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
Different capacitor values may be required to produce  
acceptable oscillator operation. The user should test  
the performance of the oscillator over the expected  
VDD and temperature range for the application.  
An internal postscaler allows users to select a clock  
frequency other than that of the crystal or resonator.  
Frequency division is determined by the CPUDIV  
Configuration bits. Users may select a clock frequency  
of the oscillator frequency, or 1/2, 1/3 or 1/4 of the  
frequency.  
See the notes following Table 2-2 for additional  
information.  
Resonators Used:  
An external clock may also be used when the micro-  
controller is in HS Oscillator mode. In this case, the  
OSC2/CLKO pin is left open (Figure 2-3).  
4.0 MHz  
8.0 MHz  
16.0 MHz  
© 2008 Microchip Technology Inc.  
DS39760D-page 25  
PIC18F2450/4450  
FIGURE 2-3:  
EXTERNAL CLOCK INPUT  
2.2.4  
PLL FREQUENCY MULTIPLIER  
OPERATION (HS OSC  
CONFIGURATION)  
PIC18F2450/4450 devices include a Phase Locked  
Loop (PLL) circuit. This is provided specifically for USB  
applications with lower speed oscillators and can also  
be used as a microcontroller clock source.  
OSC1  
Clock from  
Ext. System  
The PLL is enabled in HSPLL, XTPLL, ECPLL and  
ECPIO Oscillator modes. It is designed to produce a  
fixed 96 MHz reference clock from a fixed 4 MHz input.  
The output can then be divided and used for both the  
USB and the microcontroller core clock. Because the  
PLL has a fixed frequency input and output, there are  
eight prescaling options to match the oscillator input  
frequency to the PLL.  
PIC18FXXXX  
(HS Mode)  
OSC2  
Open  
2.2.3  
EXTERNAL CLOCK INPUT  
The EC, ECIO, ECPLL and ECPIO Oscillator modes  
require an external clock source to be connected to the  
OSC1 pin. There is no oscillator start-up time required  
after a Power-on Reset or after an exit from Sleep  
mode.  
There is also a separate postscaler option for deriving  
the microcontroller clock from the PLL. This allows the  
USB peripheral and microcontroller to use the same  
oscillator input and still operate at different clock  
speeds. In contrast to the postscaler for XT, HS and EC  
modes, the available options are 1/2, 1/3, 1/4 and 1/6  
of the PLL output.  
In the EC and ECPLL Oscillator modes, the oscillator  
frequency divided by 4 is available on the OSC2 pin.  
This signal may be used for test purposes or to  
synchronize other logic. Figure 2-4 shows the pin  
connections for the EC Oscillator mode.  
The HSPLL, ECPLL and ECPIO modes make use of  
the HS mode oscillator for frequencies up to 48 MHz.  
The prescaler divides the oscillator input by up to 12 to  
produce the 4 MHz drive for the PLL. The XTPLL mode  
can only use an input frequency of 4 MHz which drives  
the PLL directly.  
FIGURE 2-4:  
EXTERNAL CLOCK  
INPUT OPERATION  
(EC AND ECPLL  
CONFIGURATION)  
FIGURE 2-6:  
PLL BLOCK DIAGRAM  
(HS MODE)  
OSC1/CLKI  
Clock from  
Ext. System  
PIC18FXXXX  
OSC2/CLKO  
FOSC/4  
HS/EC/ECIO/XT Oscillator Enable  
PLL Enable  
(from CONFIG1H Register)  
The ECIO and ECPIO Oscillator modes function like the  
EC and ECPLL modes, except that the OSC2 pin  
becomes an additional general purpose I/O pin. The I/O  
pin becomes bit 6 of PORTA (RA6). Figure 2-5 shows  
the pin connections for the ECIO Oscillator mode.  
OSC2  
Phase  
Oscillator  
and  
Comparator  
FIN  
OSC1  
FOUT  
Prescaler  
FIGURE 2-5:  
EXTERNAL CLOCK  
INPUT OPERATION  
(ECIO AND ECPIO  
CONFIGURATION)  
Loop  
Filter  
VCO  
÷24  
SYSCLK  
OSC1/CLKI  
PIC18FXXXX  
I/O (OSC2)  
Clock from  
Ext. System  
RA6  
The internal postscaler for reducing clock frequency in  
XT and HS modes is also available in EC and ECIO  
modes.  
DS39760D-page 26  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
2.2.5  
INTERNAL OSCILLATOR  
2.3  
Oscillator Settings for USB  
The PIC18F2450/4450 devices include an internal RC  
oscillator (INTRC) which provides a nominal 31 kHz out-  
put. INTRC is enabled if it is selected as the device clock  
source; it is also enabled automatically when any of the  
following are enabled:  
When the PIC18F2450/4450 is used for USB  
connectivity, it must have either a 6 MHz or 48 MHz  
clock for USB operation, depending on whether Low-  
Speed or Full-Speed mode is being used. This may  
require some forethought in selecting an oscillator  
frequency and programming the device.  
• Power-up Timer  
• Fail-Safe Clock Monitor  
• Watchdog Timer  
The full range of possible oscillator configurations  
compatible with USB operation is shown in Table 2-3.  
• Two-Speed Start-up  
2.3.1  
LOW-SPEED OPERATION  
These features are discussed in greater detail in  
The USB clock for Low-Speed mode is derived from the  
primary oscillator chain and not directly from the PLL. It  
is divided by 4 to produce the actual 6 MHz clock.  
Because of this, the microcontroller can only use a  
clock frequency of 24 MHz when the USB module is  
active and the controller clock source is one of the  
primary oscillator modes (XT, HS or EC, with or without  
the PLL).  
Section 18.0 “Special Features of the CPU”.  
2.2.5.1  
Internal Oscillator Modes  
When the internal oscillator is used as the micro-  
controller clock source, one of the other oscillator  
modes (External Clock or External Crystal/Resonator)  
must be used as the USB clock source. The choice of  
USB clock source is determined by the particular  
internal oscillator mode.  
This restriction does not apply if the microcontroller  
clock source is the secondary oscillator or internal  
oscillator.  
There are four distinct modes available:  
1. INTHS mode: The USB clock is provided by the  
oscillator in HS mode.  
2.3.2  
RUNNING DIFFERENT USB AND  
MICROCONTROLLER CLOCKS  
2. INTXT mode: The USB clock is provided by the  
oscillator in XT mode.  
The USB module, in either mode, can run  
asynchronously with respect to the microcontroller core  
and other peripherals. This means that applications can  
use the primary oscillator for the USB clock while the  
microcontroller runs from a separate clock source at a  
lower speed. If it is necessary to run the entire application  
from only one clock source, full-speed operation provides  
a greater selection of microcontroller clock frequencies.  
3. INTCKO mode: The USB clock is provided by an  
external clock input on OSC1/CLKI; the OSC2/  
CLKO pin outputs FOSC/4.  
4. INTIO mode: The USB clock is provided by an  
external clock input on OSC1/CLKI; the OSC2/  
CLKO pin functions as a digital I/O (RA6).  
Of these four modes, only INTIO mode frees up an  
additional pin (OSC2/CLKO/RA6) for port I/O use.  
© 2008 Microchip Technology Inc.  
DS39760D-page 27  
PIC18F2450/4450  
TABLE 2-3:  
OSCILLATOR CONFIGURATION OPTIONS FOR USB OPERATION  
Input Oscillator  
Frequency  
PLL Division  
(PLLDIV2:PLLDIV0)  
Clock Mode  
(FOSC3:FOSC0)  
MCU Clock Division  
(CPUDIV1:CPUDIV0)  
Microcontroller  
Clock Frequency  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
÷2 (00)  
÷3 (01)  
÷4 (10)  
÷6 (11)  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
÷2 (00)  
÷3 (01)  
÷4 (10)  
÷6 (11)  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
÷2 (00)  
÷3 (01)  
÷4 (10)  
÷6 (11)  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
÷2 (00)  
÷3 (01)  
÷4 (10)  
÷6 (11)  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
÷2 (00)  
÷3 (01)  
÷4 (10)  
÷6 (11)  
48 MHz  
24 MHz  
16 MHz  
12 MHz  
48 MHz  
24 MHz  
16 MHz  
12 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
40 MHz  
20 MHz  
13.33 MHz  
10 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
24 MHz  
12 MHz  
8 MHz  
(1)  
48 MHz  
N/A  
EC, ECIO  
EC, ECIO  
48 MHz  
40 MHz  
24 MHz  
20 MHz  
16 MHz  
÷12 (111)  
÷10 (110)  
÷6 (101)  
÷5 (100)  
÷4 (011)  
ECPLL, ECPIO  
EC, ECIO  
ECPLL, ECPIO  
HS, EC, ECIO  
6 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
20 MHz  
10 MHz  
6.67 MHz  
5 MHz  
HSPLL, ECPLL, ECPIO  
HS, EC, ECIO  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
16 MHz  
8 MHz  
HSPLL, ECPLL, ECPIO  
HS, EC, ECIO  
5.33 MHz  
4 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
HSPLL, ECPLL, ECPIO  
Legend:  
All clock frequencies, except 24 MHz, are exclusively associated with full-speed USB operation (USB clock of 48 MHz).  
Bold is used to highlight clock selections that are compatible with low-speed USB operation (system clock of 24 MHz,  
USB clock of 6 MHz).  
Note 1: Only valid when the USBDIV Configuration bit is cleared.  
DS39760D-page 28  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 2-3:  
OSCILLATOR CONFIGURATION OPTIONS FOR USB OPERATION (CONTINUED)  
Input Oscillator  
Frequency  
PLL Division  
(PLLDIV2:PLLDIV0)  
Clock Mode  
(FOSC3:FOSC0)  
MCU Clock Division  
(CPUDIV1:CPUDIV0)  
Microcontroller  
Clock Frequency  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
÷2 (00)  
÷3 (01)  
÷4 (10)  
÷6 (11)  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
÷2 (00)  
÷3 (01)  
÷4 (10)  
÷6 (11)  
None (00)  
÷2 (01)  
÷3 (10)  
÷4 (11)  
÷2 (00)  
÷3 (01)  
÷4 (10)  
÷6 (11)  
12 MHz  
6 MHz  
HS, EC, ECIO  
HSPLL, ECPLL, ECPIO  
HS, EC, ECIO  
4 MHz  
3 MHz  
12 MHz  
÷3 (010)  
÷2 (001)  
÷1 (000)  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
4 MHz  
2.67 MHz  
2 MHz  
8 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
4 MHz  
HSPLL, ECPLL, ECPIO  
XT, HS, EC, ECIO  
2 MHz  
1.33 MHz  
1 MHz  
4 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
HSPLL, ECPLL, XTPLL,  
ECPIO  
Legend:  
All clock frequencies, except 24 MHz, are exclusively associated with full-speed USB operation (USB clock of 48 MHz).  
Bold is used to highlight clock selections that are compatible with low-speed USB operation (system clock of 24 MHz,  
USB clock of 6 MHz).  
Note 1: Only valid when the USBDIV Configuration bit is cleared.  
© 2008 Microchip Technology Inc.  
DS39760D-page 29  
PIC18F2450/4450  
INTRC always remains the clock source for features  
such as the Watchdog Timer and the Fail-Safe Clock  
Monitor.  
2.4  
Clock Sources and Oscillator  
Switching  
Like previous PIC18 enhanced devices, the  
PIC18F2450/4450 family includes a feature that allows  
the device clock source to be switched from the main  
oscillator to an alternate, low-frequency clock source.  
PIC18F2450/4450 devices offer two alternate clock  
sources. When an alternate clock source is enabled,  
the various power-managed operating modes are  
available.  
The OSTS and T1RUN bits indicate which clock source  
is currently providing the device clock. The OSTS bit  
indicates that the Oscillator Start-up Timer (OST) has  
timed out and the primary clock is providing the device  
clock in primary clock modes. The T1RUN bit  
(T1CON<6>) indicates when the Timer1 oscillator is  
providing the device clock in secondary clock modes. In  
power-managed modes, only one of these three bits will  
be set at any time. If none of these bits are set, the  
INTRC is providing the clock or the internal oscillator has  
just started and is not yet stable.  
Essentially, there are three clock sources for these  
devices:  
• Primary oscillators  
• Secondary oscillators  
• Internal oscillator  
The IDLEN bit determines if the device goes into Sleep  
mode, or one of the Idle modes, when the SLEEP  
instruction is executed.  
The primary oscillators include the External Crystal  
and Resonator modes, the External Clock modes and  
the internal oscillator. The particular mode is defined by  
the FOSC3:FOSC0 Configuration bits. The details of  
these modes are covered earlier in this chapter.  
The use of the flag and control bits in the OSCCON  
register is discussed in more detail in Section 3.0  
“Power-Managed Modes”.  
Note 1: The Timer1 oscillator must be enabled to  
select the secondary clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON<3>). If the Timer1 oscillator is  
not enabled, then any attempt to select a  
secondary clock source will be ignored.  
The secondary oscillators are those external sources  
not connected to the OSC1 or OSC2 pins. These  
sources may continue to operate even after the  
controller is placed in a power-managed mode.  
PIC18F2450/4450 devices offer the Timer1 oscillator  
as a secondary oscillator. This oscillator, in all power-  
managed modes, is often the time base for functions  
such as a Real-Time Clock (RTC). Most often, a  
32.768 kHz watch crystal is connected between the  
RC0/T1OSO/T1CKI and RC1/T1OSI/UOE pins. Like  
the XT and HS Oscillator mode circuits, loading  
capacitors are also connected from each pin to ground.  
The Timer1 oscillator is discussed in greater detail in  
Section 11.3 “Timer1 Oscillator”.  
2: It is recommended that the Timer1  
oscillator be operating and stable prior to  
switching to it as the clock source; other-  
wise, a very long delay may occur while  
the Timer1 oscillator starts.  
2.4.2  
OSCILLATOR TRANSITIONS  
PIC18F2450/4450 devices contain circuitry to prevent  
clock “glitches” when switching between clock sources.  
A short pause in the device clock occurs during the  
clock switch. The length of this pause is the sum of two  
cycles of the old clock source and three to four cycles  
of the new clock source. This formula assumes that the  
new clock source is stable.  
In addition to being a primary clock source, the internal  
oscillator is available as a power-managed mode  
clock source. The INTRC source is also used as the  
clock source for several special features, such as the  
WDT and Fail-Safe Clock Monitor.  
2.4.1  
OSCILLATOR CONTROL REGISTER  
Clock transitions are discussed in greater detail in  
Section 3.1.2 “Entering Power-Managed Modes”.  
The OSCCON register (Register 2-1) controls several  
aspects of the device clock’s operation, both in full-power  
operation and in power-managed modes.  
The System Clock Select bits, SCS1:SCS0, select the  
clock source. The available clock sources are the primary  
clock (defined by the FOSC3:FOSC0 Configuration bits),  
the secondary clock (Timer1 oscillator) and the internal  
oscillator. The clock source changes immediately, after  
one or more of the bits is written to, following a brief clock  
transition interval. The SCS bits are cleared on all forms  
of Reset.  
DS39760D-page 30  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 2-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0  
IDLEN  
bit 7  
U-0  
U-0  
U-0  
R(1)  
U-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
OSTS  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IDLEN: Idle Enable bit  
1= Device enters Idle mode on SLEEPinstruction  
0= Device enters Sleep mode on SLEEPinstruction  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
OSTS: Oscillator Start-up Time-out Status bit(1)  
1= Oscillator Start-up Timer time-out has expired; primary oscillator is running  
0= Oscillator Start-up Timer time-out is running; primary oscillator is not ready  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
SCS1:SCS0: System Clock Select bits  
1x= Internal oscillator  
01= Timer1 oscillator  
00= Primary oscillator  
Note 1: Depends on the state of the IESO Configuration bit.  
© 2008 Microchip Technology Inc.  
DS39760D-page 31  
PIC18F2450/4450  
Enabling any on-chip feature that will operate during  
Sleep will increase the current consumed during Sleep.  
The INTRC is required to support WDT operation. The  
Timer1 oscillator may be operating to support a Real-  
Time Clock. Other features may be operating that do  
not require a device clock source (i.e., PSP, INTx pins  
and others). Peripherals that may add significant  
current consumption are listed in Section 21.2 “DC  
Characteristics: Power-Down and Supply Current”.  
2.5  
Effects of Power-Managed Modes  
on the Various Clock Sources  
When PRI_IDLE mode is selected, the designated  
primary oscillator continues to run without interruption.  
For all other power-managed modes, the oscillator  
using the OSC1 pin is disabled. Unless the USB  
module is enabled, the OSC1 pin (and OSC2 pin if  
used by the oscillator) will stop oscillating.  
In secondary clock modes (SEC_RUN and  
SEC_IDLE), the Timer1 oscillator is operating and  
providing the device clock. The Timer1 oscillator may  
also run in all power-managed modes if required to  
clock Timer1.  
2.6  
Power-up Delays  
Power-up delays are controlled by two timers, so that no  
external Reset circuitry is required for most applications.  
The delays ensure that the device is kept in Reset until  
the device power supply is stable under normal circum-  
stances and the primary clock is operating and stable.  
For additional information on power-up delays, see  
Section 4.5 “Device Reset Timers”.  
In internal oscillator modes (RC_RUN and RC_IDLE),  
the internal oscillator provides the device clock source.  
The 31 kHz INTRC output can be used directly to  
provide the clock and may be enabled to support various  
special features regardless of the power-managed  
mode (see Section 18.2 “Watchdog Timer (WDT)”,  
Section 18.3 “Two-Speed Start-up” and Section 18.4  
“Fail-Safe Clock Monitor” for more information on  
WDT, Fail-Safe Clock Monitor and Two-Speed Start-up).  
The first timer is the Power-up Timer (PWRT), which  
provides a fixed delay on power-up (parameter 33,  
Table 21-10). It is enabled by clearing (= 0) the  
PWRTEN Configuration bit.  
The second timer is the Oscillator Start-up Timer  
(OST), intended to keep the chip in Reset until the  
crystal oscillator is stable (XT and HS modes). The  
OST does this by counting 1024 oscillator cycles  
before allowing the oscillator to clock the device.  
Regardless of the Run or Idle mode selected, the USB  
clock source will continue to operate. If the device is  
operating from a crystal or resonator-based oscillator,  
that oscillator will continue to clock the USB module.  
The core and all other modules will switch to the new  
clock source.  
When the HSPLL Oscillator mode is selected, the  
device is kept in Reset for an additional 2 ms following  
the HS mode OST delay, so the PLL can lock to the  
incoming clock frequency.  
If the Sleep mode is selected, all clock sources are  
stopped. Since all the transistor switching currents  
have been stopped, Sleep mode achieves the lowest  
current consumption of the device (only leakage  
currents).  
There is a delay of interval, TCSD (parameter 38,  
Table 21-10), following POR, while the controller  
becomes ready to execute instructions. This delay runs  
concurrently with any other delays. This may be the  
only delay that occurs when any of the EC or internal  
oscillator modes are used as the primary clock source.  
Sleep mode should never be invoked while the USB  
module is operating and connected. The only exception  
is when the device has been issued a “Suspend” com-  
mand over the USB. Once the module has suspended  
operation and shifted to a low-power state, the  
microcontroller may be safely put into Sleep mode.  
TABLE 2-4:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
Oscillator Mode  
OSC1 Pin  
OSC2 Pin  
INTCKO  
INTIO  
Floating, pulled by external clock  
Floating, pulled by external clock  
Floating, pulled by external clock  
Floating, pulled by external clock  
At logic low (clock/4 output)  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
At logic low (clock/4 output)  
ECIO, ECPIO  
EC  
XT and HS  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
Note:  
See Table 4-2 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
DS39760D-page 32  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
3.1.1  
CLOCK SOURCES  
3.0  
POWER-MANAGED MODES  
The SCS1:SCS0 bits allow the selection of one of three  
clock sources for power-managed modes. They are:  
PIC18F2450/4450 devices offer a total of seven  
operating modes for more efficient power  
management. These modes provide a variety of  
options for selective power conservation in applications  
where resources may be limited (i.e., battery-powered  
devices).  
• The primary clock, as defined by the  
FOSC3:FOSC0 Configuration bits  
• The secondary clock (the Timer1 oscillator)  
• The internal oscillator (for RC modes)  
There are three categories of power-managed modes:  
3.1.2  
ENTERING POWER-MANAGED  
MODES  
• Run modes  
• Idle modes  
• Sleep mode  
Switching from one power-managed mode to another  
begins by loading the OSCCON register. The  
SCS1:SCS0 bits select the clock source and determine  
which Run or Idle mode is to be used. Changing these  
bits causes an immediate switch to the new clock  
source, assuming that it is running. The switch may  
also be subject to clock transition delays. These are  
discussed in Section 3.1.3 “Clock Transitions and  
Status Indicators” and subsequent sections.  
These categories define which portions of the device  
are clocked and sometimes, what speed. The Run and  
Idle modes may use any of the three available clock  
sources (primary, secondary or internal oscillator); the  
Sleep mode does not use a clock source.  
The power-managed modes include several power-  
saving features offered on previous PIC®  
microcontrollers. One is the clock switching feature,  
offered in other PIC18 devices, allowing the controller  
to use the Timer1 oscillator in place of the primary  
oscillator. Also included is the Sleep mode, offered by  
all PIC microcontrollers, where all device clocks are  
stopped.  
Entry to the power-managed Idle or Sleep modes is  
triggered by the execution of a SLEEPinstruction. The  
actual mode that results depends on the status of the  
IDLEN bit.  
Depending on the current mode and the mode being  
switched to, a change to a power-managed mode does  
not always require setting all of these bits. Many  
transitions may be done by changing the oscillator  
select bits, or changing the IDLEN bit, prior to issuing a  
SLEEP instruction. If the IDLEN bit is already  
configured correctly, it may only be necessary to  
perform a SLEEP instruction to switch to the desired  
mode.  
3.1  
Selecting Power-Managed Modes  
Selecting  
a power-managed mode requires two  
decisions: if the CPU is to be clocked or not and the  
selection of clock source. The IDLEN bit  
a
(OSCCON<7>) controls CPU clocking, while the  
SCS1:SCS0 bits (OSCCON<1:0>) select the clock  
source. The individual modes, bit settings, clock sources  
and affected modules are summarized in Table 3-1.  
TABLE 3-1:  
Mode  
POWER-MANAGED MODES  
OSCCON Bits Module Clocking  
CPU Peripherals  
Off Off  
Clocked Clocked Primary – all oscillator modes.  
This is the normal full-power execution mode.  
Available Clock and Oscillator Source  
IDLEN(1)  
SCS1:SCS0  
Sleep  
0
N/A  
None – all clocks are disabled  
PRI_RUN  
N/A  
00  
SEC_RUN  
RC_RUN  
PRI_IDLE  
SEC_IDLE  
RC_IDLE  
N/A  
N/A  
1
01  
1x  
00  
01  
1x  
Clocked Clocked Secondary – Timer1 oscillator  
Clocked Clocked Internal oscillator(2)  
Off  
Off  
Off  
Clocked Primary – all oscillator modes  
Clocked Secondary – Timer1 oscillator  
Clocked Internal oscillator(2)  
1
1
Note 1: IDLEN reflects its value when the SLEEPinstruction is executed.  
2: Clock is INTRC source.  
© 2008 Microchip Technology Inc.  
DS39760D-page 33  
PIC18F2450/4450  
3.1.3  
CLOCK TRANSITIONS AND  
STATUS INDICATORS  
3.2.1  
PRI_RUN MODE  
The PRI_RUN mode is the normal, full-power execu-  
tion mode of the microcontroller. This is also the default  
mode upon a device Reset unless Two-Speed Start-up  
is enabled (see Section 18.3 “Two-Speed Start-up”  
for details). In this mode, the OSTS bit is set.  
The length of the transition between clock sources is  
the sum of two cycles of the old clock source and three  
to four cycles of the new clock source. This formula  
assumes that the new clock source is stable.  
Two bits indicate the current clock source and its  
status. They are:  
3.2.2  
SEC_RUN MODE  
The SEC_RUN mode is the compatible mode to the  
“clock switching” feature offered in other PIC18  
devices. In this mode, the CPU and peripherals are  
clocked from the Timer1 oscillator. This gives users the  
option of lower power consumption while still using a  
high accuracy clock source.  
• OSTS (OSCCON<3>)  
• T1RUN (T1CON<6>)  
In general, only one of these bits will be set while in a  
given power-managed mode. When the OSTS bit is  
set, the primary clock is providing the device clock.  
When the T1RUN bit is set, the Timer1 oscillator is  
providing the clock.  
SEC_RUN mode is entered by setting the SCS1:SCS0  
bits to ‘01’. The device clock source is switched to the  
Timer1 oscillator (see Figure 3-1), the primary  
oscillator is shut down, the T1RUN bit (T1CON<6>) is  
set and the OSTS bit is cleared.  
Note:  
Executing a SLEEP instruction does not  
necessarily place the device into Sleep  
mode. It acts as the trigger to place the  
controller into either the Sleep mode, or  
one of the Idle modes, depending on the  
setting of the IDLEN bit.  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_RUN mode.  
If the T1OSCEN bit is not set when the  
SCS1:SCS0 bits are set to ‘01’, entry to  
SEC_RUN mode will not occur. If the  
Timer1 oscillator is enabled but not yet  
running, device clocks will be delayed until  
the oscillator has started. In such  
situations, initial oscillator operation is far  
from stable and unpredictable operation  
may result.  
3.1.4  
MULTIPLE SLEEP COMMANDS  
The power-managed mode that is invoked with the  
SLEEP instruction is determined by the setting of the  
IDLEN bit at the time the instruction is executed. If  
another SLEEPinstruction is executed, the device will  
enter the power-managed mode specified by IDLEN at  
that time. If IDLEN has changed, the device will enter  
the new power-managed mode specified by the new  
setting.  
3.2  
Run Modes  
In the Run modes, clocks to both the core and  
peripherals are active. The difference between these  
modes is the clock source.  
DS39760D-page 34  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
On transitions from SEC_RUN mode to PRI_RUN  
mode, the peripherals and CPU continue to be clocked  
from the Timer1 oscillator while the primary clock is  
started. When the primary clock becomes ready, a  
clock switch back to the primary clock occurs (see  
Figure 3-2). When the clock switch is complete, the  
T1RUN bit is cleared, the OSTS bit is set and the  
primary clock is providing the clock. The IDLEN and  
SCS bits are not affected by the wake-up; the Timer1  
oscillator continues to run.  
FIGURE 3-1:  
TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
T1OSI  
OSC1  
Clock Transition(1)  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Clock transition typically occurs within 2-4 TOSC.  
FIGURE 3-2:  
TRANSITION TIMING FROM SEC_RUN MODE TO PRI_RUN MODE (HSPLL)  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
T1OSI  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock(2)  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC + 2  
PC + 4  
PC  
SCS1:SCS0 bits Changed  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2: Clock transition typically occurs within 2-4 TOSC.  
© 2008 Microchip Technology Inc.  
DS39760D-page 35  
PIC18F2450/4450  
This mode is entered by setting SCS1 to ‘1’. Although  
it is ignored, it is recommended that SCS0 also be  
cleared; this is to maintain software compatibility with  
future devices. When the clock source is switched to  
the INTRC (see Figure 3-3), the primary oscillator is  
shut down and the OSTS bit is cleared.  
3.2.3  
RC_RUN MODE  
In RC_RUN mode, the CPU and peripherals are  
clocked from the internal oscillator; the primary clock is  
shut down. When using the INTRC source, this mode  
provides the best power conservation of all the Run  
modes while still executing code. It works well for user  
applications which are not highly timing sensitive or do  
not require high-speed clocks at all times.  
On transitions from RC_RUN mode to PRI_RUN mode,  
the device continues to be clocked from the INTRC  
while the primary clock is started. When the primary  
clock becomes ready, a clock switch to the primary  
clock occurs (see Figure 3-4). When the clock switch is  
complete, the OSTS bit is set and the primary clock is  
providing the device clock. The IDLEN and SCS bits  
are not affected by the switch. The INTRC source will  
continue to run if either the WDT or the Fail-Safe Clock  
Monitor is enabled.  
If the primary clock source is the internal oscillator  
(INTRC), there are no distinguishable differences  
between the PRI_RUN and RC_RUN modes during  
execution. However, a clock switch delay will occur dur-  
ing entry to and exit from RC_RUN mode. Therefore, if  
the primary clock source is the internal oscillator, the  
use of RC_RUN mode is not recommended.  
FIGURE 3-3:  
TRANSITION TIMING TO RC_RUN MODE  
Q1 Q2 Q3 Q4 Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
1
2
3
n-1  
n
INTRC  
OSC1  
Clock Transition(1)  
CPU  
Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Clock transition typically occurs within 2-4 TOSC.  
FIGURE 3-4:  
TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTRC  
OSC1  
(1)  
TOST  
(1)  
TPLL  
1
2
n-1  
n
PLL Clock  
Output  
Clock(2)  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
SCS1:SCS0 bits Changed  
OSTS bit Set  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
2: Clock transition typically occurs within 2-4 TOSC.  
DS39760D-page 36  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
3.3  
Sleep Mode  
3.4  
Idle Modes  
The power-managed Sleep mode in the PIC18F2450/  
4450 devices is identical to the legacy Sleep mode  
offered in all other PIC microcontrollers. It is entered by  
clearing the IDLEN bit (the default state on device  
Reset) and executing the SLEEPinstruction. This shuts  
down the selected oscillator (Figure 3-5). All clock  
source status bits are cleared.  
The Idle modes allow the controller’s CPU to be  
selectively shut down while the peripherals continue to  
operate. Selecting a particular Idle mode allows users  
to further manage power consumption.  
If the IDLEN bit is set to ‘1’ when a SLEEPinstruction is  
executed, the peripherals will be clocked from the clock  
source selected using the SCS1:SCS0 bits; however, the  
CPU will not be clocked. The clock source status bits are  
not affected. Setting IDLEN and executing a SLEEP  
instruction provides a quick method of switching from a  
given Run mode to its corresponding Idle mode.  
Entering the Sleep mode from any other mode does not  
require a clock switch. This is because no clocks are  
needed once the controller has entered Sleep. If the  
WDT is selected, the INTRC source will continue to  
operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
If the WDT is selected, the INTRC source will continue  
to operate. If the Timer1 oscillator is enabled, it will also  
continue to run.  
When a wake event occurs in Sleep mode (by interrupt,  
Reset or WDT time-out), the device will not be clocked  
until the clock source selected by the SCS1:SCS0 bits  
becomes ready (see Figure 3-6), or it will be clocked  
from the internal oscillator if either the Two-Speed  
Start-up or the Fail-Safe Clock Monitor are enabled  
(see Section 18.0 “Special Features of the CPU”). In  
either case, the OSTS bit is set when the primary clock  
is providing the device clocks. The IDLEN and SCS bits  
are not affected by the wake-up.  
Since the CPU is not executing instructions, the only  
exits from any of the Idle modes are by interrupt, WDT  
time-out or a Reset. When a wake event occurs, CPU  
execution is delayed by an interval of TCSD  
(parameter 38, Table 21-10) while it becomes ready to  
execute code. When the CPU begins executing code,  
it resumes with the same clock source for the current  
Idle mode. For example, when waking from RC_IDLE  
mode, the internal oscillator will clock the CPU and  
peripherals (in other words, RC_RUN mode). The  
IDLEN and SCS bits are not affected by the wake-up.  
While in any Idle mode or Sleep mode, a WDT time-out  
will result in a WDT wake-up to the Run mode currently  
specified by the SCS1:SCS0 bits.  
FIGURE 3-5:  
TRANSITION TIMING FOR ENTRY TO SLEEP MODE  
Q1 Q2 Q3 Q4 Q1  
OSC1  
CPU  
Clock  
Peripheral  
Clock  
Sleep  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-6:  
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q2 Q3 Q4 Q1 Q2  
Q1  
OSC1  
(1)  
(1)  
TOST  
TPLL  
PLL Clock  
Output  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
OSTS bit Set  
PC + 2  
PC + 4  
PC + 6  
Wake Event  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
© 2008 Microchip Technology Inc.  
DS39760D-page 37  
PIC18F2450/4450  
3.4.1  
PRI_IDLE MODE  
3.4.2  
SEC_IDLE MODE  
This mode is unique among the three low-power Idle  
modes in that it does not disable the primary device  
clock. For timing sensitive applications, this allows for  
the fastest resumption of device operation, with its  
more accurate primary clock source, since the clock  
source does not have to “warm up” or transition from  
another oscillator.  
In SEC_IDLE mode, the CPU is disabled but the  
peripherals continue to be clocked from the Timer1  
oscillator. This mode is entered from SEC_RUN by  
setting the IDLEN bit and executing  
a SLEEP  
instruction. If the device is in another Run mode, set  
IDLEN first, then set SCS1:SCS0 to ‘01’ and execute  
SLEEP. When the clock source is switched to the  
Timer1 oscillator, the primary oscillator is shut down,  
the OSTS bit is cleared and the T1RUN bit is set.  
PRI_IDLE mode is entered from PRI_RUN mode by  
setting the IDLEN bit and executing  
a SLEEP  
instruction. If the device is in another Run mode, set  
IDLEN first, then clear the SCS bits and execute  
SLEEP. Although the CPU is disabled, the peripherals  
continue to be clocked from the primary clock source  
specified by the FOSC3:FOSC0 Configuration bits.  
The OSTS bit remains set (see Figure 3-7).  
When a wake event occurs, the peripherals continue to  
be clocked from the Timer1 oscillator. After an interval of  
TCSD following the wake event, the CPU begins execut-  
ing code being clocked by the Timer1 oscillator. The  
IDLEN and SCS bits are not affected by the wake-up;  
the Timer1 oscillator continues to run (see Figure 3-8).  
When a wake event occurs, the CPU is clocked from the  
primary clock source. A delay of interval TCSD is  
required between the wake event and when code  
execution starts. This is required to allow the CPU to  
become ready to execute instructions. After the wake-  
up, the OSTS bit remains set. The IDLEN and SCS bits  
are not affected by the wake-up (see Figure 3-8).  
Note:  
The Timer1 oscillator should already be  
running prior to entering SEC_IDLE mode.  
If the T1OSCEN bit is not set when the  
SLEEP instruction is executed, the SLEEP  
instruction will be ignored and entry to  
SEC_IDLE mode will not occur. If the  
Timer1 oscillator is enabled but not yet run-  
ning, peripheral clocks will be delayed until  
the oscillator has started. In such situations,  
initial oscillator operation is far from stable  
and unpredictable operation may result.  
FIGURE 3-7:  
TRANSITION TIMING FOR ENTRY TO IDLE MODE  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
FIGURE 3-8:  
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE  
Q1  
Q3  
Q4  
Q2  
OSC1  
TCSD  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
Wake Event  
DS39760D-page 38  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
A fixed delay of interval, TCSD, following the wake  
event, is required when leaving Sleep and Idle modes.  
This delay is required for the CPU to prepare for execu-  
tion. Instruction execution resumes on the first clock  
cycle following this delay.  
3.4.3  
RC_IDLE MODE  
In RC_IDLE mode, the CPU is disabled but the periph-  
erals continue to be clocked from the internal oscillator,  
INTRC. This mode allows for controllable power  
conservation during Idle periods.  
From RC_RUN, this mode is entered by setting the  
IDLEN bit and executing a SLEEP instruction. If the  
device is in another Run mode, first set IDLEN, then set  
the SCS1 bit and execute SLEEP. Although its value is  
ignored, it is recommended that SCS0 also be cleared;  
this is to maintain software compatibility with future  
devices. When the clock source is switched to the  
INTRC, the primary oscillator is shut down and the  
OSTS bit is cleared.  
3.5.2  
EXIT BY WDT TIME-OUT  
A WDT time-out will cause different actions depending  
on which power-managed mode the device is in when  
the time-out occurs.  
If the device is not executing code (all Idle modes and  
Sleep mode), the time-out will result in an exit from the  
power-managed mode (see Section 3.2 “Run  
Modes” and Section 3.3 “Sleep Mode”). If the device  
is executing code (all Run modes), the time-out will  
result in a WDT Reset (see Section 18.2 “Watchdog  
Timer (WDT)”).  
When a wake event occurs, the peripherals continue to  
be clocked from the INTRC. After a delay of TCSD  
following the wake event, the CPU begins executing  
code being clocked by the INTRC. The IDLEN and SCS  
bits are not affected by the wake-up. The INTRC source  
will continue to run if either the WDT or the Fail-Safe  
Clock Monitor is enabled.  
3.5.3  
EXIT BY RESET  
Normally, the device is held in Reset by the Oscillator  
Start-up Timer (OST) until the primary clock becomes  
ready. At that time, the OSTS bit is set and the device  
begins executing code.  
3.5  
Exiting Idle and Sleep Modes  
The exit delay time from Reset to the start of code  
execution depends on both the clock sources before  
and after the wake-up and the type of oscillator if the  
new clock source is the primary clock. Exit delays are  
summarized in Table 3-2.  
An exit from Sleep mode or any of the Idle modes is  
triggered by an interrupt, a Reset or a WDT time-out.  
This section discusses the triggers that cause exits  
from power-managed modes. The clocking subsystem  
actions are discussed in each of the power-managed  
modes (see Section 3.2 “Run Modes”, Section 3.3  
“Sleep Mode” and Section 3.4 “Idle Modes”).  
Code execution can begin before the primary clock  
becomes ready. If either the Two-Speed Start-up (see  
Section 18.3 “Two-Speed Start-up”) or Fail-Safe  
Clock Monitor (see Section 18.4 “Fail-Safe Clock  
Monitor”) is enabled, the device may begin execution  
as soon as the Reset source has cleared. Execution is  
clocked by the INTRC driven by the internal oscillator.  
Execution is clocked by the internal oscillator until  
either the primary clock becomes ready or a power-  
managed mode is entered before the primary clock  
becomes ready; the primary clock is then shut down.  
3.5.1  
EXIT BY INTERRUPT  
Any of the available interrupt sources can cause the  
device to exit from an Idle mode, or the Sleep mode, to  
a Run mode. To enable this functionality, an interrupt  
source must be enabled by setting its enable bit in one  
of the INTCON or PIE registers. The exit sequence is  
initiated when the corresponding interrupt flag bit is set.  
On all exits from Idle or Sleep modes by interrupt, code  
execution branches to the interrupt vector if the GIE/  
GIEH bit (INTCON<7>) is set. Otherwise, code execution  
continues or resumes without branching (see  
Section 8.0 “Interrupts”).  
© 2008 Microchip Technology Inc.  
DS39760D-page 39  
PIC18F2450/4450  
In these instances, the primary clock source either  
does not require an oscillator start-up delay, since it is  
already running (PRI_IDLE), or normally does not  
require an oscillator start-up delay (EC and any internal  
oscillator modes). However, a fixed delay of interval  
TCSD following the wake event is still required when  
leaving Sleep and Idle modes to allow the CPU to  
prepare for execution. Instruction execution resumes  
on the first clock cycle following this delay.  
3.5.4  
EXIT WITHOUT AN OSCILLATOR  
START-UP DELAY  
Certain exits from power-managed modes do not  
invoke the OST at all. There are two cases:  
• PRI_IDLE mode, where the primary clock source  
is not stopped; and  
• The primary clock source is not any of the XT or  
HS modes  
TABLE 3-2:  
EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE  
(BY CLOCK SOURCES)  
Microcontroller Clock Source  
Clock Ready Status  
Exit Delay  
Bit (OSCCON)  
Before Wake-up  
After Wake-up  
XT, HS  
XTPLL, HSPLL  
EC  
Primary Device Clock  
(PRI_IDLE mode)  
None  
OSTS  
OSTS  
OSTS  
OSTS  
INTRC(1)  
(3)  
XT, HS  
TOST  
(3)  
(3)  
(3)  
XTPLL, HSPLL  
EC  
TOST + trc  
T1OSC or INTRC(1)  
(2)  
TCSD  
INTRC(1)  
TIOBST  
(4)  
(3)  
XT, HS  
TOST  
XTPLL, HSPLL  
EC  
TOST + trc  
INTRC(1)  
(2)  
TCSD  
INTRC(1)  
None  
(3)  
XT, HS  
TOST  
XTPLL, HSPLL  
EC  
TOST + trc  
None  
(Sleep mode)  
(2)  
TCSD  
(4)  
INTRC(1)  
TIOBST  
Note 1: In this instance, refers specifically to the 31 kHz INTRC clock source.  
2: TCSD (parameter 38, Table 21-10) is a required delay when waking from Sleep and all Idle modes and runs  
concurrently with any other required delays (see Section 3.4 “Idle Modes”).  
3: TOST is the Oscillator Start-up Timer period (parameter 32, Table 21-10). trc is the PLL lock time-out  
(parameter F12, Table 21-7); it is also designated as TPLL.  
4: Execution continues during TIOBST (parameter 39, Table 21-10), the INTRC stabilization period.  
DS39760D-page 40  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
A simplified block diagram of the on-chip Reset circuit  
is shown in Figure 4-1.  
4.0  
RESET  
The PIC18F2450/4450 devices differentiate between  
various kinds of Reset:  
4.1  
RCON Register  
a) Power-on Reset (POR)  
Device Reset events are tracked through the RCON  
register (Register 4-1). The lower five bits of the  
register indicate that a specific Reset event has  
occurred. In most cases, these bits can only be cleared  
by the event and must be set by the application after  
the event. The state of these flag bits, taken together,  
can be read to indicate the type of Reset that just  
occurred. This is described in more detail in  
Section 4.6 “Reset State of Registers”.  
b) MCLR Reset during normal operation  
c) MCLR Reset during power-managed modes  
d) Watchdog Timer (WDT) Reset (during  
execution)  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
g) Stack Full Reset  
h) Stack Underflow Reset  
The RCON register also has control bits for setting  
interrupt priority (IPEN) and software control of the  
BOR (SBOREN). Interrupt priority is discussed in  
Section 8.0 “Interrupts”. BOR is covered in  
Section 4.4 “Brown-out Reset (BOR)”.  
This section discusses Resets generated by MCLR,  
POR and BOR, and covers the operation of the various  
start-up timers. Stack Reset events are covered in  
Section 5.1.2.4 “Stack Full and Underflow Resets”.  
WDT Resets are covered in Section 18.2 “Watchdog  
Timer (WDT)”.  
FIGURE 4-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESETInstruction  
Stack Full/Underflow Reset  
Stack  
Pointer  
External Reset  
MCLRE  
MCLR  
( )_IDLE  
Sleep  
WDT  
Time-out  
VDD Rise  
Detect  
POR Pulse  
BOREN  
VDD  
Brown-out  
Reset  
S
OST/PWRT  
OST  
10-Bit Ripple Counter  
1024 Cycles  
Chip_Reset  
R
Q
OSC1  
32 μs  
65.5 ms  
PWRT  
11-Bit Ripple Counter  
INTRC(1)  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is the INTRC source from the internal oscillator and is separate from the RC oscillator of the CLKI pin.  
2: See Table 4-2 for time-out situations.  
© 2008 Microchip Technology Inc.  
DS39760D-page 41  
PIC18F2450/4450  
REGISTER 4-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
R/W-1(1)  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0(2)  
POR  
R/W-0  
BOR  
SBOREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
SBOREN: BOR Software Enable bit(1)  
If BOREN1:BOREN0 = 01:  
1= BOR is enabled  
0= BOR is disabled  
If BOREN1:BOREN0 = 00, 10 or 11:  
Bit is disabled and read as ‘0’.  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed (set by firmware only)  
0= The RESET instruction was executed causing a device Reset (must be set in software after a  
Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= Set by power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-Down Detection Flag bit  
1= Set by power-up or by the CLRWDTinstruction  
0= Set by execution of the SLEEPinstruction  
POR: Power-on Reset Status bit(2)  
1= A Power-on Reset has not occurred (set by firmware only)  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred (set by firmware only)  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Note 1: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0’.  
2: The actual Reset value of POR is determined by the type of device Reset. See the notes following this  
register and Section 4.6 “Reset State of Registers” for additional information.  
Note 1: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent  
Power-on Resets may be detected.  
2: Brown-out Reset is said to have occurred when BOR is ‘0’ and POR is ‘1’ (assuming that POR was set to  
1’ by software immediately after a Power-on Rest).  
DS39760D-page 42  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 4-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
4.2  
Master Clear Reset (MCLR)  
The MCLR pin provides a method for triggering an  
external Reset of the device. A Reset is generated by  
holding the pin low. These devices have a noise filter in  
the MCLR Reset path which detects and ignores small  
pulses.  
VDD  
VDD  
The MCLR pin is not driven low by any internal Resets,  
including the WDT.  
D
R
R1  
MCLR  
In PIC18F2450/4450 devices, the MCLR input can be  
disabled with the MCLRE Configuration bit. When  
MCLR is disabled, the pin becomes a digital input. See  
Section 9.5 “PORTE, TRISE and LATE Registers”  
for more information.  
PIC18FXXXX  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
4.3  
Power-on Reset (POR)  
A
Power-on Reset pulse is generated on-chip  
2: R < 40 kΩ is recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
whenever VDD rises above a certain threshold. This  
allows the device to start in the initialized state when  
VDD is adequate for operation.  
3: R1 1 kΩ will limit any current flowing into  
MCLR from external capacitor C, in the event  
of MCLR/VPP pin breakdown, due to Electro-  
static Discharge (ESD) or Electrical  
Overstress (EOS).  
To take advantage of the POR circuitry, tie the MCLR pin  
through a resistor (1 kΩ to 10 kΩ) to VDD. This will  
eliminate external RC components usually needed to  
create a Power-on Reset delay. A minimum rise rate for  
VDD is specified (parameter D004, Section269 “DC  
Characteristics”). For a slow rise time, see Figure 4-2.  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
POR events are captured by the POR bit (RCON<1>).  
The state of the bit is set to ‘0’ whenever a Power-on  
Reset occurs; it does not change for any other Reset  
event. POR is not reset to ‘1’ by any hardware event.  
To capture multiple events, the user manually resets  
the bit to ‘1’ in software following any Power-on Reset.  
© 2008 Microchip Technology Inc.  
DS39760D-page 43  
PIC18F2450/4450  
Placing the BOR under software control gives the user  
the additional flexibility of tailoring the application to its  
environment without having to reprogram the device to  
change BOR configuration. It also allows the user to  
tailor device power consumption in software by eliminat-  
ing the incremental current that the BOR consumes.  
While the BOR current is typically very small, it may have  
some impact in low-power applications.  
4.4  
Brown-out Reset (BOR)  
PIC18F2450/4450 devices implement a BOR circuit  
that provides the user with a number of configuration  
and power-saving options. The BOR is controlled by  
the  
BORV1:BORV0  
and  
BOREN1:BOREN0  
Configuration bits. There are a total of four BOR  
configurations which are summarized in Table 4-1.  
The BOR threshold is set by the BORV1:BORV0 bits. If  
BOR is enabled (any values of BOREN1:BOREN0  
except ‘00’), any drop of VDD below VBOR (parameter  
D005, Section 269 “DC Characteristics: Supply  
Voltage”) for greater than TBOR (parameter 35,  
Table 21-10) will reset the device. A Reset may or may  
not occur if VDD falls below VBOR for less than TBOR.  
The chip will remain in Brown-out Reset until VDD rises  
above VBOR.  
Note:  
Even when BOR is under software control,  
the BOR Reset voltage level is still set by  
the BORV1:BORV0 Configuration bits. It  
cannot be changed in software.  
4.4.2  
DETECTING BOR  
When Brown-out Reset is enabled, the BOR bit always  
resets to ‘0’ on any Brown-out Reset or Power-on  
Reset event. This makes it difficult to determine if a  
Brown-out Reset event has occurred just by reading  
the state of BOR alone. A more reliable method is to  
simultaneously check the state of both POR and BOR.  
This assumes that the POR bit is reset to ‘1’ in software  
immediately after any Power-on Reset event. IF BOR  
is ‘0’ while POR is ‘1’, it can be reliably assumed that a  
Brown-out Reset event has occurred.  
If the Power-up Timer is enabled, it will be invoked after  
VDD rises above VBOR; it then will keep the chip in  
Reset for an additional time delay, TPWRT  
(parameter 33, Table 21-10). If VDD drops below VBOR  
while the Power-up Timer is running, the chip will go  
back into a Brown-out Reset and the Power-up Timer  
will be initialized. Once VDD rises above VBOR, the  
Power-up Timer will execute the additional time delay.  
4.4.3  
DISABLING BOR IN SLEEP MODE  
BOR and the Power-on Timer (PWRT) are  
independently configured. Enabling BOR Reset does  
not automatically enable the PWRT.  
When BOREN1:BOREN0 = 10, the BOR remains  
under hardware control and operates as previously  
described. Whenever the device enters Sleep mode,  
however, the BOR is automatically disabled. When the  
device returns to any other operating mode, BOR is  
automatically re-enabled.  
4.4.1  
SOFTWARE ENABLED BOR  
When BOREN1:BOREN0 = 01, the BOR can be  
enabled or disabled by the user in software. This is  
done with the control bit, SBOREN (RCON<6>).  
Setting SBOREN enables the BOR to function as  
previously described. Clearing SBOREN disables the  
BOR entirely. The SBOREN bit operates only in this  
mode; otherwise, it is read as ‘0’.  
This mode allows for applications to recover from  
brown-out situations, while actively executing code,  
when the device requires BOR protection the most. At  
the same time, it saves additional power in Sleep mode  
by eliminating the small incremental BOR current.  
TABLE 4-1:  
BOREN1  
BOR CONFIGURATIONS  
BOR Configuration  
Status of  
SBOREN  
BOR Operation  
BOREN0  
(RCON<6>)  
0
0
1
0
1
0
Unavailable BOR disabled; must be enabled by reprogramming the Configuration bits.  
Available BOR enabled in software; operation controlled by SBOREN.  
Unavailable BOR enabled in hardware in Run and Idle modes, disabled during  
Sleep mode.  
1
1
Unavailable BOR enabled in hardware; must be disabled by reprogramming the  
Configuration bits.  
DS39760D-page 44  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
4.5.3  
PLL LOCK TIME-OUT  
4.5  
Device Reset Timers  
With the PLL enabled in its PLL mode, the time-out  
sequence following a Power-on Reset is slightly differ-  
ent from other oscillator modes. A separate timer is  
used to provide a fixed time-out that is sufficient for the  
PLL to lock to the main oscillator frequency. This PLL  
lock time-out (TPLL) is typically 2 ms and follows the  
oscillator start-up time-out.  
PIC18F2450/4450 devices incorporate three separate  
on-chip timers that help regulate the Power-on Reset  
process. Their main function is to ensure that the  
device clock is stable before code is executed. These  
timers are:  
• Power-up Timer (PWRT)  
• Oscillator Start-up Timer (OST)  
• PLL Lock Time-out  
4.5.4  
TIME-OUT SEQUENCE  
On power-up, the time-out sequence is as follows:  
4.5.1  
POWER-UP TIMER (PWRT)  
1. After the POR condition has cleared, PWRT  
time-out is invoked (if enabled).  
The Power-up Timer (PWRT) of the PIC18F2450/4450  
devices is an 11-bit counter which uses the INTRC  
source as the clock input. This yields an approximate  
time interval of 2048 x 32 μs = 65.6 ms. While the  
PWRT is counting, the device is held in Reset.  
2. Then, the OST is activated.  
The total time-out will vary based on oscillator configu-  
ration and the status of the PWRT. Figure 4-3,  
Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all  
depict time-out sequences on power-up, with the  
Power-up Timer enabled and the device operating in  
HS Oscillator mode. Figure 4-3 through Figure 4-6 also  
apply to devices operating in XT mode. For devices in  
RC mode and with the PWRT disabled, on the other  
hand, there will be no time-out at all.  
The power-up time delay depends on the INTRC clock  
and will vary from chip to chip due to temperature and  
process variation. See DC parameter 33 (Table 21-10)  
for details.  
The PWRT is enabled by clearing the PWRTEN  
Configuration bit.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, all time-outs will expire.  
Bringing MCLR high will begin execution immediately  
(Figure 4-5). This is useful for testing purposes or to  
synchronize more than one PIC18FXXXX device  
operating in parallel.  
4.5.2  
OSCILLATOR START-UP  
TIMER (OST)  
The Oscillator Start-up Timer (OST) provides  
a
1024 oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter 33, Table 21-10). This  
ensures that the crystal oscillator or resonator has  
started and stabilized.  
The OST time-out is invoked only for XT, HS and  
HSPLL modes and only on Power-on Reset or on exit  
from most power-managed modes.  
TABLE 4-2:  
Oscillator  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2) and Brown-out  
Exit from  
Configuration  
Power-Managed Mode  
PWRTEN = 0  
PWRTEN = 1  
HS, XT  
66 ms(1) + 1024 TOSC  
66 ms(1) + 1024 TOSC + 2 ms(2)  
66 ms(1)  
1024 TOSC  
1024 TOSC + 2 ms(2)  
1024 TOSC  
1024 TOSC + 2 ms(2)  
HSPLL, XTPLL  
EC, ECIO  
2 ms(2)  
2 ms(2)  
ECPLL, ECPIO  
INTIO, INTCKO  
INTHS, INTXT  
66 ms(1) + 2 ms(2)  
66 ms(1)  
66 ms(1) + 1024 TOSC  
1024 TOSC  
1024 TOSC  
Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.  
2: 2 ms is the nominal time required for the PLL to lock.  
© 2008 Microchip Technology Inc.  
DS39760D-page 45  
PIC18F2450/4450  
FIGURE 4-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 4-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS39760D-page 46  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 4-6:  
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 4-7:  
TIME-OUT SEQUENCE ON POR w/PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the Power-up Timer.  
© 2008 Microchip Technology Inc.  
DS39760D-page 47  
PIC18F2450/4450  
POR and BOR, are set or cleared differently in different  
Reset situations as indicated in Table 4-3. These bits  
are used in software to determine the nature of the  
Reset.  
4.6  
Reset State of Registers  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” depending on the type of Reset that occurred.  
Table 4-4 describes the Reset states for all of the  
Special Function Registers. These are categorized by  
Power-on and Brown-out Resets, Master Clear and  
WDT Resets and WDT wake-ups.  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register, RI, TO, PD,  
TABLE 4-3:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION  
FOR RCON REGISTER  
RCON Register  
STKPTR Register  
Program  
Counter  
Condition  
SBOREN RI  
TO  
PD POR BOR STKFUL STKUNF  
Power-on Reset  
RESETinstruction  
Brown-out Reset  
0000h  
0000h  
0000h  
0000h  
1
1
0
1
u
1
u
1
1
1
u
1
u
0
u
u
u
0
u
0
u
0
u
u
u
0
u
u
u
u(2)  
u(2)  
u(2)  
MCLR Reset during power-managed  
Run modes  
MCLR Reset during power-managed  
Idle modes and Sleep mode  
0000h  
0000h  
0000h  
u(2)  
u(2)  
u(2)  
u
u
u
1
0
u
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
WDT time-out during full-power or  
power-managed Run modes  
MCLR Reset during full-power  
execution  
Stack Full Reset (STVREN = 1)  
0000h  
0000h  
u(2)  
u(2)  
u
u
u
u
u
u
u
u
u
u
1
u
u
1
Stack Underflow Reset  
(STVREN = 1)  
Stack Underflow Error (not an actual  
Reset, STVREN = 0)  
0000h  
PC + 2  
u(2)  
u(2)  
u(2)  
u
u
u
u
0
u
u
0
0
u
u
u
u
u
u
u
u
u
1
u
u
WDT time-out during power-managed  
Idle or Sleep modes  
Interrupt exit from  
PC + 2(1)  
power-managed modes  
Legend: u= unchanged  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the  
interrupt vector (008h or 0018h).  
2: Reset state is ‘1’ for POR and unchanged for all other Resets when software BOR is enabled  
(BOREN1:BOREN0 Configuration bits = 01and SBOREN = 1); otherwise, the Reset state is ‘0’.  
DS39760D-page 48  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 4-4:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets,  
WDT Reset,  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction,  
Stack Resets  
TOSU  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 -1-1  
11-0 0-00  
N/A  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 -1-1  
11-0 0-00  
N/A  
---0 uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
uu-u uuuu(1)  
---u uuuu  
uuuu uuuu  
PC + 2(3)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(2)  
uuuu -u-u(2)  
uu-u u-uu(2)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
FSR1H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---- 0000  
---- 0000  
uuuu uuuu  
---- 0000  
---- uuuu  
uuuu uuuu  
---- uuuu  
FSR1L  
BSR  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
4: See Table 4-3 for Reset value for specific condition.  
5: PORTA<6>, LATA<6> and TRISA<6> are enabled depending on the oscillator mode selected. When not  
enabled as PORTA pins, they are disabled and read ‘0’.  
© 2008 Microchip Technology Inc.  
DS39760D-page 49  
PIC18F2450/4450  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
INDF2  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
N/A  
N/A  
N/A  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
0--- q-00  
0-00 0101  
---- ---0  
0q-1 11q0  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
--00 qqqq  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
01-0 0-00  
0000 0000  
0000 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
0--- 0-q0  
0-00 0101  
---- ---0  
0q-q qquu  
uuuu uuuu  
uuuu uuuu  
u0uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--00 qqqq  
0-00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
01-0 0-00  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
u--- u-qu  
u-uu uuuu  
---- ---u  
uq-u qquu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uu-u u-uu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
HLVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
BAUDCON  
SPBRG  
RCREG  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
4: See Table 4-3 for Reset value for specific condition.  
5: PORTA<6>, LATA<6> and TRISA<6> are enabled depending on the oscillator mode selected. When not  
enabled as PORTA pins, they are disabled and read ‘0’.  
DS39760D-page 50  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 4-4:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction,  
Stack Resets  
TXREG  
TXSTA  
RCSTA  
EECON2  
EECON1  
IPIR2  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
-x-0 x00-  
1-1- -1--  
0-0- -0--  
0-0- -0--  
-111 -111  
-000 -000  
-000 -000  
---- -111  
1111 1111  
11-- -111  
1111 1111  
-111 1111(5)  
---- -xxx  
xxxx xxxx  
xx-- -xxx  
xxxx xxxx  
-xxx xxxx(5)  
---- x000  
xxxx xxxx  
xxxx -xxx  
xxxx xxxx  
-x0x 0000(5)  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
0000 0000  
0000 0010  
0000 000x  
0000 0000  
-u-0 u00-  
1-1- -1--  
0-0- -0--  
0-0- -0--  
-111 -111  
-000 -000  
-000 -000  
---- -111  
1111 1111  
11-- -111  
1111 1111  
-111 1111(5)  
---- -uuu  
uuuu uuuu  
uu-- -uuu  
uuuu uuuu  
-uuu uuuu(5)  
---- x000  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
-u0u 0000(5)  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
-u-0 u00-  
u-u- -u--  
u-u- -u--(2)  
u-u- -u--  
-uuu -uuu  
-uuu -uuu(2)  
-uuu -uuu  
---- -uuu  
uuuu uuuu  
uu-- -uuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uu-- -uuu  
uuuu uuuu  
-uuu uuuu(5)  
---- uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
-uuu uuuu(5)  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5)  
LATE  
LATD  
LATC  
LATB  
LATA(5)  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5)  
UEP15  
UEP14  
UEP13  
UEP12  
UEP11  
UEP10  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
4: See Table 4-3 for Reset value for specific condition.  
5: PORTA<6>, LATA<6> and TRISA<6> are enabled depending on the oscillator mode selected. When not  
enabled as PORTA pins, they are disabled and read ‘0’.  
© 2008 Microchip Technology Inc.  
DS39760D-page 51  
PIC18F2450/4450  
TABLE 4-4:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets,  
WDT Reset,  
RESET Instruction,  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
UEP9  
UEP8  
UEP7  
UEP6  
UEP5  
UEP4  
UEP3  
UEP2  
UEP1  
UEP0  
UCFG  
UADDR  
UCON  
USTAT  
UEIE  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
2450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
4450  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
00-0 0000  
-000 0000  
-0x0 000-  
-xxx xxx-  
0--0 0000  
0--0 0000  
-000 0000  
-000 0000  
---- -xxx  
xxxx xxxx  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
---0 0000  
00-0 0000  
-000 0000  
-0x0 000-  
-xxx xxx-  
0--0 0000  
0--0 0000  
-000 0000  
-000 0000  
---- -xxx  
xxxx xxxx  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
---u uuuu  
uu-u uuuu  
-uuu uuuu  
-uuu uuu-  
-uuu uuu-  
u--u uuuu  
u--u uuuu  
-uuu uuuu  
-uuu uuuu  
---- -uuu  
uuuu uuuu  
UEIR  
UIE  
UIR  
UFRMH  
UFRML  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
2: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
4: See Table 4-3 for Reset value for specific condition.  
5: PORTA<6>, LATA<6> and TRISA<6> are enabled depending on the oscillator mode selected. When not  
enabled as PORTA pins, they are disabled and read ‘0’.  
DS39760D-page 52  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
5.1  
Program Memory Organization  
5.0  
MEMORY ORGANIZATION  
PIC18 microcontrollers implement a 21-bit program  
counter which is capable of addressing a 2-Mbyte  
program memory space. Accessing a location between  
the upper boundary of the physically implemented  
memory and the 2-Mbyte address will return all ‘0’s (a  
NOPinstruction).  
There are two types of memory in PIC18F2450/4450  
microcontroller devices:  
• Program Memory  
• Data RAM  
As Harvard architecture devices, the data and program  
memories use separate busses; this allows for  
concurrent access of the two memory spaces.  
The PIC18F2450 and PIC18F4450 each have 16 Kbytes  
of Flash memory and can store up to 8192 single-word  
instructions.  
