PIC24F16KA101-E/P [MICROCHIP]

IC,MICROCONTROLLER,16-BIT,PIC CPU,CMOS,DIP,20PIN,PLASTIC;
PIC24F16KA101-E/P
型号: PIC24F16KA101-E/P
厂家: MICROCHIP    MICROCHIP
描述:

IC,MICROCONTROLLER,16-BIT,PIC CPU,CMOS,DIP,20PIN,PLASTIC

文件: 总278页 (文件大小:2608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC24F16KA102 Family  
Data Sheet  
20/28-Pin General Purpose,  
16-Bit Flash Microcontrollers  
with nanoWatt XLP Technology  
2008-2011 Microchip Technology Inc.  
DS39927C  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008-2011, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-690-7  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39927C-page 2  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
20/28-Pin General Purpose, 16-Bit Flash Microcontrollers  
with nanoWatt XLP Technology  
Power Management Modes:  
Analog Features:  
• Run – CPU, Flash, SRAM and Peripherals On  
• Doze – CPU Clock Runs Slower than Peripherals  
• Idle – CPU Off, Flash, SRAM and Peripherals On  
• Sleep – CPU, Flash and Peripherals Off and  
SRAM On  
• 10-Bit, up to 9-Channel Analog-to-Digital Converter:  
- 500 ksps conversion rate  
- Conversion available during Sleep and Idle  
• Dual Analog Comparators with Programmable Input/  
Output Configuration  
• Deep Sleep – CPU, Flash, SRAM and  
Most Peripherals Off:  
• Charge Time Measurement Unit (CTMU):  
- Used for capacitance sensing  
- Run mode currents down to 8  
- Idle mode currents down to 2  
A typical  
- Time measurement, down to 1 ns resolution  
- Delay/pulse generation, down to 1 ns resolution  
A typical  
- Deep Sleep mode currents down to 20 nA typical  
- RTCC 490 nA, 32 kHz, 1.8V  
- Watchdog Timer 350 nA, 1.8V typical  
Special Microcontroller Features:  
• Operating Voltage Range of 1.8V to 3.6V  
• High-Current Sink/Source (18 mA/18 mA) on All I/O Pins  
• Flash Program Memory:  
High-Performance CPU:  
• Modified Harvard Architecture  
- Erase/write cycles: 10,000 minimum  
- 40-years’ data retention minimum  
• Data EEPROM:  
- Erase/write cycles: 100,000 minimum  
- 40-years’ data retention minimum  
• Fail-Safe Clock Monitor  
• Up to 16 MIPS Operation @ 32 MHz  
• 8 MHz Internal Oscillator with 4x PLL Option and  
Multiple Divide Options  
• 17-Bit by 17-Bit Single-Cycle Hardware Multiplier  
• 32-Bit by 16-Bit Hardware Divider  
• 16-Bit x 16-Bit Working Register Array  
• C Compiler Optimized Instruction Set Architecture  
• System Frequency Range Declaration bits:  
- Declaring the frequency range optimizes the current  
consumption.  
• Flexible Watchdog Timer (WDT) with On-Chip,  
Low-Power RC Oscillator for Reliable Operation  
• In-Circuit Serial Programming™ (ICSP™) and  
In-Circuit Debug (ICD) via two Pins  
• Programmable High/Low-Voltage Detect (HLVD)  
• Brown-out Reset (BOR):  
- Standard BOR with three programmable trip points;  
can be disabled in Sleep  
• Extreme Low-Power DSBOR for Deep Sleep,  
LPBOR for all other modes  
Peripheral Features:  
• Hardware Real-Time Clock and Calendar (RTCC):  
- Provides clock, calendar and alarm functions  
- Can run in Deep Sleep Mode  
• Programmable Cyclic Redundancy Check (CRC)  
• Serial Communication modules:  
2
- SPI, I C™ and two UART modules  
• Three 16-Bit Timers/Counters with Programmable  
Prescaler  
• 16-Bit Capture Inputs  
• 16-Bit Compare/PWM Output  
• Configurable Open-Drain Outputs on Digital I/O Pins  
• Up to Three External Interrupt Sources  
PIC24F  
Device  
08KA101  
16KA101  
08KA102  
16KA102  
20  
20  
28  
28  
8K  
16K  
8K  
1.5K  
1.5K  
1.5K  
1.5K  
512  
512  
512  
512  
3
3
3
3
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
1
9
9
9
9
2
2
2
2
9
9
9
9
Y
Y
Y
Y
16K  
2008-2011 Microchip Technology Inc.  
DS39927C-page 3  
PIC24F16KA102 FAMILY  
Pin Diagrams  
20-Pin PDIP, SSOP, SOIC(2)  
VDD  
VSS  
1
2
3
4
5
20  
19  
18  
17  
16  
MCLR/VPP/RA5  
PGC2/AN0/VREF+/CN2/RA0  
PGD2/AN1/VREF-/CN3/RA1  
REFO/SS1/T2CK/T3CK/CN11/RB15  
AN10/CVREF/RTCC/SDI1/OCFA/C1OUT/INT1/CN12/RB14  
AN11/SDO1/CTPLS/CN13/RB13  
AN12/HLVDIN/SCK1/CTED2/CN14/RB12  
OC1/IC1/C2OUT/INT2/CTED1/CN8/RA6  
U1RTS/U1BCLK/SDA1/CN21/RB9  
U1CTS/SCL1/CN22/RB8  
PGD1/AN2/C1IND/C2INB/U2TX/CN4/RB0  
PGC1/AN3/C1INC/C2INA/U2RX/CN5/RB1  
U1RX/CN6/RB2  
6
15  
OSCI/CLKI/AN4/C1INB/C2IND/CN30/RA2  
OSCO/CLKO/AN5/C1INA/C2INC/CN29/RA3  
PGD3/SOSCI/U2RTS/U2BCLK/CN1/RB4  
PGC3/SOSCO/T1CK/U2CTS/CN0/RA4  
7
8
9
10  
14  
13  
12  
11  
U1TX/INT0/CN23/RB7  
28-Pin SPDIP, SSOP, SOIC(2)  
VDD  
VSS  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR/VPP/RA5  
AN0/VREF+/CN2/RA0  
AN1/VREF-/CN3/RA1  
REFO/SS1/T2CK/T3CK/CN11/RB15  
AN10/CVREF/RTCC/OCFA/C1OUT/INT1/CN12/RB14  
AN11/SDO1/CTPLS/CN13/RB13  
AN12/HLVDIN/CTED2/CN14/RB12  
PGC2/SCK1/CN15/RB11  
PGD2/SDI1/PMD2/CN16/RB10  
OC1/C2OUT/INT2/CTED1/CN8/RA6  
IC1/CN9/RA7  
PGD1/AN2/C1IND/C2INB/U2TX/CN4/RB0  
PGC1/AN3/C1INC/C2INA/U2RX/CN5/RB1  
AN4/C1INB/C2IND/U1RX/CN6/RB2  
AN5/C1INA/C2INC/CN7/RB3  
VSS  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
9
10  
11  
12  
13  
14  
U1RTS/U1BCLK/SDA1/CN21/RB9  
U1CTS/SCL1/CN22/RB8  
U1TX/INT0/CN23/RB7  
SOSCI/U2RTS/U2BCLK/CN1/RB4  
SOSCO/T1CK/U2CTS/CN0/RA4  
VDD  
PGC3/SCL1(1)/CN24/RB6  
PGD3/SDA1(1)/CN27/RB5  
Note 1: Alternative multiplexing for SDA1 and SCL1 when the I2CSEL Configuration bit is set.  
2: All device pins have a maximum voltage of 3.6V and are not 5V tolerant.  
DS39927C-page 4  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Pin Diagrams (Continued)  
20-Pin QFN(1,2)  
2019181716  
REFO/SS1/T2CK/T3CK/CN11/RB15  
AN10/CVREF/RTCC/SDI1/OCFA/C1OUT/INT1/CN12/RB14  
AN11/SDO1/CTPLS/ CN13/RB13  
AN12/HLVDIN/SCK1/CTED2/CN14/RB12  
OC1/IC1/C2OUT/INT2/CTED1/CN8/RA6  
PGD1/AN2/C1IND/C2INB/U2TX/CN4/RB0  
PGC1/AN3/C1INC/C2INA/U2RX/CN5/RB1  
U1RX/CN6/RB2  
OSCI/CLKI/AN4/C1INB/C2IND/CN30/RA2  
OSCO/CLKO/AN5/C1INA/C2INC/CN29/RA3  
15  
14  
1
2
3
4
5
PIC24FXXKA10213  
12  
11  
6
7 8 9 10  
Note 1: The bottom pad of the QFN package should be connected to VSS.  
2: All device pins have a maximum voltage of 3.6V and are not 5V tolerant.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 5  
PIC24F16KA102 FAMILY  
Pin Diagrams (Continued)  
28-Pin QFN(2,3)  
28 27 26 25 24 23 22  
PGD1/AN2/C1IND/C2INB/U2TX/CN4/RB0  
PGC1/AN3/C1INC/C2INA/U2RX/CN5/RB1  
AN4/C1INB/C2IND/U1RX/CN6/RB2  
AN5/C1INA/C2INC/CN7/RB3  
VSS  
1
2
3
4
5
6
7
AN11/SDO1/CTPLS/CN13/RB13  
AN12/HLVDIN/CTED2/CN14/RB12  
PGC2/SCK1/CN15/RB11  
21  
20  
19  
18  
17  
16  
15  
PIC24FXXKA102  
PGD2/SDI1/PMD2/CN16/RB10  
OC1/C2OUT/INT2/CTED1/CN8/RA6  
IC1/CN9/RA7  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/RA3  
U1RTS/U1BCLK/SDA1/CN21/RB9  
8
9 10 11 12 13 14  
Note 1: Alternative multiplexing for SDA1 and SCL1 when the I2CSEL Configuration bit is set.  
2: The bottom pad of the QFN package should be connected to VSS.  
3: All device pins have a maximum voltage of 3.6V and are not 5V tolerant.  
DS39927C-page 6  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Guidelines for Getting Started with 16-Bit Microcontrollers........................................................................................................ 17  
3.0 CPU ........................................................................................................................................................................................... 23  
4.0 Memory Organization................................................................................................................................................................. 29  
5.0 Flash Program Memory.............................................................................................................................................................. 45  
6.0 Data EEPROM Memory ............................................................................................................................................................. 51  
7.0 Resets ........................................................................................................................................................................................ 57  
8.0 Interrupt Controller ..................................................................................................................................................................... 63  
9.0 Oscillator Configuration.............................................................................................................................................................. 91  
10.0 Power-Saving Features............................................................................................................................................................ 101  
11.0 I/O Ports ................................................................................................................................................................................... 113  
12.0 Timer1 ..................................................................................................................................................................................... 115  
13.0 Timer2/3 ................................................................................................................................................................................... 117  
14.0 Input Capture............................................................................................................................................................................ 123  
15.0 Output Compare....................................................................................................................................................................... 125  
16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 131  
2
17.0 Inter-Integrated Circuit (I C™) ................................................................................................................................................. 139  
18.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 147  
19.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 155  
20.0 Programmable Cyclic Redundancy Check (CRC) Generator .................................................................................................. 167  
21.0 High/Low-Voltage Detect (HLVD)............................................................................................................................................. 171  
22.0 10-Bit High-Speed A/D Converter ............................................................................................................................................ 173  
23.0 Comparator Module.................................................................................................................................................................. 183  
24.0 Comparator Voltage Reference................................................................................................................................................ 187  
25.0 Charge Time Measurement Unit (CTMU) ................................................................................................................................ 189  
26.0 Special Features ...................................................................................................................................................................... 193  
27.0 Development Support............................................................................................................................................................... 203  
28.0 Instruction Set Summary.......................................................................................................................................................... 207  
29.0 Electrical Characteristics.......................................................................................................................................................... 215  
30.0 Packaging Information.............................................................................................................................................................. 251  
Appendix A: Revision History............................................................................................................................................................. 269  
Index .................................................................................................................................................................................................. 271  
The Microchip Web Site..................................................................................................................................................................... 275  
Customer Change Notification Service .............................................................................................................................................. 275  
Customer Support.............................................................................................................................................................................. 275  
Reader Response.............................................................................................................................................................................. 276  
Product Identification System ............................................................................................................................................................ 277  
2008-2011 Microchip Technology Inc.  
DS39927C-page 7  
PIC24F16KA102 FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39927C-page 8  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
1.1.2  
POWER-SAVING TECHNOLOGY  
1.0  
DEVICE OVERVIEW  
All of the devices in the PIC24F16KA102 family  
incorporate a range of features that can significantly  
reduce power consumption during operation. Key  
items include:  
This document contains device-specific information for  
the following devices:  
• PIC24F08KA101  
• PIC24F16KA101  
• PIC24F08KA102  
• PIC24F16KA102  
On-the-Fly Clock Switching: The device clock  
can be changed under software control to the  
Timer1 source or the internal, low-power RC  
oscillator during operation, allowing users to  
incorporate power-saving ideas into their software  
designs.  
Doze Mode Operation: When timing-sensitive  
applications, such as serial communications,  
require the uninterrupted operation of peripherals,  
the CPU clock speed can be selectively reduced,  
allowing incremental power savings without  
missing a beat.  
Instruction-Based Power-Saving Modes: There  
are three instruction-based power-saving modes:  
- Idle Mode: The core is shut down while leaving  
the peripherals active.  
- Sleep Mode: The core and peripherals that  
require the system clock are shut down, leaving  
the peripherals that use their own clock, or the  
clock from other devices, active.  
The PIC24F16KA102 family introduces a new line of  
extreme low-power Microchip devices: a 16-bit micro-  
controller family with a broad peripheral feature set and  
enhanced computational performance. It also offers a  
new migration option for those high-performance appli-  
cations, which may be outgrowing their 8-bit platforms,  
but do not require the numerical processing power of a  
digital signal processor.  
1.1  
Core Features  
1.1.1  
16-BIT ARCHITECTURE  
Central to all PIC24F devices is the 16-bit modified  
Harvard architecture, first introduced with Microchip’s  
dsPIC® digital signal controllers. The PIC24F CPU core  
offers a wide range of enhancements, such as:  
• 16-bit data and 24-bit address paths with the  
ability to move information between data and  
memory spaces  
• Linear addressing of up to 12 Mbytes (program  
space) and 64 Kbytes (data)  
- Deep Sleep Mode: The core, peripherals (except  
RTCC and DSWDT), Flash and SRAM are shut  
down.  
1.1.3  
OSCILLATOR OPTIONS AND  
FEATURES  
• A 16-element working register array with built-in  
software stack support  
• A 17 x 17 hardware multiplier with support for  
integer math  
• Hardware support for 32-bit by 16-bit division  
• An instruction set that supports multiple  
addressing modes and is optimized for high-level  
languages, such as C  
The PIC24F16KA102 family offers five different  
oscillator options, allowing users a range of choices in  
developing application hardware. These include:  
• Two Crystal modes using crystals or ceramic  
resonators.  
• Two External Clock modes offering the option of a  
divide-by-2 clock output.  
• Operational performance up to 16 MIPS  
• Two Fast Internal Oscillators (FRCs): One with a  
nominal 8 MHz output and the other with a  
nominal 500 kHz output. These outputs can also  
be divided under software control to provide clock  
speed as low as 31 kHz or 2 kHz.  
• A Phase Locked Loop (PLL) frequency multiplier,  
available to the External Oscillator modes and the  
8 MHz FRC oscillator, which allows clock speeds  
of up to 32 MHz.  
• A separate Internal RC oscillator (LPRC) with a  
fixed 31 kHz output, which provides a low-power  
option for timing-insensitive applications.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 9  
PIC24F16KA102 FAMILY  
The internal oscillator block also provides a stable  
1.3  
Details on Individual Family  
Members  
reference source for the Fail-Safe Clock Monitor  
(FSCM). This option constantly monitors the main clock  
source against a reference signal provided by the  
internal oscillator and enables the controller to switch to  
the internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
Devices in the PIC24F16KA102 family are available in  
20-pin and 28-pin packages. The general block  
diagram for all devices is displayed in Figure 1-1.  
The devices are different from each other in two ways:  
1. Flash program memory (8 Kbytes for  
PIC24F08KA devices, 16 Kbytes for PIC24F16KA  
devices).  
1.1.4  
EASY MIGRATION  
Regardless of the memory size, all the devices share  
the same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
2. Available I/O pins and ports (18 pins on two  
ports for 20-pin devices and 24 pins on two ports  
for 28-pin devices).  
The consistent pinout scheme used throughout the  
entire family also helps in migrating to the next larger  
device. This is true when moving between devices with  
the same pin count, or even jumping from 20-pin to  
28-pin devices.  
3. Alternate SCLx and SDAx pins are available  
only in 28-pin devices and not in 20-pin devices.  
All other features for devices in this family are identical;  
these are summarized in Table 1-1.  
The PIC24F family is pin compatible with devices in the  
dsPIC33 family, and shares some compatibility with the  
pinout schema for PIC18 and dsPIC30. This extends  
the ability of applications to grow from the relatively  
simple, to the powerful and complex.  
A
list of the pin features available on the  
PIC24F16KA102 family devices, sorted by function, is  
provided in Table 1-2.  
Note:  
Table 1-1 provides the pin location of  
individual peripheral features and not how  
they are multiplexed on the same pin. This  
information is provided in the pinout  
diagrams on pages 4, 5 and 6 of the data  
sheet. Multiplexed features are sorted by  
the priority given to a feature, with the  
highest priority peripheral being listed  
first.  
1.2  
Other Special Features  
Communications: The PIC24F16KA102 family  
incorporates a range of serial communication  
peripherals to handle a range of application  
requirements. There is an I2C™ module that  
supports both the Master and Slave modes of  
operation. It also comprises UARTs with built-in  
IrDA® encoders/decoders and an SPI module.  
Real-Time Clock/Calendar: This module  
implements a full-featured clock and calendar with  
alarm functions in hardware, freeing up timer  
resources and program memory space for use of  
the core application.  
10-Bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period, and  
faster sampling speed. The 16-deep result buffer  
can be used either in Sleep to reduce power, or in  
Active mode to improve throughput.  
Charge Time Measurement Unit (CTMU)  
Interface: The PIC24F16KA102 family includes  
the new CTMU interface module, which can be  
used for capacitive touch sensing, proximity  
sensing and also for precision time measurement  
and pulse generation.  
DS39927C-page 10  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC24F16KA102 FAMILY  
Features  
Operating Frequency  
DC – 32 MHz  
16K  
5632  
Program Memory (bytes)  
Program Memory (instructions)  
Data Memory (bytes)  
8K  
8K  
16K  
2816  
2816  
5632  
1536  
512  
Data EEPROM Memory (bytes)  
Interrupt Sources (soft vectors/NMI traps)  
I/O Ports  
30 (26/4)  
PORTA<6:0>  
PORTA<7:0>  
PORTB<15:12, 9:7, 4, 2:0>  
PORTB<15:0>  
Total I/O Pins  
18  
24  
Timers: Total Number (16-bit)  
32-Bit (from paired 16-bit timers)  
3
1
Input Capture Channels  
1
1
Output Compare/PWM Channels  
Input Change Notification Interrupt  
17  
23  
Serial Communications: UART  
SPI (3-wire/4-wire)  
I2C™  
2
1
1
10-Bit Analog-to-Digital Module (input channels)  
Analog Comparators  
9
2
Resets (and delays)  
POR, BOR, RESETInstruction, MCLR, WDT, Illegal Opcode,  
REPEATInstruction, Hardware Traps, Configuration Word  
Mismatch (PWRT, OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
20-Pin PDIP/SSOP/SOIC/QFN 28-Pin SPDIP/SSOP/SOIC/QFN  
2008-2011 Microchip Technology Inc.  
DS39927C-page 11  
PIC24F16KA102 FAMILY  
FIGURE 1-1:  
PIC24F16KA102 FAMILY GENERAL BLOCK DIAGRAM  
Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
Data RAM  
PSV and Table  
Data Access  
Control Block  
PCH  
Program Counter  
Stack  
Control  
Logic  
PCL  
23  
Address  
Latch  
PORTA(1)  
RA<0:7>  
Repeat  
Control  
Logic  
16  
23  
16  
Read AGU  
Write AGU  
Address Latch  
PORTB(1)  
RB<0:15>  
Program Memory  
Data EEPROM  
Data Latch  
16  
EA MUX  
Address Bus  
24  
16  
16  
Inst Latch  
Inst Register  
Instruction  
Decode and  
Control  
Divide  
Support  
Control Signals  
16 x 16  
W Reg Array  
17x17  
Power-up  
Timer  
Multiplier  
Timing  
OSCO/CLKO  
OSCI/CLKI  
Generation  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-Bit ALU  
16  
Watchdog  
Timer  
DSWDT  
Precision  
Band Gap  
Reference  
BOR  
VDDV, SS  
RTCC  
MCLR  
10-Bit  
A/D  
Timer2/3  
Comparators  
UART1/2  
CTMU  
SPI1  
HLVD  
Timer1  
CN1-22(1)  
IC1  
OC1/PWM  
I2C1  
REFO  
Note 1: All pins or features are not implemented on all device pinout configurations. See Table 1-2 for I/O port pin  
descriptions.  
DS39927C-page 12  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 1-2:  
PIC24F16KA102 FAMILY PINOUT DESCRIPTIONS  
Pin Number  
Input  
Buffer  
20-Pin  
PDIP/SSOP/  
SOIC  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
20-Pin  
QFN  
28-Pin  
QFN  
AN0  
2
3
19  
20  
1
2
3
27  
28  
1
I
I
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
A/D Analog Inputs  
AN1  
AN2  
4
4
I
AN3  
5
2
5
2
I
AN4  
7
4
6
3
I
AN5  
8
5
7
4
I
AN10  
17  
16  
15  
13  
9
14  
13  
12  
10  
6
25  
24  
23  
18  
11  
7
22  
21  
20  
15  
8
I
AN11  
I
AN12  
I
®
U1BCLK  
U2BCLK  
C1INA  
C1INB  
C1INC  
C1IND  
C1OUT  
C2INA  
C2INB  
C2INC  
C2IND  
C2OUT  
CLKI  
O
O
I
UART1 IrDA Baud Clock  
UART2 IrDA Baud Clock  
8
5
4
ANA  
ANA  
ANA  
ANA  
Comparator 1 Input A (Positive Input)  
Comparator 1 Input B (Negative Input Option 1)  
Comparator Input C (Negative Input Option 2)  
Comparator Input D (Negative Input Option 3)  
Comparator 1 Output  
7
4
6
3
I
5
2
5
2
I
4
1
4
1
I
17  
5
14  
2
25  
5
22  
2
O
I
ANA  
ANA  
ANA  
ANA  
Comparator 2 Input A (Positive Input)  
Comparator 2 Input B (Negative Input Option 1)  
Comparator 2 Input C (Negative Input Option 2)  
Comparator 2 Input D (Negative Input Option 3)  
Comparator 2 Output  
4
1
4
1
I
8
5
7
4
I
7
4
6
3
I
14  
7
11  
4
20  
9
17  
6
O
I
ANA  
Main Clock Input Connection  
CLKO  
8
5
10  
7
O
System Clock Output  
2
2
Legend:  
ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 13  
PIC24F16KA102 FAMILY  
TABLE 1-2:  
PIC24F16KA102 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
20-Pin  
PDIP/SSOP/  
SOIC  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
20-Pin  
QFN  
28-Pin  
QFN  
CN0  
10  
9
7
12  
11  
2
9
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ANA  
ST  
ST  
Interrupt-on-Change Inputs  
CN1  
6
8
CN2  
2
19  
20  
1
27  
28  
1
I
CN3  
3
3
I
CN4  
4
4
I
CN5  
5
2
5
2
I
CN6  
6
3
6
3
I
CN7  
14  
18  
17  
16  
15  
13  
12  
11  
8
11  
15  
14  
13  
12  
10  
9
7
4
I
CN8  
20  
19  
26  
25  
24  
23  
22  
21  
18  
17  
16  
15  
14  
10  
9
17  
16  
23  
22  
21  
20  
19  
18  
15  
14  
13  
12  
11  
7
I
CN9  
I
CN11  
CN12  
CN13  
CN14  
CN15  
CN16  
CN21  
CN22  
CN23  
CN24  
CN27  
CN29  
CN30  
CVREF  
CTED1  
CTED2  
CTPLS  
IC1  
I
I
I
I
I
I
I
I
8
I
5
I
I
I
7
4
6
I
17  
14  
15  
16  
14  
11  
17  
14  
15  
1
14  
11  
12  
13  
11  
8
25  
20  
23  
24  
19  
16  
25  
20  
23  
1
22  
17  
20  
21  
16  
13  
22  
17  
20  
26  
17  
22  
6
O
I
Comparator Voltage Reference Output  
CTMU Trigger Edge Input 1  
CTMU Trigger Edge Input 2  
CTMU Pulse Output  
I
O
I
ST  
ST  
ST  
ST  
ANA  
ST  
Input Capture 1 Input  
INT0  
I
External Interrupt Inputs  
INT1  
14  
11  
12  
18  
11  
14  
4
I
INT2  
I
HLVDIN  
MCLR  
OC1  
I
HLVD Voltage Input  
I
Master Clear (device Reset) Input  
Output Compare/PWM Outputs  
Output Compare Fault A  
14  
17  
7
20  
25  
9
O
I
OCFA  
OSCI  
OSCO  
Legend:  
I
ANA  
ANA  
Main Oscillator Input Connection  
8
5
10  
7
O
Main Oscillator Output Connection  
2
2
ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
DS39927C-page 14  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 1-2:  
PIC24F16KA102 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
20-Pin  
PDIP/SSOP/  
SOIC  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
20-Pin  
QFN  
28-Pin  
QFN  
PGC1  
5
2
5
2
I/O  
ST  
In-Circuit Debugger and ICSP™ Programming  
Clock  
PGD1  
PGC2  
4
2
1
4
1
I/O  
I/O  
ST  
ST  
In-Circuit Debugger and ICSP Programming Data  
19  
22  
19  
In-Circuit Debugger and ICSP Programming  
Clock  
PGD2  
PGC3  
3
20  
7
21  
15  
18  
12  
I/O  
I/O  
ST  
ST  
In-Circuit Debugger and ICSP Programming Data  
10  
In-Circuit Debugger and ICSP Programming  
Clock  
PGD3  
RA0  
9
2
6
19  
20  
4
14  
2
11  
27  
28  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
In-Circuit Debugger and ICSP Programming Data  
PORTA Digital I/O  
RA1  
3
3
RA2  
7
9
RA3  
8
5
10  
12  
1
7
RA4  
10  
1
7
9
RA5  
18  
11  
1
26  
17  
16  
1
RA6  
14  
4
20  
19  
4
RA7  
RB0  
PORTB Digital I/O  
RB1  
5
2
5
2
RB2  
6
3
6
3
RB3  
9
6
7
4
RB4  
11  
14  
15  
16  
17  
18  
21  
22  
23  
24  
25  
26  
26  
25  
22  
8
RB5  
11  
12  
13  
15  
16  
17  
18  
18  
17  
15  
12  
13  
17  
16  
9
8
11  
12  
13  
14  
15  
18  
19  
20  
21  
22  
23  
23  
22  
19  
RB6  
RB7  
RB8  
9
RB9  
10  
12  
13  
14  
15  
15  
14  
12  
9
RB10  
RB11  
RB12  
RB13  
RB14  
RB15  
REFO  
RTCC  
SCK1  
SCL1  
SDA1  
SDI1  
SDO1  
SOSCI  
SOSCO  
SS1  
Reference Clock Output  
O
Real-Time Clock Alarm Output  
SPI1 Serial Clock Input/Output  
I2C1 Synchronous Serial Clock Input/Output  
I2C1 Data Input/Output  
I/O  
I/O  
I/O  
I
ST  
(1)  
(1)  
2
17, 15  
14, 12  
15, 11  
18  
I C  
(1)  
(1)  
2
10  
14  
13  
6
18, 14  
I C  
21  
24  
11  
12  
26  
ST  
SPI1 Serial Data Input  
21  
O
SPI1 Serial Data Output  
8
I
ANA  
ANA  
ST  
Secondary Oscillator Input  
Secondary Oscillator Output  
10  
18  
7
9
O
15  
23  
I/O  
Slave Select Input/Frame Select Output (SPI1)  
2
2
Legend:  
ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 15  
PIC24F16KA102 FAMILY  
TABLE 1-2:  
PIC24F16KA102 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
20-Pin  
PDIP/SSOP/  
SOIC  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
20-Pin  
QFN  
28-Pin  
QFN  
T1CK  
T2CK  
T3CK  
U1CTS  
U1RTS  
U1RX  
U1TX  
VDD  
10  
18  
18  
12  
13  
6
7
15  
15  
9
12  
26  
9
23  
I
I
ST  
ST  
ST  
ST  
Timer1 Clock  
Timer2 Clock  
Timer3 Clock  
26  
23  
I
17  
14  
I
UART1 Clear to Send Input  
UART1 Request to Send Output  
UART1 Receive  
10  
3
18  
15  
O
I
6
3
ST  
11  
20  
8
16  
13  
O
P
UART1 Transmit Output  
17  
13, 28  
10, 25  
Positive Supply for Peripheral Digital Logic and  
I/O Pins  
VPP  
1
3
18  
20  
1
3
26  
28  
P
I
Programming Mode Entry Voltage  
VREF-  
ANA  
A/D and Comparator Reference Voltage (low)  
Input  
VREF+  
2
19  
16  
2
27  
I
ANA  
A/D and Comparator Reference Voltage (high)  
Input  
VSS  
19  
8, 27  
5, 24  
P
Ground Reference for Logic and I/O Pin  
2
2
Legend:  
ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
DS39927C-page 16  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTIONS  
2.0  
2.1  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
MICROCONTROLLERS  
(2)  
C2  
VDD  
Basic Connection Requirements  
Getting started with the PIC24F16KA102 family family  
of 16-bit microcontrollers requires attention to a  
minimal set of device pin connections before  
proceeding with development.  
R1  
R2  
MCLR  
VCAP  
(1)  
C1  
(3)  
The following pins must always be connected:  
C7  
PIC24FXXKXX  
• All VDD and VSS pins  
(see Section 2.2 “Power Supply Pins”)  
VDD  
VSS  
VDD  
(2)  
(2)  
C3  
C6  
• All AVDD and AVSS pins, regardless of whether or  
not the analog device features are used  
VSS  
(see Section 2.2 “Power Supply Pins”)  
• MCLR pin  
(see Section 2.3 “Master Clear (MCLR) Pin”)  
(2)  
(2)  
C4  
C5  
• VCAP pins  
(see Section 2.4 “Voltage Regulator Pin (VCAP)”)  
These pins must also be connected if they are being  
used in the end application:  
Key (all values are recommendations):  
C1 through C6: 0.1 F, 20V ceramic  
C7: 10 F, 16V tantalum or ceramic  
R1: 10 k  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
R2: 100to 470Ω  
• OSCI and OSCO pins when an external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
Note 1: See Section 2.4 “Voltage Regulator Pin  
(VCAP)” for explanation of VCAP pin  
connections.  
2: The example shown is for a PIC24F device  
with five VDD/VSS and AVDD/AVSS pairs.  
Other devices may have more or less pairs;  
adjust the number of decoupling capacitors  
appropriately.  
Additionally, the following pins may be required:  
• VREF+/VREF- pins are used when external voltage  
reference for analog modules is implemented  
Note:  
The AVDD and AVSS pins must always be  
connected, regardless of whether any of  
the analog modules are being used.  
3: Some PIC24F K parts do not have a  
regulator.  
The minimum mandatory connections are shown in  
Figure 2-1.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 17  
PIC24F16KA102 FAMILY  
2.2  
Power Supply Pins  
2.3  
Master Clear (MCLR) Pin  
The MCLR pin provides two specific device  
functions: Device Reset, and Device Programming  
and Debugging. If programming and debugging are  
2.2.1  
DECOUPLING CAPACITORS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS, is required.  
not required in the end application,  
a
direct  
connection to VDD may be all that is required. The  
addition of other components, to help increase the  
application’s resistance to spurious Resets from  
Consider the following criteria when using decoupling  
capacitors:  
voltage sags, may be beneficial.  
A
typical  
Value and type of capacitor: A 0.1 F (100 nF),  
10-20V capacitor is recommended. The capacitor  
should be a low-ESR device, with a resonance  
frequency in the range of 200 MHz and higher.  
Ceramic capacitors are recommended.  
configuration is shown in Figure 2-1. Other circuit  
designs may be implemented, depending on the  
application’s requirements.  
During programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R1 and C1 will need to be adjusted based on the  
application and PCB requirements. For example, it is  
recommended that the capacitor, C1, be isolated  
from the MCLR pin during programming and  
debugging operations by using a jumper (Figure 2-2).  
The jumper is replaced for normal run-time  
operations.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is no greater  
than 0.25 inch (6 mm).  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise (upward of  
tens of MHz), add a second ceramic type capaci-  
tor in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 F to 0.001 F. Place this  
second capacitor next to each primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible  
(e.g., 0.1 F in parallel with 0.001 F).  
Any components associated with the MCLR pin  
should be placed within 0.25 inch (6 mm) of the pin.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB trace  
R1  
R2  
MCLR  
PIC24FXXKXX  
JP  
C1  
inductance.  
Note 1: R1  10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2.2.2  
TANK CAPACITORS  
On boards with power traces running longer than  
six inches in length, it is suggested to use a tank capac-  
itor for integrated circuits, including microcontrollers, to  
supply a local power source. The value of the tank  
capacitor should be determined based on the trace  
resistance that connects the power supply source to  
the device, and the maximum current drawn by the  
device in the application. In other words, select the tank  
capacitor so that it meets the acceptable voltage sag at  
the device. Typical values range from 4.7 F to 47 F.  
2: R2  470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
DS39927C-page 18  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Refer to Section 29.0 “Electrical Characteristics” for  
information on VDD and VDDCORE.  
2.4  
Voltage Regulator Pin (VCAP)  
Note:  
This section applies only to PIC24F K  
devices with an on-chip voltage regulator.  
FIGURE 2-3:  
FREQUENCY vs. ESR  
PERFORMANCE FOR  
SUGGESTED VCAP  
Some of the PIC24F K devices have an internal voltage  
regulator. These devices have the voltage regulator  
output brought out on the VCAP pin. On the PIC24F K  
devices with regulators, a low-ESR (< 5) capacitor is  
required on the VCAP pin to stabilize the voltage  
regulator output. The VCAP pin must not be connected to  
VDD and must use a capacitor of 10 µF connected to  
ground. The type can be ceramic or tantalum. Suitable  
examples of capacitors are shown in Table 2-1.  
Capacitors with equivalent specifications can be used.  
10  
1
0.1  
0.01  
Designers may use Figure 2-3 to evaluate ESR  
equivalence of candidate devices.  
0.001  
0.01  
The placement of this capacitor should be close to VCAP.  
It is recommended that the trace length not exceed  
0.25 inch (6 mm). Refer to Section 29.0 “Electrical  
Characteristics” for additional information.  
0.1  
1
10  
100  
1000 10,000  
Frequency (MHz)  
Note:  
Typical data measurement at 25°C, 0V DC bias.  
TABLE 2-1:  
Make  
SUITABLE CAPACITOR EQUIVALENTS  
Nominal  
Part #  
Base Tolerance Rated Voltage Temp. Range  
Capacitance  
TDK  
TDK  
C3216X7R1C106K  
C3216X5R1C106K  
10 µF  
10 µF  
10 µF  
10 µF  
10 µF  
10 µF  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
16V  
16V  
16V  
16V  
16V  
16V  
-55 to 125ºC  
-55 to 85ºC  
-55 to 125ºC  
-55 to 85ºC  
-55 to 125ºC  
-55 to 85ºC  
Panasonic  
Panasonic  
Murata  
ECJ-3YX1C106K  
ECJ-4YB1C106K  
GRM32DR71C106KA01L  
GRM31CR61C106KC31L  
Murata  
2008-2011 Microchip Technology Inc.  
DS39927C-page 19  
PIC24F16KA102 FAMILY  
2.4.1  
CONSIDERATIONS FOR CERAMIC  
CAPACITORS  
FIGURE 2-4:  
DC BIAS VOLTAGE vs.  
CAPACITANCE  
CHARACTERISTICS  
In recent years, large value, low-voltage, surface-mount  
ceramic capacitors have become very cost effective in  
sizes up to a few tens of microfarad. The low-ESR, small  
physical size and other properties make ceramic  
capacitors very attractive in many types of applications.  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
16V Capacitor  
10V Capacitor  
Ceramic capacitors are suitable for use with the inter-  
nal voltage regulator of this microcontroller. However,  
some care is needed in selecting the capacitor to  
ensure that it maintains sufficient capacitance over the  
intended operating range of the application.  
6.3V Capacitor  
-80  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
16 17  
DC Bias Voltage (VDC)  
Typical low-cost, 10 F ceramic capacitors are available  
in X5R, X7R and Y5V dielectric ratings (other types are  
also available, but are less common). The initial toler-  
ance specifications for these types of capacitors are  
often specified as ±10% to ±20% (X5R and X7R), or  
-20%/+80% (Y5V). However, the effective capacitance  
that these capacitors provide in an application circuit will  
also vary based on additional factors, such as the  
applied DC bias voltage and the temperature. The total  
in-circuit tolerance is, therefore, much wider than the  
initial tolerance specification.  
When selecting a ceramic capacitor to be used with the  
internal voltage regulator, it is suggested to select a  
high-voltage rating, so that the operating voltage is a  
small percentage of the maximum rated capacitor volt-  
age. For example, choose a ceramic capacitor rated at  
16V for the 3.3V or 2.5V core voltage. Suggested  
capacitors are shown in Table 2-1.  
2.5  
ICSP Pins  
The X5R and X7R capacitors typically exhibit satisfac-  
tory temperature stability (ex: ±15% over a wide  
temperature range, but consult the manufacturer's data  
sheets for exact specifications). However, Y5V capaci-  
tors typically have extreme temperature tolerance  
specifications of +22%/-82%. Due to the extreme  
temperature tolerance, a 10 F nominal rated Y5V type  
capacitor may not deliver enough total capacitance to  
meet minimum internal voltage regulator stability and  
transient response requirements. Therefore, Y5V  
capacitors are not recommended for use with the  
internal regulator if the application must operate over a  
wide temperature range.  
The PGC and PGD pins are used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes. It  
is recommended to keep the trace length between the  
ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is recom-  
mended, with the value in the range of a few tens of  
ohms, not to exceed 100.  
Pull-up resistors, series diodes and capacitors on the  
PGC and PGD pins are not recommended as they will  
interfere with the programmer/debugger communica-  
tions to the device. If such discrete components are an  
application requirement, they should be removed from  
the circuit during programming and debugging. Alter-  
natively, refer to the AC/DC characteristics and timing  
requirements information in the respective device  
Flash programming specification for information on  
capacitive loading limits, and pin input voltage high  
(VIH) and input low (VIL) requirements.  
In addition to temperature tolerance, the effective  
capacitance of large value ceramic capacitors can vary  
substantially, based on the amount of DC voltage  
applied to the capacitor. This effect can be very signifi-  
cant, but is often overlooked or is not always  
documented.  
A typical DC bias voltage vs. capacitance graph for  
X7R type capacitors is shown in Figure 2-4.  
For device emulation, ensure that the “Communication  
Channel Select” (i.e., PGCx/PGDx pins), programmed  
into the device, matches the physical connections for  
the ICSP to the Microchip debugger/emulator tool.  
For more information on available Microchip  
development tools connection requirements, refer to  
Section 27.0 “Development Support”.  