Additional detailed information on the operation of the  
Flash program memory is provided in Section 6.0  
“Flash Program Memory”.  
PIC18 devices have two interrupt vectors. The Reset  
vector address is at 0000h and the interrupt vector  
addresses are at 0008h and 0018h.  
The program memory maps for PIC18F2450 and  
PIC18F4450 devices are shown in Figure 5-1.  
FIGURE 5-1:  
PROGRAM MEMORY MAP AND STACK FOR PIC18F2450/4450 DEVICES  
PIC18F2450/4450  
PC<20:0>  
21  
CALL, RCALL, RETURN,  
RETFIE, RETLW, CALLW,  
ADDULNK, SUBULNK  
Stack Level 1  
Stack Level 31  
Reset Vector  
0000h  
0008h  
High-Priority Interrupt Vector  
Low-Priority Interrupt Vector 0018h  
On-Chip  
Program Memory  
3FFFh  
4000h  
Read ‘0’  
1FFFFFh  
200000h  
© 2008 Microchip Technology Inc.  
DS39760D-page 53  
PIC18F2450/4450  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit Stack Pointer, STKPTR. The stack space is not  
part of either program or data space. The Stack Pointer  
is readable and writable and the address on the top of  
the stack is readable and writable through the Top-of-  
Stack Special Function Registers. Data can also be  
pushed to, or popped from the stack, using these  
registers.  
5.1.1  
PROGRAM COUNTER  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits wide  
and is contained in three separate 8-bit registers. The  
low byte, known as the PCL register, is both readable  
and writable. The high byte, or PCH register, contains  
the PC<15:8> bits; it is not directly readable or writable.  
Updates to the PCH register are performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits; it is also not  
directly readable or writable. Updates to the PCU  
register are performed through the PCLATU register.  
A CALLtype instruction causes a push onto the stack.  
The Stack Pointer is first incremented and the location  
pointed to by the Stack Pointer is written with the  
contents of the PC (already pointing to the instruction  
following the CALL). A RETURNtype instruction causes  
a pop from the stack. The contents of the location  
pointed to by the STKPTR are transferred to the PC  
and then the Stack Pointer is decremented.  
The contents of PCLATH and PCLATU are transferred  
to the program counter by any operation that writes  
PCL. Similarly, the upper two bytes of the program  
counter are transferred to PCLATH and PCLATU by an  
operation that reads PCL. This is useful for computed  
offsets to the PC (see Section 5.1.4.1 “Computed  
GOTO”).  
The Stack Pointer is initialized to ‘00000’ after all  
Resets. There is no RAM associated with the location  
corresponding to a Stack Pointer value of ‘00000’; this  
is only a Reset value. Status bits indicate if the stack is  
full, has overflowed or has underflowed.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the Least Significant bit of PCL is fixed to  
a value of ‘0’. The PC increments by 2 to address  
sequential instructions in the program memory.  
5.1.2.1  
Only the top of the return address stack (TOS) is  
readable and writable. set of three registers,  
Top-of-Stack Access  
A
The CALL, RCALL and GOTO program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
TOSU:TOSH:TOSL, hold the contents of the stack loca-  
tion pointed to by the STKPTR register (Figure 5-2). This  
allows users to implement a software stack if necessary.  
After a CALL, RCALLor interrupt, the software can read  
the pushed value by reading the TOSU:TOSH:TOSL  
registers. These values can be placed on a user-defined  
software stack. At return time, the software can return  
these values to TOSU:TOSH:TOSL and do a return.  
5.1.2  
RETURN ADDRESS STACK  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC is  
pushed onto the stack when a CALL or RCALL  
instruction is executed or an interrupt is Acknowledged.  
The PC value is pulled off the stack on a RETURN,  
RETLWor a RETFIEinstruction. PCLATU and PCLATH  
are not affected by any of the RETURN or CALL  
instructions.  
The user must disable the global interrupt enable bits  
while accessing the stack to prevent inadvertent stack  
corruption.  
FIGURE 5-2:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack<20:0>  
11111  
11110  
11101  
Top-of-Stack Registers  
Stack Pointer  
STKPTR<4:0>  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00010  
00011  
00010  
00001  
00000  
001A34h  
000D58h  
Top-of-Stack  
DS39760D-page 54  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the Stack  
Pointer remains at zero. The STKUNF bit will remain  
set until cleared by software or until a POR occurs.  
5.1.2.2  
Return Stack Pointer (STKPTR)  
The STKPTR register (Register 5-1) contains the Stack  
Pointer value, the STKFUL (Stack Full) status bit and  
the STKUNF (Stack Underflow) status bit. The value of  
the Stack Pointer can be 0 through 31. The Stack  
Pointer increments before values are pushed onto the  
stack and decrements after values are popped off the  
stack. On Reset, the Stack Pointer value will be zero.  
The user may read and write the Stack Pointer value.  
This feature can be used by a Real-Time Operating  
System (RTOS) for return stack maintenance.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken. This is  
not the same as a Reset, as the contents  
of the SFRs are not affected.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit is cleared by software or by a  
POR.  
5.1.2.3  
PUSHand POPInstructions  
Since the Top-of-Stack is readable and writable, the  
ability to push values onto the stack and pull values off  
the stack, without disturbing normal program execu-  
tion, is a desirable feature. The PIC18 instruction set  
includes two instructions, PUSH and POP, that permit  
the TOS to be manipulated under software control.  
TOSU, TOSH and TOSL can be modified to place data  
or a return address on the stack.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack  
Overflow Reset Enable) Configuration bit. (Refer to  
Section 18.1 “Configuration Bits” for a description of  
the device Configuration bits.) If STVREN is set  
(default), the 31st push will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to zero.  
The PUSHinstruction places the current PC value onto  
the stack. This increments the Stack Pointer and loads  
the current PC value onto the stack.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and the STKPTR will remain at 31.  
The POP instruction discards the current TOS by  
decrementing the Stack Pointer. The previous value  
pushed onto the stack then becomes the TOS value.  
REGISTER 5-1:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
STKFUL(1)  
bit 7  
R/C-0  
STKUNF(1)  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit(1)  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit(1)  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.  
© 2008 Microchip Technology Inc.  
DS39760D-page 55  
PIC18F2450/4450  
5.1.2.4  
Stack Full and Underflow Resets  
5.1.4  
LOOK-UP TABLES IN PROGRAM  
MEMORY  
Device Resets on stack overflow and stack underflow  
conditions are enabled by setting the STVREN bit in  
Configuration Register 4L. When STVREN is set, a full  
or underflow condition will set the appropriate STKFUL  
or STKUNF bit and then cause a device Reset. When  
STVREN is cleared, a full or underflow condition will set  
the appropriate STKFUL or STKUNF bit but not cause  
a device Reset. The STKFUL or STKUNF bits are  
cleared by user software or a Power-on Reset.  
There may be programming situations that require the  
creation of data structures, or look-up tables, in  
program memory. For PIC18 devices, look-up tables  
can be implemented in two ways:  
• Computed GOTO  
Table Reads  
5.1.4.1  
Computed GOTO  
5.1.3  
FAST REGISTER STACK  
A computed GOTOis accomplished by adding an offset  
to the program counter. An example is shown in  
Example 5-2.  
A Fast Register Stack is provided for the STATUS,  
WREG and BSR registers to provide a “fast return”  
option for interrupts. Each stack is only one level deep  
and is neither readable nor writable. It is loaded with the  
current value of the corresponding register when the  
processor vectors for an interrupt. All interrupt sources  
will push values into the stack registers. The values in  
the registers are then loaded back into their associated  
registers if the RETFIE, FAST instruction is used to  
return from the interrupt.  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW nninstructions. The  
W register is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW nn  
instructions that returns the value ‘nn’ to the calling  
function.  
If both low and high-priority interrupts are enabled, the  
stack registers cannot be used reliably to return from  
low-priority interrupts. If a high-priority interrupt occurs  
while servicing a low-priority interrupt, the stack  
register values stored by the low-priority interrupt will  
be overwritten. In these cases, users must save the key  
registers in software during a low-priority interrupt.  
The offset value (in WREG) specifies the number of  
bytes that the program counter should advance and  
should be multiples of 2 (LSb = 0).  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
If interrupt priority is not used, all interrupts may use the  
Fast Register Stack for returns from interrupt. If no  
interrupts are used, the Fast Register Stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the Fast Register  
Stack for a subroutine call, a CALL label, FAST  
instruction must be executed to save the STATUS,  
WREG and BSR registers to the Fast Register Stack. A  
RETURN,FASTinstruction is then executed to restore  
these registers from the Fast Register Stack.  
EXAMPLE 5-2:  
COMPUTED GOTO USING  
AN OFFSET VALUE  
MOVF  
CALL  
OFFSET, W  
TABLE  
ORG  
TABLE  
nn00h  
ADDWF  
RETLW  
RETLW  
RETLW  
.
PCL  
nnh  
nnh  
nnh  
.
.
Example 5-1 shows a source code example that uses  
the Fast Register Stack during a subroutine call and  
return.  
5.1.4.2  
Table Reads and Table Writes  
A better method of storing data in program memory  
allows two bytes of data to be stored in each instruction  
location.  
EXAMPLE 5-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
Look-up table data may be stored two bytes per  
program word by using table reads and writes. The  
Table Pointer (TBLPTR) register specifies the byte  
address and the Table Latch (TABLAT) register  
contains the data that is read from or written to program  
memory. Data is transferred to or from program  
memory one byte at a time.  
SUB1  
RETURN, FAST ;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
Table read and table write operations are discussed  
further in Section 6.1 “Table Reads and Table  
Writes”.  
DS39760D-page 56  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
5.2.2  
INSTRUCTION FLOW/PIPELINING  
5.2  
PIC18 Instruction Cycle  
An “Instruction Cycle” consists of four Q cycles: Q1  
through Q4. The instruction fetch and execute are  
pipelined in such a manner that a fetch takes one  
instruction cycle, while the decode and execute takes  
another instruction cycle. However, due to the  
pipelining, each instruction effectively executes in one  
cycle. If an instruction causes the program counter to  
change (e.g., GOTO), then two cycles are required to  
complete the instruction (Example 5-3).  
5.2.1  
CLOCKING SCHEME  
The microcontroller clock input, whether from an  
internal or external source, is internally divided by four  
to generate four non-overlapping quadrature clocks  
(Q1, Q2, Q3 and Q4). Internally, the program counter is  
incremented on every Q1; the instruction is fetched  
from the program memory and latched into the Instruc-  
tion Register (IR) during Q4. The instruction is decoded  
and executed during the following Q1 through Q4. The  
clocks and instruction execution flow are shown in  
Figure 5-3.  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 5-3:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
Internal  
Phase  
Clock  
PC  
PC  
PC + 2  
PC + 4  
OSC2/CLKO  
(RC mode)  
Execute INST (PC – 2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC + 2)  
Execute INST (PC + 2)  
Fetch INST (PC + 4)  
EXAMPLE 5-3:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush (NOP)  
Fetch SUB_1 Execute SUB_1  
5. Instruction @ address SUB_1  
Note:  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
© 2008 Microchip Technology Inc.  
DS39760D-page 57  
PIC18F2450/4450  
The CALL and GOTO instructions have the absolute  
program memory address embedded into the  
instruction. Since instructions are always stored on word  
boundaries, the data contained in the instruction is a  
word address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 5-4 shows how the  
instruction, GOTO 0006h, is encoded in the program  
memory. Program branch instructions, which encode a  
relative address offset, operate in the same manner. The  
offset value stored in a branch instruction represents the  
number of single-word instructions that the PC will be  
offset by. Section 19.0 “Instruction Set Summary”  
provides further details of the instruction set.  
5.2.3  
INSTRUCTIONS IN PROGRAM  
MEMORY  
The program memory is addressed in bytes.  
Instructions are stored as two bytes or four bytes in  
program memory. The Least Significant Byte of an  
instruction word is always stored in a program memory  
location with an even address (LSb = 0). To maintain  
alignment with instruction boundaries, the PC  
increments in steps of 2 and the LSb will always read  
0’ (see Section 5.1.1 “Program Counter”).  
Figure 5-4 shows an example of how instruction words  
are stored in the program memory.  
FIGURE 5-4:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
MOVLW  
GOTO  
055h  
0006h  
0Fh  
EFh  
F0h  
C1h  
F4h  
55h  
03h  
00h  
23h  
56h  
Instruction 3:  
MOVFF  
123h, 456h  
used by the instruction sequence. If the first word is  
skipped for some reason and the second word is  
executed by itself, a NOP is executed instead. This is  
necessary for cases when the two-word instruction is  
preceded by a conditional instruction that changes the  
PC. Example 5-4 shows how this works.  
5.2.4  
TWO-WORD INSTRUCTIONS  
The standard PIC18 instruction set has four two-word  
instructions: CALL, MOVFF, GOTO and LSFR. In all  
cases, the second word of the instructions always has  
1111’ as its four Most Significant bits; the other 12 bits  
are literal data, usually a data memory address.  
Note:  
See Section 5.5 “Program Memory and  
the Extended Instruction Set” for  
information on two-word instruction in the  
extended instruction set.  
The use of ‘1111’ in the 4 MSbs of an instruction  
specifies a special form of NOP. If the instruction is  
executed in proper sequence, immediately after the  
first word, the data in the second word is accessed and  
EXAMPLE 5-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
REG1  
REG1, REG2 ; No, skip this word  
; Execute this word as a NOP  
; continue code  
; is RAM location 0?  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
CASE 2:  
MOVFF  
ADDWF  
REG3  
Object Code  
Source Code  
TSTFSZ  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
REG1  
; is RAM location 0?  
MOVFF  
REG1, REG2 ; Yes, execute this word  
; 2nd word of instruction  
ADDWF  
REG3  
; continue code  
DS39760D-page 58  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
5.3.2  
BANK SELECT REGISTER (BSR)  
5.3  
Data Memory Organization  
Large areas of data memory require an efficient  
addressing scheme to make rapid access to any  
address possible. Ideally, this means that an entire  
address does not need to be provided for each read or  
write operation. For PIC18 devices, this is  
accomplished with a RAM banking scheme. This  
divides the memory space into 16 contiguous banks of  
256 bytes. Depending on the instruction, each location  
can be addressed directly by its full 12-bit address, or  
an 8-bit low-order address and a 4-bit Bank Pointer.  
Note:  
The operation of some aspects of data  
memory are changed when the PIC18  
extended instruction set is enabled. See  
Section 5.6 “Data Memory and the  
Extended Instruction Set” for more  
information.  
The data memory in PIC18 devices is implemented as  
static RAM. Each register in the data memory has a  
12-bit address, allowing up to 4096 bytes of data  
memory. The memory space is divided into as many as  
16 banks that contain 256 bytes each. PIC18F2450/  
4450 devices implement three complete banks, for a  
total of 768 bytes. Figure 5-5 shows the data memory  
organization for the devices.  
Most instructions in the PIC18 instruction set make use  
of the Bank Pointer, known as the Bank Select Register  
(BSR). This SFR holds the 4 Most Significant bits of a  
location’s address; the instruction itself includes the  
8 Least Significant bits. Only the four lower bits of the  
BSR are implemented (BSR3:BSR0). The upper four  
bits are unused; they will always read ‘0’ and cannot be  
written to. The BSR can be loaded directly by using the  
MOVLBinstruction.  
The data memory contains Special Function Registers  
(SFRs) and General Purpose Registers (GPRs). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratchpad operations in the user’s  
application. Any read of an unimplemented location will  
read as ‘0’s.  
The value of the BSR indicates the bank in data  
memory. The eight bits in the instruction show the loca-  
tion in the bank and can be thought of as an offset from  
the bank’s lower boundary. The relationship between  
the BSR’s value and the bank division in data memory  
is shown in Figure 5-6.  
The instruction set and architecture allow operations  
across all banks. The entire data memory may be  
accessed by Direct, Indirect or Indexed Addressing  
modes. Addressing modes are discussed later in this  
subsection.  
Since up to 16 registers may share the same low-order  
address, the user must always be careful to ensure that  
the proper bank is selected before performing a data  
read or write. For example, writing what should be  
program data to an 8-bit address of F9h, while the BSR  
is 0Fh, will end up resetting the program counter.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle, PIC18  
devices implement an Access Bank. This is a 256-byte  
memory space that provides fast access to SFRs and  
the lower portion of GPR Bank 0 without using the  
While any bank can be selected, only those banks that  
are actually implemented can be read or written to.  
Writes to unimplemented banks are ignored, while  
reads from unimplemented banks will return ‘0’s. Even  
so, the STATUS register will still be affected as if the  
operation was successful. The data memory map in  
Figure 5-6 indicates which banks are implemented.  
BSR. Section 5.3.3 “Access Bank” provides  
detailed description of the Access RAM.  
a
5.3.1  
USB RAM  
Bank 4 of the data memory is actually mapped to  
special dual port RAM. When the USB module is  
disabled, the GPRs in these banks are used like any  
other GPR in the data memory space.  
In the core PIC18 instruction set, only the MOVFF  
instruction fully specifies the 12-bit address of the  
source and target registers. This instruction ignores the  
BSR completely when it executes. All other instructions  
include only the low-order address as an operand and  
must use either the BSR or the Access Bank to locate  
their target registers.  
When the USB module is enabled, the memory in this  
bank is allocated as buffer RAM for USB operation.  
This area is shared between the microcontroller core  
and the USB Serial Interface Engine (SIE) and is used  
to transfer data directly between the two.  
It is theoretically possible to use this area of USB RAM  
that is not allocated as USB buffers for normal scratch-  
pad memory or other variable storage. In practice, the  
dynamic nature of buffer allocation makes this risky at  
best. Bank 4 is also used for USB buffer management  
when the module is enabled and should not be used for  
any other purposes during that time.  
Additional information on USB RAM and buffer  
operation is provided in Section 14.0 “Universal  
Serial Bus (USB)”.  
© 2008 Microchip Technology Inc.  
DS39760D-page 59  
PIC18F2450/4450  
FIGURE 5-5:  
DATA MEMORY MAP FOR PIC18F2450/4450 DEVICES  
When a = 0:  
The BSR is ignored and the  
BSR<3:0>  
Data Memory Map  
Access Bank is used.  
000h  
05Fh  
060h  
0FFh  
100h  
00h  
Access RAM  
GPR  
= 0000  
= 0001  
= 0010  
The first 96 bytes are  
general purpose RAM  
(from Bank 0).  
Bank 0  
FFh  
00h  
GPR  
The remaining 160 bytes are  
Special Function Registers  
(from Bank 15).  
Bank 1  
Bank 2  
1FFh  
200h  
FFh  
00h  
Unused  
Read as 00h  
When a = 1:  
FFh  
00h  
2FFh  
300h  
The BSR specifies the bank  
used by the instruction.  
= 0011  
Unused  
Read as 00h  
Bank 3  
Bank 4  
Bank 5  
3FFh  
400h  
FFh  
00h  
= 0100  
= 0101  
GPR(1)  
4FFh  
800h  
FFh  
00h  
Access Bank  
00h  
Access RAM Low  
5Fh  
60h  
Access RAM High  
(SFRs)  
FFh  
to  
Unused  
Read as 00h  
= 1110  
Bank 14  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
FFh  
00h  
Unused  
SFR  
= 1111  
Bank 15  
FFh  
Note 1: This bank also serve as RAM buffer for USB operation. See Section 5.3.1 “USB RAM” for more  
information.  
DS39760D-page 60  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 5-6:  
USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)  
Data Memory  
(2)  
(1)  
From Opcode  
BSR  
000h  
100h  
7
0
7
0
00h  
Bank 0  
Bank 1  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
FFh  
00h  
(2)  
Bank Select  
FFh  
00h  
200h  
300h  
Bank 2  
FFh  
00h  
Bank 3  
through  
Bank 13  
FFh  
00h  
E00h  
Bank 14  
Bank 15  
FFh  
00h  
F00h  
FFFh  
FFh  
Note 1: The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to  
the registers of the Access Bank.  
2: The MOVFF instruction embeds the entire 12-bit address in the instruction.  
however, the instruction is forced to use the Access  
Bank address map; the current value of the BSR is  
ignored entirely.  
5.3.3  
ACCESS BANK  
While the use of the BSR, with an embedded 8-bit  
address, allows users to address the entire range of  
data memory, it also means that the user must always  
ensure that the correct bank is selected. Otherwise,  
data may be read from or written to the wrong location.  
This can be disastrous if a GPR is the intended target  
of an operation but an SFR is written to instead.  
Verifying and/or changing the BSR for each read or  
write to data memory can become very inefficient.  
Using this “forced” addressing allows the instruction to  
operate on a data address in a single cycle without  
updating the BSR first. For 8-bit addresses of 60h and  
above, this means that users can evaluate and operate  
on SFRs more efficiently. The Access RAM below 60h  
is a good place for data values that the user might need  
to access rapidly, such as immediate computational  
results or common program variables. Access RAM  
also allows for faster and more code efficient context  
saving and switching of variables.  
To streamline access for the most commonly used data  
memory locations, the data memory is configured with  
an Access Bank, which allows users to access a  
mapped block of memory without specifying a BSR.  
The Access Bank consists of the first 96 bytes of  
memory (00h-5Fh) in Bank 0 and the last 160 bytes of  
memory (60h-FFh) in Block 15. The lower half is known  
as the “Access RAM” and is composed of GPRs. The  
upper half is where the device’s SFRs are mapped.  
These two areas are mapped contiguously in the  
Access Bank and can be addressed in a linear fashion  
by an 8-bit address (Figure 5-5).  
The mapping of the Access Bank is slightly different  
when the extended instruction set is enabled (XINST  
Configuration bit = 1). This is discussed in more detail  
in Section 5.6.3 “Mapping the Access Bank in  
Indexed Literal Offset Mode”.  
5.3.4  
GENERAL PURPOSE  
REGISTER FILE  
PIC18 devices may have banked memory in the GPR  
area. This is data RAM which is available for use by all  
instructions. GPRs start at the bottom of Bank 0  
(address 000h) and grow upwards towards the bottom of  
the SFR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
The Access Bank is used by core PIC18 instructions  
that include the Access RAM bit (the ‘a’ parameter in  
the instruction). When ‘a’ is equal to ‘1’, the instruction  
uses the BSR and the 8-bit address included in the  
opcode for the data memory address. When ‘a’ is ‘0’,  
© 2008 Microchip Technology Inc.  
DS39760D-page 61  
PIC18F2450/4450  
peripheral functions. The Reset and interrupt registers  
are described in their respective chapters, while the  
ALU’s STATUS register is described later in this  
section. Registers related to the operation of a  
peripheral feature are described in the chapter for that  
peripheral.  
5.3.5  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM in the data memory space.  
SFRs start at the top of data memory and extend  
downward to occupy the top segment of Bank 15, from  
F60h to FFFh. A list of these registers is given in  
Table 5-1 and Table 5-2.  
The SFRs are typically distributed among the  
peripherals whose functions they control. Unused SFR  
locations are unimplemented and read as ‘0’s.  
The SFRs can be classified into two sets: those  
associated with the “core” device functionality (ALU,  
Resets and interrupts) and those related to the  
TABLE 5-1:  
SPECIAL FUNCTION REGISTER MAP FOR PIC18F2450/4450 DEVICES  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
(1)  
FFFh  
FFEh  
FFDh  
TOSU  
TOSH  
TOSL  
FDFh  
INDF2  
FBFh  
FBEh  
CCPR1H  
CCPR1L  
F9Fh  
F9Eh  
F9Dh  
F9Ch  
F9Bh  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
IPR1  
PIR1  
PIE1  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F76h  
F75h  
F74h  
F73h  
F72h  
F71h  
F70h  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
UEP15  
UEP14  
UEP13  
UEP12  
UEP11  
UEP10  
UEP9  
UEP8  
UEP7  
UEP6  
UEP5  
UEP4  
UEP3  
UEP2  
UEP1  
UEP0  
UCFG  
UADDR  
UCON  
USTAT  
UEIE  
(1)  
(1)  
FDEh POSTINC2  
FDDh POSTDEC2  
FBDh CCP1CON  
(1)  
(2)  
(2)  
FFCh  
FFBh  
FFAh  
FF9h  
STKPTR  
PCLATU  
PCLATH  
PCL  
FDCh PREINC2  
FBCh  
FBBh  
FBAh  
FB9h  
(1)  
(2)  
(2)  
(2)  
(2)  
FDBh PLUSW2  
(2)  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FSR2H  
FSR2L  
(2)  
(2)  
FF8h TBLPTRU  
FF7h TBLPTRH  
STATUS  
TMR0H  
TMR0L  
T0CON  
FB8h BAUDCON  
(2)  
(2)  
FB7h  
FB6h  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(3)  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
TRISE  
TRISD  
(3)  
(2)  
TRISC  
TRISB  
TRISA  
OSCCON  
INTCON  
INTCON2  
INTCON3  
FD2h HLVDCON  
FD1h WDTCON  
(2)  
(2)  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
RCON  
TMR1H  
TMR1L  
T1CON  
TMR2  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
(1)  
(2)  
INDF0  
(1)  
(1)  
(2)  
FEEh POSTINC0  
(3)  
FEDh POSTDEC0  
LATE  
(1)  
(3)  
FECh PREINC0  
LATD  
(1)  
FEBh PLUSW0  
PR2  
RCSTA  
LATC  
LATB  
LATA  
(2)  
FEAh  
FE9h  
FE8h  
FE7h  
FSR0H  
FSR0L  
WREG  
T2CON  
UEIR  
(2)  
(2)  
UIE  
(2)  
(2)  
(2)  
UIR  
(1)  
(2)  
(1)  
(2)  
INDF1  
FA7h EECON2  
UFRMH  
UFRML  
(1)  
(1)  
(2)  
(2)  
FE6h POSTINC1  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
EECON1  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
FE5h POSTDEC1  
(1)  
(2)  
FE4h PREINC1  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
PORTE  
(1)  
(3)  
(2)  
FE3h PLUSW1  
F83h PORTD  
(2)  
FE2h  
FE1h  
FE0h  
FSR1H  
FSR1L  
BSR  
IPR2  
PIR2  
PIE2  
F82h  
F81h  
F80h  
PORTC  
PORTB  
PORTA  
(2)  
(2)  
Note 1: Not a physical register.  
2: Unimplemented registers are read as ‘0’.  
3: These registers are implemented only on 40/44-pin devices.  
DS39760D-page 62  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 5-2:  
File Name  
TOSU  
REGISTER FILE SUMMARY (PIC18F2450/4450)  
Value on  
POR, BOR on Page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 49, 54  
0000 0000 49, 54  
0000 0000 49, 54  
00-0 0000 49, 55  
---0 0000 49, 54  
0000 0000 49, 54  
0000 0000 49, 54  
--00 0000 49, 76  
0000 0000 49, 76  
0000 0000 49, 76  
0000 0000 49, 76  
xxxx xxxx 49, 83  
xxxx xxxx 49, 83  
0000 000x 49, 87  
1111 -1-1 49, 88  
11-0 0-00 49, 89  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
SP4  
SP3  
SP2  
SP1  
SP0  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
bit 21(1)  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
GIE/GIEH  
RBPU  
PEIE/GIEL  
INTEDG0  
INT1IP  
TMR0IE  
INTEDG1  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
INT2IP  
INT1IE  
INT2IF  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
49, 68  
49, 69  
49, 69  
49, 69  
49, 69  
POSTINC0  
POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) –  
value of FSR0 offset by W  
FSR0H  
FSR0L  
Indirect Data Memory Address Pointer 0 High Byte  
---- 0000 49, 68  
xxxx xxxx 49, 68  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
xxxx xxxx  
N/A  
49,  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
49, 68  
49, 69  
49, 69  
49, 69  
49, 69  
POSTINC1  
N/A  
POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
N/A  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
N/A  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) –  
value of FSR1 offset by W  
N/A  
FSR1H  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1 High Byte  
---- 0000 49, 68  
xxxx xxxx 49, 68  
---- 0000 49, 59  
Indirect Data Memory Address Pointer 1 Low Byte  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
N/A  
N/A  
N/A  
N/A  
N/A  
50, 68  
50, 69  
50, 69  
50, 69  
50, 69  
POSTINC2  
POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –  
value of FSR2 offset by W  
FSR2H  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
Indirect Data Memory Address Pointer 2 High Byte  
---- 0000 50, 68  
xxxx xxxx 50, 68  
---x xxxx 50, 66  
0000 0000 50, 113  
xxxx xxxx 50, 113  
1111 1111 50, 111  
Indirect Data Memory Address Pointer 2 Low Byte  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2  
T0PS1  
T0PS0  
Legend:  
Note 1:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition. Shaded cells are unimplemented, read as ‘0’.  
Bit 21 of the TBLPTRU allows access to the device Configuration bits.  
2:  
3:  
The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as ‘0’.  
These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
4:  
5:  
6:  
RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read ‘0’.  
RE3 is only available as a port pin when the MCLRE Configuration bit is clear; otherwise, the bit reads as ‘0’.  
RC5 and RC4 are only available as port pins when the USB module is disabled (UCON<3> = 0).  
© 2008 Microchip Technology Inc.  
DS39760D-page 63  
PIC18F2450/4450  
TABLE 5-2:  
File Name  
REGISTER FILE SUMMARY (PIC18F2450/4450) (CONTINUED)  
Value on  
POR, BOR on Page:  
Details  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
IDLEN  
IRVST  
HLVDEN  
OSTS  
HLVDL3  
HLVDL2  
SCS1  
HLVDL1  
SCS0  
HLVDL0  
SWDTEN  
BOR  
0--- q-00 50, 31  
0-00 0101 50, 185  
HLVDCON  
WDTCON  
RCON  
VDIRMAG  
--- ---0  
50, 204  
IPEN  
SBOREN(2)  
RI  
TO  
PD  
POR  
0q-1 11q0 50, 42  
xxxx xxxx 50, 120  
xxxx xxxx 50, 120  
0000 0000 50, 115  
0000 0000 50, 122  
1111 1111 50, 122  
TMR1H  
TMR1L  
T1CON  
TMR2  
Timer1 Register High Byte  
Timer1 Register Low Byte  
RD16  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON  
Timer2 Register  
PR2  
Timer2 Period Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
T2CON  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
BAUDCON  
SPBRGH  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EECON2  
EECON1  
IPR2  
T2CKPS0 -000 0000 50, 121  
xxxx xxxx 50, 184  
A/D Result Register High Byte  
A/D Result Register Low Byte  
xxxx xxxx 50, 184  
CHS3  
VCFG1  
ACQT2  
CHS2  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0  
ADCS0  
--00 0000 50, 175  
--00 qqqq 50, 176  
0-00 0000 50, 177  
xxxx xxxx 50, 124  
xxxx xxxx 50, 124  
--00 0000 50, 123,  
01-0 0-00 51, 156,  
0000 0000 50, 157  
0000 0000 50, 157  
0000 0000 50, 165  
0000 0000 51, 163  
0000 0010 51, 154  
0000 000x 51, 155  
0000 0000 51, 74  
-x-0 x00- 51, 75  
1-1- -1-- 51, 95  
0-0- -0-- 51, 91  
0-0- -0-- 51, 93  
-111 -111 51, 94  
-000 -000 51, 90  
-000 -000 51, 92  
---- -111 51, 110  
1111 1111 51, 108  
11-- -111 51, 106  
1111 1111 51, 103  
-111 1111 51, 100  
---- -xxx 51, 110  
xxxx xxxx 51, 108  
xx-- -xxx 51, 106  
xxxx xxxx 51, 103  
-xxx xxxx 51, 100  
---- x000 51, 109  
xxxx xxxx 51, 108  
ADFM  
ADCS1  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
DC1B1  
DC1B0  
SCKP  
CCP1M3  
BRG16  
CCP1M2  
CCP1M1  
WUE  
CCP1M0  
ABDEN  
ABDOVF  
RCIDL  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
EUSART Receive Register  
EUSART Transmit Register  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
Data Memory Control Register 2 (not a physical register)  
OSCFIP  
OSCFIF  
OSCFIE  
CFGS  
USBIP  
USBIF  
USBIE  
RCIP  
RCIF  
RCIE  
FREE  
WRERR  
WREN  
HLVDIP  
HLVDIF  
HLVDIE  
CCP1IP  
CCP1IF  
CCP1IE  
TRISE2  
TRISD2  
TRISC2  
TRISB2  
TRISA2  
LATE2  
LATD2  
LATC2  
LATB2  
LATA2  
WR  
PIR2  
PIE2  
IPR1  
ADIP  
ADIF  
ADIE  
TXIP  
TXIF  
TXIE  
TMR2IP  
TMR2IF  
TMR2IE  
TRISE1  
TRISD1  
TRISC1  
TRISB1  
TRISA1  
LATE1  
LATD1  
LATC1  
LATB1  
LATA1  
RE1(3)  
RD1  
TMR1IP  
TMR1IF  
TMR1IE  
TRISE0  
TRISD0  
TRISC0  
TRISB0  
TRISA0  
LATE0  
LATD0  
LATC0  
LATB0  
LATA0  
RE0(3)  
RD0  
PIR1  
PIE1  
TRISE(3)  
TRISD(3)  
TRISC  
TRISD7  
TRISC7  
TRISB7  
TRISD6  
TRISC6  
TRISB6  
TRISA6(4)  
TRISD5  
TRISD4  
TRISD3  
TRISB  
TRISB5  
TRISA5  
TRISB4  
TRISA4  
TRISB3  
TRISA3  
TRISA  
LATE(3)  
LATD(3)  
LATC  
LATD7  
LATC7  
LATB7  
LATD6  
LATC6  
LATB6  
LATA6(4)  
LATD5  
LATD4  
LATD3  
LATB  
LATB5  
LATA5  
LATB4  
LATA4  
LATB3  
LATA3  
RE3(5)  
RD3  
LATA  
PORTE  
PORTD(3)  
RE2(3)  
RD7  
RD6  
RD5  
RD4  
RD2  
Legend:  
Note 1:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition. Shaded cells are unimplemented, read as ‘0’.  
Bit 21 of the TBLPTRU allows access to the device Configuration bits.  
2:  
3:  
The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as ‘0’.  
These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
4:  
5:  
6:  
RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read ‘0’.  
RE3 is only available as a port pin when the MCLRE Configuration bit is clear; otherwise, the bit reads as ‘0’.  
RC5 and RC4 are only available as port pins when the USB module is disabled (UCON<3> = 0).  
DS39760D-page 64  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 5-2:  
REGISTER FILE SUMMARY (PIC18F2450/4450) (CONTINUED)  
Value on  
POR, BOR on Page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
PORTB  
PORTA  
UEP15  
UEP14  
UEP13  
UEP12  
UEP11  
UEP10  
UEP9  
UEP8  
UEP7  
UEP6  
UEP5  
UEP4  
UEP3  
UEP2  
UEP1  
UEP0  
UCFG  
UADDR  
UCON  
USTAT  
UEIE  
RC7  
RB7  
RC6  
RB6  
RA6(4)  
RC5(6)  
RB5  
RA5  
RC4(6)  
RB4  
RC2  
RB2  
RA2  
RC1  
RC0  
RB0  
RA0  
xxxx -xxx 51, 106  
xxxx xxxx 51, 100  
-x0x 0000 51, 100  
RB3  
RA3  
RB1  
RA4  
RA1  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
UPUEN  
ADDR4  
PKTDIS  
ENDP1  
BTOEE  
BTOEF  
IDLEIE  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPCONDIS EPOUTEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
PPB1  
EPSTALL ---0 0000 51, 135  
EPSTALL ---0 0000 51, 135  
EPSTALL ---0 0000 51, 135  
EPSTALL ---0 0000 51, 135  
EPSTALL ---0 0000 51, 135  
EPSTALL ---0 0000 51, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
EPSTALL ---0 0000 52, 135  
UTEYE  
UOEMON  
ADDR6  
PPBRST  
ENDP3  
UTRDIS  
ADDR3  
USBEN  
ENDP0  
DFN8EE  
DFN8EF  
TRNIE  
TRNIF  
FSEN  
ADDR2  
RESUME  
DIR  
PPB0  
ADDR0  
00-0 0000 52, 132  
-000 0000 52, 136  
-0x0 000- 52, 130  
-xxx xxx- 52, 134  
0--0 0000 52, 148  
0--0 0000 52, 147  
-000 0000 52, 146  
-000 0000 52, 144  
---- -xxx 52, 136  
xxxx xxxx 52, 136  
ADDR5  
SE0  
ENDP2  
ADDR1  
SUSPND  
PPBI  
BTSEE  
BTSEF  
CRC16EE  
CRC16EF  
ACTVIE  
ACTVIF  
FRM10  
FRM2  
CRC5EE  
CRC5EF  
UERRIE  
UERRIF  
FRM9  
PIDEE  
PIDEF  
URSTIE  
URSTIF  
FRM8  
FRM0  
UEIR  
UIE  
SOFIE  
SOFIF  
STALLIE  
STALLIF  
UIR  
IDLEIF  
UFRMH  
UFRML  
FRM7  
FRM6  
FRM5  
FRM4  
FRM3  
FRM1  
Legend:  
Note 1:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition. Shaded cells are unimplemented, read as ‘0’.  
Bit 21 of the TBLPTRU allows access to the device Configuration bits.  
2:  
3:  
The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as ‘0’.  
These registers and/or bits are not implemented on 28-pin devices and are read as ‘0’. Reset values are shown for 40/44-pin devices;  
individual unimplemented bits should be interpreted as ‘-’.  
4:  
5:  
6:  
RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read ‘0’.  
RE3 is only available as a port pin when the MCLRE Configuration bit is clear; otherwise, the bit reads as ‘0’.  
RC5 and RC4 are only available as port pins when the USB module is disabled (UCON<3> = 0).  
© 2008 Microchip Technology Inc.  
DS39760D-page 65  
PIC18F2450/4450  
It is recommended that only BCF, BSF, SWAPF, MOVFF  
and MOVWFinstructions are used to alter the STATUS  
register because these instructions do not affect the Z,  
C, DC, OV or N bits in the STATUS register.  
5.3.6  
STATUS REGISTER  
The STATUS register, shown in Register 5-2, contains  
the arithmetic status of the ALU. As with any other SFR,  
it can be the operand for any instruction.  
For other instructions that do not affect Status bits, see  
the instruction set summaries in Table 19-2 and  
Table 19-3.  
If the STATUS register is the destination for an instruction  
that affects the Z, DC, C, OV or N bits, the results of the  
instruction are not written; instead, the STATUS register  
is updated according to the instruction performed.  
Therefore, the result of an instruction with the STATUS  
register as its destination may be different than intended.  
As an example, CLRF STATUSwill set the Z bit and leave  
the remaining Status bits unchanged (‘000u u1uu’).  
Note:  
The C and DC bits operate as the Borrow  
and Digit Borrow bits, respectively, in  
subtraction.  
REGISTER 5-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit  
magnitude which causes the sign bit (bit 7 of the result) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit(1)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
bit 0  
C: Carry/Borrow bit(2)  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register.  
2: For borrow, the polarity is reversed. A subtraction is executed by adding the 2’s complement of the second  
operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the  
source register.  
DS39760D-page 66  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Purpose Register File”) or a location in the Access  
Bank (Section 5.3.3 “Access Bank”) as the data  
source for the instruction.  
5.4  
Data Addressing Modes  
Note:  
The execution of some instructions in the  
core PIC18 instruction set are changed  
when the PIC18 extended instruction  
set is enabled. See Section 5.6 “Data  
Memory and the Extended Instruction  
Set” for more information.  
The Access RAM bit ‘a’ determines how the address is  
interpreted. When ‘a’ is ‘1’, the contents of the BSR  
(Section 5.3.2 “Bank Select Register (BSR)”) are  
used with the address to determine the complete 12-bit  
address of the register. When ‘a’ is ‘0’, the address is  
interpreted as being a register in the Access Bank.  
Addressing that uses the Access RAM is sometimes  
also known as Direct Forced Addressing mode.  
While the program memory can be addressed in only  
one way – through the program counter – information  
in the data memory space can be addressed in several  
ways. For most instructions, the addressing mode is  
fixed. Other instructions may use up to three modes,  
depending on which operands are used and whether or  
not the extended instruction set is enabled.  
A few instructions, such as MOVFF, include the entire  
12-bit address (either source or destination) in their  
opcodes. In these cases, the BSR is ignored entirely.  
The destination of the operation’s results is determined  
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are  
stored back in the source register, overwriting its origi-  
nal contents. When ‘d’ is ‘0’, the results are stored in  
the W register. Instructions without the ‘d’ argument  
have a destination that is implicit in the instruction; their  
destination is either the target register being operated  
on or the W register.  
The addressing modes are:  
• Inherent  
• Literal  
• Direct  
• Indirect  
An additional addressing mode, Indexed Literal Offset,  
is available when the extended instruction set is  
enabled (XINST Configuration bit = 1). Its operation is  
discussed in greater detail in Section 5.6.1 “Indexed  
Addressing with Literal Offset”.  
5.4.3  
INDIRECT ADDRESSING  
Indirect Addressing allows the user to access a location  
in data memory without giving a fixed address in the  
instruction. This is done by using File Select Registers  
(FSRs) as pointers to the locations to be read or written  
to. Since the FSRs are themselves located in RAM as  
Special Function Registers, they can also be directly  
manipulated under program control. This makes FSRs  
very useful in implementing data structures, such as  
tables and arrays in data memory.  
5.4.1  
INHERENT AND LITERAL  
ADDRESSING  
Many PIC18 control instructions do not need any  
argument at all; they either perform an operation that  
globally affects the device or they operate implicitly on  
one register. This addressing mode is known as  
Inherent Addressing. Examples include SLEEP, RESET  
and DAW.  
The registers for Indirect Addressing are also  
implemented with Indirect File Operands (INDFs) that  
permit automatic manipulation of the pointer value with  
auto-incrementing, auto-decrementing or offsetting  
with another value. This allows for efficient code, using  
loops, such as the example of clearing an entire RAM  
bank in Example 5-5.  
Other instructions work in a similar way but require an  
additional explicit argument in the opcode. This is  
known as Literal Addressing mode because they  
require some literal value as an argument. Examples  
include ADDLWand MOVLW, which respectively, add or  
move a literal value to the W register. Other examples  
include CALL and GOTO, which include a 20-bit  
program memory address.  
EXAMPLE 5-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
5.4.2  
DIRECT ADDRESSING  
LFSR  
CLRF  
FSR0, 100h  
POSTINC0  
;
Direct Addressing mode specifies all or part of the  
source and/or destination address of the operation  
within the opcode itself. The options are specified by  
the arguments accompanying the instruction.  
NEXT  
; Clear INDF  
; register then  
; inc pointer  
; All done with  
; Bank1?  
BTFSS FSR0H, 1  
In the core PIC18 instruction set, bit-oriented and byte-  
oriented instructions use some version of Direct  
Addressing by default. All of these instructions include  
some 8-bit literal address as their Least Significant  
Byte. This address specifies either a register address in  
one of the banks of data RAM (Section 5.3.4 “General  
BRA  
CONTINUE  
NEXT  
; NO, clear next  
; YES, continue  
© 2008 Microchip Technology Inc.  
DS39760D-page 67  
PIC18F2450/4450  
mapped in the SFR space but are not physically  
implemented. Reading or writing to a particular INDF  
register actually accesses its corresponding FSR  
register pair. A read from INDF1, for example, reads  
the data at the address indicated by FSR1H:FSR1L.  
Instructions that use the INDF registers as operands  
actually use the contents of their corresponding FSR as  
a pointer to the instruction’s target. The INDF operand  
is just a convenient way of using the pointer.  
5.4.3.1  
FSR Registers and the  
INDF Operand  
At the core of Indirect Addressing are three sets of  
registers: FSR0, FSR1 and FSR2. Each represents a  
pair of 8-bit registers: FSRnH and FSRnL. The four  
upper bits of the FSRnH register are not used, so each  
FSR pair holds a 12-bit value. This represents a value  
that can address the entire range of the data memory  
in a linear fashion. The FSR register pairs, then, serve  
as pointers to data memory locations.  
Because Indirect Addressing uses a full 12-bit address,  
data RAM banking is not necessary. Thus, the current  
contents of the BSR and the Access RAM bit have no  
effect on determining the target address.  
Indirect Addressing is accomplished with a set of  
Indirect File Operands, INDF0 through INDF2. These  
can be thought of as “virtual” registers; they are  
FIGURE 5-7:  
INDIRECT ADDRESSING  
000h  
Using an instruction with one of the  
indirect addressing registers as the  
operand....  
Bank 0  
Bank 1  
ADDWF, INDF1, 1  
100h  
200h  
300h  
Bank 2  
FSR1H:FSR1L  
...uses the 12-bit address stored in  
the FSR pair associated with that  
register....  
7
0
7
0
x x x x 1 1 1 0  
1 1 0 0 1 1 0 0  
Bank 3  
through  
Bank 13  
...to determine the data memory  
location to be used in that operation.  
E00h  
In this case, the FSR1 pair contains  
ECCh. This means the contents of  
location ECCh will be added to that  
of the W register and stored back in  
ECCh.  
Bank 14  
Bank 15  
F00h  
FFFh  
Data Memory  
DS39760D-page 68  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
5.4.3.2  
FSR Registers and POSTINC,  
5.4.3.3  
Operations by FSRs on FSRs  
POSTDEC, PREINC and PLUSW  
Indirect Addressing operations that target other FSRs  
or virtual registers represent special cases. For  
example, using an FSR to point to one of the virtual  
registers will not result in successful operations. As a  
specific case, assume that FSR0H:FSR0L contains  
FE7h, the address of INDF1. Attempts to read the  
value of INDF1, using INDF0 as an operand, will return  
00h. Attempts to write to INDF1, using INDF0 as the  
operand, will result in a NOP.  
In addition to the INDF operand, each FSR register pair  
also has four additional indirect operands. Like INDF,  
these are “virtual” registers that cannot be indirectly  
read or written to. Accessing these registers actually  
accesses the associated FSR register pair, but also  
performs a specific action on it stored value. They are:  
• POSTDEC: accesses the FSR value, then  
automatically decrements it by ‘1’ afterwards  
On the other hand, using the virtual registers to write to  
an FSR pair may not occur as planned. In these cases,  
the value will be written to the FSR pair but without any  
incrementing or decrementing. Thus, writing to INDF2  
or POSTDEC2 will write the same value to the  
FSR2H:FSR2L.  
• POSTINC: accesses the FSR value, then  
automatically increments it by ‘1’ afterwards  
• PREINC: increments the FSR value by ‘1’, then  
uses it in the operation  
• PLUSW: adds the signed value of the W register  
(range of -127 to 128) to that of the FSR and uses  
the new value in the operation.  
Since the FSRs are physical registers mapped in the  
SFR space, they can be manipulated through all direct  
operations. Users should proceed cautiously when  
working on these registers, particularly if their code  
uses Indirect Addressing.  
In this context, accessing an INDF register uses the  
value in the FSR registers without changing them.  
Similarly, accessing a PLUSW register gives the FSR  
value offset by that in the W register; neither value is  
actually changed in the operation. Accessing the other  
virtual registers changes the value of the FSR  
registers.  
Similarly, operations by Indirect Addressing are  
generally permitted on all other SFRs. Users should  
exercise the appropriate caution that they do not  
inadvertently change settings that might affect the  
operation of the device.  
Operations on the FSRs with POSTDEC, POSTINC  
and PREINC affect the entire register pair; that is,  
rollovers of the FSRnL register from FFh to 00h carry  
over to the FSRnH register. On the other hand, results  
of these operations do not change the value of any  
flags in the STATUS register (e.g., Z, N, OV, etc.).  
The PLUSW register can be used to implement a form  
of Indexed Addressing in the data memory space. By  
manipulating the value in the W register, users can  
reach addresses that are fixed offsets from pointer  
addresses. In some applications, this can be used to  
implement some powerful program control structure,  
such as software stacks, inside of data memory.  
© 2008 Microchip Technology Inc.  
DS39760D-page 69  
PIC18F2450/4450  
When using the extended instruction set, this  
addressing mode requires the following:  
5.5  
Program Memory and the  
Extended Instruction Set  
• The use of the Access Bank is forced (‘a’ = 0);  
and  
The operation of program memory is unaffected by the  
use of the extended instruction set.  
• The file address argument is less than or equal  
to 5Fh.  
Enabling the extended instruction set adds eight  
additional two-word commands to the existing  
PIC18 instruction set: ADDFSR, ADDULNK, CALLW,  
MOVSF, MOVSS, PUSHL, SUBFSRand SUBULNK.These  
instructions are executed as described in  
Section 5.2.4 “Two-Word Instructions”.  
Under these conditions, the file address of the  
instruction is not interpreted as the lower byte of an  
address (used with the BSR in Direct Addressing), or  
as an 8-bit address in the Access Bank. Instead, the  
value is interpreted as an offset value to an Address  
Pointer specified by FSR2. The offset and the contents  
of FSR2 are added to obtain the target address of the  
operation.  
5.6  
Data Memory and the Extended  
Instruction Set  
Enabling the PIC18 extended instruction set (XINST  
Configuration bit = 1) significantly changes certain  
aspects of data memory and its addressing.  
Specifically, the use of the Access Bank for many of the  
core PIC18 instructions is different. This is due to the  
introduction of a new addressing mode for the data  
memory space. This mode also alters the behavior of  
Indirect Addressing using FSR2 and its associated  
operands.  
5.6.2  
INSTRUCTIONS AFFECTED BY  
INDEXED LITERAL OFFSET MODE  
Any of the core PIC18 instructions that can use Direct  
Addressing are potentially affected by the Indexed  
Literal Offset Addressing mode. This includes all byte-  
oriented and bit-oriented instructions, or almost one-half  
of the standard PIC18 instruction set. Instructions that  
only use Inherent or Literal Addressing modes are  
unaffected.  
What does not change is just as important. The size of  
the data memory space is unchanged, as well as its  
linear addressing. The SFR map remains the same.  
Core PIC18 instructions can still operate in both Direct  
and Indirect Addressing mode; inherent and literal  
instructions do not change at all. Indirect Addressing  
with FSR0 and FSR1 also remains unchanged.  
Additionally, byte-oriented and bit-oriented instructions  
are not affected if they do not use the Access Bank  
(Access RAM bit is ‘1’) or include a file address of 60h  
or above. Instructions meeting these criteria will  
continue to execute as before. A comparison of the  
different possible addressing modes when the  
extended instruction set is enabled in shown in  
Figure 5-8.  
5.6.1  
INDEXED ADDRESSING WITH  
LITERAL OFFSET  
Those who desire to use byte-oriented or bit-oriented  
instructions in the Indexed Literal Offset mode should  
note the changes to assembler syntax for this mode.  
This is described in more detail in Section 19.2.1  
“Extended Instruction Syntax”.  
Enabling the PIC18 extended instruction set changes  
the behavior of Indirect Addressing using the FSR2  
register pair and its associated file operands. Under the  
proper conditions, instructions that use the Access  
Bank – that is, most bit-oriented and byte-oriented  
instructions – can invoke a form of Indexed Addressing  
using an offset specified in the instruction. This special  
addressing mode is known as Indexed Addressing with  
Literal Offset or Indexed Literal Offset mode.  
DS39760D-page 70  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 5-8:  
COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND  
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)  
EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)  
000h  
When a = 0 and f 60h:  
The instruction executes in  
Direct Forced mode. ‘f’ is inter-  
preted as a location in the  
Access RAM between 060h  
and 0FFh. This is the same as  
the SFRs or locations F60h to  
0FFh (Bank 15) of data  
memory.  
060h  
080h  
Bank 0  
100h  
00h  
60h  
Bank 1  
through  
Bank 14  
Valid range  
for ‘f’  
FFh  
F00h  
F60h  
Access RAM  
Locations below 60h are not  
available in this addressing  
mode.  
Bank 15  
SFRs  
FFFh  
Data Memory  
When a = 0 and f 5Fh:  
000h  
080h  
100h  
Bank 0  
The instruction executes in  
Indexed Literal Offset mode. ‘f’  
is interpreted as an offset to the  
address value in FSR2. The  
two are added together to  
obtain the address of the target  
register for the instruction. The  
address can be anywhere in  
the data memory space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
FSR2H  
FSR2L  
F00h  
F60h  
Bank 15  
Note that in this mode, the  
correct syntax is now:  
SFRs  
ADDWF [k], d  
where ‘k’ is the same as ‘f’.  
FFFh  
Data Memory  
BSR  
000h  
080h  
100h  
00000000  
When a = 1 (all values of f):  
Bank 0  
The instruction executes in  
Direct mode (also known as  
Direct Long mode). ‘f’ is inter-  
preted as a location in one of  
the 16 banks of the data  
memory space. The bank is  
designated by the Bank Select  
Register (BSR). The address  
can be in any implemented  
bank in the data memory  
space.  
001001da ffffffff  
Bank 1  
through  
Bank 14  
F00h  
F60h  
Bank 15  
SFRs  
FFFh  
Data Memory  
© 2008 Microchip Technology Inc.  
DS39760D-page 71  
PIC18F2450/4450  
Remapping of the Access Bank applies only to  
operations using the Indexed Literal Offset mode.  
Operations that use the BSR (Access RAM bit is ‘1’) will  
continue to use Direct Addressing as before. Any  
indirect or indexed operation that explicitly uses any of  
the indirect file operands (including FSR2) will continue  
to operate as standard Indirect Addressing. Any  
instruction that uses the Access Bank, but includes a  
register address of greater than 05Fh, will use Direct  
Addressing and the normal Access Bank map.  
5.6.3  
MAPPING THE ACCESS BANK IN  
INDEXED LITERAL OFFSET MODE  
The use of Indexed Literal Offset Addressing mode  
effectively changes how the lower portion of Access  
RAM (00h to 5Fh) is mapped. Rather than containing  
just the contents of the bottom half of Bank 0, this mode  
maps the contents from Bank 0 and a user-defined  
“window” that can be located anywhere in the data  
memory space. The value of FSR2 establishes the  
lower boundary of the addresses mapped into the  
window, while the upper boundary is defined by FSR2  
plus 95 (5Fh). Addresses in the Access RAM above  
5Fh are mapped as previously described (see  
Section 5.3.3 “Access Bank”). An example of Access  
Bank remapping in this addressing mode is shown in  
Figure 5-9.  
5.6.4  
BSR IN INDEXED LITERAL  
OFFSET MODE  
Although the Access Bank is remapped when the  
extended instruction set is enabled, the operation of the  
BSR remains unchanged. Direct Addressing, using the  
BSR to select the data memory bank, operates in the  
same manner as previously described.  
FIGURE 5-9:  
REMAPPING THE ACCESS BANK WITH INDEXED LITERAL  
OFFSET ADDRESSING  
Example Situation:  
000h  
ADDWF f, d, a  
FSR2H:FSR2L = 120h  
Bank 0  
Locations in the region  
from the FSR2 Pointer  
(120h) to the pointer plus  
05Fh (17Fh) are mapped  
to the bottom of the  
Access RAM (000h-05Fh).  
100h  
120h  
17Fh  
Window  
Bank 1  
00h  
Bank 1 “Window”  
200h  
5Fh  
60h  
Special Function Registers  
at F60h through FFFh are  
mapped to 60h through  
FFh as usual.  
Bank 2  
through  
Bank 14  
SFRs  
Bank 0 addresses below  
5Fh are not available in  
this mode. They can still  
be addressed by using the  
BSR.  
FFh  
Access Bank  
F00h  
F60h  
Bank 15  
SFRs  
FFFh  
Data Memory  
DS39760D-page 72  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
6.1  
Table Reads and Table Writes  
6.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data RAM:  
The Flash program memory is readable, writable and  
erasable, during normal operation over the entire VDD  
range.  
Table Read (TBLRD)  
Table Write (TBLWT)  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 16 bytes at a time. Program memory is  
erased in blocks of 64 bytes at a time. A Bulk Erase  
operation may not be issued from user code.  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease  
instruction fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table read operations retrieve data from program  
memory and place it into the data RAM space.  
Figure 6-1 shows the operation of a table read with  
program memory and data RAM.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 6.5 “Writing  
to Flash Program Memory”. Figure 6-2 shows the  
operation of a table write with program memory and data  
RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word-aligned. Therefore, a table block can  
start and end at any byte address. If a table write is being  
used to write executable code into program memory,  
program instructions will need to be word-aligned.  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer register points to a byte in program memory.  
© 2008 Microchip Technology Inc.  
DS39760D-page 73  
PIC18F2450/4450  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of 16 holding registers, the address of which is determined by  
TBLPTRL<3:0>. The process for physically writing data to the program memory array is discussed  
in Section 6.5 “Writing to Flash Program Memory”.  
The FREE bit, when set, will allow a program memory  
erase operation. When FREE is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
6.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set in hardware when the WREN bit is set and cleared  
when the internal programming timer expires and the  
write operation is complete.  
6.2.1  
EECON1 AND EECON2 REGISTERS  
Note:  
During normal operation, the WRERR is  
read as ‘1’. This can indicate that a write  
operation was prematurely terminated by  
The EECON1 register (Register 6-1) is the control  
register for memory accesses. The EECON2 register is  
not a physical register; it is used exclusively in the  
memory write and erase sequences. Reading  
EECON2 will read all ‘0’s.  
a
Reset or  
a write operation was  
attempted improperly.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set, in software; it is cleared in  
hardware at the completion of the write operation.  
The CFGS control bit determines if the access will be  
to the Configuration/Calibration registers or to program  
memory.  
DS39760D-page 74  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 6-1:  
EECON1: MEMORY CONTROL REGISTER 1  
U-0  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
WRERR(1)  
R/W-0  
WREN  
R/S-0  
WR  
U-0  
bit 7  
bit 0  
Legend:  
S = Settable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CFGS: Flash Program or Configuration Select bit  
1= Access Configuration registers  
0= Access Flash program  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write-only  
bit 3  
WRERR: Flash Program Error Flag bit(1)  
1= A write operation is prematurely terminated (any Reset during self-timed programming in normal  
operation or an improper write attempt)  
0= The write operation completed  
bit 2  
bit 1  
WREN: Flash Program Write Enable bit  
1= Allows write cycles to Flash program  
0= Inhibits write cycles to Flash program  
WR: Write Control bit  
1= Initiates a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete.  
The WR bit can only be set (not cleared) in software.)  
0= Write cycle complete  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When a WRERR occurs, the CFGS bit is not cleared. This allows tracing of the error condition.  
© 2008 Microchip Technology Inc.  
DS39760D-page 75  
PIC18F2450/4450  
6.2.2  
TABLE LATCH REGISTER (TABLAT)  
6.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch register is used to  
hold 8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRDis executed, all 22 bits of the TBLPTR  
determine which byte is read from program memory  
into TABLAT.  
6.2.3  
TABLE POINTER REGISTER  
(TBLPTR)  
When a TBLWTis executed, the four LSbs of the Table  
Pointer register (TBLPTR<3:0>) determine which of the  
16 program memory holding registers is written to.  
When the timed write to program memory begins (via  
the WR bit), the 16 MSbs of the TBLPTR  
(TBLPTR<21:4>) determine which program memory  
block of 16 bytes is written to. For more detail, see  
Section 6.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) register addresses a byte  
within the program memory. The TBLPTR is comprised  
of three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three registers  
join to form a 22-bit wide pointer. The low-order 21 bits  
allow the device to address up to 2 Mbytes of program  
memory space. The 22nd bit allows access to the device  
ID, the user ID and the Configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer register (TBLPTR<21:6>)  
point to the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The Table Pointer, TBLPTR, is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways based on the table opera-  
tion. These operations are shown in Table 6-1. These  
operations on the TBLPTR only affect the low-order  
21 bits.  
Figure 6-3 describes the relevant boundaries of the  
TBLPTR based on Flash program memory operations.  
TABLE 6-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
TABLE ERASE  
TBLPTR<21:6>  
TABLE WRITE – TBLPTR<21:4>  
TABLE READ – TBLPTR<21:0>  
DS39760D-page 76  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
6.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
TABLAT  
Read Register  
FETCH  
TBLRD  
(IR)  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
TBLRD*+  
MOVF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_EVEN  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_ODD  
MOVF  
© 2008 Microchip Technology Inc.  
DS39760D-page 77  
PIC18F2450/4450  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing Flash Program Memory  
The minimum erase block is 32 words or 64 bytes. Only  
through the use of an external programmer, or through  
ICSP control, can larger blocks of program memory be  
Bulk Erased. Word Erase in the Flash array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory is:  
1. Load Table Pointer register with address of row  
being erased.  
When initiating an erase sequence from the  
microcontroller itself, a block of 64 bytes of program  
memory is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase operation:  
• clear the CFGS bit to access program memory;  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The WREN bit must be set to enable write operations.  
The FREE bit is set to select an erase operation.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
6. Set the WR bit. This will begin the Row Erase  
cycle.  
For protection, the write initiate sequence for EECON2  
must be used.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
8. Re-enable interrupts.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BCF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
BSF  
DS39760D-page 78  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
The long write is necessary for programming the  
internal Flash. Instruction execution is halted while in a  
long write cycle. The long write will be terminated by  
the internal programming timer.  
6.5  
Writing to Flash Program Memory  
The minimum programming block is 8 words or  
16 bytes. Word or byte programming is not supported.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 16 holding registers used by the table writes for  
programming.  
The write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device.  
Note:  
The default value of the holding registers on  
device Resets and after write operations is  
FFh. A write of FFh to a holding register  
does not modify that byte. This means that  
individual bytes of program memory may be  
modified, provided that the change does not  
attempt to change any bit from a ‘0’ to a ‘1’.  
When modifying individual bytes, it is not  
necessary to load all 16 holding registers  
before executing a write operation.  
Since the Table Latch (TABLAT) is only a single byte, the  
TBLWTinstruction may need to be executed 16 times for  
each programming operation. All of the table write oper-  
ations will essentially be short writes because only the  
holding registers are written. At the end of updating the  
16 holding registers, the EECON1 register must be  
written to in order to start the programming operation  
with a long write.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx1  
TBLPTR = xxxxx2  
TBLPTR = xxxxxF  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
10. Write 0AAh to EECON2.  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
The sequence of events for programming an internal  
program memory location should be:  
13. Re-enable interrupts.  
1. Read 64 bytes into RAM.  
14. Repeat steps 6 through 14 once more to write  
64 bytes.  
2. Update data values in RAM as necessary.  
3. Load Table Pointer register with address being  
erased.  
15. Verify the memory (table read).  
This procedure will require about 8 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 6-3.  
4. Execute the Row Erase procedure.  
5. Load Table Pointer register with address of first  
byte being written.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the 16 bytes in  
the holding register.  
6. Write 16 bytes into the holding registers with  
auto-increment.  
7. Set the EECON1 register for the write operation:  
• clear the CFGS bit to access program memory;  
• set WREN to enable byte writes.  
8. Disable interrupts.  
9. Write 55h to EECON2.  
© 2008 Microchip Technology Inc.  
DS39760D-page 79  
PIC18F2450/4450  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
D'64’  
COUNTER  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; number of bytes in erase block  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
DECFSZ  
BRA  
; read into TABLAT, and inc  
; get data  
; store data  
; done?  
TABLAT, W  
POSTINC0  
COUNTER  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BSF  
BSF  
BCF  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
; load TBLPTR with the base  
; address of the memory block  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
INTCON, GIE  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start erase (CPU stall)  
; re-enable interrupts  
; dummy read decrement  
; point to buffer  
BSF  
TBLRD*-  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BUFFER_ADDR_HIGH  
FSR0H  
BUFFER_ADDR_LOW  
FSR0L  
D’4’  
COUNTER1  
WRITE_BUFFER_BACK  
MOVLW  
D’16’  
; number of bytes in holding register  
MOVWF  
WRITE_BYTE_TO_HREGS  
MOVF  
COUNTER  
POSTINC0, W  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
MOVWF  
TBLWT+*  
DECFSZ  
BRA  
COUNTER  
WRITE_WORD_TO_HREGS  
DS39760D-page 80  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
PROGRAM_MEMORY  
BCF  
BSF  
BCF  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
; access Flash program memory  
; enable write to memory  
; disable interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
DECFSZ  
BRA  
BSF  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
COUNTER1  
WRITE_BUFFER_BACK  
INTCON, GIE  
EECON1, WREN  
Required  
Sequence  
; write 55h  
; write 0AAh  
; start program (CPU stall)  
; re-enable interrupts  
; disable write to memory  
BCF  
6.5.2  
WRITE VERIFY  
6.5.4  
PROTECTION AGAINST SPURIOUS  
WRITES  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
To protect against spurious writes to Flash program  
memory, the write initiate sequence must also be  
followed. See Section 18.0 “Special Features of the  
CPU” for more detail.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
6.6  
Flash Program Operation During  
Code Protection  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and  
reprogrammed if needed. If the write operation is  
interrupted by a MCLR Reset or a WDT time-out Reset  
during normal operation, the user can check the  
WRERR bit and rewrite the location(s) as needed.  
See Section 18.5 “Program Verification and Code  
Protection” for details on code protection of Flash  
program memory.  
TABLE 6-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Reset  
Values  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
49  
49  
49  
49  
49  
51  
51  
51  
51  
51  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
TABLAT  
INTCON  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
EECON2 Data Memory Control Register 2 (not a physical register)  
EECON1  
IPR2  
CFGS  
FREE  
WRERR  
WREN  
HLVDIP  
HLVDIF  
HLVDIE  
WR  
OSCFIP  
OSCFIF  
OSCFIE  
USBIP  
USBIF  
USBIE  
PIR2  
PIE2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used during Flash access.  
© 2008 Microchip Technology Inc.  
DS39760D-page 81  
PIC18F2450/4450  
NOTES:  
DS39760D-page 82  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
EXAMPLE 7-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
7.0  
7.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
All PIC18 devices include an 8 x 8 hardware multiplier  
as part of the ALU. The multiplier performs an unsigned  
operation and yields a 16-bit result that is stored in the  
product register pair, PRODH:PRODL. The multiplier’s  
operation does not affect any flags in the STATUS  
register.  
EXAMPLE 7-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
Making multiplication a hardware operation allows it to  
be completed in a single instruction cycle. This has the  
advantages of higher computational throughput and  
reduced code size for multiplication algorithms and  
allows the PIC18 devices to be used in many applica-  
tions previously reserved for digital signal processors.  
A comparison of various hardware and software  
multiply operations, along with the savings in memory  
and execution time, is shown in Table 7-1.  
MOVF  
MULWF  
ARG1, W  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
7.2  
Operation  
Example 7-1 shows the instruction sequence for an  
8 x 8 unsigned multiplication. Only one instruction is  
required when one of the arguments is already loaded  
in the WREG register.  
Example 7-2 shows the sequence to do an 8 x 8 signed  
multiplication. To account for the sign bits of the  
arguments, each argument’s Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
TABLE 7-1:  
Routine  
PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS  
Program  
Memory  
(Words)  
Time  
Cycles  
(Max)  
Multiply Method  
@ 40 MHz @ 10 MHz @ 4 MHz  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 μs  
100 ns  
9.1 μs  
600 ns  
24.2 μs  
2.8 μs  
25.4 μs  
4.0 μs  
27.6 μs  
400 ns  
36.4 μs  
2.4 μs  
69 μs  
1 μs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 μs  
6 μs  
Without hardware multiply  
Hardware multiply  
21  
28  
52  
35  
242  
28  
254  
40  
96.8 μs  
11.2 μs  
102.6 μs  
16.0 μs  
242 μs  
28 μs  
254 μs  
40 μs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
© 2008 Microchip Technology Inc.  
DS39760D-page 83  
PIC18F2450/4450  
Example 7-3 shows the sequence to do a 16 x 16  
unsigned multiplication. Equation 7-1 shows the  
algorithm that is used. The 32-bit result is stored in four  
registers (RES3:RES0).  
EQUATION 7-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0=ARG1H:ARG1L ARG2H:ARG2L  
16  
= (ARG1H ARG2H 2 ) +  
(ARG1H ARG2L 2 ) +  
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
(-1 ARG1H<7> ARG2H:ARG2L 2  
8
EQUATION 7-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
8
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
)
16  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
EXAMPLE 7-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
(ARG1L ARG2L)  
MOVF  
ARG1L, W  
MULWF  
ARG2L  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
EXAMPLE 7-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L->  
; PRODH:PRODL  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L,W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
PRODL, W  
RES1, F  
PRODH, W  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1, F  
PRODH, W  
;
;
ADDWFC RES2, F  
CLRF WREG  
ADDWFC RES3, F  
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
SIGN_ARG1  
ARG1L, W  
RES2  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
Example 7-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 7-2 shows the algorithm  
used. The 32-bit result is stored in four registers  
(RES3:RES0). To account for the sign bits of the  
arguments, the MSb for each argument pair is tested  
and the appropriate subtractions are done.  
ARG1H, W  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS39760D-page 84  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High-priority interrupt sources can interrupt a low-  
priority interrupt. Low-priority interrupts are not  
processed while high-priority interrupts are in progress.  
8.0  
INTERRUPTS  
The PIC18F2450/4450 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high-priority  
level or a low-priority level. The high-priority interrupt  
vector is at 000008h and the low-priority interrupt vec-  
tor is at 000018h. High-priority interrupt events will  
interrupt any low-priority interrupts that may be in  
progress.  
The return address is pushed onto the stack and the PC  
is loaded with the interrupt vector address (000008h or  
000018h). Once in the Interrupt Service Routine, the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bits must be  
cleared in software before re-enabling interrupts to avoid  
recursive interrupts.  
There are ten registers which are used to control  
interrupt operation. These registers are:  
• RCON  
• INTCON  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used) which re-enables interrupts.  
• INTCON2  
• INTCON3  
• PIR1, PIR2  
• PIE1, PIE2  
• IPR1, IPR2  
For external interrupt events, such as the INTx pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
It is recommended that the Microchip header files  
supplied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
Note:  
Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
Each interrupt source has three bits to control its  
operation. The functions of these bits are:  
• Flag bit to indicate that an interrupt event  
occurred  
8.1  
USB Interrupts  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Unlike other peripherals, the USB module is capable of  
generating a wide range of interrupts for many types of  
events. These include several types of normal commu-  
nication and status events and several module level  
error events.  
• Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set (high priority).  
Setting the GIEL bit (INTCON<6>) enables all  
interrupts that have the priority bit cleared (low priority).  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will  
vector immediately to address 000008h or 000018h,  
depending on the priority bit setting. Individual inter-  
rupts can be disabled through their corresponding  
enable bits.  
To handle these events, the USB module is equipped  
with its own interrupt logic. The logic functions in a  
manner similar to the microcontroller level interrupt  
funnel, with each interrupt source having separate flag  
and enable bits. All events are funneled to a single  
device level interrupt, USBIF (PIR2<5>). Unlike the  
device level interrupt logic, the individual USB interrupt  
events cannot be individually assigned their own prior-  
ity. This is determined at the device level interrupt  
funnel for all USB events by the USBIP bit.  
For additional details on USB interrupt logic, refer to  
Section 14.5 “USB Interrupts”.  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
compatible with PIC® mid-range microcontrollers. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. INTCON<6> is the PEIE bit  
which enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in Compatibility mode.  
© 2008 Microchip Technology Inc.  
DS39760D-page 85  
PIC18F2450/4450  
FIGURE 8-1:  
INTERRUPT LOGIC  
Wake-up if in Sleep Mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIE/GIEH  
TMR1IF  
TMR1IE  
TMR1IP  
IPEN  
From USB  
Interrupt Logic  
IPEN  
USBIF  
USBIE  
USBIP  
PEIE/GIEL  
IPEN  
Additional Peripheral Interrupts  
High-Priority Interrupt Generation  
Low-Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
From USB  
Interrupt Logic  
USBIF  
USBIE  
USBIP  
RBIP  
PEIE/GIEL  
GIE/GIEH  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS39760D-page 86  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
8.2  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
interrupt enable bit. User software should  
ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt.  
This feature allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 8-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE/GIEH  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF(1)  
PEIE/GIEL  
TMR0IE  
INT0IE  
TMR0IF  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high-priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low-priority peripheral interrupts  
0= Disables all low-priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit(1)  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note 1: A mismatch condition will continue to set this bit. Reading PORTB and waiting 1 TCY will end the mismatch  
condition and allow the bit to be cleared.  
© 2008 Microchip Technology Inc.  
DS39760D-page 87  
PIC18F2450/4450  
REGISTER 8-2:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
INTEDG0  
INTEDG1  
INTEDG2  
TMR0IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
bit 5  
bit 4  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
DS39760D-page 88  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 8-3:  
INTCON3: INTERRUPT CONTROL REGISTER 3  
R/W-1  
INT2IP  
bit 7  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT1IP  
INT2IE  
INT1IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding  
enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt. This feature allows for software polling.  
© 2008 Microchip Technology Inc.  
DS39760D-page 89  
PIC18F2450/4450  
8.3  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are two Peripheral Interrupt  
Request (Flag) registers (PIR1 and PIR2).  
2: User software should ensure the  
appropriate interrupt flag bits are cleared  
prior to enabling an interrupt and after  
servicing that interrupt.  
REGISTER 8-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
U-0  
R/W-0  
ADIF  
R-0  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
bit 5  
bit 4  
RCIF: EUSART Receive Interrupt Flag bit  
1= The EUSART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The EUSART receive buffer is empty  
TXIF: EUSART Transmit Interrupt Flag bit  
1= The EUSART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The EUSART transmit buffer is full  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
DS39760D-page 90  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 8-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
R/W-0  
OSCFIF  
bit 7  
U-0  
R/W-0  
USBIF  
U-0  
U-0  
R/W-0  
U-0  
U-0  
HLVDIF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
OSCFIF: Oscillator Fail Interrupt Flag bit  
1= System oscillator failed, clock input has changed to INTRC (must be cleared in software)  
0= System clock operating  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
USBIF: USB Interrupt Flag bit  
1= USB has requested an interrupt (must be cleared in software)  
0= No USB interrupt request  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
HLVDIF: High/Low-Voltage Detect Interrupt Flag bit  
1= A high/low-voltage condition occurred  
0= No high/low-voltage event has occurred  
bit 1-0  
Unimplemented: Read as ‘0’  
© 2008 Microchip Technology Inc.  
DS39760D-page 91  
PIC18F2450/4450  
8.4  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are two Peripheral  
Interrupt Enable registers (PIE1 and PIE2). When  
IPEN = 0, the PEIE bit must be set to enable any of  
these peripheral interrupts.  
REGISTER 8-6:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
U-0  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
U-0  
R/W-0  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5  
bit 4  
RCIE: EUSART Receive Interrupt Enable bit  
1= Enables the EUSART receive interrupt  
0= Disables the EUSART receive interrupt  
TXIE: EUSART Transmit Interrupt Enable bit  
1= Enables the EUSART transmit interrupt  
0= Disables the EUSART transmit interrupt  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
bit 1  
bit 0  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
DS39760D-page 92  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 8-7:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
OSCFIE  
bit 7  
U-0  
R/W-0  
USBIE  
U-0  
U-0  
R/W-0  
U-0  
U-0  
HLVDIE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
OSCFIE: Oscillator Fail Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
USBIE: USB Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
HLVDIE: High/Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 1-0  
Unimplemented: Read as ‘0’  
© 2008 Microchip Technology Inc.  
DS39760D-page 93  
PIC18F2450/4450  
8.5  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are two Peripheral  
Interrupt Priority registers (IPR1 and IPR2). Using the  
priority bits requires that the Interrupt Priority Enable  
(IPEN) bit be set.  
REGISTER 8-8:  
IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
U-0  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
U-0  
R/W-1  
R/W-1  
R/W-1  
CCP1IP  
TMR2IP  
TMR1IP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
RCIP: EUSART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: EUSART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
DS39760D-page 94  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 8-9:  
IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
R/W-1  
OSCFIP  
bit 7  
U-0  
R/W-1  
USBIP  
U-0  
U-0  
R/W-1  
U-0  
U-0  
HLVDIP  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
OSCFIP: Oscillator Fail Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
USBIP: USB Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
HLVDIP: High/Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1-0  
Unimplemented: Read as ‘0’  
© 2008 Microchip Technology Inc.  
DS39760D-page 95  
PIC18F2450/4450  
8.6  
RCON Register  
The RCON register contains flag bits which are used to  
determine the cause of the last Reset or wake-up from  
Idle or Sleep modes. RCON also contains the IPEN bit  
which enables interrupt priorities.  
REGISTER 8-10: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
R/W-1(1)  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0(2)  
POR  
R/W-0  
BOR  
SBOREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
SBOREN: BOR Software Enable bit(1)  
For details of bit operation, see Register 4-1.  
Unimplemented: Read as ‘0’  
bit 5  
bit 4  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-1.  
TO: Watchdog Time-out Flag bit  
bit 3  
bit 2  
bit 1  
bit 0  
For details of bit operation, see Register 4-1.  
PD: Power-Down Detection Flag bit  
For details of bit operation, see Register 4-1.  
POR: Power-on Reset Status bit(2)  
For details of bit operation, see Register 4-1.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-1.  
Note 1: If SBOREN is enabled, its Reset state is ‘1’; otherwise, it is ‘0’. See Register 4-1 for additional information.  
2: The actual Reset value of POR is determined by the type of device Reset. See Register 4-1 for additional  
information.  
DS39760D-page 96  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
8.7  
INTx Pin Interrupts  
8.8  
TMR0 Interrupt  
External interrupts on the RB0/AN12/INT0, RB1/AN10/  
INT1and RB2/AN8/INT2/VMO pins are edge-triggered.  
If the corresponding INTEDGx bit in the INTCON2  
register is set (= 1), the interrupt is triggered by a rising  
edge; if the bit is clear, the trigger is on the falling edge.  
When a valid edge appears on the RBx/INTx pin, the  
corresponding flag bit, INTxIF, is set. This interrupt can  
be disabled by clearing the corresponding enable bit,  
INTxIE. Flag bit, INTxIF, must be cleared in software in  
the Interrupt Service Routine before re-enabling the  
interrupt.  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (FFh 00h) will set flag bit, TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L  
register pair (FFFFh 0000h) will set TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit, TMR0IE (INTCON<5>). Interrupt priority for  
Timer0 is determined by the value contained in the  
interrupt priority bit, TMR0IP (INTCON2<2>). See  
Section 12.0 “Timer2 Module” for further details on  
the Timer0 module.  
8.9  
PORTB Interrupt-on-Change  
All external interrupts (INT0, INT1 and INT2) can wake-  
up the processor from the power-managed modes if bit,  
INTxIE, was set prior to going into the power-managed  
modes. If the Global Interrupt Enable bit, GIE, is set, the  
processor will branch to the interrupt vector following  
wake-up.  
An input change on PORTB<7:4> sets flag bit, RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
Interrupt priority for INT1 and INT2 is determined by  
the value contained in the interrupt priority bits,  
INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>).  
There is no priority bit associated with INT0. It is  
always a high-priority interrupt source.  
8.10 Context Saving During Interrupts  
During interrupts, the return PC address is saved on  
the stack. Additionally, the WREG, STATUS and BSR  
registers are saved on the Fast Return Stack. If a fast  
return from interrupt is not used (see Section 5.3  
“Data Memory Organization”), the user may need to  
save the WREG, STATUS and BSR registers on entry  
to the Interrupt Service Routine. Depending on the  
user’s application, other registers may also need to be  
saved. Example 8-1 saves and restores the WREG,  
STATUS and BSR registers during an Interrupt Service  
Routine.  
EXAMPLE 8-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR_TMEP located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
© 2008 Microchip Technology Inc.  
DS39760D-page 97  
PIC18F2450/4450  
NOTES:  
DS39760D-page 98  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Reading the PORTA register reads the status of the  
pins; writing to it will write to the port latch.  
9.0  
I/O PORTS  
Depending on the device selected and features  
enabled, there are up to five ports available. Some pins  
of the I/O ports are multiplexed with an alternate  
function from the peripheral features on the device. In  
general, when a peripheral is enabled, that pin may not  
be used as a general purpose I/O pin.  
The Output Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register read and write the latched output value for  
PORTA.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The RA6 pin  
is multiplexed with the main oscillator pin; it is enabled  
as an oscillator or I/O pin by the selection of the main  
oscillator in Configuration Register 1H (see  
Section 18.1 “Configuration Bits” for details). When  
not used as a port pin, RA6 and its associated TRIS  
and LAT bits are read as ‘0’.  
Each port has three registers for its operation. These  
registers are:  
• TRIS register (Data Direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (Output Latch register)  
RA4 is also multiplexed with the USB module; it serves  
as a receiver input from an external USB transceiver.  
For details on configuration of the USB module, see  
Section 14.2 “USB Status and Control”.  
The Output Latch register (LATA) is useful for read-  
modify-write operations on the value driven by the I/O  
pins.  
A simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 9-1.  
Several PORTA pins are multiplexed with analog inputs.  
The operation of pins RA5 and RA3:RA0 as A/D  
Converter inputs is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register 1).  
FIGURE 9-1:  
GENERIC I/O PORT  
OPERATION  
Note:  
On a Power-on Reset, RA5 and RA3:RA0  
are configured as analog inputs and read  
as ‘0’. RA4 is configured as a digital input.  
RD LAT  
Data  
Bus  
D
Q
All other PORTA pins have TTL input levels and full  
CMOS output drivers.  
I/O pin(1)  
WR LAT  
or  
PORT  
CK  
Data Latch  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
D
Q
WR TRIS  
RD TRIS  
CK  
TRIS Latch  
EXAMPLE 9-1:  
INITIALIZING PORTA  
Input  
Buffer  
CLRF  
PORTA  
LATA  
0Fh  
; Initialize PORTA by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
Q
D
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
EN  
ADCON1 ; for digital inputs  
RD PORT  
0CFh  
; Value used to  
; initialize data  
; direction  
Note 1: I/O pins have diode protection to VDD and VSS.  
MOVWF  
TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
9.1  
PORTA, TRISA and LATA Registers  
PORTA is an 8-bit wide, bidirectional port. The  
corresponding Data Direction register is TRISA. Setting  
a TRISA bit (= 1) will make the corresponding PORTA  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISA bit (= 0)  
will make the corresponding PORTA pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
© 2008 Microchip Technology Inc.  
DS39760D-page 99  
PIC18F2450/4450  
TABLE 9-1:  
Pin  
PORTA I/O SUMMARY  
TRIS  
Function  
I/O  
I/O Type  
Description  
Setting  
RA0/AN0  
RA0  
0
1
1
OUT  
IN  
DIG  
TTL  
ANA  
LATA<0> data output; not affected by analog input.  
PORTA<0> data input; disabled when analog input enabled.  
AN0  
RA1  
IN  
A/D input channel 0. Default configuration on POR; does not affect  
digital output.  
RA1/AN1  
0
1
1
OUT  
IN  
DIG  
TTL  
ANA  
LATA<1> data output; not affected by analog input.  
PORTA<1> data input; reads ‘0’ on POR.  
AN1  
RA2  
IN  
A/D input channel 1. Default configuration on POR; does not affect  
digital output.  
RA2/AN2/  
VREF-  
0
1
1
OUT  
IN  
DIG  
TTL  
ANA  
LATA<2> data output; not affected by analog input.  
PORTA<2> data input. Disabled when analog functions enabled.  
AN2  
IN  
A/D input channel 2. Default configuration on POR; not affected by  
analog output.  
VREF-  
RA3  
1
0
1
1
1
0
1
1
x
0
1
1
1
x
x
IN  
OUT  
IN  
ANA  
DIG  
TTL  
ANA  
ANA  
DIG  
ST  
A/D voltage reference low input.  
RA3/AN3/  
VREF+  
LATA<3> data output; not affected by analog input.  
PORTA<3> data input; disabled when analog input enabled.  
A/D input channel 3. Default configuration on POR.  
A/D voltage reference high input.  
AN3  
VREF+  
RA4  
IN  
IN  
RA4/T0CKI/  
RCV  
OUT  
IN  
LATA<4> data output; not affected by analog input.  
PORTA<4> data input; disabled when analog input enabled.  
Timer0 clock input.  
T0CKI  
RCV  
RA5  
IN  
ST  
IN  
TTL  
DIG  
TTL  
ANA  
ANA  
ANA  
DIG  
External USB transceiver RCV input.  
RA5/AN4/  
HLVDIN  
OUT  
IN  
LATA<5> data output; not affected by analog input.  
PORTA<5> data input; disabled when analog input enabled.  
A/D input channel 4. Default configuration on POR.  
High/Low-Voltage Detect external trip point input.  
Main oscillator feedback output connection (all XT and HS modes).  
AN4  
HLVDIN  
OSC2  
CLKO  
IN  
IN  
OSC2/CLKO/  
RA6  
OUT  
OUT  
System cycle clock output (FOSC/4); available in EC, ECPLL and  
INTCKO modes.  
RA6  
0
1
OUT  
IN  
DIG  
TTL  
LATA<6> data output. Available only in ECIO, ECPIO and INTIO  
modes; otherwise, reads as ‘0’.  
PORTA<6> data input. Available only in ECIO, ECPIO and INTIO  
modes; otherwise, reads as ‘0’.  
Legend:  
OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option)  
TABLE 9-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Reset  
Values  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
PORTA  
LATA  
RA6(1)  
LATA6(1)  
TRISA6(1) TRISA5  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
LATA0  
TRISA0  
PCFG0  
51  
51  
51  
50  
52  
LATA5  
LATA4  
LATA3  
TRISA3  
PCFG3  
LATA2  
TRISA2  
PCFG2  
LATA1  
TRISA1  
PCFG1  
TRISA  
ADCON1  
UCON  
TRISA4  
VCFG0  
PKTDIS  
VCFG1  
SE0  
PPBRST  
USBEN RESUME SUSPND  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: RA6 and its associated latch and data direction bits are enabled as I/O pins based on oscillator  
configuration; otherwise, they are read as ‘0’.  
DS39760D-page 100  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit, RBIF, to be cleared.  
9.2  
PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding Data Direction register is TRISB. Setting  
a TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
Pins, RB2 and RB3, are multiplexed with the USB  
peripheral and serve as the differential signal outputs  
for an external USB transceiver (TRIS configuration).  
Refer to Section 14.2.2.2 “External Transceiver” for  
additional information on configuring the USB module  
for operation with an external transceiver.  
The Output Latch register (LATB) is also memory  
mapped. Read-modify-write operations on the LATB  
register read and write the latched output value for  
PORTB.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit, RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
EXAMPLE 9-2:  
INITIALIZING PORTB  
CLRF  
PORTB  
LATB  
0Eh  
; Initialize PORTB by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
Note:  
On a Power-on Reset, RB4:RB0 are  
configured as analog inputs by default and  
read as ‘0’; RB7:RB5 are configured as  
digital inputs.  
MOVLW  
MOVWF  
; Set RB<4:0> as  
ADCON1 ; digital I/O pins  
; (required if config bit  
; PBADEN is set)  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
By programming the Configuration bit,  
PBADEN (CONFIG3H<1>), RB4:RB0 will  
alternatively be configured as digital inputs  
on POR.  
MOVLW  
MOVWF  
0CFh  
TRISB  
Four of the PORTB pins (RB7:RB4) have an interrupt-  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur. Any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison. The pins are compared with  
the old value latched on the last read of PORTB. The  
“mismatch” outputs of RB7:RB4 are ORed together to  
generate the RB Port Change Interrupt with Flag bit,  
RBIF (INTCON<0>).  
The interrupt-on-change can be used to wake the  
device from Sleep. The user, in the Interrupt Service  
Routine, can clear the interrupt in the following manner:  
a) Any read or write of PORTB (except with the  
MOVFF (ANY), PORTB instruction). This will  
end the mismatch condition.  
b) Wait one or more instruction cycles.  
c) Clear flag bit, RBIF.  
© 2008 Microchip Technology Inc.  
DS39760D-page 101  
PIC18F2450/4450  
TABLE 9-3:  
PORTB I/O SUMMARY  
TRIS  
Setting  
Pin  
Function  
I/O  
I/O Type  
Description  
RB0/AN12/  
INT0  
RB0  
0
1
OUT  
IN  
DIG  
TTL  
LATB<0> data output; not affected by analog input.  
PORTB<0> data input; weak pull-up when RBPU bit is cleared.  
(1)  
Disabled when analog input enabled.  
(1)  
AN12  
INT0  
RB1  
1
1
0
1
IN  
IN  
ANA  
ST  
A/D input channel 12.  
External interrupt 0 input.  
RB1/AN10/  
INT1  
OUT  
IN  
DIG  
TTL  
LATB<1> data output; not affected by analog input.  
PORTB<1> data input; weak pull-up when RBPU bit is cleared.  
Disabled when analog input enabled.  
(1)  
(1)  
AN10  
INT1  
RB2  
1
1
0
1
IN  
IN  
ANA  
ST  
A/D input channel 10.  
External interrupt 1 input.  
RB2/AN8/  
INT2/VMO  
OUT  
IN  
DIG  
TTL  
LATB<2> data output; not affected by analog input.  
PORTB<2> data input; weak pull-up when RBPU bit is cleared.  
Disabled when analog input enabled.  
(1)  
(1)  
AN8  
INT2  
VMO  
RB3  
1
1
0
0
1
IN  
IN  
ANA  
ST  
A/D input channel 8.  
External interrupt 2 input.  
OUT  
OUT  
IN  
DIG  
DIG  
TTL  
External USB transceiver VMO data output.  
LATB<3> data output; not affected by analog input.  
PORTB<3> data input; weak pull-up when RBPU bit is cleared.  
RB3/AN9/VPO  
(1)  
Disabled when analog input enabled.  
(1)  
AN9  
VPO  
RB4  
1
0
0
1
IN  
OUT  
OUT  
IN  
ANA  
DIG  
DIG  
TTL  
A/D input channel 9.  
External USB transceiver VPO data output.  
RB4/AN11/  
KBI0  
LATB<4> data output; not affected by analog input.  
PORTB<4> data input; weak pull-up when RBPU bit is cleared.  
Disabled when analog input enabled.  
(1)  
(1)  
AN11  
KBI0  
RB5  
1
1
0
1
1
x
IN  
IN  
ANA  
TTL  
DIG  
TTL  
TTL  
ST  
A/D input channel 11.  
Interrupt-on-pin change.  
RB5/KBI1/  
PGM  
OUT  
IN  
LATB<5> data output.  
PORTB<5> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI1  
PGM  
IN  
IN  
Single-Supply Programming mode entry (ICSP™). Enabled by LVP  
Configuration bit; all other pin functions disabled.  
RB6/KBI2/  
PGC  
RB6  
0
1
1
x
0
1
1
x
x
OUT  
IN  
DIG  
TTL  
TTL  
ST  
LATB<6> data output.  
PORTB<6> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI2  
PGC  
RB7  
IN  
(2)  
IN  
Serial execution (ICSP) clock input for ICSP and ICD operation.  
RB7/KBI3/  
PGD  
OUT  
IN  
DIG  
TTL  
TTL  
DIG  
ST  
LATB<7> data output.  
PORTB<7> data input; weak pull-up when RBPU bit is cleared.  
Interrupt-on-pin change.  
KBI3  
PGD  
IN  
(2)  
OUT  
IN  
Serial execution data output for ICSP and ICD operation.  
(2)  
Serial execution data input for ICSP and ICD operation.  
Legend:  
OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, x= Don’t care (TRIS bit does not affect port direction or is overridden for this option)  
Note 1: Configuration on POR is determined by PBADEN Configuration bit. Pins are configured as analog inputs when  
PBADEN is set and digital inputs when PBADEN is cleared.  
2: All other pin functions are disabled when ICSP™ or ICD operation is enabled.  
DS39760D-page 102  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 9-4:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Reset  
Values  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
51  
51  
51  
49  
49  
49  
50  
52  
LATB7  
TRISB7  
LATB6  
TRISB6  
LATB5  
TRISB5  
LATB4  
TRISB4  
INT0IE  
LATB3  
LATB2  
LATB1  
LATB0  
TRISB  
TRISB3 TRISB2 TRISB1 TRISB0  
INTCON  
INTCON2  
INTCON3  
ADCON1  
UCON  
GIE/GIEH PEIE/GIEL TMR0IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
INT1IF  
PCFG0  
RBPU  
INT2IP  
INTEDG0 INTEDG1 INTEDG2  
INT1IP  
INT2IE  
VCFG0  
PKTDIS  
INT1IE  
PCFG3  
INT2IF  
PCFG1  
VCFG1  
SE0  
PCFG2  
PPBRST  
USBEN RESUME SUSPND  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTB.  
© 2008 Microchip Technology Inc.  
DS39760D-page 103  
PIC18F2450/4450  
When enabling peripheral functions on PORTC pins  
other than RC4 and RC5, care should be taken in  
defining the TRIS bits. Some peripherals override the  
TRIS bit to make a pin an output, while other  
peripherals override the TRIS bit to make a pin an  
input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
9.3  
PORTC, TRISC and LATC  
Registers  
PORTC is  
a 7-bit wide, bidirectional port. The  
corresponding Data Direction register is TRISC.  
Setting a TRISC bit (= 1) will make the corresponding  
PORTC pin an input (i.e., put the corresponding output  
driver in a high-impedance mode). Clearing a TRISC  
bit (= 0) will make the corresponding PORTC pin an  
output (i.e., put the contents of the output latch on the  
selected pin).  
Note:  
On a Power-on Reset, these pins, except  
RC4 and RC5, are configured as digital  
inputs. To use pins RC4 and RC5 as  
digital inputs, the USB module must be  
disabled (UCON<3> = 0) and the on-chip  
USB transceiver must be disabled  
(UCFG<3> = 1).  
In PIC18F2450/4450 devices, the RC3 pin is not  
implemented.  
The Output Latch register (LATC) is also memory  
mapped. Read-modify-write operations on the LATC  
register read and write the latched output value for  
PORTC.  
The contents of the TRISC register are affected by  
peripheral overrides. Reading TRISC always returns  
the current contents, even though a peripheral device  
may be overriding one or more of the pins.  
PORTC is primarily multiplexed with serial  
communication modules, including the EUSART and  
the USB module (Table 9-5). Except for RC4 and RC5,  
PORTC uses Schmitt Trigger input buffers.  
EXAMPLE 9-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
LATC  
07h  
; Initialize PORTC by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
Pins RC4 and RC5 are multiplexed with the USB  
module. Depending on the configuration of the module,  
they can serve as the differential data lines for the on-  
chip USB transceiver, or the data inputs from an  
external USB transceiver. Both RC4 and RC5 have  
TTL input buffers instead of the Schmitt Trigger buffers  
on the other pins.  
CLRF  
MOVLW  
MOVWF  
Unlike other PORTC pins, RC4 and RC5 do not have  
TRISC bits associated with them. As digital ports, they  
can only function as digital inputs. When configured for  
USB operation, the data direction is determined by the  
configuration and status of the USB module at a given  
time. If an external transceiver is used, RC4 and RC5  
always function as inputs from the transceiver. If the  
on-chip transceiver is used, the data direction is  
determined by the operation being performed by the  
module at that time.  
TRISC  
; RC<5:0> as outputs  
; RC<7:6> as inputs  
When the external transceiver is enabled, RC2 also  
serves as the output enable control to the transceiver.  
Additional information on configuring USB options is  
provided in Section 14.2.2.2 “External Transceiver”.  
DS39760D-page 104  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 9-5:  
PORTC I/O SUMMARY  
TRIS  
Setting  
Pin  
Function  
I/O  
I/O Type  
Description  
RC0/T1OSO/  
T1CKI  
RC0  
0
1
x
OUT  
IN  
DIG  
ST  
LATC<0> data output.  
PORTC<0> data input.  
T1OSO  
OUT  
ANA  
Timer1 oscillator output; enabled when Timer1 oscillator enabled.  
Disables digital I/O.  
T1CKI  
RC1  
1
0
1
x
IN  
OUT  
IN  
ST  
DIG  
ST  
Timer1 counter input.  
LATC<1> data output.  
PORTC<1> data input.  
RC1/T1OSI/  
UOE  
T1OSI  
IN  
ANA  
Timer1 oscillator input; enabled when Timer1 oscillator enabled.  
Disables digital I/O.  
UOE  
RC2  
0
0
1
0
1
OUT  
OUT  
IN  
DIG  
DIG  
ST  
External USB transceiver OE output.  
LATC<2> data output.  
RC2/CCP1  
RC4/D-/VM  
PORTC<2> data input.  
CCP1  
OUT  
IN  
DIG  
ST  
CCP1 Compare and PWM output; takes priority over port data.  
CCP1 Capture input.  
(1)  
RC4  
D-  
IN  
TTL  
PORTC<4> data input; disabled when USB module or on-chip  
transceiver is enabled.  
(1)  
OUT  
IN  
XCVR USB bus differential minus line output (internal transceiver).  
XCVR USB bus differential minus line input (internal transceiver).  
(1)  
(1)  
VM  
IN  
TTL  
TTL  
External USB transceiver VM input.  
(1)  
RC5/D+/VP  
RC6/TX/CK  
RC5  
IN  
PORTC<5> data input; disabled when USB module or on-chip  
transceiver is enabled.  
(1)  
D+  
OUT  
IN  
XCVR USB bus differential plus line output (internal transceiver).  
XCVR USB bus differential plus line input (internal transceiver).  
(1)  
(1)  
VP  
IN  
TTL  
DIG  
ST  
External USB transceiver VP input.  
LATC<6> data output.  
RC6  
0
1
0
OUT  
IN  
PORTC<6> data input.  
TX  
CK  
OUT  
DIG  
Asynchronous serial transmit data output (EUSART module); takes  
priority over port data. User must configure as output.  
0
OUT  
DIG  
Synchronous serial clock output (EUSART module); takes priority  
over port data.  
1
0
1
1
1
1
IN  
OUT  
IN  
ST  
DIG  
ST  
Synchronous serial clock input (EUSART module).  
LATC<7> data output.  
RC7/RX/DT  
RC7  
PORTC<7> data input.  
RX  
DT  
IN  
ST  
Asynchronous serial receive data input (EUSART module).  
Synchronous serial data output (EUSART module).  
OUT  
IN  
DIG  
ST  
Synchronous serial data input (EUSART module). User must  
configure as an input.  
Legend:  
OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,  
TTL = TTL Buffer Input, XCVR = USB Transceiver, x= Don’t care (TRIS bit does not affect port direction or is  
overridden for this option)  
Note 1: RC4 and RC5 do not have corresponding TRISC bits. In Port mode, these pins are input only. USB data direction is  
determined by the USB configuration.  
© 2008 Microchip Technology Inc.  
DS39760D-page 105  
PIC18F2450/4450  
TABLE 9-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
PORTC  
LATC  
RC7  
RC6  
RC5(1)  
RC4(1)  
RC2  
RC1  
RC0  
51  
51  
51  
52  
LATC7  
LATC6  
LATC2  
LATC1  
LATC0  
TRISC  
UCON  
TRISC7 TRISC6  
PPBRST  
TRISC2 TRISC1 TRISC0  
SE0  
PKTDIS USBEN RESUME SUSPND  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PORTC.  
Note 1: RC5 and RC4 are only available as port pins when the USB module is disabled (UCON<3> = 0).  
DS39760D-page 106  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
EXAMPLE 9-4:  
INITIALIZING PORTD  
9.4  
PORTD, TRISD and LATD  
Registers  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
Note:  
PORTD is only available on 40/44-pin  
devices.  
CLRF  
LATD  
PORTD is an 8-bit wide, bidirectional port. The  
corresponding Data Direction register is TRISD.  
Setting a TRISD bit (= 1) will make the corresponding  
PORTD pin an input (i.e., put the corresponding output  
driver in a high-impedance mode). Clearing a TRISD  
bit (= 0) will make the corresponding PORTD pin an  
output (i.e., put the contents of the output latch on the  
selected pin).  
MOVLW  
MOVWF  
0CFh  
TRISD  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
The Output Latch register (LATD) is also memory  
mapped. Read-modify-write operations on the LATD  
register read and write the latched output value for  
PORTD.  
All pins on PORTD are implemented with Schmitt  
Trigger input buffers. Each pin is individually  
configurable as an input or output.  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
© 2008 Microchip Technology Inc.  
DS39760D-page 107  
PIC18F2450/4450  
TABLE 9-7:  
PORTD I/O SUMMARY  
TRIS  
Setting  
Pin  
Function  
I/O  
I/O Type  
Description  
RD0  
RD0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
OUT  
IN  
DIG  
ST  
LATD<0> data output.  
PORTD<0> data input.  
LATD<1> data output.  
PORTD<1> data input.  
LATD<2> data output.  
PORTD<2> data input.  
LATD<3> data output.  
PORTD<3> data input.  
LATD<4> data output.  
PORTD<4> data input.  
LATD<5> data output  
PORTD<5> data input  
LATD<6> data output.  
PORTD<6> data input.  
LATD<7> data output.  
PORTD<7> data input.  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
OUT  
IN  
DIG  
ST  
OUT  
IN  
DIG  
ST  
OUT  
IN  
DIG  
ST  
OUT  
IN  
DIG  
ST  
OUT  
IN  
DIG  
ST  
OUT  
IN  
DIG  
ST  
OUT  
IN  
DIG  
ST  
Legend:  
OUT = Output, IN = Input, DIG = Digital Output, ST = Schmitt Buffer Input  
TABLE 9-8:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Reset  
Values  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
PORTD(1)  
LATD(1)  
TRISD(1)  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
51  
51  
51  
LATD7  
TRISD7  
LATD6  
TRISD6  
LATD5  
TRISD5  
LATD4  
TRISD4  
LATD3  
TRISD3  
LATD2  
TRISD2  
LATD1  
TRISD1  
LATD0  
TRISD0  
Note 1: These registers and/or bits are unimplemented on 28-pin devices.  
DS39760D-page 108  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
functions as a digital input only pin; as such, it does not  
have TRIS or LAT bits associated with its operation.  
Otherwise, it functions as the device’s Master Clear input.  
In either configuration, RE3 also functions as the  
programming voltage input during programming.  
9.5  
PORTE, TRISE and LATE  
Registers  
Depending on the particular PIC18F2450/4450 device  
selected, PORTE is implemented in two different ways.  
For 40/44-pin devices, PORTE is a 4-bit wide port.  
Three pins (RE0/AN5, RE1/AN6 and RE2/AN7) are  
individually configurable as inputs or outputs. These  
pins have Schmitt Trigger input buffers. When selected  
as an analog input, these pins will read as ‘0’s.  
Note:  
On a Power-on Reset, RE3 is enabled as  
digital input only if Master Clear  
functionality is disabled.  
a
EXAMPLE 9-5:  
INITIALIZING PORTE  
The corresponding Data Direction register is TRISE.  
Setting a TRISE bit (= 1) will make the corresponding  
PORTE pin an input (i.e., put the corresponding output  
driver in a high-impedance mode). Clearing a TRISE bit  
(= 0) will make the corresponding PORTE pin an output  
(i.e., put the contents of the output latch on the selected  
pin).  
CLRF  
PORTE  
LATE  
0Ah  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
CLRF  
MOVLW  
MOVWF  
MOVLW  
; Configure A/D  
ADCON1 ; for digital inputs  
03h  
TRISE controls the direction of the RE pins, even when  
they are being used as analog inputs. The user must  
make sure to keep the pins configured as inputs when  
using them as analog inputs.  
; Value used to  
; initialize data  
; direction  
; Set RE<0> as inputs  
; RE<1> as inputs  
; RE<2> as outputs  
MOVWF  
TRISC  
Note:  
On a Power-on Reset, RE2:RE0 are  
configured as analog inputs.  
9.5.1  
PORTE IN 28-PIN DEVICES  
The Output Latch register (LATE) is also memory  
mapped. Read-modify-write operations on the LATE  
register read and write the latched output value for  
PORTE.  
For 28-pin devices, PORTE is only available when  
Master Clear functionality is disabled (MCLRE = 0). In  
these cases, PORTE is a single bit, input only port  
comprised of RE3 only. The pin operates as previously  
described.  
The fourth pin of PORTE (MCLR/VPP/RE3) is an input  
only pin. Its operation is controlled by the MCLRE Config-  
uration bit. When selected as a port pin (MCLRE = 0), it  
REGISTER 9-1:  
PORTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-x  
RE3(1,2)  
R/W-0  
RE2(3)  
R/W-0  
RE1(3)  
R/W-0  
RE0(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
RE3:RE0: PORTE Data Input bits(1,2,3)  
Note 1: implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0); otherwise,  
read as ‘0’.  
2: RE3 is the only PORTE bit implemented on both 28-pin and 40/44-pin devices. All other bits are  
implemented only when PORTE is implemented (i.e., 40/44-pin devices).  
3: Unimplemented in 28-pin devices; read as ‘0’.  
© 2008 Microchip Technology Inc.  
DS39760D-page 109  
PIC18F2450/4450  
TABLE 9-9:  
Pin  
PORTE I/O SUMMARY  
TRIS  
Function  
I/O  
I/O Type  
Description  
Setting  
RE0/AN5  
RE0  
0
1
1
0
1
1
0
1
1
OUT  
IN  
DIG  
ST  
LATE<0> data output; not affected by analog input.  
PORTE<0> data input; disabled when analog input enabled.  
A/D input channel 5; default configuration on POR.  
LATE<1> data output; not affected by analog input.  
PORTE<1> data input; disabled when analog input enabled.  
A/D input channel 6; default configuration on POR.  
LATE<2> data output; not affected by analog input.  
PORTE<2> data input; disabled when analog input enabled.  
A/D input channel 7; default configuration on POR.  
AN5  
RE1  
IN  
ANA  
DIG  
ST  
RE1/AN6  
RE2/AN7  
OUT  
IN  
AN6  
RE2  
IN  
ANA  
DIG  
ST  
OUT  
IN  
AN7  
IN  
ANA  
ST  
(1)  
MCLR/VPP/  
RE3  
MCLR  
IN  
External Master Clear input; enabled when MCLRE Configuration bit  
is set.  
(1)  
VPP  
IN  
IN  
ANA  
ST  
High-voltage detection, used for ICSP™ mode entry detection.  
Always available regardless of pin mode.  
(1)  
RE3  
PORTE<3> data input; enabled when MCLRE Configuration bit  
is clear.  
Legend:  
OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input.  
Note 1: RE3 does not have a corresponding TRISE<3> bit. This pin is always an input regardless of mode.  
TABLE 9-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
PORTE  
LATE(3)  
TRISE(3)  
ADCON1  
RE3(1,2)  
RE2(3)  
LATE2  
TRISE2  
PCFG2  
RE1(3)  
LATE1  
TRISE1  
PCFG1  
RE0(3)  
LATE0  
TRISE0  
PCFG0  
51  
51  
51  
50  
VCFG1  
VCFG0  
PCFG3  
Legend: — = unimplemented, read as ‘0’  
Note 1: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0); otherwise,  
read as ‘0’.  
2: RE3 is the only PORTE bit implemented on both 28-pin and 40/44-pin devices. All other bits are  
implemented only when PORTE is implemented (i.e., 40/44-pin devices).  
3: These registers and/or bits are unimplemented on 28-pin devices.  
DS39760D-page 110  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
The T0CON register (Register 10-1) controls all  
aspects of the module’s operation, including the  
prescale selection. It is both readable and writable.  
10.0 TIMER0 MODULE  
The Timer0 module incorporates the following features:  
• Software selectable operation as a timer or  
counter in both 8-bit or 16-bit modes  
A simplified block diagram of the Timer0 module in 8-bit  
mode is shown in Figure 10-1. Figure 10-2 shows a sim-  
plified block diagram of the Timer0 module in 16-bit  
mode.  
• Readable and writable registers  
• Dedicated 8-bit, software programmable  
prescaler  
• Selectable clock source (internal or external)  
• Edge select for external clock  
• Interrupt on overflow  
REGISTER 10-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
TMR0ON  
T08BIT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-Bit/16-Bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 Prescale value  
110= 1:128 Prescale value  
101= 1:64 Prescale value  
100= 1:32 Prescale value  
011= 1:16 Prescale value  
010= 1:8 Prescale value  
001= 1:4 Prescale value  
000= 1:2 Prescale value  
© 2008 Microchip Technology Inc.  
DS39760D-page 111  
PIC18F2450/4450  
internal phase clock (TOSC). There is a delay between  
synchronization and the onset of incrementing the  
timer/counter.  
10.1 Timer0 Operation  
Timer0 can operate as either a timer or a counter; the  
mode is selected by clearing the T0CS bit  
(T0CON<5>). In Timer mode, the module increments  
on every clock by default unless a different prescaler  
value is selected (see Section 10.3 “Prescaler”). If  
the TMR0 register is written to, the increment is  
inhibited for the following two instruction cycles. The  
user can work around this by writing an adjusted value  
to the TMR0 register.  
10.2 Timer0 Reads and Writes in  
16-Bit Mode  
TMR0H is not the actual high byte of Timer0 in 16-bit  
mode; it is actually a buffered version of the real high  
byte of Timer0, which is not directly readable nor  
writable (refer to Figure 10-2). TMR0H is updated with  
the contents of the high byte of Timer0 during a read of  
TMR0L. This provides the ability to read all 16 bits of  
Timer0 without having to verify that the read of the high  
and low byte were valid, due to a rollover between  
successive reads of the high and low byte.  
The Counter mode is selected by setting the T0CS bit  
(= 1). In Counter mode, Timer0 increments either on  
every rising or falling edge of pin RA4/T0CKI. The  
incrementing edge is determined by the Timer0 Source  
Edge Select bit, T0SE (T0CON<4>); clearing this bit  
selects the rising edge. Restrictions on the external  
clock input are discussed below.  
Similarly, a write to the high byte of Timer0 must also  
take place through the TMR0H Buffer register. The high  
byte is updated with the contents of TMR0H when a  
write occurs to TMR0L. This allows all 16 bits of Timer0  
to be updated at once.  
An external clock source can be used to drive Timer0;  
however, it must meet certain requirements to ensure  
that the external clock can be synchronized with the  
FIGURE 10-1:  
TIMER0 BLOCK DIAGRAM (8-BIT MODE)  
FOSC/4  
0
1
1
0
Set  
TMR0IF  
on Overflow  
Sync with  
Internal  
Clocks  
TMR0L  
8
Programmable  
Prescaler  
T0CKI pin  
(2 TCY Delay)  
T0SE  
T0CS  
3
T0PS2:T0PS0  
PSA  
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale.  
FIGURE 10-2:  
TIMER0 BLOCK DIAGRAM (16-BIT MODE)  
FOSC/4  
0
1
Sync with  
Internal  
Clocks  
Set  
TMR0  
High Byte  
1
TMR0L  
TMR0IF  
on Overflow  
Programmable  
Prescaler  
T0CKI pin  
0
8
(2 TCY Delay)  
T0SE  
T0CS  
3
Read TMR0L  
Write TMR0L  
T0PS2:T0PS0  
PSA  
8
8
TMR0H  
8
8
Internal Data Bus  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI maximum prescale.  
DS39760D-page 112  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
10.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
10.3 Prescaler  
An 8-bit counter is available as a prescaler for the Timer0  
module. The prescaler is not directly readable or writable;  
its value is set by the PSA and T0PS2:T0PS0 bits  
(T0CON<3:0>) which determine the prescaler  
assignment and prescale ratio.  
The prescaler assignment is fully under software  
control and can be changed “on-the-fly” during program  
execution.  
10.4 Timer0 Interrupt  
Clearing the PSA bit assigns the prescaler to the  
Timer0 module. When it is assigned, prescale values  
from 1:2 through 1:256, in power-of-2 increments, are  
selectable.  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode, or  
from FFFFh to 0000h in 16-bit mode. This overflow sets  
the TMR0IF flag bit. The interrupt can be masked by  
clearing the TMR0IE bit (INTCON<5>). Before re-  
enabling the interrupt, the TMR0IF bit must be cleared  
in software by the Interrupt Service Routine.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0,etc.) clear the prescaler count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count but will not change the prescaler  
assignment.  
Since Timer0 is shut down in Sleep mode, the TMR0  
interrupt cannot awaken the processor from Sleep.  
TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
TMR0L  
Timer0 Register Low Byte  
Timer0 Register High Byte  
50  
50  
49  
50  
51  
TMR0H  
INTCON  
T0CON  
TRISA  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
T0SE  
RBIE  
PSA  
TMR0IF  
T0PS2  
INT0IF  
T0PS1  
TRISA1  
RBIF  
T0PS0  
TRISA0  
TMR0ON  
T08BIT  
TRISA6(1) TRISA5  
T0CS  
TRISA4  
TRISA3  
TRISA2  
Legend: — = unimplemented locations, read as ‘0’. Shaded cells are not used by Timer0.  
Note 1: RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled,  
all of the associated bits read ‘0’.  
© 2008 Microchip Technology Inc.  
DS39760D-page 113  
PIC18F2450/4450  
NOTES:  
DS39760D-page 114  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
A simplified block diagram of the Timer1 module is  
shown in Figure 11-1. A block diagram of the module’s  
operation in Read/Write mode is shown in Figure 11-2.  
11.0 TIMER1 MODULE  
The Timer1 timer/counter module incorporates these  
features:  
The module incorporates its own low-power oscillator  
to provide an additional clocking option. The Timer1  
oscillator can also be used as a low-power clock source  
for the microcontroller in power-managed operation.  
• Software selectable operation as a 16-bit timer or  
counter  
• Readable and writable 8-bit registers (TMR1H  
and TMR1L)  
Timer1 can also be used to provide Real-Time Clock  
(RTC) functionality to applications with only a minimal  
addition of external components and code overhead.  
• Selectable clock source (internal or external) with  
device clock or Timer1 oscillator internal options  
• Interrupt on overflow  
Timer1 is controlled through the T1CON Control  
register (Register 11-1). It also contains the Timer1  
Oscillator Enable bit (T1OSCEN). Timer1 can be  
enabled or disabled by setting or clearing control bit,  
TMR1ON (T1CON<0>).  
• Module Reset on CCP Special Event Trigger  
• Device clock status flag (T1RUN)  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1RUN  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1CS  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
RD16: 16-Bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
T1RUN: Timer1 System Clock Status bit  
1= Device clock is derived from Timer1 oscillator  
0= Device clock is derived from another source  
bit 5-4  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from RC0/T1OSO/T1CKI pin (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
© 2008 Microchip Technology Inc.  
DS39760D-page 115  
PIC18F2450/4450  
cycle (FOSC/4). When the bit is set, Timer1 increments  
on every rising edge of the Timer1 external clock input  
or the Timer1 oscillator, if enabled.  
11.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
• Timer  
When Timer1 is enabled, the RC1/T1OSI/UOE and  
RC0/T1OSO/T1CKI pins become inputs. This means  
the values of TRISC<1:0> are ignored and the pins are  
read as ‘0’.  
• Synchronous Counter  
• Asynchronous Counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>). When TMR1CS is cleared  
(= 0), Timer1 increments on every internal instruction  
FIGURE 11-1:  
TIMER1 BLOCK DIAGRAM  
Timer1 Oscillator  
On/Off  
1
T1OSO/T1CKI  
T1OSI  
1
Synchronize  
Prescaler  
FOSC/4  
Internal  
Clock  
0
Detect  
1, 2, 4, 8  
0
2
Sleep Input  
T1OSCEN(1)  
T1CKPS1:T1CKPS0  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
TMR1IF  
on Overflow  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
FIGURE 11-2:  
TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)  
Timer1 Oscillator  
1
0
T1OSO/T1CKI  
T1OSI  
1
Synchronize  
Prescaler  
FOSC/4  
Internal  
Clock  
Detect  
1, 2, 4, 8  
0
2
Sleep Input  
T1OSCEN(1)  
T1CKPS1:T1CKPS0  
T1SYNC  
Timer1  
On/Off  
TMR1CS  
TMR1ON  
Set  
TMR1IF  
on Overflow  
TMR1  
High Byte  
Clear TMR1  
(CCP Special Event Trigger)  
TMR1L  
8
Read TMR1L  
Write TMR1L  
8
8
TMR1H  
8
8
Internal Data Bus  
Note 1: When enable bit, T1OSCEN, is cleared, the inverter and feedback resistor are turned off to eliminate power drain.  
DS39760D-page 116  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 11-1: CAPACITOR SELECTION FOR  
THETIMEROSCILLATOR(2,3,4)  
11.2 Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 11-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16 bits of  
Timer1 without having to determine whether a read of  
the high byte, followed by a read of the low byte, has  
become invalid due to a rollover between reads.  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
27 pF(1)  
27 pF(1)  
Note 1: Microchip suggests these values as a  
starting point in validating the oscillator  
circuit.  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. The Timer1 high  
byte is updated with the contents of TMR1H when a  
write occurs to TMR1L. This allows a user to write all  
16 bits to both the high and low bytes of Timer1 at once.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
4: Capacitor values are for design guidance  
only.  
11.3.1  
USING TIMER1 AS A CLOCK  
SOURCE  
The Timer1 oscillator is also available as a clock source  
in power-managed modes. By setting the clock select  
bits, SCS1:SCS0 (OSCCON<1:0>), to ‘01’, the device  
switches to SEC_RUN mode. Both the CPU and  
peripherals are clocked from the Timer1 oscillator. If the  
IDLEN bit (OSCCON<7>) is cleared and a SLEEP  
instruction is executed, the device enters SEC_IDLE  
mode. Additional details are available in Section 3.0  
“Power-Managed Modes”.  
11.3 Timer1 Oscillator  
An on-chip crystal oscillator circuit is incorporated  
between pins T1OSI (input) and T1OSO (amplifier  
output). It is enabled by setting the Timer1 Oscillator  
Enable bit, T1OSCEN (T1CON<3>). The oscillator is a  
low-power circuit rated for 32 kHz crystals. It will  
continue to run during all power-managed modes. The  
circuit for a typical LP oscillator is shown in Figure 11-3.  
Table 11-1 shows the capacitor selection for the Timer1  
oscillator.  
Whenever the Timer1 oscillator is providing the clock  
source, the Timer1 system clock status flag, T1RUN  
(T1CON<6>), is set. This can be used to determine the  
controller’s current clocking mode. It can also indicate  
the clock source being currently used by the Fail-Safe  
Clock Monitor. If the Clock Monitor is enabled and the  
Timer1 oscillator fails while providing the clock, polling  
the T1RUN bit will indicate whether the clock is being  
provided by the Timer1 oscillator or another source.  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
FIGURE 11-3:  
EXTERNAL  
COMPONENTS FOR THE  
TIMER1 LP OSCILLATOR  
C1  
33 pF  
PIC18FXXXX  
11.3.2  
LOW-POWER TIMER1 OPTION  
T1OSI  
The Timer1 oscillator can operate at two distinct levels  
of power consumption based on device configuration.  
When the LPT1OSC Configuration bit is set, the Timer1  
oscillator operates in a low-power mode. When  
LPT1OSC is not set, Timer1 operates at a higher power  
level. Power consumption for a particular mode is  
relatively constant, regardless of the device’s operating  
mode. The default Timer1 configuration is the higher  
power mode.  
XTAL  
32.768 kHz  
T1OSO  
C2  
33 pF  
Note:  
See the Notes with Table 11-1 for additional  
information about capacitor selection.  
As the Low-Power Timer1 mode tends to be more  
sensitive to interference, high noise environments may  
cause some oscillator instability. The low-power option  
is, therefore, best suited for low noise applications  
where power conservation is an important design  
consideration.  
© 2008 Microchip Technology Inc.  
DS39760D-page 117  
PIC18F2450/4450  
11.3.3  
TIMER1 OSCILLATOR LAYOUT  
CONSIDERATIONS  
11.5 Resetting Timer1 Using the CCP  
Special Event Trigger  
The Timer1 oscillator circuit draws very little power  
during operation. Due to the low-power nature of the  
oscillator, it may also be sensitive to rapidly changing  
signals in close proximity.  
If the CCP module is configured in Compare mode  
to  
generate  
a
Special  
Event  
Trigger  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1. The trigger from CCP1 will also start an A/D  
conversion if the A/D module is enabled (see  
Section 13.3.4 “Special Event Trigger” for more  
information).  
The oscillator circuit, shown in Figure 11-3, should be  
located as close as possible to the microcontroller.  
There should be no circuits passing within the oscillator  
circuit boundaries other than VSS or VDD.  
The module must be configured as either a timer or a  
synchronous counter to take advantage of this feature.  
When used this way, the CCPRH:CCPRL register pair  
effectively becomes a period register for Timer1.  
If a high-speed circuit must be located near the oscilla-  
tor (such as the CCP1 pin in Output Compare or PWM  
mode, or the primary oscillator using the OSC2 pin), a  
grounded guard ring around the oscillator circuit, as  
shown in Figure 11-4, may be helpful when used on a  
single-sided PCB or in addition to a ground plane.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
In the event that a write to Timer1 coincides with a  
Special Event Trigger, the write operation will take  
precedence.  
FIGURE 11-4:  
OSCILLATOR CIRCUIT  
WITH GROUNDED  
GUARD RING  
Note:  
The Special Event Triggers from the CCP1  
module will not set the TMR1IF interrupt  
flag bit (PIR1<0>).  
VDD  
VSS  
11.6 Using Timer1 as a Real-Time  
Clock  
OSC1  
OSC2  
Adding an external LP oscillator to Timer1 (such as the  
one described in Section 11.3 “Timer1 Oscillator”)  
gives users the option to include RTC functionality to  
their applications. This is accomplished with an  
inexpensive watch crystal to provide an accurate time  
base and several lines of application code to calculate  
the time. When operating in Sleep mode and using a  
battery or supercapacitor as a power source, it can  
completely eliminate the need for a separate RTC  
device and battery backup.  
RC0  
RC1  
RC2  
Note: Not drawn to scale.  
The application code routine, RTCisr, shown in  
Example 11-1, demonstrates a simple method to  
increment a counter at one-second intervals using an  
Interrupt Service Routine. Incrementing the TMR1  
register pair to overflow triggers the interrupt and calls  
the routine which increments the seconds counter by  
one. Additional counters for minutes and hours are  
incremented as the previous counter overflows.  
11.4 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
Timer1 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled or disabled  
by setting or clearing the Timer1 Interrupt Enable bit,  
TMR1IE (PIE1<0>).  
Since the register pair is 16 bits wide, counting up to  
overflow the register directly from a 32.768 kHz clock  
would take 2 seconds. To force the overflow at the  
required one-second intervals, it is necessary to  
preload it. The simplest method is to set the MSb of  
TMR1H with a BSF instruction. Note that the TMR1L  
register is never preloaded or altered; doing so may  
introduce cumulative error over many cycles.  
For this method to be accurate, Timer1 must operate in  
Asynchronous mode and the Timer1 overflow interrupt  
must be enabled (PIE1<0> = 1) as shown in the  
routine, RTCinit. The Timer1 oscillator must also be  
enabled and running at all times.  
DS39760D-page 118  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
following a later Timer1 increment. This can be done by  
monitoring TMR1L within the interrupt routine until it  
increments, and then updating the TMR1H:TMR1L reg-  
ister pair while the clock is low, or one-half of the period  
of the clock source. Assuming that Timer1 is being  
used as a Real-Time Clock, the clock source is a  
32.768 kHz crystal oscillator. In this case, one-half  
period of the clock is 15.25 μs.  