DS39927C-page 20  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 2-5:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
2.6  
External Oscillator Pins  
Many microcontrollers have options for at least two  
oscillators: a high-frequency primary oscillator and a  
low-frequency  
secondary  
oscillator  
(refer to  
Single-Sided and In-Line Layouts:  
Section 9.0 “Oscillator Configuration” for details).  
Copper Pour  
(tied to ground)  
Primary Oscillator  
Crystal  
The oscillator circuit should be placed on the same  
side of the board as the device. Place the oscillator  
circuit close to the respective oscillator pins with no  
more than 0.5 inch (12 mm) between the circuit  
components and the pins. The load capacitors should  
be placed next to the oscillator itself, on the same side  
of the board.  
DEVICE PINS  
Primary  
OSC1  
OSC2  
GND  
Oscillator  
C1  
C2  
`
`
Use a grounded copper pour around the oscillator cir-  
cuit to isolate it from surrounding circuits. The  
grounded copper pour should be routed directly to the  
MCU ground. Do not run any signal traces or power  
traces inside the ground pour. Also, if using a two-sided  
board, avoid any traces on the other side of the board  
where the crystal is placed.  
T1OSO  
T1OS I  
Timer1 Oscillator  
Crystal  
`
Layout suggestions are shown in Figure 2-5. In-line  
packages may be handled with a single-sided layout  
that completely encompasses the oscillator pins. With  
fine-pitch packages, it is not always possible to com-  
pletely surround the pins and components. A suitable  
solution is to tie the broken guard sections to a mirrored  
ground layer. In all cases, the guard trace(s) must be  
returned to ground.  
T1 Oscillator: C2  
T1 Oscillator: C1  
Fine-Pitch (Dual-Sided) Layouts:  
Top Layer Copper Pour  
(tied to ground)  
In planning the application’s routing and I/O assign-  
ments, ensure that adjacent port pins and other  
signals, in close proximity to the oscillator, are benign  
(i.e., free of high frequencies, short rise and fall times,  
and other similar noise).  
Bottom Layer  
Copper Pour  
(tied to ground)  
OSCO  
For additional information and design guidance on  
oscillator circuits, please refer to these Microchip  
Application Notes, available at the corporate web site  
(www.microchip.com):  
C2  
Oscillator  
Crystal  
GND  
AN826, Crystal Oscillator Basics and Crystal  
C1  
Selection for rfPIC™ and PICmicro® Devices”  
• AN849, “Basic PICmicro® Oscillator Design”  
OSCI  
• AN943, “Practical PICmicro® Oscillator Analysis  
and Design”  
AN949, “Making Your Oscillator Work”  
DEVICE PINS  
2.7  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state. Alternatively, connect a 1 kΩ  
to 10 kresistor to VSS on unused pins and drive the  
output to logic low.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 21  
PIC24F16KA102 FAMILY  
NOTES:  
DS39927C-page 22  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working  
register (data) read, a data memory write and a  
program (instruction) memory read per instruction  
cycle. As a result, three parameter instructions can be  
supported, allowing trinary operations (that is,  
A + B = C) to be executed in a single cycle.  
3.0  
CPU  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on the  
CPU, refer to the “PIC24F Family  
Reference Manual”, Section 2. “CPU”  
(DS39703).  
A high-speed, 17-bit by 17-bit multiplier has been  
included to significantly enhance the core arithmetic  
capability and throughput. The multiplier supports  
Signed, Unsigned and Mixed mode, 16-bit by 16-bit or  
8-bit by 8-bit integer multiplication. All multiply  
instructions execute in a single cycle.  
The PIC24F CPU has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set and a  
24-bit instruction word with a variable length opcode  
field. The Program Counter (PC) is 23 bits wide and  
addresses up to 4M instructions of user program  
memory space. A single-cycle instruction prefetch  
mechanism is used to help maintain throughput and  
provides predictable execution. All instructions execute  
in a single cycle, with the exception of instructions that  
change the program flow, the double-word move  
(MOV.D) instruction and the table instructions.  
Overhead-free program loop constructs are supported  
using the REPEATinstructions, which are interruptible  
at any point.  
The 16-bit ALU has been enhanced with integer divide  
assist hardware that supports an iterative non-restoring  
divide algorithm. It operates in conjunction with the  
REPEATinstruction looping mechanism and a selection  
of iterative divide instructions to support 32-bit (or  
16-bit), divided by 16-bit integer signed and unsigned  
division. All divide operations require 19 cycles to  
complete but are interruptible at any cycle boundary.  
The PIC24F has a vectored exception scheme with up  
to eight sources of non-maskable traps and up to  
118 interrupt sources. Each interrupt source can be  
assigned to one of seven priority levels.  
PIC24F devices have sixteen, 16-bit working registers  
in the programmer’s model. Each of the working  
registers can act as a data, address or address offset  
register. The 16th working register (W15) operates as a  
Software Stack Pointer (SSP) for interrupts and calls.  
A block diagram of the CPU is illustrated in Figure 3-1.  
3.1  
Programmer’s Model  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K word boundary of either program memory or data  
EEPROM memory defined by the 8-bit Program Space  
Visibility Page Address (PSVPAG) register. The  
program to data space mapping feature lets any  
instruction access program space as if it were data  
space.  
Figure 3-2 displays the programmer’s model for the  
PIC24F. All registers in the programmer’s model are  
memory mapped and can be manipulated directly by  
instructions.  
Table 3-1 provides a description of each register. All  
registers associated with the programmer’s model are  
memory mapped.  
The Instruction Set Architecture (ISA) has been  
significantly enhanced beyond that of the PIC18, but  
maintains an acceptable level of backward  
compatibility. All PIC18 instructions and addressing  
modes are supported, either directly, or through simple  
macros. Many of the ISA enhancements have been  
driven by compiler efficiency needs.  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct and three groups of addressing  
modes. All modes support Register Direct and various  
Register Indirect modes. Each group offers up to seven  
addressing modes. Instructions are associated with  
predefined addressing modes depending upon their  
functional requirements.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 23  
PIC24F16KA102 FAMILY  
FIGURE 3-1:  
PIC24F CPU CORE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
Data RAM  
23  
16  
PCH  
PCL  
23  
Program Counter  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
RAGU  
WAGU  
Address Latch  
Program Memory  
Data EEPROM  
Data Latch  
EA MUX  
16  
Address Bus  
ROM Latch  
24  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
Hardware  
Multiplier  
16 x 16  
W Register Array  
Divide  
16  
Support  
16-Bit ALU  
16  
To Peripheral Modules  
TABLE 3-1:  
CPU CORE REGISTERS  
Register(s) Name  
Description  
W0 through W15  
PC  
Working Register Array  
23-Bit Program Counter  
ALU STATUS Register  
SR  
SPLIM  
Stack Pointer Limit Value Register  
TBLPAG  
PSVPAG  
RCOUNT  
CORCON  
Table Memory Page Address Register  
Program Space Visibility Page Address Register  
Repeat Loop Counter Register  
CPU Control Register  
DS39927C-page 24  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 3-2:  
PROGRAMMER’S MODEL  
15  
0
W0 (WREG)  
Divider Working Registers  
Multiplier Registers  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
Working/Address  
Registers  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
Frame Pointer  
0
0
Stack Pointer  
Stack Pointer Limit  
Value Register  
SPLIM  
22  
0
0
PC  
Program Counter  
7
0
0
0
Table Memory Page  
Address Register  
TBLPAG  
7
Program Space Visibility  
Page Address Register  
PSVPAG  
15  
15  
Repeat Loop Counter  
Register  
RCOUNT  
IPL  
SRH  
SRL  
0
— — — — — — —  
ALU STATUS Register (SR)  
DC  
RA N OV Z  
C
2 1 0  
15  
0
— — — — — — — — — — — — IPL3 PSV — —  
CPU Control Register (CORCON)  
Registers or bits shadowed for PUSH.Sand POP.Sinstructions.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 25  
PIC24F16KA102 FAMILY  
3.2  
CPU Control Registers  
REGISTER 3-1:  
SR: ALU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0, HSC  
DC  
bit 15  
bit 8  
R/W-0, HSC(1) R/W-0, HSC(1) R/W-0, HSC(1) R-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
IPL2(2) IPL1(2) IPL0(2)  
RA OV  
N
Z
C
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DC: ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th or 8th low-order bit of the result has occurred  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2)  
111= CPU interrupt priority level is 7 (15); user interrupts disabled  
110= CPU interrupt priority level is 6 (14)  
101= CPU Interrupt priority level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: ALU Overflow bit  
1= Overflow occurred for signed (2’s complement) arithmetic in this arithmetic operation  
0= No overflow has occurred  
Z: ALU Zero bit  
1= An operation, which effects the Z bit, has set it at some time in the past  
0= The most recent operation, which effects the Z bit, has cleared it (i.e., a non-zero result)  
C: ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit (MSb) of the result occurred  
0= No carry-out from the Most Significant bit (MSb) of the result occurred  
Note 1: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
2: The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.  
DS39927C-page 26  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 3-2:  
CORCON: CPU CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0, HSC  
IPL3(1)  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit(1)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 2  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space is visible in data space  
0= Program space is not visible in data space  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: User interrupts are disabled when IPL3 = 1.  
The PIC24F CPU incorporates hardware support for  
both multiplication and division. This includes a  
dedicated hardware multiplier and support hardware  
division for 16-bit divisor.  
3.3  
Arithmetic Logic Unit (ALU)  
The PIC24F ALU is 16 bits wide and is capable of  
addition, subtraction, bit shifts and logic operations.  
Unless otherwise mentioned, arithmetic operations are  
2’s complement in nature. Depending on the operation,  
the ALU may affect the values of the Carry (C), Zero  
(Z), Negative (N), Overflow (OV) and Digit Carry (DC)  
Status bits in the SR register. The C and DC Status bits  
operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
3.3.1  
MULTIPLIER  
The ALU contains a high-speed, 17-bit x 17-bit  
multiplier. It supports unsigned, signed or mixed sign  
operation in several multiplication modes:  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array, or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
2008-2011 Microchip Technology Inc.  
DS39927C-page 27  
PIC24F16KA102 FAMILY  
3.3.2  
DIVIDER  
3.3.3  
MULTI-BIT SHIFT SUPPORT  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
The PIC24F ALU supports both single bit and  
single-cycle, multi-bit arithmetic and logic shifts.  
Multi-bit shifts are implemented using a shifter block,  
capable of performing up to a 15-bit arithmetic right  
shift, or up to a 15-bit left shift, in a single cycle. All  
multi-bit shift instructions only support Register Direct  
Addressing for both the operand source and result  
destination.  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. Sixteen-bit signed and  
unsigned DIV instructions can specify any W register  
for both the 16-bit divisor (Wn), and any W register  
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.  
The divide algorithm takes one cycle per bit of divisor,  
so both 32-bit/16-bit and 16-bit/16-bit instructions take  
the same number of cycles to execute.  
A full summary of instructions that use the shift  
operation is provided below in Table 3-2.  
TABLE 3-2:  
Instruction  
INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION  
Description  
ASR  
SL  
Arithmetic shift right source register by one or more bits.  
Shift left source register by one or more bits.  
LSR  
Logical shift right source register by one or more bits.  
DS39927C-page 28  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
The user access to the program memory space is  
restricted to the lower half of the address range  
(000000h to 7FFFFFh). The exception is the use of  
TBLRD/TBLWT operations, which use TBLPAG<7> to  
permit access to the Configuration bits and Device ID  
sections of the configuration memory space.  
4.0  
MEMORY ORGANIZATION  
As with Harvard architecture devices, the PIC24F  
microcontrollers feature separate program and data  
memory space and busing. This architecture also  
allows the direct access of program memory from the  
data space during code execution.  
Memory maps for the PIC24F16KA102 family of  
devices are displayed in Figure 4-1.  
4.1  
Program Address Space  
The program address memory space of the PIC24F  
devices is 4M instructions. The space is addressable by  
a 24-bit value derived from either the 23-bit Program  
Counter (PC) during program execution, or from a table  
operation or data space remapping, as described in  
Section 4.3 “Interfacing Program and Data Memory  
Spaces”.  
FIGURE 4-1:  
PROGRAM SPACE MEMORY MAP FOR PIC24F16KA102 FAMILY DEVICES  
PIC24F08KA10X  
PIC24F16KA10X  
000000h  
000002h  
000004h  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
0000FEh  
000100h  
Reserved  
Alternate Vector Table  
000104h  
0001FEh  
000200h  
Alternate Vector Table  
Flash  
Program Memory  
(2816 instructions)  
User Flash  
Program Memory  
(5632 instructions)  
0015FEh  
Unimplemented  
002BFE  
Read ‘0’  
Unimplemented  
Read ‘0’  
7FFE00h  
Data EEPROM  
Reserved  
Data EEPROM  
Reserved  
7FFFFFh  
800000h  
F7FFFEh  
F80000h  
F80010h  
F80012h  
Device Config Registers  
Reserved  
Device Config Registers  
Reserved  
FEFFFEh  
FF0000h  
FFFFFFh  
DEVID (2)  
DEVID (2)  
Note:  
Memory areas are not displayed to scale.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 29  
PIC24F16KA102 FAMILY  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.3  
DATA EEPROM  
In the PIC24F16KA102 family, the data EEPROM is  
mapped to the top of the user program memory space,  
starting at address, 7FFE00, and expanding up to  
address, 7FFFFF.  
The program memory space is organized in  
word-addressable blocks. Although it is treated as  
24 bits wide, it is more appropriate to think of each  
address of the program memory as a lower and upper  
word, with the upper byte of the upper word being  
unimplemented. The lower word always has an even  
address, while the upper word has an odd address  
(Figure 4-2).  
The data EEPROM is organized as 16-bit wide memory  
and 256 words deep. This memory is accessed using  
table read and write operations similar to the user code  
memory.  
4.1.4  
DEVICE CONFIGURATION WORDS  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
Table 4-1 provides the addresses of the device Config-  
uration Words for the PIC24F16KA102 family. Their  
location in the memory map is displayed in Figure 4-1.  
Refer to Section 26.1 “Configuration Bits” for more  
information on device Configuration Words.  
4.1.2  
HARD MEMORY VECTORS  
TABLE 4-1:  
DEVICE CONFIGURATION  
WORDS FOR PIC24F16KA102  
FAMILY DEVICES  
All PIC24F devices reserve the addresses between  
00000h and 000200h for hard coded program  
execution vectors. A hardware Reset vector is provided  
to redirect code execution from the default value of the  
PC on device Reset to the actual start of code. A GOTO  
instruction is programmed by the user at 000000h with  
the actual address for the start of code at 000002h.  
Configuration Word  
Configuration Word  
Addresses  
FBS  
F80000  
F80004  
F80006  
F80008  
F8000A  
F8000C  
F8000E  
F80010  
FGS  
PIC24F devices also have two Interrupt Vector  
Tables, located from 000004h to 0000FFh, and  
000104h to 0001FFh. These vector tables allow each  
of the many device interrupt sources to be handled  
by separate ISRs. Section 8.1 “Interrupt Vector  
(IVT) Table” discusses the Interrupt Vector Tables in  
more detail.  
FOSCSEL  
FOSC  
FWDT  
FPOR  
FICD  
FDS  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
msw  
Address  
PC Address  
(lsw Address)  
most significant word  
23  
16  
8
0
000000h  
000002h  
000004h  
000006h  
00000000  
000001h  
000003h  
000005h  
000007h  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
Instruction Width  
(read as ‘0’)  
DS39927C-page 30  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
4.2.1  
DATA SPACE WIDTH  
4.2  
Data Address Space  
The data memory space is organized in  
byte-addressable, 16-bit wide blocks. Data is aligned in  
data memory and registers as 16-bit words, but all the  
data space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
The PIC24F core has a separate, 16-bit wide data  
memory space, addressable as a single linear range.  
The data space is accessed using two Address  
Generation Units (AGUs), one each for read and write  
operations. The data space memory map is displayed  
in Figure 4-3.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This gives a data space address range of 64 Kbytes or  
32K words. The lower half of the data memory space  
(that is, when EA<15> = 0) is used for implemented  
memory addresses, while the upper half (EA<15> = 1) is  
reserved for the Program Space Visibility (PSV) area  
(see Section 4.3.3 “Reading Data From Program  
Memory Using Program Space Visibility”).  
PIC24F16KA102 family devices implement a total of  
768 words of data memory. Should an EA point to a  
location outside of this area, an all zero word or byte will  
be returned.  
FIGURE 4-3:  
DATA SPACE MEMORY MAP FOR PIC24F16KA102 FAMILY DEVICES  
MSB  
Address  
LSB  
Address  
MSB  
LSB  
0000h  
07FEh  
0800h  
0001h  
07FFh  
0801h  
SFR  
Space  
SFR Space  
Data RAM  
Near  
Data Space  
Implemented  
Data RAM  
0DFFh  
1FFF  
0DFEh  
1FFEh  
Unimplemented  
Read as ‘0’  
7FFFh  
8001h  
7FFFh  
8000h  
Program Space  
Visibility Area  
FFFFh  
FFFEh  
Note:  
Data memory areas are not shown to scale.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 31  
PIC24F16KA102 FAMILY  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions operate only on words.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® devices  
and improve data space memory usage efficiency, the  
PIC24F instruction set supports both word and byte  
operations. As a consequence of byte accessibility, all  
EA calculations are internally scaled to step through  
word-aligned memory. For example, the core recog-  
nizes that Post-Modified Register Indirect Addressing  
mode [Ws++] will result in a value of Ws + 1 for byte  
operations and Ws + 2 for word operations.  
4.2.3  
NEAR DATA SPACE  
The 8-Kbyte area between 0000h and 1FFFh is  
referred to as the Near Data Space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions. The  
remainder of the data space is addressable indirectly.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing (MDA) with a 16-bit address field. For  
Data byte reads will read the complete word, which  
contains the byte, using the LSB of any EA to  
determine which byte to select. The selected byte is  
placed onto the LSB of the data path. That is, the data  
memory and the registers are organized as two  
parallel, byte-wide entities with shared (word) address  
decode, but separate write lines. Data byte writes only  
write to the corresponding side of the array or register,  
which matches the byte address.  
PIC24F16KA102  
family  
devices,  
the  
entire  
implemented data memory lies in Near Data Space  
(NDS).  
4.2.4  
SFR SPACE  
The first 2 Kbytes of the Near Data Space, from 0000h  
to 07FFh, are primarily occupied with Special Function  
Registers (SFRs). These are used by the PIC24F core  
and peripheral modules for controlling the operation of  
the device.  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a mis-  
aligned read or write is attempted, an address error  
trap will be generated. If the error occurred on a read,  
the instruction underway is completed; if it occurred on  
a write, the instruction will be executed, but the write  
will not occur. In either case, a trap is then executed,  
allowing the system and/or user to examine the  
machine state prior to execution of the address Fault.  
SFRs are distributed among the modules that they  
control and are generally grouped together by that  
module. Much of the SFR space contains unused  
addresses; these are read as ‘0’. The SFR space,  
where the SFRs are actually implemented, is provided  
in Table 4-2. Each implemented area indicates a  
32-byte region where at least one address is  
implemented as an SFR. A complete listing of  
implemented SFRs, including their addresses, is  
provided in Table 4-3 through Table 4-23.  
All byte loads into any W register are loaded into the  
LSB; the MSB is not modified.  
A Sign-Extend instruction (SE) is provided to allow the  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
Zero-Extend (ZE) instruction on the appropriate  
address.  
TABLE 4-2:  
IMPLEMENTED REGIONS OF SFR DATA SPACE  
SFR Space Address  
xx00  
xx20  
xx40  
xx60  
xx80  
xxA0  
xxC0  
xxE0  
000h  
100h  
200h  
300h  
400h  
500h  
600h  
700h  
Core  
ICN  
Interrupts  
Timers  
Capture  
Compare  
I2C™  
UART  
SPI  
I/O  
A/D/CMTU  
RTC/Comp  
CRC  
System/DS/HLVD  
NVM/PMD  
Legend: — = No implemented SFRs in this block.  
DS39927C-page 32  
2008-2011 Microchip Technology Inc.  
TABLE 4-3:  
CPU CORE REGISTERS MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0042  
0044  
0052  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
0000  
0000  
xxxx  
Stack Pointer Limit Value Register  
Program Counter Low Byte Register  
PCL  
PCH  
Program Counter Register High Byte  
Table Memory Page Address Register  
TBLPAG  
PSVPAG  
RCOUNT  
SR  
Program Space Visibility Page Address Register  
REPEATLoop Counter Register  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
Z
C
CORCON  
DISICNT  
IPL3  
PSV  
Disable Interrupts Counter Register  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-4:  
ICN REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1 0060 CN15IE(1)  
CNEN2 0062  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN11IE(1)  
CN27IE(1)  
CN9IE  
CN8IE  
CN24IE(1)  
CN7IE(1)  
CN23IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
CN16IE(1)  
0000  
0000  
0000  
CN22IE  
CN21IE  
CNPU1 0068 CN15PUE(1) CN14PUE CN13PUE CN12PUE CN11PUE(1)  
CNPU2 006A CN30PUE CN29PUE  
CN27PUE(1)  
CNPD1 0070 CN15PDE(1) CN14PDE CN13PDE CN12PDE CN11PDE(1)  
CNPD2 0072 CN30PDE CN29PDE  
CN27PDE(1)  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are not implemented in 20-pin devices.  
CN9PUE CN8PUE CN7PUE(1) CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
CN24PUE(1) CN23PUE CN22PUE CN21PUE  
CN9PDE CN8PDE CN7PDE(1) CN6PDE CN5PDE CN4PDE CN3PDE CN2PDE CN1PDE CN0PDE  
CN16PUE(1) 0000  
0000  
CN24PDE(1) CN23PDE CN22PDE CN21PDE  
CN16PDE(1) 0000  
TABLE 4-5:  
INTERRUPT CONTROLLER REGISTER MAP  
File  
Addr  
Name  
All  
Bit 0  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Resets  
INTCON1 0080 NSTDIS  
DISI  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4444  
4444  
4444  
4044  
4444  
0004  
4440  
0400  
4440  
0004  
0040  
INTCON2 0082  
ALTIVT  
NVMIF  
T1IF  
CNIF  
INT2EP  
OC1IF  
CMIF  
INT1EP  
IC1IF  
IFS0  
0084  
AD1IF  
INT2IF  
U1TXIF U1RXIF  
SPI1IF  
SPF1IF  
T3IF  
T2IF  
IFS1  
0086 U2TXIF  
U2RXIF  
RTCIF  
INT1IF  
MI2C1IF  
IFS3  
008A  
008C  
0094  
IFS4  
CTMUIF  
AD1IE  
INT2IE  
HLVDIF  
T3IE  
CRCIF  
T1IE  
CNIE  
U2ERIF  
OC1IE  
CMIE  
U1ERIF  
IC1IE  
IEC0  
IEC1  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC7  
IPC15  
IPC16  
IPC18  
IPC19  
NVMIE  
U1TXIE U1RXIE  
SPI1IE  
SPF1IE  
T2IE  
INT0IE  
SI2C1IE  
0096 U2TXIE  
U2RXIE  
RTCIE  
INT1IE  
MI2C1IE  
009A  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B2  
00C2  
00C4  
00C8  
00CA  
CTMUIE  
T1IP1  
T2IP1  
HLVDIE  
OC1IP0  
CRCIE  
U2ERIE  
INT0IP2  
U1ERIE  
INT0IP1  
T1IP2  
T2IP2  
T1IP0  
T2IP0  
OC1IP2  
OC1IP1  
IC1IP2  
IC1IP1  
IC1IP0  
INT0IP0  
U1RXIP2 U1RXIP1 U1RXIP0  
NVMIP2 NVMIP1 NVMIP0  
SPI1IP2 SPI1IP1 SPI1IP0  
SPF1IP2 SPF1IP1 SPF1IP0  
AD1IP2 AD1IP1 AD1IP0  
MI2C1P2 MI2C1P1 MI2C1P0  
T3IP2  
T3IP1  
T3IP0  
CMIP2  
CMIP1  
CMIP0  
U1TXIP2 U1TXIP1 U1TXIP0  
CNIP2  
CNIP1  
CNIP0  
SI2C1P2  
INT1IP2  
SI2C1P1  
INT1IP1  
SI2C1P0  
INT1IP0  
INT2IP2  
INT2IP1  
INT2IP0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
RTCIP2 RTCIP1 RTCIP0  
U2ERIP2 U2ERIP1 U2ERIP0  
CRCIP2 CRCIP1 CRCIP0  
U1ERIP2 U1ERIP1 U1ERIP0  
HLVDIP2 HLVDIP1 HLVDIP0  
CTMUIP2 CTMUIP1 CTMUIP0  
INTTREG 00E0 CPUIRQ  
VHOLD  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
TIMER REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
0108  
010A  
010C  
010E  
0110  
0112  
Timer1 Register  
0000  
FFFF  
0000  
0000  
0000  
0000  
FFFF  
FFFF  
0000  
0000  
Timer1 Period Register  
T1CON  
TMR2  
TMR3HLD  
TMR3  
PR2  
TON  
TSIDL  
TGATE TCKPS1 TCKPS0  
TSYNC  
TCS  
Timer2 Register  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
Timer2 Period Register  
PR3  
Timer3 Period Register  
T2CON  
T3CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
INPUT CAPTURE REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
0140  
0142  
Input Capture 1 Register  
FFFF  
0000  
ICSIDL  
ICTMR  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
OUTPUT COMPARE REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
FFFF  
FFFF  
0000  
OC1CON  
OCSIDL  
OCFLT OCTSEL  
OCM2  
OCM1  
OCM0  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
I2C™ REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
I2C1 Receive Register  
I2C1 Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
I2C1 Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
S
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
I2C1 Address Register  
AMSK9  
AMSK8  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in h.5adecimal.  
TABLE 4-10: UART REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
WAKE  
LPBACK  
ABAUD  
ADDEN  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1 PDSEL0 STSEL  
0000  
0222 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
TRMT URXISEL1 URXISEL0  
FERR  
OERR URXDA 0110  
U1TXREG 0224  
U1RXREG 0226  
UART1 Transmit Register  
UART1 Receive Register  
0000  
0000  
0000  
U1BRG  
U2MODE  
U2STA  
0228  
0230  
Baud Rate Generator Prescaler Register  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
WAKE  
LPBACK  
ABAUD  
ADDEN  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1 PDSEL0 STSEL  
0000  
0232 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
TRMT URXISEL1 URXISEL0  
FERR  
OERR URXDA 0110  
U2TXREG 0234  
U2RXREG 0236  
UART2 Transmit Register  
UART2 Receive Register  
0000  
0000  
0000  
U2BRG  
0238  
Baud Rate Generator Prescaler  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: SPI REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
0240  
SPIEN  
SPISIDL  
DISSCK  
SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
0000  
0000  
0000  
0000  
SPI1CON1 0242  
SPI1CON2 0244  
DISSDO MODE16  
SMP  
CKE  
SSEN  
CKP  
MSTEN  
SPRE2  
FRMEN  
SPIFSD SPIFPOL  
SPI1BUF  
0248  
SPI1 Transmit/Receive Buffer  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: PORTA REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5(1)  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
02C0  
02C2  
TRISA7(4) TRISA6  
TRISA4 TRISA3(5,6) TRISA2(5) TRISA1  
TRISA0  
RA0(2)  
00DF  
xxxx  
PORTA  
RA7(4)  
LATA7(4)  
ODA7(4)  
RA6  
RA5  
RA4(3)  
LATA4  
ODA4  
RA3(5,6)  
LATA3(5,6) LATA2(5)  
ODA3(5,6) ODA2(5)  
RA2(5)  
RA1(2)  
LATA1  
ODA1  
LATA  
02C4  
02C6  
LATA6  
ODA6  
LATA0  
ODA0  
xxxx  
0000  
ODCA  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This bit is available only when MCLRE = 0.  
2:  
3:  
4:  
5:  
6:  
A read of RA1 and RA0 results in ‘0’ when debug is active on the PGC2/PGD2 pin.  
A read of RA4 results in ‘0’ when debug is active on the PGC3/PGD3 pin.  
These bits are not implemented in 20-pin devices.  
These bits are available only when the primary oscillator is disabled (POSCMD<1:0> = 00); otherwise read as ‘0’.  
These bits are available only when the primary oscillator is disabled or EC mode is selected (POSCMD<1:0> = 00or 11) and CLKO is disabled (OSCIOFNC = 0); otherwise read as ‘0’.  
TABLE 4-13: PORTB REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB 02C8 TRISB15  
PORTB 02CA RB15  
LATB 02CC LATB15  
ODCB 02CE ODB15  
TRISB14  
RB14  
TRISB13  
RB13  
TRISB12 TRISB11(3) TRISB10(3) TRISB9  
TRISB8  
RB8  
TRISB7 TRISB6(3) TRISB5(3) TRISB4 TRISB3(3) TRISB2  
TRISB1  
RB1(1)  
LATB1  
ODB1  
TRISB0  
RB0(1)  
LATB0  
ODB0  
FFFF  
xxxx  
xxxx  
0000  
RB12  
LATB12  
ODB12  
RB11(3)  
LATB11(3) LATB10(3)  
ODB11 ODB10  
RB10(3)  
RB9  
RB7  
RB6(3)  
RB5(3)  
RB4(2)  
LATB4  
ODB4  
RB3(3)  
LATB3(3)  
ODB3  
RB2  
LATB14  
ODB14  
LATB13  
ODB13  
LATB9  
ODB9  
LATB8  
ODB8  
LATB7  
ODB7  
LATB6(3) LATB5(3)  
LATB2  
ODB2  
ODB6  
ODB5  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
A read of RB1 and RB0 results in ‘0’ when debug is active on the PGEC1/PGED1 pins.  
2:  
3:  
A read of RB4 results in ‘0’ when debug is active on the PGEC3/PGED3 pins.  
PORTB bits, 11, 10, 6, 5 and 3, are not implemented in 20-pin devices.  
TABLE 4-14: PAD CONFIGURATION REGISTER MAP  
File  
Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
PADCFG1  
02FC  
SMBUSDEL OC1TRIS RTSECSEL1 RTSECSEL0  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-15: A/D REGISTER MAP  
File  
Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
0300  
0302  
0304  
0306  
0308  
A/D Data Buffer 0  
A/D Data Buffer 1  
A/D Data Buffer 2  
A/D Data Buffer 3  
A/D Data Buffer 4  
A/D Data Buffer 5  
A/D Data Buffer 6  
A/D Data Buffer 7  
A/D Data Buffer 8  
A/D Data Buffer 9  
A/D Data Buffer 10  
A/D Data Buffer 11  
A/D Data Buffer 12  
A/D Data Buffer 13  
A/D Data Buffer 14  
A/D Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
ADC1BUF5 030A  
ADC1BUF6 030C  
ADC1BUF7 030E  
ADC1BUF8  
ADC1BUF9  
0310  
0312  
ADC1BUFA 0314  
ADC1BUFB 0316  
ADC1BUFC 0318  
ADC1BUFD 031A  
ADC1BUFE 031C  
ADC1BUFF 031E  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
0320  
0322  
0324  
0328  
032C  
0330  
ADON  
VCFG2  
ADRC  
CH0NB  
VCFG1  
ADSIDL  
FORM1  
FORM0  
SSRC2  
BUFS  
SSRC1  
SSRC0  
SMPI3  
ADCS5  
ASAM  
SMPI0  
ADCS2  
SAMP  
BUFM  
ADCS1  
DONE  
ALTS  
VCFG0 OFFCAL  
CSCNA  
SAMC2  
SMPI2  
ADCS4  
SMPI1  
ADCS3  
SAMC4  
SAMC3  
SAMC1  
SAMC0  
ADCS0  
CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA  
CH0SA4 CH0SA3 CH0SA2 CH0SA1 CH0SA0  
AD1PCFG  
AD1CSSL  
PCFG12 PCFG11 PCFG10  
CSSL12 CSSL11 CSSL10  
PCFG5  
CSSL5  
PCFG4  
CSSL4  
PCFG3  
CSSL3  
PCFG2  
CSSL2  
PCFG1  
CSSL1  
PCFG0  
CSSL0  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-16: CTMU REGISTER MAP  
File  
Name  
All  
Resets  
Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CTMUCON 033C CTMUEN  
CTMUSIDL TGEN EDGEN EDGSEQEN IDISSEN CTTRIG EDG2POL EDG2SEL1 EDG2SEL0 EDG1POL EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT 0000  
ITRIM2 ITRIM1 ITRIM0 IRNG1 IRNG0 0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
CTMUICON 033E ITRIM5 ITRIM4 ITRIM3  
TABLE 4-17: REAL-TIME CLOCK AND CALENDAR REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALRMVAL  
0620  
Alarm Value Register Window Based on ALRMPTR<15:0>  
xxxx  
0000  
xxxx  
0000  
ALCFGRPT 0622 ALRMEN CHIME  
AMASK3  
AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6  
RTCC Value Register Window Based on RTCPTR<15:0>  
ARPT5  
CAL5  
ARPT4 ARPT3 ARPT2  
ARPT1  
CAL1  
ARPT0  
CAL0  
RTCVAL  
0624  
0626  
RCFGCAL  
RTCEN  
RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR1 RTCPTR0  
CAL7  
CAL6  
CAL4  
CAL3  
CAL2  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-18: DUAL COMPARATOR REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CVRR  
CVR3  
CVR2  
CMSTAT  
CVRCON  
CM1CON  
CM2CON  
0630 CMSIDL  
C2EVT  
C1EVT  
C2OUT  
CVR1  
CCH1  
CCH1  
C1OUT  
CVR0  
CCH0  
CCH0  
0000  
0000  
0000  
0000  
0632  
0634  
0636  
CVREN CVROE  
EVPOL1 EVPOL0  
EVPOL1 EVPOL0  
CVRSS  
CREF  
CREF  
CON  
CON  
COE  
COE  
CPOL  
CPOL  
CLPWR  
CLPWR  
CEVT  
CEVT  
COUT  
COUT  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-19: CRC REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CRCCON  
CRCXOR  
CRCDAT  
0640  
0642  
0644  
CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT  
CRCGO  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
0040  
0000  
0000  
0000  
X<15:1>  
CRC Data Input Register  
CRC Result Register  
CRCWDAT 0646  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-20: CLOCK CONTROL REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740  
0742  
0744  
0748  
074E  
TRAPR IOPUWR SBOREN  
DPSLP  
PMSLP  
EXTR  
SWR  
SWDTEN  
LOCK  
WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
(Note 1)  
OSCCON  
CLKDIV  
ROI  
COSC2  
DOZE2  
COSC1  
DOZE1  
COSC0  
DOZE0  
NOSC2 NOSC1 NOSC0 CLKLOCK  
SOSCEN OSWEN (Note 2)  
DOZEN  
RCDIV2 RCDIV1 RCDIV0  
TUN1  
TUN0  
3140  
0000  
0000  
0000  
OSCTUN  
REFOCON  
HLVDCON  
TUN5  
TUN4  
TUN3  
TUN2  
ROEN  
ROSSLP ROSEL  
HLSIDL  
RODIV3 RODIV2 RODIV1 RODIV0  
0756 HLVDEN  
VDIR  
BGVST  
IRVST  
HLVDL3 HLVDL2 HLVDL1 HLVDL0  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
2:  
RCON register Reset values are dependent on the type of Reset.  
OSCCON register Reset values are dependent on configuration fuses and by type of Reset.  
TABLE 4-21: DEEP SLEEP REGISTER MAP  
All  
Resets(1)  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DSCON  
0758  
075A  
075C  
075E  
DSEN  
DSBOR RELEASE  
0000  
0000  
0000  
DSWAKE  
DSGPR0  
DSGPR1  
DSINT0  
DSFLT  
DSWDT DSRTCC DSMCLR  
DSPOR  
Deep Sleep General Purpose Register 0  
Deep Sleep General Purpose Register 1  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: The Deep Sleep registers are only reset on a VDD POR event.  
TABLE 4-22: NVM REGISTER MAP  
All  
Resets  
File Name Addr Bit 15 Bit 14  
Bit 13  
Bit 12  
Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN WRERR PGMONLY  
ERASE  
NVMOP5 NVMOP4 NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000(1)  
NVMKEY7 NVMKEY6 NVMKEY5 NVMKEY4 NVMKEY3 NVMKEY2 NVMKEY1 NVMKEY0 0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-23: PMD REGISTER MAP  
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
PMD1  
PMD2  
PMD3  
PMD4  
0770  
0772  
0774  
0776  
T3MD T2MD T1MD  
IC1MD  
I2C1MD  
U2MD  
U1MD  
SPI1MD  
ADC1MD  
OC1MD  
0000  
0000  
0000  
0000  
CMPMD RTCCMD  
CRCPMD  
EEMD  
REFOMD CTMUMD HLVDMD  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
PIC24F16KA102 FAMILY  
4.2.5  
SOFTWARE STACK  
4.3  
Interfacing Program and Data  
Memory Spaces  
In addition to its use as a working register, the W15  
register in PIC24F devices is also used as a Software  
Stack Pointer. The pointer always points to the first  
available free word and grows from lower to higher  
addresses. It pre-decrements for stack pops and  
post-increments for stack pushes, as depicted in  
Figure 4-4.  
The PIC24F architecture uses a 24-bit wide program  
space and 16-bit wide data space. The architecture is  
also a modified Harvard scheme, meaning that data  
can also be present in the program space. To use this  
data successfully, it must be accessed in a way that  
preserves the alignment of information in both spaces.  
For a PC push during any CALLinstruction, the MSB of  
the PC is Zero-Extended before the push, ensuring that  
the MSB is always clear.  
Apart from the normal execution, the PIC24F  
architecture provides two methods by which the  
program space can be accessed during operation:  
Note:  
A PC push during exception processing  
will concatenate the SRL register to the  
MSB of the PC prior to the push.  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
• Remapping a portion of the program space into  
the data space, PSV  
The Stack Pointer Limit Value (SPLIM) register,  
associated with the Stack Pointer, sets an upper  
address boundary for the stack. SPLIM is uninitialized  
at Reset. As is the case for the Stack Pointer,  
SPLIM<0> is forced to ‘0’ as all stack operations must  
be word-aligned. Whenever an EA is generated using  
W15 as a source or destination pointer, the resulting  
address is compared with the value in SPLIM. If the  
contents of the Stack Pointer (W15) and the SPLIM  
register are equal, and a push operation is performed,  
a stack error trap will not occur. The stack error trap will  
occur on a subsequent push operation.  
Table instructions allow an application to read or write  
small areas of the program memory. This makes the  
method ideal for accessing data tables that need to be  
updated from time to time. It also allows access to all  
bytes of the program word. The remapping method  
allows an application to access a large block of data on  
a read-only basis, which is ideal for look ups from a  
large table of static data. It can only access the least  
significant word (lsw) of the program word.  
4.3.1  
ADDRESSING PROGRAM SPACE  
Thus, for example, if it is desirable to cause a stack  
error trap when the stack grows beyond address, 0DF6  
in RAM, initialize the SPLIM with the value, 0DF4.  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0800h. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
For table operations, the 8-bit Table Memory Page  
Address register (TBLPAG) is used to define a 32K word  
region within the program space. This is concatenated  
with a 16-bit EA to arrive at a full 24-bit program space  
address. In this format, the Most Significant bit (MSb) of  
TBLPAG is used to determine if the operation occurs in  
the user memory (TBLPAG<7> = 0) or the configuration  
memory (TBLPAG<7> = 1).  
Note:  
A write to the SPLIM register should not  
be immediately followed by an indirect  
read operation using W15.  
FIGURE 4-4:  
CALL STACK FRAME  
For remapping operations, the 8-bit Program Space  
Visibility Page Address register (PSVPAG) is used to  
define a 16K word page in the program space. When  
the MSb of the EA is ‘1’, PSVPAG is concatenated with  
the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike the table operations, this limits  
remapping operations strictly to the user memory area.  