11.7 Considerations in Asynchronous  
Counter Mode  
Following a Timer1 interrupt and an update to the  
TMR1 registers, the Timer1 module uses a falling edge  
on its clock source to trigger the next register update on  
the rising edge. If the update is completed after the  
clock input has fallen, the next rising edge will not be  
counted.  
The Real-Time Clock application code in Example 11-1  
shows a typical ISR for Timer1, as well as the optional  
code required if the update cannot be done reliably  
within the required interval.  
If the application can reliably update TMR1 before the  
timer input goes low, no additional action is needed.  
Otherwise, an adjusted update can be performed  
EXAMPLE 11-1:  
IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE  
RTCinit  
MOVLW  
MOVWF  
CLRF  
80h  
TMR1H  
TMR1L  
; Preload TMR1 register pair  
; for 1 second overflow  
MOVLW  
MOVWF  
CLRF  
b’00001111’  
T1CON  
secs  
; Configure for external clock,  
; Asynchronous operation, external oscillator  
; Initialize timekeeping registers  
;
CLRF  
mins  
MOVLW  
MOVWF  
BSF  
.12  
hours  
PIE1, TMR1IE  
; Enable Timer1 interrupt  
RETURN  
RTCisr  
; Insert the next 4 lines of code when TMR1  
; cannot be reliably updated before clock pulse goes low  
; wait for TMR1L to become clear  
; (may already be clear)  
BTFSC  
BRA  
TMR1L,0  
$-2  
BTFSS  
BRA  
TMR1L,0  
$-2  
; wait for TMR1L to become set  
; TMR1 has just incremented  
; If TMR1 update can be completed before clock pulse goes low  
; Start ISR here  
BSF  
BCF  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
TMR1H, 7  
PIR1, TMR1IF  
secs, F  
.59  
; Preload for 1 sec overflow  
; Clear interrupt flag  
; Increment seconds  
; 60 seconds elapsed?  
secs  
; No, done  
secs  
mins, F  
.59  
; Clear seconds  
; Increment minutes  
; 60 minutes elapsed?  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
mins  
; No, done  
mins  
hours, F  
.23  
; clear minutes  
; Increment hours  
; 24 hours elapsed?  
INCF  
MOVLW  
CPFSGT  
RETURN  
CLRF  
hours  
; No, done  
; Reset hours  
; Done  
hours  
RETURN  
© 2008 Microchip Technology Inc.  
DS39760D-page 119  
PIC18F2450/4450  
TABLE 11-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
49  
51  
51  
51  
50  
50  
50  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
TXIE  
TXIP  
IPR1  
TMR1L  
TMR1H  
T1CON  
Timer1 Register Low Byte  
TImer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
DS39760D-page 120  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
12.1 Timer2 Operation  
12.0 TIMER2 MODULE  
In normal operation, TMR2 is incremented from 00h on  
each clock (FOSC/4). A 2-bit counter/prescaler on the  
clock input gives direct input, divide-by-4 and divide-by-  
16 prescale options. These are selected by the prescaler  
control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The  
value of TMR2 is compared to that of the period register,  
PR2, on each clock cycle. When the two values match,  
the comparator generates a match signal as the timer  
output. This signal also resets the value of TMR2 to 00h  
on the next cycle and drives the output counter/  
postscaler (see Section 12.2 “Timer2 Interrupt”).  
The Timer2 module timer incorporates the following  
features:  
• 8-Bit Timer and Period Registers (TMR2 and  
PR2, respectively)  
• Readable and Writable (both registers)  
• Software Programmable Prescaler (1:1, 1:4 and  
1:16)  
• Software Programmable Postscaler (1:1 through  
1:16)  
• Interrupt on TMR2 to PR2 Match  
The TMR2 and PR2 registers are both directly readable  
and writable. The TMR2 register is cleared on any  
device Reset, while the PR2 register initializes at FFh.  
Both the prescaler and postscaler counters are cleared  
on the following events:  
The module is controlled through the T2CON register  
(Register 12-1) which enables or disables the timer and  
configures the prescaler and postscaler. Timer2 can be  
shut off by clearing control bit, TMR2ON (T2CON<2>),  
to minimize power consumption.  
• a write to the TMR2 register  
• a write to the T2CON register  
A simplified block diagram of the module is shown in  
Figure 12-1.  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 12-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
© 2008 Microchip Technology Inc.  
DS39760D-page 121  
PIC18F2450/4450  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, T2OUTPS3:T2OUTPS0 (T2CON<6:3>).  
12.2 Timer2 Interrupt  
Timer2 also can generate an optional device interrupt.  
The Timer2 output signal (TMR2 to PR2 match)  
provides the input for the 4-bit output counter/  
postscaler. This counter generates the TMR2 match  
interrupt flag which is latched in TMR2IF (PIR1<1>).  
The interrupt is enabled by setting the TMR2 Match  
Interrupt Enable bit, TMR2IE (PIE1<1>).  
12.3 TMR2 Output  
The unscaled output of TMR2 is available primarily to  
the CCP module, where it is used as a time base for  
operations in PWM mode.  
FIGURE 12-1:  
TIMER2 BLOCK DIAGRAM  
4
1:1 to 1:16  
Set TMR2IF  
Postscaler  
T2OUTPS3:T2OUTPS0  
2
TMR2 Output  
T2CKPS1:T2CKPS0  
(to PWM)  
TMR2/PR2  
Match  
Reset  
TMR2  
1:1, 1:4, 1:16  
Prescaler  
Comparator  
PR2  
FOSC/4  
8
8
8
Internal Data Bus  
TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
49  
51  
51  
51  
50  
50  
50  
PIR1  
PIE1  
IPR1  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF  
TMR1IE  
TMR1IP  
TXIE  
TXIP  
TMR2 Timer2 Register  
T2CON  
PR2  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Period Register  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
DS39760D-page 122  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
13.0 CAPTURE/COMPARE/PWM  
(CCP) MODULE  
PIC18F2450/4450 devices have one CCP (Capture/  
Compare/PWM) module. The module contains a 16-bit  
register, which can operate as a 16-bit Capture register,  
a 16-bit Compare register or a PWM Master/Slave Duty  
Cycle register.  
REGISTER 13-1: CCP1CON: CAPTURE/COMPARE/PWM CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DC1B1:DC1B0: PWM Duty Cycle for CCP Module bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs of the duty  
cycle are found in CCPR1L.  
bit 3-0  
CCP1M3:CCP1M0: CCP Module Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCP module)  
0001= Reserved  
0010= Compare mode: toggle output on match (CCP1IF bit is set)  
0011= Reserved  
0100= Capture mode: every falling edge  
0101= Capture mode: every rising edge  
0110= Capture mode: every 4th rising edge  
0111= Capture mode: every 16th rising edge  
1000= Compare mode: initialize CCP1 pin low; on compare match, force CCP1 pin high  
(CCP1IF bit is set)  
1001= Compare mode: initialize CCP1 pin high; on compare match, force CCP1 pin low  
(CCP1IF bit is set)  
1010= Compare mode: generate software interrupt on compare match (CCP1IF bit is set,  
CCP1 pin reflects I/O state)  
1011= Compare mode: trigger special event, reset timer and start A/D conversion on CCP1 match  
(CCP1IF bit is set)  
11xx= PWM mode  
© 2008 Microchip Technology Inc.  
DS39760D-page 123  
PIC18F2450/4450  
13.2.1  
CCP1 PIN CONFIGURATION  
13.1 CCP Module Configuration  
In Capture mode, the CCP1 pin should be configured  
as an input by setting the corresponding TRIS direction  
bit.  
The Capture/Compare/PWM module is associated with  
a control register (generically, CCP1CON) and a data  
register (CCPR1). The data register, in turn, is  
comprised of two 8-bit registers: CCPR1L (low byte)  
and CCPR1H (high byte). All registers are both  
readable and writable.  
Note:  
If RC2/CCP1 is configured as an output, a  
write to the port can cause a capture  
condition.  
13.1.1  
CCP MODULE AND TIMER  
RESOURCES  
13.2.2  
SOFTWARE INTERRUPT  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCP1IE interrupt enable bit clear to avoid false  
interrupts. The interrupt flag bit, CCP1IF, should also  
be cleared following any such change in operating  
mode.  
The CCP module utilizes Timer1 or Timer2, depending  
on the mode selected. Timer1 is available to the mod-  
ule in Capture or Compare modes, while Timer2 is  
available for modules in PWM mode.  
TABLE 13-1: CCP MODE – TIMER  
RESOURCE  
13.2.3  
CCP PRESCALER  
There are four prescaler settings in Capture mode.  
They are specified as part of the operating mode  
selected by the mode select bits (CCP1M3:CCP1M0).  
Whenever the CCP module is turned off or Capture  
mode is disabled, the prescaler counter is cleared. This  
means that any Reset will clear the prescaler counter.  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
In Timer1 in Asynchronous Counter mode, the capture  
operation will not work.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
13.2 Capture Mode  
a
non-zero prescaler. Example 13-1 shows the  
In Capture mode, the CCPR1H:CCPR1L register pair  
captures the 16-bit value of the TMR1 register when an  
event occurs on the corresponding CCP1 pin. An event  
is defined as one of the following:  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
EXAMPLE 13-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
(CCP1 SHOWN)  
• every falling edge  
• every rising edge  
• every 4th rising edge  
• every 16th rising edge  
CLRF  
CCP1CON  
; Turn CCP module off  
; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVLW NEW_CAPT_PS  
The event is selected by the mode select bits,  
CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture  
is made, the interrupt request flag bit, CCP1IF, is set; it  
must be cleared in software. If another capture occurs  
before the value in register CCPR1 is read, the old  
captured value is overwritten by the new captured value.  
MOVWF CCP1CON  
FIGURE 13-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
Set CCP1IF  
CCP1 pin  
Prescaler  
÷ 1, 4, 16  
and  
Edge Detect  
CCPR1H  
CCPR1L  
TMR1L  
TMR1  
Enable  
TMR1H  
4
CCP1CON<3:0>  
Q1:Q4  
4
DS39760D-page 124  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
13.3.3  
SOFTWARE INTERRUPT MODE  
13.3 Compare Mode  
When the Generate Software Interrupt mode is chosen  
(CCP1M3:CCP1M0 = 1010), the CCP1 pin is not  
affected. Only a CCP interrupt is generated, if enabled,  
and the CCP1IE bit is set.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCP1 pin can be:  
• driven high  
• driven low  
13.3.4  
SPECIAL EVENT TRIGGER  
• toggled (high-to-low or low-to-high)  
The CCP module is equipped with a Special Event  
Trigger. This is an internal hardware signal generated  
in Compare mode to trigger actions by other modules.  
The Special Event Trigger is enabled by selecting  
the Compare Special Event Trigger mode  
(CCP1M3:CCP1M0 = 1011).  
• remain unchanged (that is, reflects the state of the  
I/O latch)  
The action on the pin is based on the value of the mode  
select bits (CCP1M3:CCP1M0). At the same time, the  
interrupt flag bit, CCP1IF, is set.  
For the CCP module, the Special Event Trigger resets  
the Timer1 register pair. This allows the CCPR1  
registers to serve as a programmable period register  
for the Timer1.  
13.3.1  
CCP1 PIN CONFIGURATION  
The user must configure the CCP1 pin as an output by  
clearing the appropriate TRIS bit.  
The Special Event Trigger for CCP1 can also start an  
A/D conversion. In order to do this, the A/D Converter  
must already be enabled.  
Note:  
Clearing the CCP1CON register will force  
the RC2 compare output latch to the  
default low level.  
13.3.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode, or  
Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
FIGURE 13-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger  
(Timer1 Reset)  
Set CCP1IF  
CCPR1H  
CCPR1L  
CCP1 pin  
S
R
Q
Output  
Logic  
Compare  
Match  
Comparator  
TRIS  
Output Enable  
4
CCP1CON<3:0>  
TMR1H  
TMR1L  
© 2008 Microchip Technology Inc.  
DS39760D-page 125  
PIC18F2450/4450  
TABLE 13-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
RCON  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
49  
50  
51  
51  
51  
51  
50  
50  
50  
50  
50  
50  
IPEN  
SBOREN(1)  
PIR1  
ADIF  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
ADIE  
IPR1  
ADIP  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
TRISC7  
TRISC6  
TRISC2  
TRISC1  
TRISC0  
Timer1 Register Low Byte  
Timer1 Register High Byte  
RD16  
T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
Capture/Compare/PWM Register 1 Low Byte  
Capture/Compare/PWM Register 1 High Byte  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by capture/compare and Timer1.  
Note 1: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as ‘0’.  
DS39760D-page 126  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
13.4.1  
PWM PERIOD  
13.4 PWM Mode  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula:  
In Pulse-Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output.  
Figure 13-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
EQUATION 13-1:  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 13.4.3  
“Setup for PWM Operation”.  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
PWM frequency is defined as 1/[PWM period].  
FIGURE 13-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
CCP1CON<5:4>  
Duty Cycle Registers  
• TMR2 is cleared  
CCPR1L  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
CCPR1H (Slave)  
Comparator  
Note:  
The Timer2 postscalers (see Section 12.0  
“Timer2 Module”) are not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
Q
R
S
CCP1  
Output  
(Note 1)  
TMR2  
Corresponding  
TRIS bit  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
13.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> bits contain  
the two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. Equation 13-2 is used to  
calculate the PWM duty cycle in time:  
Note 1: The 8-bit TMR2 value is concatenated with the 2-bit  
internal Q clock, or 2 bits of the prescaler, to create  
the 10-bit time base.  
A PWM output (Figure 13-4) has a time base (period)  
and a time that the output stays high (duty cycle).  
The frequency of the PWM is the inverse of the  
period (1/period).  
EQUATION 13-2:  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
FIGURE 13-4:  
PWM OUTPUT  
Period  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
© 2008 Microchip Technology Inc.  
DS39760D-page 127  
PIC18F2450/4450  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation.  
13.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2  
register.  
When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or 2 bits of  
the TMR2 prescaler, the CCP1 pin is cleared.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
3. Make the CCP1 pin an output by clearing the  
appropriate TRIS bit.  
4. Set the TMR2 prescale value, then enable  
Timer2 by writing to T2CON.  
EQUATION 13-3:  
FOSC  
5. Configure the CCP module for PWM operation.  
log ---------------  
FPWM  
PWM Resolution (max)  
= ----------------------------- b i t s  
log(2)  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TABLE 13-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
TABLE 13-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Reset  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Values  
on Page:  
INTCON  
RCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
49  
50  
51  
51  
51  
51  
50  
50  
50  
50  
50  
50  
IPEN  
SBOREN(1)  
ADIF  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
CCP1IF  
CCP1IE  
CCP1IP  
TRISC2  
TMR2IF TMR1IF  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
TRISC1 TRISC0  
PIE1  
ADIE  
IPR1  
ADIP  
TRISC  
TMR2  
PR2  
TRISC7  
TRISC6  
Timer2 Register  
Timer2 Period Register  
T2CON  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
CCPR1L Capture/Compare/PWM Register 1 Low Byte  
CCPR1H Capture/Compare/PWM Register 1 High Byte  
CCP1CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by PWM or Timer2.  
Note 1: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as ‘0’.  
DS39760D-page 128  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
any USB host and the PIC® microcontroller. The SIE can  
be interfaced directly to the USB, utilizing the internal  
transceiver, or it can be connected through an external  
transceiver. An internal 3.3V regulator is also available  
to power the internal transceiver in 5V applications.  
14.0 UNIVERSAL SERIAL BUS  
(USB)  
This section describes the details of the USB peripheral.  
Because of the very specific nature of the module,  
knowledge of USB is expected. Some high-level USB  
information is provided in Section 14.9 “Overview of  
USB” only for application design reference. Designers  
are encouraged to refer to the official specification  
published by the USB Implementers Forum (USB-IF) for  
the latest information. USB Specification Revision 2.0 is  
the most current specification at the time of publication  
of this document.  
Some special hardware features have been included to  
improve performance. Dual port memory in the  
device’s data memory space (USB RAM) has been  
supplied to share direct memory access between the  
microcontroller core and the SIE. Buffer descriptors are  
also provided, allowing users to freely program  
endpoint memory usage within the USB RAM space.  
Figure 14-1 presents a general overview of the USB  
peripheral and its features.  
14.1 Overview of the USB Peripheral  
The PIC18F2450/4450 device family contains a full-  
speed and low-speed, compatible USB Serial Interface  
Engine (SIE) that allows fast communication between  
FIGURE 14-1:  
USB PERIPHERAL AND OPTIONS  
PIC18F2450/4450 Family  
3.3V Regulator  
External 3.3V  
Supply  
VUSB  
(3)  
EN  
VREGEN  
P
External  
Pull-ups  
(2)  
FSEN  
UPUEN  
P
(Full  
Speed)  
(Low  
Speed)  
Internal Pull-ups  
UTRDIS  
Transceiver  
FS  
USB Bus  
USB Clock from the  
Oscillator Module  
D+  
D-  
OE  
External  
Transceiver  
(1)  
UOE  
VM  
VP  
RCV  
USB Control and  
Configuration  
(1)  
USB Bus  
(1)  
(1)  
(1)  
USB  
SIE  
VMO  
(1)  
VPO  
256-Byte  
USB RAM  
Note 1: This signal is only available if the internal transceiver is disabled (UTRDIS = 1).  
2: The pull-ups can be supplied either from the VUSB pin or from an external 3.3V supply.  
3: Do not enable the internal regulator when using an external 3.3V supply.  
© 2008 Microchip Technology Inc.  
DS39760D-page 129  
PIC18F2450/4450  
In addition, the USB Control register contains a status  
bit, SE0 (UCON<5>), which is used to indicate the  
occurrence of a single-ended zero on the bus. When  
the USB module is enabled, this bit should be  
monitored to determine whether the differential data  
lines have come out of a single-ended zero condition.  
This helps to differentiate the initial power-up state from  
the USB Reset signal.  
14.2 USB Status and Control  
The operation of the USB module is configured and  
managed through three control registers. In addition, a  
total of 22 registers are used to manage the actual USB  
transactions. The registers are:  
• USB Control register (UCON)  
• USB Configuration register (UCFG)  
• USB Transfer Status register (USTAT)  
• USB Device Address register (UADDR)  
• Frame Number registers (UFRMH:UFRML)  
• Endpoint Enable registers 0 through 15 (UEPn)  
The overall operation of the USB module is controlled  
by the USBEN bit (UCON<3>). Setting this bit activates  
the module and resets all of the PPBI bits in the Buffer  
Descriptor Table to ‘0’. This bit also activates the on-  
chip voltage regulator, if enabled. Thus, this bit can be  
used as a soft attach/detach to the USB. Although all  
status and control bits are ignored when this bit is clear,  
the module needs to be fully preconfigured prior to  
setting this bit.  
14.2.1  
USB CONTROL REGISTER (UCON)  
The USB Control register (Register 14-1) contains bits  
needed to control the module behavior during transfers.  
The register contains bits that control the following:  
• Main USB Peripheral Enable  
• Ping-Pong Buffer Pointer Reset  
• Control of the Suspend Mode  
• Packet Transfer Disable  
REGISTER 14-1: UCON: USB CONTROL REGISTER  
U-0  
R/W-0  
R-x  
R/C-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
PPBRST  
SE0  
PKTDIS  
USBEN  
RESUME  
SUSPND  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
PPBRST: Ping-Pong Buffers Reset bit  
1= Reset all Ping-Pong Buffer Pointers to the EVEN Buffer Descriptor (BD) banks  
0= Ping-Pong Buffer Pointers not being reset  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SE0: Live Single-Ended Zero Flag bit  
1= Single-ended zero active on the USB bus  
0= No single-ended zero detected  
PKTDIS: Packet Transfer Disable bit  
1= SIE token and packet processing disabled, automatically set when a SETUP token is received  
0= SIE token and packet processing enabled  
USBEN: USB Module Enable bit  
1= USB module and supporting circuitry enabled (device attached)  
0= USB module and supporting circuitry disabled (device detached)  
RESUME: Resume Signaling Enable bit  
1= Resume signaling activated  
0= Resume signaling disabled  
SUSPND: Suspend USB bit  
1= USB module and supporting circuitry in Power Conserve mode, SIE clock inactive  
0= USB module and supporting circuitry in normal operation, SIE clock clocked at the configured rate  
Unimplemented: Read as ‘0’  
DS39760D-page 130  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
The PPBRST bit (UCON<6>) controls the Reset status  
when Double-Buffering mode (ping-pong buffering) is  
used. When the PPBRST bit is set, all Ping-Pong  
Buffer Pointers are set to the EVEN buffers. PPBRST  
has to be cleared by firmware. This bit is ignored in  
buffering modes not using ping-pong buffering.  
The UCFG register also contains two bits which aid in  
module testing, debugging and USB certifications.  
These bits control output enable state monitoring and  
eye pattern generation.  
Note:  
The USB speed, transceiver and pull-up  
should only be configured during the mod-  
ule setup phase. It is not recommended to  
switch these settings while the module is  
enabled.  
The PKTDIS bit (UCON<4>) is a flag indicating that the  
SIE has disabled packet transmission and reception.  
This bit is set by the SIE when a SETUP token is  
received to allow setup processing. This bit cannot be  
set by the microcontroller, only cleared; clearing it  
allows the SIE to continue transmission and/or  
reception. Any pending events within the Buffer  
Descriptor Table will still be available, indicated within  
the USTAT register’s FIFO buffer.  
14.2.2.1  
Internal Transceiver  
The USB peripheral has a built-in, USB 2.0, full-speed  
and low-speed compliant transceiver, internally con-  
nected to the SIE. This feature is useful for low-cost,  
single chip applications. The UTRDIS bit (UCFG<3>)  
controls the transceiver; it is enabled by default  
(UTRDIS = 0). The FSEN bit (UCFG<2>) controls the  
transceiver speed; setting the bit enables full-speed  
operation. The on-chip USB pull-up resistors are con-  
trolled by the UPUEN bit (UCFG<4>). They can only be  
selected when the on-chip transceiver is enabled.  
The RESUME bit (UCON<2>) allows the peripheral to  
perform a remote wake-up by executing Resume  
signaling. To generate a valid remote wake-up,  
firmware must set RESUME for 10 ms and then clear  
the bit. For more information on Resume signaling, see  
Sections 7.1.7.5, 11.4.4 and 11.9 in the USB 2.0  
Specification.  
The USB specification requires 3.3V operation for  
communications; however, the rest of the chip may be  
running at a higher voltage. Thus, the transceiver is  
supplied power from a separate source, VUSB.  
The SUSPND bit (UCON<1>) places the module and  
supporting circuitry (i.e., voltage regulator) in a low-  
power mode. The input clock to the SIE is also  
disabled. This bit should be set by the software in  
response to an IDLEIF interrupt. It should be reset by  
the microcontroller firmware after an ACTVIF interrupt  
is observed. When this bit is active, the device remains  
attached to the bus but the transceiver outputs remain  
Idle. The voltage on the VUSB pin may vary depending  
on the value of this bit. Setting this bit before a IDLEIF  
request will result in unpredictable bus behavior.  
14.2.2.2  
External Transceiver  
This module provides support for use with an off-chip  
transceiver. The off-chip transceiver is intended for  
applications where physical conditions dictate the  
location of the transceiver to be away from the SIE. For  
example, applications that require isolation from the  
USB could use an external transceiver through some  
isolation to the microcontroller’s SIE (Figure 14-2).  
External transceiver operation is enabled by setting the  
UTRDIS bit.  
Note:  
While in Suspend mode, a typical bus  
powered USB device is limited to 500 μA  
of current. This is the complete current  
drawn by the PIC microcontroller and its  
supporting circuitry. Care should be taken  
to assure minimum current draw when the  
device enters Suspend mode.  
FIGURE 14-2:  
TYPICAL EXTERNAL  
TRANSCEIVER WITH  
ISOLATION  
VDD Isolated  
from USB  
PIC®  
14.2.2  
USB CONFIGURATION REGISTER  
(UCFG)  
3.3V Derived  
from USB  
Microcontroller  
VDD  
Prior to communicating over USB, the module’s  
associated internal and/or external hardware must be  
configured. Most of the configuration is performed with  
the UCFG register (Register 14-2). The separate USB  
voltage regulator (see Section 14.2.2.8 “Internal  
Regulator”) is controlled through the Configuration  
registers.  
VUSB  
1.5 kΩ  
VM  
VP  
RCV  
VMO  
VPO  
Isolation  
Transceiver  
D+  
D-  
UOE  
The UFCG register contains most of the bits that  
control the system level behavior of the USB module.  
These include:  
Note: The above setting shows a simplified schematic  
for a full-speed configuration using an external  
transceiver with isolation.  
• Bus Speed (full speed versus low speed)  
• On-Chip Transceiver Enable  
• Ping-Pong Buffer Usage  
© 2008 Microchip Technology Inc.  
DS39760D-page 131  
PIC18F2450/4450  
REGISTER 14-2: UCFG: USB CONFIGURATION REGISTER  
R/W-0  
R/W-0  
UOEMON(1)  
U-0  
R/W-0  
UPUEN(2,3) UTRDIS(2)  
R/W-0  
R/W-0  
FSEN(2)  
R/W-0  
PPB1  
R/W-0  
PPB0  
UTEYE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
UTEYE: USB Eye Pattern Test Enable bit  
1= Eye pattern test enabled  
0= Eye pattern test disabled  
UOEMON: USB OE Monitor Enable bit(1)  
1= UOE signal active; it indicates intervals during which the D+/D- lines are driving  
0= UOE signal inactive  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
UPUEN: USB On-Chip Pull-up Enable bit(2,3)  
1= On-chip pull-up enabled (pull-up on D+ with FSEN = 1or D- with FSEN = 0)  
0= On-chip pull-up disabled  
bit 3  
UTRDIS: On-Chip Transceiver Disable bit(2)  
1= On-chip transceiver disabled; digital transceiver interface enabled  
0= On-chip transceiver active  
bit 2  
FSEN: Full-Speed Enable bit(2)  
1= Full-speed device: controls transceiver edge rates; requires input clock at 48 MHz  
0= Low-speed device: controls transceiver edge rates; requires input clock at 6 MHz  
bit 1-0  
PPB1:PPB0: Ping-Pong Buffers Configuration bits  
11= Enabled for all endpoints except Endpoint 0  
10= EVEN/ODD ping-pong buffers enabled for all endpoints  
01= EVEN/ODD ping-pong buffer enabled for OUT Endpoint 0  
00= EVEN/ODD ping-pong buffers disabled  
Note 1: If UTRDIS is set, the UOE signal will be active independent of the UOEMON bit setting.  
2: The UPUEN, UTRDIS and FSEN bits should never be changed while the USB module is enabled. These  
values must be preconfigured prior to enabling the module.  
3: This bit is only valid when the on-chip transceiver is active (UTRDIS = 0); otherwise, it is ignored.  
There are 6 signals from the module to communicate  
with and control an external transceiver:  
The VPO and VMO signals are outputs from the SIE to  
the external transceiver. The RCV signal is the output  
from the external transceiver to the SIE; it represents  
the differential signals from the serial bus translated  
into a single pulse train. The VM and VP signals are  
used to report conditions on the serial bus to the SIE  
that can’t be captured with the RCV signal. The  
combinations of states of these signals and their  
interpretation are listed in Table 14-1 and Table 14-2.  
• VM: Input from the single-ended D- line  
• VP: Input from the single-ended D+ line  
• RCV: Input from the differential receiver  
• VMO: Output to the differential line driver  
• VPO: Output to the differential line driver  
• UOE: Output enable  
DS39760D-page 132  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 14-1: DIFFERENTIAL OUTPUTS TO  
TRANSCEIVER  
14.2.2.6  
USB Output Enable Monitor  
The USB OE monitor provides indication as to whether  
the SIE is listening to the bus or actively driving the bus.  
This is enabled by default when using an external  
transceiver or when UCFG<6> = 1.  
VPO  
VMO  
Bus State  
0
0
1
1
0
1
0
1
Single-Ended Zero  
Differential ‘0’  
The USB OE monitoring is useful for initial system  
debugging, as well as scope triggering during eye  
pattern generation tests.  
Differential ‘1’  
Illegal Condition  
14.2.2.7  
Eye Pattern Test Enable  
TABLE 14-2: SINGLE-ENDED INPUTS  
FROM TRANSCEIVER  
An automatic eye pattern test can be generated by the  
module when the UCFG<7> bit is set. The eye pattern  
output will be observable based on module settings,  
meaning that the user is first responsible for configuring  
the SIE clock settings, pull-up resistor and Transceiver  
mode. In addition, the module has to be enabled.  
VP  
VM  
Bus State  
0
0
1
1
0
1
0
1
Single-Ended Zero  
Low Speed  
High Speed  
Error  
Once UTEYE is set, the module emulates a switch from  
a receive to transmit state and will start transmitting a  
J-K-J-K bit sequence (K-J-K-J for full speed). The  
sequence will be repeated indefinitely while the Eye  
Pattern Test mode is enabled.  
The UOE signal toggles the state of the external  
transceiver. This line is pulled low by the device to  
enable the transmission of data from the SIE to an  
external device.  
Note that this bit should never be set while the module  
is connected to an actual USB system. This test mode  
is intended for board verification to aid with USB certi-  
fication tests. It is intended to show a system developer  
the noise integrity of the USB signals which can be  
affected by board traces, impedance mismatches and  
proximity to other system components. It does not  
properly test the transition from a receive to a transmit  
state. Although the eye pattern is not meant to replace  
the more complex USB certification test, it should aid  
during first order system debugging.  
14.2.2.3  
Internal Pull-up Resistors  
The PIC18F2450/4450 devices have built-in pull-up  
resistors designed to meet the requirements for low-  
speed and full-speed USB. The UPUEN bit (UCFG<4>)  
enables the internal pull-ups. Figure 14-1 shows the  
pull-ups and their control.  
14.2.2.4  
Pull-up Resistors  
The PIC18F2450/4450 devices require an external  
pull-up resistor to meet the requirements for low-speed  
and full-speed USB. Either an external 3.3V supply or  
the VUSB pin may be used to pull up D+ or D-. The pull-  
up resistor must be 1.5 kΩ (±5%) as required by the  
USB specifications. Figure 14-3 shows an example  
with the VUSB pin.  
14.2.2.8  
Internal Regulator  
The PIC18F2450/4450 devices have a built-in 3.3V  
regulator to provide power to the internal transceiver and  
provide a source for the external pull-ups. An external  
220 nF (±20%) capacitor is required for stability.  
FIGURE 14-3:  
EXTERNAL CIRCUITRY  
Note:  
The drive from VUSB is sufficient to only  
drive an external pull-up in addition to the  
internal transceiver.  
PIC®  
Host  
Controller/HUB  
Microcontroller  
VUSB  
The regulator is disabled by default and can be enabled  
through the VREGEN Configuration bit. When enabled,  
the voltage is visible on pin VUSB. When the regulator  
is disabled, a 3.3V source must be provided through  
the VUSB pin for the internal transceiver. If the internal  
transceiver is disabled, VUSB is not used.  
1.5 kΩ  
D+  
D-  
Note 1: Do not enable the internal regulator if an  
Note: The above setting shows a typical connection for a  
full-speed configuration using an on-chip regulator  
and an external pull-up resistor.  
external regulator is connected to VUSB.  
2: VDD must be greater than or equal to  
VUSB at all times, even with the regulator  
disabled.  
14.2.2.5  
Ping-Pong Buffer Configuration  
The usage of ping-pong buffers is configured using the  
PPB1:PPB0 bits. Refer to Section 14.4.4 “Ping-Pong  
Buffering” for a complete explanation of the ping-pong  
buffers.  
© 2008 Microchip Technology Inc.  
DS39760D-page 133  
PIC18F2450/4450  
Clearing the transfer complete flag bit, TRNIF, causes  
the SIE to advance the FIFO. If the next data in the  
FIFO holding register is valid, the SIE will reassert the  
interrupt within 6 TCY of clearing TRNIF. If no additional  
data is present, TRNIF will remain clear; USTAT data  
will no longer be reliable.  
14.2.3  
USB STATUS REGISTER (USTAT)  
The USB Status register reports the transaction status  
within the SIE. When the SIE issues a USB transfer  
complete interrupt, USTAT should be read to determine  
the status of the transfer. USTAT contains the transfer  
endpoint number, direction and Ping-Pong Buffer  
Pointer value (if used).  
Note:  
If an endpoint request is received while the  
USTAT FIFO is full, the SIE will  
automatically issue a NAK back to the  
host.  
Note:  
The data in the USB Status register is valid  
only when the TRNIF interrupt flag is  
asserted.  
The USTAT register is actually a read window into a  
four-byte status FIFO, maintained by the SIE. It allows  
the microcontroller to process one transfer while the  
SIE processes additional endpoints (Figure 14-4).  
When the SIE completes using a buffer for reading or  
writing data, it updates the USTAT register. If another  
USB transfer is performed before a transaction  
complete interrupt is serviced, the SIE will store the  
status of the next transfer into the status FIFO.  
FIGURE 14-4:  
USTAT FIFO  
USTAT from SIE  
Clearing TRNIF  
Advances FIFO  
4-Byte FIFO  
for USTAT  
Data Bus  
REGISTER 14-3: USTAT: USB STATUS REGISTER  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
DIR  
R-x  
PPBI(1)  
U-0  
ENDP3  
ENDP2  
ENDP1  
ENDP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
ENDP3:ENDP0: Encoded Number of Last Endpoint Activity bits  
(represents the number of the BDT updated by the last USB transfer)  
1111= Endpoint 15  
1110= Endpoint 14  
....  
0001= Endpoint 1  
0000= Endpoint 0  
bit 2  
bit 1  
bit 0  
DIR: Last BD Direction Indicator bit  
1= The last transaction was an IN token  
0= The last transaction was an OUT or SETUP token  
PPBI: Ping-Pong BD Pointer Indicator bit(1)  
1= The last transaction was to the ODD BD bank  
0= The last transaction was to the EVEN BD bank  
Unimplemented: Read as ‘0’  
Note 1: This bit is only valid for endpoints with available EVEN and ODD BD registers.  
DS39760D-page 134  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
transactions. For Endpoint 0, this bit should always be  
cleared since the USB specifications identify  
Endpoint 0 as the default control endpoint.  
14.2.4  
USB ENDPOINT CONTROL  
Each of the 16 possible bidirectional endpoints has its  
own independent control register, UEPn (where ‘n’ rep-  
resents the endpoint number). Each register has an  
identical complement of control bits. The prototype is  
shown in Register 14-4.  
The EPOUTEN bit (UEPn<2>) is used to enable or dis-  
able USB OUT transactions from the host. Setting this  
bit enables OUT transactions. Similarly, the EPINEN bit  
(UEPn<1>) enables or disables USB IN transactions  
from the host.  
The EPHSHK bit (UEPn<4>) controls handshaking for  
the endpoint; setting this bit enables USB handshaking.  
Typically, this bit is always set except when using  
isochronous endpoints.  
The EPSTALL bit (UEPn<0>) is used to indicate a  
STALL condition for the endpoint. If a STALL is issued  
on a particular endpoint, the EPSTALL bit for that end-  
point pair will be set by the SIE. This bit remains set  
until it is cleared through firmware, or until the SIE is  
reset.  
The EPCONDIS bit (UEPn<3>) is used to enable or  
disable USB control operations (SETUP) through the  
endpoint. Clearing this bit enables SETUP  
transactions. Note that the corresponding EPINEN and  
EPOUTEN bits must be set to enable IN and OUT  
REGISTER 14-4: UEPn: USB ENDPOINT n CONTROL REGISTER (UEP0 THROUGH UEP15)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EPSTALL(1)  
bit 0  
EPHSHK EPCONDIS  
EPOUTEN  
EPINEN  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
EPHSHK: Endpoint Handshake Enable bit  
1= Endpoint handshake enabled  
0= Endpoint handshake disabled (typically used for isochronous endpoints)  
bit 3  
EPCONDIS: Bidirectional Endpoint Control bit  
If EPOUTEN = 1 and EPINEN = 1:  
1= Disable Endpoint n from control transfers; only IN and OUT transfers allowed  
0= Enable Endpoint n for control (SETUP) transfers; IN and OUT transfers also allowed  
bit 2  
bit 1  
bit 0  
EPOUTEN: Endpoint Output Enable bit  
1= Endpoint n output enabled  
0= Endpoint n output disabled  
EPINEN: Endpoint Input Enable bit  
1= Endpoint n input enabled  
0= Endpoint n input disabled  
EPSTALL: Endpoint Stall Indicator bit  
1= Endpoint n has issued one or more STALL packets  
0= Endpoint n has not issued any STALL packets  
© 2008 Microchip Technology Inc.  
DS39760D-page 135  
PIC18F2450/4450  
14.2.5  
USB ADDRESS REGISTER  
(UADDR)  
FIGURE 14-5:  
IMPLEMENTATION OF  
USB RAM IN DATA  
MEMORY SPACE  
The USB Address register contains the unique USB  
address that the peripheral will decode when active.  
UADDR is reset to 00h when a USB Reset is received,  
indicated by URSTIF, or when a Reset is received from  
the microcontroller. The USB address must be written  
by the microcontroller during the USB setup phase  
(enumeration) as part of the Microchip USB firmware  
support.  
000h  
Banks 0  
to 1  
User Data  
1FFh  
200h  
Banks 2  
to 3  
Unused  
3FFh  
400h  
Buffer Descriptors,  
14.2.6  
USB FRAME NUMBER REGISTERS  
(UFRMH:UFRML)  
Bank 4  
USB Data or User Data  
4FFh  
500h  
The Frame Number registers contain the 11-bit frame  
number. The low-order byte is contained in UFRML,  
while the three high-order bits are contained in  
UFRMH. The register pair is updated with the current  
frame number whenever a SOF token is received. For  
the microcontroller, these registers are read-only. The  
Frame Number register is primarily used for  
isochronous transfers.  
USB Data or  
User Data  
7FFh  
800h  
Banks 5  
to 14  
Unused  
14.3 USB RAM  
USB data moves between the microcontroller core and  
the SIE through a memory space known as the USB  
RAM. This is a special dual port memory that is  
mapped into the normal data memory space in Bank 4  
(400h to 4FFh) for a total of 256 bytes (Figure 14-5).  
Some portion of Bank 4 (400h through 4FFh) is used  
specifically for endpoint buffer control, while the  
remaining portion is available for USB data. Depending  
on the type of buffering being used, all but 8 bytes of  
Bank 4 may also be available for use as USB buffer  
space.  
F00h  
F80h  
FFFh  
Bank15  
SFRs  
Although USB RAM is available to the microcontroller  
as data memory, the sections that are being accessed  
by the SIE should not be accessed by the  
microcontroller. A semaphore mechanism is used to  
determine the access to a particular buffer at any given  
time. This is discussed in Section 14.4.1.1 “Buffer  
Ownership”.  
DS39760D-page 136  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
14.4.1  
BD STATUS AND CONFIGURATION  
14.4 Buffer Descriptors and the Buffer  
Descriptor Table  
Buffer descriptors not only define the size of an  
endpoint buffer, but also determine its configuration  
and control. Most of the configuration is done with the  
BD Status register, BDnSTAT. Each BD has its own  
unique and correspondingly numbered BDnSTAT  
register.  
The registers in Bank 4 are used specifically for end-  
point buffer control in a structure known as the Buffer  
Descriptor Table (BDT). This provides a flexible method  
for users to construct and control endpoint buffers of  
various lengths and configuration.  
The BDT is composed of Buffer Descriptors (BD) which  
are used to define and control the actual buffers in the  
USB RAM space. Each BD, in turn, consists of four  
registers, where n represents one of the 64 possible  
BDs (range of 0 to 63):  
FIGURE 14-6:  
EXAMPLE OF A BUFFER  
DESCRIPTOR  
Address Registers  
Contents  
(xxh)  
10h  
80h  
04h  
400h  
BD0STAT  
BD0CNT  
401h  
402h  
403h  
Size of Block  
• BDnSTAT: BD Status register  
Buffer  
Descriptor  
BD0ADRL  
BD0ADRH  
• BDnCNT: BD Byte Count register  
• BDnADRL: BD Address Low register  
• BDnADRH: BD Address High register  
Starting  
Address  
480h  
BDs always occur as a four-byte block in the sequence,  
BDnSTAT:BDnCNT:BDnADRL:BDnADRH. The address  
of BDnSTAT is always an offset of (4n – 1) (in  
hexadecimal) from 400h, with n being the buffer  
descriptor number.  
USB Data  
Buffer  
48Fh  
Depending on the buffering configuration used  
(Section 14.4.4 “Ping-Pong Buffering”), there are up  
to 32, 33 or 64 sets of buffer descriptors. At a minimum,  
the BDT must be at least 8 bytes long. This is because  
the USB specification mandates that every device must  
have Endpoint 0 with both input and output for initial  
setup. Depending on the endpoint and buffering  
configuration, the BDT can be as long as 256 bytes.  
Note:  
Memory regions are not to scale.  
Unlike other control registers, the bit configuration for  
the BDnSTAT register is context sensitive. There are  
two distinct configurations, depending on whether the  
microcontroller or the USB module is modifying the BD  
and buffer at a particular time. Only three bit definitions  
are shared between the two.  
Although they can be thought of as Special Function  
Registers, the Buffer Descriptor Status and Address  
registers are not hardware mapped, as conventional  
microcontroller SFRs in Bank 15 are. If the endpoint cor-  
responding to a particular BD is not enabled, its registers  
are not used. Instead of appearing as unimplemented  
addresses, however, they appear as available RAM.  
Only when an endpoint is enabled by setting the  
UEPn<1> bit does the memory at those addresses  
become functional as BD registers. As with any address  
in the data memory space, the BD registers have an  
indeterminate value on any device Reset.  
14.4.1.1  
Buffer Ownership  
Because the buffers and their BDs are shared between  
the CPU and the USB module, a simple semaphore  
mechanism is used to distinguish which is allowed to  
update the BD and associated buffers in memory.  
This is done by using the UOWN bit (BDnSTAT<7>) as  
a semaphore to distinguish which is allowed to update  
the BD and associated buffers in memory. UOWN is the  
only bit that is shared between the two configurations  
of BDnSTAT.  
A total of 256 bytes of address space in Bank 4 is  
available for BDT and USB data RAM. In Ping-Pong  
Buffer mode, all the 16 bidirectional endpoints can not  
be implemented where BDT itself can be as long as  
256 bytes. In the majority of USB applications, few  
endpoints are required to be implemented. Hence, a  
small portion of the 256 bytes will be used for BDT and  
the rest can be used for USB data.  
When UOWN is clear, the BD entry is “owned” by the  
microcontroller core. When the UOWN bit is set, the BD  
entry and the buffer memory are “owned” by the USB  
peripheral. The core should not modify the BD or its  
corresponding data buffer during this time. Note that  
the microcontroller core can still read BDnSTAT while  
the SIE owns the buffer and vice versa.  
The buffer descriptors have a different meaning based  
on the source of the register update. Prior to placing  
ownership with the USB peripheral, the user can con-  
figure the basic operation of the peripheral through the  
BDnSTAT bits. During this time, the byte count and  
buffer location registers can also be set.  
An example of a BD for a 16-byte buffer, starting at  
480h, is shown in Figure 14-6. A particular set of BD  
registers is only valid if the corresponding endpoint has  
been enabled using the UEPn register. All BD registers  
are available in USB RAM. The BD for each endpoint  
should be set up prior to enabling the endpoint.  
© 2008 Microchip Technology Inc.  
DS39760D-page 137  
PIC18F2450/4450  
When UOWN is set, the user can no longer depend on  
the values that were written to the BDs. From this point,  
the SIE updates the BDs as necessary, overwriting the  
original BD values. The BDnSTAT register is updated  
by the SIE with the token PID and the transfer count,  
BDnCNT, is updated.  
the USB RAM and the USB transfer complete interrupt  
flag will not be set. The SIE will send an ACK token  
back to the host to Acknowledge receipt, however. The  
effects of the DTSEN bit on the SIE are summarized in  
Table 14-3.  
The Buffer Stall bit, BSTALL (BDnSTAT<2>), provides  
support for control transfers, usually one-time stalls on  
Endpoint 0. It also provides support for the  
SET_FEATURE/CLEAR_FEATURE commands speci-  
fied in Chapter 9 of the USB specification; typically,  
continuous STALLs to any endpoint other than the  
default control endpoint.  
The BDnSTAT byte of the BDT should always be the  
last byte updated when preparing to arm an endpoint.  
The SIE will clear the UOWN bit when a transaction  
has completed. The only exception to this is when KEN  
is enabled and/or BSTALL is enabled.  
No hardware mechanism exists to block access when  
the UOWN bit is set. Thus, unexpected behavior can  
occur if the microcontroller attempts to modify memory  
when the SIE owns it. Similarly, reading such memory  
may produce inaccurate data until the USB peripheral  
returns ownership to the microcontroller.  
The BSTALL bit enables buffer stalls. Setting BSTALL  
causes the SIE to return a STALL token to the host if a  
received token would use the BD in that location. The  
EPSTALL bit in the corresponding UEPn control  
register is set and a STALL interrupt is generated when  
a STALL is issued to the host. The UOWN bit remains  
set and the BDs are not changed unless a SETUP  
token is received. In this case, the STALL condition is  
cleared and the ownership of the BD is returned to the  
microcontroller core.  
14.4.1.2  
BDnSTAT Register (CPU Mode)  
When UOWN = 0, the microcontroller core owns the  
BD. At this point, the other seven bits of the register  
take on control functions.  
The BD9:BD8 bits (BDnSTAT<1:0>) store the two most  
significant digits of the SIE byte count; the lower 8 digits  
are stored in the corresponding BDnCNT register. See  
Section 14.4.2 “BD Byte Count” for more  
information.  
The Data Toggle Sync Enable bit, DTSEN  
(BDnSTAT<3>), controls data toggle parity checking.  
Setting DTSEN enables data toggle synchronization by  
the SIE. When enabled, it checks the data packet’s  
parity against the value of DTS (BDnSTAT<6>). If a  
packet arrives with an incorrect synchronization, the  
data will essentially be ignored. It will not be written to  
TABLE 14-3: EFFECT OF DTSEN BIT ON ODD/EVEN (DATA0/DATA1) PACKET RECEPTION  
BDnSTAT Settings  
Device Response after Receiving Packet  
Handshake UOWN TRNIF BDnSTAT and USTAT Status  
Updated  
OUT Packet  
from Host  
DTSEN  
DTS  
DATA0  
1
1
1
1
0
x
0
0
1
1
x
x
ACK  
ACK  
ACK  
ACK  
ACK  
NAK  
0
1
0
1
0
1
1
0
1
0
1
0
DATA1  
Not Updated  
Updated  
DATA1  
DATA0  
Not Updated  
Updated  
Either  
Either, with error  
Not Updated  
Legend: x= don’t care  
DS39760D-page 138  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 14-5: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER (BD0STAT THROUGH  
BD63STAT), CPU MODE (DATA IS WRITTEN TO THE SIDE)  
R/W-x  
UOWN(1)  
R/W-x  
DTS(2)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
BC9  
R/W-x  
BC8  
(3)  
(3)  
DTSEN  
BSTALL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
UOWN: USB Own bit(1)  
0= The microcontroller core owns the BD and its corresponding buffer  
DTS: Data Toggle Synchronization bit(2)  
1= Data 1 packet  
0= Data 0 packet  
bit 5-4  
bit 3  
Reserved: These bits should always be programmed to ‘0(3)  
DTSEN: Data Toggle Synchronization Enable bit  
1= Data toggle synchronization is enabled; data packets with incorrect Sync value will be ignored  
except for a SETUP transaction, which is accepted even if the data toggle bits do not match.  
0= No data toggle synchronization is performed  
bit 2  
BSTALL: Buffer Stall Enable bit  
1= Buffer stall enabled; STALL handshake issued if a token is received that would use the BD in the  
given location (UOWN bit remains set, BD value is unchanged)  
0= Buffer stall disabled  
bit 1-0  
BC9:BC8: Byte Count 9 and 8 bits  
The byte count bits represent the number of bytes that will be transmitted for an IN token or received  
during an OUT token. Together with BC<7:0>, the valid byte counts are 0-1023.  
Note 1: This bit must be initialized by the user to the desired value prior to enabling the USB module.  
2: This bit is ignored unless DTSEN = 1.  
3: If these bits are set, USB communication may not work. Hence, these bits should always be maintained  
as ‘0’.  
© 2008 Microchip Technology Inc.  
DS39760D-page 139  
PIC18F2450/4450  
byte count, the data packet will be rejected and a NAK  
handshake will be generated. When this happens, the  
byte count will not be updated.  
14.4.1.3  
BDnSTAT Register (SIE Mode)  
When the BD and its buffer are owned by the SIE, most  
of the bits in BDnSTAT take on a different meaning. The  
configuration is shown in Register 14-6. Once UOWN is  
set, any data or control settings previously written there  
by the user will be overwritten with data from the SIE.  
The 10-bit byte count is distributed over two registers.  
The lower 8 bits of the count reside in the BDnCNT  
register. The upper two bits reside in BDnSTAT<1:0>.  
This represents a valid byte range of 0 to 1023.  
The BDnSTAT register is updated by the SIE with the  
token Packet Identifier (PID) which is stored in  
BDnSTAT<5:3>. The transfer count in the  
corresponding BDnCNT register is updated. Values  
that overflow the 8-bit register carry over to the two  
most significant digits of the count, stored in  
BDnSTAT<1:0>.  
14.4.3  
BD ADDRESS VALIDATION  
The BD Address register pair contains the starting RAM  
address location for the corresponding endpoint buffer.  
For an endpoint starting location to be valid, it must fall  
in the range of the USB RAM, 400h to 4FFh. No  
mechanism is available in hardware to validate the BD  
address.  
14.4.2  
BD BYTE COUNT  
If the value of the BD address does not point to an  
address in the USB RAM, or if it points to an address  
within another endpoint’s buffer, data is likely to be lost  
or overwritten. Similarly, overlapping a receive buffer  
(OUT endpoint) with a BD location in use can yield  
The byte count represents the total number of bytes  
that will be transmitted during an IN transfer. After an IN  
transfer, the SIE will return the number of bytes sent to  
the host.  
For an OUT transfer, the byte count represents the  
maximum number of bytes that can be received and  
stored in USB RAM. After an OUT transfer, the SIE will  
return the actual number of bytes received. If the  
number of bytes received exceeds the corresponding  
unexpected  
results.  
When  
developing  
USB  
applications, the user may want to consider the  
inclusion of software-based address validation in their  
code.  
REGISTER 14-6: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER (BD0STAT THROUGH  
BD63STAT), SIE MODE (DATA RETURNED BY THE SIDE TO THE  
MICROCONTROLLER)  
R/W-x  
U-x  
R/W-x  
PID3  
R/W-x  
PID2  
R/W-x  
PID1  
R/W-x  
PID0  
R/W-x  
BC9  
R/W-x  
BC8  
UOWN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
UOWN: USB Own bit  
1= The SIE owns the BD and its corresponding buffer  
Reserved: Not written by the SIE  
bit 6  
bit 5-2  
PID3:PID0: Packet Identifier bits  
The received token PID value of the last transfer (IN, OUT or SETUP transactions only).  
BC9:BC8: Byte Count 9 and 8 bits  
bit 1-0  
These bits are updated by the SIE to reflect the actual number of bytes received on an OUT transfer  
and the actual number of bytes transmitted on an IN transfer.  
DS39760D-page 140  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
by the SIE), the pointer is toggled to the ODD BD. After  
the completion of the next transaction, the pointer is  
toggled back to the EVEN BD and so on.  
14.4.4  
PING-PONG BUFFERING  
An endpoint is defined to have a ping-pong buffer when  
it has two sets of BD entries: one set for an EVEN  
transfer and one set for an ODD transfer. This allows  
the CPU to process one BD while the SIE is processing  
the other BD. Double-buffering BDs in this way allows  
for maximum throughput to/from the USB.  
The EVEN/ODD status of the last transaction is stored  
in the PPBI bit of the USTAT register. The user can  
reset all Ping-Pong Pointers to EVEN using the  
PPBRST bit.  
Figure 14-7 shows the three different modes of  
operation and how USB RAM is filled with the BDs.  
The USB module supports three modes of operation:  
• No ping-pong support  
BDs have a fixed relationship to a particular endpoint,  
depending on the buffering configuration. The mapping  
of BDs to endpoints is detailed in Table 14-4. This  
relationship also means that gaps may occur in the  
BDT if endpoints are not enabled contiguously. This  
theoretically means that the BDs for disabled endpoints  
could be used as buffer space. In practice, users  
should avoid using such spaces in the BDT unless a  
method of validating BD addresses is implemented.  
• Ping-pong buffer support for OUT Endpoint 0 only  
• Ping-pong buffer support for all endpoints  
The ping-pong buffer settings are configured using the  
PPB1:PPB0 bits in the UCFG register.  
The USB module keeps track of the Ping-Pong Pointer  
individually for each endpoint. All pointers are initially  
reset to the EVEN BD when the module is enabled.  
After the completion of a transaction (UOWN cleared  
FIGURE 14-7:  
BUFFER DESCRIPTOR TABLE MAPPING FOR BUFFERING MODES  
PPB1:PPB0 = 10  
Ping-Pong Buffers on All EPs  
PPB1:PPB0 = 01  
Ping-Pong Buffer on EP0 OUT  
400h  
PPB1:PPB0 = 00  
No Ping-Pong Buffers  
400h  
400h  
EP0 OUT EVEN  
Descriptor  
EP0 OUT  
Descriptor  
EP0 OUT EVEN  
Descriptor  
EP0 OUT ODD  
Descriptor  
EP0 IN  
Descriptor  
EP0 OUT ODD  
Descriptor  
EP0 IN EVEN  
Descriptor  
EP1 OUT  
Descriptor  
EP0 IN  
Descriptor  
EP1 IN  
Descriptor  
EP0 IN ODD  
Descriptor  
EP1 OUT  
Descriptor  
EP1 OUT EVEN  
Descriptor  
EP1 IN  
Descriptor  
EP1 OUT ODD  
Descriptor  
EP15 IN  
Descriptor  
47Fh  
EP1 IN EVEN  
Descriptor  
EP15 IN  
Descriptor  
483h  
EP1 IN ODD  
Descriptor  
Available  
as  
Data RAM  
Available  
as  
Data RAM  
EP15 IN ODD  
Descriptor  
4FFh  
4FFh  
4FFh  
Maximum Memory Used: 256 bytes  
Maximum BDs: 64 (BD0 to BD63)  
Maximum Memory Used: 128 bytes  
Maximum BDs: 32 (BD0 to BD31)  
Maximum Memory Used: 132 bytes  
Maximum BDs: 33 (BD0 to BD32)  
Note:  
Memory area not shown to scale.  
© 2008 Microchip Technology Inc.  
DS39760D-page 141  
PIC18F2450/4450  
TABLE 14-4: ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT  
BUFFERING MODES  
BDs Assigned to Endpoint  
Mode 0  
(No Ping-Pong)  
Mode 1  
(Ping-Pong on EP0 OUT)  
Mode 2  
(Ping-Pong on all EPs)  
Endpoint  
Out  
In  
Out  
In  
Out  
In  
0
1
0
1
0 (E), 1 (O)  
2
0 (E), 1 (O)  
4 (E), 5 (O)  
2 (E), 3 (O)  
6 (E), 7 (O)  
2
3
3
4
2
4
5
5
6
8 (E), 9 (O)  
10 (E), 11 (O)  
14 (E), 15 (O)  
18 (E), 19 (O)  
22 (E), 23 (O)  
26 (E), 27 (O)  
30 (E), 31 (O)  
34 (E), 35 (O)  
38 (E), 39 (O)  
42 (E), 43 (O)  
46 (E), 47 (O)  
50 (E), 51 (O)  
54 (E), 55 (O)  
58 (E), 59 (O)  
62 (E), 63 (O)  
3
6
7
7
8
12 (E), 13 (O)  
16 (E), 17 (O)  
20 (E), 21 (O)  
24 (E), 25 (O)  
28 (E), 29 (O)  
32 (E), 33 (O)  
36 (E), 37 (O)  
40 (E), 41 (O)  
44 (E), 45 (O)  
48 (E), 49 (O)  
52 (E), 53 (O)  
56 (E), 57 (O)  
60 (E), 61 (O)  
4
8
9
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
5
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
6
7
8
9
10  
11  
12  
13  
14  
15  
Legend: (E) = EVEN transaction buffer, (O) = ODD transaction buffer  
TABLE 14-5: SUMMARY OF USB BUFFER DESCRIPTOR TABLE REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
BC9  
Bit 0  
BDnSTAT(1)  
UOWN  
DTS(4)  
PID3(2)  
PID2(2)  
PID1(2)  
PID0(2)  
BC8  
DTSEN(3)  
BSTALL(3)  
BDnCNT(1)  
Byte Count  
BDnADRL(1) Buffer Address Low  
BDnADRH(1) Buffer Address High  
Note 1: For buffer descriptor registers, n may have a value of 0 to 63. For the sake of brevity, all 64 registers are  
shown as one generic prototype. All registers have indeterminate Reset values (xxxx xxxx).  
2: Bits 5 through 2 of the BDnSTAT register are used by the SIE to return PID3:PID0 values once the register  
is turned over to the SIE (UOWN bit is set). Once the registers have been under SIE control, the values  
written for DTSEN and BSTALL are no longer valid.  
3: Prior to turning the buffer descriptor over to the SIE (UOWN bit is cleared), bits 3 and 2 of the BDnSTAT  
register are used to configure the DTSEN and BSTALL settings.  
4: This bit is ignored unless DTSEN = 1.  
DS39760D-page 142  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Figure 14-8 shows the interrupt logic for the USB  
module. There are two layers of interrupt registers in  
the USB module. The top level consists of overall USB  
status interrupts; these are enabled and flagged in the  
UIE and UIR registers, respectively. The second level  
consists of USB error conditions, which are enabled  
and flagged in the UEIR and UEIE registers. An  
interrupt condition in any of these triggers a USB Error  
Interrupt Flag (UERRIF) in the top level.  
14.5 USB Interrupts  
The USB module can generate multiple interrupt  
conditions. To accommodate all of these interrupt  
sources, the module is provided with its own interrupt  
logic structure, similar to that of the microcontroller.  
USB interrupts are enabled with one set of control regis-  
ters and trapped with a separate set of flag registers. All  
sources are funneled into a single USB interrupt  
request, USBIF (PIR2<5>), in the microcontroller’s  
interrupt logic.  
Interrupts may be used to trap routine events in a USB  
transaction. Figure 14-9 shows some common events  
within a USB frame and their corresponding interrupts.  
FIGURE 14-8:  
USB INTERRUPT LOGIC FUNNEL  
Top Level USB Interrupts  
Second Level USB Interrupts  
(USB Status Interrupts)  
(USB Error Conditions)  
UIR (Flag) and UIE (Enable) Registers  
UEIR (Flag) and UEIE (Enable) Registers  
SOFIF  
SOFIE  
BTSEF  
BTSEE  
TRNIF  
TRNIE  
USBIF  
BTOEF  
BTOEE  
IDLEIF  
IDLEIE  
DFN8EF  
DFN8EE  
UERRIF  
UERRIE  
CRC16EF  
CRC16EE  
STALLIF  
STALLIE  
CRC5EF  
CRC5EE  
PIDEF  
PIDEE  
ACTVIF  
ACTVIE  
URSTIF  
URSTIE  
FIGURE 14-9:  
EXAMPLE OF A USB TRANSACTION AND INTERRUPT EVENTS  
To Host  
ACK  
From Host  
From Host  
Data  
Set TRNIF  
Set TRNIF  
Set TRNIF  
SETUPToken  
From Host  
IN Token  
To Host  
Data  
From Host  
ACK  
USB Reset  
URSTIF  
From Host  
From Host  
To Host  
ACK  
Start-of-Frame (SOF)  
OUT Token Empty Data  
Transaction  
SOFIF  
Transaction  
Complete  
SOF  
RESET  
Differential Data  
SOF  
SETUP  
DATA  
STATUS  
Control Transfer(1)  
1 ms Frame  
Note 1:  
The control transfer shown here is only an example showing events that can occur for every transaction. Typical control transfers  
will spread across multiple frames.  
© 2008 Microchip Technology Inc.  
DS39760D-page 143  
PIC18F2450/4450  
When the USB module is in the Low-Power Suspend  
mode (UCON<1> = 1), the SIE does not get clocked.  
When in this state, the SIE cannot process packets,  
and therefore, cannot detect new interrupt conditions  
other than the Activity Detect Interrupt, Flag ACTVIF.  
The ACTVIF bit is typically used by USB firmware to  
detect when the microcontroller should bring the USB  
module out of the Low-Power Suspend mode  
(UCON<1> = 0).  
14.5.1  
USB INTERRUPT STATUS  
REGISTER (UIR)  
The USB Interrupt Status register (Register 14-7)  
contains the flag bits for each of the USB status  
interrupt sources. Each of these sources has a  
corresponding interrupt enable bit in the UIE register. All  
of the USB status flags are ORed together to generate  
the USBIF interrupt flag for the microcontroller’s  
interrupt funnel.  
Once an interrupt bit has been set by the SIE, it must  
be cleared by software by writing a ‘0’. The flag bits  
can also be set in software which can aid in firmware  
debugging.  
REGISTER 14-7: UIR: USB INTERRUPT STATUS REGISTER  
U-0  
R/W-0  
SOFIF  
R/W-0  
R/W-0  
IDLEIF(1)  
R/W-0  
TRNIF(2)  
R/W-0  
ACTVIF(3)  
R-0  
UERRIF(4)  
R/W-0  
STALLIF  
URSTIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
SOFIF: Start-of-Frame Token Interrupt bit  
1= A Start-of-Frame token received by the SIE  
0= No Start-of-Frame token received by the SIE  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
STALLIF: A STALL Handshake Interrupt bit  
1= A STALL handshake was sent by the SIE  
0= A STALL handshake has not been sent  
IDLEIF: Idle Detect Interrupt bit(1)  
1= Idle condition detected (constant Idle state of 3 ms or more)  
0= No Idle condition detected  
TRNIF: Transaction Complete Interrupt bit(2)  
1= Processing of pending transaction is complete; read USTAT register for endpoint information  
0= Processing of pending transaction is not complete or no transaction is pending  
ACTVIF: Bus Activity Detect Interrupt bit(3)  
1= Activity on the D+/D- lines was detected  
0= No activity detected on the D+/D- lines  
UERRIF: USB Error Condition Interrupt bit(4)  
1= An unmasked error condition has occurred  
0= No unmasked error condition has occurred.  
URSTIF: USB Reset Interrupt bit  
1= Valid USB Reset occurred; 00h is loaded into UADDR register  
0= No USB Reset has occurred  
Note 1: Once an Idle state is detected, the user may want to place the USB module in Suspend mode.  
2: Clearing this bit will cause the USTAT FIFO to advance (valid only for IN, OUT and SETUP tokens).  
3: This bit is typically unmasked only following the detection of a UIDLE interrupt event.  
4: Only error conditions enabled through the UEIE register will set this bit. This bit is a status bit only and  
cannot be set or cleared by the user.  
DS39760D-page 144  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
14.5.1.1  
Bus Activity Detect Interrupt Bit  
(ACTVIF)  
EXAMPLE 14-1:  
CLEARING ACTVIF BIT  
(UIR<2>)  
The ACTVIF bit cannot be cleared immediately after  
the USB module wakes up from Suspend or while the  
USB module is suspended. A few clock cycles are  
required to synchronize the internal hardware state  
machine before the ACTVIF bit can be cleared by  
firmware. Clearing the ACTVIF bit before the internal  
hardware is synchronized may not have an effect on  
the value of ACTVIF. Additionally, if the USB module  
uses the clock from the 96 MHz PLL source, then after  
clearing the SUSPND bit, the USB module may not be  
immediately operational while waiting for the 96 MHz  
PLL to lock. The application code should clear the  
ACTVIF bit as shown in Example 14-1.  
Assembly:  
BCF  
UCON, SUSPND  
LOOP:  
BTFSS  
BRA  
BCF  
UIR, ACTVIF  
DONE  
UIR, ACTVIF  
LOOP  
BRA  
DONE  
C:  
UCONbits.SUSPND = 0;  
while (UIRbits.ACTVIF){UIRbits.ACTVIF = 0};  
Only one ACTVIF interrupt is generated when resum-  
ing from the USB bus Idle condition. If user firmware  
clears the ACTVIF bit, the bit will not immediately  
become set again, even when there is continuous bus  
traffic. Bus traffic must cease long enough to generate  
another IDLEIF condition before another ACTVIF  
interrupt can be generated.  
© 2008 Microchip Technology Inc.  
DS39760D-page 145  
PIC18F2450/4450  
The values in this register only affect the propagation  
of an interrupt condition to the microcontroller’s  
interrupt logic. The flag bits are still set by their  
interrupt conditions, allowing them to be polled and  
serviced without actually generating an interrupt.  
14.5.2  
USB INTERRUPT ENABLE  
REGISTER (UIE)  
The USB Interrupt Enable register (Register 14-8)  
contains the enable bits for the USB status interrupt  
sources. Setting any of these bits will enable the  
respective interrupt source in the UIR register.  
REGISTER 14-8: UIE: USB INTERRUPT ENABLE REGISTER  
U-0  
R/W-0  
SOFIE  
R/W-0  
R/W-0  
R/W-0  
TRNIE  
R/W-0  
R/W-0  
R/W-0  
STALLIE  
IDLEIE  
ACTVIE  
UERRIE  
URSTIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
SOFIE: Start-of-Frame Token Interrupt Enable bit  
1= Start-of-Frame token interrupt enabled  
0= Start-of-Frame token interrupt disabled  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
STALLIE: STALL Handshake Interrupt Enable bit  
1= STALL interrupt enabled  
0= STALL interrupt disabled  
IDLEIE: Idle Detect Interrupt Enable bit  
1= Idle detect interrupt enabled  
0= Idle detect interrupt disabled  
TRNIE: Transaction Complete Interrupt Enable bit  
1= Transaction interrupt enabled  
0= Transaction interrupt disabled  
ACTVIE: Bus Activity Detect Interrupt Enable bit  
1= Bus activity detect interrupt enabled  
0= Bus activity detect interrupt disabled  
UERRIE: USB Error Interrupt Enable bit  
1= USB error interrupt enabled  
0= USB error interrupt disabled  
URSTIE: USB Reset Interrupt Enable bit  
1= USB Reset interrupt enabled  
0= USB Reset interrupt disabled  
DS39760D-page 146  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Each error bit is set as soon as the error condition is  
detected. Thus, the interrupt will typically not  
correspond with the end of a token being processed.  
14.5.3  
USB ERROR INTERRUPT STATUS  
REGISTER (UEIR)  
The USB Error Interrupt Status register (Register 14-9)  
contains the flag bits for each of the error sources  
within the USB peripheral. Each of these sources is  
controlled by a corresponding interrupt enable bit in  
the UEIE register. All of the USB error flags are ORed  
together to generate the USB Error Interrupt Flag  
(UERRIF) at the top level of the interrupt logic.  
Once an interrupt bit has been set by the SIE, it must  
be cleared by software by writing a ‘0’.  
REGISTER 14-9: UEIR: USB ERROR INTERRUPT STATUS REGISTER  
R/C-0  
U-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
BTSEF  
BTOEF  
DFN8EF  
CRC16EF  
CRC5EF  
PIDEF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
C = Clearable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
BTSEF: Bit Stuff Error Flag bit  
1= A bit stuff error has been detected  
0= No bit stuff error  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
BTOEF: Bus Turnaround Time-out Error Flag bit  
1= Bus turnaround time-out has occurred (more than 16 bit times of Idle from previous EOP elapsed)  
0= No bus turnaround time-out  
bit 3  
bit 2  
bit 1  
bit 0  
DFN8EF: Data Field Size Error Flag bit  
1= The data field was not an integral number of bytes  
0= The data field was an integral number of bytes  
CRC16EF: CRC16 Failure Flag bit  
1= The CRC16 failed  
0= The CRC16 passed  
CRC5EF: CRC5 Host Error Flag bit  
1= The token packet was rejected due to a CRC5 error  
0= The token packet was accepted  
PIDEF: PID Check Failure Flag bit  
1= PID check failed  
0= PID check passed  
© 2008 Microchip Technology Inc.  
DS39760D-page 147  
PIC18F2450/4450  
As with the UIE register, the enable bits only affect the  
propagation of an interrupt condition to the  
microcontroller’s interrupt logic. The flag bits are still  
set by their interrupt conditions, allowing them to be  
polled and serviced without actually generating an  
interrupt.  
14.5.4  
USB ERROR INTERRUPT ENABLE  
REGISTER (UEIE)  
The USB Error Interrupt Enable register (Register 14-10)  
contains the enable bits for each of the USB error  
interrupt sources. Setting any of these bits will enable the  
respective error interrupt source in the UEIR register to  
propagate into the UERR bit at the top level of the  
interrupt logic.  
REGISTER 14-10: UEIE: USB ERROR INTERRUPT ENABLE REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PIDEE  
BTSEE  
BTOEE  
DFN8EE  
CRC16EE  
CRC5EE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
BTSEE: Bit Stuff Error Interrupt Enable bit  
1= Bit stuff error interrupt enabled  
0= Bit stuff error interrupt disabled  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit  
1= Bus turnaround time-out error interrupt enabled  
0= Bus turnaround time-out error interrupt disabled  
bit 3  
bit 2  
bit 1  
bit 0  
DFN8EE: Data Field Size Error Interrupt Enable bit  
1= Data field size error interrupt enabled  
0= Data field size error interrupt disabled  
CRC16EE: CRC16 Failure Interrupt Enable bit  
1= CRC16 failure interrupt enabled  
0= CRC16 failure interrupt disabled  
CRC5EE: CRC5 Host Error Interrupt Enable bit  
1= CRC5 host error interrupt enabled  
0= CRC5 host error interrupt disabled  
PIDEE: PID Check Failure Interrupt Enable bit  
1= PID check failure interrupt enabled  
0= PID check failure interrupt disabled  
DS39760D-page 148  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
In order to meet compliance specifications, the USB  
module (and the D+ or D- pull-up resistor) should not  
be enabled until the host actively drives VBUS high. One  
of the I/O pins may be used for this purpose.  
14.6 USB Power Modes  
Many USB applications will likely have several different  
sets of power requirements and configuration. The  
most common power modes encountered are Bus  
Power Only, Self-Power Only and Dual Power with  
Self-Power Dominance. The most common cases are  
presented here.  
The application should never source any current onto  
the 5V VBUS pin of the USB cable.  
FIGURE 14-11:  
SELF-POWER ONLY  
Attach Sense  
14.6.1  
BUS POWER ONLY  
VBUS  
~5V  
I/O pin  
VDD  
In Bus Power Only mode, all power for the application  
is drawn from the USB (Figure 14-10). This is  
effectively the simplest power method for the device.  
100 kΩ  
VSELF  
~5V  
In order to meet the inrush current requirements of the  
USB 2.0 specifications, the total effective capacitance  
appearing across VBUS and ground must be no more  
than 10 μF; otherwise, some kind of inrush limiting is  
required. For more details, see Section 7.2.4 of the  
USB 2.0 specification.  
100 kΩ  
VUSB  
VSS  
According to the USB 2.0 specification, all USB devices  
must also support a Low-Power Suspend mode. In the  
USB Suspend mode, devices must consume no more  
than 500 A (or 2.5 mA for high-powered devices that  
are capable of remote wake-up) from the 5V VBUS line  
of the USB cable.  
14.6.3  
DUAL POWER WITH SELF-POWER  
DOMINANCE  
Some applications may require a dual power option.  
This allows the application to use internal power prima-  
rily, but switch to power from the USB when no internal  
power is available. Figure 14-12 shows a simple Dual  
Power with Self-Power Dominance example, which  
automatically switches between Self-Power Only and  
USB Bus Power Only modes.  
The host signals the USB device to enter the Suspend  
mode by stopping all USB traffic to that device for more  
than 3 ms. This condition will set the IDLEIF bit in the  
UIR register.  
During the USB Suspend mode, the D+ or D- pull-up  
resistor must remain active, which will consume some  
of the allowed suspend current: 500A/2.5 mA budget.  
FIGURE 14-12:  
DUAL POWER EXAMPLE  
100 kΩ  
Attach Sense  
I/O pin  
FIGURE 14-10:  
BUS POWER ONLY  
VBUS  
~5V  
VDD  
VBUS  
~5V  
VDD  
100 kΩ  
VUSB  
VSS  
VSELF  
~5V  
VUSB  
VSS  
Dual power devices must also meet all of the special  
requirements for inrush current and Suspend mode  
current, and must not enable the USB module until  
VBUS is driven high. For descriptions of those require-  
ments, see Section 14.6.1 “Bus Power Only” and  
Section 14.6.2 “Self-Power Only”. Additionally, dual  
power devices must never source current onto the 5V  
VUSB pin of the USB cable.  
14.6.2  
SELF-POWER ONLY  
In Self-Power Only mode, the USB application provides  
its own power, with very little power being pulled from  
the USB. Figure 14-11 shows an example. Note that an  
attach indication is added to show when the USB has  
been connected and the host is actively powering  
VBUS.  
Note:  
Users should keep in mind the limits for  
devices drawing power from the USB.  
According to USB Specification 2.0, this  
cannot exceed 100 mA per low-power  
device or 500 mA per high-power device.  
© 2008 Microchip Technology Inc.  
DS39760D-page 149  
PIC18F2450/4450  
14.7 Oscillator  
14.8 USB Firmware and Drivers  
The USB module has specific clock requirements. For  
full-speed operation, the clock source must be 48 MHz.  
Even so, the microcontroller core and other peripherals  
are not required to run at that clock speed or even from  
the same clock source. Available clocking options are  
described in detail in Section 2.3 “Oscillator Settings  
for USB”.  
Microchip provides a number of application-specific  
resources, such as USB firmware and driver support.  
Refer to www.microchip.com for the latest firmware and  
driver support.  
TABLE 14-6: REGISTERS ASSOCIATED WITH USB MODULE OPERATION(1)  
Details  
on Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
IPR2  
GIE/GIEH PEIE/GIEL  
TMR0IE  
USBIP  
USBIF  
USBIE  
SE0  
INT0IE  
RBIE  
TMR0IF  
HLVDIP  
HLVDIF  
HLVDIE  
RESUME  
FSEN  
INT0IF  
RBIF  
49  
51  
51  
51  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
52  
51  
51  
51  
51  
51  
51  
OSCFIP  
PIR2  
OSCFIF  
PIE2  
OSCFIE  
UCON  
UCFG  
USTAT  
UADDR  
UFRML  
UFRMH  
UIR  
PPBRST  
PKTDIS  
UPUEN  
ENDP1  
ADDR4  
FRM4  
USBEN  
UTRDIS  
ENDP0  
ADDR3  
FRM3  
SUSPND  
PPB1  
UTEYE  
UOEMON  
PPB0  
ENDP3  
ADDR6  
FRM6  
ENDP2  
ADDR5  
FRM5  
DIR  
PPBI  
ADDR2  
FRM2  
ADDR1  
FRM1  
ADDR0  
FRM0  
FRM7  
FRM10  
ACTVIF  
ACTVIE  
CRC16EF  
CRC16EE  
FRM9  
FRM8  
SOFIF  
SOFIE  
STALLIF  
STALLIE  
IDLEIF  
IDLEIE  
BTOEF  
BTOEE  
TRNIF  
TRNIE  
DFN8EF  
DFN8EE  
UERRIF  
UERRIE  
CRC5EF  
CRC5EE  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
EPINEN  
URSTIF  
URSTIE  
PIDEF  
UIE  
UEIR  
BTSEF  
BTSEE  
UEIE  
PIDEE  
UEP0  
UEP1  
UEP2  
UEP3  
UEP4  
UEP5  
UEP6  
UEP7  
UEP8  
UEP9  
UEP10  
UEP11  
UEP12  
UEP13  
UEP14  
UEP15  
Legend:  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPHSHK EPCONDIS EPOUTEN  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
— = unimplemented, read as ‘0’. Shaded cells are not used by the USB module.  
Note 1: This table includes only those hardware mapped SFRs located in Bank 15 of the data memory space. The Buffer  
Descriptor registers, which are mapped into Bank 4 and are not true SFRs, are listed separately in Table 14-5.  
DS39760D-page 150  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
14.9.3  
TRANSFERS  
14.9 Overview of USB  
There are four transfer types defined in the USB  
specification.  
This section presents some of the basic USB concepts  
and useful information necessary to design a USB  
device. Although much information is provided in this  
section, there is a plethora of information provided  
within the USB specifications and class specifications.  
Thus, the reader is encouraged to refer to the USB  
specifications for more information (www.usb.org). If  
you are very familiar with the details of USB, then this  
section serves as a basic, high-level refresher of USB.  
Isochronous: This type provides a transfer  
method for large amounts of data (up to  
1023 bytes) with timely delivery ensured;  
however, the data integrity is not ensured. This is  
good for streaming applications where small data  
loss is not critical, such as audio.  
Bulk: This type of transfer method allows for large  
amounts of data to be transferred with ensured  
data integrity; however, the delivery timeliness is  
not ensured.  
14.9.1  
LAYERED FRAMEWORK  
USB device functionality is structured into a layered  
framework graphically shown in Figure 14-13. Each  
level is associated with a functional level within the  
device. The highest layer, other than the device, is the  
configuration. A device may have multiple configura-  
tions. For example, a particular device may have  
multiple power requirements based on Self-Power Only  
or Bus Power Only modes.  
Interrupt: This type of transfer provides for  
ensured timely delivery for small blocks of data;  
plus data integrity is ensured.  
Control: This type provides for device setup  
control.  
While full-speed devices support all transfer types,  
low-speed devices are limited to interrupt and control  
transfers only.  
For each configuration, there may be multiple  
interfaces. Each interface could support a particular  
mode of that configuration.  
14.9.4  
POWER  
Below the interface is the endpoint(s). Data is directly  
moved at this level. There can be as many as  
16 bidirectional endpoints. Endpoint 0 is always a  
control endpoint and by default, when the device is on  
the bus, Endpoint 0 must be available to configure the  
device.  
Power is available from the Universal Serial Bus. The  
USB specification defines the bus power requirements.  
Devices may either be self-powered or bus powered.  
Self-powered devices draw power from an external  
source, while bus powered devices use power supplied  
from the bus.  
14.9.2  
FRAMES  
Information communicated on the bus is grouped into  
1 ms time slots, referred to as frames. Each frame can  
contain many transactions to various devices and  
endpoints. Figure 14-9 shows an example of  
transaction within a frame.  
a
FIGURE 14-13:  
USB LAYERS  
Device  
To Other Configurations (if any)  
Configuration  
To Other Interfaces (if any)  
Interface  
Endpoint  
Interface  
Endpoint  
Endpoint  
Endpoint  
Endpoint  
© 2008 Microchip Technology Inc.  
DS39760D-page 151  
PIC18F2450/4450  
The USB specification limits the power taken from the  
bus. Each device is ensured 100 mA at approximately 5V  
(one-unit load). Additional power may be requested, up  
to a maximum of 500 mA. Note that power above a one-  
unit load is a request and the host or hub is not obligated  
to provide the extra current. Thus, a device capable of  
consuming more than a one-unit load must be able to  
maintain a low-power configuration of a one-unit load or  
less, if necessary.  
14.9.6.2  
Configuration Descriptor  
The configuration descriptor provides information on  
the power requirements of the device and how many  
different interfaces are supported when in this  
configuration. There may be more than one configura-  
tion for a device (i.e., low-power and high-power  
configurations).  
14.9.6.3  
Interface Descriptor  
The USB specification also defines a Suspend mode.  
In this situation, current must be limited to 500 μA,  
averaged over 1 second. A device must enter a  
Suspend state after 3 ms of inactivity (i.e., no SOF  
tokens for 3 ms). A device entering Suspend mode  
must drop current consumption within 10 ms after  
Suspend mode. Likewise, when signaling a wake-up,  
the device must signal a wake-up within 10 ms of  
drawing current above the Suspend limit.  
The interface descriptor details the number of  
endpoints used in this interface, as well as the class of  
the interface. There may be more than one interface for  
a configuration.  
14.9.6.4  
Endpoint Descriptor  
The endpoint descriptor identifies the transfer type  
(Section 14.9.3 “Transfers”) and direction, as well as  
some other specifics for the endpoint. There may be  
many endpoints in a device and endpoints may be  
shared in different configurations.  
14.9.5  
ENUMERATION  
When the device is initially attached to the bus, the host  
enters an enumeration process in an attempt to identify  
the device. Essentially, the host interrogates the device,  
gathering information such as power consumption, data  
rates and sizes, protocol and other descriptive  
information; descriptors contain this information. A  
typical enumeration process would be as follows:  
14.9.6.5  
String Descriptor  
Many of the previous descriptors reference one or  
more string descriptors. String descriptors provide  
human readable information about the layer  
(Section 14.9.1  
“Layered  
Framework”)  
they  
describe. Often these strings show up in the host to  
help the user identify the device. String descriptors are  
generally optional to save memory and are encoded in  
a unicode format.  
1. USB Reset: Reset the device. Thus, the device  
is not configured and does not have an address  
(address 0).  
2. Get Device Descriptor: The host requests a  
small portion of the device descriptor.  
14.9.7  
BUS SPEED  
3. USB Reset: Reset the device again.  
Each USB device must indicate its bus presence and  
speed to the host. This is accomplished through a  
1.5 kΩ resistor which is connected to the bus at the  
time of the attachment event.  
4. Set Address: The host assigns an address to the  
device.  
5. Get Device Descriptor: The host retrieves the  
device descriptor, gathering info such as  
manufacturer, type of device, maximum control  
packet size.  
Depending on the speed of the device, the resistor  
either pulls up the D+ or D- line to 3.3V. For a low-  
speed device, the pull-up resistor is connected to the  
D- line. For a full-speed device, the pull-up resistor is  
connected to the D+ line.  
6. Get configuration descriptors.  
7. Get any other descriptors.  
8. Set a configuration.  
14.9.8  
CLASS SPECIFICATIONS AND  
DRIVERS  
The exact enumeration process depends on the host.  
USB specifications include class specifications which  
operating system vendors optionally support.  
Examples of classes include Audio, Mass Storage,  
Communications and Human Interface (HID). In most  
cases, a driver is required at the host side to ‘talk’ to the  
USB device. In custom applications, a driver may need  
to be developed. Fortunately, drivers are available for  
most common host systems for the most common  
classes of devices. Thus, these drivers can be reused.  
14.9.6  
DESCRIPTORS  
There are eight different standard descriptor types of  
which five are most important for this device.  
14.9.6.1  
Device Descriptor  
The device descriptor provides general information,  
such as manufacturer, product number, serial number,  
the class of the device and the number of configurations.  
There is only one device descriptor.  
DS39760D-page 152  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
The pins of the Enhanced USART are multiplexed  
with PORTC. In order to configure RC6/TX/CK and  
RC7/RX/DT as an EUSART:  
15.0 ENHANCED UNIVERSAL  
SYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• bit SPEN (RCSTA<7>) must be set (= 1)  
• bit TRISC<7> must be set (= 1)  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial  
Communications Interface or SCI.) The USART can be  
configured as a full-duplex asynchronous system that  
can communicate with peripheral devices, such as  
CRT terminals and personal computers. It can also be  
configured as a half-duplex synchronous system that  
can communicate with peripheral devices, such as A/D  
or D/A integrated circuits, serial EEPROMs and so on.  
• bit TRISC<6> must be cleared (= 0) for  
Asynchronous and Synchronous Master modes  
or set (= 1) for Synchronous Slave mode  
Note:  
The EUSART control will automatically  
reconfigure the pin from input to output as  
needed.  
The operation of the Enhanced USART module is  
controlled through three registers:  
The Enhanced Universal Synchronous Receiver  
Transmitter (EUSART) module implements additional  
features, including Automatic Baud Rate Detection  
(ABD) and calibration, automatic wake-up on Sync  
Break reception and 12-bit Break character transmit.  
These features make it ideally suited for use in Local  
Interconnect Network bus (LIN bus) systems.  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCON)  
These are detailed on the following pages in  
Register 15-1, Register 15-2 and Register 15-3,  
respectively.  
The EUSART can be configured in the following  
modes:  
• Asynchronous (full-duplex) with:  
- Auto-wake-up on character reception  
- Auto-baud calibration  
- 12-bit Break character transmission  
• Synchronous – Master (half-duplex) with  
selectable clock polarity  
• Synchronous – Slave (half-duplex) with selectable  
clock polarity  
© 2008 Microchip Technology Inc.  
DS39760D-page 153  
PIC18F2450/4450  
REGISTER 15-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-Bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode with the exception that SREN has no effect in Synchronous  
Slave mode.  
DS39760D-page 154  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 15-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-Bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
© 2008 Microchip Technology Inc.  
DS39760D-page 155  
PIC18F2450/4450  
REGISTER 15-3: BAUDCON: BAUD RATE CONTROL REGISTER  
R/W-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
ABDOVF  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
ABDOVF: Auto-Baud Acquisition Rollover Status bit  
1= A BRG rollover has occurred during Auto-Baud Rate Detect mode (must be cleared in software)  
0= No BRG rollover has occurred  
RCIDL: Receive Operation Idle Status bit  
1= Receive operation is Idle  
0= Receive operation is active  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode.  
Synchronous mode:  
1= Idle state for clock (CK) is a high level  
0= Idle state for clock (CK) is a low level  
bit 3  
BRG16: 16-Bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGH and SPBRG  
0= 8-bit Baud Rate Generator – SPBRG only (Compatible mode), SPBRGH value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= EUSART will continue to sample the RX pin – interrupt generated on falling edge; bit cleared in  
hardware on following rising edge  
0= RX pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character. Requires reception of a Sync field (55h);  
cleared in hardware upon completion.  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
DS39760D-page 156  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
the high baud rate (BRGH = 1) or the 16-bit BRG to  
reduce the baud rate error, or achieve a slow baud rate  
for a fast oscillator frequency.  
15.1 Baud Rate Generator (BRG)  
The BRG is a dedicated, 8-bit or 16-bit generator that  
supports both the Asynchronous and Synchronous  
modes of the EUSART. By default, the BRG operates  
in 8-bit mode. Setting the BRG16 bit (BAUDCON<3>)  
selects 16-bit mode.  
Writing a new value to the SPBRGH:SPBRG registers  
causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
The SPBRGH:SPBRG register pair controls the period  
of a free-running timer. In Asynchronous mode, bits  
BRGH (TXSTA<2>) and BRG16 (BAUDCON<3>) also  
control the baud rate. In Synchronous mode, BRGH is  
ignored. Table 15-1 shows the formula for computation  
of the baud rate for different EUSART modes which  
only apply in Master mode (internally generated clock).  
15.1.1  
OPERATION IN POWER-MANAGED  
MODES  
The device clock is used to generate the desired baud  
rate. When one of the power-managed modes is  
entered, the new clock source may be operating at a  
different frequency. This may require an adjustment to  
the value in the SPBRG register pair.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGH:SPBRG registers can be  
calculated using the formulas in Table 15-1. From this,  
the error in baud rate can be determined. An example  
calculation is shown in Example 15-1. Typical baud rates  
and error values for the various Asynchronous modes  
are shown in Table 15-2. It may be advantageous to use  
15.1.2  
SAMPLING  
The data on the RX pin is sampled three times by a  
majority detect circuit to determine if a high or a low  
level is present at the RX pin.  
TABLE 15-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/EUSART Mode  
Baud Rate Formula  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-Bit/Asynchronous  
8-Bit/Asynchronous  
16-Bit/Asynchronous  
16-Bit/Asynchronous  
8-Bit/Synchronous  
16-Bit/Synchronous  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = Value of SPBRGH:SPBRG register pair  
© 2008 Microchip Technology Inc.  
DS39760D-page 157  
PIC18F2450/4450  
EXAMPLE 15-1:  
CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate  
=
FOSC/(64 ([SPBRGH:SPBRG] + 1)  
Solving for SPBRGH:SPBRG:  
X
=
=
=
=
=
=
=
((FOSC/Desired Baud Rate)/64) – 1  
((16000000/9600)/64) – 1  
[25.042] = 25  
16000000/(64 (25 + 1))  
9615  
Calculated Baud Rate  
Error  
(Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
(9615 – 9600)/9600 = 0.16%  
TABLE 15-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Reset  
Values  
on Page:  
Name  
TXSTA  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
51  
51  
51  
50  
50  
RCSTA  
BAUDCON  
SPBRGH  
SPBRG  
ABDOVF RCIDL  
ABDEN  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
DS39760D-page 158  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 15-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
0.300  
1.201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.403  
9.615  
19.230  
55.555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
© 2008 Microchip Technology Inc.  
DS39760D-page 159  
PIC18F2450/4450  
TABLE 15-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
0.300  
1.201  
2.403  
9.615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
0.300  
1.201  
2.403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
%
%
Error  
value  
(decimal)  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2.400  
9.6  
9.606  
9.596  
9.615  
9.615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19.230  
57.142  
117.647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
55.555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
0.300  
1.201  
2.403  
9.615  
19.230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
DS39760D-page 160  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. The RCIF interrupt is set  
once the fifth rising edge on RX is detected. The value  
in the RCREG needs to be read to clear the RCIF  
interrupt. ThecontentsofRCREGshouldbediscarded.  
15.1.3  
AUTO-BAUD RATE DETECT  
The Enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
Note 1: If the WUE bit is set with the ABDEN bit,  
Auto-Baud Rate Detection will occur on  
the byte following the Break character.  
The automatic baud rate measurement sequence  
(Figure 15-1) begins whenever a Start bit is received and  
the ABDEN bit is set. The calculation is self-averaging.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator fre-  
quency and EUSART baud rates are not  
possible due to bit error rates. Overall  
system timing and communication baud  
rates must be taken into consideration  
when using the Auto-Baud Rate  
Detection feature.  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG. In  
ABD mode, the internal Baud Rate Generator is used  
as a counter to time the bit period of the incoming serial  
byte stream.  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The Auto-Baud Rate  
Detection must receive a byte with the value 55h  
(ASCII “U”, which is also the LIN bus Sync character)  
in order to calculate the proper bit rate. The measure-  
ment is taken over both a low and a high bit time in  
order to minimize any effects caused by asymmetry of  
the incoming signal. After a Start bit, the SPBRG begins  
counting up, using the preselected clock source on the  
first rising edge of RX. After eight bits on the RX pin, or  
the fifth rising edge, an accumulated value totalling the  
proper BRG period is left in the SPBRGH:SPBRG  
register pair. Once the 5th edge is seen (this should  
correspond to the Stop bit), the ABDEN bit is  
automatically cleared.  
TABLE 15-4: BRG COUNTER  
CLOCK RATES  
BRG16 BRGH  
BRG Counter Clock  
0
0
1
0
1
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
0
1
1
Note:  
During the ABD sequence, SPBRG and  
SPBRGH are both used as a 16-bit counter,  
independent of the BRG16 setting.  
If a rollover of the BRG occurs (an overflow from FFFFh  
to 0000h), the event is trapped by the ABDOVF status  
bit (BAUDCON<7>). It is set in hardware by BRG roll-  
overs and can be set or cleared by the user in software.  
ABD mode remains active after rollover events and the  
ABDEN bit remains set (Figure 15-2).  
15.1.3.1  
ABD and EUSART Transmission  
Since the BRG clock is reversed during ABD  
acquisition, the EUSART transmitter cannot be used  
during ABD. This means that whenever the ABDEN bit  
is set, TXREG cannot be written to. Users should also  
ensure that ABDEN does not become set during a  
transmit sequence. Failing to do this may result in  
unpredictable EUSART operation.  
While calibrating the baud rate period, the BRG  
registers are clocked at 1/8th the preconfigured clock  
rate. Note that the BRG clock will be configured by the  
BRG16 and BRGH bits. Independent of the BRG16 bit  
setting, both the SPBRG and SPBRGH will be used as  
a 16-bit counter. This allows the user to verify that no  
carry occurred for 8-bit modes by checking for 00h in  
the SPBRGH register. Refer to Table 15-4 for counter  
clock rates to the BRG.  
© 2008 Microchip Technology Inc.  
DS39760D-page 161  
PIC18F2450/4450  
FIGURE 15-1:  
AUTOMATIC BAUD RATE CALCULATION  
BRG Value  
XXXXh  
0000h  
001Ch  
Edge #5  
Stop bit  
Edge #2  
bit 3  
Edge #3  
bit 5  
bit 4  
Edge #4  
bit 7  
Edge #1  
RX pin  
bit 1  
Start  
bit 2  
bit 6  
bit 0  
BRG Clock  
Auto-Cleared  
Set by User  
ABDEN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note: The ABD sequence requires the EUSART module to be configured in Asynchronous mode and WUE = 0.  
FIGURE 15-2:  
BRG OVERFLOW SEQUENCE  
BRG Clock  
ABDEN bit  
RX pin  
Start  
bit 0  
ABDOVF bit  
BRG Value  
FFFFh  
XXXXh  
0000h  
0000h  
DS39760D-page 162  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCY), the TXREG register is  
empty and the TXIF flag bit (PIR1<4>) is set. This inter-  
rupt can be enabled or disabled by setting or clearing  
the interrupt enable bit, TXIE (PIE1<4>). TXIF will be  
set regardless of the state of TXIE; it cannot be cleared  
in software. TXIF is also not cleared immediately upon  
loading TXREG but becomes valid in the second  
instruction cycle following the load instruction. Polling  
TXIF immediately following a load of TXREG will return  
invalid results.  
15.2 EUSART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA<4>). In this mode, the  
EUSART uses the standard Non-Return-to-Zero (NRZ)  
format (one Start bit, eight or nine data bits and one  
Stop bit). The most common data format is eight bits.  
An on-chip dedicated 8-bit/16-bit Baud Rate Generator  
can be used to derive standard baud rate frequencies  
from the oscillator.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent but use the same data format and baud  
rate. The Baud Rate Generator produces a clock,  
either x16 or x64 of the bit shift rate depending on the  
While TXIF indicates the status of the TXREG register,  
another bit, TRMT (TXSTA<1>), shows the status of  
the TSR register. TRMT is a read-only bit which is set  
when the TSR register is empty. No interrupt logic is  
tied to this bit so the user has to poll this bit in order to  
determine if the TSR register is empty.  
BRGH  
and  
BRG16  
bits  
(TXSTA<2>  
and  
BAUDCON<3>). Parity is not supported by the hard-  
ware but can be implemented in software and stored as  
the ninth data bit.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
When operating in Asynchronous mode, the EUSART  
module consists of the following important elements:  
2: Flag bit, TXIF, is set when enable bit,  
TXEN, is set.  
• Baud Rate Generator  
• Sampling Circuit  
To set up an Asynchronous Transmission:  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Auto-Wake-up on Sync Break Character  
• 12-Bit Break Character Transmit  
• Auto-Baud Rate Detection  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
15.2.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
3. If interrupts are desired, set enable bit, TXIE.  
4. If 9-bit transmission is desired, set transmit bit,  
TX9. Can be used as address/data bit.  
The EUSART transmitter block diagram is shown in  
Figure 15-3. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREG register (if available).  
5. Enable the transmission by setting bit, TXEN,  
which will also set bit, TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 15-3:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG Register  
TXIF  
TXIE  
8
MSb  
(8)  
LSb  
Pin Buffer  
and Control  
TX pin  
0
TSR Register  
Interrupt  
Baud Rate CLK  
SPBRG  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGH  
TX9  
TX9D  
Baud Rate Generator  
© 2008 Microchip Technology Inc.  
DS39760D-page 163  
PIC18F2450/4450  
FIGURE 15-4:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
TX  
(pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 15-5:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX  
(pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 15-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Reset  
Valueson  
Page:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
49  
51  
51  
51  
51  
51  
51  
51  
50  
50  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TMR2IF  
TMR1IF  
PIE1  
TXIE  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TXIP  
RCSTA  
TXREG  
TXSTA  
SPEN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON ABDOVF  
RCIDL  
ABDEN  
SPBRGH EUSART Baud Rate Generator Register High Byte  
SPBRG EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
DS39760D-page 164  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
15.2.2  
EUSART ASYNCHRONOUS  
RECEIVER  
15.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 15-6.  
The data is received on the RX pin and drives the data  
recovery block. The data recovery block is actually a  
high-speed shifter operating at x16 times the baud rate,  
whereas the main receive serial shifter operates at the  
bit rate or at FOSC. This mode would typically be used  
in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
To set up an Asynchronous Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit, SYNC, and setting bit, SPEN.  
3. If interrupts are desired, set enable bit, RCIE.  
4. If 9-bit reception is desired, set bit, RX9.  
5. Enable the reception by setting bit, CREN.  
7. The RCIF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RCIE and GIE bits are set.  
6. Flag bit, RCIF, will be set when reception is  
complete and an interrupt will be generated if  
enable bit, RCIE, was set.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG to determine if the device is being  
addressed.  
10. If any error occurred, clear the CREN bit.  
8. Read the 8-bit received data by reading the  
RCREG register.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit, CREN.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 15-6:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
SPBRGH SPBRG  
÷ 64  
or  
RSR Register  
• • •  
MSb  
Stop  
LSb  
Start  
BRG16  
÷ 16  
(8)  
7
1
0
or  
÷ 4  
Baud Rate Generator  
RX9  
Pin Buffer  
and Control  
Data  
Recovery  
RX  
RX9D  
RCREG Register  
FIFO  
SPEN  
8
Interrupt  
RCIF  
RCIE  
Data Bus  
© 2008 Microchip Technology Inc.  
DS39760D-page 165  
PIC18F2450/4450  
FIGURE 15-7:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit 0  
bit 7/8  
bit 0 bit 1  
bit 7/8  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 7/8  
Rcv Shift Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (Receive Buffer) is read after the third word  
causing the OERR (Overrun Error) bit to be set.  
TABLE 15-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
49  
51  
51  
51  
51  
50  
51  
51  
50  
50  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TMR2IF TMR1IF  
PIE1  
TXIE  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TXIP  
RCSTA  
RCREG  
TXSTA  
BAUDCON  
SPBRGH  
SPBRG  
SPEN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
ABDOVF  
RCIDL  
ABDEN  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
DS39760D-page 166  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
(EOC) and cause data or framing errors. To work prop-  
erly, therefore, the initial character in the transmission  
must be all ‘0’s. This can be 00h (8 bits) for standard  
RS-232 devices or 000h (12 bits) for LIN bus.  
15.2.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the EUSART are  
suspended. Therefore, the Baud Rate Generator is  
inactive and proper byte reception cannot be  
performed. The auto-wake-up feature allows the  
controller to wake-up due to activity on the RX/DT line  
while the EUSART is operating in Asynchronous mode.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., XT or HS mode). The Sync  
Break (or Wake-up Signal) character must be of  
sufficient length and be followed by a sufficient interval  
to allow enough time for the selected oscillator to start  
and provide proper initialization of the EUSART.  
The auto-wake-up feature is enabled by setting the  
WUE bit (BAUDCON<1>). Once set, the typical receive  
sequence on RX/DT is disabled and the EUSART  
remains in an Idle state, monitoring for a wake-up event  
independent of the CPU mode. A wake-up event  
consists of a high-to-low transition on the RX/DT line.  
(This coincides with the start of a Sync Break or a  
Wake-up Signal character for the LIN protocol.)  
15.2.4.2  
Special Considerations Using  
the WUE Bit  
The timing of WUE and RCIF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
EUSART in an Idle mode. The wake-up event causes  
a receive interrupt by setting the RCIF bit. The WUE bit  
is cleared after this when a rising edge is seen on RX/  
DT. The interrupt condition is then cleared by reading  
the RCREG register. Ordinarily, the data in RCREG will  
be dummy data and should be discarded.  
Following a wake-up event, the module generates an  
RCIF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 15-8) and asynchronously if the device is in  
Sleep mode (Figure 15-9). The interrupt condition is  
cleared by reading the RCREG register.  
The WUE bit is automatically cleared once a low-to-high  
transition is observed on the RX line following the wake-  
up event. At this point, the EUSART module is in Idle  
mode and returns to normal operation. This signals to  
the user that the Sync Break event is over.  
The fact that the WUE bit has been cleared (or is still  
set) and the RCIF flag is set should not be used as an  
indicator of the integrity of the data in RCREG. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
15.2.4.1  
Special Considerations Using  
Auto-Wake-up  
Since auto-wake-up functions by sensing rising edge  
transitions on RX/DT, information with any state changes  
before the Stop bit may signal a false End-of-Character  
FIGURE 15-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit(1)  
RX/DT Line  
RCIF  
Bit set by user  
Auto-Cleared  
Cleared due to user read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 15-9:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit(2)  
RX/DT Line  
RCIF  
Bit set by user  
Auto-Cleared  
Note 1  
Cleared due to user read of RCREG  
Sleep Ends  
Sleep Command Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.  
This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
© 2008 Microchip Technology Inc.  
DS39760D-page 167  
PIC18F2450/4450  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
15.2.5  
BREAK CHARACTER SEQUENCE  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. The Break character transmit  
consists of a Start bit, followed by twelve ‘0’ bits and a  
Stop bit. The Frame Break character is sent whenever  
the SENDB and TXEN bits (TXSTA<3> and  
TXSTA<5>) are set while the Transmit Shift Register is  
loaded with data. Note that the value of data written to  
TXREG will be ignored and all ‘0’s will be transmitted.  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware. The Sync character now  
transmits in the preconfigured mode.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
15.2.6  
RECEIVING A BREAK CHARACTER  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
The Enhanced USART module can receive a Break  
character in two ways.  
The first method forces configuration of the baud rate  
at a frequency of 9/13 the typical speed. This allows for  
the Stop bit transition to be at the correct sampling  
location (13 bits for Break versus Start bit and eight  
data bits for typical data).  
Note that the data value written to the TXREG for the  
Break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmission.  
See Figure 15-10 for the timing of the Break character  
sequence.  
The second method uses the auto-wake-up feature  
described in Section 15.2.4 “Auto-Wake-up on Sync  
Break Character”. By enabling this feature, the  
EUSART will sample the next two transitions on RX/DT,  
cause an RCIF interrupt and receive the next data byte  
followed by another interrupt.  
15.2.5.1  
Break and Sync Transmit Sequence  
The following sequence will send a message frame  
header made up of a Break, followed by an Auto-Baud  
Sync byte. This sequence is typical of a LIN bus master.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Rate Detect  
feature. For both methods, the user can set the ABD bit  
once the TXIF interrupt is observed.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to set up the  
Break character.  
FIGURE 15-10:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB sampled here  
Auto-Cleared  
SENDB  
(Transmit Shift  
Reg. Empty Flag)  
DS39760D-page 168  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCYCLE), the TXREG register is  
empty and the TXIF flag bit (PIR1<4>) is set. The  
interrupt can be enabled or disabled by setting or  
clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF  
is set regardless of the state of enable bit, TXIE; it  
cannot be cleared in software. It will reset only when  
new data is loaded into the TXREG register.  
15.3 EUSART Synchronous  
Master Mode  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit,  
SYNC (TXSTA<4>). In addition, enable bit, SPEN  
(RCSTA<7>), is set in order to configure the TX and RX  
pins to CK (clock) and DT (data) lines, respectively.  
While flag bit, TXIF, indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. TRMT is a read-only bit which  
is set when the TSR is empty. No interrupt logic is tied to  
this bit so the user must poll this bit in order to determine  
if the TSR register is empty. The TSR is not mapped in  
data memory so it is not available to the user.  
The Master mode indicates that the processor  
transmits the master clock on the CK line. Clock  
polarity is selected with the SCKP bit (BAUDCON<4>).  
Setting SCKP sets the Idle state on CK as high, while  
clearing the bit sets the Idle state as low. This option is  
provided to support Microwire devices with this module.  
To set up a Synchronous Master Transmission:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRG16  
bit, as required, to achieve the desired baud  
rate.  
15.3.1  
EUSART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
The EUSART transmitter block diagram is shown in  
Figure 15-3. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available).  
3. If interrupts are desired, set enable bit, TXIE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting bit, TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 15-11:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
Word 1  
RC6/TX/CK pin  
(SCKP = 0)  
RC6/TX/CK pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode (SPBRG = 0), continuous transmission of two 8-bit words.  
© 2008 Microchip Technology Inc.  
DS39760D-page 169  
PIC18F2450/4450  
FIGURE 15-12:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
RC6/TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 15-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
INT0IF  
RBIF  
49  
51  
51  
51  
51  
51  
51  
51  
50  
50  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
TXIE  
IPR1  
TXIP  
RCSTA  
TXREG  
TXSTA  
SPEN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON ABDOVF  
RCIDL  
ABDEN  
SPBRGH  
SPBRG  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
DS39760D-page 170  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
3. Ensure bits, CREN and SREN, are clear.  
4. If interrupts are desired, set enable bit, RCIE.  
5. If 9-bit reception is desired, set bit, RX9.  
15.3.2  
EUSART SYNCHRONOUS MASTER  
RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTA<5>), or the Continuous Receive  
Enable bit, CREN (RCSTA<4>). Data is sampled on the  
RX pin on the falling edge of the clock.  
6. If a single reception is required, set bit, SREN.  
For continuous reception, set bit, CREN.  
7. Interrupt flag bit, RCIF, will be set when reception  
is complete and an interrupt will be generated if  
the enable bit, RCIE, was set.  
If enable bit, SREN, is set, only a single word is  
received. If enable bit, CREN, is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
To set up a Synchronous Master Reception:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRG16  
bit, as required, to achieve the desired baud rate.  
10. If any error occurred, clear the error by clearing  
bit, CREN.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
FIGURE 15-13:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RC6/TX/CK pin  
(SCKP = 0)  
RC6/TX/CK pin  
(SCKP = 1)  
Write to  
SREN bit  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with SREN bit = 1and BRGH bit = 0.  
TABLE 15-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL  
TMR0IE  
RCIF  
INT0IE  
TXIF  
RBIE  
TMR0IF INT0IF  
RBIF  
49  
51  
51  
51  
51  
50  
51  
51  
51  
50  
ADIF  
ADIE  
ADIP  
RX9  
CCP1IF TMR2IF TMR1IF  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
PIE1  
RCIE  
TXIE  
IPR1  
RCIP  
TXIP  
RCSTA  
RCREG  
TXSTA  
SPEN  
SREN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON ABDOVF  
RCIDL  
ABDEN  
SPBRGH EUSART Baud Rate Generator Register High Byte  
SPBRG EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
© 2008 Microchip Technology Inc.  
DS39760D-page 171  
PIC18F2450/4450  
To set up a Synchronous Slave Transmission:  
15.4 EUSART Synchronous  
Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
Synchronous Slave mode is entered by clearing bit,  
CSRC (TXSTA<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is  
supplied externally at the CK pin (instead of being  
supplied internally in Master mode). This allows the  
device to transfer or receive data while in any low-power  
mode.  
2. Clear bits, CREN and SREN.  
3. If interrupts are desired, set enable bit, TXIE.  
4. If 9-bit transmission is desired, set bit, TX9.  
5. Enable the transmission by setting enable bit,  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit, TX9D.  
15.4.1  
EUSART SYNCHRONOUS  
SLAVE TRANSMIT  
7. Start transmission by loading data to the TXREG  
register.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep mode.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREG register and then  
the SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in the TXREG  
register.  
c) Flag bit, TXIF, will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second word  
to the TSR and flag bit, TXIF, will now be set.  
e) If enable bit, TXIE, is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 15-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
FERR  
INT0IF  
RBIF  
49  
51  
51  
51  
51  
51  
51  
51  
50  
50  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TMR2IF  
TMR1IF  
PIE1  
TXIE  
TMR2IE TMR1IE  
TMR2IP TMR1IP  
IPR1  
TXIP  
RCSTA  
TXREG  
TXSTA  
SPEN  
CREN  
ADDEN  
OERR  
RX9D  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON ABDOVF  
RCIDL  
ABDEN  
SPBRGH  
SPBRG  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
DS39760D-page 172  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
To set up a Synchronous Slave Reception:  
15.4.2  
EUSART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits, SYNC and SPEN, and clearing bit,  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep or any  
Idle mode and bit, SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit, RCIE.  
3. If 9-bit reception is desired, set bit, RX9.  
4. To enable reception, set enable bit, CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this low-power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREG register. If the RCIE enable bit is set, the  
interrupt generated will wake the chip from the low-  
power mode. If the global interrupt is enabled, the  
program will branch to the interrupt vector.  
5. Flag bit RCIF will be set when reception is  
complete. An interrupt will be generated if  
enable bit, RCIE, was set.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit, CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 15-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
49  
51  
51  
51  
51  
50  
51  
51  
50  
50  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TMR2IF TMR1IF  
PIE1  
TXIE  
CCP1IE TMR2IE TMR1IE  
CCP1IP TMR2IP TMR1IP  
IPR1  
TXIP  
RCSTA  
RCREG  
TXSTA  
SPEN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
EUSART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
BAUDCON ABDOVF  
RCIDL  
ABDEN  
SPBRGH  
SPBRG  
EUSART Baud Rate Generator Register High Byte  
EUSART Baud Rate Generator Register Low Byte  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
© 2008 Microchip Technology Inc.  
DS39760D-page 173  
PIC18F2450/4450  
NOTES:  
DS39760D-page 174  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
The ADCON0 register, shown in Register 16-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 16-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 16-3, configures the A/D clock  
source, programmed acquisition time and justification.  
16.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) Converter module has  
10 inputs for the 28-pin devices and 13 for the 40/44-pin  
devices. This module allows conversion of an analog  
input signal to a corresponding 10-bit digital number.  
The module has five registers:  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0  
U0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHS3:CHS0: Analog Channel Select bits  
0000= Channel 0 (AN0)  
0001= Channel 1 (AN1)  
0010= Channel 2 (AN2)  
0011= Channel 3 (AN3)  
0100= Channel 4 (AN4)  
0101= Channel 5 (AN5)(1,2)  
0110= Channel 6 (AN6)(1,2)  
0111= Channel 7 (AN7)(1,2)  
1000= Channel 8 (AN8)  
1001= Channel 9 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
1100= Channel 12 (AN12  
1101= Unimplemented(2)  
1110= Unimplemented(2)  
1111= Unimplemented(2)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress  
0= A/D Idle  
ADON: A/D On bit  
1= A/D Converter module is enabled  
0= A/D Converter module is disabled  
Note 1: These channels are not implemented on 28-pin devices.  
2: Performing a conversion on unimplemented channels will return a floating input measurement.  
© 2008 Microchip Technology Inc.  
DS39760D-page 175  
PIC18F2450/4450  
REGISTER 16-2: ADCON1: A/D CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0(1)  
PCFG3  
R/W(1)  
R/W(1)  
R/W(1)  
VCFG1  
VCFG0  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
VCFG1: Voltage Reference Configuration bit (VREF- source)  
1= VREF- (AN2)  
0= VSS  
bit 4  
VCFG0: Voltage Reference Configuration bit (VREF+ source)  
1= VREF+ (AN3)  
0= VDD  
bit 3-0  
PCFG3:PCFG0: A/D Port Configuration Control bits:  
PCFG3:  
PCFG0  
0000(1)  
0001  
0010  
0011  
0100  
0101  
0110  
0111(1)  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
D
D
D
D
A
A
A
A
D
D
D
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
D
A
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
Note 1: The POR value of the PCFG bits depends on the value of the PBADEN Configuration bit. When  
PBADEN = 1, PCFG<3:0> = 0000; when PBADEN = 0, PCFG<3:0> = 0111.  
2: AN5 through AN7 are available only on 40/44-pin devices.  
DS39760D-page 176  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 16-3: ADCON2: A/D CONTROL REGISTER 2  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT2:ACQT0: A/D Acquisition Time Select bits  
111= 20 TAD  
110= 16 TAD  
101= 12 TAD  
100= 8 TAD  
011= 6 TAD  
010= 4 TAD  
001= 2 TAD  
(1)  
000= 0 TAD  
bit 2-0  
ADCS2:ADCS0: A/D Conversion Clock Select bits  
111= FRC (clock derived from A/D RC oscillator)(1)  
110= FOSC/64  
101= FOSC/16  
100= FOSC/4  
011= FRC (clock derived from A/D RC oscillator)(1)  
010= FOSC/32  
001= FOSC/8  
000= FOSC/2  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D  
clock starts. This allows the SLEEPinstruction to be executed before starting a conversion.  
© 2008 Microchip Technology Inc.  
DS39760D-page 177  
PIC18F2450/4450  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS) or the voltage level on the RA3/AN3/  
VREF+ and RA2/AN2/VREF- pins.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted.  
Each port pin associated with the A/D Converter can be  
configured as an analog input or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH:ADRESL  
register pair, the GO/DONE bit (ADCON0 register) is  
cleared and A/D Interrupt Flag bit, ADIF, is set. The block  
diagram of the A/D module is shown in Figure 16-1.  
The A/D Converter has a unique feature of being able  
to operate while the device is in Sleep mode. To  
operate in Sleep, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
FIGURE 16-1:  
A/D BLOCK DIAGRAM  
CHS3:CHS0  
1100  
AN12  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7(1)  
0110  
AN6(1)  
0101  
AN5(1)  
0100  
AN4  
VAIN  
0011  
(Input Voltage)  
10-Bit  
A/D  
Converter  
AN3  
0010  
AN2  
0001  
VCFG1:VCFG0  
AN1  
(2)  
0000  
VDD  
AN0  
X0  
X1  
1X  
VREF+  
VREF-  
Reference  
Voltage  
0X  
(2)  
VSS  
Note 1: Channels AN5 through AN7 are not available on 28-pin devices.  
2: I/O pins have diode protection to VDD and VSS.  
DS39760D-page 178  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
The value in the ADRESH:ADRESL registers is not  
modified for a Power-on Reset. The ADRESH:ADRESL  
registers will contain unknown data after a Power-on  
Reset.  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
After the A/D module has been configured as desired, the  
selected channel must be acquired before the conver-  
sion is started. The analog input channels must have  
their corresponding TRIS bits selected as an input. To  
determine acquisition time, see Section 16.1 “A/D  
Acquisition Requirements”. After this acquisition time  
has elapsed, the A/D conversion can be started. An  
acquisition time can be programmed to occur between  
setting the GO/DONE bit and the actual start of the  
conversion.  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit, ADIF, if required.  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 3 TAD is  
required before the next acquisition starts.  
FIGURE 16-2:  
A/D TRANSFER FUNCTION  
The following steps should be followed to perform an  
A/D conversion:  
3FFh  
3FEh  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
003h  
002h  
001h  
000h  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
Analog Input Voltage  
• Set GO/DONE bit (ADCON0 register)  
FIGURE 16-3:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
VAIN  
ILEAKAGE  
±100 nA  
CHOLD = 25 pF  
VT = 0.6V  
5 pF  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
6V  
5V  
4V  
3V  
2V  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
VDD  
RIC  
= Interconnect Resistance  
= Sampling Switch  
SS  
CHOLD  
RSS  
= Sample/hold Capacitance (from DAC)  
= Sampling Switch Resistance  
1
2
3
4
Sampling Switch (kΩ)  
© 2008 Microchip Technology Inc.  
DS39760D-page 179  
PIC18F2450/4450  
To calculate the minimum acquisition time,  
Equation 16-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
16.1 A/D Acquisition Requirements  
For the A/D Converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 16-3. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 kΩ. After the analog input channel is  
selected (changed), the channel must be sampled for  
at least the minimum acquisition time before starting a  
conversion.  
Example 16-3 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system  
assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
=
=
=
=
25 pF  
2.5 kΩ  
1/2 LSb  
5V RSS = 2 kΩ  
85°C (system max.)  
Note:  
When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
EQUATION 16-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 16-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
TC  
=
=
(VREF – (VREF/2048)) • (1 – e(-TC/CHOLD(RIC + RSS + RS))  
)
-(CHOLD)(RIC + RSS + RS) ln(1/2048)  
EQUATION 16-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
TAMP  
TCOFF  
=
=
=
TAMP + TC + TCOFF  
0.2 μs  
(Temp – 25°C)(0.02 μs/°C)  
(85°C – 25°C)(0.02 μs/°C)  
1.2 μs  
Temperature coefficient is only required for temperatures > 25°C. Below 25°C, TCOFF = 0 ms.  
TC  
=
-(CHOLD)(RIC + RSS + RS) ln(1/2047) μs  
-(25 pF) (1 kΩ + 2 kΩ + 2.5 kΩ) ln(0.0004883) μs  
1.05 μs  
TACQ  
=
0.2 μs + 1 μs + 1.2 μs  
2.4 μs  
DS39760D-page 180  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
16.2 Selecting and Configuring  
Acquisition Time  
16.3 Selecting the A/D Conversion  
Clock  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set. It also gives users the option to use an  
automatically determined acquisition time.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
Acquisition time may be set with the ACQT2:ACQT0 bits  
(ADCON2<5:3>) which provide a range of 2 to 20 TAD.  
When the GO/DONE bit is set, the A/D module  
continues to sample the input for the selected acquisition  
time, then automatically begins a conversion. Since the  
acquisition time is programmed, there may be no need  
to wait for an acquisition time between selecting a  
channel and setting the GO/DONE bit.  
• 2 TOSC  
• 4 TOSC  
• 8 TOSC  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC Oscillator  
Manual  
acquisition  
is  
selected  
when  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible but greater than the  
minimum TAD (see parameter 130 in Table 21-18 for  
more information).  
ACQT2:ACQT0 = 000. When the GO/DONE bit is set,  
sampling is stopped and a conversion begins. The user  
is responsible for ensuring the required acquisition time  
has passed between selecting the desired input  
channel and setting the GO/DONE bit. This option is  
also the default Reset state of the ACQT2:ACQT0 bits  
and is compatible with devices that do not offer  
programmable acquisition times.  
Table 16-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
TABLE 16-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
ADCS2:ADCS0  
PIC18FX450  
PIC18LFX450(4)  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC(3)  
000  
100  
001  
101  
010  
110  
x11  
2.86 MHz  
5.71 MHz  
11.43 MHz  
22.86 MHz  
45.71 MHz  
48.0 MHz  
1.00 MHz(1)  
1.43 MHz  
2.86 MHz  
5.72 MHz  
11.43 MHz  
22.86 MHz  
45.71 MHz  
1.00 MHz(2)  
Note 1: The RC source has a typical TAD time of 1.2 μs.  
2: The RC source has a typical TAD time of 2.5 μs.  
3: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D  
accuracy may be out of specification.  
4: Low-power devices only.  
© 2008 Microchip Technology Inc.  
DS39760D-page 181  
PIC18F2450/4450  
16.4 Operation in Power-Managed  
Modes  
16.5 Configuring Analog Port Pins  
The ADCON1, TRISA, TRISB and TRISE registers all  
configure the A/D port pins. The port pins needed as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
The selection of the automatic acquisition time and  
A/D conversion clock is determined in part by the clock  
source and frequency while in a power-managed  
mode.  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
If the A/D is expected to operate while the device is in  
a power-managed mode, the ACQT2:ACQT0 and  
ADCS2:ADCS0 bits in ADCON2 should be updated in  
accordance with the clock source to be used in that  
mode. After entering the mode, an A/D acquisition or  
conversion may be started. Once started, the device  
should continue to be clocked by the same clock  
source until the conversion has been completed.  
Note 1: When reading the PORT register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert as ana-  
log inputs. Analog levels on a digitally  
configured input will be accurately  
converted.  
If desired, the device may be placed into the  
corresponding Idle mode during the conversion. If the  
device clock frequency is less than 1 MHz, the A/D RC  
clock source should be selected.  
2: Analog levels on any pin defined as a  
digital input may cause the digital input  
buffer to consume current out of the  
device’s specification limits.  
Operation in the Sleep mode requires the A/D FRC  
clock to be selected. If bits ACQT2:ACQT0 are set to  
000’ and a conversion is started, the conversion will be  
delayed one instruction cycle to allow execution of the  
SLEEPinstruction and entry to Sleep mode. The IDLEN  
bit (OSCCON<7>) must have already been cleared  
prior to starting the conversion.  
3: The PBADEN bit in Configuration  
Register 3H configures PORTB pins to  
reset as analog or digital pins by control-  
ling how the PCFG0 bits in ADCON1 are  
reset.  
DS39760D-page 182  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can be  
started. After this wait, acquisition on the selected  
channel is automatically started.  
16.6 A/D Conversions  
Figure 16-4 shows the operation of the A/D Converter  
after the GO/DONE bit has been set and the  
ACQT2:ACQT0 bits are cleared. A conversion is  
started after the following instruction to allow entry into  
Sleep mode before the conversion begins.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
Figure 16-5 shows the operation of the A/D Converter  
after the GO/DONE bit has been set, the  
ACQT2:ACQT0 bits are set to ‘010’ and selecting a  
4 TAD acquisition time before the conversion starts.  
16.7 Discharge  
The discharge phase is used to initialize the value of  
the capacitor array. The array is discharged before  
every sample. This feature helps to optimize the unity-  
gain amplifier as the circuit always needs to charge the  
capacitor array, rather than charge/discharge based on  
previous measurement values.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D Result register  
pair will NOT be updated with the partially completed  
A/D  
conversion  
sample.  
This  
means  
the  
ADRESH:ADRESL registers will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADRESH:ADRESL registers).  
FIGURE 16-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY - TAD  
TAD6 TAD7 TAD8 TAD9 TAD10 TAD11 TAD1  
TAD1 TAD2 TAD3 TAD4 TAD5  
b7  
b6  
b4  
b1  
b0  
b9  
b8  
b5  
b3  
b2  
Conversion starts  
Discharge  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO/DONE bit  
On the following cycle:  
ADRESH:ADRESL is loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 16-5:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TACQ Cycles  
TAD Cycles  
7
8
9
10  
b1  
11 TAD1  
b0  
1
2
3
4
1
2
3
4
5
6
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Discharge  
Conversion starts  
(Holding capacitor is disconnected)  
Set GO/DONE bit  
(Holding capacitor continues  
acquiring input)  
On the following cycle:  
ADRESH:ADRESL is loaded, GO/DONE bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
© 2008 Microchip Technology Inc.  
DS39760D-page 183  
PIC18F2450/4450  
(moving ADRESH:ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition period is either timed by  
the user, or an appropriate TACQ time selected before  
the Special Event Trigger sets the GO/DONE bit (starts  
a conversion).  
16.8 Use of the CCP1 Trigger  
An A/D conversion can be started by the Special Event  
Trigger of the CCP1 module. This requires that the  
CCP1M3:CCP1M0  
bits  
(CCP1CON<3:0>)  
be  
programmed as ‘1011’ and that the A/D module is  
enabled (ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D acquisition  
and conversion, and the Timer1 counter will be reset to  
zero. Timer1 is reset to automatically repeat the A/D  
acquisition period with minimal software overhead  
If the A/D module is not enabled (ADON is cleared), the  
Special Event Trigger will be ignored by the A/D module  
but will still reset the Timer1 counter.  