0000h  
15  
0
PC<15:0>  
000000000  
W15 (before CALL)  
W15 (after CALL)  
See Table 4-24 and Figure 4-5 to know how the  
program EA is created for table operations and  
remapping accesses from the data EA. Here, P<23:0>  
refers to a program space word, whereas D<15:0>  
refers to a data space word.  
PC<22:16>  
<Free Word>  
POP : [--W15]  
PUSH: [W15++]  
2008-2011 Microchip Technology Inc.  
DS39927C-page 41  
PIC24F16KA102 FAMILY  
TABLE 4-24: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLPAG<7:0> Data EA<15:0>  
0xxx xxxx  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Data EA<14:0>(1)  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>(2)  
xxxx xxxx  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
2: PSVPAG can have only two values (‘00’ to access program memory and FF to access data EEPROM) on  
the PIC24F16KA102 family.  
FIGURE 4-5:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
0
Program Counter  
23 Bits  
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 Bits  
16 Bits  
24 Bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 Bits  
15 Bits  
23 Bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word alignment of data in the  
program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration  
memory space.  
DS39927C-page 42  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when byte select is ‘1’; the lower byte  
is selected when it is ‘0’.  
4.3.2  
DATA ACCESS FROM PROGRAM  
MEMORY AND DATA EEPROM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program memory without going  
through data space. It also offers a direct method of  
reading or writing a word of any address within data  
EEPROM memory. The TBLRDH and TBLWTH instruc-  
tions are the only method to read or write the upper 8 bits  
of a program space word as data.  
2. TBLRDH (Table Read High): In Word mode, it  
maps the entire upper word of a program address  
(P<23:16>) to a data address. Note that  
D<15:8>, the ‘phantom’ byte, will always be ‘0’.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper ‘phantom’ byte is  
selected (byte select = 1).  
Note: The TBLRDH and TBLWTH instructions are not  
used while accessing data EEPROM memory.  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
The PC is incremented by 2 for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit,  
word-wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table  
Memory Page Address register (TBLPAG). TBLPAG  
covers the entire program memory space of the  
device, including user and configuration spaces. When  
TBLPAG<7> = 0, the table page is located in the user  
memory space. When TBLPAG<7> = 1, the page is  
located in configuration space.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
Note: Only table read operations will execute in the  
configuration memory space, and only then, in  
implemented areas, such as the Device ID.  
Table write operations are not allowed.  
FIGURE 4-6:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
Data EA<15:0>  
TBLPAG  
23  
16  
8
0
00  
00000000  
00000000  
00000000  
00000000  
000000h  
002BFEh  
23  
15  
0
‘Phantom’ Byte  
TBLRDH.B(Wn<0> = 0)  
TBLRDL.B(Wn<0> = 1)  
TBLRDL.B(Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register. Only read  
operations are provided; write operations are also valid in the  
user memory area.  
800000h  
2008-2011 Microchip Technology Inc.  
DS39927C-page 43  
PIC24F16KA102 FAMILY  
Although each data space address, 8000h and higher,  
maps directly into a corresponding program memory  
address (see Figure 4-7), only the lower 16 bits of the  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space locations used as  
data should be programmed with ‘1111 1111’ or ‘0000  
0000’ to force a NOP. This prevents possible issues  
should the area of code ever be accidentally executed.  
4.3.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into an 8K word page (in PIC24F08KA1XX  
devices) and a 16K word page (in PIC24F16KA1XX  
devices) of the program space. This provides  
transparent access of stored constant data from the  
data space without the need to use special instructions  
(i.e., TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the MSb of the data space, EA, is ‘1’, and PSV is  
enabled by setting the PSV bit in the CPU Control  
(CORCON<2>) register. The location of the program  
memory space to be mapped into the data space is  
determined by the Program Space Visibility Page  
Address register (PSVPAG). This 8-bit register defines  
any one of 256 possible pages of 16K words in pro-  
gram space. In effect, PSVPAG functions as the upper  
8 bits of the program memory address, with the 15 bits  
of the EA functioning as the lower bits.  
For operations that use PSV and are executed outside  
a REPEATloop, the MOV and MOV.Dinstructions will  
require one instruction cycle in addition to the specified  
execution time. All other instructions will require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV, which are executed inside  
a REPEAT loop, there will be some instances that  
require two instruction cycles in addition to the  
specified execution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
By incrementing the PC by 2 for each program memory  
word, the lower 15 bits of data space addresses directly  
map to the lower 15 bits in the corresponding program  
space addresses.  
Data reads from this area add an additional cycle to the  
instruction being executed, since two program memory  
fetches are required.  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data, using PSV, to execute in a  
single cycle.  
FIGURE 4-7:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
00  
23  
15  
0
000000h  
002BFEh  
0000h  
Data EA<14:0>  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space....  
8000h  
PSV Area  
...while the lower 15 bits  
of the EA specify an exact  
address within the PSV  
area. This corresponds  
exactly to the same lower  
15 bits of the actual  
FFFFh  
program space address.  
800000h  
DS39927C-page 44  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Real-Time Self-Programming (RTSP) is accomplished  
using TBLRD (table read) and TBLWT (table write)  
instructions. With RTSP, the user may write program  
memory data in blocks of 32 instructions (96 bytes) at a  
time, and erase program memory in blocks of 32, 64 and  
128 instructions (96,192 and 384 bytes) at a time.  
5.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information on Flash Pro-  
gramming, refer to the “PIC24F Family  
Reference Manual”, Section 4. “Program  
Memory” (DS39715).  
The NVMOP<1:0> (NVMCON<1:0>) bits decide the  
erase block size.  
5.1  
Table Instructions and Flash  
Programming  
The PIC24FJ64GA family of devices contains internal  
Flash program memory for storing and executing appli-  
cation code. The memory is readable, writable and  
erasable when operating with VDD over 1.8V.  
Regardless of the method used, Flash memory  
programming is done with the table read and write  
instructions. These allow direct read and write access to  
the program memory space from the data memory while  
the device is in normal operating mode. The 24-bit target  
address in the program memory is formed using the  
TBLPAG<7:0> bits and the Effective Address (EA) from  
a W register, specified in the table instruction, as  
depicted in Figure 5-1.  
Flash memory can be programmed in three ways:  
• In-Circuit Serial Programming™ (ICSP™)  
• Run-Time Self-Programming (RTSP)  
• Enhanced In-Circuit Serial Programming  
(Enhanced ICSP)  
ICSP allows a PIC24F16KA102 device to be serially  
programmed while in the end application circuit. This is  
simply done with two lines for the programming clock  
and programming data (which are named PGCx and  
PGDx, respectively), and three other lines for power  
(VDD), ground (VSS) and Master Clear/Program Mode  
Entry Voltage (MCLR/VPP). This allows customers to  
manufacture boards with unprogrammed devices and  
then program the microcontroller just before shipping  
the product. This also allows the most recent firmware  
or custom firmware to be programmed.  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 Bits  
Using  
Program  
Counter  
0
Program Counter  
0
Working Reg EA  
Using  
Table  
Instruction  
1/0  
TBLPAG Reg  
8 Bits  
16 Bits  
User/Configuration  
Space Select  
Byte  
Select  
24-Bit EA  
2008-2011 Microchip Technology Inc.  
DS39927C-page 45  
PIC24F16KA102 FAMILY  
5.2  
RTSP Operation  
5.3  
Enhanced In-Circuit Serial  
Programming  
The PIC24F Flash program memory array is organized  
into rows of 32 instructions or 96 bytes. RTSP allows  
the user to erase blocks of 1 row, 2 rows and 4 rows  
(32, 64 and 128 instructions) at a time and to program  
one row at a time. It is also possible to program single  
words.  
Enhanced ICSP uses an on-board bootloader, known  
as the program executive, to manage the programming  
process. Using an SPI data frame format, the program  
executive can erase, program and verify program  
memory. For more information on Enhanced ICSP, see  
the device programming specification.  
The 1-row (96 bytes), 2-row (192 bytes) and 4-row  
(384 bytes) erase blocks, and single row write block  
(96 bytes) are edge-aligned, from the beginning of  
program memory.  
5.4  
Control Registers  
There are two SFRs used to read and write the  
program Flash memory: NVMCON and NVMKEY.  
When data is written to program memory using TBLWT  
instructions, the data is not written directly to memory.  
Instead, data written using table writes is stored in holding  
latches until the programming sequence is executed.  
The NVMCON register (Register 5-1) controls the  
blocks that need to be erased, which memory type is to  
be programmed and when the programming cycle  
starts.  
Any number of TBLWT instructions can be executed  
and a write will be successfully performed. However,  
32 TBLWTinstructions are required to write the full row  
of memory.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 55h and AAh to the  
NVMKEY register. Refer to Section 5.5 “Programming  
Operations” for further details.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions to  
load the buffers. Programming is performed by setting  
the control bits in the NVMCON register.  
5.5  
Programming Operations  
Data can be loaded in any order and the holding  
registers can be written to multiple times before  
performing a write operation. Subsequent writes,  
however, will wipe out any previous writes.  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. During a programming or erase operation, the  
processor stalls (waits) until the operation is finished.  
Setting the WR bit (NVMCON<15>) starts the  
operation and the WR bit is automatically cleared when  
the operation is finished.  
Note:  
Writing to a location multiple times without  
erasing it is not recommended.  
All of the table write operations are single-word writes  
(two instruction cycles), because only the buffers are  
written.  
A
programming cycle is required for  
programming each row.  
DS39927C-page 46  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0, HC  
WR  
R/W-0  
R/W-0  
R/W-0  
PGMONLY(4)  
U-0  
U-0  
U-0  
U-0  
WREN  
WRERR  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
NVMOP5(1)  
R/W-0  
NVMOP4(1)  
R/W-0  
R/W-0  
R/W-0  
NVMOP1(1)  
R/W-0  
NVMOP0(1)  
bit 0  
ERASE  
NVMOP3(1) NVMOP2(1)  
bit 7  
Legend:  
SO = Settable Only bit  
‘1’ = Bit is set  
HC = Hardware Clearable bit  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
W = Writable bit  
x = Bit is unknown  
U = Unimplemented bit, read as ‘0’  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once the operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set automatically  
on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12  
bit 11-7  
bit 6  
PGMONLY: Program Only Enable bit(4)  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP<5:0> on the next WR command  
0= Perform the program operation specified by NVMOP<5:0> on the next WR command  
bit 5-0  
NVMOP<5:0>: Programming Operation Command Byte bits(1)  
Erase Operations (when ERASE bit is ‘1’):  
1010xx= Erase entire boot block (including code-protected boot block)(2)  
1001xx= Erase entire memory (including boot block, configuration block, general block)(2)  
011010= Erase 4 rows of Flash memory(3)  
011001= Erase 2 rows of Flash memory(3)  
011000= Erase 1 row of Flash memory(3)  
0101xx= Erase entire configuration block (except code protection bits)  
0100xx= Erase entire data EEPROM(4)  
0011xx= Erase entire general memory block programming operations  
0001xx= Write 1 row of Flash memory (when ERASE bit is ‘0’)(3)  
Note 1: All other combinations of NVMOP<5:0> are no operation.  
2: Available in ICSP™ mode only. Refer to device programming specification.  
3: The address in the Table Pointer decides which rows will be erased.  
4: This bit is used only while accessing data EEPROM.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 47  
PIC24F16KA102 FAMILY  
4. Write the first 32 instructions from data RAM into  
the program memory buffers (see Example 5-1).  
5.5.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of Flash program  
memory at a time by erasing the programmable row.  
The general process is:  
a) Set the NVMOP bits to ‘000100’ to  
configure for row programming. Clear the  
ERASE bit and set the WREN bit.  
b) Write 55h to NVMKEY.  
1. Read  
a
row  
of  
program  
memory  
(32 instructions) and store in data RAM.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase a row (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<5:0>) to  
011000’ to configure for row erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
c) Write AAh to NVMKEY.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration  
of the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as  
displayed in Example 5-5.  
b) Write the starting address of the block to be  
erased into the TBLPAG and W registers.  
c) Write 55h to NVMKEY.  
d) Write AAh to NVMKEY.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the  
duration of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE  
; Set up NVMCON for row erase operation  
MOV  
MOV  
#0x4058, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts  
TBLWTL W0, [W0]  
DISI  
#5  
for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
EXAMPLE 5-2:  
ERASING A PROGRAM MEMORY ROW – ‘C’ LANGUAGE CODE  
// C example using MPLAB C30  
int __attribute__ ((space(auto_psv))) progAddr = 0x1234;  
unsigned int offset;  
// Variable located in Pgm Memory, declared as a  
// global variable  
//Set up pointer to the first memory location to be written  
TBLPAG = __builtin_tblpage(&progAddr);  
offset = __builtin_tbloffset(&progAddr);  
// Initialize PM Page Boundary SFR  
// Initialize lower word of address  
__builtin_tblwtl(offset, 0x0000);  
NVMCON = 0x4058;  
// Set base address of erase block  
// with dummy latch write  
// Initialize NVMCON  
asm("DISI #5");  
__builtin_write_NVM();  
// Block all interrupts for next 5 instructions  
// C30 function to perform unlock  
// sequence and set WR  
DS39927C-page 48  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
EXAMPLE 5-3:  
LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4004, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x1500, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 32nd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-4:  
LOADING THE WRITE BUFFERS – ‘C’ LANGUAGE CODE  
// C example using MPLAB C30  
#define NUM_INSTRUCTION_PER_ROW 64  
int __attribute__ ((space(auto_psv))) progAddr = 0x1234  
unsigned int offset;  
// Variable located in Pgm Memory  
// Buffer of data to write  
// Initialize NVMCON  
unsigned int i;  
unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];  
//Set up NVMCON for row programming  
NVMCON = 0x4004;  
//Set up pointer to the first memory location to be written  
TBLPAG = __builtin_tblpage(&progAddr);  
offset = __builtin_tbloffset(&progAddr);  
// Initialize PM Page Boundary SFR  
// Initialize lower word of address  
//Perform TBLWT instructions to write necessary number of latches  
for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)  
{
__builtin_tblwtl(offset, progData[i++]);  
__builtin_tblwth(offset, progData[i]);  
offset = offset + 2;  
// Write to address low word  
// Write to upper byte  
// Increment address  
}
2008-2011 Microchip Technology Inc.  
DS39927C-page 49  
PIC24F16KA102 FAMILY  
EXAMPLE 5-5:  
INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE  
DISI  
#5  
; Block all interrupts  
for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
BTSC  
BRA  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; 2 NOPs required after setting WR  
;
; Wait for the sequence to be completed  
;
NVMCON, #15  
$-2  
EXAMPLE 5-6:  
INITIATING A PROGRAMMING SEQUENCE – ‘C’ LANGUAGE CODE  
// C example using MPLAB C30  
asm("DISI #5");  
// Block all interrupts for next 5 instructions  
// Perform unlock sequence and set WR  
__builtin_write_NVM();  
DS39927C-page 50  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
6.1  
NVMCON Register  
6.0  
DATA EEPROM MEMORY  
The NVMCON register (Register 6-1) is also the pri-  
mary control register for data EEPROM program/erase  
operations. The upper byte contains the control bits  
used to start the program or erase cycle, and the flag  
bit to indicate if the operation was successfully  
performed. The lower byte of NVMCOM configures the  
type of NVM operation that will be performed.  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on  
Data EEPROM, refer to the “PIC24F  
Family Reference Manual”, Section 5.  
“Data EEPROM” (DS39720).  
The data EEPROM memory is a Nonvolatile Memory  
(NVM), separate from the program and volatile data  
RAM. Data EEPROM memory is based on the same  
Flash technology as program memory, and is optimized  
for both long retention and a higher number of  
erase/write cycles.  
6.2  
NVMKEY Register  
The NVMKEY is a write-only register that is used to  
prevent accidental writes or erasures of data EEPROM  
locations.  
To start any programming or erase sequence, the  
following instructions must be executed first, in the  
exact order provided:  
The data EEPROM is mapped to the top of the user  
program memory space, with the top address at  
program memory address, 7FFE00h to 7FFFFFh. The  
size of the data EEPROM is 256 words in  
PIC24F16KA102 devices.  
1. Write 55h to NVMKEY.  
2. Write AAh to NVMKEY.  
After this sequence, a write will be allowed to the  
NVMCON register for one instruction cycle. In most  
cases, the user will simply need to set the WR bit in the  
NVMCON register to start the program or erase cycle.  
Interrupts should be disabled during the unlock  
sequence.  
The MPLAB® C30 C compiler provides a defined library  
procedure (builtin_write_NVM) to perform the  
unlock sequence. Example 6-1 illustrates how the  
unlock sequence can be performed with in-line  
assembly.  
The data EEPROM is organized as 16-bit wide  
memory. Each word is directly addressable, and is  
readable and writable during normal operation over the  
entire VDD range.  
Unlike the Flash program memory, normal program  
execution is not stopped during a data EEPROM  
program or erase operation.  
The data EEPROM programming operations are  
controlled using the three NVM Control registers:  
• NVMCON: Nonvolatile Memory Control Register  
• NVMKEY: Nonvolatile Memory Key Register  
• NVMADR: Nonvolatile Memory Address Register  
EXAMPLE 6-1:  
DATA EEPROM UNLOCK SEQUENCE  
//Disable Interrupts For 5 instructions  
asm volatile ("disi #5");  
//Issue Unlock Sequence  
asm volatile ("mov #0x55, W0  
mov W0, NVMKEY  
\n"  
\n"  
"
"mov #0xAA, W1  
"mov W1, NVMKEY  
\n"  
\n");  
// Perform Write/Erase operations  
asm volatile ("bset NVMCON, #WR  
"nop  
\n"  
\n"  
"nop  
\n");  
2008-2011 Microchip Technology Inc.  
DS39927C-page 51  
PIC24F16KA102 FAMILY  
REGISTER 6-1:  
NVMCON: NONVOLATILE MEMORY CONTROL REGISTER  
R/S-0, HC  
WR  
R/W-0  
WREN  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
WRERR  
PGMONLY  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ERASE  
NVMOP5  
NVMOP4  
NVMOP3  
NVMOP2  
NVMOP1  
NVMOP0  
bit 0  
bit 7  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
S = Settable bit  
‘0’ = Bit is cleared  
HC = Hardware Clearable bit  
x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
WR: Write Control bit (program or erase)  
1= Initiates a data EEPROM erase or write cycle (can be set but not cleared in software)  
0= Write cycle is complete (cleared automatically by hardware)  
WREN: Write Enable bit (erase or program)  
1= Enable an erase or program operation  
0= No operation allowed (device clears this bit on completion of the write/erase operation)  
WRERR: Flash Error Flag bit  
1= A write operation is prematurely terminated (any MCLR or WDT Reset during programming  
operation)  
0= The write operation completed successfully  
bit 12  
PGMONLY: Program Only Enable bit  
1= Write operation is executed without erasing target address(es) first  
0= Automatic erase-before-write: write operations are preceded automatically by an erase of target  
address(es)  
bit 11-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase Operation Select bit  
1= Perform an erase operation when WR is set  
0= Perform a write operation when WR is set  
bit 5-0  
NVMOP<5:0>: Programming Operation Command Byte bits  
Erase Operations (when ERASE bit is ‘1’):  
011010= Erase 8 words  
011001= Erase 4 words  
011000= Erase 1 word  
0100xx= Erase entire data EEPROM  
Programming Operations (when ERASE bit is ‘0’):  
001xx= Write 1 word  
DS39927C-page 52  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Like program memory operations, the Least Significant  
bit (LSb) of NVMADR is restricted to even addresses.  
This is because any given address in the data  
EEPROM space consists of only the lower word of the  
program memory width; the upper word, including the  
uppermost “phantom byte”, are unavailable. This  
means that the LSb of a data EEPROM address will  
always be ‘0’.  
6.3  
NVM Address Register  
As with Flash program memory, the NVM Address  
Registers, NVMADRU and NVMADR, form the 24-bit  
Effective Address (EA) of the selected row or word for  
data EEPROM operations. The NVMADRU register is  
used to hold the upper 8 bits of the EA, while the  
NVMADR register is used to hold the lower 16 bits of  
the EA. These registers are not mapped into the  
Special Function Register (SFR) space; instead, they  
directly capture the EA<23:0> of the last table write  
instruction that has been executed and selects the data  
EEPROM row to erase. Figure 6-1 depicts the program  
memory EA that is formed for programming and erase  
operations.  
Similarly, the Most Significant bit (MSb) of NVMADRU  
is always ‘0’, since all addresses lie in the user program  
space.  
FIGURE 6-1:  
DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS  
24-Bit PM Address  
7Fh  
xxxxh  
0
0
TBLPAG  
W Register EA  
NVMADRU  
NVMADR  
6.4  
Data EEPROM Operations  
Note 1: Unexpected results will be obtained  
should the user attempt to read the  
EEPROM while a programming or erase  
operation is underway.  
The EEPROM block is accessed using table read and  
write operations, similar to those used for program  
memory. The TBLWTHand TBLRDHinstructions are not  
required for data EEPROM operations, since the  
memory is only 16 bits wide (data on the lower address  
is valid only). The following programming operations  
can be performed on the data EEPROM:  
2: The C30 C compiler includes library  
procedures to automatically perform the  
table read and table write operations,  
manage the Table Pointer and write  
buffers, and unlock and initiate memory  
write sequences. This eliminates the  
need to create assembler macros or time  
critical routines in C for each application.  
• Erase one, four or eight words  
• Bulk erase the entire data EEPROM  
• Write one word  
• Read one word  
The library procedures are used in the code examples  
detailed in the following sections. General descriptions  
of each process are provided for users who are not  
using the C30 compiler libraries.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 53  
PIC24F16KA102 FAMILY  
A typical erase sequence is provided in Example 6-2.  
This example shows how to do a one-word erase. Sim-  
ilarly, a four-word erase and an eight-word erase can  
be done. This example uses ‘C’ library procedures to  
manage the Table Pointer (builtin_tblpage and  
builtin_tbloffset) and the Erase Page Pointer  
(builtin_tblwtl). The memory unlock sequence  
(builtin_write_NVM) also sets the WR bit to initiate  
the operation and returns control when complete.  
6.4.1  
ERASE DATA EEPROM  
The data EEPROM can be fully erased, or can be  
partially erased, at three different sizes: one word, four  
words or eight words. The bits, NVMOP<1:0>  
(NVMCON<1:0>), decide the number of words to be  
erased. To erase partially from the data EEPROM, the  
following sequence must be followed:  
1. Configure NVMCON to erase the required  
number of words: one, four or eight.  
2. Load TBLPAG and WREG with the EEPROM  
address to be erased.  
3. Clear NVMIF status bit and enable NVM  
interrupt (optional).  
4. Write the key sequence to NVMKEY.  
5. Set the WR bit to begin erase cycle.  
6. Either poll the WR bit or wait for the NVM  
interrupt (NVMIF set).  
EXAMPLE 6-2:  
SINGLE-WORD ERASE  
int __attribute__ ((space(eedata))) eeData = 0x1234; // Variable located in EEPROM  
unsigned int offset;  
// Set up NVMCON to erase one word of data EEPROM  
NVMCON = 0x4058;  
// Set up a pointer to the EEPROM location to be erased  
TBLPAG = __builtin_tblpage(&eeData);  
offset = __builtin_tbloffset(&eeData);  
__builtin_tblwtl(offset, 0);  
// Initialize EE Data page pointer  
// Initizlize lower word of address  
// Write EEPROM data to write latch  
asm volatile ("disi #5");  
__builtin_write_NVM();  
// Disable Interrupts For 5 Instructions  
// Issue Unlock Sequence & Start Write Cycle  
DS39927C-page 54  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
6.4.1.1  
Data EEPROM Bulk Erase  
6.4.2  
SINGLE-WORD WRITE  
To erase the entire data EEPROM (bulk erase), the  
address registers do not need to be configured  
because this operation affects the entire data  
EEPROM. The following sequence helps in performing  
bulk erase:  
To write a single word in the data EEPROM, the  
following sequence must be followed:  
1. Erase one data EEPROM word (as mentioned in  
Section 6.4.1 “Erase Data EEPROM”) if the  
PGMONLY bit (NVMCON<12>) is set to ‘1’.  
1. Configure NVMCON to Bulk Erase mode.  
2. Write the data word into the data EEPROM  
latch.  
2. Clear NVMIF status bit and enable NVM  
interrupt (optional).  
3. Program the data word into the EEPROM:  
3. Write the key sequence to NVMKEY.  
4. Set the WR bit to begin erase cycle.  
- Configure the NVMCON register to program one  
EEPROM word (NVMCON<5:0> = 0001xx).  
- Clear NVMIF status bit and enable NVM  
interrupt (optional).  
5. Either poll the WR bit or wait for the NVM  
interrupt (NVMIF is set).  
- Write the key sequence to NVMKEY.  
- Set the WR bit to begin erase cycle.  
- Either poll the WR bit or wait for the NVM  
interrupt (NVMIF is set).  
A
typical bulk erase sequence is provided in  
Example 6-3.  
- To get cleared, wait until NVMIF is set.  
A typical single-word write sequence is provided in  
Example 6-4.  
EXAMPLE 6-3:  
DATA EEPROM BULK ERASE  
// Set up NVMCON to bulk erase the data EEPROM  
NVMCON = 0x4050;  
// Disable Interrupts For 5 Instructions  
asm volatile ("disi #5");  
// Issue Unlock Sequence and Start Erase Cycle  
__builtin_write_NVM();  
EXAMPLE 6-4:  
SINGLE-WORD WRITE TO DATA EEPROM  
int __attribute__ ((space(eedata))) eeData = 0x1234; // Variable located in EEPROM,declared as a  
global variable.  
int newData;  
// New data to write to EEPROM  
unsigned int offset;  
// Set up NVMCON to erase one word of data EEPROM  
NVMCON = 0x4004;  
// Set up a pointer to the EEPROM location to be erased  
TBLPAG = __builtin_tblpage(&eeData);  
offset = __builtin_tbloffset(&eeData);  
__builtin_tblwtl(offset, newData);  
// Initialize EE Data page pointer  
// Initizlize lower word of address  
// Write EEPROM data to write latch  
asm volatile ("disi #5");  
__builtin_write_NVM();  
// Disable Interrupts For 5 Instructions  
// Issue Unlock Sequence & Start Write Cycle  
2008-2011 Microchip Technology Inc.  
DS39927C-page 55  
PIC24F16KA102 FAMILY  
A typical read sequence, using the Table Pointer manage-  
ment (builtin_tblpage and builtin_tbloffset)  
and table read (builtin_tblrdl) procedures from the  
C30 compiler library, is provided in Example 6-5.  
6.4.3  
READING THE DATA EEPROM  
To read a word from data EEPROM, the table read  
instruction is used. Since the EEPROM array is only  
16 bits wide, only the TBLRDL instruction is needed.  
The read operation is performed by loading TBLPAG  
and WREG with the address of the EEPROM location,  
followed by a TBLRDLinstruction.  
Program Space Visibility (PSV) can also be used to  
read locations in the data EEPROM.  
EXAMPLE 6-5:  
READING THE DATA EEPROM USING THE TBLRD COMMAND  
int __attribute__ ((space(eedata))) eeData = 0x1234;  
// Variable located in EEPROM,declared  
// as a global variable  
int data;  
// Data read from EEPROM  
unsigned int offset;  
// Set up a pointer to the EEPROM location to be erased  
TBLPAG = __builtin_tblpage(&eeData);  
offset = __builtin_tbloffset(&eeData);  
// Initialize EE Data page pointer  
// Initizlize lower word of address  
// Write EEPROM data to write latch  
data  
= __builtin_tblrdl(offset);  
DS39927C-page 56  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Any active source of Reset will make the SYSRST  
signal active. Many registers associated with the CPU  
and peripherals are forced to a known Reset state.  
Most registers are unaffected by a Reset; their status is  
unknown on a Power-on Reset (POR) and unchanged  
by all other Resets.  
7.0  
RESETS  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be  
reference source. For more information  
on Resets, refer to the “PIC24F Family  
Reference Manual”, Section 40. “Reset  
with Programmable Brown-out Reset”  
(DS39728).  
a
comprehensive  
Note:  
Refer to the specific peripheral or CPU  
section of this manual for register Reset  
states.  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 7-1). A POR will clear all bits except for  
the BOR and POR bits (RCON<1:0>) which are set.  
The user may set or clear any bit at any time during  
code execution. The RCON bits only serve as status  
bits. Setting a particular Reset status bit in software will  
not cause a device Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
• POR: Power-on Reset  
• MCLR: Pin Reset  
• SWR: RESETInstruction  
• WDTR: Watchdog Timer Reset  
• BOR: Brown-out Reset  
• Low-Power BOR/Deep Sleep BOR  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Opcode Reset  
• UWR: Uninitialized W Register Reset  
The RCON register also has other bits associated with  
the Watchdog Timer (WDT) and device power-saving  
states. The function of these bits is discussed in other  
sections of this manual.  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value, after a  
device Reset, will be meaningful.  
Figure 7-1 displays a simplified block diagram of the  
Reset module.  
FIGURE 7-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
POR  
BOR  
V
DD Rise  
Detect  
SYSRST  
VDD  
BOREN<1:0>  
0
00  
01  
10  
11  
Brown-out  
Reset  
RCON<SBOREN>  
SLEEP  
1
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
2008-2011 Microchip Technology Inc.  
DS39927C-page 57  
PIC24F16KA102 FAMILY  
REGISTER 7-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0, HS  
TRAPR  
R/W-0, HS  
IOPUWR  
R/W-0  
U-0  
U-0  
R/C-0, HS  
DPSLP  
R/W-0, HS  
CM  
R/W-0  
SBOREN  
PMSLP  
bit 15  
bit 8  
R/W-0, HS  
EXTR  
R/W-0, HS  
SWR  
R/W-0, HS  
SWDTEN(2)  
R/W-0, HS R/W-0, HS  
WDTO SLEEP  
R/W-0, HS  
IDLE  
R/W-1, HS  
BOR  
R/W-1, HS  
POR  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13  
SBOREN: Software Enable/Disable of BOR bit  
1= BOR is turned on in software  
0= BOR is turned off in software  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
DPSLP: Deep Sleep Mode Flag bit  
1= Deep Sleep has occurred  
0= Deep Sleep has not occurred  
bit 9  
CM: Configuration Word Mismatch Reset Flag bit  
1= A Configuration Word Mismatch has occurred  
0= A Configuration Word Mismatch has not occurred  
bit 8  
bit 7  
PMSLP: Program Memory Power During Sleep bit  
1= Program memory bias voltage remains powered during Sleep  
0= Program memory bias voltage is powered down during Sleep  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
bit 6  
bit 5  
bit 4  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS39927C-page 58  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 7-1:  
RCON: RESET CONTROL REGISTER(1) (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device has been in Idle mode  
0= Device has not been in Idle mode  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred (the BOR is also set after a POR)  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit  
1= A Power-up Reset has occurred  
0= A Power-up Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
TABLE 7-1:  
RESET FLAG BIT OPERATION  
Setting Event  
Flag Bit  
Clearing Event  
TRAPR (RCON<15>)  
IOPUWR (RCON<14>)  
CM (RCON<9>)  
Trap Conflict Event  
POR  
Illegal Opcode or Uninitialized W Register Access  
Configuration Mismatch Reset  
MCLR Reset  
POR  
POR  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
DPSLP (RCON<10>)  
POR  
RESETInstruction  
POR  
WDT Time-out  
PWRSAVInstruction, POR  
PWRSAV #SLEEPInstruction  
PWRSAV #IDLEInstruction  
POR, BOR  
POR  
POR  
POR  
PWRSAV #SLEEPinstruction with DSCON <DSEN> set  
POR  
Note: All Reset flag bits may be set or cleared by the user software.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 59  
PIC24F16KA102 FAMILY  
7.1  
Clock Source Selection at Reset  
7.2  
Device Reset Times  
If clock switching is enabled, the system clock source at  
device Reset is chosen, as shown in Table 7-2. If clock  
switching is disabled, the system clock source is always  
selected according to the oscillator Configuration bits.  
Refer to Section 9.0 “Oscillator Configuration” for  
further details.  
The Reset times for various types of device Reset are  
summarized in Table 7-3. Note that the system Reset  
signal, SYSRST, is released after the POR and PWRT  
delay times expire.  
The time at which the device actually begins to execute  
code will also depend on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable SYSRST delay times.  
TABLE 7-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
The FSCM delay determines the time at which the  
FSCM begins to monitor the system clock source after  
the SYSRST signal is released.  
Reset Type  
Clock Source Determinant  
POR  
BOR  
FNOSC Configuration bits  
(FNOSC<10:8>)  
MCLR  
WDTO  
SWR  
COSC Control bits  
(OSCCON<14:12>)  
TABLE 7-3:  
Reset Type  
POR(6)  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
Clock Source  
SYSRST Delay  
Notes  
EC  
TPOR + TPWRT  
TPOR + TPWRT  
TPOR + TPWRT  
TPOR + TPWRT  
TPOR + TPWRT  
TPOR+ TPWRT  
TPOR + TPWRT  
TPWRT  
1, 2  
FRC, FRCDIV  
LPRC  
TFRC  
TLPRC  
TLOCK  
1, 2, 3  
1, 2, 3  
1, 2, 4  
ECPLL  
FRCPLL  
TFRC + TLOCK 1, 2, 3, 4  
TOST 1, 2, 5  
TOST + TLOCK 1, 2, 4, 5  
XT, HS, SOSC  
XTPLL, HSPLL  
EC  
BOR  
2
FRC, FRCDIV  
LPRC  
TPWRT  
TFRC  
TLPRC  
TLOCK  
2, 3  
2, 3  
2, 4  
TPWRT  
ECPLL  
TPWRT  
FRCPLL  
TPWRT  
TFRC + TLOCK 2, 3, 4  
TOST 2, 5  
TFRC + TLOCK 2, 3, 4  
None  
XT, HS, SOSC  
XTPLL, HSPLL  
Any Clock  
TPWRT  
TPWRT  
All Others  
Note 1: TPOR = Power-on Reset (POR) delay.  
2: TPWRT = 64 ms nominal if the Power-up Timer (PWRT) is enabled; otherwise, it is zero.  
3: TFRC and TLPRC = RC oscillator start-up times.  
4: TLOCK = PLL lock time.  
5: TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the  
oscillator clock to the system.  
6: If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC,  
and in such cases, FRC start-up time is valid.  
Note: For detailed operating frequency and timing specifications, see Section 29.0 “Electrical Characteristics”.  
DS39927C-page 60  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
7.2.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
7.5  
Brown-out Reset (BOR)  
The PIC24F16KA102 family devices implement a BOR  
circuit, which provides the user several configuration  
and power-saving options. The BOR is controlled by  
the BORV<1:0> and BOREN<1:0> Configuration bits  
(FPOR<6:5,1:0>). There are a total of four BOR  
configurations, which are provided in Table 7-3.  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) will have a relatively long  
start-up time. Therefore, one or more of the following  
conditions is possible after SYSRST is released:  
The BOR threshold is set by the BORV<1:0> bits. If  
BOR is enabled (any values of BOREN<1:0>, except  
00’), any drop of VDD below the set threshold point will  
reset the device. The chip will remain in BOR until VDD  
rises above threshold.  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer (OST) has not  
expired (if a crystal oscillator is used).  
• The PLL has not achieved a lock (if PLL is used).  
If the Power-up Timer is enabled, it will be invoked after  
VDD rises above the threshold. Then, it will keep the chip  
in Reset for an additional time delay, TPWRT, if VDD drops  
below the threshold while the Power-up Timer is running.  
The chip goes back into a BOR and the Power-up Timer  
will be initialized. Once VDD rises above the threshold,  
the Power-up Timer will execute the additional time  
delay.  
The device will not begin to execute code until a valid  
clock source has been released to the system. There-  
fore, the oscillator and PLL start-up delays must be  
considered when the Reset delay time must be known.  
7.2.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
If the FSCM is enabled, it will begin to monitor the  
system clock source when SYSRST is released. If a  
valid clock source is not available at this time, the  
device will automatically switch to the FRC oscillator  
and the user can switch to the desired crystal oscillator  
in the Trap Service Routine (TSR).  
BOR and the Power-up Timer are independently  
configured. Enabling the BOR Reset does not  
automatically enable the PWRT.  
7.5.1  
SOFTWARE ENABLED BOR  
When BOREN<1:0> = 01, the BOR can be enabled or  
disabled by the user in software. This is done with the  
control bit, SBOREN (RCON<13>). Setting SBOREN  
enables the BOR to function as previously described.  
Clearing the SBOREN disables the BOR entirely. The  
SBOREN bit operates only in this mode; otherwise, it is  
read as ‘0’.  
7.3  
Special Function Register Reset  
States  
Most of the Special Function Registers (SFRs) associ-  
ated with the PIC24F CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function and their  
Reset values are specified in each section of this manual.  
Placing BOR under software control gives the user the  
additional flexibility of tailoring the application to its  
environment without having to reprogram the device to  
change the BOR configuration. It also allows the user  
to tailor the incremental current that the BOR con-  
sumes. While the BOR current is typically very small, it  
may have some impact in low-power applications.  
The Reset value for each SFR does not depend on the  
type of Reset with the exception of four registers. The  
Reset value for the Reset Control register, RCON, will  
depend on the type of device Reset. The Reset value  
for the Oscillator Control register, OSCCON, will  
depend on the type of Reset and the programmed  
values of the FNOSC bits in the Flash Configuration  
Word (FOSCSEL); see Table 7-2. The RCFGCAL and  
NVMCON registers are only affected by a POR.  
Note:  
Even when the BOR is under software  
control, the BOR Reset voltage level is still  
set by the BORV<1:0> Configuration bits;  
it can not be changed in software.  
7.4  
Deep Sleep BOR (DSBOR)  
Deep Sleep BOR is a very low-power BOR circuitry,  
used when the device is in Deep Sleep mode. Due to  
low-current consumption, accuracy may vary.  
The DSBOR trip point is around 2.0V. DSBOR is  
enabled by configuring DSBOREN (FDS<6>) = 1.  
DSBOREN will re-arm the POR to ensure the device will  
reset if VDD drops below the POR threshold.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 61  
PIC24F16KA102 FAMILY  
7.5.2  
DETECTING BOR  
7.5.3  
DISABLING BOR IN SLEEP MODE  
When BOR is enabled, the BOR bit (RCON<1>) is  
always reset to ‘1’ on any BOR or POR event. This  
makes it difficult to determine if a BOR event has  
occurred just by reading the state of BOR alone. A  
more reliable method is to simultaneously check the  
state of both POR and BOR. This assumes that the  
POR and BOR bits are reset to ‘0’ in the software  
immediately after any POR event. If the BOR bit is ‘1’  
while the POR bit is ‘0’, it can be reliably assumed that  
a BOR event has occurred.  
When BOREN<1:0> = 10, BOR remains under hard-  
ware control and operates as previously described.  
However, whenever the device enters Sleep mode,  
BOR is automatically disabled. When the device  
returns to any other operating mode, BOR is  
automatically re-enabled.  
This mode allows for applications to recover from  
brown-out situations, while actively executing code,  
when the device requires BOR protection the most. At  
the same time, it saves additional power in Sleep mode  
by eliminating the small incremental BOR current.  
Note:  
Even when the device exits from Deep  
Sleep mode, both the POR and BOR are  
set.  
DS39927C-page 62  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
8.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE (AIVT)  
8.0  
INTERRUPT CONTROLLER  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as displayed in Figure 8-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes will use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
intended to be  
a
comprehensive  
reference source. For more information  
on the Interrupt Controller, refer to the  
“PIC24F Family Reference Manual”,  
Section 8. “Interrupts” (DS39707).  
The PIC24F interrupt controller reduces the numerous  
peripheral interrupt request signals to a single interrupt  
request signal to the CPU. It has the following features:  
The AIVT supports emulation and debugging efforts by  
providing a means to switch between an application  
and a support environment without requiring the  
interrupt vectors to be reprogrammed. This feature also  
enables switching between applications for evaluation  
of different software algorithms at run-time. If the AIVT  
is not needed, the AIVT should be programmed with  
the same addresses used in the IVT.  
• Up to eight processor exceptions and  
software traps  
• Seven user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• Unique vector for each interrupt or exception  
source  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
8.2  
Reset Sequence  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The PIC24F devices clear their registers in response to  
a Reset, which forces the Program Counter (PC) to  
zero. The microcontroller then begins program execu-  
tion at location, 000000h. The user programs a GOTO  
instruction at the Reset address, which redirects the  
program execution to the appropriate start-up routine.  
• Fixed interrupt entry and return latencies  
8.1  
Interrupt Vector (IVT) Table  
The IVT is displayed in Figure 8-1. The IVT resides in  
the program memory, starting at location, 000004h.  
The IVT contains 126 vectors, consisting of eight  
non-maskable trap vectors, plus, up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note:  
Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
Interrupt vectors are prioritized in terms of their natural  
priority; this is linked to their position in the vector table.  
All other things being equal, lower addresses have a  
higher natural priority. For example, the interrupt  
associated with Vector 0 will take priority over interrupts  
at any other vector address.  
PIC24F16KA102  
family  
devices  
implement  
non-maskable traps and unique interrupts; these are  
summarized in Table 8-1 and Table 8-2.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 63  
PIC24F16KA102 FAMILY  
FIGURE 8-1:  
PIC24F INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
000000h  
000002h  
000004h  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000014h  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00007Ch  
00007Eh  
000080h  
(1)  
Interrupt Vector Table (IVT)  
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0000FCh  
0000FEh  
000100h  
000102h  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000114h  
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00017Ch  
00017Eh  
000180h  
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0001FEh  
000200h  
Note 1: See Table 8-2 for the interrupt vector list.  
DS39927C-page 64  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 8-1:  
TRAP VECTOR DETAILS  
IVT Address  
Vector Number  
AIVT Address  
Trap Source  
0
1
2
3
4
5
6
7
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000104h  
000106h  
000108h  
00010Ah  
00010Ch  
00010Eh  
000110h  
000112h  
Reserved  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
TABLE 8-2:  
IMPLEMENTED INTERRUPT VECTORS  
Interrupt Bit Locations  
Enable  
Vector  
Number  
AIVT  
Address  
Interrupt Source  
IVT Address  
Flag  
Priority  
ADC1 Conversion Done  
Comparator Event  
CRC Generator  
CTMU  
13  
18  
67  
77  
0
00002Eh  
000038h  
00009Ah  
0000AEh  
000014h  
00003Ch  
00004Eh  
000036h  
000034h  
000016h  
00003Ah  
0000A4h  
000032h  
000018h  
000090h  
000026h  
000028h  
00001Ah  
000022h  
000024h  
000096h  
00002Ah  
00002Ch  
000098h  
000050h  
000052h  
00012Eh  
000138h  
00019Ah  
0001AEh  
000114h  
00013Ch  
00014Eh  
000136h  
000134h  
000116h  
00013Ah  
0001A4h  
000132h  
000118h  
000190h  
000126h  
000128h  
00011Ah  
000122h  
000124h  
000196h  
00012Ah  
00012Ch  
000198h  
000150h  
000152h  
IFS0<13>  
IFS1<2>  
IFS4<3>  
IFS4<13>  
IFS0<0>  
IFS1<4>  
IFS1<13>  
IFS1<1>  
IFS1<0>  
IFS0<1>  
IFS1<3>  
IFS4<8>  
IFS0<15>  
IFS0<2>  
IFS3<14>  
IFS0<9>  
IFS0<10>  
IFS0<3>  
IFS0<7>  
IFS0<8>  
IFS4<1>  
IFS0<11>  
IFS0<12>  
IFS4<2>  
IFS1<14>  
IFS1<15>  
IEC0<13>  
IEC1<2>  
IEC4<3>  
IEC4<13>  
IEC0<0>  
IEC1<4>  
IEC1<13>  
IEC1<1>  
IEC1<0>  
IEC0<1>  
IEC1<3>  
IEC4<8>  
IEC0<15>  
IEC0<2>  
IEC3<14>  
IEC0<9>  
IEC0<10>  
IEC0<3>  
IEC0<7>  
IEC0<8>  
IEC4<1>  
IEC0<11>  
IEC0<12>  
IEC4<2>  
IEC1<14>  
IEC1<15>  
IPC3<6:4>  
IPC4<10:8>  
IPC16<14:12>  
IPC19<6:4>  
IPC0<2:0>  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
I2C1 Master Event  
I2C1 Slave Event  
Input Capture 1  
20  
29  
17  
16  
1
IPC5<2:0>  
IPC7<6:4>  
IPC4<6:4>  
IPC4<2:0>  
IPC0<6:4>  
Input Change Notification  
HLVD High/Low-Voltage Detect  
NVM – NVM Write Complete  
Output Compare 1  
Real-Time Clock/Calendar  
SPI1 Error  
19  
72  
15  
2
IPC4<14:12>  
IPC17<2:0>  
IPC3<14:12>  
IPC0<10:8>  
IPC15<10:8>  
IPC2<6:4>  
62  
9
SPI1 Event  
10  
3
IPC2<10:8>  
IPC0<14:12>  
IPC1<14:12>  
IPC2<2:0>  
Timer1  
Timer2  
7
Timer3  
8
UART1 Error  
65  
11  
12  
66  
30  
31  
IPC16<6:4>  
IPC2<14:12>  
IPC3<2:0>  
UART1 Receiver  
UART1 Transmitter  
UART2 Error  
IPC16<10:8>  
IPC7<10:8>  
IPC7<14:12>  
UART2 Receiver  
UART2 Transmitter  
2008-2011 Microchip Technology Inc.  
DS39927C-page 65  
PIC24F16KA102 FAMILY  
The INTTREG register contains the associated inter-  
rupt vector number and the new CPU interrupt priority  
level, which are latched into the Vector Number  
(VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit  
fields in the INTTREG register. The new interrupt  
priority level is the priority of the pending interrupt.  
8.3  
Interrupt Control and Status  
Registers  
The PIC24F16KA102 family of devices implements a  
total of 22 registers for the interrupt controller:  
• INTCON1  
• INTCON2  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence listed in  
Table 8-2. For example, the INT0 (External Interrupt 0)  
is depicted as having a vector number and a natural  
order priority of 0. Thus, the INT0IF status bit is found  
in IFS0<0>, the INT0IE enable bit in IEC0<0> and the  
INT0IP<2:0> priority bits in the first position of IPC0  
(IPC0<2:0>).  
• IFS0, IFS1, IFS3 and IFS4  
• IEC0, IEC1, IEC3 and IEC4  
• IPC0 through IPC5, IPC7 and IPC15 through  
IPC19  
• INTTREG  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the  
Interrupt Nesting Disable (NSTDIS) bit, as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the AIV table.  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU control registers  
contain bits that control interrupt functionality. The ALU  
STATUS register (SR) contains the IPL<2:0> bits  
(SR<7:5>). These indicate the current CPU interrupt  
priority level. The user may change the current CPU  
priority level by writing to the IPL bits.  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals, or external signal,  
and is cleared via software.  
The CORCON register contains the IPL3 bit, which  
together with IPL<2:0>, also indicates the current CPU  
priority level. IPL3 is a read-only bit so that the trap  
events cannot be masked by the user’s software.  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
All interrupt registers are described in Register 8-1  
through Register 8-21, in the following sections.  
The IPCx registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
DS39927C-page 66  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-1:  
SR: ALU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
DC(1)  
bit 15  
bit 8  
R/W-0, HSC R/W-0, HSC R/W-0, HSC  
IPL2(2,3) IPL1(2,3) IPL0(2,3)  
bit 7  
R-0, HSC  
RA(1)  
R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
N(1) OV(1) Z(1) C(1)  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-9  
bit 7-5  
Unimplemented: Read as ‘0’  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU interrupt priority level is 7 (15); user interrupts disabled  
110= CPU interrupt priority level is 6 (14)  
101= CPU interrupt priority level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
Note 1: See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.  
2: The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level.  
The value in parentheses indicates the interrupt priority level if IPL3 = 1.  
3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
Note:  
Bit 8 and Bits 4 through 0 are described in Section 3.0 “CPU”.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 67  
PIC24F16KA102 FAMILY  
REGISTER 8-2:  
CORCON: CPU CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0, HSC  
IPL3(2)  
R/W-0  
PSV(1)  
U-0  
U-0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: See Register 3-2 for the description of this bit, which is not dedicated to interrupt control functions.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.  
Note:  
Bit 2 is described in Section 3.0 “CPU”.  
DS39927C-page 68  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0, HS  
MATHERR  
R/W-0, HS  
ADDRERR  
R/W-0, HS  
STKERR  
R/W-0, HS  
OSCFAIL  
U-0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
bit 14-5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Trap Status bit  
1= Overflow trap has occurred  
0= Overflow trap has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
2008-2011 Microchip Technology Inc.  
DS39927C-page 69  
PIC24F16KA102 FAMILY  
REGISTER 8-4:  
INTCON2: INTERRUPT CONTROL REGISTER2  
R/W-0  
R-0, HSC  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ALTIVT  
DISI  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use Alternate Interrupt Vector Table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS39927C-page 70  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
R/W-0, HS  
NVMIF  
U-0  
R/W-0, HS  
AD1IF  
R/W-0, HS  
U1TXIF  
R/W-0, HS  
U1RXIF  
R/W-0, HS  
SPI1IF  
R/W-0, HS  
SPF1IF  
R/W-0, HS  
T3IF  
bit 15  
bit 8  
R/W-0, HS  
T2IF  
U-0  
U-0  
U-0  
R/W-0, HS  
T1IF  
R/W-0, HS  
OC1IF  
R/W-0, HS  
IC1IF  
R/W-0, HS  
INT0IF  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
NVMIF: NVM Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IF: A/D Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPF1IF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2008-2011 Microchip Technology Inc.  
DS39927C-page 71  
PIC24F16KA102 FAMILY  
REGISTER 8-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0, HS  
U2TXIF  
bit 15  
R/W-0, HS  
R/W-0, HS  
INT2IF  
U-0  
U-0  
U-0  
U-0  
U-0  
U2RXIF  
bit 8  
U-0  
U-0  
U-0  
R/W-0, HS  
INT1IF  
R/W-0, HS  
CNIF  
R/W-0, HS  
CMIF  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
bit 14  
bit 13  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
CMIF: Comparator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: Master I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS39927C-page 72  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-7:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
R/W-0, HS  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
RTCIF  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-0  
Unimplemented: Read as ‘0’  
2008-2011 Microchip Technology Inc.  
DS39927C-page 73  
PIC24F16KA102 FAMILY  
REGISTER 8-8:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
R/W-0, HS  
CTMUIF  
U-0  
U-0  
U-0  
U-0  
R/W-0, HS  
HLVDIF  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0, HS  
CRCIF  
R/W-0, HS  
U2ERIF  
R/W-0, HS  
U1ERIF  
U-0  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUIF: CTMU Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
HLVDIF: High/Low-Voltage Detect Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIF: CRC Generator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
U2ERIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1ERIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
DS39927C-page 74  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-9:  
IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
R/W-0  
NVMIE  
bit 15  
U-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPF1IE  
bit 8  
R/W-0  
T2IE  
U-0  
U-0  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
NVMIE: NVM Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IE: A/D Conversion Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1IE: SPI1 Transfer Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPF1IE: SPI1 Fault Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request not is enabled  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2008-2011 Microchip Technology Inc.  
DS39927C-page 75  
PIC24F16KA102 FAMILY  
REGISTER 8-10: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U2TXIE  
U2RXIE  
INT2IE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNIE  
R/W-0  
CMIE  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3  
bit 2  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
CMIE: Comparator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
bit 0  
MI2C1IE: Master I2C1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SI2C1IE: Slave I2C1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DS39927C-page 76  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-11: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
R/W-0  
RTCIE  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIE: Real-Time Clock and Calendar Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-0  
Unimplemented: Read as ‘0’  
2008-2011 Microchip Technology Inc.  
DS39927C-page 77  
PIC24F16KA102 FAMILY  
REGISTER 8-12: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CTMUIE  
HLVDIE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
CRCIE  
U2ERIE  
U1ERIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUIE: CTMU Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
HLVDIE: High/Low-Voltage Detect Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIE: CRC Generator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
U2ERIE: UART2 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1ERIE: UART1 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
DS39927C-page 78  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-13: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
T1IP2  
R/W-0  
T1IP1  
R/W-0  
T1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC1IP2  
OC1IP1  
OC1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC1IP2  
R/W-0  
IC1IP1  
R/W-0  
IC1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT0IP2  
INT0IP1  
INT0IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2008-2011 Microchip Technology Inc.  
DS39927C-page 79  
PIC24F16KA102 FAMILY  
REGISTER 8-14: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
T2IP2  
R/W-0  
T2IP1  
R/W-0  
T2IP0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11-0  
Unimplemented: Read as ‘0’  
DS39927C-page 80  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-15: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U1RXIP2  
U1RXIP1  
U1RXIP0  
SPI1IP2  
SPI1IP1  
SPI1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T3IP2  
R/W-0  
T3IP1  
R/W-0  
T3IP0  
SPF1IP2  
SPF1IP1  
SPF1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPF1IP<2:0>: SPI1 Fault Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2008-2011 Microchip Technology Inc.  
DS39927C-page 81  
PIC24F16KA102 FAMILY  
REGISTER 8-16: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
NVMIP2  
NVMIP1  
NVMIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
AD1IP2  
AD1IP1  
AD1IP0  
U1TXIP2  
U1TXIP1  
U1TXIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
NVMIP<2:0>: NVM Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39927C-page 82  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-17: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
CNIP2  
R/W-0  
CNIP1  
R/W-0  
CNIP0  
U-0  
R/W-1  
CMIP2  
R/W-0  
CMIP1  
R/W-0  
CMIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1P2  
MI2C1P1  
MI2C1P0  
SI2C1P2  
SI2C1P1  
SI2C1P0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Input Change Notification Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
CMIP<2:0>: Comparator Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1P<2:0>: Master I2C1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1P<2:0>: Slave I2C1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2008-2011 Microchip Technology Inc.  
DS39927C-page 83  
PIC24F16KA102 FAMILY  
REGISTER 8-18: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT1IP2  
INT1IP1  
INT1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39927C-page 84  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-19: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U2TXIP2  
U2TXIP1  
U2TXIP0  
U2RXIP2  
U2RXIP1  
U2RXIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT2IP2  
INT2IP1  
INT2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2008-2011 Microchip Technology Inc.  
DS39927C-page 85  
PIC24F16KA102 FAMILY  
REGISTER 8-20: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
RTCIP2  
RTCIP1  
RTCIP0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
RTCIP<2:0>: Real-Time Clock and Calendar Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS39927C-page 86  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-21: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2  
U2ERIP1  
U2ERIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1ERIP2  
U1ERIP1  
U1ERIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CRCIP<2:0>: CRC Generator Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2ERIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1ERIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2008-2011 Microchip Technology Inc.  
DS39927C-page 87  
PIC24F16KA102 FAMILY  
REGISTER 8-22: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
HLVDIP2  
HLVDIP1  
HLVDIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
REGISTER 8-23: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CTMUIP2  
CTMUIP1  
CTMUIP0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
CTMUIP<2:0>: CTMU Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39927C-page 88  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 8-24: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
R-0  
U-0  
R/W-0  
U-0  
R-0  
R-0  
R-0  
R-0  
CPUIRQ  
VHOLD  
ILR3  
ILR2  
ILR1  
ILR0  
bit 15  
bit 8  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM6  
VECNUM5 VECNUM4 VECNUM3  
VECNUM2  
VECNUM1  
VECNUM0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
CPUIRQ: Interrupt Request from Interrupt Controller CPU bit  
1= An interrupt request has occurred but has not yet been Acknowledged by the CPU (this will  
happen when the CPU priority is higher than the interrupt priority)  
0= No interrupt request is left unacknowledged  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
VHOLD: Allows Vector Number Capture and Changes what Interrupt is Stored in VECNUM bit  
1= VECNUM will contain the value of the highest priority pending interrupt, instead of the current  
interrupt  
0= VECNUM will contain the value of the last Acknowledged interrupt (last interrupt that has occurred  
with higher priority than the CPU, even if other interrupts are pending)  
bit 12  
Unimplemented: Read as ‘0’  
bit 11-8  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
0111111= Interrupt Vector pending is Number 135  
0000001= Interrupt Vector pending is Number 9  
0000000= Interrupt Vector pending is Number 8  
2008-2011 Microchip Technology Inc.  
DS39927C-page 89  
PIC24F16KA102 FAMILY  
8.4.3  
TRAP SERVICE ROUTINE (TSR)  
8.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
8.4.1  
INITIALIZATION  
To configure an interrupt source:  
1. Set the NSTDIS Control bit (INTCON1<15>) if  
nested interrupts are not desired.  
8.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits, for all  
enabled interrupt sources, may be programmed  
to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to Priority Level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POPinstruction may be  
Note: At a device Reset, the IPCx registers are  
initialized, such that all user interrupt  
sources are assigned to Priority Level 4.  
used to restore the previous SR value.  
Only user interrupts with a priority level of 7 or less can  
be disabled. Trap sources (Levels 8-15) cannot be  
disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of Priority Levels 1-6 for a fixed  
period. Level 7 interrupt sources are not disabled by  
the DISIinstruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
8.4.2  
INTERRUPT SERVICE ROUTINE  
The method that is used to declare an ISR and initialize  
the IVT with the correct vector address depends on the  
programming language (i.e., C or assembler) and the  
language development toolsuite that is used to develop  
the application. In general, the user must clear the  
interrupt flag in the appropriate IFSx register for the  
source of the interrupt that the ISR handles. Otherwise,  
the ISR will be re-entered immediately after exiting the  
routine. If the ISR is coded in assembly language, it  
must be terminated using a RETFIE instruction to  
unstack the saved PC value, SRL value and old CPU  
priority level.  
DS39927C-page 90  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
• Software-controllable switching between various  
clock sources.  
9.0  
OSCILLATOR  
CONFIGURATION  
• Software-controllable postscaler for selective  
clocking of CPU for system power savings.  
Note:  
This data sheet summarizes the fea-  
tures of this group of PIC24F devices. It  
is not intended to be a comprehensive  
reference source. For more information  
on Oscillator Configuration, refer to the  
“PIC24F Family Reference Manual”,  
Section 38. “Oscillator with 500 kHz  
Low-Power FRC” (DS39726).  
• System frequency range declaration bits for EC  
mode. When using an external clock source, the  
current consumption is reduced by setting the  
declaration bits to the expected frequency range.  
• A Fail-Safe Clock Monitor (FSCM) that detects clock  
failure and permits safe application recovery or  
shutdown.  
Figure 9-1 provides a simplified diagram of the oscillator  
system.  
The oscillator system for the PIC24F16KA102 family of  
devices has the following features:  
• A total of five external and internal oscillator options  
as clock sources, providing 11 different clock  
modes.  
• On-chip 4x Phase Locked Loop (PLL) to boost  
internal operating frequency on select internal and  
external oscillator sources.  
FIGURE 9-1:  
PIC24F16KA102 FAMILY CLOCK DIAGRAM  
Primary Oscillator  
REFOCON<15:8>  
XT, HS, EC  
OSCO  
OSCI  
Reference Clock  
Generator  
XTPLL, HSPLL  
ECPLL,FRCPLL  
4 x PLL  
REFO  
8 MHz  
4 MHz  
8 MHz  
FRC  
Oscillator  
FRCDIV  
Peripherals  
500 kHz  
LPFRC  
Oscillator  
CLKDIV<10:8>  
FRC  
CLKO  
CPU  
LPRC  
LPRC  
Oscillator  
31 kHz (nominal)  
Secondary Oscillator  
SOSC  
SOSCO  
SOSCI  
SOSCEN  
Enable  
Oscillator  
CLKDIV<14:12>  
Clock Control Logic  
Fail-Safe  
Clock  
Monitor  
WDT, PWRT, DSWDT  
Clock Source Option  
for Other Modules  
2008-2011 Microchip Technology Inc.  
DS39927C-page 91  
PIC24F16KA102 FAMILY  
9.1  
CPU Clocking Scheme  
9.2  
Initial Configuration on POR  
The system clock source can be provided by one of  
four sources:  
The oscillator source (and operating mode) that is used  
at a device Power-on Reset (POR) event is selected  
using Configuration bit settings. The Oscillator  
Configuration bit settings are located in the Configuration  
registers in the program memory (refer to Section 26.1  
“Configuration Bits” for further details). The Primary  
• Primary Oscillator (POSC) on the OSCI and OSCO  
pins  
• Secondary Oscillator (SOSC) on the SOSCI and  
SOSCO pins  
Oscillator  
Configuration  
bits,  
POSCMD<1:0>  
The PIC24F16KA102 family devices consist of two  
types of secondary oscillator:  
(FOSC<1:0>), and the Initial Oscillator Select Configura-  
tion bits, FNOSC<2:0> (FOSCSEL<2:0>), select the  
oscillator source that is used at a POR. The FRC Primary  
Oscillator with Postscaler (FRCDIV) is the default (unpro-  
grammed) selection. The secondary oscillator, or one of  
the internal oscillators, may be chosen by programming  
these bit locations. The EC mode frequency range  
Configuration bits, POSCFREQ<1:0> (FOSC<4:3>),  
optimize power consumption when running in EC  
mode. The default configuration is “frequency range is  
greater than 8 MHz”.  
- High-Power Secondary Oscillator  
- Low-Power Secondary Oscillator  
These can be selected by using the SOSCSEL  
(FOSC<5>) bit.  
• Fast Internal RC (FRC) Oscillator  
- 8 MHz FRC Oscillator  
- 500 kHz Lower Power FRC Oscillator  
• Low-Power Internal RC (LPRC) Oscillator  
The Configuration bits allow users to choose between  
the various clock modes, shown in Table 9-1.  
The primary oscillator and 8 MHz FRC sources have  
the option of using the internal 4x PLL. The frequency  
of the FRC clock source can optionally be reduced by  
the programmable clock divider. The selected clock  
source generates the processor and peripheral clock  
sources.  
9.2.1  
CLOCK SWITCHING MODE  
CONFIGURATION BITS  
The FCKSM Configuration bits (FOSC<7:6>) are used  
jointly to configure device clock switching and the  
FSCM. Clock switching is enabled only when FCKSM1  
is programmed (‘0’). The FSCM is enabled only when  
FCKSM<1:0> are both programmed (‘00’).  
The processor clock source is divided by two to produce  
the internal instruction cycle clock, FCY. In this docu-  
ment, the instruction cycle clock is also denoted by  
FOSC/2. The internal instruction cycle clock, FOSC/2, can  
be provided on the OSCO I/O pin for some operating  
modes of the primary oscillator.  
TABLE 9-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode Oscillator Source POSCMD<1:0>  
FNOSC<2:0>  
Note  
1, 2  
8 MHz FRC Oscillator with Postscaler  
(FRCDIV)  
Internal  
11  
111  
500 MHz FRC Oscillator with Postscaler  
(LPFRCDIV)  
Internal  
11  
110  
1
Low-Power RC Oscillator (LPRC)  
Internal  
Secondary  
Primary  
11  
00  
10  
101  
100  
011  
1
1
Secondary (Timer1) Oscillator (SOSC)  
Primary Oscillator (HS) with PLL Module  
(HSPLL)  
Primary Oscillator (EC) with PLL Module  
(ECPLL)  
Primary  
00  
011  
Primary Oscillator (HS)  
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Primary  
Primary  
Primary  
Internal  
10  
01  
00  
11  
010  
010  
010  
001  
8 MHz FRC Oscillator with PLL Module  
(FRCPLL)  
1
1
8 MHz FRC Oscillator (FRC)  
Internal  
11  
000  
Note 1: OSCO pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
DS39927C-page 92  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
The Clock Divider register (Register 9-2) controls the  
features associated with Doze mode, as well as the  
postscaler for the FRC oscillator.  
9.3  
Control Registers  
The operation of the oscillator is controlled by three  
Special Function Registers (SFRs):  
The FRC Oscillator Tune register (Register 9-3) allows  
the user to fine tune the FRC oscillator over a range of  
approximately ±5.25%. Each bit increment or decre-  
ment changes the factory calibrated frequency of the  
FRC oscillator by a fixed amount.  
• OSCCON  
• CLKDIV  
• OSCTUN  
The OSCCON register (Register 9-1) is the main con-  
trol register for the oscillator. It controls clock source  
switching and allows the monitoring of clock sources.  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0, HSC  
R-0, HSC  
COSC1  
R-0, HSC  
COSC0  
U-0  
R/W-x(1)  
NOSC2  
R/W-x(1)  
NOSC1  
R/W-x(1)  
NOSC0  
COSC2  
bit 15  
bit 8  
R/SO-0, HSC  
CLKLOCK  
bit 7  
U-0  
R-0, HSC(2)  
LOCK  
U-0  
R/CO-0, HS  
CF  
U-0  
R/W-0  
R/W-0  
SOSCEN  
OSWEN  
bit 0  
Legend:  
CO = Clearable Only bit  
HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit  
SO = Settable Only bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits  
111= 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)  
110= 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)  
000= 8 MHz FRC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(1)  
111= 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)  
110= 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)  
000= 8 MHz FRC Oscillator (FRC)  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: Also resets to ‘0’ during any valid clock switch or whenever a non-PLL Clock mode is selected.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 93  
PIC24F16KA102 FAMILY  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 7  
CLKLOCK: Clock Selection Lock Enabled bit  
If FSCM is enabled (FCKSM1 = 1):  
1= Clock and PLL selections are locked  
0= Clock and PLL selections are not locked and may be modified by setting the OSWEN bit  
If FSCM is disabled (FCKSM1 = 0):  
Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LOCK: PLL Lock Status bit(2)  
1= PLL module is in lock or PLL module start-up timer is satisfied  
0= PLL module is out of lock, PLL start-up timer is running or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit  
1= FSCM has detected a clock failure  
0= No clock failure has been detected  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Initiate an oscillator switch to clock source specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: Also resets to ‘0’ during any valid clock switch or whenever a non-PLL Clock mode is selected.  
DS39927C-page 94  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 9-2:  
CLKDIV: CLOCK DIVIDER REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-1  
DOZE2  
DOZE1  
DOZE0  
RCDIV2  
RCDIV1  
RCDIV0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts clear the DOZEN bit and reset the CPU and peripheral clock ratio to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: CPU and Peripheral Clock Ratio Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
bit 11  
DOZEN: DOZE Enable bit(1)  
1= DOZE<2:0> bits specify the CPU and peripheral clock ratio  
0= CPU and peripheral clock ratio are set to 1:1  
bit 10-8  
RCDIV<2:0>: FRC Postscaler Select bits  
When OSCCON (COSC<2:0>) = 111:  
111= 31.25 kHz (divide by 256)  
110= 125 kHz (divide by 64)  
101= 250 kHz (divide by 32)  
100= 500 kHz (divide by 16)  
011= 1 MHz (divide by 8)  
010= 2 MHz (divide by 4)  
001= 4 MHz (divide by 2) (default)  
000= 8 MHz (divide by 1)  
When OSCCON (COSC<2:0>) = 110:  
111= 1.95 kHz (divide by 256)  
110= 7.81 kHz (divide by 64)  
101= 15.62 kHz (divide by 32)  
100= 31.25 kHz (divide by 16)  
011= 62.5 kHz (divide by 8)  
010= 125 kHz (divide by 4)  
001= 250 kHz (divide by 2) (default)  
000= 500 kHz (divide by 1)  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 95  
PIC24F16KA102 FAMILY  
REGISTER 9-3:  
OSCTUN: FRC OSCILLATOR TUNE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
TUN5(1)  
R/W-0  
TUN4(1)  
R/W-0  
TUN3(1)  
R/W-0  
TUN2(1)  
R/W-0  
TUN1(1)  
R/W-0  
TUN0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Maximum frequency deviation  
011110  
·
·
·
000001  
000000= Center frequency, oscillator is running at factory calibrated frequency  
111111  
·
·
·
100001  
100000= Minimum frequency deviation  
Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC  
tuning range and may not be monotonic.  
DS39927C-page 96  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
9.4  
Clock Switching Operation  
With few limitations, applications are free to switch  
between any of the four clock sources (POSC, SOSC,  
FRC and LPRC) under software control and at any  
time. To limit the possible side effects that could result  
from this flexibility, PIC24F devices have a safeguard  
lock built into the switching process.  
1. The clock switching hardware compares the  
COSCx bits with the new value of the NOSCx  
bits. If they are the same, then the clock switch  
is a redundant operation. In this case, the  
OSWEN bit is cleared automatically and the  
clock switch is aborted.  
Note:  
The Primary Oscillator mode has three  
different submodes (XT, HS and EC),  
which are determined by the POSCMDx  
Configuration bits. While an application  
can switch to and from Primary Oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
2. If a valid clock switch has been initiated, the  
LOCK (OSCCON<5>) and CF (OSCCON<3>)  
bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware will wait until  
the OST expires. If the new source is using the  
PLL, then the hardware waits until a PLL lock is  
detected (LOCK = 1).  
9.4.1  
ENABLING CLOCK SWITCHING  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
To enable clock switching, the FCKSM1 Configuration bit  
in the FOSC Configuration register must be programmed  
to ‘0’. (Refer to Section 26.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is unpro-  
grammed (‘1’), the clock switching function and FSCM  
function are disabled; this is the default setting.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the  
NOSCx bits value is transferred to the COSCx  
bits.  
The NOSCx control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSCx bits (OSCCON<14:12>)  
will reflect the clock source selected by the FNOSCx  
Configuration bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT, FSCM or  
RTCC with LPRC as clock source are enabled)  
or SOSC (if SOSCEN remains enabled).  
Note 1: The processor will continue to execute  
code throughout the clock switching  
sequence. Timing-sensitive code should  
not be executed during this time.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled; it is held at ‘0’ at all  
times.  
2: Direct clock switches between any  
Primary Oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either  
direction. In these instances, the  
application must switch to FRC mode as  
a transition clock source between the two  
PLL modes.  
9.4.2  
OSCILLATOR SWITCHING  
SEQUENCE  
At a minimum, performing a clock switch requires this  
basic sequence:  
1. If desired, read the COSCx bits (OSCCON<14:12>),  
to determine the current oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write the appropriate value to the NOSCx bits  
(OSCCON<10:8>) for the new oscillator source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 97  
PIC24F16KA102 FAMILY  
The following code sequence for a clock switch is  
recommended:  
9.5  
Reference Clock Output  
In addition to the CLKO output (FOSC/2) available in  
certain oscillator modes, the device clock in the  
PIC24F16KA102 family devices can also be configured  
to provide a reference clock output signal to a port pin.  
This feature is available in all oscillator configurations  
and allows the user to select a greater range of clock  
submultiples to drive external devices in the  
application.  
1. Disable interrupts during the OSCCON register  
unlock and write sequence.  
2. Execute the unlock sequence for the OSCCON  
high byte by writing 78h and 9Ah to  
OSCCON<15:8> in two back-to-back instructions.  
3. Write new oscillator source to the NOSCx bits in  
the instruction immediately following the unlock  
sequence.  
This reference clock output is controlled by the  
REFOCON register (Register 9-4). Setting the ROEN  
bit (REFOCON<15>) makes the clock signal available  
on the REFO pin. The RODIV bits (REFOCON<11:8>)  
enable the selection of 16 different clock divider  
options.  
4. Execute the unlock sequence for the OSCCON  
low byte by writing 46h and 57h to  
OSCCON<7:0> in two back-to-back instructions.  
5. Set the OSWEN bit in the instruction immediately  
following the unlock sequence.  
6. Continue to execute code that is not  
clock-sensitive (optional).  
The ROSSLP and ROSEL bits (REFOCON<13:12>)  
control the availability of the reference output during  
Sleep mode. The ROSEL bit determines if the oscillator  
on OSC1 and OSC2, or the current system clock  
source, is used for the reference clock output. The  
ROSSLP bit determines if the reference source is  
available on REFO when the device is in Sleep mode.  
7. Invoke an appropriate amount of software delay  
(cycle counting) to allow the selected oscillator  
and/or PLL to start and stabilize.  
8. Check to see if OSWEN is ‘0’. If it is, the switch  
was successful. If OSWEN is still set, then check  
the LOCK bit to determine the cause of failure.  
To use the reference clock output in Sleep mode, both  
the ROSSLP and ROSEL bits must be set. The device  
clock must also be configured for one of the primary  
modes (EC, HS or XT); otherwise, if the ROSEL bit is  
not also set, the oscillator on OSC1 and OSC2 will be  
powered down when the device enters Sleep mode.  
Clearing the ROSEL bit allows the reference output  
frequency to change as the system clock changes  
during any clock switches.  
The core sequence for unlocking the OSCCON register  
and initiating a clock switch is provided in Example 9-1.  
EXAMPLE 9-1:  
BASIC CODE SEQUENCE  
FOR CLOCK SWITCHING  
;Place the new oscillator selection in W0  
;OSCCONH (high byte) Unlock Sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONH, w1  
#0x78, w2  
#0x9A, w3  
w2, [w1]  
w3, [w1]  
;Set new oscillator selection  
MOV.b WREG, OSCCONH  
;OSCCONL (low byte) unlock sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONL, w1  
#0x46, w2  
#0x57, w3  
w2, [w1]  
w3, [w1]  
;Start oscillator switch operation  
BSET OSCCON,#0  
DS39927C-page 98  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 9-4:  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER  
R/W-0  
ROEN  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ROSSLP  
ROSEL  
RODIV3  
RODIV2  
RODIV1  
RODIV0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROEN: Reference Oscillator Output Enable bit  
1= Reference oscillator is enabled on REFO pin  
0= Reference oscillator is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ROSSLP: Reference Oscillator Output Stop in Sleep bit  
1= Reference oscillator continues to run in Sleep  
0= Reference oscillator is disabled in Sleep  
bit 12  
ROSEL: Reference Oscillator Source Select bit  
1= Primary oscillator is used as the base clock(1)  
0= System clock is used as the base clock; base clock reflects any clock switching of the device  
bit 11-8  
RODIV<3:0>: Reference Oscillator Divisor Select bits  
1111= Base clock value divided by 32,768  
1110= Base clock value divided by 16,384  
1101= Base clock value divided by 8,192  
1100= Base clock value divided by 4,096  
1011= Base clock value divided by 2,048  
1010= Base clock value divided by 1,024  
1001= Base clock value divided by 512  
1000= Base clock value divided by 256  
0111= Base clock value divided by 128  
0110= Base clock value divided by 64  
0101= Base clock value divided by 32  
0100= Base clock value divided by 16  
0011= Base clock value divided by 8  
0010= Base clock value divided by 4  
0001= Base clock value divided by 2  
0000= Base clock value  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in  
Sleep mode.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 99  
PIC24F16KA102 FAMILY  
NOTES:  
DS39927C-page 100  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
The assembly syntax of the PWRSAV instruction is  
shown in Example 10-1.  
10.0 POWER-SAVING FEATURES  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 39. Power-Saving Features  
with Deep Sleep” (DS39727).  
Note: SLEEP_MODE and IDLE_MODE are con-  
stants, defined in the assembler include  
file, for the selected device.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset.  
When the device exits these modes, it is said to  
“wake-up”.  
The PIC24F16KA102 family of devices provides the  
ability to manage power consumption by selectively  
managing clocking to the CPU and the peripherals. In  
general, a lower clock frequency and a reduction in the  
number of circuits being clocked constitutes lower  
consumed power. All PIC24F devices manage power  
consumption in four different ways:  
10.2.1  
SLEEP MODE  
Sleep mode includes these features:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption will be reduced  
to a minimum provided that no I/O pin is sourcing  
current.  
• Clock frequency  
• Instruction-based Sleep, Idle and Deep Sleep  
modes  
• The I/O pin directions and states are frozen.  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled.  
• Software controlled Doze mode  
• Selective peripheral control in software  
Combinations of these methods can be used to  
selectively tailor an application’s power consumption,  
while still maintaining critical application features, such  
as timing-sensitive communications.  
• The LPRC clock will continue to run in Sleep  
mode if the WDT or RTCC, with LPRC as the  
clock source, is enabled.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
10.1 Clock Frequency and Clock  
Switching  
• Some device features or peripherals may  
continue to operate in Sleep mode. This includes  
items, such as the input change notification on the  
I/O ports, or peripherals that use an external clock  
input. Any peripheral that requires the system  
clock source for its operation will be disabled in  
Sleep mode.  
PIC24F devices allow for a wide range of clock  
frequencies to be selected under application control. If  
the system clock configuration is not locked, users can  
choose low-power or high-precision oscillators by simply  
changing the NOSC bits. The process of changing a  
system clock during operation, as well as limitations to  
the process, are discussed in more detail in Section 9.0  
“Oscillator Configuration”.  
The device will wake-up from Sleep mode on any of  
these events:  
• On any interrupt source that is individually  
enabled  
10.2 Instruction-Based Power-Saving  
Modes  
• On any form of device Reset  
• On a WDT time-out  
PIC24F devices have two special power-saving modes  
that are entered through the execution of a special  
PWRSAVinstruction. Sleep mode stops clock operation  
and halts all code execution; Idle mode halts the CPU  
and code execution, but allows peripheral modules to  
continue operation. Deep Sleep mode stops clock  
operation, code execution and all peripherals except  
RTCC and DSWDT. It also freezes I/O states and  
removes power to SRAM and Flash memory.  
On wake-up from Sleep, the processor will restart with  
the same clock source that was active when Sleep  
mode was entered.  
EXAMPLE 10-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV  
PWRSAV  
BSET  
#SLEEP_MODE  
#IDLE_MODE  
DSCON, #DSEN  
#SLEEP_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
; Enable Deep Sleep  
PWRSAV  
; Put the device into Deep SLEEP mode  
2008-2011 Microchip Technology Inc.  
DS39927C-page 101  
PIC24F16KA102 FAMILY  
The device has a dedicated Deep Sleep Brown-out  
Reset (DSBOR) and a Deep Sleep Watchdog Timer  
Reset (DSWDT) for monitoring voltage and time-out  
events. The DSBOR and DSWDT are independent of  
the standard BOR and WDT used with other  
power-managed modes (Sleep, Idle and Doze).  
10.2.2  
IDLE MODE  
Idle mode has these features:  
• The CPU will stop executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 10.4  
“Selective Peripheral Module Control”).  
10.2.4.1  
Entering Deep Sleep Mode  
Deep Sleep mode is entered by setting the DSEN bit in  
the DSCON register, and then executing a Sleep  
command (PWRSAV #SLEEP_MODE), within one  
instruction cycle, to minimize the chance that Deep  
Sleep will be spuriously entered.  
• If the WDT or FSCM is enabled, the LPRC will  
also remain active.  
The device will wake from Idle mode on any of these  
events:  
If the PWRSAVcommand is not given within one instruc-  
tion cycle, the DSEN bit will be cleared by the hardware  
and must be set again by the software before entering  
Deep Sleep mode. The DSEN bit is also automatically  
cleared when exiting the Deep Sleep mode.  
• Any interrupt that is individually enabled  
• Any device Reset  
• A WDT time-out  
On wake-up from Idle, the clock is re-applied to the  
CPU and instruction execution begins immediately,  
starting with the instruction following the PWRSAV  
instruction or the first instruction in the ISR.  
Note: To re-enter Deep Sleep after a Deep Sleep  
wake-up, allow a delay of at least 3 TCY  
after clearing the RELEASE bit.  