TABLE 16-2: REGISTERS ASSOCIATED WITH A/D OPERATION  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
INTCON  
PIR1  
PIE1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
TXIE  
TXIP  
RBIE  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
HLVDIF  
HLVDIE  
HLVDIP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
TMR1IF  
TMR1IE  
TMR1IP  
49  
51  
51  
51  
51  
51  
51  
50  
50  
50  
50  
50  
51  
51  
51  
51  
51  
51  
51  
51  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
IPR1  
PIR2  
PIE2  
RCIP  
OSCFIF  
OSCFIE  
OSCFIP  
USBIF  
USBIE  
USBIP  
IPR2  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
CHS3  
VCFG1  
ACQT2  
RA5  
CHS2  
VCFG0  
ACQT1  
RA4  
CHS1  
PCFG3  
ACQT0  
RA3  
CHS0 GO/DONE ADON  
PCFG2  
ADCS2  
RA2  
PCFG1  
ADCS1  
RA1  
PCFG0  
ADCS0  
RA0  
ADFM  
RA6(2)  
TRISA6(2) TRISA5  
TRISA4  
RB4  
TRISA3  
RB3  
TRISA2  
RB2  
TRISA1  
RB1  
TRISA0  
RB0  
PORTB  
TRISB  
RB7  
TRISB7  
LATB7  
RB6  
TRISB6  
LATB6  
RB5  
TRISB5  
LATB5  
TRISB4  
LATB4  
TRISB3  
LATB3  
RE3(1,3)  
TRISB2  
LATB2  
RE2(4)  
TRISB1  
LATB1  
RE1(4)  
TRISB0  
LATB0  
RE0(4)  
LATB  
PORTE  
TRISE(4)  
LATE(4)  
TRISE2(4) TRISE1(4) TRISE0(4)  
LATE2(4) LATE1(4) LATE0(4)  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0).  
2: RA6 and its associated latch and data direction bits are enabled as I/O pins based on oscillator  
configuration; otherwise, they are read as ‘0’.  
3: RE3 port bit is available only as an input pin when the MCLRE Configuration bit is ‘0’.  
4: These registers and/or bits are not implemented on 28-pin devices.  
DS39760D-page 184  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
The High/Low-Voltage Detect Control register  
(Register 17-1) completely controls the operation of the  
HLVD module. This allows the circuitry to be “turned  
off” by the user under software control which minimizes  
the current consumption for the device.  
17.0 HIGH/LOW-VOLTAGE DETECT  
(HLVD)  
PIC18F2450/4450 devices have a High/Low-Voltage  
Detect module (HLVD). This is a programmable circuit  
that allows the user to specify both a device voltage trip  
point and the direction of change from that point. If the  
device experiences an excursion past the trip point in  
that direction, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the  
interrupt vector address and the software can then  
respond to the interrupt.  
The block diagram for the HLVD module is shown in  
Figure 17-1.  
REGISTER 17-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER  
R/W-0  
U-0  
R-0  
R/W-0  
R/W-0  
HLVDL3(1)  
R/W-1  
HLVDL2(1)  
R/W-0  
HLVDL1(1)  
R/W-1  
HLVDL0(1)  
VDIRMAG  
IRVST  
HLVDEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
VDIRMAG: Voltage Direction Magnitude Select bit  
1= Event occurs when voltage equals or exceeds trip point (HLVDL3:HLDVL0)  
0= Event occurs when voltage equals or falls below trip point (HLVDL3:HLVDL0)  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage  
trip point  
0= Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage  
trip point and the LVD interrupt should not be enabled  
bit 4  
HLVDEN: High/Low-Voltage Detect Power Enable bit  
1= HLVD enabled  
0= HLVD disabled  
bit 3-0  
HLVDL3:HLVDL0: Voltage Detection Limit bits(1)  
1111= Reserved  
1110= Maximum setting  
.
.
.
0000= Minimum setting  
Note 1: See Table 21-4 in Section 21.0 “Electrical Characteristics” for specifications.  
© 2008 Microchip Technology Inc.  
DS39760D-page 185  
PIC18F2450/4450  
The module is enabled by setting the HLVDEN bit.  
Each time that the HLVD module is enabled, the  
circuitry requires some time to stabilize. The IRVST bit  
is a read-only bit and is used to indicate when the circuit  
is stable. The module can only generate an interrupt  
after the circuit is stable and IRVST is set.  
event, depending on the configuration of the module.  
When the supply voltage is equal to the trip point, the  
voltage tapped off of the resistor array is equal to the  
internal reference voltage generated by the voltage  
reference module. The comparator then generates an  
interrupt signal by setting the HLVDIF bit.  
The VDIRMAG bit determines the overall operation of  
the module. When VDIRMAG is cleared, the module  
monitors for drops in VDD below a predetermined set  
point. When the bit is set, the module monitors for rises  
in VDD above the set point.  
The trip point voltage is software programmable to any  
one of 16 values. The trip point is selected by  
programming  
the  
HLVDL3:HLVDL0  
bits  
(HLVDCON<3:0>).  
The HLVD module has an additional feature that allows  
the user to supply the trip voltage to the module from an  
external source. This mode is enabled when bits,  
HLVDL3:HLVDL0, are set to ‘1111’. In this state, the  
comparator input is multiplexed from the external input  
pin, HLVDIN. This gives users flexibility because it  
allows them to configure the High/Low-Voltage Detect  
interrupt to occur at any voltage in the valid operating  
range.  
17.1 Operation  
When the HLVD module is enabled, a comparator uses  
an internally generated reference voltage as the set  
point. The set point is compared with the trip point,  
where each node in the resistor divider represents a  
trip point voltage. The “trip point” voltage is the voltage  
level at which the device detects a high or low-voltage  
FIGURE 17-1:  
HLVD MODULE BLOCK DIAGRAM (WITH EXTERNAL INPUT)  
Externally Generated  
Trip Point  
VDD  
VDD  
HLVDL3:HLVDL0  
HLVDCON  
Register  
VDIRMAG  
HLVDEN  
HLVDIN  
Set  
HLVDIF  
HLVDEN  
BOREN  
Internal Voltage  
Reference  
1.2V Typical  
DS39760D-page 186  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Depending on the application, the HLVD module does  
not need to be operating constantly. To decrease the  
current requirements, the HLVD circuitry may only  
need to be enabled for short periods where the voltage  
is checked. After doing the check, the HLVD module  
may be disabled.  
17.2 HLVD Setup  
The following steps are needed to set up the HLVD  
module:  
1. Disable the module by clearing the HLVDEN bit  
(HLVDCON<4>).  
2. Write the value to the HLVDL3:HLVDL0 bits that  
selects the desired HLVD trip point.  
17.4 HLVD Start-up Time  
3. Set the VDIRMAG bit to detect high voltage  
The internal reference voltage of the HLVD module,  
specified in electrical specification parameter D420 (see  
Table 21-4 in Section 21.0 “Electrical Characteris-  
tics”), may be used by other internal circuitry, such as  
the Programmable Brown-out Reset. If the HLVD or  
other circuits using the voltage reference are disabled to  
lower the device’s current consumption, the reference  
voltage circuit will require time to become stable before  
a low or high-voltage condition can be reliably detected.  
This start-up time, TIRVST, is an interval that is  
independent of device clock speed. It is specified in  
electrical specification parameter 36 (Table 21-10).  
(VDIRMAG = 1) or low voltage (VDIRMAG = 0).  
4. Enable the HLVD module by setting the  
HLVDEN bit.  
5. Clear the HLVD Interrupt Flag, HLVDIF  
(PIR2<2>), which may have been set from a  
previous interrupt.  
6. Enable the HLVD interrupt, if interrupts are  
desired, by setting the HLVDIE and GIE/GIEH  
bits (PIE2<2> and INTCON<7>). An interrupt  
will not be generated until the IRVST bit is set.  
The HLVD interrupt flag is not enabled until TIRVST has  
expired and a stable reference voltage is reached. For  
this reason, brief excursions beyond the set point may  
not be detected during this interval. Refer to Figure 17-2  
or Figure 17-3.  
17.3 Current Consumption  
When the module is enabled, the HLVD comparator  
and voltage divider are enabled and will consume static  
current. The total current consumption, when enabled,  
is specified in electrical specification parameter D022  
(Section 270 “DC Characteristics”).  
FIGURE 17-2:  
LOW-VOLTAGE DETECT OPERATION (VDIRMAG = 0)  
CASE 1:  
HLVDIF may not be set  
VDD  
VHLVD  
HLVDIF  
Enable HLVD  
IRVST  
TIRVST  
HLVDIF Cleared in Software  
Internal Reference is Stable  
CASE 2:  
VDD  
VHLVD  
HLVDIF  
Enable HLVD  
TIRVST  
IRVST  
Internal Reference is Stable  
HLVDIF Cleared in Software  
HLVDIF Cleared in Software,  
HLVDIF Remains Set since HLVD Condition still Exists  
© 2008 Microchip Technology Inc.  
DS39760D-page 187  
PIC18F2450/4450  
FIGURE 17-3:  
HIGH-VOLTAGE DETECT OPERATION (VDIRMAG = 1)  
CASE 1:  
HLVDIF may not be Set  
VHLVD  
VDD  
HLVDIF  
Enable HLVD  
IRVST  
TIRVST  
HLVDIF Cleared in Software  
Internal Reference is Stable  
CASE 2:  
VHLVD  
VDD  
HLVDIF  
Enable HLVD  
TIRVST  
IRVST  
Internal Reference is Stable  
HLVDIF Cleared in software  
HLVDIF Cleared in Software,  
HLVDIF Remains Set since HLVD Condition still Exists  
FIGURE 17-4:  
TYPICAL  
17.5 Applications  
HIGH/LOW-VOLTAGE  
DETECT APPLICATION  
In many applications, the ability to detect a drop below  
or rise above a particular threshold is desirable. For  
example, the HLVD module could be periodically  
enabled to detect Universal Serial Bus (USB) attach or  
detach. This assumes the device is powered by a lower  
voltage source than the USB when detached. An attach  
would indicate a high-voltage detect from, for example,  
3.3V to 5V (the voltage on USB) and vice versa for a  
detach. This feature could save a design a few extra  
components and an attach signal (input pin).  
VA  
VB  
For general battery applications, Figure 17-4 shows a  
possible voltage curve. Over time, the device voltage  
decreases. When the device voltage reaches voltage,  
VA, the HLVD logic generates an interrupt at time, TA.  
The interrupt could cause the execution of an ISR,  
which would allow the application to perform “house-  
keeping tasks” and perform a controlled shutdown  
before the device voltage exits the valid operating  
range at TB. The HLVD, thus, would give the applica-  
tion a time window, represented by the difference  
between TA and TB, to safely exit.  
TB  
Legend: VA = HLVD trip point  
TA  
Time  
VB = Minimum valid device  
operating voltage  
DS39760D-page 188  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
17.6 Operation During Sleep  
17.7 Effects of a Reset  
When enabled, the HLVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the HLVDIF bit will be set and the device will  
wake-up from Sleep. Device execution will continue  
from the interrupt vector address if interrupts have  
been globally enabled.  
A device Reset forces all registers to their Reset state.  
This forces the HLVD module to be turned off.  
TABLE 17-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
HLVDCON VDIRMAG  
IRVST  
HLVDEN HLVDL3 HLVDL2 HLVDL1 HLVDL0  
50  
49  
51  
51  
51  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF  
HLVDIF  
HLVDIE  
HLVDIP  
INT0IF  
RBIF  
OSCFIF  
OSCFIE  
OSCFIP  
USBIF  
USBIE  
USBIP  
PIE2  
IPR2  
Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the HLVD module.  
© 2008 Microchip Technology Inc.  
DS39760D-page 189  
PIC18F2450/4450  
NOTES:  
DS39760D-page 190  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
In addition to their Power-up and Oscillator Start-up  
Timers provided for Resets, PIC18F2450/4450 devices  
have a Watchdog Timer, which is either permanently  
enabled via the Configuration bits or software  
controlled (if configured as disabled).  
18.0 SPECIAL FEATURES OF THE  
CPU  
PIC18F2450/4450 devices include several features  
intended to maximize reliability and minimize cost  
through elimination of external components. These are:  
The inclusion of an internal RC oscillator also provides  
the additional benefits of a Fail-Safe Clock Monitor  
(FSCM) and Two-Speed Start-up. FSCM provides for  
background monitoring of the peripheral clock and  
automatic switchover in the event of its failure. Two-  
Speed Start-up enables code to be executed almost  
immediately on start-up, while the primary clock source  
completes its start-up delays.  
• Oscillator Selection  
• Resets:  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
All of these features are enabled and configured by  
setting the appropriate Configuration register bits.  
• Watchdog Timer (WDT)  
• Fail-Safe Clock Monitor (FSCM)  
• Two-Speed Start-up  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming (ICSP)  
The oscillator can be configured for the application  
depending on frequency, power, accuracy and cost. All  
of the options are discussed in detail in Section 2.0  
“Oscillator Configurations”.  
A complete discussion of device Resets and interrupts  
is available in previous sections of this data sheet.  
© 2008 Microchip Technology Inc.  
DS39760D-page 191  
PIC18F2450/4450  
Programming the Configuration registers is done in a  
manner similar to programming the Flash memory. The  
WR bit in the EECON1 register starts a self-timed write  
to the Configuration register. In normal operation mode,  
a TBLWT instruction, with the TBLPTR pointing to the  
Configuration register, sets up the address and the  
data for the Configuration register write. Setting the WR  
bit starts a long write to the Configuration register. The  
Configuration registers are written a byte at a time. To  
write or erase a configuration cell, a TBLWTinstruction  
can write a ‘1’ or a ‘0’ into the cell. For additional details  
on Flash programming, refer to Section 6.5 “Writing  
to Flash Program Memory”.  
18.1 Configuration Bits  
The Configuration bits can be programmed (read as  
0’) or left unprogrammed (read as ‘1’) to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h-3FFFFFh), which  
can only be accessed using table reads and table writes.  
TABLE 18-1: CONFIGURATION BITS AND DEVICE IDs  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300000h CONFIG1L  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
IESO  
FCMEN  
USBDIV CPUDIV1 CPUDIV0 PLLDIV2 PLLDIV1 PLLDIV0  
FOSC3 FOSC2 FOSC1 FOSC0  
BORV0 BOREN1 BOREN0 PWRTEN  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN  
--00 0111  
00-- 0111  
--01 1111  
---1 1111  
1--- -01-  
100- 01-1  
---- --11  
-1-- ----  
---- --11  
-11- ----  
---- --11  
-1-- ----  
VREGEN BORV1  
300005h CONFIG3H MCLRE  
BBSIZ  
LPT1OSC PBADEN  
STVREN  
CP0  
(2)  
300006h CONFIG4L DEBUG XINST ICPRT  
LVP  
CP1  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
30000Bh CONFIG6H  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
3FFFFEh DEVID1  
CPB  
WRT1  
WRT0  
WRTB  
WRTC  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
(1)  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
xxxx xxxx  
(1)  
3FFFFFh DEVID2  
0001 0010  
Legend:  
x= unknown, u= unchanged, - = unimplemented. Shaded cells are unimplemented, read as ‘0’.  
Note 1: See Register 18-13 and Register 18-14 for device ID values. DEVID registers are read-only and cannot be programmed  
by the user.  
2: Available only on PIC18F4450 devices in 44-pin TQFP packages. Always leave this bit clear in all other devices.  
DS39760D-page 192  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 18-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)  
U-0  
U-0  
R/P-0  
R/P-0  
R/P-0  
R/P-1  
R/P-1  
R/P-1  
USBDIV  
CPUDIV1  
CPUDIV0  
PLLDIV2  
PLLDIV1  
PLLDIV0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
USBDIV: USB Clock Selection bit (used in Full-Speed USB mode only; UCFG:FSEN = 1)  
1= USB clock source comes from the 96 MHz PLL divided by 2  
0= USB clock source comes directly from the primary oscillator block with no postscale  
bit 4-3  
CPUDIV1:CPUDIV0: System Clock Postscaler Selection bits  
For XT, HS, EC and ECIO Oscillator modes:  
11= Primary oscillator divided by 4 to derive system clock  
10= Primary oscillator divided by 3 to derive system clock  
01= Primary oscillator divided by 2 to derive system clock  
00= Primary oscillator used directly for system clock (no postscaler)  
For XTPLL, HSPLL, ECPLL and ECPIO Oscillator modes:  
11= 96 MHz PLL divided by 6 to derive system clock  
10= 96 MHz PLL divided by 4 to derive system clock  
01= 96 MHz PLL divided by 3 to derive system clock  
00= 96 MHz PLL divided by 2 to derive system clock  
bit 2-0  
PLLDIV2:PLLDIV0: PLL Prescaler Selection bits  
111= Divide by 12 (48 MHz oscillator input)  
110= Divide by 10 (40 MHz oscillator input)  
101= Divide by 6 (24 MHz oscillator input)  
100= Divide by 5 (20 MHz oscillator input)  
011= Divide by 4 (16 MHz oscillator input)  
010= Divide by 3 (12 MHz oscillator input)  
001= Divide by 2 (8 MHz oscillator input)  
000= No prescale (4 MHz oscillator input drives PLL directly)  
© 2008 Microchip Technology Inc.  
DS39760D-page 193  
PIC18F2450/4450  
REGISTER 18-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)  
R/P-0  
IESO  
R/P-0  
U-0  
U-0  
R/P-0  
FOSC3(1)  
R/P-1  
FOSC2(1)  
R/P-1  
FOSC1(1)  
R/P-1  
FOSC0(1)  
FCMEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7  
bit 6  
IESO: Internal/External Oscillator Switchover bit  
1= Oscillator Switchover mode enabled  
0= Oscillator Switchover mode disabled  
FCMEN: Fail-Safe Clock Monitor Enable bit  
1= Fail-Safe Clock Monitor enabled  
0= Fail-Safe Clock Monitor disabled  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
FOSC3:FOSC0: Oscillator Selection bits(1)  
111x= HS oscillator, PLL enabled (HSPLL)  
110x= HS oscillator (HS)  
1011= Internal oscillator, HS oscillator used by USB (INTHS)  
1010= Internal oscillator, XT used by USB (INTXT)  
1001= Internal oscillator, CLKO function on RA6, EC used by USB (INTCKO)  
1000= Internal oscillator, port function on RA6, EC used by USB (INTIO)  
0111= EC oscillator, PLL enabled, CLKO function on RA6 (ECPLL)  
0110= EC oscillator, PLL enabled, port function on RA6 (ECPIO)  
0101= EC oscillator, CLKO function on RA6 (EC)  
0100= EC oscillator, port function on RA6 (ECIO)  
001x= XT oscillator, PLL enabled (XTPLL)  
000x= XT oscillator (XT)  
Note 1: The microcontroller and USB module both use the selected oscillator as their clock source in XT, HS and  
EC modes. The USB module uses the indicated XT, HS or EC oscillator as its clock source whenever the  
microcontroller uses the internal oscillator.  
DS39760D-page 194  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 18-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)  
U-0  
U-0  
R/P-0  
R/P-1  
BORV1(1)  
R/P-1  
BORV0(1)  
R/P-1  
BOREN1(2)  
R/P-1  
R/P-1  
VREGEN  
BOREN0(2) PWRTEN(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
VREGEN: USB Internal Voltage Regulator Enable bit  
1= USB voltage regulator enabled  
0= USB voltage regulator disabled  
bit 4-3  
BORV1:BORV0: Brown-out Reset Voltage bits(1)  
11= Minimum setting  
.
.
.
00= Maximum setting  
bit 2-1  
bit 0  
BOREN1:BOREN0: Brown-out Reset Enable bits(2)  
11= Brown-out Reset enabled in hardware only (SBOREN is disabled)  
10= Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled)  
01= Brown-out Reset enabled and controlled by software (SBOREN is enabled)  
00= Brown-out Reset disabled in hardware and software  
PWRTEN: Power-up Timer Enable bit(2)  
1= PWRT disabled  
0= PWRT enabled  
Note 1: See Section 21.0 “Electrical Characteristics” for the specifications.  
2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently  
controlled.  
© 2008 Microchip Technology Inc.  
DS39760D-page 195  
PIC18F2450/4450  
REGISTER 18-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
WDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-5  
bit 4-1  
Unimplemented: Read as ‘0’  
WDTPS3:WDTPS0: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
DS39760D-page 196  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 18-5: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
R/P-0  
R/P-1  
U-0  
MCLRE  
LPT1OSC  
PBADEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7  
MCLRE: MCLR Pin Enable bit  
1= MCLR pin enabled, RA5 input pin disabled  
0= RA5 input pin enabled, MCLR pin disabled  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
LPT1OSC: Low-Power Timer1 Oscillator Enable bit  
1= Timer1 configured for low-power operation  
0= Timer1 configured for higher power operation  
bit 1  
bit 0  
PBADEN: PORTB A/D Enable bit  
(Affects ADCON1 Reset state. ADCON1 controls PORTB<4:0> pin configuration.)  
1= PORTB<4:0> pins are configured as analog input channels on Reset  
0= PORTB<4:0> pins are configured as digital I/O on Reset  
Unimplemented: Read as ‘0’  
© 2008 Microchip Technology Inc.  
DS39760D-page 197  
PIC18F2450/4450  
REGISTER 18-6: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)  
R/P-1  
R/P-0  
R/P-0  
ICPRT(1)  
U-0  
R/P-0  
R/P-1  
LVP  
U-0  
R/P-1  
DEBUG  
XINST  
BBSIZ  
STVREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7  
bit 6  
bit 5  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins  
0= Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug  
XINST: Extended Instruction Set Enable bit  
1= Instruction set extension and Indexed Addressing mode enabled  
0= Instruction set extension and Indexed Addressing mode disabled (Legacy mode)  
ICPRT: Dedicated In-Circuit Debug/Programming Port (ICPORT) Enable bit(1)  
1= ICPORT enabled  
0= ICPORT disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
BBSIZ: Boot Block Size Select bit  
1= 2 kW boot block size  
0= 1 kW boot block size  
bit 2  
LVP: Single-Supply ICSP™ Enable bit  
1= Single-Supply ICSP enabled  
0= Single-Supply ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
Note 1: Available only on PIC18F4450 devices in 44-pin TQFP packages. Always leave this bit clear in all other  
devices.  
DS39760D-page 198  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 18-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
CP1: Code Protection bit  
1= Block 1 (002000-003FFFh) is not code-protected  
0= Block 1 (002000-003FFFh) is code-protected  
bit 0  
CP0: Code Protection bit  
1= Block 0 (000800-001FFFh) or (001000-001FFFh) is not code-protected  
0= Block 0 (000800-001FFFh) or (001000-001FFFh) is code-protected  
REGISTER 18-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)  
U-0  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CPB: Boot Block Code Protection bit  
1= Boot block (000000-0007FFh) or (000000-000FFFh) is not code-protected  
0= Boot block (000000-0007FFh) or (000000-000FFFh) is code-protected  
bit 5-0  
Unimplemented: Read as ‘0’  
© 2008 Microchip Technology Inc.  
DS39760D-page 199  
PIC18F2450/4450  
REGISTER 18-9: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/C-1  
WRT1  
R/C-1  
WRT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
WRT1: Write Protection bit  
1= Block 1 (002000-003FFFh) is not write-protected  
0= Block 1 (002000-003FFFh) is write-protected  
bit 0  
WRT0: Write Protection bit  
1= Block 0 (000800-001FFFh) or (001000-001FFFh) is not write-protected  
0= Block 0 (000800-001FFFh) or (001000-001FFFh) is write-protected  
REGISTER 18-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)  
U-0  
R/C-1  
R-1  
WRTC(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTB  
bit 7  
bit 0  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
WRTB: Boot Block Write Protection bit  
1= Boot block (000000-0007FFh) or (000000-000FFFh) is not write-protected  
0= Boot block (000000-0007FFh) or (000000-000FFFh) is write-protected  
bit 5  
WRTC: Configuration Register Write Protection bit(1)  
1= Configuration registers (300000-3000FFh) are not write-protected  
0= Configuration registers (300000-3000FFh) are write-protected  
bit 4-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.  
DS39760D-page 200  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
REGISTER 18-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/C-1  
R/C-1  
EBTR1  
EBTR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
EBTR1: Table Read Protection bit  
1= Block 1 (002000-003FFFh) is not protected from table reads executed in other blocks  
0= Block 1 (002000-003FFFh) is protected from table reads executed in other blocks  
bit 0  
EBTR0: Table Read Protection bit  
1= Block 0 (000800-001FFFh) or (001000-001FFFh) is not protected from table reads executed in  
other blocks  
0= Block 0 (000800-001FFFh) or (001000-001FFFh) is protected from table reads executed in other  
blocks  
REGISTER 18-12: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)  
U-0  
R/C-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot block (000000-0007FFh) or (000000-000FFFh) is not protected from table reads executed  
in other blocks  
0= Boot block (000000-0007FFh) or (000000-000FFFh) is protected from table reads executed in  
other blocks  
bit 5-0  
Unimplemented: Read as ‘0’  
© 2008 Microchip Technology Inc.  
DS39760D-page 201  
PIC18F2450/4450  
REGISTER 18-13: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2450/4450 DEVICES  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
Legend:  
R = Read-only bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-5  
bit 4-0  
DEV2:DEV0: Device ID bits  
001= PIC18F2450  
000= PIC18F4450  
REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision.  
REGISTER 18-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2450/4450 DEVICES  
R
R
R
R
R
R
R
R
DEV10(1)  
DEV9(1)  
DEV8(1)  
DEV7(1)  
DEV6(1)  
DEV5(1)  
DEV4(1)  
DEV3(1)  
bit 7  
bit 0  
Legend:  
R = Read-only bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
bit 7-0  
DEV10:DEV3: Device ID bits(1)  
These bits are used with the DEV2:DEV0 bits in the DEVID1 register to identify the part number.  
0010 0100= PIC18F2450/4450 devices  
Note 1: These values for DEV10:DEV3 may be shared with other devices. The specific device is always identified  
by using the entire DEV10:DEV0 bit sequence.  
DS39760D-page 202  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
18.2 Watchdog Timer (WDT)  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and postscaler counts  
when executed.  
For PIC18F2450/4450 devices, the WDT is driven by  
the INTRC source. When the WDT is enabled, the  
clock source is also enabled. The nominal WDT period  
is 4 ms and has the same stability as the INTRC  
oscillator.  
2: When a CLRWDT instruction is executed,  
the postscaler count will be cleared.  
18.2.1  
CONTROL REGISTER  
The 4 ms period of the WDT is multiplied by a 16-bit  
postscaler. Any output of the WDT postscaler is  
Register 18-15 shows the WDTCON register. This is a  
readable and writable register which contains a control  
bit that allows software to override the WDT enable  
Configuration bit, but only if the Configuration bit has  
disabled the WDT.  
selected by  
a multiplexer, controlled by bits in  
Configuration Register 2H. Available periods range  
from 4 ms to 131.072 seconds (2.18 minutes). The  
WDT and postscaler are cleared when any of the  
following events occur: a SLEEPor CLRWDTinstruction  
is executed or a clock failure has occurred.  
FIGURE 18-1:  
WDT BLOCK DIAGRAM  
Enable WDT  
SWDTEN  
WDTEN  
INTRC Control  
WDT Counter  
Wake-up from  
Power-Managed  
Modes  
÷128  
INTRC Source  
WDT  
Reset  
Reset  
CLRWDT  
All Device Resets  
Programmable Postscaler  
1:1 to 1:32,768  
WDT  
4
WDTPS<3:0>  
SLEEP  
© 2008 Microchip Technology Inc.  
DS39760D-page 203  
PIC18F2450/4450  
REGISTER 18-15: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN(1)  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit(1)  
1= Watchdog Timer is on  
0= Watchdog Timer is off  
Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.  
TABLE 18-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Reset  
Values  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page:  
RCON  
WDTCON  
IPEN  
SBOREN(1)  
RI  
TO  
PD  
POR  
BOR  
50  
SWDTEN  
50  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Watchdog Timer.  
Note 1: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as ‘0’.  
DS39760D-page 204  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
In all other power-managed modes, Two-Speed Start-up  
is not used. The device will be clocked by the currently  
selected clock source until the primary clock source  
becomes available. The setting of the IESO bit is  
ignored.  
18.3 Two-Speed Start-up  
The Two-Speed Start-up feature helps to minimize the  
latency period, from oscillator start-up to code  
execution, by allowing the microcontroller to use the  
INTRC oscillator as a clock source until the primary  
clock source is available. It is enabled by setting the  
IESO Configuration bit.  
18.3.1  
SPECIAL CONSIDERATIONS FOR  
USING TWO-SPEED START-UP  
Two-Speed Start-up should be enabled only if the  
primary oscillator mode is XT, HS, XTPLL or HSPLL  
(Crystal-Based modes). Other sources do not require an  
Oscillator Start-up Timer delay; for these, Two-Speed  
Start-up should be disabled.  
While using the INTRC oscillator in Two-Speed Start-up,  
the device still obeys the normal command sequences  
for entering power-managed modes, including serial  
SLEEP instructions (refer to Section 3.1.4 “Multiple  
Sleep Commands”). In practice, this means that user  
code can change the SCS1:SCS0 bit settings or issue  
SLEEPinstructions before the OST times out. This would  
allow an application to briefly wake-up, perform routine  
“housekeeping” tasks and return to Sleep before the  
device starts to operate from the primary oscillator.  
When enabled, Resets and wake-ups from Sleep mode  
cause the device to configure itself to run from the  
internal oscillator as the clock source, following the  
time-out of the Power-up Timer after a Power-on Reset  
is enabled. This allows almost immediate code  
execution while the primary oscillator starts and the  
OST is running. Once the OST times out, the device  
automatically switches to PRI_RUN mode.  
User code can also check if the primary clock source is  
currently providing the device clocking by checking the  
status of the OSTS bit (OSCCON<3>). If the bit is set,  
the primary oscillator is providing the clock. Otherwise,  
the internal oscillator is providing the clock during  
wake-up from Reset or Sleep mode.  
Because the OSCCON register is cleared on Reset  
events, the INTRC clock is used directly at its base  
frequency.  
FIGURE 18-2:  
TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)  
Q3  
Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2  
INTRC  
OSC1  
(1)  
(1)  
TPLL  
TOST  
1
2
n-1  
n
PLL Clock  
Output  
Clock  
Transition  
CPU Clock  
Peripheral  
Clock  
Program  
Counter  
PC  
PC + 2  
PC + 4  
PC + 6  
OSTS bit Set  
Wake from Interrupt Event  
Note 1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.  
© 2008 Microchip Technology Inc.  
DS39760D-page 205  
PIC18F2450/4450  
The FSCM will detect failures of the primary or  
secondary clock sources only. If the internal oscillator  
fails, no failure would be detected, nor would any action  
be possible.  
18.4 Fail-Safe Clock Monitor  
The Fail-Safe Clock Monitor (FSCM) allows the  
microcontroller to continue operation in the event of an  
external oscillator failure by automatically switching the  
device clock to the internal oscillator. The FSCM function  
is enabled by setting the FCMEN Configuration bit.  
18.4.1  
FSCM AND THE WATCHDOG TIMER  
Both the FSCM and the WDT are clocked by the  
INTRC oscillator. Since the WDT operates with a  
separate divider and counter, disabling the WDT has  
no effect on the operation of the INTRC oscillator when  
the FSCM is enabled.  
When FSCM is enabled, the INTRC oscillator runs at all  
times to monitor clocks to peripherals and provide a  
backup clock in the event of a clock failure. Clock  
monitoring (shown in Figure 18-3) is accomplished by  
creating a sample clock signal, which is the INTRC output  
divided by 64. This allows ample time between FSCM  
sample clocks for a peripheral clock edge to occur. The  
peripheral device clock and the sample clock are  
presented as inputs to the Clock Monitor latch (CM). The  
CM is set on the falling edge of the device clock source,  
but cleared on the rising edge of the sample clock.  
If the WDT is enabled with a small prescale value, a  
decrease in clock speed allows a WDT time-out to  
occur and a subsequent device Reset. For this reason,  
Fail-Safe Clock Monitor events also reset the WDT and  
postscaler, allowing it to start timing from when execu-  
tion speed was changed and decreasing the likelihood  
of an erroneous time-out.  
FIGURE 18-3:  
FSCM BLOCK DIAGRAM  
18.4.2  
EXITING FAIL-SAFE OPERATION  
Clock Monitor  
Latch (CM)  
The fail-safe condition is terminated by either a device  
Reset or by entering a power-managed mode. On  
Reset, the controller starts the primary clock source  
specified in Configuration Register 1H (with any start-  
up delays that are required for the oscillator mode,  
such as OST or PLL timer). The INTRC provides the  
device clock until the primary clock source becomes  
ready (similar to a Two-Speed Start-up). The clock  
source is then switched to the primary clock (indicated  
by the OSTS bit in the OSCCON register becoming  
set). The Fail-Safe Clock Monitor then resumes  
monitoring the peripheral clock.  
(edge-triggered)  
Peripheral  
Clock  
S
Q
INTRC  
Source  
Q
÷ 64  
C
488 Hz  
(2.048 ms)  
(32 μs)  
Clock  
Failure  
Detected  
Clock failure is tested for on the falling edge of the  
sample clock. If a sample clock falling edge occurs  
while CM is still set, a clock failure has been detected  
(Figure 18-4). This causes the following:  
The primary clock source may never become ready  
during start-up. In this case, operation is clocked by the  
INTRC. The OSCCON register will remain in its Reset  
state until a power-managed mode is entered.  
• the FSCM generates an oscillator fail interrupt by  
setting bit, OSCFIF (PIR2<7>);  
• the device clock source is switched to the internal  
oscillator (OSCCON is not updated to show the cur-  
rent clock source – this is the fail-safe condition); and  
• the WDT is reset.  
DS39760D-page 206  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 18-4:  
FSCM TIMING DIAGRAM  
Sample Clock  
Oscillator  
Failure  
Device  
Clock  
Output  
CM Output  
(Q)  
Failure  
Detected  
OSCFIF  
CM Test  
CM Test  
CM Test  
Note:  
The device clock is normally at a much higher frequency than the sample clock. The relative frequencies in this  
example have been chosen for clarity.  
considerably longer than the FCSM sample clock time,  
a false clock failure may be detected. To prevent this,  
the internal oscillator is automatically configured as the  
device clock and functions until the primary clock is  
stable (the OST and PLL timers have timed out). This  
is identical to Two-Speed Start-up mode. Once the  
primary clock is stable, the INTRC returns to its role as  
the FSCM source.  
18.4.3  
FSCM INTERRUPTS IN  
POWER-MANAGED MODES  
By entering a power-managed mode, the clock multi-  
plexer selects the clock source selected by the OSCCON  
register. Fail-Safe Clock Monitoring of the power-  
managed clock source resumes in the power-managed  
mode.  
If an oscillator failure occurs during power-managed  
operation, the subsequent events depend on whether  
or not the oscillator failure interrupt is enabled. If  
enabled (OSCFIF = 1), code execution will be clocked  
by the INTRC. An automatic transition back to the failed  
clock source will not occur.  
Note:  
The same logic that prevents false oscilla-  
tor failure interrupts on POR or wake from  
Sleep will also prevent the detection of the  
oscillator’s failure to start at all following  
these events. This can be avoided by  
monitoring the OSTS bit and using a  
timing routine to determine if the oscillator  
is taking too long to start. Even so, no  
oscillator failure interrupt will be flagged.  
If the interrupt is disabled, subsequent interrupts while  
in Idle mode will cause the CPU to begin executing  
instructions while being clocked by the INTRC source.  
18.4.4  
POR OR WAKE-UP FROM SLEEP  
As noted in Section 18.3.1 “Special Considerations  
for Using Two-Speed Start-up”, it is also possible to  
select another clock configuration and enter an alternate  
power-managed mode while waiting for the primary  
clock to become stable. When the new power-managed  
mode is selected, the primary clock is disabled.  
The FSCM is designed to detect oscillator failure at any  
point after the device has exited Power-on Reset  
(POR) or low-power Sleep mode. When the primary  
device clock is either EC or INTRC, monitoring can  
begin immediately following these events.  
For oscillator modes involving a crystal or resonator  
(HS, HSPLL or XT), the situation is somewhat different.  
Since the oscillator may require a start-up time  
© 2008 Microchip Technology Inc.  
DS39760D-page 207  
PIC18F2450/4450  
Each of the three blocks has three code protection bits  
associated with them. They are:  
18.5 Program Verification and  
Code Protection  
• Code-Protect bit (CPx)  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other  
PIC® microcontrollers.  
• Write-Protect bit (WRTx)  
• External Block Table Read bit (EBTRx)  
Figure 18-5 shows the program memory organization  
for 24 and 32-Kbyte devices and the specific code  
protection bit associated with each block. The actual  
locations of the bits are summarized in Table 18-3.  
The user program memory is divided into three blocks.  
One of these is a boot block of 1 or 2 Kbytes. The  
remainder of the memory is divided into two blocks on  
binary boundaries.  
FIGURE 18-5:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18F2450/4450  
MEMORY SIZE/DEVICE  
Block Code Protection  
Controlled By:  
16 Kbytes  
(PIC18F2450/4450)  
Address  
Range  
000000h  
0007FFh  
000FFFh  
Boot Block  
Block 0  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
CP1, WRT1, EBTR1  
001000h  
001FFFh  
002000h  
Block 1  
003FFFh  
Unimplemented  
Read ‘0’s  
Unimplemented  
Read ‘0’s  
Unimplemented  
Read ‘0’s  
(Unimplemented Memory Space)  
1FFFFFh  
TABLE 18-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
300008h  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CONFIG6H  
CONFIG7L  
CONFIG7H  
CPB  
CP1  
CP0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
WRT1  
WRT0  
WRTB  
WRTC  
EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
DS39760D-page 208  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
A table read instruction that executes from a location  
outside of that block is not allowed to read and will  
result in reading ‘0’s. Figure 18-6 through Figure 18-8  
illustrate table write and table read protection.  
18.5.1  
PROGRAM MEMORY  
CODE PROTECTION  
The program memory may be read to or written from  
any location using the table read and table write  
instructions. The device ID may be read with table  
reads. The Configuration registers may be read and  
written with the table read and table write instructions.  
Note:  
Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code  
protection bits are only set to ‘1’ by a full  
Chip Erase or Block Erase function. The  
full Chip Erase and Block Erase functions  
can only be initiated via ICSP operation or  
an external programmer.  
In normal execution mode, the CPx bits have no direct  
effect. CPx bits inhibit external reads and writes. A  
block of user memory may be protected from table  
writes if the WRTx Configuration bit is ‘0’. The EBTRx  
bits control table reads. For a block of user memory  
with the EBTRx bit set to ‘0’, a table read instruction  
that executes from within that block is allowed to read.  
FIGURE 18-6:  
TABLE WRITE (WRTx) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 01  
WRT1, EBTR1 = 11  
000FFFh  
001000h  
TBLPTR = 0008FFh  
PC = 001FFEh  
TBLWT*  
001FFFh  
002000h  
003FFFh  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
Results: All table writes disabled to Blockn whenever WRTx = 0.  
© 2008 Microchip Technology Inc.  
DS39760D-page 209  
PIC18F2450/4450  
FIGURE 18-7:  
EXTERNAL BLOCK TABLE READ (EBTRx) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
000FFFh  
WRTB, EBTRB = 11  
001000h  
WRT0, EBTR0 = 10  
WRT1, EBTR1 = 11  
TBLPTR = 0008FFh  
PC = 003FFEh  
001FFFh  
002000h  
TBLRD*  
003FFFh  
Results: All table reads from external blocks to Blockn are disabled whenever EBTRx = 0.  
TABLAT register returns a value of ‘0’.  
FIGURE 18-8:  
EXTERNAL BLOCK TABLE READ (EBTRx) ALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
000FFFh  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 10  
001000h  
TBLPTR = 0008FFh  
PC = 001FFEh  
TBLRD*  
001FFFh  
002000h  
WRT1, EBTR1 = 11  
003FFFh  
Results: Table reads permitted within Blockn, even when EBTRBx = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
DS39760D-page 210  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
To use the In-Circuit Debugger function of the  
microcontroller, the design must implement In-Circuit  
Serial Programming connections to MCLR/VPP/RE3,  
VDD, VSS, RB7 and RB6. This will interface to the  
In-Circuit Debugger module available from Microchip  
or one of the third party development tool companies.  
18.5.2  
CONFIGURATION REGISTER  
PROTECTION  
The Configuration registers can be write-protected.  
The WRTC bit controls protection of the Configuration  
registers. In normal execution mode, the WRTC bit is  
readable only. WRTC can only be written via ICSP  
operation or an external programmer.  
18.9 Special ICPORT Features  
(Designated Packages Only)  
18.6 ID Locations  
Under specific circumstances, the No Connect (NC)  
pins of PIC18F4450 devices in 44-pin TQFP packages  
can provide additional functionality. These features are  
controlled by device Configuration bits and are  
available only in this package type and pin count.  
Eight memory locations (200000h-200007h) are  
designated as ID locations, where the user can store  
checksum or other code identification numbers. These  
locations are both readable and writable during normal  
execution through the TBLRD and TBLWT instructions  
or during program/verify. The ID locations can be read  
when the device is code-protected.  
18.9.1  
DEDICATED ICD/ICSP PORT  
The 44-pin TQFP devices can use NC pins to provide an  
alternate port for In-Circuit Debugging (ICD) and In-  
Circuit Serial Programming (ICSP). These pins are  
collectively known as the dedicated ICSP/ICD port, since  
they are not shared with any other function of the device.  
18.7  
In-Circuit Serial Programming  
PIC18F2450/4450 microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
When implemented, the dedicated port activates three  
NC pins to provide an alternate device Reset, data and  
clock ports. None of these ports overlap with standard  
I/O pins, making the I/O pins available to the user’s  
application.  
The dedicated ICSP/ICD port is enabled by setting the  
ICPRT Configuration bit. The port functions the same  
way as the legacy ICSP/ICD port on RB6/RB7.  
Table 18-5 identifies the functionally equivalent pins for  
ICSP and ICD purposes.  
18.8 In-Circuit Debugger  
When the DEBUG Configuration bit is programmed to  
a ‘0’, the In-Circuit Debugger functionality is enabled.  
This function allows simple debugging functions when  
used with MPLAB® IDE. When the microcontroller has  
this feature enabled, some resources are not available  
for general use. Table 18-4 shows which resources are  
required by the background debugger.  
TABLE 18-5: EQUIVALENT PINS FOR  
LEGACY AND DEDICATED  
ICD/ICSP™ PORTS  
Pin Name  
Pin  
Pin Function  
Legacy  
Port  
Dedicated  
Port  
Type  
TABLE 18-4: DEBUGGER RESOURCES  
I/O pins:  
RB6, RB7  
2 levels  
MCLR/VPP/ NC/ICRST/  
P
Device Reset and  
Programming  
Enable  
RE3  
ICVPP  
Stack:  
Program Memory:  
Data Memory:  
512 bytes  
10 bytes  
RB6/KBI2/  
PGC  
NC/ICCK/  
ICPGC  
I
Serial Clock  
RB7/KBI3/  
PGD  
NC/ICDT/  
ICPGD  
I/O Serial Data  
Legend: I = Input, O = Output, P = Power  
© 2008 Microchip Technology Inc.  
DS39760D-page 211  
PIC18F2450/4450  
Even when the dedicated port is enabled, the ICSP and  
ICD functions remain available through the legacy port.  
When VIHH is seen on the MCLR/VPP/RE3 pin, the  
state of the ICRST/ICVPP pin is ignored.  
Note 1: High-Voltage Programming is always  
available, regardless of the state of the  
LVP bit, by applying VIHH to the MCLR pin.  
2: While in Low-Voltage ICSP Programming  
mode, the RB5 pin can no longer be used  
as a general purpose I/O pin and should  
be held low during normal operation.  
Note 1: The ICPRT Configuration bit can only be  
programmed through the default ICSP  
port.  
2: The ICPRT Configuration bit must be  
maintained clear for all 28-pin and 40-pin  
devices; otherwise, unexpected operation  
may occur.  
3: When using Low-Voltage ICSP Program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 5 in the TRISB register  
must be cleared to disable the pull-up on  
RB5 and ensure the proper operation of  
the device.  
18.9.2  
28-PIN EMULATION  
PIC18F4450 devices in 44-pin TQFP packages also  
have the ability to change their configuration under  
external control for debugging purposes. This allows  
the device to behave as if it were a PIC18F2450/4450  
28-pin device.  
4: If the device Master Clear is disabled,  
verify that either of the following is done to  
ensure proper entry into ICSP mode:  
a) Disable Low-Voltage Programming  
(CONFIG4L<2> = 0); or  
This 28-pin Configuration mode is controlled through a  
single pin, NC/ICPORTS. Connecting this pin to VSS  
forces the device to function as a 28-pin device.  
Features normally associated with the 40/44-pin  
devices are disabled, along with their corresponding  
control registers and bits. On the other hand,  
connecting the pin to VDD forces the device to function  
in its default configuration.  
b) Make certain that RB5/KBI1/PGM  
is held low during entry into ICSP.  
If Single-Supply ICSP Programming mode will not be  
used, the LVP bit can be cleared. RB5/KBI1/PGM then  
becomes available as the digital I/O pin, RB5. The LVP  
bit may be set or cleared only when using standard  
high-voltage programming (VIHH applied to the MCLR/  
VPP/RE3 pin). Once LVP has been disabled, only the  
standard high-voltage programming is available and  
must be used to program the device.  
The configuration option is only available when  
background debugging and the dedicated ICD/ICSP  
port are both enabled (DEBUG Configuration bit is  
clear and ICPRT Configuration bit is set). When  
disabled, NC/ICPORTS is a No Connect pin.  
Memory that is not code-protected can be erased using  
either a Block Erase, or erased row by row, then written  
at any specified VDD. If code-protected memory is to be  
erased, a Block Erase is required. If a Block Erase is to  
be performed when using Low-Voltage Programming,  
the device must be supplied with VDD of 4.5V to 5.5V.  
18.10 Single-Supply ICSP Programming  
The LVP Configuration bit enables Single-Supply  
ICSP Programming (formerly known as Low-Voltage  
ICSP Programming or LVP). When Single-Supply  
Programming is enabled, the microcontroller can be  
programmed without requiring high voltage being  
applied to the MCLR/VPP/RE3 pin, but the RB5/KBI1/  
PGM pin is then dedicated to controlling Program  
mode entry and is not available as a general purpose  
I/O pin.  
While programming using Single-Supply Program-  
ming, VDD is applied to the MCLR/VPP/RE3 pin as in  
normal execution mode. To enter Programming mode,  
VDD is applied to the PGM pin.  
DS39760D-page 212  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
The literal instructions may use some of the following  
operands:  
19.0 INSTRUCTION SET SUMMARY  
PIC18F2450/4450 devices incorporate the standard  
set of 75 PIC18 core instructions, as well as an  
extended set of eight new instructions for the  
optimization of code that is recursive or that utilizes a  
software stack. The extended set is discussed later in  
this section.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
19.1 Standard Instruction Set  
The control instructions may use some of the following  
operands:  
The standard PIC18 instruction set adds many  
enhancements to the previous PIC MCU instruction  
sets, while maintaining an easy migration from these  
PIC MCU instruction sets. Most instructions are a  
single program memory word (16 bits) but there are  
four instructions that require two program memory  
locations.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
All instructions are a single word, except for four  
double-word instructions. These instructions were  
made double-word to contain the required information  
in 32 bits. In the second word, the 4 MSbs are ‘1’s. If  
this second word is executed as an instruction (by  
itself), it will execute as a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 19-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 19-1 shows the opcode field  
descriptions.  
The double-word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 μs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 μs.  
Two-word branch instructions (if true) would take 3 μs.  
1. The file register (specified by ‘f’)  
2. The destination of the result (specified by ‘d’)  
3. The accessed memory (specified by ‘a’)  
The file register designator, ‘f’, specifies which file  
register is to be used by the instruction. The destination  
designator, ‘d’, specifies where the result of the  
operation is to be placed. If ‘d’ is ‘0’, the result is placed  
in the WREG register. If ‘d’ is ‘1’, the result is placed in  
the file register specified in the instruction.  
Figure 19-1 shows the general formats that the  
instructions can have. All examples use the convention  
‘nnh’ to represent a hexadecimal number.  
The instruction set summary, shown in Table 19-2, lists  
the standard instructions recognized by the Microchip  
MPASMTM Assembler.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Section 19.1.1 “Standard Instruction Set” provides  
a description of each instruction.  
2. The bit in the file register (specified by ‘b’)  
3. The accessed memory (specified by ‘a’)  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register  
designator, ‘f’, represents the number of the file in  
which the bit is located.  
© 2008 Microchip Technology Inc.  
DS39760D-page 213  
PIC18F2450/4450  
TABLE 19-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
Bit address within an 8-bit file register (0 to 7).  
BSR  
Bank Select Register. Used to select the current RAM bank.  
ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
C, DC, Z, OV, N  
d
Destination select bit  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination: either the WREG register or the specified register file location.  
8-bit register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).  
12-bit register file address (000h to FFFh). This is the source address.  
12-bit register file address (000h to FFFh). This is the destination address.  
Global Interrupt Enable bit.  
f
f
s
d
GIE  
k
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions or the direct address for  
Call/Branch and Return instructions.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Power-Down bit.  
PCH  
PCLATH  
PCLATU  
PD  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
TBLPTR  
TABLAT  
TO  
21-bit Table Pointer (points to a program memory location).  
8-bit Table Latch.  
Time-out bit.  
TOS  
u
Top-of-Stack.  
Unused or unchanged.  
Watchdog Timer.  
WDT  
WREG  
x
Working register (accumulator).  
Don’t care (‘0’ or ‘1’). The assembler will generate code with x = 0. It is the recommended form of use for  
compatibility with all Microchip software tools.  
z
z
{
7-bit offset value for indirect addressing of register files (source).  
7-bit offset value for indirect addressing of register files (destination).  
Optional argument.  
s
d
}
[text]  
(text)  
[expr]<n>  
Indicates an indexed address.  
The contents of text.  
Specifies bit nof the register indicated by the pointer, expr.  
Assigned to.  
< >  
Register bit field.  
In the set of.  
italics  
User-defined term (font is Courier New).  
DS39760D-page 214  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 19-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
OPCODE  
9
8
7
0
ADDWF MYREG, W, B  
d
a
f (FILE #)  
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
MOVFF MYREG1, MYREG2  
OPCODE  
f (Source FILE #)  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 7Fh  
OPCODE  
k = 8-bit immediate value  
k (literal)  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
S
n<7:0> (literal)  
0
1111  
S = Fast bit  
n<19:8> (literal)  
15  
15  
11 10  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
8 7  
OPCODE  
n<7:0> (literal)  
© 2008 Microchip Technology Inc.  
DS39760D-page 215  
PIC18F2450/4450  
TABLE 19-2: PIC18FXXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
Z
CPFSEQ f, a  
Compare f with WREG, Skip = 1 (2 or 3) 0110 001a ffff ffff None  
Compare f with WREG, Skip > 1 (2 or 3) 0110 010a ffff ffff None  
Compare f with WREG, Skip < 1 (2 or 3) 0110 000a ffff ffff None  
CPFSGT  
CPFSLT  
DECF  
f, a  
f, a  
4
1, 2  
f, d, a Decrement f  
f, d, a Decrement f, Skip if 0  
f, d, a Decrement f, Skip if Not 0  
f, d, a Increment f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ  
DCFSNZ  
INCF  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1
1, 2, 3, 4  
1, 2  
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
f , f  
Move f (source) to 1st word  
s
d
s
f (destination) 2nd word  
d
MOVWF  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, a  
f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
0101 01da ffff ffff C, DC, Z, OV, N  
1, 2  
1, 2  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
RRNCF  
SETF  
f, a  
Set f  
1, 2  
SUBFWB f, d, a Subtract f from WREG with  
Borrow  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N 1, 2  
0101 10da ffff ffff C, DC, Z, OV, N  
SUBWFB f, d, a Subtract WREG from f with  
Borrow  
SWAPF  
TSTFSZ  
XORWF  
f, d, a Swap Nibbles in f  
f, a Test f, Skip if 0  
f, d, a Exclusive OR WREG with f  
1
0011 10da ffff ffff None  
4
1, 2  
1 (2 or 3) 0110 011a ffff ffff None  
0001 10da ffff ffff Z, N  
1
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
DS39760D-page 216  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 19-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb LSb  
BIT-ORIENTED OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
Call Subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust Wreg  
Go To Address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111  
C
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
Pop Top of Return Stack (TOS)  
Push Top of Return Stack (TOS) 1  
Relative Call  
Software Device Reset  
Return from Interrupt Enable  
1
1
1
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
2
1
2
s
RETLW  
RETURN  
SLEEP  
k
s
Return with Literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
© 2008 Microchip Technology Inc.  
DS39760D-page 217  
PIC18F2450/4450  
TABLE 19-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add Literal and WREG  
AND Literal with WREG  
Inclusive OR Literal with WREG 1  
Move Literal (12-bit) 2nd word  
to FSR(f) 1st word  
Move Literal to BSR<3:0>  
Move Literal to WREG  
Multiply Literal with WREG  
Return with Literal in WREG  
Subtract WREG from Literal  
Exclusive OR Literal with  
WREG  
1
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
1
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with Post-Increment  
Table Read with Post-Decrement  
Table Read with Pre-Increment  
Table Write  
Table Write with Post-Increment  
Table Write with Post-Decrement  
Table Write with Pre-Increment  
2
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as an input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, ‘d’ = 1), the prescaler will be cleared if  
assigned.  
3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all  
program memory locations have a valid instruction.  
DS39760D-page 218  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
19.1.1  
STANDARD INSTRUCTION SET  
ADDLW  
ADD Literal to W  
ADDWF  
ADD W to f  
Syntax:  
ADDLW  
k
Syntax:  
ADDWF  
f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are added to the  
8-bit literal ‘k’ and the result is placed in  
W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
Words:  
Cycles:  
1
1
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example:  
ADDLW  
15h  
Before Instruction  
10h  
After Instruction  
25h  
W
=
Words:  
Cycles:  
1
1
W
=
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWF  
REG, 0, 0  
Before Instruction  
W
=
17h  
REG  
=
0C2h  
After Instruction  
W
REG  
=
=
0D9h  
0C2h  
Note:  
All PIC18 instructions may take an optional label argument, preceding the instruction mnemonic, for use in  
symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).  
© 2008 Microchip Technology Inc.  
DS39760D-page 219  
PIC18F2450/4450  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND Literal with W  
Syntax:  
ADDWFC  
f {,d {,a}}  
Syntax:  
ANDLW  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are ANDed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data memory  
location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to W  
Example:  
ANDLW  
05Fh  
Before Instruction  
W
=
A3h  
03h  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
ADDWFC  
REG, 0, 1  
Before Instruction  
Carry bit =  
1
02h  
4Dh  
REG  
W
=
=
After Instruction  
Carry bit =  
0
02h  
50h  
REG  
W
=
=
DS39760D-page 220  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
ANDWF  
AND W with f  
BC  
Branch if Carry  
Syntax:  
ANDWF  
f {,d {,a}}  
Syntax:  
BC  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ‘1’, then the program  
will branch.  
Description:  
The contents of W are ANDed with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Words:  
Cycles:  
1
1
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
ANDWF  
REG, 0, 0  
Example:  
HERE  
BC  
5
Before Instruction  
Before Instruction  
W
REG  
=
=
17h  
C2h  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
W
REG  
=
=
02h  
C2h  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
1;  
address (HERE + 12)  
0;  
address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39760D-page 221  
PIC18F2450/4450  
BCF  
Bit Clear f  
BN  
Branch if Negative  
BN  
Syntax:  
BCF f, b {,a}  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
Description:  
Bit ‘b’ in register ‘f’ is cleared.  
program will branch.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Example:  
BCF  
FLAG_REG, 7, 0  
C7h  
47h  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Before Instruction  
FLAG_REG =  
After Instruction  
FLAG_REG =  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
DS39760D-page 222  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
BNC  
Branch if Not Carry  
BNC  
BNN  
Branch if Not Negative  
Syntax:  
n
Syntax:  
BNN  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘0’,  
(PC) + 2 + 2n PC  
if Negative bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the program  
will branch.  
Description:  
If the Negative bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
0;  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
1;  
address (HERE + 2)  
address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39760D-page 223  
PIC18F2450/4450  
BNOV  
Branch if Not Overflow  
BNOV  
BNZ  
Branch if Not Zero  
BNZ  
Syntax:  
n
Syntax:  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘0’,  
(PC) + 2 + 2n PC  
if Zero bit is ‘0’,  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
program will branch.  
Description:  
If the Zero bit is ‘0’, then the program  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
1;  
address (HERE + 2)  
address (HERE + 2)  
DS39760D-page 224  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
BRA  
Unconditional Branch  
BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
BSF f, b {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
1000  
Bit ‘b’ in register ‘f’ is set.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Add the 2’s complement number ‘2n’ to  
the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
bbba  
ffff  
ffff  
Description:  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Words:  
Cycles:  
1
1
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
HERE  
BRA Jump  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Before Instruction  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
Example:  
BSF  
FLAG_REG, 7, 1  
0Ah  
8Ah  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
© 2008 Microchip Technology Inc.  
DS39760D-page 225  
PIC18F2450/4450  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
BTFSC f, b {,a}  
Syntax:  
BTFSS f, b {,a}  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the next  
instruction is skipped. If bit ‘b’ is ‘0’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the next  
instruction is skipped. If bit ‘b’ is ‘1’, then  
the next instruction fetched during the  
current instruction execution is discarded  
and a NOPis executed instead, making  
this a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’, the Access Bank is selected. If  
‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates in  
Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh).  
See Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
See Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
1;  
address (FALSE)  
address (TRUE)  
DS39760D-page 226  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
BTG f, b {,a}  
Syntax:  
BOV  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Data  
Write  
register ‘f’  
If No Jump:  
Q1  
register ‘f’  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
BTG  
PORTC, 4, 0  
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
=
0111 0101 [75h]  
0110 0101 [65h]  
Example:  
HERE  
BOV Jump  
Before Instruction  
=
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39760D-page 227  
PIC18F2450/4450  
BZ  
Branch if Zero  
BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
CALL k {,s}  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’,  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>;  
if s = 1,  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the program  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return address  
(PC + 4) is pushed onto the return  
stack. If ‘s’ = 1, the W, STATUS and  
BSR  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs (default). Then, the  
20-bit value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
‘k’<7:0>,  
stack  
‘k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
Before Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
PC  
=
address (HERE)  
After Instruction  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
1;  
address (Jump)  
Example:  
HERE  
CALL THERE,1  
0;  
address (HERE + 2)  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
PC  
=
=
=
=
address (THERE)  
TOS  
WS  
address (HERE + 4)  
W
BSR  
BSRS  
STATUSS = STATUS  
DS39760D-page 228  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
CLRF f {,a}  
Syntax:  
CLRWDT  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f,  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register.  
Description:  
CLRWDTinstruction resets the  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits, TO  
and PD, are set.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
No  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
CLRWDT  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WDT Counter  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
=
?
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
=
=
=
=
00h  
0
1
Example:  
CLRF  
FLAG_REG,1  
PD  
1
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
=
=
5Ah  
00h  
© 2008 Microchip Technology Inc.  
DS39760D-page 229  
PIC18F2450/4450  
CPFSEQ  
Compare f with W, Skip if f = W  
COMF  
Complement f  
Syntax:  
CPFSEQ f {,a}  
Syntax:  
COMF f {,d {,a}}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) = (W)  
(unsigned comparison)  
Operation:  
(f) dest  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction.  
complemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Example:  
COMF  
REG, 0, 0  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Decode  
Before Instruction  
REG  
=
13h  
After Instruction  
If skip:  
Q1  
REG  
W
=
=
13h  
ECh  
Q2  
No  
Q3  
No  
Q4  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG, 0  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
=
=
HERE  
?
?
W
REG  
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
=
W;  
Address (EQUAL)  
W;  
Address (NEQUAL)  
DS39760D-page 230  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
CPFSGT  
Compare f with W, Skip if f > W  
CPFSLT  
Compare f with W, Skip if f < W  
Syntax:  
CPFSGT f {,a}  
Syntax:  
CPFSLT f {,a}  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
Operation:  
(f) – (W),  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
0110  
010a  
ffff  
ffff  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of the W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction.  
two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
No  
operation  
Decode  
If skip and followed by 2-word instruction:  
If skip:  
Q1  
Q1  
Q2  
Q3  
Q4  
Q2  
No  
Q3  
No  
Q4  
No  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
No  
operation  
No  
Q2  
No  
operation  
No  
Q3  
No  
operation  
No  
Q4  
No  
operation  
No  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
operation  
operation  
operation  
operation  
Before Instruction  
PC  
W
=
=
Address (HERE)  
Example:  
HERE  
NGREATER  
GREATER  
CPFSGT REG, 0  
:
:
?
After Instruction  
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Before Instruction  
Address (LESS)  
W;  
PC  
W
=
=
Address (HERE)  
Address (NLESS)  
?
After Instruction  
If REG  
PC  
If REG  
PC  
>
=
=
W;  
Address (GREATER)  
W;  
Address (NGREATER)  
© 2008 Microchip Technology Inc.  
DS39760D-page 231  
PIC18F2450/4450  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
DAW  
None  
Syntax:  
DECF f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1] then,  
(W<3:0>) + 6 W<3:0>;  
else,  
Operation:  
(f) – 1 dest  
(W<3:0>) W<3:0>  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> + DC > 9] or [C = 1] then,  
(W<7:4>) + 6 + DC W<7:4>;  
else,  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
(W<7:4>) + DC W<7:4>  
Status Affected:  
Encoding:  
C
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the 8-bit value in W,  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register W  
Process  
Data  
Write  
W
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
DAW  
Before Instruction  
W
=
A5h  
0
Example:  
DECF  
CNT,  
1, 0  
C
=
=
DC  
0
Before Instruction  
After Instruction  
CNT  
Z
=
01h  
0
W
=
=
=
05h  
1
0
=
C
After Instruction  
DC  
CNT  
Z
=
=
00h  
1
Example 2:  
Before Instruction  
W
=
=
=
CEh  
0
0
C
DC  
After Instruction  
W
=
=
=
34h  
1
0
C
DC  
DS39760D-page 232  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
DECFSZ  
Decrement f, Skip if 0  
DCFSNZ  
Decrement f, Skip if Not 0  
Syntax:  
DECFSZ f {,d {,a}}  
Syntax:  
DCFSNZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
Operation:  
(f) – 1 dest,  
skip if result = 0  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0100  
The contents of register ‘f’ are  
0010  
11da  
ffff  
ffff  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction,  
which is already fetched, is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is not ‘0’, the next  
instruction, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
Process  
Data  
Write to  
destination  
register ‘f’  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
After Instruction  
=
Address (HERE)  
=
?
CNT  
=
CNT – 1  
0;  
If CNT  
=
=
=
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP – 1,  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
PC  
Address (CONTINUE)  
0;  
If CNT  
PC  
Address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39760D-page 233  
PIC18F2450/4450  
GOTO  
Unconditional Branch  
GOTO  
INCF  
Increment f  
Syntax:  
k
Syntax:  
INCF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
0 k 1048575  
k PC<20:1>  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
kkk  
k kkk  
kkkk  
kkkk  
kkkk  
7
0
8
k
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional branch  
anywhere within the entire  
2-Mbyte memory range. The 20-bit  
value ‘k’ is loaded into PC<20:1>. GOTO  
is always a two-cycle instruction.  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
1
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
GOTO THERE  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
PC  
=
Address (THERE)  
Example:  
INCF  
CNT, 1, 0  
Before Instruction  
CNT  
Z
=
FFh  
0
=
=
=
C
?
DC  
?
After Instruction  
CNT  
Z
=
00h  
1
=
=
=
C
1
DC  
1
DS39760D-page 234  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
INFSNZ  
Increment f, Skip if Not 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
INFSNZ f {,d {,a}}  
Syntax:  
INCFSZ f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result 0  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Status Affected:  
Encoding:  
None  
0100  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is not ‘0’, the next  
Status Affected:  
Encoding:  
None  
10da  
ffff  
ffff  
0011  
11da  
ffff  
ffff  
Description:  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’. (default)  
If the result is ‘0’, the next instruction,  
which is already fetched, is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
instruction, which is already fetched, is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
=
=
=
0;  
=
=
=
0;  
Address (NZERO)  
0;  
Address (ZERO)  
Address (ZERO)  
0;  
Address (NZERO)  
© 2008 Microchip Technology Inc.  
DS39760D-page 235  
PIC18F2450/4450  
IORLW  
Inclusive OR Literal with W  
IORLW  
IORWF  
Inclusive OR W with f  
Syntax:  
k
Syntax:  
IORWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .OR. k W  
N, Z  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
8-bit literal ‘k’. The result is placed in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’  
(default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Data  
Write to W  
literal ‘k’  
Example:  
IORLW  
35h  
Before Instruction  
W
=
9Ah  
BFh  
After Instruction  
W
=
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
IORWF RESULT, 0, 1  
Before Instruction  
RESULT =  
13h  
91h  
W
=
After Instruction  
RESULT =  
13h  
93h  
W
=
DS39760D-page 236  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
LFSR f, k  
Syntax:  
MOVF f {,d {,a}}  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
0101  
1110  
1111  
1110  
0000  
00ff  
k kkk  
k kkk  
11  
kkkk  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into the  
File Select Register pointed to by ‘f’.  
Description:  
The contents of register ‘f’ are moved to  
a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
Location ‘f’ can be anywhere in the  
256-byte bank.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’ MSB  
to FSRfH  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal ‘k’  
to FSRfL  
Example:  
LFSR 2, 3ABh  
After Instruction  
FSR2H  
FSR2L  
=
=
03h  
ABh  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write W  
Example:  
MOVF  
REG, 0, 0  
Before Instruction  
REG  
W
=
=
22h  
FFh  
After Instruction  
REG  
W
=
=
22h  
22h  
© 2008 Microchip Technology Inc.  
DS39760D-page 237  
PIC18F2450/4450  
MOVFF  
Move f to f  
MOVFF f ,f  
MOVLB  
Move Literal to Low Nibble in BSR  
MOVLW  
Syntax:  
Syntax:  
k
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
k BSR  
None  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The 8-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR). The value  
of BSR<7:4> always remains ‘0’  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
s
d
Description:  
The contents of source register ‘f ’ are  
regardless of the value of k :k .  
s
7 4  
moved to destination register ‘f ’.  
d
Words:  
Cycles:  
1
1
Location of source ‘f ’ can be anywhere  
s
in the 4096-byte data space (000h to  
FFFh) and location of destination ‘f ’  
can also be anywhere from 000h to  
FFFh.  
Either source or destination can be W  
(a useful special situation).  
d
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write literal  
‘k’ to BSR  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Example:  
MOVLB  
5
Before Instruction  
BSR Register =  
After Instruction  
BSR Register =  
02h  
05h  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
33h  
11h  
After Instruction  
REG1  
REG2  
=
=
33h  
33h  
DS39760D-page 238  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
MOVLW  
Move Literal to W  
MOVLW  
MOVWF  
Move W to f  
Syntax:  
k
Syntax:  
MOVWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
0 k 255  
k W  
None  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
Status Affected:  
Encoding:  
None  
0110  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank.  
0000  
1110  
kkkk  
kkkk  
111a  
ffff  
ffff  
The 8-bit literal ‘k’ is loaded into W.  
Description:  
1
1
Cycles:  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example:  
MOVLW  
5Ah  
After Instruction  
W
=
5Ah  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG, 0  
Before Instruction  
W
REG  
=
=
4Fh  
FFh  
After Instruction  
W
REG  
=
=
4Fh  
4Fh  
© 2008 Microchip Technology Inc.  
DS39760D-page 239  
PIC18F2450/4450  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
MULLW  
k
Syntax:  
MULWF f {,a}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried  
out between the contents of W and the  
8-bit literal ‘k’. The 16-bit result is  
placed in PRODH:PRODL register pair.  
PRODH contains the high byte.  
W is unchanged.  
None of the Status flags are affected.  
Note that neither Overflow nor Carry is  
possible in this operation. A zero result  
is possible but not detected.  
Description:  
An unsigned multiplication is carried  
out between the contents of W and the  
register file location ‘f’. The 16-bit  
result is stored in the PRODH:PRODL  
register pair. PRODH contains the  
high byte. Both W and ‘f’ are  
unchanged.  
None of the Status flags are affected.  
Note that neither Overflow nor Carry is  
possible in this operation. A zero  
result is possible but not detected.  
If ‘a’ is ‘0’, the Access Bank is  
selected. If ‘a’ is ‘1’, the BSR is used  
to select the GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction  
operates in Indexed Literal Offset  
Addressing mode whenever  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
f 95 (5Fh). See Section 19.2.3  
“Byte-Oriented and Bit-Oriented  
Instructions in Indexed Literal Offset  
Mode” for details.  
Example:  
MULLW  
0C4h  
Before Instruction  
Words:  
Cycles:  
1
1
W
PRODH  
PRODL  
=
=
=
E2h  
?
?
After Instruction  
Q Cycle Activity:  
Q1  
W
PRODH  
PRODL  
=
=
=
E2h  
ADh  
08h  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Example:  
MULWF  
REG, 1  
Before Instruction  
W
=
=
=
=
C4h  
REG  
B5h  
?
PRODH  
PRODL  
?
After Instruction  
W
=
=
=
=
C4h  
B5h  
8Ah  
94h  
REG  
PRODH  
PRODL  
DS39760D-page 240  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
NEGF f {,a}  
Syntax:  
NOP  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
No operation  
Operation:  
(f) + 1 f  
Status Affected:  
Encoding:  
None  
0000  
1111  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in the  
data memory location ‘f’.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Description:  
Words:  
No operation.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
operation  
Q4  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
No  
operation  
No  
operation  
Example:  
None.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [3Ah]  
1100 0110 [C6h]  
=
© 2008 Microchip Technology Inc.  
DS39760D-page 241  
PIC18F2450/4450  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
POP  
Syntax:  
PUSH  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
None  
(TOS) bit bucket  
(PC + 2) TOS  
None  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implementing a  
software stack by modifying TOS and  
then pushing it onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Push PC + 2  
onto return  
stack  
No  
operation  
No  
operation  
Decode  
No  
operation  
Pop TOS  
value  
No  
operation  
Example:  
POP  
Example:  
PUSH  
GOTO  
NEW  
Before Instruction  
Before Instruction  
TOS  
Stack (1 level down)  
TOS  
PC  
=
=
345Ah  
0124h  
=
=
0031A2h  
014332h  
After Instruction  
After Instruction  
PC  
=
=
=
0126h  
0126h  
345Ah  
TOS  
TOS  
PC  
=
=
014332h  
NEW  
Stack (1 level down)  
DS39760D-page 242  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
RCALL  
Relative Call  
RCALL  
RESET  
Reset  
Syntax:  
n
Syntax:  
RESET  
None  
Operands:  
Operation:  
-1024 n 1023  
Operands:  
Operation:  
(PC) + 2 TOS,  
(PC) + 2 + 2n PC  
Reset all registers and flags that are  
affected by a MCLR Reset.  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
0000  
1101  
1nnn  
nnnn  
nnnn  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number ‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
No  
No  
Reset  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
PC  
TOS =  
=
Address (HERE)  
=
Address (Jump)  
Address (HERE + 2)  
© 2008 Microchip Technology Inc.  
DS39760D-page 243  
PIC18F2450/4450  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
RETLW  
Syntax:  
RETFIE {s}  
Syntax:  
k
Operands:  
Operation:  
s [0,1]  
Operands:  
Operation:  
0 k 255  
(TOS) PC,  
k W,  
1 GIE/GIEH or PEIE/GIEL;  
if s = 1,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged  
Description:  
W is loaded with the 8-bit literal ‘k’. The  
program counter is loaded from the top  
of the stack (the return address). The  
high address latch (PCLATH) remains  
unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low-priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers WS,  
STATUSS and BSRS are loaded into  
their corresponding registers, W,  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Pop PC from  
stack, Write  
to W  
STATUS and BSR. If ‘s’ = 0, no update  
of these registers occurs (default).  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
2
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
Pop PC from  
stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
Example:  
RETFIE  
1
After Interrupt  
:
PC  
=
=
=
=
=
TOS  
WS  
RETLW kn  
; End of table  
W
BSR  
STATUS  
BSRS  
STATUSS  
1
Before Instruction  
GIE/GIEH, PEIE/GIEL  
W
=
07h  
After Instruction  
W
=
value of kn  
DS39760D-page 244  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
RETURN {s}  
Syntax:  
RLCF f {,d {,a}}  
Operands:  
Operation:  
s [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC;  
if s = 1,  
(WS) W,  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is  
selected. If ‘a’ is ‘1’, the BSR is used to  
select the GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction  
operates in Indexed Literal Offset  
Addressing mode whenever  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’= 1, the contents of the shadow  
registers WS, STATUSS and BSRS are  
loaded into their corresponding  
registers, W, STATUS and BSR. If  
‘s’ = 0, no update of these registers  
occurs (default).  
Words:  
Cycles:  
1
2
f 95 (5Fh). See Section 19.2.3  
“Byte-Oriented and Bit-Oriented  
Instructions in Indexed Literal Offset  
Mode” for details.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Pop PC  
register f  
C
from stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Example:  
RETURN  
Q2  
Read  
register ‘f’  
Q3  
Q4  
After Instruction:  
Decode  
Process  
Data  
Write to  
destination  
PC = TOS  
Example:  
RLCF  
REG, 0, 0  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
1100 1100  
1
© 2008 Microchip Technology Inc.  
DS39760D-page 245  
PIC18F2450/4450  
RLNCF  
Rotate Left f (No Carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
RLNCF f {,d {,a}}  
Syntax:  
RRCF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in W.  
If ‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
Example:  
RRCF  
REG, 0, 0  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
W
C
=
=
=
1110 0110  
0111 0011  
0
DS39760D-page 246  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
RRNCF  
Rotate Right f (No Carry)  
SETF  
Set f  
Syntax:  
RRNCF f {,d {,a}}  
Syntax:  
SETF f {,a}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If ‘a’  
is ‘1’, then the bank will be selected as  
per the BSR value (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG,1  
Q Cycle Activity:  
Q1  
Before Instruction  
REG  
After Instruction  
REG  
=
=
5Ah  
FFh  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
© 2008 Microchip Technology Inc.  
DS39760D-page 247  
PIC18F2450/4450  
SLEEP  
Enter Sleep Mode  
SUBFWB  
Subtract f from W with Borrow  
Syntax:  
SLEEP  
None  
Syntax:  
SUBFWB f {,d {,a}}  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored in  
register ‘f’ (default).  
Description:  
The Power-Down status bit (PD) is  
cleared. The Time-out status bit (TO)  
is set. Watchdog Timer and its  
postscaler are cleared.  
If ‘a’ is ‘0’, the Access Bank is  
selected. If ‘a’ is ‘1’, the BSR is used  
to select the GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction  
operates in Indexed Literal Offset  
Addressing mode whenever  
f 95 (5Fh). See Section 19.2.3  
“Byte-Oriented and Bit-Oriented  
Instructions in Indexed Literal Offset  
Mode” for details.  
The processor is put into Sleep mode  
with the oscillator stopped.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Example:  
SLEEP  
Words:  
Cycles:  
1
1
Before Instruction  
TO  
PD  
=
=
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
TO  
PD  
=
=
1 †  
0
Example 1:  
SUBFWB  
REG, 1, 0  
If WDT causes wake-up, this bit is cleared.  
Before Instruction  
REG  
W
C
=
=
=
3
2
1
After Instruction  
REG  
W
C
=
FF  
2
=
=
=
=
0
Z
0
1
N
; result is negative  
Example 2:  
SUBFWB  
REG, 0, 0  
Before Instruction  
REG  
W
=
=
=
2
5
1
C
After Instruction  
REG  
W
C
=
2
3
1
0
=
=
=
=
Z
N
0
; result is positive  
Example 3:  
SUBFWB  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
=
1
2
0
C
After Instruction  
REG  
W
C
=
0
2
1
1
0
=
=
=
=
Z
; result is zero  
N
DS39760D-page 248  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
SUBLW  
Subtract W from Literal  
SUBLW  
SUBWF  
Subtract W from f  
Syntax:  
k
Syntax:  
SUBWF f {,d {,a}}  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description  
0 k 255  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0101 11da  
W is subtracted from the 8-bit  
literal ‘k’. The result is placed in W.  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’, the Access Bank is  
selected. If ‘a’ is ‘1’, the BSR is used  
to select the GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction  
operates in Indexed Literal Offset  
Addressing mode whenever  
f 95 (5Fh). See Section 19.2.3  
“Byte-Oriented and Bit-Oriented  
Instructions in Indexed Literal Offset  
Mode” for details.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example 1:  
SUBLW 02h  
Before Instruction  
W
C
=
=
01h  
?
After Instruction  
W
C
Z
=
01h  
=
=
=
1
0
0
; result is positive  
N
Words:  
Cycles:  
1
1
Example 2:  
SUBLW 02h  
Before Instruction  
W
C
=
=
02h  
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
C
Z
=
00h  
=
=
=
1
1
0
; result is zero  
N
Example 1:  
SUBWF  
REG, 1, 0  
Before Instruction  
Example 3:  
SUBLW 02h  
REG  
W
=
3
2
?
Before Instruction  
=
=
W
C
=
=
03h  
?
C
After Instruction  
After Instruction  
REG  
W
C
=
1
2
1
0
0
W
C
Z
=
FFh ; (2’s complement)  
=
=
=
=
=
=
=
0
0
1
; result is negative  
; result is positive  
Z
N
N
Example 2:  
Before Instruction  
SUBWF  
REG, 0, 0  
REG  
W
=
=
=
2
2
?
C
After Instruction  
REG  
W
C
=
2
0
1
1
0
=
=
=
=
; result is zero  
Z
N
Example 3:  
Before Instruction  
SUBWF  
REG, 1, 0  
REG  
W
=
=
=
1
2
?
C
After Instruction  
REG  
W
C
=
FFh ;(2’s complement)  
2
0
0
1
=
=
=
=
; result is negative  
Z
N
© 2008 Microchip Technology Inc.  
DS39760D-page 249  
PIC18F2450/4450  
SUBWFB  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
SUBWFB f {,d {,a}}  
Syntax:  
SWAPF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (W) – (C) dest  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0101  
10da  
ffff  
ffff  
Status Affected:  
Encoding:  
None  
Description:  
Subtract W and the Carry flag (borrow)  
from register ‘f’ (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of register  
‘f’ are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
Decode  
Write to  
Q2  
Q3  
Q4  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Before Instruction  
REG  
W
=
=
=
19h  
0Dh  
1
(0001 1001)  
(0000 1101)  
Example:  
SWAPF  
REG, 1, 0  
C
Before Instruction  
After Instruction  
REG  
After Instruction  
=
53h  
35h  
REG  
W
C
=
0Ch  
0Dh  
1
(0000 1011)  
(0000 1101)  
=
=
=
=
REG  
=
Z
0
N
0
; result is positive  
Example 2:  
SUBWFB REG, 0, 0  
Before Instruction  
REG  
W
=
=
=
1Bh  
1Ah  
0
(0001 1011)  
(0001 1010)  
C
After Instruction  
REG  
W
C
=
1Bh  
00h  
1
(0001 1011)  
=
=
=
=
Z
1
; result is zero  
N
0
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
W
=
=
=
03h  
0Eh  
1
(0000 0011)  
(0000 1101)  
C
After Instruction  
REG  
=
F5h  
(1111 0100)  
; [2’s comp]  
W
C
Z
=
=
=
=
0Eh  
0
0
1
(0000 1101)  
N
; result is negative  
DS39760D-page 250  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TBLRD  
Table Read  
TBLRD  
Example 1:  
Before Instruction  
Table Read (Continued)  
Syntax:  
TBLRD ( *; *+; *-; +*)  
None  
TBLRD *+ ;  
Operands:  
Operation:  
TABLAT  
TBLPTR  
MEMORY (00A356h)  
=
=
=
55h  
00A356h  
34h  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT,  
TBLPTR – No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT,  
(TBLPTR) + 1 TBLPTR;  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT,  
(TBLPTR) – 1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) + 1 TBLPTR,  
(Prog Mem (TBLPTR)) TABLAT  
After Instruction  
TABLAT  
TBLPTR  
=
=
34h  
00A357h  
Example 2:  
TBLRD +* ;  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY (01A357h)  
MEMORY (01A358h)  
After Instruction  
=
=
=
=
AAh  
01A357h  
12h  
34h  
TABLAT  
TBLPTR  
=
=
34h  
01A358h  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range.  
TBLPTR<0> = 0: Least Significant Byte of  
Program Memory Word  
TBLPTR<0> = 1: Most Significant Byte of  
Program Memory Word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
© 2008 Microchip Technology Inc.  
DS39760D-page 251  
PIC18F2450/4450  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
TBLWT ( *; *+; *-; +*)  
None  
Example 1:  
TBLWT *+;  
Operands:  
Operation:  
Before Instruction  
if TBLWT*,  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A356h  
(TABLAT) Holding Register,  
TBLPTR – No Change;  
if TBLWT*+,  
(TABLAT) Holding Register,  
(TBLPTR) + 1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register,  
(TBLPTR) – 1 TBLPTR;  
if TBLWT+*,  
(TBLPTR) + 1 TBLPTR,  
(TABLAT) Holding Register  
=
FFh  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(00A356h)  
=
=
55h  
00A357h  
=
55h  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
34h  
01389Ah  
HOLDING REGISTER  
(01389Ah)  
HOLDING REGISTER  
(01389Bh)  
Status Affected: None  
=
FFh  
Encoding:  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
=
FFh  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(01389Ah)  
HOLDING REGISTER  
(01389Bh)  
=
=
34h  
01389Bh  
Description:  
This instruction uses the 3 LSBs of TBLPTR  
to determine which of the 8 holding  
registers the TABLAT is written to. The  
holding registers are used to program the  
contents of Program Memory (P.M.). (Refer  
to Section 6.0 “Flash Program Memory”  
for additional details on programming Flash  
memory.)  
=
=
FFh  
34h  
The TBLPTR (a 21-bit pointer) points to  
each byte in the program memory. TBLPTR  
has a 2-Mbyte address range. The LSb of  
the TBLPTR selects which byte of the  
program memory location to access.  
TBLPTR<0> = 0: Least Significant Byte of  
Program Memory Word  
TBLPTR<0> = 1: Most Significant Byte of  
Program Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
Decode  
operation operation operation  
No  
No No No  
operation operation operation operation  
(Read  
TABLAT)  
(Write to  
Holding  
Register)  
DS39760D-page 252  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TSTFSZ  
Test f, Skip if 0  
XORLW  
Exclusive OR Literal with W  
Syntax:  
TSTFSZ f {,a}  
Syntax:  
XORLW k  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction fetched  
during the current instruction execution  
is discarded and a NOPis executed,  
making this a two-cycle instruction.  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example:  
XORLW  
0AFh  
Before Instruction  
W
=
B5h  
1Ah  
Words:  
Cycles:  
1
After Instruction  
1(2)  
W
=
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
PC  
If CNT  
PC  
=
=
=
00h,  
Address (ZERO)  
00h,  
Address (NZERO)  
© 2008 Microchip Technology Inc.  
DS39760D-page 253  
PIC18F2450/4450  
XORWF  
Exclusive OR W with f  
Syntax:  
XORWF f {,d {,a}}  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in the register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank is selected.  
If ‘a’ is ‘1’, the BSR is used to select the  
GPR bank (default).  
If ‘a’ is ‘0’ and the extended instruction  
set is enabled, this instruction operates  
in Indexed Literal Offset Addressing  
mode whenever f 95 (5Fh). See  
Section 19.2.3 “Byte-Oriented and  
Bit-Oriented Instructions in Indexed  
Literal Offset Mode” for details.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG, 1, 0  
Before Instruction  
REG  
W
=
=
AFh  
B5h  
After Instruction  
REG  
W
=
=
1Ah  
B5h  
DS39760D-page 254  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
A summary of the instructions in the extended  
instruction set is provided in Table 19-3. Detailed  
descriptions are provided in Section 19.2.2  
“Extended Instruction Set”. The opcode field  
descriptions in Table 19-1 (page 214) apply to both the  
standard and extended PIC18 instruction sets.  
19.2 Extended Instruction Set  
In addition to the standard 75 instructions of the PIC18  
instruction set, PIC18F2450/4450 devices also provide  
an optional extension to the core CPU functionality.  
The added features include eight additional  
instructions that augment indirect and indexed  
addressing operations and the implementation of  
Indexed Literal Offset Addressing mode for many of the  
standard PIC18 instructions.  
Note:  
The instruction set extension and the  
Indexed Literal Offset Addressing mode  
were designed for optimizing applications  
written in C; the user may likely never use  
these instructions directly in assembler.  
The syntax for these commands is pro-  
vided as a reference for users who may be  
reviewing code that has been generated  
by a compiler.  
The additional features of the extended instruction set  
are disabled by default. To enable them, users must set  
the XINST Configuration bit.  
The instructions in the extended set can all be  
classified as literal operations, which either manipulate  
the File Select Registers, or use them for Indexed  
Addressing. Two of the instructions, ADDFSR and  
SUBFSR, each have an additional special instantiation  
for using FSR2. These versions (ADDULNK and  
SUBULNK) allow for automatic return after execution.  
19.2.1  
EXTENDED INSTRUCTION SYNTAX  
Most of the extended instructions use indexed  
arguments, using one of the File Select Registers and  
some offset to specify a source or destination register.  
When an argument for an instruction serves as part of  
Indexed Addressing, it is enclosed in square brackets  
(“[ ]”). This is done to indicate that the argument is used  
as an index or offset. The MPASM™ Assembler will  
flag an error if it determines that an index or offset value  
is not bracketed.  
The extended instructions are specifically implemented  
to optimize re-entrant program code (that is, code that  
is recursive or that uses a software stack) written in  
high-level languages, particularly C. Among other  
things, they allow users working in high-level  
languages to perform certain operations on data  
structures more efficiently. These include:  
When the extended instruction set is enabled, brackets  
are also used to indicate index arguments in byte-  
oriented and bit-oriented instructions. This is in addition  
to other changes in their syntax. For more details, see  
Section 19.2.3.1 “Extended Instruction Syntax with  
Standard PIC18 Commands”.  
• Dynamic allocation and deallocation of software  
stack space when entering and leaving  
subroutines  
• Function Pointer invocation  
• Software Stack Pointer manipulation  
• Manipulation of variables located in a software  
stack  
Note:  
In the past, square brackets have been  
used to denote optional arguments in the  
PIC18 and earlier instruction sets. In this  
text and going forward, optional  
arguments are denoted by braces (“{ }”).  
TABLE 19-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
ADDFSR  
ADDULNK  
CALLW  
f, k  
k
Add Literal to FSR  
Add Literal to FSR2 and Return  
Call Subroutine using WREG  
1
2
2
2
1110 1000 ffkk kkkk  
1110 1000 11kk kkkk  
0000 0000 0001 0100  
1110 1011 0zzz zzzz  
1111 ffff ffff ffff  
1110 1011 1zzz zzzz  
1111 xxxx xzzz zzzz  
1110 1010 kkkk kkkk  
None  
None  
None  
None  
MOVSF  
zs, fd Move zs (source) to 1st word  
fd (destination) 2nd word  
zs, zd Move zs (source) to 1st word  
zd (destination) 2nd word  
MOVSS  
PUSHL  
2
1
None  
None  
k
Store Literal at FSR2,  
Decrement FSR2  
SUBFSR  
SUBULNK  
f, k  
k
Subtract Literal from FSR  
Subtract Literal from FSR2 and  
Return  
1
2
1110 1001 ffkk kkkk  
1110 1001 11kk kkkk  
None  
None  
© 2008 Microchip Technology Inc.  
DS39760D-page 255  
PIC18F2450/4450  
19.2.2  
EXTENDED INSTRUCTION SET  
ADDFSR  
Add Literal to FSR  
ADDULNK  
Add Literal to FSR2 and Return  
Syntax:  
ADDFSR f, k  
Syntax:  
ADDULNK k  
Operands:  
0 k 63  
f [ 0, 1, 2 ]  
Operands:  
Operation:  
0 k 63  
FSR2 + k FSR2,  
(TOS) PC  
None  
Operation:  
FSR(f) + k FSR(f)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
1110  
1000  
ffkk  
kkkk  
1110  
1000  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of the FSR specified by ‘f’.  
Description:  
The 6-bit literal ‘k’ is added to the  
contents of FSR2. A RETURNis then  
executed by loading the PC with the  
TOS.  
Words:  
1
1
Cycles:  
The instruction takes two cycles to  
execute; a NOPis performed during  
the second cycle.  
This may be thought of as a special  
case of the ADDFSRinstruction,  
where f = 3 (binary ‘11’); it operates  
only on FSR2.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
FSR  
Example:  
ADDFSR 2, 23h  
Words:  
1
2
Before Instruction  
FSR2  
After Instruction  
FSR2  
Cycles:  
=
03FFh  
0422h  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
=
Decode  
Read  
Process  
Data  
Write to  
FSR  
literal ‘k’  
No  
No  
No  
No  
Operation  
Operation  
Operation  
Operation  
Example:  
ADDULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
0422h  
(TOS)  
Note:  
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in  
symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).  
DS39760D-page 256  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
CALLW  
Subroutine Call Using WREG  
MOVSF  
Move Indexed to f  
Syntax:  
CALLW  
None  
Syntax:  
MOVSF [z ], f  
s
d
Operands:  
Operation:  
Operands:  
0 z 127  
s
0 f 4095  
d
(PC + 2) TOS,  
(W) PCL,  
Operation:  
((FSR2) + z ) f  
s
d
(PCLATH) PCH,  
(PCLATU) PCU  
Status Affected:  
None  
Encoding:  
1st word (source)  
2nd word (destin.)  
Status Affected:  
Encoding:  
None  
1110  
1111  
1011  
ffff  
0zzz  
ffff  
zzzz  
ffff  
s
d
0000  
0000  
0001  
0100  
Description  
First, the return address (PC + 2) is  
pushed onto the return stack. Next, the  
contents of W are written to PCL; the  
existing value is discarded. Then the  
contents of PCLATH and PCLATU are  
latched into PCH and PCU,  
respectively. The second cycle is  
executed as a NOPinstruction while the  
new next instruction is fetched.  
Description:  
The contents of the source register are  
moved to destination register ‘f ’. The  
d
actual address of the source register is  
determined by adding the 7-bit literal  
offset ‘z ’ in the first word to the value of  
s
FSR2. The address of the destination  
register is specified by the 12-bit literal  
‘f ’ in the second word. Both addresses  
d
can be anywhere in the 4096-byte data  
space (000h to FFFh).  
The MOVSFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
If the resultant source address points to  
an indirect addressing register, the  
value returned will be 00h.  
Unlike CALL, there is no option to  
update W, STATUS or BSR.  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
2
2
Decode  
Read  
WREG  
Push PC to  
stack  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
Determine  
Read  
source addr source addr source reg  
Example:  
HERE  
CALLW  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
Before Instruction  
PC  
=
address (HERE)  
PCLATH =  
PCLATU =  
10h  
00h  
06h  
No dummy  
read  
W
=
After Instruction  
PC  
=
001006h  
Example:  
MOVSF  
[05h], REG2  
TOS  
=
address (HERE + 2)  
PCLATH =  
PCLATU =  
W
10h  
00h  
06h  
Before Instruction  
FSR2  
=
80h  
33h  
=
Contents  
of 85h  
REG2  
=
=
11h  
After Instruction  
FSR2  
=
80h  
Contents  
of 85h  
REG2  
=
=
33h  
33h  
© 2008 Microchip Technology Inc.  
DS39760D-page 257  
PIC18F2450/4450  
MOVSS  
Move Indexed to Indexed  
PUSHL  
Store Literal at FSR2, Decrement FSR2  
Syntax:  
MOVSS [z ], [z ]  
Syntax:  
PUSHL k  
s
d
Operands:  
0 z 127  
s
Operands:  
Operation:  
0 k 255  
0 z 127  
d
k (FSR2),  
FSR2 – 1FSR2  
Operation:  
((FSR2) + z ) ((FSR2) + z )  
s d  
Status Affected:  
None  
Status Affected: None  
Encoding:  
1st word (source)  
2nd word (dest.)  
Encoding:  
1111  
1010  
kkkk  
kkkk  
1110  
1111  
1011  
xxxx  
1zzz  
xzzz  
zzzz  
zzzz  
s
d
Description:  
The 8-bit literal ‘k’ is written to the data  
memory address specified by FSR2. FSR2  
is decremented by ‘1’ after the operation.  
This instruction allows users to push values  
onto a software stack.  
Description  
The contents of the source register are  
moved to the destination register. The  
addresses of the source and destination  
registers are determined by adding the  
7-bit literal offsets ‘z ’ or ‘z ’,  
Words:  
Cycles:  
1
1
s
d
respectively, to the value of FSR2. Both  
registers can be located anywhere in  
the 4096-byte data memory space  
(000h to FFFh).  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
The MOVSSinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
Decode  
Read ‘k’  
Process  
data  
Write to  
destination  
If the resultant source address points to  
an indirect addressing register, the  
value returned will be 00h. If the  
resultant destination address points to  
an indirect addressing register, the  
instruction will execute as a NOP.  
Example:  
PUSHL 08h  
Before Instruction  
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01ECh  
00h  
After Instruction  
Words:  
2
2
FSR2H:FSR2L  
Memory (01ECh)  
=
=
01EBh  
08h  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Determine  
Determine  
Read  
source addr source addr source reg  
Decode  
Determine  
dest addr  
Determine  
dest addr  
Write  
to dest reg  
Example:  
MOVSS [05h], [06h]  
Before Instruction  
FSR2  
=
=
=
80h  
33h  
11h  
Contents  
of 85h  
Contents  
of 86h  
After Instruction  
FSR2  
Contents  
of 85h  
Contents  
of 86h  
=
=
=
80h  
33h  
33h  
DS39760D-page 258  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
SUBFSR  
Subtract Literal from FSR  
SUBULNK  
Subtract Literal from FSR2 and Return  
Syntax:  
SUBFSR f, k  
0 k 63  
Syntax:  
SUBULNK k  
Operands:  
Operands:  
Operation:  
0 k 63  
f [ 0, 1, 2 ]  
FSRf – k FSRf  
None  
FSR2 – k FSR2,  
(TOS) PC  
Operation:  
Status Affected:  
Encoding:  
Status Affected: None  
1110  
1001  
ffkk  
kkkk  
Encoding:  
1110  
1001  
11kk  
kkkk  
Description:  
The 6-bit literal ‘k’ is subtracted from  
the contents of the FSR specified by  
‘f’.  
Description:  
The 6-bit literal ‘k’ is subtracted from the  
contents of the FSR2. A RETURNis then  
executed by loading the PC with the TOS.  
The instruction takes two cycles to  
execute; a NOPis performed during the  
second cycle.  
This may be thought of as a special case of  
the SUBFSRinstruction, where f = 3 (binary  
11’); it operates only on FSR2.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Words:  
1
2
Cycles:  
Q Cycle Activity:  
Q1  
Example:  
SUBFSR 2, 23h  
03FFh  
Q2  
Q3  
Q4  
Before Instruction  
FSR2  
After Instruction  
FSR2  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
=
No  
Operation  
No  
Operation  
No  
Operation  
No  
Operation  
=
03DCh  
Example:  
SUBULNK 23h  
Before Instruction  
FSR2  
PC  
=
=
03FFh  
0100h  
After Instruction  
FSR2  
PC  
=
=
03DCh  
(TOS)  
© 2008 Microchip Technology Inc.  
DS39760D-page 259  
PIC18F2450/4450  
19.2.3  
BYTE-ORIENTED AND  
BIT-ORIENTED INSTRUCTIONS IN  
INDEXED LITERAL OFFSET MODE  
19.2.3.1  
Extended Instruction Syntax with  
Standard PIC18 Commands  
When the extended instruction set is enabled, the file  
register argument, ‘f’, in the standard byte-oriented and  
bit-oriented commands is replaced with the literal offset  
value, ‘k’. As already noted, this occurs only when ‘f’ is  
less than or equal to 5Fh. When an offset value is used,  
it must be indicated by square brackets (“[ ]”). As with  
the extended instructions, the use of brackets indicates  
to the compiler that the value is to be interpreted as an  
index or an offset. Omitting the brackets, or using a  
value greater than 5Fh within brackets, will generate an  
error in the MPASM Assembler.  
Note: Enabling the PIC18 instruction set  
extension may cause legacy applications  
to behave erratically or fail entirely.  
In addition to eight new commands in the extended set,  
enabling the extended instruction set also enables  
Indexed Literal Offset Addressing mode (Section 5.6.1  
“Indexed Addressing with Literal Offset”). This has  
a significant impact on the way that many commands of  
the standard PIC18 instruction set are interpreted.  
When the extended set is disabled, addresses  
embedded in opcodes are treated as literal memory  
locations: either as a location in the Access Bank  
(‘a’ = 0) or in a GPR bank designated by the BSR  
(‘a’ = 1). When the extended instruction set is enabled  
and ‘a’ = 0, however, a file register argument of 5Fh or  
less is interpreted as an offset from the pointer value in  
FSR2 and not as a literal address. For practical  
purposes, this means that all instructions that use the  
Access RAM bit as an argument – that is, all byte-  
oriented and bit-oriented instructions, or almost half of  
the core PIC18 instructions – may behave differently  
when the extended instruction set is enabled.  
If the index argument is properly bracketed for Indexed  
Literal Offset Addressing mode, the Access RAM  
argument is never specified; it will automatically be  
assumed to be ‘0’. This is in contrast to standard  
operation (extended instruction set disabled) when ‘a’  
is set on the basis of the target address. Declaring the  
Access RAM bit in this mode will also generate an error  
in the MPASM Assembler.  
The destination argument, ‘d’, functions as before.  
In the latest versions of the MPASM assembler,  
language support for the extended instruction set must  
be explicitly invoked. This is done with either the  
command line option, /y, or the PE directive in the  
source listing.  
When the content of FSR2 is 00h, the boundaries of the  
Access RAM are essentially remapped to their original  
values. This may be useful in creating backward  
compatible code. If this technique is used, it may be  
necessary to save the value of FSR2 and restore it  
when moving back and forth between C and assembly  
routines in order to preserve the Stack Pointer. Users  
must also keep in mind the syntax requirements of the  
extended instruction set (see Section 19.2.3.1  
“Extended Instruction Syntax with Standard PIC18  
Commands”).  
19.2.4  
CONSIDERATIONS WHEN  
ENABLING THE EXTENDED  
INSTRUCTION SET  
It is important to note that the extensions to the  
instruction set may not be beneficial to all users. In  
particular, users who are not writing code that uses a  
software stack may not benefit from using the  
extensions to the instruction set.  
Although the Indexed Literal Offset Addressing mode  
can be very useful for dynamic stack and pointer  
manipulation, it can also be very annoying if a simple  
arithmetic operation is carried out on the wrong  
register. Users who are accustomed to the PIC18  
programming must keep in mind that, when the  
extended instruction set is enabled, register addresses  
of 5Fh or less are used for Indexed Literal Offset  
Addressing.  
Additionally, the Indexed Literal Offset Addressing  
mode may create issues with legacy applications  
written to the PIC18 assembler. This is because  
instructions in the legacy code may attempt to address  
registers in the Access Bank below 5Fh. Since these  
addresses are interpreted as literal offsets to FSR2  
when the instruction set extension is enabled, the  
application may read or write to the wrong data  
addresses.  
Representative examples of typical byte-oriented and  
bit-oriented instructions in the Indexed Literal Offset  
Addressing mode are provided on the following page to  
show how execution is affected. The operand  
conditions shown in the examples are applicable to all  
instructions of these types.  
When porting an application to the PIC18F2450/4450,  
it is very important to consider the type of code. A large,  
re-entrant application that is written in ‘C’ and would  
benefit from efficient compilation will do well when  
using the instruction set extensions. Legacy applica-  
tions that heavily use the Access Bank will most likely  
not benefit from using the extended instruction set.  
DS39760D-page 260  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
ADD W to Indexed  
(Indexed Literal Offset mode)  
Bit Set Indexed  
(Indexed Literal Offset mode)  
ADDWF  
BSF  
Syntax:  
ADDWF  
[k] {,d}  
Syntax:  
BSF [k], b  
Operands:  
0 k 95  
d [0,1]  
Operands:  
0 f 95  
0 b 7  
Operation:  
(W) + ((FSR2) + k) dest  
Operation:  
1 ((FSR2) + k)<b>  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
1000  
0010  
01d0  
kkkk  
kkkk  
bbb0  
kkkk  
kkkk  
Description:  
The contents of W are added to the  
contents of the register indicated by  
FSR2, offset by the value ‘k’.  
If ‘d’ is ‘0’, the result is stored in W. If ‘d’  
is ‘1’, the result is stored back in  
register ‘f’ (default).  
Description:  
Bit ‘b’ of the register indicated by FSR2,  
offset by the value ‘k’, is set.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
BSF  
[FLAG_OFST], 7  
Decode  
Read ‘k’  
Process  
Data  
Write to  
destination  
Before Instruction  
FLAG_OFST  
FSR2  
Contents  
of 0A0Ah  
=
=
0Ah  
0A00h  
Example:  
ADDWF  
[OFST],0  
=
55h  
D5h  
Before Instruction  
After Instruction  
W
OFST  
FSR2  
=
=
=
17h  
Contents  
of 0A0Ah  
2Ch  
=
0A00h  
Contents  
of 0A2Ch  
=
20h  
After Instruction  
W
=
=
37h  
20h  
Contents  
of 0A2Ch  
Set Indexed  
(Indexed Literal Offset mode)  
SETF  
Syntax:  
SETF [k]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 95  
FFh ((FSR2) + k)  
None  
0110  
1000  
kkkk  
kkkk  
The contents of the register indicated by  
FSR2, offset by ‘k’, are set to FFh.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read ‘k’  
Process  
Data  
Write  
register  
Example:  
SETF  
[OFST]  
2Ch  
Before Instruction  
OFST  
FSR2  
=
=
0A00h  
Contents  
of 0A2Ch  
=
00h  
After Instruction  
Contents  
of 0A2Ch  
=
FFh  
© 2008 Microchip Technology Inc.  
DS39760D-page 261  
PIC18F2450/4450  
To develop software for the extended instruction set,  
the user must enable support for the instructions and  
the Indexed Addressing mode in their language tool(s).  
Depending on the environment being used, this may be  
done in several ways:  
19.2.5  
SPECIAL CONSIDERATIONS WITH  
MICROCHIP MPLAB® IDE TOOLS  
The latest versions of Microchip’s software tools have  
been designed to fully support the extended instruction  
set of the PIC18F2450/4450 family of devices. This  
includes the MPLAB C18  
Assembly language and  
Development Environment (IDE).  
• A menu option, or dialog box within the  
environment, that allows the user to configure the  
language tool and its settings for the project  
C
compiler, MPASM  
MPLAB Integrated  
• A command line option  
When selecting target device for software  
a
• A directive in the source code  
development, MPLAB IDE will automatically set default  
Configuration bits for that device. The default setting for  
the XINST Configuration bit is ‘0’, disabling the  
extended instruction set and Indexed Literal Offset  
Addressing mode. For proper execution of applications  
developed to take advantage of the extended  
instruction set, XINST must be set during  
programming.  
These options vary between different compilers,  
assemblers and development environments. Users are  
encouraged to review the documentation accompany-  
ing their development systems for the appropriate  
information.  
DS39760D-page 262  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
20.1 MPLAB Integrated Development  
Environment Software  
20.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2008 Microchip Technology Inc.  
DS39760D-page 263  
PIC18F2450/4450  
20.2 MPASM Assembler  
20.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
20.6 MPLAB SIM Software Simulator  
20.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
20.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS39760D-page 264  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
20.7 MPLAB ICE 2000  
High-Performance  
20.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
20.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
20.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2008 Microchip Technology Inc.  
DS39760D-page 265  
PIC18F2450/4450  
20.11 PICSTART Plus Development  
Programmer  
20.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
20.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39760D-page 266  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias...............................................................................................................-40°C to +85°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR) ................................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... ±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. ±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause  
latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR/VPP/  
RE3 pin, rather than pulling this pin directly to VSS.  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2008 Microchip Technology Inc.  
DS39760D-page 267  
PIC18F2450/4450  
FIGURE 21-1:  
PIC18F2450/4450 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18F2450/4450  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
48 MHz  
Frequency  
FIGURE 21-2:  
PIC18LF2450/4450 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LF2450/4450  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
48 MHz  
4 MHz  
Frequency  
For 2.0V VDD < 4.2V: FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz  
For 4.2V VDD: FMAX = 48 MHz  
Note: VDDAPPMIN is the minimum voltage of the PIC® device in the application.  
DS39760D-page 268  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.1 DC Characteristics: Supply Voltage  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
Symbol  
No.  
Characteristic  
Supply Voltage  
Min Typ Max Units  
Conditions  
D001  
VDD  
2.0  
3.0  
5.5  
5.5  
V
V
EC, HS, XT and Internal Oscillator modes  
HSPLL, XTPLL, ECPIO and ECPLL  
Oscillator modes  
D002  
D003  
VDR  
RAM Data Retention  
Voltage  
1.5  
V
V
(1)  
VPOR  
VDD Start Voltage  
to ensure internal Power-on  
Reset signal  
0.7  
See Section 4.3 “Power-on Reset (POR)”  
for details  
D004  
D005  
SVDD  
VBOR  
VDD Rise Rate  
to Ensure Internal Power-on  
Reset Signal  
0.05  
V/ms See Section 4.3 “Power-on Reset (POR)”  
for details  
Brown-out Reset Voltage  
BORV1:BORV0 = 11  
BORV1:BORV0 = 10  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
2.00 2.11 2.22  
2.65 2.79 2.93  
4.11 4.33 4.55  
4.36 4.59 4.82  
V
V
V
V
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.  
© 2008 Microchip Technology Inc.  
DS39760D-page 269  
PIC18F2450/4450  
21.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Typ Max Units  
Conditions  
(1)  
Power-Down Current (IPD)  
PIC18LF2450/4450 0.1  
0.95  
1.0  
5.0  
1.4  
2.0  
8.0  
19  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
(Sleep mode)  
0.1  
0.1  
PIC18LF2450/4450 0.1  
VDD = 3.0V  
(Sleep mode)  
0.1  
1.5  
All devices 0.1  
VDD = 5.0V  
(Sleep mode)  
0.1  
2.5  
2.0  
15  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured  
with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that  
add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended  
temperature crystals are available at a much higher cost.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
DS39760D-page 270  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial) (Continued)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
Typ Max Units  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF2450/4450 10  
32  
30  
29  
63  
60  
57  
168  
160  
152  
8
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
10  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
12  
PIC18LF2450/4450 35  
FOSC = 31 kHz  
(RC_RUN mode,  
INTRC source)  
30  
25  
All devices 95  
75  
65  
PIC18LF2450/4450 2.3  
2.5  
8
3.3  
11  
PIC18LF2450/4450 3.3  
11  
FOSC = 31 kHz  
(RC_IDLE mode,  
INTRC source)  
3.6  
11  
4.0  
15  
16  
16  
36  
All devices 6.5  
7.0  
9.0  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured  
with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that  
add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended  
temperature crystals are available at a much higher cost.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39760D-page 271  
PIC18F2450/4450  
21.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial) (Continued)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Typ Max Units  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF2450/4450 200  
500  
500  
500  
650  
650  
650  
1.6  
1.5  
1.4  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
6.0  
6.0  
6.0  
35  
μA  
μA  
-40°C  
200  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 4.2V  
VDD = 5.0V  
VDD = 4.2V  
VDD = 5.0V  
200  
μA  
PIC18LF2450/4450 500  
μA  
FOSC = 1 MHZ  
(PRI_RUN,  
EC oscillator)  
400  
μA  
360  
μA  
All devices 1.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0.9  
0.8  
PIC18LF2450/4450 0.53  
0.53  
0.55  
PIC18LF2450/4450 1.0  
FOSC = 4 MHz  
(PRI_RUN,  
EC oscillator)  
0.9  
0.9  
All devices 2.0  
1.9  
1.8  
All devices 11.0  
11.0  
35  
FOSC = 40 MHZ  
(PRI_RUN,  
EC oscillator)  
11.3  
35  
All devices 14.0  
40  
14.0  
40  
14.5  
40  
All devices 20  
40  
20  
40  
FOSC = 48 MHZ  
(PRI_RUN,  
EC oscillator)  
20  
40  
All devices 25  
50  
25  
25  
50  
50  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured  
with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that  
add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended  
temperature crystals are available at a much higher cost.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
DS39760D-page 272  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial) (Continued)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
Typ Max Units  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF2450/4450 50  
130  
120  
115  
270  
250  
240  
480  
450  
430  
475  
450  
430  
900  
850  
810  
1.5  
1.4  
1.3  
16  
μA  
μA  
-40°C  
50  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 4.2V  
VDD = 5.0V  
VDD = 4.2V  
VDD = 5.0V  
50  
μA  
PIC18LF2450/4450 75  
μA  
FOSC = 1 MHz  
(PRI_IDLE mode,  
EC oscillator)  
80  
μA  
80  
μA  
All devices 150  
μA  
150  
μA  
150  
μA  
PIC18LF2450/4450 190  
μA  
195  
μA  
200  
μA  
PIC18LF2450/4450 295  
μA  
FOSC = 4 MHz  
(PRI_IDLE mode,  
EC oscillator)  
300  
μA  
310  
μA  
All devices 560  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
570  
580  
All devices 4.4  
4.5  
16  
FOSC = 40 MHz  
(PRI_IDLE mode,  
EC oscillator)  
4.6  
16  
All devices 5.5  
18  
5.6  
18  
5.8  
18  
All devices 8.0  
18  
8.1  
18  
FOSC = 48 MHz  
(PRI_IDLE mode,  
EC oscillator)  
8.2  
All devices 9.8  
10.0  
18  
21  
21  
10.5  
21  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured  
with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that  
add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended  
temperature crystals are available at a much higher cost.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39760D-page 273  
PIC18F2450/4450  
21.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial) (Continued)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Typ Max Units  
Conditions  
(2)  
Supply Current (IDD)  
PIC18LF2450/4450 13  
40  
40  
40  
76  
70  
67  
150  
150  
150  
12  
12  
12  
15  
15  
15  
25  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
15  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
17  
(3)  
PIC18LF2450/4450 40  
FOSC = 32 kHz  
32  
(SEC_RUN mode,  
Timer1 as clock)  
25  
All devices 100  
80  
70  
PIC18LF2450/4450 5.6  
7.0  
8.3  
(3)  
PIC18LF2450/4450 6.5  
FOSC = 32 kHz  
8.0  
(SEC_IDLE mode,  
Timer1 as clock)  
9.5  
All devices 8.7  
10.2  
25  
36  
13.0  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured  
with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that  
add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended  
temperature crystals are available at a much higher cost.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
DS39760D-page 274  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial) (Continued)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
Typ Max Units  
Module Differential Currents (ΔIWDT, ΔIBOR, ΔILVD, ΔIOSCB, ΔIAD)  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Conditions  
D022  
(ΔIWDT)  
Watchdog Timer 1.3  
3.8  
3.8  
3.8  
4.6  
4.6  
4.6  
10  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
1.5  
2.3  
1.8  
2.0  
3.0  
3.3  
3.6  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
10  
+25°C  
3.9  
10  
+85°C  
(4)  
D022A  
(ΔIBOR)  
Brown-out Reset  
40  
45  
52  
-40°C to +85°C  
-40°C to +85°C  
VDD = 3.0V  
VDD = 5.0V  
63  
Sleep mode,  
BOREN1:BOREN0 = 10  
0
2
μA  
-40°C to +85°C  
D022B  
(ΔILVD)  
High/Low-Voltage 22  
47  
58  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
(4)  
Detect  
25  
29  
69  
D025  
(ΔIOSCB)  
Timer1 Oscillator 1.5  
4.5  
4.5  
4.5  
6.0  
6.0  
6.0  
8.0  
8.0  
8.0  
2.0  
2.0  
2.0  
(3)  
1.2  
+25°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
32 kHz on Timer1  
1.6  
+85°C  
1.7  
-40°C  
(3)  
1.8  
+25°C  
32 kHz on Timer1  
2.0  
+85°C  
1.4  
-40°C  
(3)  
1.5  
+25°C  
32 kHz on Timer1  
1.9  
+85°C  
D026  
(ΔIAD)  
A/D Converter 0.2  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
0.2  
0.2  
A/D on, not converting  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured  
with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that  
add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended  
temperature crystals are available at a much higher cost.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39760D-page 275  
PIC18F2450/4450  
21.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial) (Continued)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
Typ Max Units  
USB and Related Module Differential Currents (ΔIUSBx, ΔIPLL, ΔIUREG)  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Conditions  
ΔIUSBX  
ΔIPLL  
USB Module 8.0  
14.5  
20  
mA  
mA  
mA  
mA  
μA  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
VDD = 3.3V  
VDD = 5.0V  
VDD = 3.3V  
VDD = 5.0V  
VDD = 5.0V  
with On-Chip Transceiver  
12.4  
96 MHz PLL 1.2  
3.0  
4.8  
125  
(Oscillator Module)  
1.2  
ΔIUREG  
USB Internal Voltage 80  
USB Idle,  
Regulator  
UCON<SUSPND> = 1  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured  
with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that  
add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended  
temperature crystals are available at a much higher cost.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
DS39760D-page 276  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.2 DC Characteristics: Power-Down and Supply Current  
PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial) (Continued)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
Typ Max Units  
-40°C TA +85°C for industrial  
Param  
No.  
Device  
Conditions  
(2)  
ITUSB  
Total USB Run Currents (ITUSB)  
Primary Run with USB 29  
65  
65  
65  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
VDD = 5.0V  
VDD = 5.0V  
VDD = 5.0V  
EC+PLL 4 MHz input,  
48 MHz PRI_RUN,  
USB module enabled in  
Full-Speed mode,  
USB VREG enabled,  
no bus traffic  
Module, PLL and USB  
29  
Voltage Regulator  
29  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured  
with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that  
add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin  
loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended  
temperature crystals are available at a much higher cost.  
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be  
less than the sum of both specifications.  
© 2008 Microchip Technology Inc.  
DS39760D-page 277  
PIC18F2450/4450  
21.3 DC Characteristics: PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
VIH  
IIL  
Input Low Voltage  
I/O Ports (except RC4/RC5 in  
USB mode):  
D030  
with TTL Buffer  
VSS  
0.15 VDD  
0.8  
V
V
V
V
V
VDD < 4.5V  
D030A  
D032  
4.5V VDD 5.5V  
MCLR  
VSS  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
0.2 VDD  
D032A  
D033  
OSC1 and T1OSI  
OSC1  
XT, HS, HSPLL modes(1)  
EC mode(1)  
Input High Voltage  
I/O Ports (except RC4/RC5 in  
USB mode):  
D040  
with TTL Buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
VDD < 4.5V  
D040A  
D042  
4.5V VDD 5.5V  
MCLR  
0.8 VDD  
0.7 VDD  
0.8 VDD  
D042A  
D043  
OSC1 and T1OSI  
XT, HS, HSPLL modes(1)  
EC mode(1)  
OSC1  
Input Leakage Current(2,3)  
I/O Ports (except D+ and D-)  
D060  
±200  
±50  
±1  
nA VDD = 5V  
nA VDD = 3V  
D061  
D063  
MCLR  
μA Vss VPIN VDD  
μA Vss VPIN VDD  
OSC1  
±1  
IPU  
Weak Pull-up Current  
PORTB Weak Pull-up Current  
D070  
IPURB  
50  
400  
μA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® microcontroller be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
DS39760D-page 278  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.3 DC Characteristics: PIC18F2450/4450 (Industrial)  
PIC18LF2450/4450 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
D080  
D083  
I/O Ports (except RC4/RC5 in  
USB mode)  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO  
IOL = 1.6 mA, VDD = 4.5V,  
(EC, ECIO modes)  
Output High Voltage(3)  
-40°C to +85°C  
VOH  
D090  
D092  
I/O Ports (except RC4/RC5 in  
USB mode)  
VDD – 0.7  
VDD – 0.7  
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKO  
IOH = -1.3 mA, VDD = 4.5V,  
(EC, ECIO, ECPIO modes)  
-40°C to +85°C  
Capacitive Loading Specs  
on Output Pins  
D100(4) COSC2 OSC2 pin  
15  
50  
pF In XT and HS modes  
when external clock is  
used to drive OSC1  
D101  
CIO  
All I/O pins and OSC2  
(in RC mode)  
pF To meet the AC Timing  
Specifications  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PIC® microcontroller be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
© 2008 Microchip Technology Inc.  
DS39760D-page 279  
PIC18F2450/4450  
TABLE 21-1: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
DC Characteristics  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
Internal Program Memory  
Programming Specifications(1)  
D110  
D113  
VIHH  
IDDP  
Voltage on MCLR/VPP/RE3 pin  
9.00  
13.25  
10  
V
(Note 2)  
Supply Current during  
Programming  
mA  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10K  
100K  
E/W -40°C to +85°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
VIE  
VDD for Block Erase  
4.5  
3.0  
5.5  
5.5  
V
V
Using ICSP™ port  
Using ICSP port  
D132A VIW  
VDD for Externally Timed Erase  
or Write  
D132B VPEW VDD for Self-Timed Write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D133  
TIE  
ICSP™ Block Erase Cycle Time  
1
4
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
D133A TIW  
Self-Timed Write Cycle Time  
2
ms  
D134 TRETD Characteristic Retention  
40  
100  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: These specifications are for programming the on-chip program memory through the use of table write  
instructions.  
2: Required only if Single-Supply Programming is disabled.  
DS39760D-page 280  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 21-2: USB MODULE SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated).  
Param  
Sym  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
No.  
D313  
VUSB  
USB Voltage  
3.0  
3.6  
V
Voltage on bus must be in this  
range for proper USB  
operation  
D314  
D315  
D316  
D317  
D318  
IIL  
Input Leakage on D+ or D-  
pin  
±1  
0.8  
μA  
V
VSS VPIN VDD;  
pin at high-impedance  
VILUSB Input Low Voltage for USB  
Buffer  
For VUSB range  
For VUSB range  
VIHUSB Input High Voltage for USB  
Buffer  
2.0  
1.3  
V
VCRS  
Crossover Voltage  
2.0  
0.2  
V
Voltage range for D+ and D-  
crossover to occur  
VDIFS  
Differential Input Sensitivity  
V
The difference between D+  
and D- must exceed this value  
while VCM is met  
D319  
VCM  
Differential Common Mode  
Range  
0.8  
2.5  
V
D320  
D321  
D322  
ZOUT  
VOL  
Driver Output Impedance  
Voltage Output Low  
28  
0.0  
2.8  
44  
0.3  
3.6  
Ω
V
V
1.5 kΩ load connected to 3.6V  
VOH  
Voltage Output High  
15 kΩ load connected to  
ground  
TABLE 21-3: USB INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated).  
Param  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
No.  
D323  
D324  
VUSBANA Regulator Output Voltage  
3.0  
3.6  
V
VDD > 4.0V(1)  
Low ESR  
CUSB  
External Filter Capacitor  
Value  
220  
470  
nF  
Note 1: If device VDD is less than 4.0V, the internal USB voltage regulator should be disabled and an external  
3.0-3.6V supply should be provided on VUSB.  
© 2008 Microchip Technology Inc.  
DS39760D-page 281  
PIC18F2450/4450  
FIGURE 21-3:  
HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS  
For VDIRMAG = 1:  
VDD  
VHLVD  
(HLVDIF set by hardware)  
(HLVDIF can be  
cleared in software)  
VHLVD  
VDD  
For VDIRMAG = 0:  
HLVDIF  
TABLE 21-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
Param  
No.  
Sym  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
D420  
HLVD Voltage on VDD HLVDL<3:0> = 0000 2.06  
2.17 2.28  
2.23 2.34  
2.36 2.48  
2.44 2.56  
2.60 2.73  
2.79 2.93  
2.89 3.04  
3.12 3.28  
3.39 3.56  
3.55 3.73  
3.71 3.90  
3.90 4.10  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Transition High-to-Low  
HLVDL<3:0> = 0001 2.12  
HLVDL<3:0> = 0010 2.24  
HLVDL<3:0> = 0011 2.32  
HLVDL<3:0> = 0100 2.47  
HLVDL<3:0> = 0101 2.65  
HLVDL<3:0> = 0110 2.74  
HLVDL<3:0> = 0111 2.96  
HLVDL<3:0> = 1000 3.22  
HLVDL<3:0> = 1001 3.37  
HLVDL<3:0> = 1010 3.52  
HLVDL<3:0> = 1011 3.70  
HLVDL<3:0> = 1100 3.90  
HLVDL<3:0> = 1101 4.11  
HLVDL<3:0> = 1110 4.36  
4.11  
4.32  
4.33 4.55  
4.59 4.82  
DS39760D-page 282  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.4 AC (Timing) Characteristics  
21.4.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
using one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
mc  
osc  
wr  
t0  
MCLR  
OSC1  
WR  
cc  
ck  
dt  
CCP1  
CLKO  
Data in  
I/O port  
T0CKI  
T1CKI  
io  
t1  
:Uppercase Letters and their meanings  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-Impedance)  
Low  
Valid  
L
High-Impedance  
High  
Low  
High  
Low  
© 2008 Microchip Technology Inc.  
DS39760D-page 283  
PIC18F2450/4450  
21.4.2  
TIMING CONDITIONS  
Note:  
Because of space limitations, the generic  
terms “PIC18FXXXX” and “PIC18LFXXXX”  
are used throughout this section to refer to  
the PIC18F2450/4450 and PIC18LF2450/  
4450 families of devices specifically and  
only those devices.  
The temperature and voltages specified in Table 21-5  
apply to all timing specifications unless otherwise  
noted. Figure 21-4 specifies the load conditions for the  
timing specifications.  
TABLE 21-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 21.1 and  
Section 21.3 .  
LF parts operate for industrial temperatures only.  
FIGURE 21-4:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
DS39760D-page 284  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
21.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 21-5:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
3
4
3
4
2
TABLE 21-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
Oscillator Frequency(1)  
DC  
0.2  
4
48  
1
MHz EC, ECIO Oscillator modes  
MHz XT, XTPLL Oscillator modes  
MHz HS Oscillator mode  
25  
4
25  
MHz HSPLL Oscillator mode  
1
TOSC  
TCY  
External CLKI Period(1)  
Oscillator Period(1)  
20.8  
1,000  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
EC, ECIO Oscillator modes  
XT Oscillator mode  
HS Oscillator mode  
HSPLL Oscillator mode  
TCY = 4/FOSC  
5,000  
250  
250  
40  
2
3
Instruction Cycle Time(1)  
83.3  
30  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
XT Oscillator mode  
HS Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
10  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
© 2008 Microchip Technology Inc.  