The sequence to enter Deep Sleep mode is:  
10.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
1. If the application requires the Deep Sleep WDT,  
enable it and configure its clock source (see  
Section 10.2.4.5 “Deep Sleep WDT” for  
details).  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction will be held off until entry into Sleep  
or Idle mode has completed. The device will then  
wake-up from Sleep or Idle mode.  
2. If the application requires Deep Sleep BOR,  
enable it by programming the DSBOREN  
Configuration bit (FDS<6>).  
10.2.4  
DEEP SLEEP MODE  
3. If the application requires wake-up from Deep  
Sleep on RTCC alarm, enable and configure the  
RTCC module (see Section 19.0 “Real-Time  
Clock and Calendar (RTCC)” for more  
information).  
In PIC24F16KA102 family devices, Deep Sleep mode  
is intended to provide the lowest levels of power con-  
sumption available without requiring the use of external  
switches to completely remove all power from the  
device. Entry into Deep Sleep mode is completely  
under software control. Exit from Deep Sleep mode can  
be triggered from any of the following events:  
4. If needed, save any critical application context  
data by writing it to the DSGPR0 and DSGPR1  
registers (optional).  
• POR event  
5. Enable Deep Sleep mode by setting the DSEN  
bit (DSCON<15>).  
• MCLR event  
• RTCC alarm (If the RTCC is present)  
• External Interrupt 0  
6. Enter Deep Sleep mode by issuing 3 NOP  
commands, and then a PWRSAV #0instruction.  
• Deep Sleep Watchdog Timer (DSWDT) time-out  
Any time the DSEN bit is set, all bits in the DSWAKE  
register will be automatically cleared.  
In Deep Sleep mode, it is possible to keep the device  
Real-Time Clock and Calendar (RTCC) running without  
the loss of clock cycles.  
DS39927C-page 102  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Applications which require critical data to be saved  
prior to Deep Sleep may use the Deep Sleep General  
Purpose registers, DSGPR0 and DSGPR1, or data  
EEPROM (if available). Unlike other SFRs, the  
contents of these registers are preserved while the  
device is in Deep Sleep mode. After exiting Deep  
Sleep, software can restore the data by reading the  
registers and clearing the RELEASE bit (DSCON<0>).  
10.2.4.2  
Exiting Deep Sleep Mode  
Deep Sleep mode exits on any one of the following events:  
• POR event on VDD supply. If there is no DSBOR  
circuit to re-arm the VDD supply POR circuit, the  
external VDD supply must be lowered to the  
natural arming voltage of the POR circuit.  
• DSWDT time-out. When the DSWDT timer times  
out, the device exits Deep Sleep.  
10.2.4.4  
I/O Pins During Deep Sleep  
• RTCC alarm (if RTCEN = 1).  
• Assertion (‘0’) of the MCLR pin.  
During Deep Sleep, the general purpose I/O pins retain  
their previous states and the Secondary Oscillator  
(SOSC) will remain running, if enabled. Pins that are  
configured as inputs (TRISx bit set), prior to entry into  
Deep Sleep, remain high-impedance during Deep  
Sleep. Pins that are configured as outputs (TRISx bit  
clear), prior to entry into Deep Sleep, remain as output  
pins during Deep Sleep. While in this mode, they con-  
tinue to drive the output level determined by their  
corresponding LATx bit at the time of entry into Deep  
Sleep.  
• Assertion of the INT0 pin (if the interrupt was  
enabled before Deep Sleep mode was entered).  
The polarity configuration is used to determine the  
assertion level (‘0’ or ‘1’) of the pin that will cause  
an exit from Deep Sleep mode. Exiting from Deep  
Sleep mode requires a change on the INT0 pin  
while in Deep Sleep mode.  
Note:  
Any interrupt pending when entering  
Deep Sleep mode is cleared,  
Exiting Deep Sleep mode generally does not retain the  
state of the device and is equivalent to a Power-on  
Reset (POR) of the device. Exceptions to this include  
the RTCC (if present), which remains operational  
through the wake-up, the DSGPRx registers and the  
DSWDT bit.  
Once the device wakes back up, all I/O pins continue to  
maintain their previous states, even after the device  
has finished the POR sequence and is executing appli-  
cation code again. Pins configured as inputs during  
Deep Sleep remain high-impedance and pins config-  
ured as outputs continue to drive their previous value.  
After waking up, the TRIS and LAT registers, and the  
SOSCEN bit (OSCCON<1>) are reset. If firmware  
modifies any of these bits or registers, the I/O will not  
immediately go to the newly configured states. Once  
the firmware clears the RELEASE bit (DSCON<0>),  
the I/O pins are “released”. This causes the I/O pins to  
take the states configured by their respective TRIS and  
LAT bit values.  
Wake-up events that occur from the time Deep Sleep  
exits until the time the POR sequence completes are  
ignored and are not be captured in the DSWAKE  
register.  
The sequence for exiting Deep Sleep mode is:  
1. After a wake-up event, the device exits Deep  
Sleep and performs a POR. The DSEN bit is  
cleared automatically. Code execution resumes  
at the Reset vector.  
This means that keeping the SOSC running after  
waking up requires the SOSCEN bit to be set before  
clearing RELEASE.  
2. To determine if the device exited Deep Sleep,  
read the Deep Sleep bit, DPSLP (RCON<10>).  
This bit will be set if there was an exit from Deep  
Sleep mode; if the bit is set, clear it.  
If the Deep Sleep BOR (DSBOR) is enabled, and a  
DSBOR or a true POR event occurs during Deep  
Sleep, the I/O pins will be immediately released, similar  
to clearing the RELEASE bit. All previous state infor-  
mation will be lost, including the general purpose  
DSGPR0 and DSGPR1 contents.  
3. Determine the wake-up source by reading the  
DSWAKE register.  
4. Determine if a DSBOR event occurred during  
Deep Sleep mode by reading the DSBOR bit  
(DSCON<1>).  
If a MCLR Reset event occurs during Deep Sleep, the  
DSGPRx, DSCON and DSWAKE registers will remain  
valid, and the RELEASE bit will remain set. The state  
of the SOSC will also be retained. The I/O pins, how-  
ever, will be reset to their MCLR Reset state. Since  
RELEASE is still set, changes to the SOSCEN bit  
(OSCCON<1>) cannot take effect until the RELEASE  
bit is cleared.  
5. If application context data has been saved, read  
it back from the DSGPR0 and DSGPR1  
registers.  
6. Clear the RELEASE bit (DSCON<0>).  
10.2.4.3  
Saving Context Data with the  
DSGPR0/DSGPR1 Registers  
In all other Deep Sleep wake-up cases, application  
firmware must clear the RELEASE bit in order to  
reconfigure the I/O pins.  
As exiting Deep Sleep mode causes a POR, most  
Special Function Registers reset to their default POR  
values. In addition, because VDDCORE power is not  
supplied in Deep Sleep mode, information in data RAM  
may be lost when exiting this mode.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 103  
PIC24F16KA102 FAMILY  
10.2.4.5  
Deep Sleep WDT  
10.2.4.8  
Power-on Resets (PORs)  
To enable the DSWDT in Deep Sleep mode, program  
the Configuration bit, DSWDTEN (FDS<7>). The  
device Watchdog Timer (WDT) need not be enabled for  
the DSWDT to function. Entry into Deep Sleep mode  
automatically resets the DSWDT.  
VDD voltage is monitored to produce PORs. Since exit-  
ing from Deep Sleep functionally looks like a POR, the  
technique described in Section 10.2.4.7 “Checking  
and Clearing the Status of Deep Sleep” should be  
used to distinguish between Deep Sleep and a true  
POR event.  
The DSWDT clock source is selected by the  
DSWDTOSC Configuration bit (FDS<4>). The post-  
When a true POR occurs, the entire device, including  
all Deep Sleep logic (Deep Sleep registers, RTCC,  
DSWDT, etc.) is reset.  
scaler  
options  
are  
programmed  
by  
the  
DSWDTPS<3:0> Configuration bits (FDS<3:0>). The  
minimum time-out period that can be achieved is  
2.1 ms and the maximum is 25.7 days. For more  
details on the FDS Configuration register and DSWDT  
configuration options, refer to Section 26.0 “Special  
Features”.  
10.2.4.9  
Summary of Deep Sleep Sequence  
To review, these are the necessary steps involved in  
invoking and exiting Deep Sleep mode:  
1. Device exits Reset and begins to execute its  
application code.  
10.2.4.6  
Switching Clocks in Deep Sleep Mode  
2. If DSWDT functionality is required, program the  
appropriate Configuration bit.  
Both the RTCC and the DSWDT may run from either  
SOSC or the LPRC clock source. This allows both the  
RTCC and DSWDT to run without requiring both the  
LPRC and SOSC to be enabled together, reducing  
power consumption.  
3. Select the appropriate clock(s) for the DSWDT  
and RTCC (optional).  
4. Enable and configure the DSWDT (optional).  
5. Enable and configure the RTCC (optional).  
Running the RTCC from LPRC will result in a loss of  
accuracy in the RTCC of approximately 5 to 10%. If a  
more accurate RTCC is required, it must be run from the  
SOSC clock source. The RTCC clock source is selected  
with the RTCOSC Configuration bit (FDS<5>).  
6. Write context data to the DSGPRx registers  
(optional).  
7. Enable the INT0 interrupt (optional).  
8. Set the DSEN bit in the DSCON register.  
Under certain circumstances, it is possible for the  
DSWDT clock source to be off when entering Deep  
Sleep mode. In this case, the clock source is turned on  
automatically (if DSWDT is enabled), without the need  
for software intervention. However, this can cause a  
delay in the start of the DSWDT counters. In order to  
avoid this delay when using SOSC as a clock source,  
the application can activate SOSC prior to entering  
Deep Sleep mode.  
9. Enter Deep Sleep by issuing  
a
PWRSV  
#SLEEP_MODEcommand.  
10. Device exits Deep Sleep when a wake-up event  
occurs.  
11. The DSEN bit is automatically cleared.  
12. Read and clear the DPSLP status bit in RCON,  
and the DSWAKE status bits.  
13. Read the DSGPRx registers (optional).  
14. Once all state related configurations are  
complete, clear the RELEASE bit.  
10.2.4.7  
Checking and Clearing the Status of  
Deep Sleep  
15. Application resumes normal operation.  
Upon entry into Deep Sleep mode, the status bit  
DPSLP (RCON<10>), becomes set and must be  
cleared by software.  
On power-up, the software should read this status bit to  
determine if the Reset was due to an exit from Deep  
Sleep mode and clear the bit if it is set. Of the four  
possible combinations of DPSLP and POR bit states,  
three cases can be considered:  
• Both the DPSLP and POR bits are cleared. In this  
case, the Reset was due to some event other  
than a Deep Sleep mode exit.  
• The DPSLP bit is clear, but the POR bit is set.  
This is a normal POR.  
• Both the DPSLP and POR bits are set. This  
means that Deep Sleep mode was entered, the  
device was powered down and Deep Sleep mode  
was exited.  
DS39927C-page 104  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER(1)  
R/W-0  
DSEN  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DSBOR(2)  
R/C-0, HS  
RELEASE  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
DSEN: Deep Sleep Enable bit  
1= Enters Deep Sleep on execution of PWRSAV #0  
0= Enters normal Sleep on execution of PWRSAV #0  
bit 14-2  
bit 1  
Unimplemented: Read as ‘0’  
DSBOR: Deep Sleep BOR Event bit(2)  
1= The DSBOR was active and a BOR event was detected during Deep Sleep  
0= The DSBOR was not active, or was active but did not detect a BOR event during Deep Sleep  
bit 0  
RELEASE: I/O Pin State Release bit  
1= Upon waking from Deep Sleep, I/O pins maintain their states previous to Deep Sleep entry  
0= Release I/O pins from their state previous to Deep Sleep entry, and allow their respective TRIS and  
LAT bits to control their states  
Note 1: All register bits are reset only in the case of a POR event outside of Deep Sleep mode.  
2: Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this  
re-arms POR.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 105  
PIC24F16KA102 FAMILY  
REGISTER 10-2: DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0, HS  
DSINT0  
bit 15  
bit 8  
R/W-0, HS  
DSFLT  
bit 7  
U-0  
U-0  
R/W-0, HS  
DSWDT  
R/W-0, HS  
DSRTCC  
R/W-0, HS  
DSMCLR  
U-0  
R/W-0, HS  
DSPOR(2,3)  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DSINT0: Interrupt-on-Change bit  
1= Interrupt-on-change was asserted during Deep Sleep  
0= Interrupt-on-change was not asserted during Deep Sleep  
bit 7  
DSFLT: Deep Sleep Fault Detected bit  
1= A Fault occurred during Deep Sleep, and some Deep Sleep configuration settings may have been  
corrupted  
0= No Fault was detected during Deep Sleep  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
DSWDT: Deep Sleep Watchdog Timer Time-out bit  
1= The Deep Sleep Watchdog Timer timed out during Deep Sleep  
0= The Deep Sleep Watchdog Timer did not time out during Deep Sleep  
bit 3  
bit 2  
DSRTCC: Real-Time Clock and Calendar Alarm bit  
1= The Real-Time Clock and Calendar triggered an alarm during Deep Sleep  
0= The Real-Time Clock and Calendar did not trigger an alarm during Deep Sleep  
DSMCLR: MCLR Event bit  
1= The MCLR pin was active and was asserted during Deep Sleep  
0= The MCLR pin was not active, or was active, but not asserted during Deep Sleep  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
DSPOR: Power-on Reset Event bit(2,3)  
1= The VDD supply POR circuit was active and a POR event was detected  
0= The VDD supply POR circuit was not active, or was active but did not detect a POR event  
Note 1: All register bits are cleared when the DSCON<DSEN> bit is set.  
2: All register bits are reset only in the case of a POR event outside Deep Sleep mode, except bit, DSPOR,  
which does not reset on a POR event that is caused due to a Deep Sleep exit.  
3: Unlike the other bits in this register, this bit can be set outside of Deep Sleep.  
DS39927C-page 106  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
10.3 Doze Mode  
10.4 Selective Peripheral Module  
Control  
Generally, changing clock speed and invoking one of  
the power-saving modes are the preferred strategies  
for reducing power consumption. There may be  
circumstances, however, where this is not practical. For  
example, it may be necessary for an application to  
maintain uninterrupted synchronous communication,  
even while it is doing nothing else. Reducing system  
clock speed may introduce communication errors,  
Idle and Doze modes allow users to substantially  
reduce power consumption by slowing or stopping the  
CPU clock. Even so, peripheral modules still remain  
clocked, and thus, consume power. There may be  
cases where the application needs what these modes  
do not provide: the allocation of power resources to  
CPU processing with minimal power consumption from  
the peripherals.  
while using  
a
power-saving mode may stop  
communications completely.  
PIC24F devices address this requirement by allowing  
peripheral modules to be selectively disabled, reducing  
or eliminating their power consumption. This can be  
done with two control bits:  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
• The Peripheral Enable bit, generically named,  
“XXXEN”, located in the module’s main control  
SFR.  
• The Peripheral Module Disable (PMD) bit,  
generically named, “XXXMD”, located in one of  
the PMD Control registers.  
Both bits have similar functions in enabling or disabling  
its associated module. Setting the PMD bit for a module  
disables all clock sources to that module, reducing its  
power consumption to an absolute minimum. In this  
state, the control and status registers associated with  
the peripheral will also be disabled, so writes to those  
registers will have no effect and read values will be  
invalid. Many peripheral modules have a corresponding  
PMD bit.  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default.  
It is also possible to use Doze mode to selectively reduce  
power consumption in event driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU Idles, waiting for something to invoke an  
interrupt routine. Enabling the automatic return to  
full-speed CPU operation on interrupts is enabled by set-  
ting the ROI bit (CLKDIV<15>). By default, interrupt  
events have no effect on Doze mode operation.  
In contrast, disabling a module by clearing its XXXEN  
bit disables its functionality, but leaves its registers  
available to be read and written to. Power consumption  
is reduced, but not by as much as the PMD bits are  
used. Most peripheral modules have an enable bit;  
exceptions include capture, compare and RTCC.  
To achieve more selective power savings, peripheral  
modules can also be selectively disabled when the  
device enters Idle mode. This is done through the control  
bit of the generic name format, “XXXIDL”. By default, all  
modules that can operate during Idle mode will do so.  
Using the disable on Idle feature disables the module  
while in Idle mode, allowing further reduction of power  
consumption during Idle mode, enhancing power  
savings for extremely critical power applications.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 107  
PIC24F16KA102 FAMILY  
REGISTER 10-3: PMD1: PERIPHERAL MODULE DISABLE REGISTER 1  
U-0  
U-0  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
U2MD  
R/W-0  
U1MD  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
I2C1MD  
SPI1MD  
ADC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled. All Timer3 registers are held in Reset and are not writable.  
0= Timer3 module is enabled  
bit 12  
bit 11  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled. All Timer2 registers are held in Reset and are not writable.  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled. All Timer1 registers are held in Reset and are not writable.  
0= Timer1 module is enabled  
bit 10-8  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled. All I2C1 registers are held in Reset and are not writable.  
0= I2C1 module is enabled  
bit 6  
bit 5  
U2MD: UART2 Module Disable bit  
1= UART2 module is disabled. All UART2 registers are held in Reset and are not writable.  
0= UART2 module is enabled  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled. All UART1 registers are held in Reset and are not writable.  
0= UART1 module is enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled. All SPI1 registers are held in Reset and are not writable.  
0= SPI1 module is enabled  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
ADC1MD: A/D Module Disable bit  
1= A/D module is disabled. All A/D registers are held in Reset and are not writable.  
0= A/D module is enabled  
DS39927C-page 108  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 10-4: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
I2C1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
I2C1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled. All Input Capture registers are held in Reset and are not writable.  
0= Input Capture 1 module is writable  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
OC1MD: Input Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled. All Output Compare registers are held in Reset and are not  
writable.  
0= Output Compare 1 module is writable  
2008-2011 Microchip Technology Inc.  
DS39927C-page 109  
PIC24F16KA102 FAMILY  
REGISTER 10-5: PMD3: PERIPHERAL MODULE DISABLE REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
CMPMD  
RTCCMD  
bit 15  
bit 8  
bit 0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
CRCMD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CMPMD: Comparator Module Disable bit  
1= Comparator module is disabled. All Comparator Module registers are held in Reset and are not  
writable.  
0= Comparator module is enabled  
bit 9  
RTCCMD: RTCC Module Disable bit  
1= RTCC module is disabled. All RTCC module registers are held in Reset and are not writable.  
0= RTCC module is enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
CRCMD: CRC Module Disable bit  
1= CRC module is disabled. All CRC registers are held in Reset and are not writable.  
0= CRC module is enabled  
bit 6-0  
Unimplemented: Read as ‘0’  
DS39927C-page 110  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 10-6: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
EEMD  
R/W-0  
R/W-0  
R/W-0  
U-0  
REFOMD  
CTMUMD  
HLVDMD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
EEMD: EEPROM Memory Module Disable bit  
1= Disable EEPROM memory Flash panel, minimizing current consumption  
0= EEPROM memory is disabled  
bit 3  
REFOMD: Reference Oscillator Module Disable bit  
1= Reference oscillator module is disabled. All Reference Oscillator registers are held in Reset and  
are not writable  
0= Reference Oscillator module is enabled  
bit 2  
bit 1  
bit 0  
CTMUMD: CTMU Module Disable bit  
1= CTMU module is disabled. All CTMU registers are held in Reset and are not writable.  
0= CTMU module is enabled  
HLVDMD: HLVD Module Disable bit  
1= HLVD module is disabled. All HLVD registers are held in Reset and are not writable.  
0= HLVD module is enabled  
Unimplemented: Read as ‘0’  
2008-2011 Microchip Technology Inc.  
DS39927C-page 111  
PIC24F16KA102 FAMILY  
NOTES:  
DS39927C-page 112  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
may be read, but the output driver for the parallel port  
bit will be disabled. If a peripheral is enabled, but the  
peripheral is not actively driving a pin, that pin may be  
driven by a port.  
11.0 I/O PORTS  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information on the I/O  
ports, refer to the “PIC24F Family Refer-  
ence Manual”, Section 12. “I/O Ports with  
Peripheral Pin Select (PPS)” (DS39711).  
Note that the PIC24F16KA102 family  
devices do not support Peripheral Pin  
Select features.  
All port pins have three registers directly associated  
with their operation as digital I/O. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the Data Latch register (LATx), read  
the latch. Writes to the latch, write the latch. Reads  
from the port (PORTx), read the port pins, while writes  
to the port pins, write the latch.  
All of the device pins (except VDD and VSS) are shared  
between the peripherals and the parallel I/O ports. All  
I/O input ports feature Schmitt Trigger inputs for  
improved noise immunity.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers, and the port pin will read as zeros.  
11.1 Parallel I/O (PIO) Ports  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 11-1  
displays how ports are shared with other peripherals  
and the associated I/O pin to which they are connected.  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
Note:  
The I/O pins retain their state during Deep  
Sleep. They will retain this state at  
wake-up until the software restore bit  
(RELEASE) is cleared.  
FIGURE 11-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O  
1
Output Enable  
0
1
0
PIO Module  
Output Data  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
2008-2011 Microchip Technology Inc.  
DS39927C-page 113  
PIC24F16KA102 FAMILY  
clocks are disabled. Depending on the device pin  
count, there are up to 23 external signals (CN0 through  
CN22) that may be selected (enabled) for generating  
an interrupt request on a Change-of-State.  
11.1.1  
OPEN-DRAIN CONFIGURATION  
In addition to the PORT, LAT and TRIS registers for  
data control, each port pin can also be individually  
configured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits  
configures the corresponding pin to act as an  
open-drain output.  
There are six control registers associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
The maximum open-drain voltage allowed is the same  
as the maximum VIH specification.  
Each CN pin also has a weak pull-up/pull-down  
connected to it. The pull-ups act as a current source  
that is connected to the pin and the pull-downs act as a  
current sink to eliminate the need for external resistors  
when push button or keypad devices are connected.  
11.2 Configuring Analog Port Pins  
The use of the AD1PCFG and TRIS register controls  
the operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their  
corresponding TRIS bit set (input). If the TRIS bit is  
cleared (output), the digital output level (VOH or VOL)  
will be converted.  
On any pin, only the pull-up resistor or the pull-down  
resistor should be enabled, but not both of them. If the  
push button or the keypad is connected to VDD, enable  
the pull-down, or if they are connected to VSS, enable  
the pull-up resistors. The pull-ups are enabled  
separately using the CNPU1 and CNPU2 registers,  
which contain the control bits for each of the CN pins.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
Analog levels on any pin that is defined as a digital  
input (including the ANx pins) may cause the input  
buffer to consume current that exceeds the device  
specifications.  
Setting any of the control bits enables the weak  
pull-ups for the corresponding pins. The pull-downs are  
enabled separately using the CNPD1 and CNPD2  
registers, which contain the control bits for each of the  
CN pins. Setting any of the control bits enables the  
weak pull-downs for the corresponding pins.  
11.2.1  
I/O PORT WRITE/READ TIMING  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically, this instruction  
would be a NOP.  
When the internal pull-up is selected, the pin uses VDD  
as the pull-up source voltage. When the internal  
pull-down is selected, the pins are pulled down to VSS  
by an internal resistor. Make sure that there is no  
external pull-up source/pull-down sink when the  
internal pull-ups/pull-downs are enabled.  
11.3 Input Change Notification  
The input change notification function of the I/O ports  
allows the PIC24F16KA102 family of devices to  
generate interrupt requests to the processor in  
response to a Change-of-State (COS) on selected  
input pins. This feature is capable of detecting input  
Change-of-States even in Sleep mode, when the  
Note:  
Pull-ups and pull-downs on change  
notification pins should always be  
disabled whenever the port pin is  
configured as a digital output.  
EXAMPLE 11-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
0xFF00, W0;  
W0, TRISBB;  
//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs  
NOP;  
//Delay 1 cycle  
BTSS PORTB, #13;  
//Next Instruction  
Equivalent ‘C’ Code  
TRISB = 0xFF00;  
NOP();  
//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs  
//Delay 1 cycle  
if(PORTBbits.RB13 == 1)  
// execute following code if PORTB pin 13 is set.  
{
}
DS39927C-page 114  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Figure 12-1 presents a block diagram of the 16-bit  
Timer1 module.  
12.0 TIMER1  
Note:  
This data sheet summarizes the features  
To configure Timer1 for operation:  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on  
Timers, refer to the “PIC24F Family Refer-  
ence Manual”, Section 14. “Timers”  
(DS39704).  
1. Set the TON bit (= 1).  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Set or clear the TSYNC bit to configure  
synchronous or asynchronous operation.  
The Timer1 module is a 16-bit timer which can serve as  
the time counter for the Real-Time Clock (RTC), or  
operate as a free-running, interval timer/counter. Timer1  
can operate in three modes:  
5. Load the timer period value into the PR1  
register.  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP<2:0>, to set  
the interrupt priority.  
• 16-Bit Timer  
• 16-Bit Synchronous Counter  
• 16-Bit Asynchronous Counter  
Timer1 also supports these features:  
• Timer Gate Operation  
• Selectable Prescaler Settings  
• Timer Operation During CPU Idle and Sleep  
modes  
• Interrupt on 16-Bit Period Register Match or  
Falling Edge of External Gate Signal  
FIGURE 12-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
T1CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
Sync  
1
Comparator  
PR1  
TSYNC  
2008-2011 Microchip Technology Inc.  
DS39927C-page 115  
PIC24F16KA102 FAMILY  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from T1CK pin (on the rising edge)  
0= Internal clock (FOSC/2)  
Unimplemented: Read as ‘0’  
DS39927C-page 116  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
To configure Timer2/3 for 32-bit operation:  
13.0 TIMER2/3  
1. Set the T32 bit (T2CON<3> = 1).  
Note:  
This data sheet summarizes the features  
2. Select the prescaler ratio for Timer2 using the  
TCKPS<1:0> bits.  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on  
Timers, refer to the “PIC24F Family Refer-  
ence Manual”, Section 14. “Timers”  
(DS39704).  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value. PR3 will contain the  
msw of the value while PR2 contains the lsw.  
5. If interrupts are required, set the interrupt enable  
bit, T3IE. Use the priority bits, T3IP<2:0>, to set  
the interrupt priority.  
The Timer2/3 module is a 32-bit timer, which can also be  
configured as two independent 16-bit timers with  
selectable operating modes.  
While Timer2 controls the timer, the interrupt  
appears as a Timer3 interrupt.  
As a 32-bit timer, Timer2/3 operates in three modes:  
• Two independent 16-bit timers (Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
6. Set the TON bit (= 1).  
The timer value, at any point, is stored in the register  
pair, TMR<3:2>. TMR3 always contains the msw of the  
count, while TMR2 contains the lsw.  
• Single 32-bit timer  
• Single 32-bit synchronous counter  
To configure any of the timers for individual 16-bit  
operation:  
They also support these features:  
• Timer gate operation  
1. Clear the T32 bit in T2CON<3>.  
• Selectable prescaler settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-bit Period register match  
• A/D Event Trigger  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
Individually, both of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the A/D event trigger  
(this is implemented only with Timer3). The operating  
modes and enabled features are determined by setting  
the appropriate bit(s) in the T2CON and T3CON  
registers. T2CON and T3CON are provided in generic  
form in Register 13-1 and Register 13-2, respectively.  
4. Load the timer period value into the PRx register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE; use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
6. Set the TON bit (TxCON<15> = 1).  
For 32-bit timer/counter operation, Timer2 is the least  
significant word (lsw) and Timer3 is the most significant  
word (msw) of the 32-bit timer.  
Note:  
For 32-bit operation, T3CON control bits  
are ignored. Only T2CON control bits are  
used for setup and control. Timer2 clock  
and gate inputs are utilized for the 32-bit  
timer modules, but an interrupt is  
generated with the Timer3 interrupt flags.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 117  
PIC24F16KA102 FAMILY  
FIGURE 13-1:  
TIMER2/3 (32-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TCY  
TGATE  
TGATE  
TCS  
1
Q
Q
D
Set T3IF  
CK  
0
PR3  
PR2  
A/D Event Trigger  
Equal  
MSB  
Comparator  
LSB  
TMR3  
TMR2  
Sync  
Reset  
16  
(1)  
Read TMR2  
(1)  
Write TMR2  
16  
16  
TMR3HLD  
16  
Data Bus<15:0>  
Note 1: The 32-Bit Timer Configuration (T32) bit must be set for 32-bit timer/counter operation. All control bits  
are respective to the T2CON register.  
DS39927C-page 118  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 13-2:  
TIMER2 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TGATE  
TCS  
TGATE  
TCY  
Q
D
1
0
Set T2IF  
Q
CK  
Reset  
Equal  
TMR2  
Sync  
Comparator  
PR2  
FIGURE 13-3:  
TIMER3 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
1x  
01  
00  
Sync  
T3CK  
Prescaler  
1, 8, 64, 256  
TGATE  
TCS  
TCY  
TGATE  
Q
Q
D
1
0
Set T3IF  
CK  
Reset  
Equal  
TMR3  
A/D Event Trigger  
Comparator  
PR3  
2008-2011 Microchip Technology Inc.  
DS39927C-page 119  
PIC24F16KA102 FAMILY  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(1)  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timer2 On bit  
When T2CON<3> = 1:  
1= Starts 32-bit Timer2/3  
0= Stops 32-bit Timer2/3  
When T2CON<3> = 0:  
1= Starts 16-bit Timer2  
0= Stops 16-bit Timer2  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer2 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timer2 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-Bit Timer Mode Select bit(1)  
1= Timer2 and Timer3 form a single 32-bit timer  
0= Timer2 and Timer3 act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer2 Clock Source Select bit  
1= External clock from pin, T2CK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: In 32-bit mode, the T3CON control bits do not affect 32-bit timer operation.  
DS39927C-page 120  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 13-2: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS1(1)  
R/W-0  
TCKPS0(1)  
U-0  
U-0  
R/W-0  
TCS(1)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timer3 On bit(1)  
1= Starts 16-bit Timer3  
0= Stops 16-bit Timer3  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer3 Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer3 Clock Source Select bit(1)  
1= External clock from the T3CK pin (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timer3 operation; all timer  
functions are set through T2CON.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 121  
PIC24F16KA102 FAMILY  
NOTES:  
DS39927C-page 122  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
The PIC24F16KA102 family devices have one input  
capture channel. The input capture module has  
multiple operating modes, which are selected via the  
IC1CON register. The operating modes include:  
14.0 INPUT CAPTURE  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be comprehensive  
a
• Capture timer value on every falling edge of input  
applied at the IC1 pin  
reference source. For more information  
on Input Capture, refer to the “PIC24F  
Family Reference Manual”, Section 15.  
“Input Capture” (DS39701).  
• Capture timer value on every rising edge of input  
applied at the IC1 pin  
• Capture timer value on every 4th rising edge of  
input applied at the IC1 pin  
• Capture timer value on every 16th rising edge of  
input applied at the IC1 pin  
The input capture module is used to capture a timer  
value from one of two selectable time bases upon an  
event on an input pin.  
The input capture features are quite useful in  
applications requiring frequency (Time Period) and  
pulse measurement. Figure 14-1 depicts a simplified  
block diagram of the input capture module.  
• Capture timer value on every rising and every  
falling edge of input applied at the IC1 pin  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
The input capture module has a four-level FIFO buffer.  
The number of capture events required to generate a  
CPU interrupt can be selected by the user.  
FIGURE 14-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-Bit Timers  
TMRy TMRx  
16  
16  
ICTMR  
(IC1CON<7>)  
1
0
Prescaler  
Counter  
(1, 4, 16)  
FIFO  
R/W  
Logic  
Edge Detection Logic  
Clock Synchronizer  
IC1 Pin  
ICM<2:0> (IC1CON<2:0>)  
3
Mode Select  
ICOV, ICBNE (IC1CON<4:3>)  
IC1BUF  
ICI<1:0>  
Interrupt  
Logic  
IC1CON  
System Bus  
Set Flag IC1IF  
(in IFSn Register)  
2008-2011 Microchip Technology Inc.  
DS39927C-page 123  
PIC24F16KA102 FAMILY  
14.1 Input Capture Registers  
REGISTER 14-1: IC1CON: INPUT CAPTURE 1 CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
R/W-0  
ICI1  
R/W-0  
ICI0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
ICM2  
R/W-0  
ICM1  
R/W-0  
ICM0  
ICTMR  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture 1 Module Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture 1 Timer Select bit  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture 1 Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture 1 Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture 1 Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode (rising edge  
detect only, all other control bits are not applicable)  
110= Unused (module is disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling) – ICI<1:0> bits do not control interrupt generation  
for this mode  
000= Input capture module is turned off  
DS39927C-page 124  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
10. To initiate another single pulse output, change  
the Timer and Compare register settings, if  
needed, and then issue a write to set the OCM  
bits to ‘100’. Disabling and re-enabling of the  
timer and clearing the TMRy register are not  
required, but may be advantageous for defining  
a pulse from a known event time boundary.  
15.0 OUTPUT COMPARE  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on  
Output Compare, refer to the “PIC24F  
Family Reference Manual”, Section 16.  
“Output Compare” (DS39706).  
The output compare module does not have to be  
disabled after the falling edge of the output pulse.  
Another pulse can be initiated by rewriting the value of  
the OC1CON register.  
15.1 Setup for Single Output Pulse  
Generation  
15.2 Setup for Continuous Output  
Pulse Generation  
When the OCM control bits (OC1CON<2:0>) are set to  
100’, the selected output compare channel initializes  
the OC1 pin to the low state and generates a single  
output pulse.  
When the OCM control bits (OC1CON<2:0>) are set to  
101’, the selected output compare channel initializes  
the OC1 pin to the low state and generates output  
pulses on each and every compare match event.  
To generate a single output pulse, the following steps  
are required (these steps assume the timer source is  
initially turned off, but this is not a requirement for the  
module operation):  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required (these steps assume the timer  
source is initially turned off, but this is not a requirement  
for the module operation):  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
3. Calculate the time to the falling edge of the pulse  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in Steps 2 and 3  
above into the Output Compare 1 register,  
OC1R, and the Output Compare 1 Secondary  
register, OC1RS, respectively.  
5. Set Timer Period register, PRy, to value equal to  
or greater than the value in OC1RS, the Output  
Compare 1 Secondary register.  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
3. Calculate the time to the falling edge of the pulse  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in Step 2 and 3 above  
into the Output Compare 1 register, OC1R, and the  
Output Compare 1 Secondary register, OC1RS,  
respectively.  
6. Set the OCM bits to ‘100’ and the OCTSEL  
(OC1CON<3>) bit to the desired timer source.  
The OC1 pin state will now be driven low.  
7. Set the TON (TyCON<15>) bit to ‘1’, which  
enables the compare time base to count.  
5. Set the Timer Period register, PRy, to a value  
equal to or greater than the value in OC1RS.  
6. Set the OCM bits to ‘101’ and the OCTSEL bit to  
the desired timer source. The OC1 pin state will  
now be driven low.  
8. Upon the first match between TMRy and OC1R,  
the OC1 pin will be driven high.  
7. Enable the compare time base by setting the  
TON (TyCON<15>) bit to ‘1’.  
9. When the incrementing timer, TMRy, matches  
the Output Compare 1 Secondary register,  
OC1RS, the second and trailing edge  
(high-to-low) of the pulse is driven onto the OC1  
pin. No additional pulses are driven onto the  
OC1 pin and it remains low. As a result of the  
second compare match event, the OC1IF inter-  
rupt flag bit is set, which will result in an interrupt  
if it is enabled, by setting the OC1IE bit. For  
further information on peripheral interrupts, refer  
to Section 8.0 “Interrupt Controller”.  
8. Upon the first match between TMRy and OC1R,  
the OC1 pin will be driven high.  
9. When the compare time base, TMRy, matches the  
OC1RS, the second and trailing edge (high-to-low)  
of the pulse is driven onto the OC1 pin.  
10. As a result of the second compare match event,  
the OC1IF interrupt flag bit is set.  
11. When the compare time base and the value in its  
respective Timer Period register match, the TMRy  
register resets to 0x0000 and resumes counting.  
12. Steps 8 through 11 are repeated and a continu-  
ous stream of pulses is generated indefinitely.  
The OC1IF flag is set on each OC1RS/TMRy  
compare match event.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 125  
PIC24F16KA102 FAMILY  
EQUATION 15-1: CALCULATING THE PWM  
PERIOD(1)  
PWM Period = [(PRy) + 1] • TCY • (Timer Prescale Value)  
15.3 Pulse-Width Modulation (PWM)  
Mode  
The following steps should be taken when configuring  
the output compare module for PWM operation:  
where:  
PWM Frequency = 1/[PWM Period]  
1. Set the PWM period by writing to the selected  
Timer Period register (PRy).  
Note 1: Based on TCY = 2 * TOSC; Doze mode  
and PLL are disabled.  
2. Set the PWM duty cycle by writing to the OC1RS  
register.  
Note:  
A PRy value of N will produce a PWM  
period of N + 1 time base count cycles. For  
example, a value of 7, written into the PRy  
register, will yield a period consisting of  
8 time base cycles.  
3. Write the OC1R register with the initial duty  
cycle.  
4. Enable interrupts, if required, for the timer and  
output compare modules. The output compare  
interrupt is required for PWM Fault pin  
utilization.  
15.3.2  
PWM DUTY CYCLE  
5. Configure the output compare module for one of  
two PWM Operation modes by writing to the  
Output Compare Mode bits, OCM<2:0>  
(OC1CON<2:0>).  
The PWM duty cycle is specified by writing to the  
OC1RS register. The OC1RS register can be written to  
at any time, but the duty cycle value is not latched into  
OC1R until a match between PRy and TMRy occurs  
(i.e., the period is complete). This provides a double  
buffer for the PWM duty cycle and is essential for  
glitchless PWM operation. In PWM mode, OC1R is a  
read-only register.  
6. Set the TMRy prescale value and enable the  
time base by setting TON (TxCON<15>) = 1.  
Note:  
The OC1R register should be initialized  
before the output compare module is first  
enabled. The OC1R register becomes a  
read-only Duty Cycle register when the  
module is operated in the PWM modes.  
The value held in OC1R will become the  
PWM duty cycle for the first PWM period.  
The contents of the Output Compare 1  
Secondary register, OC1RS, will not be  
transferred into OC1R until a time base  
period match occurs.  
Some important boundary parameters of the PWM duty  
cycle include:  
• If the Output Compare 1 register, OC1R, is loaded  
with 0000h, the OC1 pin will remain low (0% duty  
cycle).  
• If OC1R is greater than PRy (Timer Period  
register), the pin will remain high (100% duty  
cycle).  
• If OC1R is equal to PRy, the OC1 pin will be low  
for one time base count value and high for all  
other count values.  
15.3.1  
PWM PERIOD  
The PWM period is specified by writing to PRy, the  
Timer Period register. The PWM period can be  
calculated using Equation 15-1.  
See Example 15-1 for PWM mode timing details.  
Table 15-1 provides an example of PWM frequencies  
and resolutions for a device operating at 10 MIPS.  
EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION(1)  
FCY  
log10  
(
)
FPWM • (Timer Prescale Value)  
bits  
Maximum PWM Resolution (bits) =  
log10(2)  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
DS39927C-page 126  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
EXAMPLE 15-1:  
PWM PERIOD AND DUTY CYCLE CALCULATIONS(1)  
1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL  
(32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.  
TCY = 2 * TOSC = 62.5 ns  
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 s  
PWM Period = (PR2 + 1) • TCY • (Timer 2 Prescale Value)  
19.2 s = (PR2 + 1) • 62.5 ns • 1  
PR2 = 306  
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz  
device clock rate:  
PWM Resolution = log10(FCY/FPWM)/log102) bits  
= (log10(16 MHz/52.08 kHz)/log102) bits  
= 8.3 bits  
Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.  
TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)(1)  
PWM Frequency  
7.6 Hz  
61 Hz  
122 Hz  
977 Hz  
3.9 kHz  
31.3 kHz  
125 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)(1)  
PWM Frequency  
30.5 Hz  
244 Hz  
488 Hz  
3.9 kHz  
15.6 kHz  
125 kHz  
500 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 127  
PIC24F16KA102 FAMILY  
FIGURE 15-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
(1)  
OC1IF  
(1)  
OC1RS  
Output  
Logic  
(1)  
S
R
Q
(1)  
OC1R  
OC1  
Output Enable  
3
OCM<2:0>  
Mode Select  
(2)  
Comparator  
OCFA  
OCTSEL  
0
1
0
1
16  
16  
Period Match Signals  
from Time Bases  
TMR Register Inputs  
from Time Bases  
(3)  
(3)  
Note 1: Where ‘x’ is depicted, reference is made to the registers associated with the respective Output Compare Channel 1.  
2: OCFA pin controls OC1 channel.  
3: Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the time  
bases associated with the module.  
DS39927C-page 128  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
15.4 Output Compare Register  
REGISTER 15-1: OC1CON: OUTPUT COMPARE 1 CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R-0, HC  
OCFLT  
R/W-0  
R/W-0  
OCM2  
R/W-0  
OCM1  
R/W-0  
OCM0  
OCTSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare 1 in Idle Mode Control bit  
1= Output Compare 1 will halt in CPU Idle mode  
0= Output Compare 1 will continue to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in HW only)  
0= No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)  
bit 3  
OCTSEL: Output Compare 1 Timer Select bit  
1= Timer3 is the clock source for Output Compare 1  
0= Timer2 is the clock source for Output Compare 1  
Refer to the device data sheet for specific time bases available to the output compare module.  
bit 2-0  
OCM<2:0>: Output Compare 1 Mode Select bits  
111= PWM mode on OC1, Fault pin; OCF1 enabled(1)  
110= PWM mode on OC1, Fault pin; OCF1 disabled(1)  
101= Initialize OC1 pin low, generate continuous output pulses on OC1 pin  
100= Initialize OC1 pin low, generate single output pulse on OC1 pin  
011= Compare event toggles OC1 pin  
010= Initialize OC1 pin high, compare event forces OC1 pin low  
001= Initialize OC1 pin low, compare event forces OC1 pin high  
000= Output compare channel is disabled  
Note 1: The OCFA pin controls the OC1 channel.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 129  
PIC24F16KA102 FAMILY  
REGISTER 15-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMBUSDEL(3) OC1TRIS(2) RTSECSEL1  
RTSECSEL0  
(1,4)  
(1,4)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-5  
bit 3  
Unimplemented: Read as ‘0’  
OC1TRIS: OC1 Output Tri-State Select bit(2)  
1= OC1 output will not be active on the pin; OCPWM1 can still be used for internal triggers  
0= OC1 output will be active on the pin based on the OCPWM1 module settings  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.  
2: To enable the actual OC1 output, the OCPWM1 module has to be enabled.  
3: Bit 4 is described in Section 17.0 “Inter-Integrated Circuit (I2C™)”.  
4: Bits 2 and 1 are described in Section 19.0 Real-Time Clock and Calendar (RTCC).  
DS39927C-page 130  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
The devices of the PIC24F16KA102 family offer one  
SPI module on a device.  
16.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
Note:  
In this section, the SPI module is referred  
to as SPI1, or separately as SPI1. Special  
Function Registers (SFRs) will follow a  
similar notation. For example, SPI1CON1  
or SPI1CON2 refers to the control register  
for the SPI1 module.  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information on the Serial  
Peripheral Interface, refer to the “PIC24F  
Family Reference Manual”, Section 23.  
“Serial Peripheral Interface (SPI)”  
(DS39699).  
To set up the SPI module for the Standard Master mode  
of operation:  
1. If using interrupts:  
The Serial Peripheral Interface (SPI) module is a  
synchronous serial interface useful for communicating  
with other peripheral or microcontroller devices. These  
peripheral devices may be serial data EEPROMs, shift  
registers, display drivers, A/D Converters, etc. The SPI  
module is compatible with the SPI and SIOP interfaces  
from Motorola®.  
a) Clear the respective SPI1IF bit in the IFS0  
register.  
b) Set the respective SPI1IE bit in the IEC0  
register.  
c) Write the respective SPI1IPx bits in the  
IPC2 register to set the interrupt priority.  
2. Write the desired settings to the SPI1CON1 and  
SPI1CON2 registers with the MSTEN bit  
(SPI1CON1<5>) = 1.  
The module supports operation in two buffer modes. In  
Standard mode, data is shifted through a single serial  
buffer. In Enhanced Buffer mode, data is shifted  
through an 8-level FIFO buffer.  
3. Clear the SPIROV bit (SPI1STAT<6>).  
4. Enable SPI operation by setting the SPIEN bit  
(SPI1STAT<15>).  
Note:  
Do not perform read-modify-write opera-  
tions (such as bit-oriented instructions) on  
the SPI1BUF register in either Standard or  
Enhanced Buffer mode.  
5. Write the data to be transmitted to the SPI1BUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPI1BUF  
register.  
The module also supports a basic framed SPI protocol  
while operating in either Master or Slave mode. A total  
of four framed SPI configurations are supported.  
To set up the SPI module for the Standard Slave mode  
of operation:  
The SPI serial interface consists of four pins:  
• SDI1: Serial Data Input  
1. Clear the SPI1BUF register.  
2. If using interrupts:  
• SDO1: Serial Data Output  
a) Clear the respective SPI1IF bit in the IFS0  
register.  
• SCK1: Shift Clock Input or Output  
• SS1: Active-Low Slave Select or Frame  
Synchronization I/O Pulse  
b) Set the respective SPI1IE bit in the IEC0  
register.  
The SPI module can be configured to operate using  
2, 3 or 4 pins. In the 3-pin mode, SS1 is not used. In the  
2-pin mode, both SDO1 and SS1 are not used.  
c) Write the respective SPI1IP bits in the IPC2  
register to set the interrupt priority.  
3. Write the desired settings to the SPI1CON1  
and SPI1CON2 registers with the MSTEN bit  
(SPI1CON1<5>) = 0.  
Block diagrams of the module in Standard and  
Enhanced Buffer modes are displayed in Figure 16-1  
and Figure 16-2.  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit  
(SPI1CON1<7>) must be set to enable the SS1  
pin.  
6. Clear the SPIROV bit (SPI1STAT<6>).  
7. Enable SPI operation by setting the SPIEN bit  
(SPI1STAT<15>).  
2008-2011 Microchip Technology Inc.  
DS39927C-page 131  
PIC24F16KA102 FAMILY  
FIGURE 16-1:  
SPI1 MODULE BLOCK DIAGRAM (STANDARD BUFFER MODE)  
SCK1  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SS1/FSYNC1  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPI1CON1<1:0>  
SPI1CON1<4:2>  
Control  
Shift  
SDO1  
SDI1  
Enable  
Master Clock  
bit 0  
SPI1SR  
Transfer  
Transfer  
SPI1BUF  
Write SPI1BUF  
Read SPI1BUF  
16  
Internal Data Bus  
DS39927C-page 132  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
To set up the SPI module for the Enhanced Buffer  
Master (EBM) mode of operation:  
To set up the SPI module for the Enhanced Buffer  
Slave mode of operation:  
1. If using interrupts:  
1. Clear the SPI1BUF register.  
2. If using interrupts:  
a) Clear the respective SPI1IF bit in the IFS0  
register.  
a) Clear the respective SPI1IF bit in the IFS0  
register.  
b) Set the respective SPI1IE bit in the IEC0  
register.  
b) Set the respective SPI1IE bit in the IEC0  
register.  
c) Write the respective SPI1IPx bits in the  
IPC2 register.  
c) Write the respective SPI1IPx bits in the  
IPC2 register to set the interrupt priority.  
2. Write the desired settings to the SPI1CON1  
and SPI1CON2 registers with the MSTEN bit  
(SPI1CON1<5>) = 1.  
3. Write the desired settings to the SPI1CON1 and  
SPI1CON2 registers with the MSTEN bit  
(SPI1CON1<5>) = 0.  
3. Clear the SPIROV bit (SPI1STAT<6>).  
4. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPI1CON2<0>).  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit must be  
set, thus enabling the SS1 pin.  
5. Enable SPI operation by setting the SPIEN bit  
(SPI1STAT<15>).  
6. Clear the SPIROV bit (SPI1STAT<6>).  
6. Write the data to be transmitted to the SPI1BUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPI1BUF  
register.  
7. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPI1CON2<0>).  
8. Enable SPI operation by setting the SPIEN bit  
(SPI1STAT<15>).  
FIGURE 16-2:  
SPI1 MODULE BLOCK DIAGRAM (ENHANCED BUFFER MODE)  
SCK1  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SS1/FSYNC1  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPI1CON1<1:0>  
SPI1CON1<4:2>  
Control  
Shift  
SDO1  
SDI1  
Enable  
Master Clock  
bit 0  
SPI1SR  
Transfer  
Transfer  
8-Level FIFO  
Receive Buffer  
8-Level FIFO  
Transmit Buffer  
SPI1BUF  
Write SPI1BUF  
Read SPI1BUF  
16  
Data Bus  
Internal  
2008-2011 Microchip Technology Inc.  
DS39927C-page 133  
PIC24F16KA102 FAMILY  
REGISTER 16-1: SPI1STAT: SPI1 STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
R-0, HSC  
SPIBEC2  
R-0, HSC  
SPIBEC1  
R-0, HSC  
SPIBEC0  
SPISIDL  
bit 15  
bit 8  
R-0,HSC R/C-0, HS  
SRMPT SPIROV  
bit 7  
R/W-0, HSC  
SRXMPT  
R/W-0  
R/W-0  
R/W-0  
R-0, HSC  
SPITBF  
R-0, HSC  
SPIRBF  
SISEL2  
SISEL1  
SISEL0  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’ HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
H = Hardware Settable bit C = Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPI1 Enable bit  
1= Enables module and configures SCK1, SDO1, SDI1 and SS1 as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-11 Unimplemented: Read as ‘0’  
bit 10-8  
SPIBEC<2:0>: SPI1 Buffer Element Count bits (valid in Enhanced Buffer mode)  
Master mode:  
Number of SPI transfers are pending.  
Slave mode:  
Number of SPI transfers are unread.  
bit 7  
bit 6  
SRMPT: Shift Register (SPI1SR) Empty bit (valid in Enhanced Buffer mode)  
1= SPI1 Shift register is empty and ready to send or receive  
0= SPI1 Shift register is not empty  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded  
The user software has not read the previous data in the SPI1BUF register.  
0= No overflow has occurred  
bit 5  
SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode)  
1= Receive FIFO is empty  
0= Receive FIFO is not empty  
bit 4-2  
SISEL<2:0>: SPI1 Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)  
111= Interrupt when the SPI1 transmit buffer is full (SPITBF bit is set)  
110= Interrupt when the last bit is shifted into SPI1SR; as a result, the TX FIFO is empty  
101= Interrupt when the last bit is shifted out of SPI1SR; now the transmit is complete  
100= Interrupt when one data byte is shifted into the SPI1SR; as a result, the TX FIFO has one open spot  
011= Interrupt when the SPI1 receive buffer is full (SPIRBF bit set)  
010= Interrupt when the SPI1 receive buffer is 3/4 or more full  
001= Interrupt when data is available in receive buffer (SRMPT bit is set)  
000= Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty  
(SRXMPT bit is set)  
DS39927C-page 134  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 16-1: SPI1STAT: SPI1 STATUS AND CONTROL REGISTER (CONTINUED)  
bit 1  
SPITBF: SPI1 Transmit Buffer Full Status bit  
1= Transmit has not yet started, SPI1TXB is full  
0= Transmit has started, SPI1TXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when the CPU writes to the SPITBF location, loading SPITBF.  
Automatically cleared in hardware when the SPI1 module transfers data from SPI1TXB to SPIRBF.  
In Enhanced Buffer mode:  
Automatically set in hardware when CPU writes to the SPI1BUF location, loading the last available buffer location.  
Automatically cleared in hardware when a buffer location is available for a CPU write.  
bit 0  
SPIRBF: SPI1 Receive Buffer Full Status bit  
1= Receive is complete; SPI1RXB is full  
0= Receive is not complete; SPI1RXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when SPI1 transfers data from SPIRBF to SPIRBF.  
Automatically cleared in hardware when the core reads the SPI1BUF location, reading SPIRBF.  
In Enhanced Buffer mode:  
Automatically set in hardware when SPI1 transfers data from SPI1SR to buffer, filling the last unread buffer location.  
Automatically cleared in hardware when a buffer location is available for a transfer from SPI1SR.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 135  
PIC24F16KA102 FAMILY  
REGISTER 16-2: SPI1CON1: SPI1 CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
PPRE1  
PPRE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCK1 pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disables SDO1 pin bit  
1= SDO1 pin is not used by module; pin functions as I/O  
0= SDO1 pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPI1 Data Input Sample Phase bit  
Master mode:  
1= Input data is sampled at the end of data output time  
0= Input data is sampled at the middle of data output time  
Slave mode:  
SMP must be cleared when SPI1 is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4-2  
CKE: SPI1 Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)  
1= SS1 pin is used for Slave mode  
0= SS1 pin is not used by the module; pin is controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
SPRE<2:0>: Secondary Prescale bits (Master mode)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
.
.
.
000= Secondary prescale 8:1  
Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
DS39927C-page 136  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 16-2: SPI1CON1: SPI1 CONTROL REGISTER 1 (CONTINUED)  
bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
REGISTER 16-3: SPI1CON2: SPI1 CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
SPIFPOL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SPIFE  
R/W-0  
SPIBEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPI1 Support bit  
1= Framed SPI1 support is enabled  
0= Framed SPI1 support is disabled  
SPIFSD: Frame Sync Pulse Direction Control on SS1 Pin bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only)  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SPIFE: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with the first bit clock  
0= Frame sync pulse precedes the first bit clock  
bit 0  
SPIBEN: Enhanced Buffer Enable bit  
1= Enhanced Buffer is enabled  
0= Enhanced Buffer is disabled (Legacy mode)  
2008-2011 Microchip Technology Inc.  
DS39927C-page 137  
PIC24F16KA102 FAMILY  
EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED(1)  
FCY  
FSCK =  
Primary Prescaler * Secondary Prescaler  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
TABLE 16-1: SAMPLE SCK FREQUENCIES(1,2)  
Secondary Prescaler Settings  
FCY = 16 MHz  
1:1  
2:1  
4:1  
6:1  
8:1  
Primary Prescaler Settings  
1:1  
4:1  
Invalid  
4000  
1000  
250  
8000  
2000  
500  
4000  
1000  
250  
63  
2667  
667  
167  
42  
2000  
500  
125  
31  
16:1  
64:1  
125  
FCY = 5 MHz  
Primary Prescaler Settings  
1:1  
4:1  
5000  
1250  
313  
78  
2500  
625  
156  
39  
1250  
313  
78  
833  
208  
52  
625  
156  
39  
16:1  
64:1  
20  
13  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2: SCK1 frequencies are indicated in kHz.  
DS39927C-page 138  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
17.2 Communicating as a Master in a  
Single Master Environment  
17.0 INTER-INTEGRATED CIRCUIT  
2
(I C™)  
The details of sending a message in Master mode  
depends on the communications protocol for the device  
being communicated with. Typically, the sequence of  
events is as follows:  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be  
a
comprehensive  
reference source. For more information  
on the Inter-Integrated Circuit, refer to the  
“PIC24F Family Reference Manual”,  
Section 24. “Inter-Integrated Circuit™  
(I2C™)” (DS39702).  
1. Assert a Start condition on SDA1 and SCL1.  
2. Send the I2C device address byte to the slave  
with a write indication.  
3. Wait for and verify an Acknowledge from the  
slave.  
The Inter-Integrated Circuit (I2C) module is a serial  
interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial data EEPROMs, display drivers,  
A/D Converters, etc.  
4. Send the first data byte (sometimes known as  
the command) to the slave.  
5. Wait for and verify an Acknowledge from the  
slave.  
The I2C module supports these features:  
6. Send the serial memory address low byte to the  
slave.  
• Independent master and slave logic  
• 7-bit and 10-bit device addresses  
7. Repeat Steps 4 and 5 until all data bytes are  
sent.  
• General call address, as defined in the I2C protocol  
• Automatic clock stretching to provide delays for  
the processor to respond to a slave data request  
• Both 100 kHz and 400 kHz bus specifications  
• Configurable address masking  
8. Assert a Repeated Start condition on SDA1 and  
SCL1.  
9. Send the device address byte to the slave with  
a read indication.  
10. Wait for and verify an Acknowledge from the  
slave.  
• Multi-Master modes to prevent loss of messages  
in arbitration  
11. Enable master reception to receive serial  
memory data.  
• Bus Repeater mode, allowing the acceptance of  
all messages as a slave regardless of the address  
• Automatic SCL  
12. Generate an ACK or NACK condition at the end  
of a received byte of data.  
Figure 17-1 illustrates a block diagram of the module.  
13. Generate a Stop condition on SDA1 and SCL1.  
17.1 Pin Remapping Options  
The I2C module is tied to a fixed pin. To allow flexibility  
with peripheral multiplexing, the I2C1 module in 28-pin  
devices can be reassigned to the alternate pins,  
designated as SCL1 and SDA1 during device  
configuration.  
Pin assignment is controlled by the I2C1SEL  
Configuration bit. Programming this bit (= 0) multiplexes  
the module to the SCL1 and SDA1 pins.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 139  
PIC24F16KA102 FAMILY  
FIGURE 17-1:  
I2C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2C1RCV  
Read  
Shift  
Clock  
SCL1  
SDA1  
I2C1RSR  
LSB  
Address Match  
Write  
Read  
Match Detect  
I2C1MSK  
Write  
Read  
I2C1ADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2C1STAT  
I2C1CON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2C1TRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2C1BRG  
DS39927C-page 140  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
17.3 Setting Baud Rate When  
Operating as a Bus Master  
17.4 Slave Address Masking  
The I2C1MSK register (Register 17-3) designates  
address bit positions as “don’t care” for both 7-Bit and  
10-Bit Addressing modes. Setting a particular bit  
location (= 1) in the I2C1MSK register causes the slave  
module to respond whether the corresponding address  
bit value is ‘0’ or ‘1’. For example, when I2C1MSK is set  
to ‘00100000’, the slave module will detect both  
addresses: ‘0000000’ and ‘00100000’.  
To compute the Baud Rate Generator (BRG) reload  
value, use Equation 17-1.  
EQUATION 17-1: COMPUTING BAUD RATE  
RELOAD VALUE(1)  
FCY  
FSCL =  
---------------------------------------------------------------------  
To enable address masking, the Intelligent Peripheral  
Management Interface (IPMI) must be disabled by  
clearing the IPMIEN bit (I2C1CON<11>).  
FCY  
I2C1BRG + 1 +  
-----------------------------  
10000000  
or  
Note:  
As a result of changes in the I2C protocol,  
the addresses in Table 17-2 are reserved  
and will not be Acknowledged in Slave  
mode. This includes any address mask  
settings that include any of these  
addresses.  
FCY  
FCY  
I2C1BRG =  
1  
----------- -----------------------------  
FSCL 10000000  
Note 1: Based on FCY = FOSC/2; Doze mode and  
PLL are disabled.  
TABLE 17-1: I2C™ CLOCK RATES(1)  
Required  
I2C1BRG Value  
Actual  
FSCL  
System  
FSCL  
FCY  
(Decimal)  
(Hexadecimal)  
100 kHz  
100 kHz  
100 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
1 MHz  
16 MHz  
8 MHz  
4 MHz  
16 MHz  
8 MHz  
4 MHz  
2 MHz  
16 MHz  
8 MHz  
4 MHz  
157  
78  
39  
37  
18  
9
9D  
4E  
27  
25  
12  
9
100 kHz  
100 kHz  
99 kHz  
404 kHz  
404 kHz  
385 kHz  
385 kHz  
1.026 MHz  
1.026 MHz  
0.909 MHz  
4
4
13  
6
D
1 MHz  
6
1 MHz  
3
3
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled;  
TABLE 17-2: I2C™ RESERVED ADDRESSES(1)  
Slave  
Address  
R/W  
Bit  
Description  
0000 000  
0000 000  
0000 001  
0000 010  
0000 011  
0000 1xx  
1111 1xx  
1111 0xx  
0
1
x
x
x
x
x
x
General Call Address(2)  
Start Byte  
Cbus Address  
Reserved  
Reserved  
HS Mode Master Code  
Reserved  
10-Bit Slave Upper Byte(3)  
Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.  
2: The address will be Acknowledged only if GCEN = 1.  
3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 141  
PIC24F16KA102 FAMILY  
REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC  
ACKEN  
R/W-0, HC  
RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
I2CEN: I2C1 Enable bit  
1= Enables the I2C1 module and configures the SDA1 and SCL1 pins as serial port pins  
0= Disables the I2C1 module; all I2C™ pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters an Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCL1 Release Control bit (when operating as I2C slave)  
1= Releases SCL1 clock  
0= Holds SCL1 clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware is clear  
at the beginning of slave transmission; hardware is clear at the end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware is clear at the beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI Support mode is enabled; all addresses are Acknowledged  
0= IPMI Support mode is disabled  
A10M: 10-Bit Slave Addressing bit  
1= I2C1ADD is a 10-bit slave address  
0= I2C1ADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control is disabled  
0= Slew rate control is enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with the SMBus specification  
0= Disables the SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enables interrupt when a general call address is received in the I2C1RSR (module is enabled for  
reception)  
0= General call address is disabled  
bit 6  
STREN: SCL1 Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with the SCLREL bit.  
1= Enables software or receive clock stretching  
0= Disables software or receive clock stretching  
DS39927C-page 142  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (when operating as I2C master; applicable during master receive)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master; applicable during master receive)  
1= Initiates Acknowledge sequence on SDA1 and SCL1 pins and transmits ACKDT data bit; hardware  
is clear at the end of the master Acknowledge sequence  
0= Acknowledge sequence is not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C; hardware is clear at the end of eighth bit of master receive data byte  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiates Stop condition on SDA1 and SCL1 pins; hardware is clear at end of master Stop sequence  
0= Stop condition is not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiates Repeated Start condition on SDA1 and SCL1 pins; hardware is clear at end of master  
Repeated Start sequence  
0= Repeated Start condition is not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiates Start condition on SDA1 and SCL1 pins; hardware is clear at end of master Start sequence  
0= Start condition is not in progress  
2008-2011 Microchip Technology Inc.  
DS39927C-page 143  
PIC24F16KA102 FAMILY  
REGISTER 17-2: I2C1STAT: I2C1 STATUS REGISTER  
R-0, HSC R-0, HSC  
ACKSTAT TRSTAT  
bit 15  
U-0  
U-0  
U-0  
R/C-0, HS  
BCL  
R-0, HSC  
GCSTAT  
R-0, HSC  
ADD10  
bit 8  
bit 0  
R/C-0, HS R/C-0, HS R-0, HSC R/C-0, HSC R/C-0, HSC  
R-0, HSC  
R/W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
IWCOL  
bit 7  
I2COV  
D/A  
P
S
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
ACKSTAT: Acknowledge Status bit  
1= NACK was detected last  
0= ACK was detected last  
Hardware is set or clear at of Acknowledge.  
bit 14  
TRSTAT: Transmit Status bit  
(When operating as I2C™ master; applicable to master transmit operation.)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware is set at beginning of master transmission; hardware is clear at end of slave Acknowledge.  
bit 13-11 Unimplemented: Read as ‘0’  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware is set at detection of bus collision.  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware is set when address matches general call address; hardware is clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware is set at match of 2nd byte of matched 10-bit address; hardware is clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write to the I2C1TRN register failed because the I2C module is busy  
0= No collision  
Hardware is set at occurrence of write to I2C1TRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2C1RCV register is still holding the previous byte  
0= No overflow  
Hardware is set at attempt to transfer to I2C1RCV (cleared by software).  
D/A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was the device address  
Hardware is clear at device address match; hardware is set by a write to I2C1TRN or by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
DS39927C-page 144  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 17-2: I2C1STAT: I2C1 STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
R/W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates the data transfer is output from slave  
0= Write – indicates the data transfer is input to slave  
Hardware is set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2C1RCV is full  
0= Receive not complete, I2C1RCV is empty  
Hardware is set when I2C1RCV is written with received byte; hardware is clear when software reads I2C1RCV.  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2C1TRN is full  
0= Transmit complete, I2C1TRN is empty  
Hardware is set when software writes to I2C1TRN; hardware is clear at completion of data transmission.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 145  
PIC24F16KA102 FAMILY  
REGISTER 17-3: I2C1MSK: I2C1 SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK<9:0>: Mask for Address Bit x Select bits  
1= Enable masking for bit x of incoming message address; bit match is not required in this position  
0= Disable masking for bit x; bit match is required in this position  
REGISTER 17-4: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
SMBUSDEL OC1TRIS(2,3) RTSECSEL1  
RTSECSEL0  
(1,3)  
(1,3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
SMBUSDEL: SMBus SDA Input Delay Select bit  
1= The I2C module is configured for a longer SMBus input delay (nominal 300 ns delay)  
0= The 12C module is configured for a legacy input delay (nominal 150 ns delay)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.  
2: To enable the actual OC1 output, the OCPWM1 module has to be enabled.  
3: Bits<3:1> are described in related chapters.  
DS39927C-page 146  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
• Fully Integrated Baud Rate Generator (IBRG) with  
16-Bit Prescaler  
18.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Baud Rates Ranging from 1 Mbps to 15 bps at  
16 MIPS  
• 4-Deep, First-In-First-Out (FIFO) Transmit Data  
Buffer  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be  
a
comprehensive  
• 4-Deep FIFO Receive Data Buffer  
reference source. For more information  
on the Universal Asynchronous Receiver  
Transmitter, refer to the “PIC24F Family  
Reference Manual”, Section 21. “UART”  
(DS39708).  
• Parity, Framing and Buffer Overrun Error  
Detection  
• Support for 9-Bit mode with Address Detect (9th  
bit = 1)  
• Transmit and Receive Interrupts  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules avail-  
able in this PIC24F device family. The UART is a  
full-duplex asynchronous system that can communicate  
with peripheral devices, such as personal computers,  
LIN, RS-232 and RS-485 interfaces. This module also  
supports a hardware flow control option with the UxCTS  
and UxRTS pins, and also includes an IrDA® encoder  
and decoder.  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA Support  
A simplified block diagram of the UART is displayed in  
Figure 18-1. The UART module consists of these  
important hardware elements:  
The primary features of the UART module are:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Full-Duplex, 8-Bit or 9-Bit Data Transmission  
through the UxTX and UxRX Pins  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
• Hardware Flow Control Option with UxCTS and  
UxRTS pins  
FIGURE 18-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
UxBCLK  
Hardware Flow Control  
UARTx Receiver  
UxRTS  
UxCTS  
UxRX  
UARTx Transmitter  
UxTX  
2008-2011 Microchip Technology Inc.  
DS39927C-page 147  
PIC24F16KA102 FAMILY  
The maximum baud rate (BRGH = 0) possible is  
FCY/16 (for UxBRG = 0) and the minimum baud rate  
possible is FCY/(16 * 65536).  
18.1 UART Baud Rate Generator (BRG)  
The UART module includes a dedicated 16-bit Baud  
Rate Generator (BRG). The UxBRG register controls  
the period of a free-running, 16-bit timer. Equation 18-1  
provides the formula for computation of the baud rate  
with BRGH = 0.  
Equation 18-2 provides the formula for computation of  
the baud rate with BRGH = 1.  
EQUATION 18-2: UART BAUD RATE WITH  
BRGH = 1(1)  
EQUATION 18-1: UART BAUD RATE WITH  
BRGH = 0(1)  
FCY  
Baud Rate =  
4 • (UxBRG + 1)  
FCY  
Baud Rate =  
16 • (UxBRG + 1)  
FCY  
4 • Baud Rate  
1  
UxBRG =  
FCY  
16 • Baud Rate  
1  
UxBRG =  
Note 1: Based on FCY = FOSC/2; Doze mode  
and PLL are disabled.  
Note 1: Based on FCY = FOSC/2; Doze mode  
and PLL are disabled.  
The maximum baud rate (BRGH = 1) possible is FCY/4  
(for UxBRG = 0) and the minimum baud rate possible  
is FCY/(4 * 65536).  
Example 18-1 provides the calculation of the baud rate  
error for the following conditions:  
Writing a new value to the UxBRG register causes the  
BRG timer to be reset (cleared). This ensures the BRG  
does not wait for a timer overflow before generating the  
new baud rate.  
• FCY = 4 MHz  
• Desired Baud Rate = 9600  
EXAMPLE 18-1:  
BAUD RATE ERROR CALCULATION (BRGH = 0)(1)  
Desired Baud Rate  
= FCY/(16 (UxBRG + 1))  
Solving for UxBRG value:  
UxBRG  
UxBRG  
UxBRG  
= ((FCY/Desired Baud Rate)/16) 1  
= ((4000000/9600)/16) 1  
= 25  
Calculated Baud Rate = 4000000/(16 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate Desired Baud Rate)  
Desired Baud Rate  
= (9615 9600)/9600  
= 0.16%  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
DS39927C-page 148  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
18.2 Transmitting in 8-Bit Data Mode  
18.5 Receiving in 8-Bit or 9-Bit Data  
Mode  
1. Set up the UART:  
a) Write appropriate values for data, parity and  
Stop bits.  
1. Set up the UART (as described in Section 18.2  
“Transmitting in 8-Bit Data Mode”).  
b) Write appropriate baud rate value to the  
UxBRG register.  
2. Enable the UART.  
3. A receive interrupt will be generated when one  
or more data characters have been received, as  
per interrupt control bit, URXISELx.  
c) Set up transmit and receive interrupt enable  
and priority bits.  
2. Enable the UART.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
3. Set the UTXEN bit (causes a transmit interrupt  
two cycles after being set).  
5. Read UxRXREG.  
4. Write data byte to lower byte of UxTXREG word.  
The value will be immediately transferred to the  
Transmit Shift Register (TSR) and the serial bit  
stream will start shifting out with the next rising  
edge of the baud clock.  
The act of reading the UxRXREG character will move  
the next character to the top of the receive FIFO,  
including a new set of PERR and FERR values.  
5. Alternately, the data byte may be transferred  
while UTXEN = 0, and then, the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
18.6 Operation of UxCTS and UxRTS  
Control Pins  
UARTx Clear to Send (UxCTS) and Request to Send  
(UxRTS) are the two hardware-controlled pins that are  
associated with the UART module. These two pins  
allow the UART to operate in Simplex and Flow Control  
modes. They are implemented to control the  
transmission and reception between the Data Terminal  
Equipment (DTE). The UEN<1:0> bits in the UxMODE  
register configure these pins.  
6. A transmit interrupt will be generated as per  
interrupt control bit, UTXISELx.  
18.3 Transmitting in 9-Bit Data Mode  
1. Set up the UART (as described in Section 18.2  
“Transmitting in 8-Bit Data Mode”).  
2. Enable the UART.  
18.7 Infrared Support  
3. Set the UTXEN bit (causes a transmit interrupt  
two cycles after being set).  
The UART module provides two types of infrared UART  
support: one is the IrDA clock output to support an  
external IrDA encoder and decoder device (legacy  
module support), and the other is the full  
implementation of the IrDA encoder and decoder.  
4. Write UxTXREG as a 16-bit value only.  
5. A word write to UxTXREG triggers the transfer  
of the 9-bit data to the TSR. The serial bit stream  
will start shifting out with the first rising edge of  
the baud clock.  
As the IrDA modes require a 16x baud clock, they will  
only work when the BRGH bit (UxMODE<3>) is ‘0’.  
6. A transmit interrupt will be generated as per the  
setting of control bit, UTXISELx.  
18.7.1  
EXTERNAL IrDA SUPPORT – IrDA  
CLOCK OUTPUT  
18.4 Break and Sync Transmit  
Sequence  
To support external IrDA encoder and decoder devices,  
the UxBCLK pin (same as the UxRTS pin) can be  
configured to generate the 16x baud clock. When  
UEN<1:0> = 11, the UxBCLK pin will output the 16x  
baud clock if the UART module is enabled; it can be  
used to support the IrDA codec chip.  
The following sequence will send a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte.  
1. Configure the UART for the desired mode.  
18.7.2  
BUILT-IN IrDA ENCODER AND  
DECODER  
2. Set UTXEN and UTXBRK – sets up the Break  
character.  
3. Load the UxTXREG with a dummy character to  
initiate transmission (value is ignored).  
The UART has full implementation of the IrDA encoder  
and decoder as part of the UART module. The built-in  
IrDA encoder and decoder functionality is enabled  
using the IREN bit (UxMODE<12>). When enabled  
(IREN = 1), the receive pin (UxRX) acts as the input  
from the infrared receiver. The transmit pin (UxTX) acts  
as the output to the infrared transmitter.  
4. Write ‘55h’ to UxTXREG – loads the Sync  
character into the transmit FIFO.  
5. After the Break has been sent, the UTXBRK bit  
is reset by hardware. The Sync character now  
transmits.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 149  
PIC24F16KA102 FAMILY  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(1)  
R/W-0  
U-0  
R/W-0(2)  
UEN1  
R/W-0(2)  
UEN0  
UARTEN  
RTSMD  
bit 15  
bit 8  
R/C-0, HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
RXINV  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
PDSEL1  
PDSEL0  
STSEL  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15  
UARTEN: UARTx Enable bit  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(1)  
1= IrDA encoder and decoder are enabled  
0= IrDA encoder and decoder are disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin is in Simplex mode  
0= UxRTS pin is in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
UEN<1:0>: UARTx Enable bits(2)  
11= UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by port  
latches  
bit 7  
WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge, bit is cleared in  
hardware on the following rising edge  
0= No wake-up is enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h);  
cleared in hardware upon completion  
0= Baud rate measurement is disabled or completed  
bit 4  
RXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).  
2: Bit availability depends on pin availability.  
DS39927C-page 150  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).  
2: Bit availability depends on pin availability.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 151  
PIC24F16KA102 FAMILY  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
UTXISEL1  
bit 15  
R/W-0  
R/W-0  
U-0  
R/W-0, HC  
UTXBRK  
R/W-0  
R-0, HSC  
UTXBF  
R-1, HSC  
TRMT  
UTXINV  
UTXISEL0  
UTXEN  
bit 8  
R/W-0  
URXISEL1  
bit 7  
R/W-0  
R/W-0  
R-1, HSC  
RIDLE  
R-0, HSC  
PERR  
R-0, HSC  
FERR  
R/C-0, HS  
OERR  
R-0, HSC  
URXDA  
URXISEL0  
ADDEN  
bit 0  
Legend:  
HC = Hardware Clearable bit  
HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit  
C = Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result,  
the transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations  
are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at  
least one character open in the transmit buffer)  
bit 14  
UTXINV: IrDA® Encoder Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle ‘0’  
0= UxTX Idle ‘1’  
If IREN = 1:  
1= UxTX Idle ‘1’  
0= UxTX Idle ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission is disabled or completed  
bit 10  
UTXEN: Transmit Enable bit  
1= Transmit is enabled, UxTX pin is controlled by UARTx  
0= Transmit is disabled, any pending transmission is aborted and buffer is reset. UxTX pin is controlled  
by the PORT register.  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the RSR to the receive buffer;  
receive buffer has one or more characters  
DS39927C-page 152  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode is enabled. If 9-bit mode is not selected, this does not take effect.  
0= Address Detect mode is disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed (clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the RSR to the empty state)  
bit 0  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data; at least one more character can be read  
0= Receive buffer is empty  
2008-2011 Microchip Technology Inc.  
DS39927C-page 153  
PIC24F16KA102 FAMILY  
REGISTER 18-3: UxTXREG: UARTx TRANSMIT REGISTER  
U-x  
U-x  
U-x  
U-x  
U-x  
U-x  
U-x  
W-x  
UTX8  
bit 15  
bit 8  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
UTX7  
UTX6  
UTX5  
UTX4  
UTX3  
UTX2  
UTX1  
UTX0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
UTX8: Data of the Transmitted Character bit (in 9-bit mode)  
UTX<7:0>: Data of the Transmitted Character bits  
bit 7-0  
REGISTER 18-4: UxRXREG: UARTx RECEIVE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
URX8  
bit 15  
bit 8  
R-0, HSC  
URX7  
R-0, HSC  
URX6  
R-0, HSC  
URX5  
R-0, HSC  
URX4  
R-0, HSC  
URX3  
R-0, HSC  
URX2  
R-0, HSC  
URX1  
R-0, HSC  
URX0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
URX8: Data of the Received Character bit (in 9-bit mode)  
URX<7:0>: Data of the Received Character bits  
bit 7-0  
DS39927C-page 154  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
one day, one week, one month or one year  
• Alarm repeat with decrementing counter  
• Alarm with indefinite repeat chime  
19.0 REAL-TIME CLOCK AND  
CALENDAR (RTCC)  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information on the  
Real-Time Clock and Calendar, refer to the  
“PIC24F Family Reference Manual”,  
Section 29. “Real-Time Clock and  
Calendar (RTCC)” (DS39696).  
Year 2000 to 2099 leap year correction  
• BCD format for smaller software overhead  
• Optimized for long-term battery operation  
• User calibration of the 32.768 kHz clock  
crystal/32K INTRC frequency with periodic  
auto-adjust  
19.1 RTCC Source Clock  
The RTCC provides the user with a Real-Time Clock  
and Calendar (RTCC) function that can be calibrated.  
The user can select between the SOSC crystal  
oscillator or the LPRC internal oscillator as the clock  
reference for the RTCC module. This is configured  
using the RTCOSC (FDS<5>) Configuration bit. This  
gives the user an option to trade off system cost,  
accuracy and power consumption, based on the overall  
system needs.  
Key features of the RTCC module are:  
• Operates in Deep Sleep mode  
• Selectable clock source  
• Provides hours, minutes and seconds using  
24-hour format  
• Visibility of one half second period  
The RTCC will continue to run, along with its chosen  
clock source, while the device is held in Reset with  
MCLR and will continue running after MCLR is  
released.  
• Provides calendar – weekday, date, month and  
year  
• Alarm-configurable for half a second, one second,  
10 seconds, one minute, 10 minutes, one hour,  
FIGURE 19-1:  
RTCC BLOCK DIAGRAM  
RTCC Clock Domain  
CPU Clock Domain  
RCFGCAL  
Input from  
SOSC/LPRC  
Oscillator  
RTCC Prescalers  
0.5 Sec  
ALCFGRPT  
YEAR  
MTHDY  
WKDYHR  
RTCC Timer  
RTCVAL  
MINSEC  
Alarm  
Event  
Comparator  
Alarm Registers with Masks  
Repeat Counter  
ALMTHDY  
ALWDHR  
ALMINSEC  
ALRMVAL  
RTSECSEL<1:0>  
RTCC  
Interrupt  
1s  
01  
00  
RTCC Interrupt Logic  
Alarm Pulse  
RTCC  
Pin  
10  
Clock Source  
RTCOE  
2008-2011 Microchip Technology Inc.  
DS39927C-page 155  
PIC24F16KA102 FAMILY  
TABLE 19-2: ALRMVAL REGISTER  
MAPPING  
19.2 RTCC Module Registers  
The RTCC module registers are organized into three  
categories:  
Alarm Value Register Window  
ALRMPTR  
<1:0>  
• RTCC Control Registers  
• RTCC Value Registers  
• Alarm Value Registers  
ALRMVAL<15:8> ALRMVAL<7:0>  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
19.2.1  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Time registers are accessed through  
corresponding register pointers. The RTCC Value  
register window (RTCVALH and RTCVALL) uses the  
RTCPTR bits (RCFGCAL<9:8>) to select the desired  
Timer register pair (see Table 19-1).  
Considering that the 16-bit core does not distinguish  
between 8-bit and 16-bit read operations, the user must  
be aware that when reading either the ALRMVALH or  
ALRMVALL bytes, the ALRMPTR<1:0> value will be  
decremented. The same applies to the RTCVALH or  
RTCVALL bytes with the RTCPTR<1:0> being  
decremented.  
By writing the RTCVALH byte, the RTCC Pointer value,  
the RTCPTR<1:0> bits decrement by one until they  
reach ‘00’. Once they reach ‘00’, the MINUTES and  
SECONDS value will be accessible through RTCVALH  
and RTCVALL until the pointer value is manually  
changed.  
Note:  
This only applies to read operations and  
not write operations.  
19.2.2  
WRITE LOCK  
TABLE 19-1: RTCVAL REGISTER MAPPING  
In order to perform a write to any of the RTCC Timer  
registers, the RTCWREN bit (RCFGCAL<13>) must be  
set (refer to Example 19-1).  
RTCC Value Register Window  
RTCPTR<1:0>  
RTCVAL<15:8> RTCVAL<7:0>  
Note:  
To avoid accidental writes to the timer, it is  
recommended that the RTCWREN bit  
(RCFGCAL<13>) is kept clear at any  
other time. For the RTCWREN bit to be  
set, there is only one instruction cycle time  
window allowed between the 55h/AA  
sequence and the setting of RTCWREN;  
therefore, it is recommended that code  
follow the procedure in Example 19-1.  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
YEAR  
The Alarm Value register window (ALRMVALH  
and ALRMVALL) uses the ALRMPTR bits  
(ALCFGRPT<9:8>) to select the desired Alarm register  
pair (see Table 19-2).  
19.2.3  
SELECTING RTCC CLOCK SOURCE  
By writing the ALRMVALH byte, the Alarm Pointer  
value bits (ALRMPTR<1:0>) decrement by one until  
they reach ‘00’. Once they reach ‘00’, the ALRMMIN  
and ALRMSEC value will be accessible through  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
The clock source for the RTCC module can be selected  
using the RTCOSC (FDS<5>) bit. When the bit is set to  
1’, the Secondary Oscillator (SOSC) is used as the ref-  
erence clock and when the bit is ‘0’, LPRC is used as  
the reference clock.  
EXAMPLE 19-1:  
SETTING THE RTCWREN BIT  
asm volatile ("push w7")  
asm volatile ("push w8  
asm volatile ("disi #5  
asm volatile ("mov #0x55, w7  
asm volatile ("mov w7, _NVMKEY  
asm volatile ("mov #0xAA, w8  
asm volatile ("mov w8, _NVMKEY  
;
;
;
;
;
;
;
"
")  
)
"
)
"
)
)
")  
"
asm volatile ("bset _RCFGCAL, #13  
asm volatile ("pop w8  
asm volatile ( pop w7  
")  
; //set the RTCWREN bit  
;
"
");  
)
"
DS39927C-page 156  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
19.2.4  
RTCC CONTROL REGISTERS  
REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)  
R/W-0  
RTCEN(2)  
U-0  
R/W-0  
R-0, HSC  
RTCSYNC HALFSEC(3)  
R-0, HSC  
R/W-0  
R/W-0  
R/W-0  
RTCWREN  
RTCOE  
RTCPTR1  
RTCPTR0  
bit 15  
bit 8  
R/W-0  
CAL7  
R/W-0  
CAL6  
R/W-0  
CAL5  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
RTCEN: RTCC Enable bit(2)  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 12  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple,  
resulting in an invalid data read. If the register is read twice and results in the same data, the data  
can be assumed to be valid.  
0= RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple  
bit 11  
bit 10  
bit 9-8  
HALFSEC: Half Second Status bit(3)  
1= Second half period of a second  
0= First half period of a second  
RTCOE: RTCC Output Enable bit  
1= RTCC output is enabled  
0= RTCC output is disabled  
RTCPTR<1:0>: RTCC Value Register Window Pointer bits  
Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers.  
The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.  
RTCVAL<15:8>:  
00= MINUTES  
01= WEEKDAY  
10= MONTH  
11= Reserved  
RTCVAL<7:0>:  
00= SECONDS  
01= HOURS  
10= DAY  
11= YEAR  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 157  
PIC24F16KA102 FAMILY  
REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1) (CONTINUED)  
bit 7-0  
CAL<7:0>: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 508 RTC clock pulses every one minute  
.
.
.
01111111= Minimum positive adjustment; adds 4 RTC clock pulses every one minute  
00000000= No adjustment  
11111111= Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute  
.
.
.
10000000= Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
(1)  
(1)  
SMBUSDEL  
OC1TRIS  
RTSECSEL1  
RTSECSEL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-3  
bit 2-1  
Unimplemented: Read as ‘0’  
Described in Section 15.0 “Output Compare” and Section 17.0 “Inter-Integrated Circuit (I2C™)”.  
RTSECSEL<1:0>: RTCC Seconds Clock Output Select bits(1  
)
11= Reserved; do not use  
10= RTCC source clock is selected for the RTCC pin (can be LPRC or SOSC, depending on the  
RTCOSC (FDS<5>) bit setting)  
01= RTCC seconds clock is selected for the RTCC pin  
00= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.  
DS39927C-page 158  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALRMEN  
CHIME  
AMASK3  
AMASK2  
AMASK1  
AMASK0  
ALRMPTR1 ALRMPTR0  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ARPT7  
ARPT6  
ARPT5  
ARPT4  
ARPT3  
ARPT2  
ARPT1  
ARPT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and  
CHIME = 0)  
0= Alarm is disabled  
bit 14  
CHIME: Chime Enable bit  
1= Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh  
0= Chime is disabled; ARPT<7:0> bits stop once they reach 00h  
bit 13-10  
AMASK<3:0>: Alarm Mask Configuration bits  
0000= Every half second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29th, once every 4 years)  
101x= Reserved – do not use  
11xx= Reserved – do not use  
bit 9-8  
ALRMPTR<1:0>: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL registers.  
The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.  
ALRMVAL<15:8>:  
00= ALRMMIN  
01= ALRMWD  
10= ALRMMNTH  
11= Unimplemented  
ALRMVAL<7:0>:  
00= ALRMSEC  
01= ALRMHR  
10= ALRMDAY  
11= Unimplemented  
bit 7-0  
ARPT<7:0>: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
.
.
.
00000000= Alarm will not repeat  
The counter decrements on any alarm event; it is prevented from rolling over from 00h to FFh unless  
CHIME = 1.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 159  
PIC24F16KA102 FAMILY  
19.2.5  
RTCVAL REGISTER MAPPINGS  
REGISTER 19-4: YEAR: YEAR VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
YRTEN3  
YRTEN2  
YRTEN2  
YRTEN1  
YRONE3  
YRONE2  
YRONE1  
YRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-4  
Unimplemented: Read as ‘0’  
YRTEN<3:0>: Binary Coded Decimal Value of Year’s Tens Digit bits  
Contains a value from 0 to 9.  
bit 3-0  
YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.  
REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
MTHONE0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of ‘0’ or ‘1’.  
bit 11-8  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS39927C-page 160  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 15  
bit 8  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 11-8  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 161  
PIC24F16KA102 FAMILY  
19.2.6  
ALRMVAL REGISTER MAPPINGS  
REGISTER 19-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
MTHONE0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of ‘0’ or ‘1’.  
bit 11-8  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS39927C-page 162  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 15  
bit 8  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 11-8  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 163  
PIC24F16KA102 FAMILY  
19.4.1  
CONFIGURING THE ALARM  
19.3 Calibration  
The alarm feature is enabled using the ALRMEN bit.  
This bit is cleared when an alarm is issued. Writes to  
ALRMVAL should only take place when ALRMEN = 0.  
The real-time crystal input can be calibrated using the  
periodic auto-adjust feature. When properly calibrated,  
the RTCC can provide an error of less than 3 seconds  
per month. This is accomplished by finding the number  
of error clock pulses and storing the value into the  
lower half of the RCFGCAL register. The 8-bit signed  
value loaded into the lower half of RCFGCAL is  
multiplied by four and will either be added or subtracted  
from the RTCC timer, once every minute. Refer to the  
steps below for RTCC calibration:  
As displayed in Figure 19-2, the interval selection of the  
alarm is configured through the AMASK bits  
(ALCFGRPT<13:10>). These bits determine which and  
how many digits of the alarm must match the clock  
value for the alarm to occur.  
The alarm can also be configured to repeat based on a  
preconfigured interval. The amount of times this  
occurs, once the alarm is enabled, is stored in the  
ARPT<7:0> bits (ALCFGRPT<7:0>). When the value  
of the ARPT bits equals 00h and the CHIME bit  
(ALCFGRPT<14>) is cleared, the repeat function is  
disabled and only a single alarm will occur. The alarm  
can be repeated, up to 255 times, by loading  
ARPT<7:0> with FFh.  
1. Using another timer resource on the device, the  
user must find the error of the 32.768 kHz crystal.  
2. Once the error is known, it must be converted to  
the number of error clock pulses per minute.  
3. a) If the oscillator is faster than ideal (negative  
result form Step 2), the RCFGCAL register value  
must be negative. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter, once every minute.  
After each alarm is issued, the value of the ARPT bits  
is decremented by one. Once the value has reached  
00h, the alarm will be issued one last time, after which,  
the ALRMEN bit will be cleared automatically and the  
alarm will turn off.  
b) If the oscillator is slower than ideal (positive  
result from Step 2), the RCFGCAL register value  
must be positive. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter, once every minute.  
Indefinite repetition of the alarm can occur if the  
CHIME bit = 1. Instead of the alarm being disabled  
when the value of the ARPT bits reaches 00h, it rolls  
over to FFh and continues counting indefinitely while  
CHIME is set.  
Divide the number of error clocks, per minute by 4, to  
get the correct calibration value and load the  
RCFGCAL register with the correct value. (Each 1-bit  
increment in the calibration adds or subtracts 4 pulses).  
19.4.2  
ALARM INTERRUPT  
EQUATION 19-1:  
At every alarm event, an interrupt is generated. In  
addition, an alarm pulse output is provided that  
operates at half the frequency of the alarm. This output  
is completely synchronous to the RTCC clock and can  
be used as a trigger clock to other peripherals.  
(Ideal FrequencyMeasured Frequency) * 60 =  
Clocks per Minute  
Ideal Frequency = 32,768 Hz  
Writes to the lower half of the RCFGCAL register  
should only occur when the timer is turned off, or  
immediately after the rising edge of the seconds pulse.  
Note:  
Changing any of the registers, other than  
the RCFGCAL and ALCFGRPT registers,  
and the CHIME bit while the alarm is  
enabled (ALRMEN = 1), can result in a  
false alarm event leading to a false alarm  
interrupt. To avoid a false alarm event, the  
timer and alarm values should only be  
changed while the alarm is disabled  
(ALRMEN = 0). It is recommended that  
the ALCFGRPT register and the CHIME  
bit be changed when RTCSYNC = 0.  
Note:  
It is up to the user to include in the error  
value, the initial error of the crystal; drift  
due to temperature and drift due to crystal  
aging.  
19.4 Alarm  
• Configurable from half second to one year  
• Enabled using the ALRMEN bit  
(ALCFGRPT<15>)  
• One-time alarm and repeat alarm options  
available  
DS39927C-page 164  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 19-2:  
ALARM MASK SETTINGS  
Day of  
the  
Week  
Alarm Mask Setting  
(AMASK<3:0>)  
Month  
Day  
Hours  
Minutes  
Seconds  
0000- Every half second  
0001- Every second  
0010- Every 10 seconds  
0011- Every minute  
0100- Every 10 minutes  
0101- Every hour  
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
m
m
m
0110- Every day  
h
h
h
h
h
h
h
h
0111- Every week  
1000- Every month  
d
d
d
d
(1)  
1001- Every year  
m
m
d
Note 1: Annually, except when configured for February 29.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 165  
PIC24F16KA102 FAMILY  
NOTES:  
DS39927C-page 166  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
The programmable CRC generator offers the following  
features:  
20.0 PROGRAMMABLE CYCLIC  
REDUNDANCY CHECK (CRC)  
GENERATOR  
• User-programmable polynomial CRC equation  
• Interrupt output  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information on Program-  
mable Cyclic Redundancy Check, refer to  
the “PIC24F Family Reference Manual”,  
Section 30. “Programmable Cyclic  
Redundancy Check (CRC)” (DS39714).  
• Data FIFO  
The module implements a software-configurable CRC  
generator. The terms of the polynomial and its length  
can be programmed using the CRCXOR (X<15:1>) bits  
and the CRCCON (PLEN<3:0>) bits, respectively.  
Consider the CRC equation:  
EQUATION 20-1: CRC  
The programmable Cyclic Redundancy Check (CRC)  
module in PIC24F devices is a software-configurable  
CRC checksum generator. The CRC algorithm treats a  
message as a binary bit stream and divides it by a fixed  
binary number.  
x16 + x12 + x5 + 1  
To program this polynomial into the CRC generator, the  
CRC register bits should be set as provided in  
Table 20-1.  
The remainder from this division is considered the  
checksum. As in division, the CRC calculation is also  
an iterative process. The only difference is that these  
operations are done on modulo arithmetic based on  
mod2. For example, division is replaced with the XOR  
operation (i.e., subtraction without carry). The CRC  
algorithm uses the term, polynomial, to perform all of  
its calculations.  
TABLE 20-1: EXAMPLE CRC SETUP  
Bit Name  
Bit Value  
PLEN<3:0>  
X<15:1>  
1111  
000100000010000  
The value of X<15:1>, the 12th bit and the 5th bit are set  
to ‘1’, as required by the equation. The 0 bit required by  
the equation is always XORed. For a 16-bit polynomial,  
the 16th bit is also always assumed to be XORed;  
therefore, the X<15:1> bits do not have the 0 bit or the  
16th bit.  
The divisor, dividend and remainder that are  
represented by numbers are termed as polynomials  
with binary coefficients.  
The topology of a standard CRC generator is displayed  
in Figure 20-2.  
FIGURE 20-1:  
CRC SHIFTER DETAILS  
PLEN<3:0>  
0
1
2
15  
CRC Shift Register  
Hold  
Hold  
Hold  
Hold  
X1  
X2  
X3  
X15  
0
0
0
0
XOR  
OUT  
OUT  
OUT  
OUT  
IN  
BIT 0  
IN  
BIT 1  
IN  
BIT 2  
IN  
BIT 15  
DOUT  
1
1
1
1
clk  
clk  
clk  
clk  
CRC Read Bus  
CRC Write Bus  
2008-2011 Microchip Technology Inc.  
DS39927C-page 167  
PIC24F16KA102 FAMILY  
FIGURE 20-2:  
CRC GENERATOR RECONFIGURED FOR x16 + x12 + x5 + 1  
XOR  
D
Q
D
Q
D
Q
D
Q
D
Q
SDOx  
BIT 0  
BIT 4  
BIT 5  
BIT 12  
BIT 15  
clk  
clk  
clk  
clk  
clk  
CRC Read Bus  
CRC Write Bus  
To empty words already written into a FIFO, the  
CRCGO bit must be set to ‘1’ and the CRC shifter  
allowed to run until the CRCMPT bit is set.  
20.1 User Interface  
20.1.1  
DATA INTERFACE  
Also, to get the correct CRC reading, it will be  
necessary to wait for the CRCMPT bit to go high before  
reading the CRCWDAT register.  
To start serial shifting, a value of ‘1’ must be written to  
the CRCGO bit.  
The module incorporates a FIFO that is 8-level deep  
when PLEN<3:0> > 7 and 16-deep, otherwise. The  
data for which the CRC is to be calculated must first be  
written into the FIFO. The smallest data element that  
can be written into the FIFO is one byte.  
If a word is written when the CRCFUL bit is set, the  
VWORD Pointer will roll over to 0. The hardware will  
then behave as if the FIFO is empty. However, the  
condition to generate an interrupt will not be met;  
therefore, no interrupt will be generated (see  
Section 20.1.2 “Interrupt Operation”).  
For example, if PLEN = 5, then the size of the data is  
PLEN + 1 = 6. The data must be written as follows:  
At least one instruction cycle must pass after a write to  
CRCWDAT before a read of the VWORD bits is done.  
data<5:0> = crc_input<5:0>  
data<7:6> = bxx  
Once data is written into the CRCWDAT MSb (as  
defined by PLEN), the value of the VWORD bits  
(CRCCON<12:8>) increments by one. The serial  
shifter starts shifting data into the CRC engine when  
CRCGO = 1 and VWORD<4:0> > 0. When the Most  
Significant bit (MSb) is shifted out, the VWORD bits  
decrement by one. The serial shifter continues shifting  
until the VWORD bits reach zero. Therefore, for a given  
value of PLEN, it will take (PLEN + 1) * VWORD  
number of clock cycles to complete the CRC  
calculations.  
20.1.2  
INTERRUPT OPERATION  
When the VWORD<4:0> bits make a transition from a  
value of ‘1’ to ‘0’, an interrupt will be generated.  
20.2 Operation in Power Save Modes  
20.2.1  
SLEEP MODE  
If Sleep mode is entered while the module is operating,  
the module will be suspended in its current state until  
clock execution resumes.  
When the VWORD bits reach 8 (or 16), the CRCFUL bit  
will be set. When the VWORD bits reach 0, the  
CRCMPT bit will be set.  
20.2.2  
IDLE MODE  
To continue full module operation in Idle mode, the  
CSIDL bit must be cleared prior to entry into the mode.  
To continually feed data into the CRC engine, the  
recommended mode of operation is to initially “prime”  
the FIFO with a sufficient number of words so no  
interrupt is generated before the next word can be  
written. Once that is done, start the CRC by setting the  
CRCGO bit to ‘1’. From that point onward, the VWORD  
bits should be polled. If they read less than 8 or 16,  
another word can be written into the FIFO.  
If CSIDL = 1, the module will behave the same way as  
it does in Sleep mode; pending interrupt events will be  
passed on, even though the module clocks are not  
available.  
DS39927C-page 168  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
20.3 Registers  
There are four registers used to control programmable  
CRC operation:  
• CRCCON  
• CRCXOR  
• CRCDAT  
• CRCWDAT  
REGISTER 20-1: CRCCON: CRC CONTROL REGISTER  
U-0  
U-0  
R/W-0  
CSIDL  
R-0, HSC  
VWORD4  
R-0, HSC  
VWORD3  
R-0, HSC  
VWORD2  
R-0, HSC  
VWORD1  
R-0, HSC  
VWORD0  
bit 15  
bit 8  
R-0, HSC  
CRCFUL  
R-1, HSC  
CRCMPT  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CRCGO  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: CRC Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-8  
bit 7  
VWORD<4:0>: Pointer Value bits  
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7, or  
16 when PLEN<3:0> 7.  
CRCFUL: FIFO Full bit  
1= FIFO is full  
0= FIFO is not full  
bit 6  
CRCMPT: FIFO Empty Bit  
1= FIFO is empty  
0= FIFO is not empty  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CRCGO: Start CRC bit  
1= Start CRC serial shifter  
0= CRC serial shifter is turned off  
bit 3-0  
PLEN<3:0>: Polynomial Length bits  
Denotes the length of the polynomial to be generated minus 1.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 169  
PIC24F16KA102 FAMILY  
REGISTER 20-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER  
R/W-0  
X15  
R/W-0  
X14  
R/W-0  
X13  
R/W-0  
X12  
R/W-0  
X11  
R/W-0  
X10  
R/W-0  
X9  
R/W-0  
X8  
bit 15  
bit 8  
R/W-0  
X7  
R/W-0  
X6  
R/W-0  
X5  
R/W-0  
X4  
R/W-0  
X3  
R/W-0  
X2  
R/W-0  
X1  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
bit 0  
X<15:1>: XOR of Polynomial Term Xn Enable bits  
Unimplemented: Read as ‘0’  
DS39927C-page 170  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
An interrupt flag is set if the device experiences an  
excursion past the trip point in the direction of change.  
If the interrupt is enabled, the program execution will  
branch to the interrupt vector address and the software  
can then respond to the interrupt.  
21.0 HIGH/LOW-VOLTAGE DETECT  
(HLVD)  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be  
a
comprehensive  
The HLVD Control register (see Register 21-1)  
completely controls the operation of the HLVD module.  
This allows the circuitry to be “turned off” by the user  
under software control, which minimizes the current  
consumption for the device.  
reference source. For more information  
on the High/Low-Voltage Detect, refer to  
the “PIC24F Family Reference Manual”,  
Section 36. “High-Level Integration  
with Programmable High/Low-Voltage  
Detect (HLVD)” (DS39725).  
The High/Low-Voltage Detect module (HLVD) is a  
programmable circuit that allows the user to specify  
both the device voltage trip point and the direction of  
change.  
FIGURE 21-1:  
HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM  
Externally Generated  
Trip Point  
VDD  
VDD  
HLVDL<3:0>  
HLVDIN  
VDIR  
HLVDEN  
Set  
HLVDIF  
Internal Band Gap  
Voltage Reference  
1.2V Typical  
HLVDEN  
2008-2011 Microchip Technology Inc.  
DS39927C-page 171  
PIC24F16KA102 FAMILY  
REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
HLVDEN  
HLSIDL  
bit 15  
bit 8  
R/W-0  
VDIR  
R/W-0  
R/W-0  
IRVST  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BGVST  
HLVDL3  
HLVDL2  
HLVDL1  
HLVDL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
HLVDEN: High/Low-Voltage Detect Power Enable bit  
1= HLVD is enabled  
0= HLVD is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
HLSIDL: HLVD Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
VDIR: Voltage Change Direction Select bit  
1= Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>)  
0= Event occurs when voltage equals or falls below trip point (HLVDL<3:0>)  
bit 6  
bit 5  
BGVST: Band Gap Voltage Stable Flag bit  
1= Indicates that the band gap voltage is stable  
0= Indicates that the band gap voltage is unstable  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the internal reference voltage is stable and the High-Voltage Detect logic generates  
the interrupt flag at the specified voltage range  
0= Indicates that the internal reference voltage is unstable and the High-Voltage Detect logic will not  
generate the interrupt flag at the specified voltage range, and the HLVD interrupt should not be  
enabled  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
HLVDL<3:0>: High/Low-Voltage Detection Limit bits  
1111= External analog input is used (input comes from the HLVDIN pin)  
1110= Trip Point 1(1)  
1101= Trip Point 2(1)  
1100= Trip Point 3(1)  
.
.
.
0000= Trip Point 15(1)  
Note 1: For actual trip point, refer to Section 29.0 “Electrical Characteristics”.  
DS39927C-page 172  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
A block diagram of the A/D Converter is displayed in  
Figure 22-1.  
22.0 10-BIT HIGH-SPEED A/D  
CONVERTER  
To perform an A/D conversion:  
1. Configure the A/D module:  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
a) Configure port pins as analog inputs and/or  
select band gap reference inputs  
(AD1PCFG<15:13>, AD1PCFG<9:6>).  
intended to be  
a
comprehensive  
reference source. For more information  
on the 10-Bit High-Speed A/D Converter,  
refer to the “PIC24F Family Reference  
Manual”, Section 17. “10-Bit A/D  
Converter” (DS39705).  
b) Select voltage reference source to match  
expected range on analog inputs  
(AD1CON2<15:13>).  
c) Select the analog conversion clock to match  
the desired data rate with the processor  
clock (AD1CON3<7:0>).  
The 10-bit A/D Converter has the following key  
features:  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 500 ksps  
• Nine analog input pins  
d) Select the appropriate sample/conversion  
sequence  
(AD1CON1<7:5>  
and  
AD1CON3<12:8>).  
e) Select how conversion results are  
presented in the buffer (AD1CON1<9:8>).  
• External voltage reference input pins  
• Internal band gap reference inputs  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• 16-word conversion result buffer  
• Selectable Buffer Fill modes  
f) Select interrupt rate (AD1CON2<5:2>).  
g) Turn on A/D module (AD1CON1<15>).  
2. Configure A/D interrupt (if required):  
a) Clear the AD1IF bit.  
b) Select A/D interrupt priority.  
• Four result alignment options  
• Operation During CPU Sleep and Idle modes  
On all PIC24F16KA102 family devices, the 10-bit A/D  
Converter has nine analog input pins, designated AN0  
through AN5 and AN10 through AN12. In addition,  
there are two analog input pins for external voltage  
reference connections (VREF+ and VREF-). These  
voltage reference inputs may be shared with other  
analog input pins.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 173  
PIC24F16KA102 FAMILY  
FIGURE 22-1:  
10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM  
Internal Data Bus  
16  
AVDD  
AVSS  
VR+  
VR-  
VREF+  
VREF-  
Comparator  
VINH  
VINL  
VR- VR+  
DAC  
S/H  
10-Bit SAR  
Conversion Logic  
VINH  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN10  
Data Formatting  
AN1  
ADC1BUF0:  
ADC1BUFF  
VINL  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
AN11  
AN12  
VINH  
AD1PCFG  
AD1CSSL  
VBG  
VBG/2  
VINL  
AN1  
Sample Control  
Control Logic  
Conversion Control  
Input MUX Control  
Pin Config Control  
DS39927C-page 174  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 22-1: AD1CON1: A/D CONTROL REGISTER 1  
R/W-0  
ADON(1)  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADSIDL  
FORM1  
FORM0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
ASAM  
R/W-0, HSC R/W-0, HSC  
SAMP DONE  
bit 0  
SSRC2  
SSRC1  
SSRC0  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ADON: A/D Operating Mode bit(1)  
1= A/D Converter module is operating  
0= A/D Converter is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-10  
bit 9-8  
Unimplemented: Read as ‘0’  
FORM<1:0>: Data Output Format bits  
11= Signed fractional (sddd dddd dd00 0000)  
10= Fractional (dddd dddd dd00 0000)  
01= Signed integer (ssss sssd dddd dddd)  
00= Integer (0000 00dd dddd dddd)  
bit 7-5  
SSRC<2:0>: Conversion Trigger Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= CTMU event ends sampling and starts conversion  
101= Reserved  
100= Reserved  
011= Reserved  
010= Timer3 compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing SAMP bit ends sampling and starts conversion  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
ASAM: A/D Sample Auto-Start bit  
1= Sampling begins immediately after last conversion completes; SAMP bit is auto-set  
0= Sampling begins when SAMP bit is set  
bit 1  
bit 0  
SAMP: A/D Sample Enable bit  
1= A/D sample/hold amplifier is sampling input  
0= A/D sample/hold amplifier is holding  
DONE: A/D Conversion Status bit  
1= A/D conversion is done  
0= A/D conversion is not done  
Note 1: Values of ADC1BUFn registers will not retain their values once the ADON bit is cleared. Read out the  
conversion values from the buffer before disabling the module.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 175  
PIC24F16KA102 FAMILY  
REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OFFCAL(1)  
U-0  
R/W-0  
U-0  
U-0  
VCFG2  
VCFG1  
VCFG0  
CSCNA  
bit 15  
bit 8  
R-0, HSC  
BUFS  
U-0  
R/W-0  
SMPI3  
R/W-0  
SMPI2  
R/W-0  
SMPI1  
R/W-0  
SMPI0  
R/W-0  
BUFM  
R/W-0  
ALTS  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-13  
VCFG<2:0>: Voltage Reference Configuration bits  
VCFG<2:0>  
VR+  
VR-  
000  
001  
010  
011  
1xx  
AVDD  
External VREF+ pin  
AVDD  
AVSS  
AVSS  
External VREF- pin  
External VREF- pin  
AVSS  
External VREF+ pin  
AVDD  
bit 12  
OFFCAL: Offset Calibration bit(1)  
1= Converts to get the offset calibration value  
0= Converts to get the actual input value  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
BUFS: Buffer Fill Status bit (valid only when BUFM = 1)  
1= A/D is currently filling buffer, 08-0F; user should access data in 00-07  
0= A/D is currently filling buffer, 00-07; user should access data in 08-0F  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits  
1111= Interrupts at the completion of conversion for each 16th sample/convert sequence  
1110= Interrupts at the completion of conversion for each 15th sample/convert sequence  
.
.
.
0001= Interrupts at the completion of conversion for each 2nd sample/convert sequence  
0000= Interrupts at the completion of conversion for each sample/convert sequence  
Note 1: When the OFFCAL bit is set, inputs are disconnected and tied to AVSS. This sets the inputs of the A/D to  
zero. Then, the user can perform a conversion. Use of the Calibration mode is not affected by AD1PCFG  
contents nor channel input selection. Any analog input switches are disconnected from the A/D Converter  
in this mode. The conversion result is stored by the user software and used to compensate subsequent  
conversions. This can be done by adding the two’s complement of the result obtained with the OFFCAL bit  
set to all normal A/D conversions.  
DS39927C-page 176  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)  
bit 1  
BUFM: Buffer Mode Select bit  
1 = Buffer is configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)  
0 = Buffer is configured as one 16-word buffer (ADC1BUFn<15:0>)  
bit 0  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and  
MUX A input multiplexer settings for all subsequent samples  
0= Always uses MUX A input multiplexer settings  
Note 1: When the OFFCAL bit is set, inputs are disconnected and tied to AVSS. This sets the inputs of the A/D to  
zero. Then, the user can perform a conversion. Use of the Calibration mode is not affected by AD1PCFG  
contents nor channel input selection. Any analog input switches are disconnected from the A/D Converter  
in this mode. The conversion result is stored by the user software and used to compensate subsequent  
conversions. This can be done by adding the two’s complement of the result obtained with the OFFCAL bit  
set to all normal A/D conversions.  
REGISTER 22-3: AD1CON3: A/D CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SAMC4  
SAMC3  
SAMC2  
SAMC1  
SAMC0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS5  
ADCS4  
ADCS3  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: A/D Conversion Clock Source bit  
1= A/D internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto-Sample Time bits  
11111= 31 TAD  
·
·
·
00001= 1 TAD  
00000= 0 TAD (not recommended)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ADCS<5:0>: A/D Conversion Clock Select bits  
111111= 64 • TCY  
111110= 63 • TCY  
·
·
·
000001= 3 • TCY  
000000= 2 • TCY  
2008-2011 Microchip Technology Inc.  
DS39927C-page 177  
PIC24F16KA102 FAMILY  
-
REGISTER 22-4: AD1CHS: A/D INPUT SELECT REGISTER  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NB  
CH0SB3  
CH0SB2  
CH0SB1  
CH0SB0  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA3  
CH0SA2  
CH0SA1  
CH0SA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 14-12  
bit 11-8  
Unimplemented: Read as ‘0’  
CH0SB<3:0>: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits  
1111= Channel 0 positive input is band gap reference (VBG)  
1110= Channel 0 positive input is band gap, divided by two, reference (VBG/2)  
1101= No channels connected (actual A/D MUX switch activates, but input floats); used for CTMU  
1100= Channel 0 positive input is AN12  
1011= Channel 0 positive input is AN11  
1010= Channel 0 positive input is AN10  
1001= Reserved  
1000= Reserved  
0111= AVDD  
0110= AVSS  
0101= Channel 0 positive input is AN5  
0100= Channel 0 positive input is AN4  
0011= Channel 0 positive input is AN3  
0010= Channel 0 positive input is AN2  
0001= Channel 0 positive input is AN1  
0000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 6-4  
bit 3-0  
Unimplemented: Read as ‘0’  
CH0SA<3:0>: Channel 0 Positive Input Select for Sample A bits  
1111= Channel 0 positive input is band gap reference (VBG)  
1110= Channel 0 positive input is band gap, divided by two, reference (VBG/2)  
1101= No channels connected (actual A/D MUX switch activates but input floats); used for CTMU  
1100= Channel 0 positive input is AN12  
1011= Channel 0 positive input is AN11  
1010= Channel 0 positive input is AN10  
1001= Reserved  
1000= Reserved  
0111= AVDD  
0110= AVSS  
0101= Channel 0 positive input is AN5  
0100= Channel 0 positive input is AN4  
0011= Channel 0 positive input is AN3  
0010= Channel 0 positive input is AN2  
0001= Channel 0 positive input is AN1  
0000= Channel 0 positive input is AN0  
DS39927C-page 178  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 22-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
PCFG15  
PCFG14  
PCFG12  
PCFG11  
PCFG10  
bit 15  
bit 8  
U
-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
PCFG15: Analog Input Pin Configuration Control bit  
1= Analog channel is disabled from input scan  
0= Internal band gap (VBG) channel is enabled for input scan  
PCFG14: Analog Input Pin Configuration Control bit  
1= Analog channel is disabled from input scan  
0= Internal VBG/2 channel is enabled for input scan  
bit 13  
Unimplemented: Read as ‘0’  
bit 12-10  
PCFG<12:10>: Analog Input Pin Configuration Control bits  
1= Pin for corresponding analog channel is configured in Digital mode; I/O port read is enabled  
0= Pin is configured in Analog mode; I/O port read is disabled; A/D samples pin voltage  
bit 9-6  
bit 5-0  
Unimplemented: Read as ‘0’  
PCFG<5:0>: Analog Input Pin Configuration Control bits  
1= Pin for corresponding analog channel is configured in Digital mode; I/O port read is enabled  
0= Pin configured in Analog mode; I/O port read is disabled; A/D samples pin voltage  
2008-2011 Microchip Technology Inc.  
DS39927C-page 179  
PIC24F16KA102 FAMILY  
REGISTER 22-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
CSSL12  
CSSL11  
CSSL10  
bit 15  
bit 8  
U
-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL5  
CSSL4  
CSSL3  
CSSL2  
CSSL1  
CSSL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-10  
Unimplemented: Read as ‘0’  
CSSL<12:10>: A/D Input Pin Scan Selection bits  
1= Corresponding analog channel is selected for input scan  
0= Analog channel omitted from input scan  
bit 9-6  
bit 5-0  
Unimplemented: Read as ‘0’  
CSSL<5:0>: A/D Input Pin Scan Selection bits  
1= Corresponding analog channel is selected for input scan  
0= Analog channel omitted from input scan  
DS39927C-page 180  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
EQUATION 22-1: A/D CONVERSION CLOCK PERIOD(1)  
TAD  
TCY  
ADCS =  
– 1  
TAD = TCY • (ADCS + 1)  
Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.  
FIGURE 22-2:  
10-BIT A/D CONVERTER ANALOG INPUT MODEL  
VDD  
RIC 250  
Sampling  
RSS 5 k(Typical)  
Switch  
VT = 0.6V  
ANx  
RSS  
Rs  
CHOLD  
= A/D capacitance  
= 4.4 pF (Typical)  
VA  
CPIN  
6-11 pF  
ILEAKAGE  
±500 nA  
VT = 0.6V  
(Typical)  
VSS  
Legend: CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
RIC  
= Interconnect Resistance  
RSS  
= Sampling Switch Resistance  
= Sample/Hold Capacitance (from A/D)  
CHOLD  
Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs 5 k.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 181  
PIC24F16KA102 FAMILY  
FIGURE 22-3:  
A/D TRANSFER FUNCTION  
Output Code  
(Binary (Decimal))  
11 1111 1111(1023)  
11 1111 1110(1022)  
10 0000 0011(515)  
10 0000 0010(514)  
10 0000 0001(513)  
10 0000 0000(512)  
01 1111 1111(511)  
01 1111 1110(510)  
01 1111 1101(509)  
00 0000 0001(1)  
00 0000 0000(0)  
Voltage Level  
DS39927C-page 182  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
The comparator outputs may be directly connected to  
the CxOUT pins. When the respective COE equals ‘1’,  
the I/O pad logic makes the unsynchronized output of  
the comparator available on the pin.  
23.0 COMPARATOR MODULE  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on the  
Comparator module, refer to the “PIC24F  
Family Reference Manual”, Section 46.  
A simplified block diagram of the module is displayed  
in Figure 23-1. Diagrams of the possible individual  
comparator  
Figure 23-2.  
configurations  
are  
displayed  
in  
“Scalable  
Comparator  
Module”  
Each comparator has its own control register,  
CMxCON (Register 23-1), for enabling and configuring  
its operation. The output and event status of all three  
comparators is provided in the CMSTAT register  
(Register 23-2).  
(DS39734).  
The comparator module provides two dual input  
comparators. The inputs to the comparator can be  
configured to use any one of four external analog  
inputs, as well as a voltage reference input from either  
the internal band gap reference, divided by 2 (VBG/2),  
or the comparator voltage reference generator.  
FIGURE 23-1:  
COMPARATOR MODULE BLOCK DIAGRAM  
CCH<1:0>  
CREF  
EVPOL<1:0>  
CEVT  
COUT  
Trigger/Interrupt  
Logic  
CXINB  
CXINC  
CXIND  
VBG/2  
COE  
CPOL  
Input  
Select  
Logic  
VIN-  
C1  
VIN+  
C1OUT  
Pin  
EVPOL<1:0>  
CPOL  
CEVT  
COUT  
Trigger/Interrupt  
Logic  
COE  
CXINA  
CVREF  
VIN-  
C2  
VIN+  
C2OUT  
Pin  
2008-2011 Microchip Technology Inc.  
DS39927C-page 183  
PIC24F16KA102 FAMILY  
FIGURE 23-2:  
INDIVIDUAL COMPARATOR CONFIGURATIONS  
Comparator Off  
CON = 0, CREF = x, CCH<1:0> = xx  
COE  
VIN-  
-
Cx  
VIN+  
Off (Read as ‘0’)  
CxOUT  
Pin  
Comparator CxINB < CxINA Compare  
Comparator CxINC < CxINA Compare  
CON = 1, CREF = 0, CCH<1:0> = 00  
CON = 1, CREF = 0, CCH<1:0> = 01  
COE  
COE  
VIN-  
VIN-  
-
-
CXINB  
CXINA  
CXINC  
CXINA  
Cx  
Cx  
VIN+  
VIN+  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG/2 < CxINA Compare  
Comparator CxIND < CxINA Compare  
CON = 1, CREF = 0, CCH<1:0> = 11  
CON = 1, CREF = 0, CCH<1:0> = 10  
COE  
COE  
COE  
COE  
VIN-  
VIN-  
-
-
VBG/2  
CXINA  
CXIND  
Cx  
Cx  
VIN+  
VIN+  
CXINA  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator CxINB < CVREF Compare  
CON = 1, CREF = 1, CCH<1:0> = 00  
Comparator CxINC < CVREF Compare  
CON = 1, CREF = 1, CCH<1:0> = 01  
COE  
VIN-  
VIN-  
-
-
CXINB  
CXINC  
CVREF  
Cx  
Cx  
VIN+  
VIN+  
CVREF  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator CxIND < CVREF Compare  
CON = 1, CREF = 1, CCH<1:0> = 10  
Comparator VBG/2 < CVREF Compare  
CON = 1, CREF = 1, CCH<1:0> = 11  
COE  
VIN-  
VIN-  
-
-
CXIND  
CVREF  
VBG/2  
Cx  
Cx  
VIN+  
VIN+  
CVREF  
CxOUT  
Pin  
CxOUT  
Pin  
DS39927C-page 184  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS  
R/W-0  
CON  
R/W-0  
COE  
R/W-0  
CPOL  
R/W-0  
U-0  
U-0  
R/W-0  
CEVT  
R-0  
CLPWR  
COUT  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
R/W-0  
CREF  
U-0  
U-0  
R/W-0  
CCH1  
R/W-0  
CCH0  
EVPOL1  
EVPOL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
CON: Comparator Enable bit  
1= Comparator is enabled  
0= Comparator is disabled  
COE: Comparator Output Enable bit  
1= Comparator output is present on the CxOUT pin  
0= Comparator output is internal only  
CPOL: Comparator Output Polarity Select bit  
1= Comparator output is inverted  
0= Comparator output is not inverted  
CLPWR: Comparator Low-Power Mode Select bit  
1= Comparator operates in Low-Power mode  
0= Comparator does not operate in Low-Power mode  
bit 11-10  
bit 9  
Unimplemented: Read as ‘0’  
CEVT: Comparator Event bit  
1= Comparator event defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are  
disabled until the bit is cleared  
0= Comparator event has not occurred  
bit 8  
COUT: Comparator Output bit  
When CPOL = 0:  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CPOL = 1:  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
bit 7-6  
EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits  
11= Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)  
10= Trigger/event/interrupt is generated on transition of the comparator output:  
If CPOL = 0 (non-inverted polarity):  
High-to-low transition only.  