DS39760D-page 285  
PIC18F2450/4450  
TABLE 21-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 5.5V)  
Param  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
F10  
FOSC Oscillator Frequency Range  
4
96  
48  
MHz  
MHz  
ms  
F11  
F12  
F13  
FSYS On-Chip VCO System Frequency  
trc  
PLL Start-up Time (lock time)  
2
ΔCLK CLKO Stability (jitter)  
-0.25  
+0.25  
%
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
TABLE 21-8: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
PIC18F2450/4450 (INDUSTRIAL)  
PIC18LF2450/4450 (INDUSTRIAL)  
PIC18LF2450/4450  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
PIC18F2450/4450  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Param  
No.  
Device  
Min  
Typ  
Max  
Units  
Conditions  
(1)  
INTRC Accuracy @ Freq = 31 kHz  
PIC18LF2450/4450 26.562  
PIC18F2450/4450 26.562  
35.938  
35.938  
kHz  
kHz  
-40°C to +85°C  
-40°C to +85°C  
VDD = 2.7-3.3V  
VDD = 4.5-5.5V  
Legend:  
Shading of rows is to assist in readability of the table.  
Note 1: INTRC frequency after calibration.  
DS39760D-page 286  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 21-6:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
12  
16  
13  
14  
18  
19  
I/O pin  
(Input)  
15  
17  
I/O pin  
(Output)  
New Value  
Old Value  
20, 21  
Refer to Figure 21-4 for load conditions.  
Note:  
TABLE 21-9: CLKO AND I/O TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TosH2ckL OSC1 to CLKO ↓  
TosH2ckH OSC1 to CLKO ↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
ns (Note 1)  
11  
12  
13  
14  
15  
16  
17  
18  
18A  
TckR  
TckF  
CLKO Rise Time  
CLKO Fall Time  
TckL2ioV CLKO to Port Out Valid  
TioV2ckH Port In Valid before CLKO ↑  
TckH2ioI Port In Hold after CLKO ↑  
TosH2ioV OSC1 (Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns (Note 1)  
0.25 TCY + 25  
ns (Note 1)  
ns (Note 1)  
ns  
0
150  
TosH2ioI OSC1 (Q2 cycle) to  
Port Input Invalid  
PIC18FXXXX  
100  
200  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
(I/O in hold time)  
19  
TioV2osH Port Input Valid to OSC1 (I/O in setup  
0
ns  
time)  
20  
TioR  
TioF  
Port Output Rise Time  
Port Output Fall Time  
PIC18FXXXX  
PIC18LFXXXX  
PIC18FXXXX  
PIC18LFXXXX  
10  
10  
25  
60  
25  
60  
ns  
20A  
21  
ns VDD = 2.0V  
ns  
21A  
22†  
23†  
ns VDD = 2.0V  
TINP  
INTx Pin High or Low Time  
TCY  
TCY  
ns  
ns  
TRBP  
RB7:RB4 Change Interrupt High or Low  
Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
© 2008 Microchip Technology Inc.  
DS39760D-page 287  
PIC18F2450/4450  
FIGURE 21-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
Oscillator  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 21-4 for load conditions.  
FIGURE 21-8:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
TABLE 21-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
μs  
31  
Watchdog Timer Time-out Period  
(no postscaler)  
4.00  
4.6  
ms  
32  
33  
34  
TOST  
Oscillator Start-up Timer Period  
1024 TOSC  
65.5  
2
1024 TOSC  
ms  
μs  
TOSC = OSC1 period  
TPWRT Power-up Timer Period  
75  
TIOZ  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
μs VDD BVDD (see D005)  
μs  
TIRVST Time for Internal Reference  
Voltage to become Stable  
20  
50  
37  
38  
39  
TLVD  
TCSD  
Low-Voltage Detect Pulse Width  
CPU Start-up Time  
200  
5
1
10  
μs  
μs  
VDD VLVD  
TIOBST Time for INTRC to Stabilize  
ms  
DS39760D-page 288  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 21-9:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 21-4 for load conditions.  
TABLE 21-11: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or  
ns N = prescale  
value  
(TCY + 40)/N  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI High  
Time  
Synchronous, no prescaler  
0.5 TCY + 20  
ns  
Synchronous,  
with prescaler  
PIC18FXXXX  
10  
ns  
PIC18LFXXXX  
25  
ns VDD = 2.0V  
Asynchronous PIC18FXXXX  
PIC18LFXXXX  
30  
ns  
50  
ns VDD = 2.0V  
T1CKI Low  
Time  
Synchronous, no prescaler  
0.5 TCY + 5  
ns  
Synchronous,  
with prescaler  
PIC18FXXXX  
10  
25  
30  
50  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
ns  
Asynchronous PIC18FXXXX  
PIC18LFXXXX  
ns VDD = 2.0V  
47  
48  
Tt1P  
Ft1  
T1CKI Input  
Period  
Synchronous  
Greater of:  
20 ns or  
(TCY + 40)/N  
ns N = prescale  
value (1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI Oscillator Input Frequency Range  
Tcke2tmrI Delay from External T1CKI Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
© 2008 Microchip Technology Inc.  
DS39760D-page 289  
PIC18F2450/4450  
FIGURE 21-10:  
CAPTURE/COMPARE/PWM TIMINGS (CCP MODULE)  
CCP1  
(Capture Mode)  
50  
51  
52  
54  
CCP1  
(Compare or PWM Mode)  
53  
Refer to Figure 21-4 for load conditions.  
Note:  
TABLE 21-12: CAPTURE/COMPARE/PWM REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCP1 Input  
Low Time  
No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
With  
PIC18FXXXX  
10  
prescaler  
PIC18LFXXXX  
20  
VDD = 2.0V  
VDD = 2.0V  
51  
TccH  
CCP1 Input  
High Time  
No prescaler  
0.5 TCY + 20  
With  
PIC18FXXXX  
10  
20  
prescaler  
PIC18LFXXXX  
52  
53  
TccP  
TccR  
CCP1 Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
CCP1 Output Fall Time  
PIC18FXXXX  
PIC18LFXXXX  
PIC18FXXXX  
PIC18LFXXXX  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
VDD = 2.0V  
VDD = 2.0V  
54  
TccF  
CCP1 Output Fall Time  
DS39760D-page 290  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
FIGURE 21-11:  
EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 21-4 for load conditions.  
122  
TABLE 21-13: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (MASTER & SLAVE)  
Clock High to Data Out Valid  
PIC18FXXXX  
40  
100  
20  
ns  
PIC18LFXXXX  
ns VDD = 2.0V  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock Out Rise Time and Fall Time PIC18FXXXX  
(Master mode)  
PIC18LFXXXX  
50  
ns VDD = 2.0V  
ns  
Data Out Rise Time and Fall Time  
PIC18FXXXX  
20  
PIC18LFXXXX  
50  
ns VDD = 2.0V  
FIGURE 21-12:  
EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 21-4 for load conditions.  
TABLE 21-14: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER & SLAVE)  
Data Hold before CK (DT hold time)  
10  
15  
ns  
ns  
126  
TCKL2DTL Data Hold after CK (DT hold time)  
© 2008 Microchip Technology Inc.  
DS39760D-page 291  
PIC18F2450/4450  
FIGURE 21-13:  
USB SIGNAL TIMING  
USB Data Differential Lines  
90%  
VCRS  
10%  
TLF, TFF  
TLR, TFR  
TABLE 21-15: USB LOW-SPEED TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
TLR  
Transition Rise Time  
75  
75  
80  
300  
300  
125  
ns  
ns  
%
CL = 200 to 600 pF  
CL = 200 to 600 pF  
TLF  
Transition Fall Time  
TLRFM  
Rise/Fall Time Matching  
TABLE 21-16: USB FULL-SPEED REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
No.  
TFR  
Transition Rise Time  
4
4
20  
20  
ns  
ns  
%
CL = 50 pF  
CL = 50 pF  
TFF  
Transition Fall Time  
TFRFM  
Rise/Fall Time Matching  
90  
111.1  
DS39760D-page 292  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
TABLE 21-17: A/D CONVERTER CHARACTERISTICS: PIC18F2450/4450 (INDUSTRIAL)  
PIC18LF2450/4450 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
A01  
A03  
A04  
A06  
A07  
A10  
A20  
NR  
Resolution  
10  
bit ΔVREF 3.0V  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
<±1  
<±1  
<±2  
<±1  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
LSb ΔVREF 3.0V  
EDL  
EOFF  
EGN  
Gain Error  
Monotonicity  
Guaranteed(1)  
VSS VAIN VREF  
ΔVREF Reference Voltage Range  
1.8  
3
V
V
VDD < 3.0V  
VDD 3.0V  
(VREFH – VREFL)  
A21  
A22  
A25  
A30  
VREFH Reference Voltage High  
VSS  
VREFH  
VDD – 3.0V  
VREFH  
V
V
VREFL  
VAIN  
Reference Voltage Low  
Analog Input Voltage  
VSS – 0.3V  
VREFL  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
2.5  
kΩ  
A50  
IREF  
VREF Input Current(2)  
5
150  
μA During VAIN acquisition.  
μA During A/D conversion  
cycle.  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2: VREFH current is from RA3/AN3/VREF+ pin or VDD, whichever is selected as the VREFH source.  
VREFL current is from RA2/AN2/VREF- pin or VSS, whichever is selected as the VREFL source.  
FIGURE 21-14:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
OLD_DATA  
(1)  
TCY  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEPinstruction  
to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
© 2008 Microchip Technology Inc.  
DS39760D-page 293  
PIC18F2450/4450  
TABLE 21-18: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
PIC18FXXXX  
0.7  
1.4  
25(1)  
25(1)  
μs TOSC based, VREF 3.0V  
PIC18LFXXXX  
μs VDD = 2.0V,  
TOSC based, VREF full range  
PIC18FXXXX  
2.0  
3.0  
6.0  
9.0  
μs A/D RC mode  
PIC18LFXXXX  
μs VDD = 2.0V,  
A/D RC mode  
131  
132  
TCNV  
TACQ  
Conversion Time  
11  
12  
TAD  
(not including acquisition time)(2)  
Acquisition Time(3)  
15  
10  
μs -40°C to +85°C  
μs  
0°C to +85°C  
135  
137  
TSWC  
TDIS  
Switching Time from Convert Sample  
(Note 4)  
Discharge Time  
0.2  
μs  
Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2: ADRES registers may be read on the following TCY cycle.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50Ω.  
4: On the following cycle of the device clock.  
DS39760D-page 294  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
22.0 PACKAGING INFORMATION  
22.1 Package Marking Information  
28-Lead SPDIP (Skinny DIP)  
Example  
e
3
PIC18F2450-I/SP  
0810017  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
28-Lead SOIC  
Example  
e
3
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC18F2450-E/SO  
0810017  
YYWWNNN  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
18F2450  
3
e
-I/ML  
0810017  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS39760D-page 295  
PIC18F2450/4450  
Package Marking Information (Continued)  
40-Lead PDIP  
Example  
e
3
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18F4450-I/P  
0810017  
44-Lead TQFP  
Example  
-I/PT  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F4450  
e
3
0810017  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F4450  
e3  
-I/ML  
0810017  
DS39760D-page 296  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
22.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢋꢌꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢈꢍꢖꢇMꢇꢗꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢈꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎ<  
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
M
ꢁꢎꢕꢕ  
ꢁꢀꢘꢕ  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢕ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢀꢁ-ꢖꢘ  
ꢁꢀꢀꢕ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁꢀ-ꢘ  
M
ꢁ-ꢀꢕ  
ꢁꢎ<ꢘ  
ꢀꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕꢘꢕ  
ꢁꢕꢀ<  
M
ꢁ--ꢘ  
ꢁꢎꢛꢘ  
ꢀꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜꢕ1  
© 2008 Microchip Technology Inc.  
DS39760D-page 297  
PIC18F2450/4450  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢈꢙꢅꢎꢎꢇ#ꢓꢐꢎꢊꢋꢄꢇꢕꢈ#ꢖꢇMꢇ$ꢊꢆꢄ%ꢇ&'(ꢘꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜꢈ#ꢔ)  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ<  
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅꢏ  
M
ꢎꢁꢕꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢎꢁ?ꢘ  
M
ꢕꢁ-ꢕ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢀꢕꢁ-ꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅ@ꢋꢓ&ꢃꢋꢄꢆꢇA  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
ꢜꢁꢘꢕꢅ1ꢐ,  
ꢀꢜꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢜꢘ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
9ꢀ  
ꢀꢁꢖꢕꢅꢝ.3  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈꢅ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢟ  
ꢕꢁꢀ<  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁ--  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢎ1  
DS39760D-page 298  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ%ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ,ꢄꢇꢕ-ꢃꢖꢇMꢇ./.ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ*+!  
0ꢊꢐ1ꢇꢘ'((ꢇꢙꢙꢇ)ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ,ꢐ1  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢎ<  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
ꢕꢁ-ꢕ  
ꢕꢁꢘꢘ  
M
-ꢁ?ꢘ  
ꢖꢁꢎꢕ  
ꢒꢎ  
)
9
-ꢁ?ꢘ  
ꢕꢁꢎ-  
ꢕꢁꢘꢕ  
ꢕꢁꢎꢕ  
ꢖꢁꢎꢕ  
ꢕꢁ-ꢘ  
ꢕꢁꢜꢕ  
M
C
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕꢘ1  
© 2008 Microchip Technology Inc.  
DS39760D-page 299  
PIC18F2450/4450  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ%ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ,ꢄꢇꢕ-ꢃꢖꢇMꢇ./.ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ*+!  
0ꢊꢐ1ꢇꢘ'((ꢇꢙꢙꢇ)ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ,ꢐ1  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS39760D-page 300  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
2ꢘꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢍꢖꢇMꢇ.ꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
6ꢄꢃ&!  
ꢚ7,8.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢖꢕ  
ꢁꢀꢕꢕꢅ1ꢐ,  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
M
M
M
M
M
M
M
M
M
M
M
M
ꢁꢎꢘꢕ  
ꢁꢀꢛꢘ  
M
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢘ  
ꢁꢕꢀꢘ  
ꢁꢘꢛꢕ  
ꢁꢖ<ꢘ  
ꢀꢁꢛ<ꢕ  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕ-ꢕ  
ꢁꢕꢀꢖ  
M
ꢁ?ꢎꢘ  
ꢁꢘ<ꢕ  
ꢎꢁꢕꢛꢘ  
ꢁꢎꢕꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎ-  
ꢁꢜꢕꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀ?1  
© 2008 Microchip Technology Inc.  
DS39760D-page 301  
PIC18F2450/4450  
22ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ31ꢊꢋꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ4ꢅꢑꢉꢇꢕꢍ3ꢖꢇMꢇ5ꢘ/5ꢘ/5ꢇꢙꢙꢇꢚꢛꢆꢌ%ꢇꢀ'ꢘꢘꢇꢙꢙꢇꢜ3*+ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ<ꢕꢅ1ꢐ,  
M
ꢀꢁꢕꢕ  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅ9ꢈꢆ#!  
9ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
9
M
ꢀꢁꢎꢕ  
ꢀꢁꢕꢘ  
ꢕꢁꢀꢘ  
ꢕꢁꢜꢘ  
ꢕꢁꢛꢘ  
ꢕꢁꢕꢘ  
ꢕꢁꢖꢘ  
ꢕꢁ?ꢕ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢀ  
ꢀꢁꢕꢕꢅꢝ.3  
-ꢁꢘꢟ  
ꢕꢟ  
ꢜꢟ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.
.ꢀ  
ꢒꢀ  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ9ꢈꢄꢑ&ꢍ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢁꢕꢛ  
ꢕꢁ-ꢕ  
ꢀꢀꢟ  
ꢕꢁꢎꢕ  
ꢕꢁꢖꢘ  
ꢀ-ꢟ  
)
ꢕꢁ-ꢜ  
ꢀꢎꢟ  
ꢀꢎꢟ  
ꢀꢀꢟ  
ꢀ-ꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ,ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢓ&ꢃꢋꢄꢆꢇDꢅ!ꢃEꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜ?1  
DS39760D-page 302  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
22ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ31ꢊꢋꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ4ꢅꢑꢉꢇꢕꢍ3ꢖꢇMꢇ5ꢘ/5ꢘ/5ꢇꢙꢙꢇꢚꢛꢆꢌ%ꢇꢀ'ꢘꢘꢇꢙꢙꢇꢜ3*+ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
© 2008 Microchip Technology Inc.  
DS39760D-page 303  
PIC18F2450/4450  
22ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ%ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ,ꢄꢇꢕ-ꢃꢖꢇMꢇꢁ/ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ*+!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
?ꢁ-ꢕ  
?ꢁ<ꢕ  
ꢒꢎ  
)
9
?ꢁ-ꢕ  
ꢕꢁꢎꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
?ꢁ<ꢕ  
ꢕꢁ-<  
ꢕꢁꢘꢕ  
M
C
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕ-1  
DS39760D-page 304  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
22ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ*ꢓꢅꢆꢇ+ꢎꢅꢐ%ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ,ꢄꢇꢕ-ꢃꢖꢇMꢇꢁ/ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ*+!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
© 2008 Microchip Technology Inc.  
DS39760D-page 305  
PIC18F2450/4450  
NOTES:  
DS39760D-page 306  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Revision C (August 2007)  
APPENDIX A: REVISION HISTORY  
The Electrical Specifications in Section 21.2 “DC  
Characteristics: Power-Down and Supply Current”  
have been updated and the package diagrams in  
Section 22.2 “Package Details” have been updated.  
Revision A (January 2006)  
Original data sheet for PIC18F2450/4450 devices.  
Revision B (January 2007)  
Revision D (March 2008)  
Example 11-1 and Figure 14-1 have been updated,  
Section 14.5.1.1 “Bus Activity Detect Interrupt Bit  
(ACTVIF)” and Section 14.2.2.3 “Internal Pull-up  
Resistors” have been added, the Electrical Specifi-  
cations in Section 21.0 “Electrical Characteris-  
tics” have been updated, the package diagrams in  
Section 22.2 “Package Details” have been updated  
and there have been minor corrections to the data  
sheet text.  
Minor edits to Section 14.0 “Universal Serial Bus  
(USB)”, Section 16.0 “10-Bit Analog-to-Digital  
Converter (A/D) Module”, Section 18.0 “Special  
Features of the CPU” and Section 21.0 “Electrical  
Characteristics”.  
© 2008 Microchip Technology Inc.  
DS39760D-page 307  
PIC18F2450/4450  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
TABLE B-1:  
DEVICE DIFFERENCES  
Features  
PIC18F2450  
PIC18F4450  
Program Memory (Bytes)  
Program Memory (Instructions)  
Interrupt Sources  
16384  
16384  
8192  
8192  
13  
13  
I/O Ports  
Ports A, B, C, (E)  
1
Ports A, B, C, D, E  
1
Capture/Compare/PWM Modules  
10-Bit Analog-to-Digital Module  
Packages  
10 Input Channels  
13 Input Channels  
28-Pin SPDIP  
28-Pin SOIC  
28-Pin QFN  
40-Pin PDIP  
44-Pin TQFP  
44-Pin QFN  
DS39760D-page 308  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
APPENDIX D: MIGRATION FROM  
BASELINE TO  
ENHANCED DEVICES  
This appendix discusses the considerations for  
converting from previous versions of a device to the  
ones listed in this data sheet. Typically, these changes  
are due to the differences in the process technology  
used. An example of this type of conversion is from a  
PIC16C74A to a PIC16C74B.  
This section discusses how to migrate from a Baseline  
device (i.e., PIC16C5X) to an Enhanced MCU device  
(i.e., PIC18FXXX).  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
Not Applicable  
Not Currently Available  
© 2008 Microchip Technology Inc.  
DS39760D-page 309  
PIC18F2450/4450  
APPENDIX E: MIGRATION FROM  
MID-RANGE TO  
APPENDIX F: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
ENHANCED DEVICES  
A detailed discussion of the differences between the  
Mid-Range MCU devices (i.e., PIC16CXXX) and the  
Enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18C442”. The changes discussed, while device  
specific, are generally applicable to all Mid-Range to  
Enhanced device migrations.  
A detailed discussion of the migration pathway and  
differences between the High-End MCU devices (i.e.,  
PIC17CXXX) and the Enhanced devices (i.e.,  
PIC18FXXX) is provided in AN726, “PIC17CXXX to  
PIC18CXXX Migration”. This Application Note is  
available as Literature Number DS00726.  
This Application Note is available as Literature Number  
DS00716.  
DS39760D-page 310  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
INDEX  
Generic I/O Port ......................................................... 99  
High/Low-Voltage Detect with External Input .......... 186  
Interrupt Logic ............................................................ 86  
On-Chip Reset Circuit ................................................ 41  
PIC18F2450 .............................................................. 10  
PIC18F4450 .............................................................. 11  
PLL (HS Mode) .......................................................... 26  
PWM Operation (Simplified) .................................... 127  
Reads from Flash Program Memory ......................... 77  
Table Read Operation ............................................... 73  
Table Write Operation ............................................... 74  
Table Writes to Flash Program Memory .................... 79  
Timer0 in 16-Bit Mode ............................................. 112  
Timer0 in 8-Bit Mode ............................................... 112  
Timer1 ..................................................................... 116  
Timer1 (16-Bit Read/Write Mode) ............................ 116  
Timer2 ..................................................................... 122  
Typical External Transceiver with Isolation ............. 131  
USB Interrupt Logic Funnel ..................................... 143  
USB Peripheral and Options ................................... 129  
USTAT FIFO ............................................................ 134  
Watchdog Timer ...................................................... 203  
BN .................................................................................... 222  
BNC ................................................................................. 223  
BNN ................................................................................. 223  
BNOV .............................................................................. 224  
BNZ ................................................................................. 224  
BOR. See Brown-out Reset.  
A
A/D ................................................................................... 175  
Acquisition Requirements ........................................ 180  
ADCON0 Register .................................................... 175  
ADCON1 Register .................................................... 175  
ADCON2 Register .................................................... 175  
ADRESH Register ............................................ 175, 178  
ADRESL Register .................................................... 175  
Analog Port Pins, Configuring .................................. 182  
Associated Registers ............................................... 184  
Configuring the Module ............................................ 179  
Conversion Clock (TAD) ........................................... 181  
Conversion Requirements ....................................... 294  
Conversion Status (GO/DONE Bit) .......................... 178  
Conversions ............................................................. 183  
Converter Characteristics ........................................ 293  
Converter Interrupt, Configuring .............................. 179  
Discharge ................................................................. 183  
Operation in Power-Managed Modes ...................... 182  
Selecting and Configuring Acquisition Time ............ 181  
Special Event Trigger (CCP1) .................................. 184  
Use of the CCP1 Trigger .......................................... 184  
Absolute Maximum Ratings ............................................. 267  
AC (Timing) Characteristics ............................................. 283  
Load Conditions for Device Timing  
Specifications ................................................... 284  
Parameter Symbology ............................................. 283  
Temperature and Voltage Specifications ................. 284  
Timing Conditions .................................................... 284  
AC Characteristics  
BOV ................................................................................. 227  
BRA ................................................................................. 225  
Brown-out Reset (BOR) ..................................................... 44  
Detecting ................................................................... 44  
Disabling in Sleep Mode ............................................ 44  
Software Enabled ...................................................... 44  
BSF .................................................................................. 225  
BTFSC ............................................................................. 226  
BTFSS ............................................................................. 226  
BTG ................................................................................. 227  
BZ .................................................................................... 228  
Internal RC Accuracy ............................................... 286  
ADCON0 Register ............................................................ 175  
GO/DONE Bit ........................................................... 178  
ADCON1 Register ............................................................ 175  
ADCON2 Register ............................................................ 175  
ADDFSR .......................................................................... 256  
ADDLW ............................................................................ 219  
ADDULNK ........................................................................ 256  
ADDWF ............................................................................ 219  
ADDWFC ......................................................................... 220  
ADRESH Register ............................................................ 175  
ADRESL Register .................................................... 175, 178  
Analog-to-Digital Converter. See A/D.  
C
C Compilers  
MPLAB C18 ............................................................. 264  
MPLAB C30 ............................................................. 264  
CALL ................................................................................ 228  
CALLW ............................................................................ 257  
Capture (CCP Module) .................................................... 124  
Associated Registers ............................................... 126  
CCP1 Pin Configuration .......................................... 124  
CCPR1H:CCPR1L Registers .................................. 124  
Prescaler ................................................................. 124  
Software Interrupt .................................................... 124  
Capture/Compare/PWM (CCP) ....................................... 123  
Capture Mode. See Capture.  
ANDLW ............................................................................ 220  
ANDWF ............................................................................ 221  
Assembler  
MPASM Assembler .................................................. 264  
Auto-Wake-up on Sync Break Character ......................... 167  
B
BC .................................................................................... 221  
BCF .................................................................................. 222  
Block Diagrams  
A/D ........................................................................... 178  
Analog Input Model .................................................. 179  
Capture Mode Operation ......................................... 124  
Compare Mode Operation ....................................... 125  
Device Clock .............................................................. 24  
EUSART Receive .................................................... 165  
EUSART Transmit ................................................... 163  
External Power-on Reset Circuit  
CCP Mode and Timer Resources ............................ 124  
CCPR1H Register ................................................... 124  
CCPR1L Register .................................................... 124  
Compare Mode. See Compare.  
Module Configuration .............................................. 124  
Clock Sources .................................................................... 30  
Selection Using OSCCON Register .......................... 30  
CLRF ............................................................................... 229  
CLRWDT ......................................................................... 229  
(Slow VDD Power-up) ......................................... 43  
Fail-Safe Clock Monitor ............................................ 206  
© 2008 Microchip Technology Inc.  
DS39760D-page 311  
PIC18F2450/4450  
Code Examples  
DAW ................................................................................ 232  
DC Characteristics ........................................................... 278  
Power-Down and Supply Current ............................ 270  
Supply Voltage ........................................................ 269  
DCFSNZ .......................................................................... 233  
DECF ............................................................................... 232  
DECFSZ .......................................................................... 233  
Dedicated ICD/ICSP Port ................................................ 211  
Demonstration, Development and  
Evaluation Boards ................................................... 266  
Development Support ...................................................... 263  
Device Differences ........................................................... 308  
Device Overview .................................................................. 7  
Features (table) ........................................................... 9  
New Core Features ...................................................... 7  
Other Special Features ................................................ 8  
Direct Addressing .............................................................. 68  
16 x 16 Signed Multiply Routine ................................84  
16 x 16 Unsigned Multiply Routine ............................84  
8 x 8 Signed Multiply Routine ....................................83  
8 x 8 Unsigned Multiply Routine ................................83  
Changing Between Capture Prescalers ...................124  
Computed GOTO Using an Offset Value ...................56  
Erasing a Flash Program Memory Row .....................78  
Fast Register Stack ....................................................56  
How to Clear RAM (Bank 1) Using  
Indirect Addressing ............................................67  
Implementing a Real-Time Clock Using  
a Timer1 Interrupt Service ...............................119  
Initializing PORTA ......................................................99  
Initializing PORTB ....................................................101  
Initializing PORTC ....................................................104  
Initializing PORTD ....................................................107  
Initializing PORTE ....................................................109  
Reading a Flash Program Memory Word ..................77  
Saving STATUS, WREG and  
E
Effect on Standard PIC MCU  
Instructions .............................................................. 260  
Electrical Characteristics ................................................. 267  
Enhanced Universal Synchronous Receiver  
Transmitter (USART). See EUSART.  
Equations  
BSR Registers in RAM .......................................97  
Writing to Flash Program Memory ....................... 80–81  
Code Protection ...............................................................191  
COMF ...............................................................................230  
Compare (CCP Module) ...................................................125  
Associated Registers ...............................................126  
CCP1 Pin Configuration ...........................................125  
CCPR1 Register ......................................................125  
Software Interrupt ....................................................125  
Special Event Trigger ...............................................125  
Timer1 Mode Selection ............................................125  
Configuration Bits .............................................................192  
Configuration Register Protection ....................................211  
Context Saving During Interrupts .......................................97  
Conversion Considerations ..............................................309  
CPFSEQ ..........................................................................230  
CPFSGT ...........................................................................231  
CPFSLT ...........................................................................231  
Crystal Oscillator/Ceramic Resonator ................................25  
Customer Change Notification Service ............................319  
Customer Notification Service ..........................................319  
Customer Support ............................................................319  
A/D Acquisition Time ............................................... 180  
A/D Minimum Charging Time ................................... 180  
Calculating the Minimum Required  
A/D Acquisition Time ....................................... 180  
Errata ................................................................................... 6  
EUSART  
Asynchronous Mode ................................................ 163  
Associated Registers, Receive ........................ 166  
Associated Registers, Transmit ....................... 164  
Auto-Wake-up on Sync Break ......................... 167  
Break Character Sequence ............................. 168  
Receiver .......................................................... 165  
Receiving a Break Character ........................... 168  
Setting Up 9-Bit Mode with  
Address Detect ........................................ 165  
Transmitter ...................................................... 163  
Baud Rate Generator (BRG) ................................... 157  
Associated Registers ....................................... 158  
Auto-Baud Rate Detect .................................... 161  
Baud Rate Error, Calculating ........................... 158  
Baud Rates, Asynchronous Modes ................. 159  
High Baud Rate Select (BRGH Bit) ................. 157  
Operation in Power-Managed Modes .............. 157  
Sampling .......................................................... 157  
Synchronous Master Mode ...................................... 169  
Associated Registers, Receive ........................ 171  
Associated Registers, Transmit ....................... 170  
Reception ........................................................ 171  
Transmission ................................................... 169  
Synchronous Slave Mode ........................................ 172  
Associated Registers, Receive ........................ 173  
Associated Registers, Transmit ....................... 172  
Reception ........................................................ 173  
Transmission ................................................... 172  
D
Data Addressing Modes .....................................................67  
Comparing Addressing Modes with  
the Extended Instruction Set Enabled ................71  
Direct ..........................................................................67  
Indexed Literal Offset .................................................70  
BSR Operation ...................................................72  
Instructions Affected ..........................................70  
Mapping the Access Bank .................................72  
Indirect .......................................................................67  
Inherent and Literal ....................................................67  
Data Memory ......................................................................59  
Access Bank ..............................................................61  
and the Extended Instruction Set ...............................70  
Bank Select Register (BSR) .......................................59  
General Purpose Registers ........................................61  
Map for PIC18F2450/4450 Devices ...........................60  
Special Function Registers ........................................62  
Map ....................................................................62  
USB RAM ...................................................................59  
DS39760D-page 312  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Extended Instruction Set .................................................. 255  
ADDFSR .................................................................. 256  
ADDULNK ................................................................ 256  
CALLW ..................................................................... 257  
Considerations for Use ............................................ 260  
MOVSF .................................................................... 257  
MOVSS .................................................................... 258  
PUSHL ..................................................................... 258  
SUBFSR .................................................................. 259  
SUBULNK ................................................................ 259  
Syntax ...................................................................... 255  
Use with MPLAB IDE Tools ..................................... 262  
External Clock Input ........................................................... 26  
I
I/O Ports ............................................................................ 99  
ID Locations ............................................................. 191, 211  
Idle Modes ......................................................................... 37  
INCF ................................................................................ 234  
INCFSZ ............................................................................ 235  
In-Circuit Debugger .......................................................... 211  
In-Circuit Serial Programming (ICSP) ...................... 191, 211  
Indexed Literal Offset Addressing  
and Standard PIC18 Instructions ............................. 260  
Indexed Literal Offset Mode ............................................. 260  
Indirect Addressing ............................................................ 68  
INFSNZ ............................................................................ 235  
Initialization Conditions for all Registers ...................... 49–52  
Instruction Cycle ................................................................ 57  
Clocking Scheme ....................................................... 57  
Flow/Pipelining .......................................................... 57  
Instruction Set .................................................................. 213  
ADDLW .................................................................... 219  
ADDWF ................................................................... 219  
ADDWF (Indexed Literal Offset mode) .................... 261  
ADDWFC ................................................................. 220  
ANDLW .................................................................... 220  
ANDWF ................................................................... 221  
BC ............................................................................ 221  
BCF ......................................................................... 222  
BN ............................................................................ 222  
BNC ......................................................................... 223  
BNN ......................................................................... 223  
BNOV ...................................................................... 224  
BNZ ......................................................................... 224  
BOV ......................................................................... 227  
BRA ......................................................................... 225  
BSF .......................................................................... 225  
BSF (Indexed Literal Offset mode) .......................... 261  
BTFSC ..................................................................... 226  
BTFSS ..................................................................... 226  
BTG ......................................................................... 227  
BZ ............................................................................ 228  
CALL ........................................................................ 228  
CLRF ....................................................................... 229  
CLRWDT ................................................................. 229  
COMF ...................................................................... 230  
CPFSEQ .................................................................. 230  
CPFSGT .................................................................. 231  
CPFSLT ................................................................... 231  
DAW ........................................................................ 232  
DCFSNZ .................................................................. 233  
DECF ....................................................................... 232  
DECFSZ .................................................................. 233  
General Format ....................................................... 215  
GOTO ...................................................................... 234  
INCF ........................................................................ 234  
INCFSZ .................................................................... 235  
INFSNZ .................................................................... 235  
IORLW ..................................................................... 236  
IORWF ..................................................................... 236  
LFSR ....................................................................... 237  
MOVF ...................................................................... 237  
MOVFF .................................................................... 238  
MOVLB .................................................................... 238  
MOVLW ................................................................... 239  
F
Fail-Safe Clock Monitor ............................................ 191, 206  
Exiting Operation ..................................................... 206  
Interrupts in Power-Managed Modes ....................... 207  
POR or Wake-up From Sleep .................................. 207  
WDT During Oscillator Failure ................................. 206  
Fast Register Stack ............................................................ 56  
Firmware Instructions ....................................................... 213  
Flash Program Memory ..................................................... 73  
Associated Registers ................................................. 81  
Control Registers ....................................................... 74  
EECON1 and EECON2 ..................................... 74  
TABLAT (Table Latch) Register ......................... 76  
TBLPTR (Table Pointer) Register ...................... 76  
Erase Sequence ........................................................ 78  
Erasing ....................................................................... 78  
Operation During Code-Protect ................................. 81  
Protection Against Spurious Writes ........................... 81  
Reading ...................................................................... 77  
Table Pointer  
Boundaries Based on Operation ........................ 76  
Table Pointer Boundaries .......................................... 76  
Table Reads and Table Writes .................................. 73  
Unexpected Termination of Write .............................. 81  
Write Sequence ......................................................... 79  
Write Verify ................................................................ 81  
Writing To ................................................................... 79  
FSCM. See Fail-Safe Clock Monitor.  
G
GOTO .............................................................................. 234  
H
Hardware Multiplier ............................................................ 83  
Introduction ................................................................ 83  
Operation ................................................................... 83  
Performance Comparison .......................................... 83  
High/Low-Voltage Detect ................................................. 185  
Applications .............................................................. 188  
Associated Registers ............................................... 189  
Characteristics ......................................................... 282  
Current Consumption ............................................... 187  
Effects of a Reset ..................................................... 189  
Operation ................................................................. 186  
During Sleep .................................................... 189  
Setup ........................................................................ 187  
Start-up Time ........................................................... 187  
Typical Application ................................................... 188  
HLVD. See High/Low-Voltage Detect.  
© 2008 Microchip Technology Inc.  
DS39760D-page 313  
PIC18F2450/4450  
MOVWF ...................................................................239  
MULLW ....................................................................240  
MULWF ....................................................................240  
NEGF .......................................................................241  
NOP .........................................................................241  
Opcode Field Descriptions .......................................214  
POP .........................................................................242  
PUSH .......................................................................242  
RCALL .....................................................................243  
RESET .....................................................................243  
RETFIE ....................................................................244  
RETLW ....................................................................244  
RETURN ..................................................................245  
RLCF ........................................................................245  
RLNCF .....................................................................246  
RRCF .......................................................................246  
RRNCF ....................................................................247  
SETF ........................................................................247  
SETF (Indexed Literal Offset mode) ........................261  
SLEEP .....................................................................248  
Standard Instructions ...............................................213  
SUBFWB ..................................................................248  
SUBLW ....................................................................249  
SUBWF ....................................................................249  
SUBWFB ..................................................................250  
SWAPF ....................................................................250  
TBLRD .....................................................................251  
TBLWT .....................................................................252  
TSTFSZ ...................................................................253  
XORLW ....................................................................253  
XORWF ....................................................................254  
INTCON Register  
M
Master Clear Reset (MCLR) .............................................. 43  
Memory Organization ........................................................ 53  
Data Memory ............................................................. 59  
Program Memory ....................................................... 53  
Memory Programming Requirements .............................. 280  
Microchip Internet Web Site ............................................. 319  
Migration from Baseline to Enhanced Devices ................ 309  
Migration from High-End to Enhanced Devices ............... 310  
Migration from Mid-Range to Enhanced Devices ............ 310  
MOVF .............................................................................. 237  
MOVFF ............................................................................ 238  
MOVLB ............................................................................ 238  
MOVLW ........................................................................... 239  
MOVSF ............................................................................ 257  
MOVSS ............................................................................ 258  
MOVWF ........................................................................... 239  
MPLAB ASM30 Assembler, Linker, Librarian .................. 264  
MPLAB ICD 2 In-Circuit Debugger .................................. 265  
MPLAB ICE 2000 High-Performance  
Universal In-Circuit Emulator ................................... 265  
MPLAB Integrated Development  
Environment Software ............................................. 263  
MPLAB PM3 Device Programmer ................................... 265  
MPLAB REAL ICE In-Circuit Emulator System ............... 265  
MPLINK Object Linker/MPLIB Object Librarian ............... 264  
MULLW ............................................................................ 240  
MULWF ............................................................................ 240  
N
NEGF ............................................................................... 241  
NOP ................................................................................. 241  
RBIF Bit ....................................................................101  
INTCON Registers .............................................................87  
Internal Oscillator Block  
O
Oscillator Configuration ..................................................... 23  
EC .............................................................................. 23  
ECIO .......................................................................... 23  
ECPIO ....................................................................... 23  
ECPLL ....................................................................... 23  
HS .............................................................................. 23  
HSPLL ....................................................................... 23  
INTCKO ..................................................................... 23  
Internal Oscillator Block ............................................. 27  
INTHS ........................................................................ 23  
INTIO ......................................................................... 23  
INTXT ........................................................................ 23  
Oscillator Modes and USB Operation ........................ 24  
XT .............................................................................. 23  
XTPLL ........................................................................ 23  
Oscillator Selection .......................................................... 191  
Oscillator Settings for USB ................................................ 27  
Oscillator Start-up Timer (OST) ................................... 32, 45  
Oscillator Switching ........................................................... 30  
Oscillator Transitions ......................................................... 30  
Oscillator, Timer1 ............................................................. 115  
INTHS, INTXT, INTCKO and INTIO Modes ...............27  
Internal RC Oscillator  
Use with WDT ..........................................................203  
Internet Address ...............................................................319  
Interrupt Sources ..............................................................191  
A/D Conversion Complete .......................................179  
Capture Complete (CCP) .........................................124  
Compare Complete (CCP) .......................................125  
Interrupt-on-Change (RB7:RB4) ..............................101  
INTx Pin .....................................................................97  
PORTB, Interrupt-on-Change ....................................97  
TMR0 .........................................................................97  
TMR0 Overflow ........................................................113  
TMR1 Overflow ........................................................115  
TMR2 to PR2 Match (PWM) ....................................127  
Interrupts ............................................................................85  
USB ............................................................................85  
Interrupts, Flag Bits  
Interrupt-on-Change (RB7:RB4)  
Flag (RBIF Bit) .................................................101  
INTOSC, INTRC. See Internal Oscillator Block.  
IORLW .............................................................................236  
IORWF .............................................................................236  
IPR Registers .....................................................................94  
P
Packaging Information ..................................................... 295  
Details ...................................................................... 297  
Marking .................................................................... 295  
PICkit 2 Development Programmer ................................. 266  
PICSTART Plus Development Programmer .................... 266  
PIE Registers ..................................................................... 92  
L
LFSR ................................................................................237  
Low-Voltage ICSP Programming. See Single-Supply  
ICSP Programming.  
DS39760D-page 314  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Pin Functions  
MCLR/VPP/RE3 .................................................... 12, 16  
PORTB  
Associated Registers ............................................... 103  
I/O Summary ........................................................... 102  
LATB Register ......................................................... 101  
PORTB Register ...................................................... 101  
RB7:RB4 Interrupt-on-Change Flag  
NC/ICCK/ICPGC ........................................................ 21  
NC/ICDT/ICPGD ........................................................ 21  
NC/ICPORTS ............................................................. 21  
NC/ICRST/ICVPP ....................................................... 21  
OSC1/CLKI .......................................................... 12, 16  
OSC2/CLKO/RA6 ................................................ 12, 16  
RA0/AN0 .............................................................. 13, 17  
RA1/AN1 .............................................................. 13, 17  
RA2/AN2/VREF- .................................................... 13, 17  
RA3/AN3/VREF+ ................................................... 13, 17  
RA4/T0CKI/RCV .................................................. 13, 17  
RA5/AN4/HLVDIN ................................................ 13, 17  
RB0/AN12/INT0 ................................................... 14, 18  
RB1/AN10/INT1 ................................................... 14, 18  
RB2/AN8/INT2/VMO ............................................ 14, 18  
RB3/AN9/VPO ..................................................... 14, 18  
RB4/AN11/KBI0 ................................................... 14, 18  
RB5/KBI1/PGM .................................................... 14, 18  
RB6/KBI2/PGC .................................................... 14, 18  
RB7/KBI3/PGD .................................................... 14, 18  
RC0/T1OSO/T1CKI ............................................. 15, 19  
RC1/T1OSI/UOE .................................................. 15, 19  
RC2/CCP1 ........................................................... 15, 19  
RC4/D-/VM ........................................................... 15, 19  
RC5/D+/VP .......................................................... 15, 19  
RC6/TX/CK .......................................................... 15, 19  
RC7/RX/DT .......................................................... 15, 19  
RD0 ............................................................................ 20  
RD1 ............................................................................ 20  
RD2 ............................................................................ 20  
RD3 ............................................................................ 20  
RD4 ............................................................................ 20  
RD5 ............................................................................ 20  
RD6 ............................................................................ 20  
RD7 ............................................................................ 20  
RE0/AN5 .................................................................... 21  
RE1/AN6 .................................................................... 21  
RE2/AN7 .................................................................... 21  
VDD ...................................................................... 15, 21  
VSS ....................................................................... 15, 21  
VUSB ..................................................................... 15, 21  
Pinout I/O Descriptions  
(RBIF Bit) ......................................................... 101  
TRISB Register ........................................................ 101  
PORTC  
Associated Registers ............................................... 106  
I/O Summary ........................................................... 105  
LATC Register ......................................................... 104  
PORTC Register ...................................................... 104  
TRISC Register ....................................................... 104  
PORTD  
Associated Registers ............................................... 108  
I/O Summary ........................................................... 108  
LATD Register ......................................................... 107  
PORTD Register ...................................................... 107  
TRISD Register ....................................................... 107  
PORTE  
Associated Registers ............................................... 110  
I/O Summary ........................................................... 110  
LATE Register ......................................................... 109  
PORTE Register ...................................................... 109  
TRISE Register ........................................................ 109  
Postscaler, WDT  
Assignment (PSA Bit) .............................................. 113  
Rate Select (T0PS2:T0PS0 Bits) ............................. 113  
Power-Managed Modes ..................................................... 33  
and A/D Operation ................................................... 182  
Clock Sources ........................................................... 33  
Clock Transitions and Status Indicators .................... 34  
Effects on Various Clock Sources ............................. 32  
Entering ..................................................................... 33  
Exiting Idle and Sleep Modes .................................... 39  
by Interrupt ........................................................ 39  
by Reset ............................................................ 39  
by WDT Time-out .............................................. 39  
Without an Oscillator Start-up Delay ................. 40  
Idle ............................................................................. 37  
Idle Modes  
PRI_IDLE .......................................................... 38  
RC_IDLE ........................................................... 39  
SEC_IDLE ......................................................... 38  
Multiple Sleep Commands ......................................... 34  
Run Modes ................................................................ 34  
PRI_RUN ........................................................... 34  
RC_RUN ............................................................ 36  
SEC_RUN ......................................................... 34  
Selecting .................................................................... 33  
Sleep ......................................................................... 37  
Summary (table) ........................................................ 33  
Power-on Reset (POR) ...................................................... 43  
Power-up Delays ............................................................... 32  
Power-up Timer (PWRT) ............................................. 32, 45  
Prescaler, Timer0 ............................................................ 113  
Assignment (PSA Bit) .............................................. 113  
Rate Select (T0PS2:T0PS0 Bits) ............................. 113  
Prescaler, Timer2 ............................................................ 128  
PIC18F2450 ............................................................... 12  
PIC18F4450 ............................................................... 16  
PIR Registers ..................................................................... 90  
PLL Frequency Multiplier ................................................... 26  
HSPLL, XTPLL, ECPLL and  
ECPIO Oscillator Modes .................................... 26  
PLL Lock Time-out ............................................................. 45  
POP ................................................................................. 242  
POR. See Power-on Reset.  
PORTA  
Associated Registers ............................................... 100  
I/O Summary ............................................................ 100  
LATA Register ............................................................ 99  
PORTA Register ........................................................ 99  
TRISA Register .......................................................... 99  
© 2008 Microchip Technology Inc.  
DS39760D-page 315  
PIC18F2450/4450  
PRI_IDLE Mode .................................................................38  
PRI_RUN Mode .................................................................34  
Program Counter ................................................................54  
PCL, PCH and PCU Registers ...................................54  
PCLATH and PCLATU Registers ..............................54  
Program Memory  
HLVDCON (High/Low-Voltage  
Detect Control) ................................................ 185  
INTCON (Interrupt Control) ........................................ 87  
INTCON2 (Interrupt Control 2) ................................... 88  
INTCON3 (Interrupt Control 3) ................................... 89  
IPR1 (Peripheral Interrupt Priority 1) ......................... 94  
IPR2 (Peripheral Interrupt Priority 2) ......................... 95  
OSCCON (Oscillator Control) .................................... 31  
PIE1 (Peripheral Interrupt Enable 1) .......................... 92  
PIE2 (Peripheral Interrupt Enable 2) .......................... 93  
PIR1 (Peripheral Interrupt Request (Flag) 1) ............. 90  
PIR2 (Peripheral Interrupt Request (Flag) 2) ............. 91  
PORTE .................................................................... 109  
RCON (Reset Control) ......................................... 42, 96  
RCSTA (Receive Status and Control) ..................... 155  
STATUS .................................................................... 66  
STKPTR (Stack Pointer) ............................................ 55  
T0CON (Timer0 Control) ......................................... 111  
T1CON (Timer1 Control) ......................................... 115  
T2CON (Timer2 Control) ......................................... 121  
TXSTA (Transmit Status and Control) ..................... 154  
UCFG (USB Configuration) ..................................... 132  
UCON (USB Control) ............................................... 130  
UEIE (USB Error Interrupt Enable) .......................... 148  
UEIR (USB Error Interrupt Status) ........................... 147  
UEPn (USB Endpoint n Control) .............................. 135  
UIE (USB Interrupt Enable) ..................................... 146  
UIR (USB Interrupt Status) ...................................... 144  
USTAT (USB Status) ............................................... 134  
WDTCON (Watchdog Timer Control) ...................... 204  
RESET ............................................................................. 243  
Reset State of Registers .................................................... 48  
Reset Timers ..................................................................... 45  
Oscillator Start-up Timer (OST) ................................. 45  
PLL Lock Time-out ..................................................... 45  
Power-up Timer (PWRT) ........................................... 45  
Resets ........................................................................ 41, 191  
Brown-out Reset (BOR) ........................................... 191  
Oscillator Start-up Timer (OST) ............................... 191  
Power-on Reset (POR) ............................................ 191  
Power-up Timer (PWRT) ......................................... 191  
RETFIE ............................................................................ 244  
RETLW ............................................................................ 244  
RETURN .......................................................................... 245  
Return Address Stack ........................................................ 54  
and Associated Registers .......................................... 54  
Return Stack Pointer (STKPTR) ........................................ 55  
Revision History ............................................................... 307  
RLCF ............................................................................... 245  
RLNCF ............................................................................. 246  
RRCF ............................................................................... 246  
RRNCF ............................................................................ 247  
and the Extended Instruction Set ...............................70  
Code Protection .......................................................209  
Instructions .................................................................58  
Two-Word ..........................................................58  
Interrupt Vector ..........................................................53  
Look-up Tables ..........................................................56  
Map and Stack (diagram) ...........................................53  
Reset Vector ..............................................................53  
Program Verification and Code Protection .......................208  
Associated Registers ...............................................208  
Programming, Device Instructions ...................................213  
Pulse-Width Modulation. See PWM (CCP Module).  
PUSH ...............................................................................242  
PUSH and POP Instructions ..............................................55  
PUSHL .............................................................................258  
PWM (CCP Module)  
Associated Registers ...............................................128  
Duty Cycle ................................................................127  
Example Frequencies/Resolutions ..........................128  
Period .......................................................................127  
Setup for PWM Operation ........................................128  
TMR2 to PR2 Match ................................................127  
Q
Q Clock ............................................................................128  
R
RAM. See Data Memory.  
RC_IDLE Mode ..................................................................39  
RC_RUN Mode ..................................................................36  
RCALL ..............................................................................243  
RCON Register  
Bit Status During Initialization ....................................48  
Reader Response ............................................................320  
Register File Summary ................................................. 63–65  
Registers  
ADCON0 (A/D Control 0) .........................................175  
ADCON1 (A/D Control 1) .........................................176  
ADCON2 (A/D Control 2) .........................................177  
BAUDCON (Baud Rate Control) ..............................156  
BDnSTAT (Buffer Descriptor n Status,  
CPU Mode) ......................................................139  
BDnSTAT (Buffer Descriptor n Status,  
SIE Mode) ........................................................140  
CCP1CON (Capture/Compare/PWM Control) .........123  
CONFIG1H (Configuration 1 High) ..........................194  
CONFIG1L (Configuration 1 Low) ............................193  
CONFIG2H (Configuration 2 High) ..........................196  
CONFIG2L (Configuration 2 Low) ............................195  
CONFIG3H (Configuration 3 High) ..........................197  
CONFIG4L (Configuration 4 Low) ............................198  
CONFIG5H (Configuration 5 High) ..........................199  
CONFIG5L (Configuration 5 Low) ............................199  
CONFIG6H (Configuration 6 High) ..........................200  
CONFIG6L (Configuration 6 Low) ............................200  
CONFIG7H (Configuration 7 High) ..........................201  
CONFIG7L (Configuration 7 Low) ............................201  
DEVID1 (Device ID 1) ..............................................202  
DEVID2 (Device ID 2) ..............................................202  
EECON1 (Memory Control 1) ....................................75  
S
SEC_IDLE Mode ............................................................... 38  
SEC_RUN Mode ................................................................ 34  
SETF ................................................................................ 247  
Single-Supply ICSP Programming ................................... 212  
SLEEP ............................................................................. 248  
Sleep  
OSC1 and OSC2 Pin States ...................................... 32  
Sleep Mode ........................................................................ 37  
Software Simulator (MPLAB SIM) ................................... 264  
Special Event Trigger. See Compare (CCP Module).  
Special Features of the CPU ........................................... 191  
Special ICPORT Features ............................................... 211  
DS39760D-page 316  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
Stack Full/Underflow Resets .............................................. 56  
STATUS Register .............................................................. 66  
SUBFSR .......................................................................... 259  
SUBFWB .......................................................................... 248  
SUBLW ............................................................................ 249  
SUBULNK ........................................................................ 259  
SUBWF ............................................................................ 249  
SUBWFB .......................................................................... 250  
SWAPF ............................................................................ 250  
Capture/Compare/PWM (CCP) ............................... 290  
CLKO and I/O .......................................................... 287  
Clock/Instruction Cycle .............................................. 57  
EUSART Synchronous Receive  
(Master/Slave) ................................................. 291  
EUSART Synchronous Transmission  
(Master/Slave) ................................................. 291  
External Clock (All Modes Except PLL) ................... 285  
Fail-Safe Clock Monitor ........................................... 207  
High/Low-Voltage Detect Characteristics ................ 282  
High-Voltage Detect (VDIRMAG = 1) ...................... 188  
Low-Voltage Detect (VDIRMAG = 0) ....................... 187  
PWM Output ............................................................ 127  
Reset, Watchdog Timer (WDT), Oscillator  
T
T0CON Register  
PSA Bit ..................................................................... 113  
T0CS Bit ................................................................... 112  
T0PS2:T0PS0 Bits ................................................... 113  
T0SE Bit ................................................................... 112  
Table Pointer Operations (table) ........................................ 76  
Table Reads/Table Writes ................................................. 56  
TBLRD ............................................................................. 251  
TBLWT ............................................................................. 252  
Time-out in Various Situations (table) ................................ 45  
Time-out Sequence ............................................................ 45  
Timer0 .............................................................................. 111  
16-Bit Mode Timer Reads and Writes ...................... 112  
Associated Registers ............................................... 113  
Clock Source Edge Select (T0SE Bit) ...................... 112  
Clock Source Select (T0CS Bit) ............................... 112  
Operation ................................................................. 112  
Overflow Interrupt .................................................... 113  
Prescaler .................................................................. 113  
Switching Assignment ...................................... 113  
Prescaler. See Prescaler, Timer0.  
Timer1 .............................................................................. 115  
16-Bit Read/Write Mode ........................................... 117  
Associated Registers ....................................... 120, 126  
Interrupt .................................................................... 118  
Operation ................................................................. 116  
Oscillator .......................................................... 115, 117  
Layout Considerations ..................................... 118  
Low-Power Option ........................................... 117  
Using Timer1 as a Clock Source ..................... 117  
Overflow Interrupt .................................................... 115  
Resetting, Using a Special Event  
Start-up Timer (OST) and Power-up  
Timer (PWRT) ................................................. 288  
Send Break Character Sequence ............................ 168  
Slow Rise Time (MCLR Tied to VDD,  
VDD Rise > TPWRT) ............................................ 47  
Synchronous Reception  
(Master Mode, SREN) ..................................... 171  
Synchronous Transmission ..................................... 169  
Synchronous Transmission (Through TXEN) .......... 170  
Time-out Sequence on POR w/PLL Enabled  
(MCLR Tied to VDD) .......................................... 47  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD), Case 1 ...................... 46  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD), Case 2 ...................... 46  
Time-out Sequence on Power-up  
(MCLR Tied to VDD, VDD Rise TPWRT) .............. 46  
Timer0 and Timer1 External Clock .......................... 289  
Transition for Entry to Idle Mode ............................... 38  
Transition for Entry to SEC_RUN Mode .................... 35  
Transition for Entry to Sleep Mode ............................ 37  
Transition for Two-Speed Start-up  
(INTRC to HSPLL) ........................................... 205  
Transition for Wake From Idle to Run Mode .............. 38  
Transition for Wake From Sleep (HSPLL) ................. 37  
Transition From RC_RUN Mode to  
PRI_RUN Mode ................................................. 36  
Transition From SEC_RUN Mode to  
PRI_RUN Mode (HSPLL) .................................. 35  
Transition to RC_RUN Mode ..................................... 36  
USB Signal .............................................................. 292  
Timing Diagrams and Specifications ............................... 285  
Capture/Compare/PWM  
Trigger Output (CCP) ....................................... 118  
TMR1H Register ...................................................... 115  
TMR1L Register ....................................................... 115  
Use as a Real-Time Clock ....................................... 118  
Timer2 .............................................................................. 121  
Associated Registers ............................................... 122  
Interrupt .................................................................... 122  
Operation ................................................................. 121  
Output ...................................................................... 122  
PR2 Register ............................................................ 127  
TMR2 to PR2 Match Interrupt .................................. 127  
Timing Diagrams  
Requirements (CCP) ....................................... 290  
CLKO and I/O Requirements ................................... 287  
EUSART Synchronous Receive  
Requirements .................................................. 291  
EUSART Synchronous Transmission  
Requirements .................................................. 291  
External Clock Requirements .................................. 285  
PLL Clock ................................................................ 286  
Reset, Watchdog Timer, Oscillator Start-up  
A/D Conversion ........................................................ 293  
Asynchronous Reception ......................................... 166  
Asynchronous Transmission .................................... 164  
Asynchronous Transmission  
Timer, Power-up Timer and Brown-out  
Reset Requirements ........................................ 288  
Timer0 and Timer1 External Clock  
(Back-to-Back) ................................................. 164  
Automatic Baud Rate Calculation ............................ 162  
Auto-Wake-up Bit (WUE) During  
Normal Operation ............................................ 167  
Auto-Wake-up Bit (WUE) During Sleep ................... 167  
BRG Overflow Sequence ......................................... 162  
Brown-out Reset (BOR) ........................................... 288  
Requirements .................................................. 289  
USB Full-Speed Requirements ............................... 292  
USB Low-Speed Requirements ............................... 292  
Top-of-Stack Access .......................................................... 54  
TQFP Packages and Special Features ........................... 211  
TSTFSZ ........................................................................... 253  
© 2008 Microchip Technology Inc.  
DS39760D-page 317  
PIC18F2450/4450  
Two-Speed Start-up ................................................. 191, 205  
Two-Word Instructions  
Example Cases ..........................................................58  
TXSTA Register  
Layered Framework ................................................. 151  
Oscillator Requirements .......................................... 150  
Output Enable Monitor ............................................. 133  
Overview .......................................................... 129, 151  
Ping-Pong Buffer Configuration ............................... 133  
Power ...................................................................... 151  
Power Modes ........................................................... 149  
Bus Power Only ............................................... 149  
Dual Power with Self-Power  
BRGH Bit .................................................................157  
U
Universal Serial Bus ...........................................................59  
Address Register (UADDR) .....................................136  
Associated Registers ...............................................150  
Buffer Descriptor Table ............................................137  
Buffer Descriptors ....................................................137  
Address Validation ...........................................140  
Assignment in Different  
Dominance .............................................. 149  
Self-Power Only ............................................... 149  
Pull-up Resistors ...................................................... 133  
RAM ......................................................................... 136  
Memory Map .................................................... 136  
Speed ...................................................................... 152  
Status and Control ................................................... 130  
Status Register (USTAT) ......................................... 134  
Transfer Types ......................................................... 151  
UFRMH:UFRML Registers ...................................... 136  
Buffering Modes .......................................142  
BDnSTAT Register (CPU Mode) .....................138  
BDnSTAT Register (SIE Mode) .......................140  
Byte Count .......................................................140  
Example ...........................................................137  
Memory Map ....................................................141  
Ownership ........................................................137  
Ping-Pong Buffering .........................................141  
Register Summary ...........................................142  
Status and Configuration .................................137  
Class Specifications and Drivers .............................152  
Descriptors ...............................................................152  
Endpoint Control ......................................................135  
Enumeration .............................................................152  
External Transceiver ................................................131  
Eye Pattern Test Enable ..........................................133  
Firmware and Drivers ...............................................150  
Frame Number Registers .........................................136  
Frames .....................................................................151  
Internal Transceiver .................................................131  
Internal Voltage Regulator .......................................133  
Interrupts ..................................................................143  
and USB Transactions .....................................143  
USB  
Internal Voltage Regulator Specifications ................ 281  
Module Specifications .............................................. 281  
USB. See Universal Serial Bus.  
W
Watchdog Timer (WDT) ........................................... 191, 203  
Associated Registers ............................................... 204  
Control Register ....................................................... 203  
During Oscillator Failure .......................................... 206  
Programming Considerations .................................. 203  
WWW Address ................................................................ 319  
WWW, On-Line Support ...................................................... 6  
X
XORLW ............................................................................ 253  
XORWF ........................................................................... 254  
DS39760D-page 318  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2008 Microchip Technology Inc.  
DS39760D-page 319  
PIC18F2450/4450  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F2450/4450  
DS39760D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39760D-page 320  
© 2008 Microchip Technology Inc.  
PIC18F2450/4450  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC18LF4450-I/P 301 = Industrial temp., PDIP  
package, Extended VDD limits, QTP pattern  
#301.  
b)  
c)  
PIC18LF2450-I/SO = Industrial temp., SOIC  
package, Extended VDD limits.  
Device  
PIC18F2450(1), PIC18F4450(1)  
,
PIC18F4450-I/P = Industrial temp., PDIP  
package, normal VDD limits.  
PIC18F2450T(2), PIC18F4450T(2)  
VDD range 4.2V to 5.5V  
;
PIC18LF2450(1), PIC18LF4450(1)  
PIC18LF2450T(2), PIC18LF4450T(2)  
VDD range 2.0V to 5.5V  
,
;
Temperature Range  
Package  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
PT  
SO  
SP  
P
=
=
=
=
=
TQFP (Thin Quad Flatpack)  
Note 1:  
2:  
F
LF  
T
=
=
=
Standard Voltage Range  
Wide Voltage Range  
in tape and reel TQFP  
packages only.  
SOIC  
Skinny Plastic DIP  
PDIP  
QFN  
ML  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
© 2008 Microchip Technology Inc.  
DS39760D-page 321  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS39760D-page 322  
© 2008 Microchip Technology Inc.  

相关型号:

PIC18LF4450-E/SO

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450-E/SP

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450-I/ML

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450-I/P

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450-I/PT

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450-I/SO

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450-I/SP

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450T-E/ML

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450T-E/P

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450T-E/PT

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450T-E/SO

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18LF4450T-E/SP

28/40/44-Pin, High-Performance, 12 MIPS, Enhanced Flash, USB Microcontrollers with nanoWatt Technology
MICROCHIP