If CPOL = 1 (inverted polarity):  
Low-to-high transition only.  
01= Trigger/event/interrupt is generated on transition of the comparator output:  
If CPOL = 0 (non-inverted polarity):  
Low-to-high transition only.  
If CPOL = 1 (inverted polarity):  
High-to-low transition only.  
00= Trigger/event/interrupt generation is disabled  
2008-2011 Microchip Technology Inc.  
DS39927C-page 185  
PIC24F16KA102 FAMILY  
REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CREF: Comparator Reference Select bit (non-inverting input)  
1= Non-inverting input connects to the internal CVREF voltage  
0= Non-inverting input connects to the CxINA pin  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
CCH<1:0>: Comparator Channel Select bits  
11= Inverting input of comparator connects to VBG/2  
10= Inverting input of comparator connects to CxIND pin  
01= Inverting input of comparator connects to CxINC pin  
00= Inverting input of comparator connects to CxINB pin  
REGISTER 23-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
C2EVT  
R-0, HSC  
C1EVT  
CMIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
C2OUT  
R-0, HSC  
C1OUT  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMIDL: Comparator Stop in Idle Mode bit  
1= Disable comparator interrupts when the device enters Idle mode; the module is still enabled  
0= Continue operation of all enabled comparators in Idle mode  
bit 14-10  
bit 9  
Unimplemented: Read as ‘0’  
C2EVT: Comparator 2 Event Status bit (read-only)  
Shows the current event status of Comparator 2 (CM2CON<9>).  
C1EVT: Comparator 1 Event Status bit (read-only)  
Shows the current event status of Comparator 1 (CM1CON<9>).  
Unimplemented: Read as ‘0’  
bit 8  
bit 7-2  
bit 1  
C2OUT: Comparator 2 Output Status bit (read-only)  
Shows the current output of Comparator 2 (CM2CON<8>).  
C1OUT: Comparator 1 Output Status bit (read-only)  
Shows the current output of Comparator 1 (CM1CON<8>).  
bit 0  
DS39927C-page 186  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
24.1 Configuring the Comparator  
Voltage Reference  
24.0 COMPARATOR VOLTAGE  
REFERENCE  
The comparator voltage reference module is controlled  
through the CVRCON register (Register 24-1). The  
comparator voltage reference provides two ranges of  
output voltage, each with 16 distinct levels. The range  
to be used is selected by the CVRR bit (CVRCON<5>).  
The primary difference between the ranges is the size  
of the steps selected by the CVREF Selection bits  
(CVR<3:0>), with one range offering finer resolution.  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on the  
Comparator Voltage Reference, refer to  
the “PIC24F Family Reference Manual”,  
Section 20. “Comparator Voltage  
Reference Module” (DS39709).  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF-. The voltage source is selected by the CVRSS bit  
(CVRCON<4>).  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF output.  
FIGURE 24-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
VREF+  
AVDD  
8R  
CVRSS = 0  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
AVSS  
2008-2011 Microchip Technology Inc.  
DS39927C-page 187  
PIC24F16KA102 FAMILY  
REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit is powered on  
0= CVREF circuit is powered down  
bit 6  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is output on CVREF pin  
0= CVREF voltage level is disconnected from CVREF pin  
bit 5  
CVRR: Comparator VREF Range Selection bit  
1= CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size  
0= CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size  
bit 4  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = VREF+ – VREF-  
0= Comparator reference source, CVRSRC = AVDD AVSS  
bit 3-0  
CVR3:CVR0: Comparator VREF Value Selection 0 CVR<3:0> 15 bits  
When CVRR = 1 and CVRSS = 0:  
CVREF = (CVR<3:0>/24) * (CVRSRC)  
When CVRR = 0 and CVRSS = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) * (CVRSRC)  
When CVRR = 1 and CVRSS = 1:  
CVREF = ((CVR<3:0>/24) * (CVRSRC)) + VREF-  
When CVRR = 0 and CVRSS = 1:  
CVREF = (1/4 (CVRSRC) + (CVR<3:0>/32) * (CVRSRC)) + VREF-  
DS39927C-page 188  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
source polarity selection, and edge sequencing. The  
CTMUICON register selects the current range of  
current source and trims the current.  
25.0 CHARGE TIME  
MEASUREMENT UNIT (CTMU)  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information on the  
Charge Measurement Unit, refer to the  
“PIC24F Family Reference Manual”,  
Section 11. “Charge Time Measurement  
Unit (CTMU)” (DS39724).  
25.1 Measuring Capacitance  
The CTMU module measures capacitance by  
generating an output pulse with a width equal to the  
time between edge events on two separate input chan-  
nels. The pulse edge events to both input channels can  
be selected from four sources: two internal peripheral  
modules (OC1 and Timer1) and two external pins  
(CTED1 and CTED2). This pulse is used with the mod-  
ule’s precision current source to calculate capacitance  
according to the relationship:  
The Charge Time Measurement Unit (CTMU) is a  
flexible analog module that provides charge measure-  
ment, accurate differential time measurement between  
pulse sources and asynchronous pulse generation. Its  
key features include:  
dV  
I = C •  
dT  
• Four-edge input trigger sources  
• Polarity control for each edge source  
• Control of edge sequence  
For capacitance measurements, the A/D Converter  
samples an external capacitor (CAPP) on one of its  
input channels, after the CTMU output’s pulse. A  
precision resistor (RPR) provides current source  
calibration on a second A/D channel. After the pulse  
ends, the converter determines the voltage on the  
capacitor. The actual calculation of capacitance is  
performed in software by the application.  
• Control of response to edges  
• Time measurement resolution of one nanosecond  
• Accurate current source suitable for capacitive  
measurement  
Together with other on-chip analog modules, the CTMU  
can be used to precisely measure time, measure  
capacitance, measure relative changes in capacitance,  
or generate output pulses that are independent of the  
system clock. The CTMU module is ideal for interfacing  
with capacitive-based touch sensors.  
Figure 25-1 displays the external connections used for  
capacitance measurements, and how the CTMU and  
A/D modules are related in this application. This example  
also shows the edge events coming from Timer1, but  
other configurations using external edge sources are  
possible. A detailed discussion on measuring capaci-  
tance and time with the CTMU module is provided in the  
PIC24F Family Reference Manual”.  
The CTMU is controlled through two registers:  
CTMUCON and CTMUICON. CTMUCON enables the  
module, and controls edge source selection, edge  
FIGURE 25-1:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR  
CAPACITANCE MEASUREMENT  
PIC24F Device  
Timer1  
CTMU  
EDG1  
EDG2  
Current Source  
Output  
Pulse  
A/D Converter  
ANx  
ANY  
CAPP  
RPR  
2008-2011 Microchip Technology Inc.  
DS39927C-page 189  
PIC24F16KA102 FAMILY  
When the module is configured for pulse generation  
delay by setting the TGEN bit (CTMUCON<12>), the  
internal current source is connected to the B input of  
Comparator 2. A capacitor (CDELAY) is connected to  
the Comparator 2 pin, C2INB, and the comparator  
voltage reference, CVREF, is connected to C2INA.  
CVREF is then configured for a specific trip point. The  
module begins to charge CDELAY when an edge event  
is detected. When CDELAY charges above the CVREF  
trip point, a pulse is output on CTPLS. The length of the  
pulse delay is determined by the value of CDELAY and  
the CVREF trip point.  
25.2 Measuring Time  
Time measurements on the pulse width can be similarly  
performed using the A/D module’s internal capacitor  
(CAD) and a precision resistor for current calibration.  
Figure 25-2 displays the external connections used for  
time measurements, and how the CTMU and A/D  
modules are related in this application. This example  
also shows both edge events coming from the external  
CTED pins, but other configurations using internal  
edge sources are possible.  
25.3 Pulse Generation and Delay  
Figure 25-3 shows the external connections for pulse  
generation, as well as the relationship of the different  
analog modules required. While CTED1 is shown as  
the input pulse source, other options are available. A  
detailed discussion on pulse generation with the CTMU  
module is provided in the “PIC24F Family Reference  
Manual”.  
The CTMU module can also generate an output pulse  
with edges that are not synchronous with the device’s  
system clock. More specifically, it can generate a pulse  
with a programmable delay from an edge event input to  
the module.  
FIGURE 25-2:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR  
TIME MEASUREMENT  
PIC24F Device  
CTMU  
CTED1  
CTED2  
EDG1  
Current Source  
EDG2  
Output Pulse  
A/D Converter  
ANx  
RPR  
CAD  
FIGURE 25-3:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR  
PULSE DELAY GENERATION  
PIC24F Device  
CTMU  
CTED1  
EDG1  
CTPLS  
Current Source  
Comparator  
-
C2INB  
C2  
CDELAY  
CVREF  
DS39927C-page 190  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
R/W-0  
TGEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMUEN  
CTMUSIDL  
EDGEN  
EDGSEQEN  
IDISSEN  
CTTRIG  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EDG2POL  
EDG2SEL1 EDG2SEL0  
EDG1POL  
EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
CTMUEN: CTMU Enable bit  
1= Module is enabled  
0= Module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
bit 10  
bit 9  
TGEN: Time Generation Enable bit  
1= Enables edge delay generation  
0= Disables edge delay generation  
EDGEN: Edge Enable bit  
1= Edges are not blocked  
0= Edges are blocked  
EDGSEQEN: Edge Sequence Enable bit  
1= Edge 1 event must occur before Edge 2 event can occur  
0= No edge sequence is needed  
IDISSEN: Analog Current Source Control bit  
1= Analog current source output is grounded  
0= Analog current source output is not grounded  
bit 8  
CTTRIG: Trigger Control bit  
1= Trigger output is enabled  
0= Trigger output is disabled  
bit 7  
EDG2POL: Edge 2 Polarity Select bit  
1= Edge 2 is programmed for a positive edge response  
0= Edge 2 is programmed for a negative edge response  
bit 6-5  
EDG2SEL<1:0>: Edge 2 Source Select bits  
11= CTED1 pin  
10= CTED2 pin  
01= OC1 module  
00= Timer1 module  
bit 4  
EDG1POL: Edge 1 Polarity Select bit  
1= Edge 1 is programmed for a positive edge response  
0= Edge 1 is programmed for a negative edge response  
2008-2011 Microchip Technology Inc.  
DS39927C-page 191  
PIC24F16KA102 FAMILY  
REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)  
bit 3-2  
EDG1SEL<1:0>: Edge 1 Source Select bits  
11= CTED1 pin  
10= CTED2 pin  
01= OC1 module  
00= Timer1 module  
bit 1  
bit 0  
EDG2STAT: Edge 2 Status bit  
1= Edge 2 event has occurred  
0= Edge 2 event has not occurred  
EDG1STAT: Edge 1 Status bit  
1= Edge 1 event has occurred  
0= Edge 1 event has not occurred  
REGISTER 25-2: CTMUICON: CTMU CURRENT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRNG1  
R/W-0  
IRNG0  
ITRIM5  
ITRIM4  
ITRIM3  
ITRIM2  
ITRIM1  
ITRIM0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
ITRIM<5:0>: Current Source Trim bits  
011111= Maximum positive change from nominal current  
011110  
.
.
.
000001= Minimum positive change from nominal current  
000000= Nominal current output specified by IRNG<1:0>  
111111= Minimum negative change from nominal current  
.
.
.
100010  
100000= Maximum negative change from nominal current  
bit 9-8  
bit 7-0  
IRNG<1:0>: Current Source Range Select bits  
11= 100 Base current  
10= 10 Base current  
01= Base current level (0.55 A nominal)  
00= Current source is disabled  
Unimplemented: Read as ‘0’  
DS39927C-page 192  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
26.1 Configuration Bits  
26.0 SPECIAL FEATURES  
The Configuration bits can be programmed (read as ‘0’),  
or left unprogrammed (read as ‘1’), to select various  
device configurations. These bits are mapped, starting  
at program memory location, F80000h. A complete list is  
provided in Table 26-1. A detailed explanation of the  
various bit functions is provided in Register 26-1 through  
Register 26-8.  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on the  
Watchdog Timer, High-Level Device inte-  
gration and Programming Diagnostics,  
refer to the individual sections of the  
“PIC24F Family Reference Manual”  
provided below:  
The address, F80000h, is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (800000h-FFFFFFh), which can only be  
accessed using table reads and table writes.  
Section 9. “Watchdog Timer (WDT)”  
(DS39697)  
Section 36. “High-Level Integration  
with Programmable High/  
Low-Voltage Detect (HLVD)”  
(DS39725)  
Section 33. “Programming and  
Diagnostics” (DS39716)  
TABLE 26-1: CONFIGURATIONREGISTERS  
LOCATIONS  
Configuration  
Address  
Register  
FBS  
F80000  
F80004  
F80006  
F80008  
F8000A  
F8000C  
F8000E  
F80010  
PIC24F16KA102 family devices include several  
features intended to maximize application flexibility and  
reliability, and minimize cost through elimination of  
external components. These are:  
FGS  
FOSCSEL  
FOSC  
FWDT  
FPOR  
FICD  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
FDS  
REGISTER 26-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-1  
BSS2  
R/W-1  
BSS1  
R/W-1  
BSS0  
R/W-1  
BWRP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-1  
Unimplemented: Read as ‘0’  
BSS<2:0>: Boot Segment Program Flash Code Protection bits  
111= No boot program Flash segment  
011= Reserved  
110= Standard security, boot program Flash segment starts at 200h, ends at 000AFEh  
010= High-security boot program Flash segment starts at 200h, ends at 000AFEh  
101= Standard security, boot program Flash segment starts at 200h, ends at 0015FEh(1)  
001= High-security, boot program Flash segment starts at 200h, ends at 0015FEh(1)  
100= Reserved  
000= Reserved  
bit 0  
BWRP: Boot Segment Program Flash Write Protection bit  
1= Boot segment may be written  
0= Boot segment is write-protected  
Note 1: This selection should not be used in PIC24F08KA1XX devices.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 193  
PIC24F16KA102 FAMILY  
REGISTER 26-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/C-1  
GSS0  
R/C-1  
GWRP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
C = Clearable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
GSS0: General Segment Code Flash Code Protection bit  
1= No protection  
0= Standard security is enabled  
bit 0  
GWRP: General Segment Code Flash Write Protection bit  
1= General segment may be written  
0= General segment is write-protected  
REGISTER 26-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER  
R/P-1  
IESO  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
FNOSC2  
FNOSC1  
FNOSC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)  
0= Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)  
bit 6-3  
bit 2-0  
Unimplemented: Read as ‘0’  
FNOSC<2:0>: Oscillator Selection bits  
000= Fast RC Oscillator (FRC)  
001= Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)  
010= Primary Oscillator (XT, HS, EC)  
011= Primary Oscillator with PLL module (HS+PLL, EC+PLL)  
100= Secondary Oscillator (SOSC)  
101= Low-Power RC Oscillator (LPRC)  
110= 500 kHz Low-Power FRC Oscillator with divide-by-N (LPFRCDIV)  
111= 8 MHz FRC Oscillator with divide-by-N (FRCDIV)  
DS39927C-page 194  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 26-4: FOSC: OSCILLATOR CONFIGURATION REGISTER  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
POSCMD0  
bit 0  
FCKSM1  
FCKSM0  
SOSCSEL POSCFREQ1 POSCFREQ0 OSCIOFNC POSCMD1  
bit 7  
Legend:  
R = Readable bit  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-6  
FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
bit 5  
SOSCSEL: Secondary Oscillator Select bit  
1= Secondary oscillator is configured for high-power operation  
0= Secondary oscillator is configured for low-power operation  
bit 4-3  
POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits  
11= Primary oscillator/external clock input frequency is greater than 8 MHz  
10= Primary oscillator/external clock input frequency is between 100 kHz and 8 MHz  
01= Primary oscillator/external clock input frequency is less than 100 kHz  
00= Reserved; do not use  
bit 2  
OSCIOFNC: CLKO Enable Configuration bit  
1= CLKO output signal active on the OSCO pin; primary oscillator must be disabled or configured for  
the External Clock mode (EC) for the CLKO to be active (POSCMD<1:0> = 11or 00)  
0= CLKO output is disabled  
bit 1-0  
POSCMD<1:0>: Primary Oscillator Configuration bits  
11= Primary Oscillator mode is disabled  
10= HS Oscillator mode is selected  
01= XT Oscillator mode is selected  
00= External Clock mode is selected  
2008-2011 Microchip Technology Inc.  
DS39927C-page 195  
PIC24F16KA102 FAMILY  
REGISTER 26-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER  
R/P-1  
R/P-1  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
FWDTEN  
WINDIS  
FWPSA  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
bit 6  
FWDTEN: Watchdog Timer Enable bit  
1= WDT is enabled  
0= WDT is disabled (control is placed on the SWDTEN bit)  
WINDIS: Windowed Watchdog Timer Disable bit  
1= Standard WDT is selected; windowed WDT disabled  
0= Windowed WDT is enabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FWPSA: WDT Prescaler bit  
1= WDT prescaler ratio of 1:128  
0= WDT prescaler ratio of 1:32  
bit 3-0  
WDTPS<3:0>: Watchdog Timer Postscale Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
DS39927C-page 196  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 26-6: FPOR: RESET CONFIGURATION REGISTER  
R/P-1  
MCLRE(2)  
bit 7  
R/P-1  
BORV1(3)  
R/P-1  
BORV0(3)  
R/P-1  
I2C1SEL(1)  
R/P-1  
U-0  
R/P-1  
R/P-1  
PWRTEN  
BOREN1  
BOREN0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
MCLRE: MCLR Pin Enable bit(2)  
1= MCLR pin is enabled; RA5 input pin is disabled  
0= RA5 input pin is enabled; MCLR is disabled  
bit 6-5  
BORV<1:0>: Brown-out Reset Enable bits(3)  
11= Brown-out Reset is set to the lowest voltage  
10= Brown-out Reset  
01= Brown-out Reset is set to the highest voltage  
00= Low-Power Brown-out Reset occurs around 2.0V  
bit 4  
bit 3  
I2C1SEL: Alternate I2C1 Pin Mapping bit(1)  
0= Alternate location for SCL1/SDA1 pins  
1= Default location for SCL1/SDA1 pins  
PWRTEN: Power-up Timer Enable bit  
0= PWRT is disabled  
1= PWRT is enabled  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
BOREN<1:0>: Brown-out Reset Enable bits  
11= Brown-out Reset is enabled in hardware; SBOREN bit is disabled  
10= Brown-out Reset is enabled only while device is active and disabled in Sleep; SBOREN bit is disabled  
01= Brown-out Reset is controlled with the SBOREN bit setting  
00= Brown-out Reset is disabled in hardware; SBOREN bit is disabled  
Note 1: Applies only to 28-pin devices.  
2: The MCLRE fuse can only be changed when using the VPP-Based ICSP™ mode entry. This prevents a  
user from accidentally locking out the device from the low-voltage test entry.  
3: Refer to Section 29.0, Electrical Characteristics for the BOR voltages.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 197  
PIC24F16KA102 FAMILY  
REGISTER 26-7: FICD: IN-CIRCUIT DEBUGGER CONFIGURATION REGISTER  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
DEBUG  
FICD1  
FICD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background debugger is disabled  
0= Background debugger functions are enabled  
bit 6-2  
bit 1-0  
Unimplemented: Read as ‘0’  
FICD<1:0:> ICD Pin Select bits  
11= PGC1/PGD1 are used for programming and debugging the device  
10= PGC2/PGD2 are used for programming and debugging the device  
01= PGC3/PGD3 are used for programming and debugging the device  
00= Reserved; do not use  
DS39927C-page 198  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
REGISTER 26-8: FDS: DEEP SLEEP CONFIGURATION REGISTER  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
DSWDTEN DSBOREN  
bit 7  
RTCOSC  
DSWDTOSC DSWDTPS3 DSWDTPS2 DSWDTPS1 DSWDTPS0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
DSWDTEN: Deep Sleep Watchdog Timer Enable bit  
1= DSWDT is enabled  
0= DSWDT is disabled  
DSBOREN: Deep Sleep/Low-Power BOR Enable bit (does not affect operation in non Deep Sleep modes)  
1= Deep Sleep BOR is enabled in Deep Sleep  
0= Deep Sleep BOR is disabled in Deep Sleep  
RTCOSC: RTCC Reference Clock Select bit  
1= RTCC uses SOSC as a reference clock  
0= RTCC uses LPRC as a reference clock  
DSWDTOSC: DSWDT Reference Clock Select bit  
1= DSWDT uses LPRC as a reference clock  
0= DSWDT uses SOSC as a reference clock  
DSWDTPS<3:0>: Deep Sleep Watchdog Timer Postscale Select bits  
The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms.  
1111= 1:2,147,483,648 (25.7 days) nominal  
1110= 1:536,870,912 (6.4 days) nominal  
1101= 1:134,217,728 (38.5 hours) nominal  
1100= 1:33,554,432 (9.6 hours) nominal  
1011= 1:8,388,608 (2.4 hours) nominal  
1010= 1:2,097,152 (36 minutes) nominal  
1001= 1:524,288 (9 minutes) nominal  
1000= 1:131,072 (135 seconds) nominal  
0111= 1:32,768 (34 seconds) nominal  
0110= 1:8,192 (8.5 seconds) nominal  
0101= 1:2,048 (2.1 seconds) nominal  
0100= 1:512 (528 ms) nominal  
0011= 1:128 (132 ms) nominal  
0010= 1:32 (33 ms) nominal  
0001= 1:8 (8.3 ms) nominal  
0000= 1:2 (2.1 ms) nominal  
2008-2011 Microchip Technology Inc.  
DS39927C-page 199  
PIC24F16KA102 FAMILY  
REGISTER 26-9: DEVID: DEVICE ID REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
R
R
R
R
R
R
R
R
FAMID7  
FAMID6  
FAMID5  
FAMID4  
FAMID3  
FAMID2  
FAMID1  
FAMID0  
bit 15  
bit 8  
R
R
R
R
R
R
R
R
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
DEV2  
DEV1  
DEV0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 23-16  
bit 15-8  
Unimplemented: Read as ‘0’  
FAMID<7:0>: Device Family Identifier bits  
00001011= PIC24F16KA102 family  
DEV<7:0>: Individual Device Identifier bits  
bit 7-0  
00000011= PIC24F16KA102  
00001010= PIC24F08KA102  
00000001= PIC24F16KA101  
00001000= PIC24F08KA101  
REGISTER 26-10: DEVREV: DEVICE REVISION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R
R
R
R
REV3  
REV2  
REV1  
REV0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 23-4  
bit 3-0  
Unimplemented: Read as ‘0’  
REV<3:0>: Minor Revision Identifier bits  
DS39927C-page 200  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
executed. The corresponding SLEEP or IDLE bits  
(RCON<3:2>) will need to be cleared in software after  
the device wakes up.  
26.2 Watchdog Timer (WDT)  
For the PIC24F16KA102 family of devices, the WDT is  
driven by the LPRC oscillator. When the WDT is  
enabled, the clock source is also enabled.  
The WDT Flag bit, WDTO (RCON<4>), is not  
automatically cleared following a WDT time-out. To  
detect subsequent WDT events, the flag must be  
cleared in software.  
The nominal WDT clock source from LPRC is 31 kHz.  
This feeds a prescaler that can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the FWPSA Configuration bit.  
With a 31 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode or  
4 ms in 7-bit mode.  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
26.2.1  
WINDOWED OPERATION  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the Configuration bits,  
WDTPS<3:0> (FWDT<3:0>), which allow the selection  
of a total of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler time-out periods, ranging  
from 1 ms to 131 seconds, can be achieved.  
The Watchdog Timer has an optional Fixed Window  
mode of operation. In this Windowed mode, CLRWDT  
instructions can only reset the WDT during the last  
1/4 of the programmed WDT period. A CLRWDTinstruc-  
tion executed before that window causes a WDT  
Reset, similar to a WDT time-out.  
Windowed WDT mode is enabled by programming the  
The WDT, prescaler and postscaler are reset:  
Configuration bit, WINDIS (FWDT<6>), to ‘0’.  
• On any device Reset  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction During normal execution  
26.2.2  
CONTROL REGISTER  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit. When the FWDTEN Configuration bit  
is set, the WDT is always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for  
critical code segments and disable the WDT during  
non-critical segments for maximum power savings.  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAV instruction was  
FIGURE 26-1:  
WDT BLOCK DIAGRAM  
SWDTEN  
FWDTEN  
LPRC Control  
Wake from Sleep  
FWPSA  
WDTPS<3:0>  
Prescaler  
(5-Bit/7-Bit)  
WDT  
Counter  
Postscaler  
1:1 to 1:32.768  
WDT Overflow  
Reset  
LPRC Input  
31 kHz  
1 ms/4 ms  
All Device Resets  
Transition to  
New Clock Source  
Exit Sleep or  
Idle Mode  
CLRWDTInstr.  
PWRSAVInstr.  
Sleep or Idle Mode  
2008-2011 Microchip Technology Inc.  
DS39927C-page 201  
PIC24F16KA102 FAMILY  
26.3 Deep Sleep Watchdog Timer  
(DSWDT)  
26.5 In-Circuit Serial Programming  
PIC24F16KA102 family microcontrollers can be  
serially programmed while in the end application circuit.  
This is simply done with two lines for clock (PGCx) and  
data (PGDx), and three other lines for power, ground  
and the programming voltage. This allows customers to  
manufacture boards with unprogrammed devices and  
then program the microcontroller just before shipping  
the product. This also allows the most recent firmware  
or a custom firmware to be programmed.  
In PIC24F16KA102 family devices, in addition to the  
WDT module, a DSWDT module is present which runs  
while the device is in Deep Sleep, if enabled. It is  
driven by either the SOSC or LPRC oscillator. The  
clock source is selected by the Configuration bit,  
DSWDTOSC (FDS<4>).  
The DSWDT can be configured to generate a time-out  
at 2.1 ms to 25.7 days by selecting the respective  
postscaler. The postscaler can be selected by the  
Configuration bits, DSWDTPS<3:0> (FDS<3:0>).  
When the DSWDT is enabled, the clock source is also  
enabled.  
26.6 In-Circuit Debugger  
When MPLAB® ICD 2 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB IDE. Debugging functionality is controlled  
through the EMUCx (Emulation/Debug Clock) and  
EMUDx (Emulation/Debug Data) pins.  
DSWDT is one of the sources that can wake-up the  
device from Deep Sleep mode.  
26.4 Program Verification and  
Code Protection  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, PGCx, PGDx and the  
EMUDx/EMUCx pin pair. In addition, when the feature  
is enabled, some of the resources are not available for  
general use. These resources include the first 80 bytes  
of data RAM and two I/O pins.  
For all devices in the PIC24F16KA102 family, code  
protection for the boot segment is controlled by the  
Configuration bit, BSS0, and the general segment by  
the Configuration bit, GSS0. These bits inhibit external  
reads and writes to the program memory space; this  
has no direct effect in normal execution mode.  
Write protection is controlled by bit, BWRP, for the boot  
segment and bit, GWRP, for the general segment in the  
Configuration Word. When these bits are programmed  
to ‘0’, internal write and erase operations to program  
memory are blocked.  
DS39927C-page 202  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
27.1 MPLAB Integrated Development  
Environment Software  
27.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2008-2011 Microchip Technology Inc.  
Preliminary  
DS39927C-page 203  
PIC24F16KA102 FAMILY  
27.2 MPLAB C Compilers for Various  
Device Families  
27.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
27.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
27.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
27.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS39927C-page 204  
Preliminary  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
27.7 MPLAB SIM Software Simulator  
27.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
27.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
27.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2008-2011 Microchip Technology Inc.  
Preliminary  
DS39927C-page 205  
PIC24F16KA102 FAMILY  
27.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
27.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
27.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39927C-page 206  
Preliminary  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
The literal instructions that involve data movement may  
use some of the following operands:  
28.0 INSTRUCTION SET SUMMARY  
Note:  
This chapter is a brief summary of the  
PIC24F instruction set architecture and is  
not intended to be a comprehensive  
reference source.  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register, where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The PIC24F instruction set adds many enhancements  
to the previous PIC® MCU instruction sets, while  
maintaining an easy migration from previous PIC MCU  
instruction sets. Most instructions are a single program  
memory word. Only three instructions require two  
program memory locations.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
• The second source operand, which is a literal  
value  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction. The instruction set is  
highly orthogonal and is grouped into four basic  
categories:  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The control instructions may use some of the following  
operands:  
• A program memory address  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The mode of the table read and table write  
instructions  
All instructions are a single word, except for certain  
double-word instructions, which were made  
double-word instructions so that all of the required  
information is available in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP.  
• Control operations  
Table 28-1 lists the general symbols used in describing  
the instructions. The PIC24F instruction set summary  
in Table 28-2 lists all the instructions, along with the  
status flags affected by each instruction.  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
Program Counter (PC) is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles, with the additional instruction  
cycle(s) executed as a NOP. Notable exceptions are the  
BRA (unconditional/computed branch), indirect  
CALL/GOTO, all table reads and writes, and  
RETURN/RETFIE instructions, which are single-word  
instructions but take two or three cycles.  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
However, word or byte-oriented file register instructions  
have two operands:  
Certain instructions that involve skipping over the  
subsequent instruction require either two or three  
cycles if the skip is performed, depending on whether  
the instruction being skipped is a single-word or  
two-word instruction. Moreover, double-word moves  
require two cycles. The double-word instructions  
execute in two instruction cycles.  
• The file register, specified by the value, ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register (specified  
by a literal value or indirectly by the contents of  
register ‘Wb’)  
2008-2011 Microchip Technology Inc.  
DS39927C-page 207  
PIC24F16KA102 FAMILY  
TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
<n:m>  
.b  
Register bit field  
Byte mode selection  
.d  
Double-Word mode selection  
.S  
Shadow register select  
.w  
Word mode selection (default)  
bit4  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0000h...1FFFh}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
lit14  
lit16  
lit23  
None  
PC  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
16-bit unsigned literal {0...65535}  
23-bit unsigned literal {0...8388608}; LSB must be ‘0’  
Field does not require an entry, may be blank  
Program Counter  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Wn  
Dividend, Divisor working register pair (direct addressing)  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
WREG  
Ws  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Source W register { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wso  
DS39927C-page 208  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW  
Assembly  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Mnemonic  
Description  
Words Cycles  
ADD  
ADDC  
AND  
ASR  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
BTSC  
f
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
f,WREG  
WREG = f + WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
f = f + WREG + (C)  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
1
N, Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N, Z  
1
N, Z  
Wd = Wb .AND. lit5  
1
N, Z  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N, Z  
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater than or Equal  
Branch if Unsigned Greater than or Equal  
Branch if Greater than  
Branch if Unsigned Greater than  
Branch if Less than or Equal  
Branch if Unsigned Less than or Equal  
Branch if Less than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OV,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Overflow  
None  
Branch Unconditionally  
Branch if Zero  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
1
None  
Bit Toggle Ws  
1
None  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
Ws,#bit4  
Bit Test Ws, Skip if Clear  
1
1
None  
(2 or 3)  
2008-2011 Microchip Technology Inc.  
DS39927C-page 209  
PIC24F16KA102 FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
f,#bit4  
Description  
Bit Test f, Skip if Set  
Words Cycles  
BTSS  
BTSS  
BTSS  
1
1
1
None  
(2 or 3)  
Ws,#bit4  
Bit Test Ws, Skip if Set  
1
None  
(2 or 3)  
BTST  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Ws,Wb  
Z
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
C
Z
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
Wn  
None  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
Ws  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
None  
CLRWDT  
COM  
CLRWDT  
Clear Watchdog Timer  
WDTO, Sleep  
COM  
COM  
COM  
CP  
f
f = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N, Z  
f,WREG  
Ws,Wd  
f
WREG = f  
N, Z  
Wd = Ws  
N, Z  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
DAW  
DEC  
DAW  
Wn  
Wn = Decimal Adjust Wn  
f = f –1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f –1  
1
DEC  
Wd = Ws – 1  
1
DEC2  
DEC2  
DEC2  
DEC2  
DISI  
DIV.SW  
DIV.SD  
DIV.UW  
DIV.UD  
EXCH  
FF1L  
FF1R  
f = f – 2  
1
f,WREG  
Ws,Wd  
#lit14  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
WREG = f – 2  
1
Wd = Ws – 2  
1
DISI  
DIV  
Disable Interrupts for k Instruction Cycles  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Swap Wns with Wnd  
1
18  
18  
18  
18  
1
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
None  
EXCH  
FF1L  
FF1R  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
1
C
1
C
DS39927C-page 210  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
GOTO  
GOTO  
GOTO  
INC  
Expr  
Go to Address  
Go to Indirect  
f = f + 1  
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
None  
Wn  
None  
INC  
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
INC  
f,WREG  
WREG = f + 1  
Wd = Ws + 1  
f = f + 2  
INC  
Ws,Wd  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f,WREG  
WREG = f + 2  
Wd = Ws + 2  
f = f .IOR. WREG  
Ws,Wd  
f
IOR  
f,WREG  
WREG = f .IOR. WREG  
N, Z  
IOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
#lit14  
Wd = lit10 .IOR. Wd  
N, Z  
IOR  
Wd = Wb .IOR. Ws  
N, Z  
IOR  
Wd = Wb .IOR. lit5  
N, Z  
LNK  
LSR  
LNK  
Link Frame Pointer  
None  
LSR  
f
f = Logical Right Shift f  
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
LSR  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Move f to Wn  
LSR  
Ws,Wd  
LSR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,Wn  
LSR  
N, Z  
MOV  
MOV  
None  
MOV  
[Wns+Slit10],Wnd  
f
Move [Wns+Slit10] to Wnd  
Move f to f  
None  
MOV  
N, Z  
MOV  
f,WREG  
Move f to WREG  
N, Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit Literal to Wn  
Move 8-bit Literal to Wn  
None  
MOV.b  
MOV  
None  
Move Wn to f  
None  
MOV  
Wns,[Wns+Slit10]  
Wso,Wdo  
WREG,f  
Move Wns to [Wns+Slit10]  
Move Ws to Wd  
None  
MOV  
None  
MOV  
Move WREG to f  
N, Z  
MOV.D  
MOV.D  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
MUL.SU  
MUL.UU  
MUL  
Wns,Wd  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)  
W3:W2 = f * WREG  
None  
Ws,Wnd  
None  
MUL  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
f
None  
None  
None  
None  
None  
None  
None  
NEG  
NEG  
f
f = f + 1  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
NEG  
f,WREG  
WREG = f + 1  
NEG  
Ws,Wd  
Wd = Ws + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
2
1
C, DC, N, OV, Z  
None  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)  
Pop Shadow Registers  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
POP.S  
PUSH  
PUSH  
PUSH.D  
PUSH.S  
None  
All  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns+1) to Top-of-Stack (TOS)  
Push Shadow Registers  
None  
Wso  
Wns  
None  
None  
None  
2008-2011 Microchip Technology Inc.  
DS39927C-page 211  
PIC24F16KA102 FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
PWRSAV  
RCALL  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
WDTO, Sleep  
None  
Computed Call  
2
None  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
Return from Interrupt  
1
None  
1
None  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
None  
3 (2)  
3 (2)  
3 (2)  
1
None  
#lit10,Wn  
Return with Literal in Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Wnd = Sign-Extended Ws  
f = FFFFh  
None  
None  
f
C, N, Z  
RLC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RLC  
1
C, N, Z  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
1
N, Z  
f,WREG  
Ws,Wd  
f
1
N, Z  
1
N, Z  
1
C, N, Z  
RRC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RRC  
1
C, N, Z  
RRNC  
RRNC  
RRNC  
RRNC  
SE  
1
N, Z  
f,WREG  
Ws,Wd  
Ws,Wnd  
f
1
N, Z  
1
N, Z  
SE  
1
C, N, Z  
SETM  
SETM  
SETM  
SETM  
SL  
1
None  
WREG  
WREG = FFFFh  
1
None  
Ws  
Ws = FFFFh  
1
None  
SL  
f
f = Left Shift f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
SL  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f
WREG = Left Shift f  
1
SL  
Wd = Left Shift Ws  
1
SL  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
f = f – WREG  
1
SL  
1
N, Z  
SUB  
SUB  
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
1
SUB  
Wn = Wn – lit10  
1
SUB  
Wd = Wb – Ws  
1
SUB  
Wd = Wb – lit5  
1
SUBB  
SUBB  
f = f – WREG – (C)  
1
SUBB  
SUBB  
SUBB  
f,WREG  
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
#lit10,Wn  
Wb,Ws,Wd  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
Wb,#lit5,Wd  
f
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUBR  
f,WREG  
WREG = WREG – f  
Wd = Ws – Wb  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wd = lit5 – Wb  
SUBBR  
SUBBR  
f
f = WREG – f – (C)  
1
1
C, DC, N, OV, Z  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
1
1
1
1
1
1
1
1
1
1
1
2
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
Wd = lit5 – Wb – (C)  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
None  
TBLRDH  
TBLRDH  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
None  
DS39927C-page 212  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<15:0> to Wd  
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
None  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
None  
None  
None  
N, Z  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N, Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N, Z  
XOR  
N, Z  
XOR  
Wd = Wb .XOR. lit5  
N, Z  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C, Z, N  
2008-2011 Microchip Technology Inc.  
DS39927C-page 213  
PIC24F16KA102 FAMILY  
NOTES:  
DS39927C-page 214  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
29.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the PIC24F16KA102 family electrical characteristics. Additional information will be  
provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC24F16KA102 family are listed below. Exposure to these maximum rating  
conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other  
conditions above the parameters indicated in the operation listings of this specification, is not implied.  
()  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +175°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.0V  
Voltage on any combined analog and digital pin, with respect to VSS ........................................... -0.3V to (VDD + 0.3V)  
Voltage on any digital only pin with respect to VSS ....................................................................... -0.3V to (VDD + 0.3V)  
Voltage on MCLR/VPP pin with respect to VSS ......................................................................................... -0.3V to +9.0V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (1)..........................................................................................................................250 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (1)..............................................................................................................200 mA  
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 29-1).  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above  
those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 215  
PIC24F16KA102 FAMILY  
29.1 DC Characteristics  
FIGURE 29-1:  
PIC24F16KA102 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
3.60V  
3.00V  
3.60V  
3.00V  
1.80V  
0
0
8 MHz  
16 MHz  
24 MHz  
32 MHz  
Frequency (MHz)  
Note: For Industrial temperatures, for frequencies between 8 MHz and 32 MHz,  
FMAX = (20 MHz/V) * (VDD – 1.8V) + 8 MHz.  
FIGURE 29-2:  
PIC24F16KA102 FAMILY VOLTAGE-FREQUENCY GRAPH  
(INDUSTRIAL, EXTENDED)  
3.60V  
3.00V  
3.60V  
3.00V  
1.80V  
0
0
8 MHz  
16 MHz  
24 MHz  
32 MHz  
Frequency (MHz)  
Note: For Extended temperatures, for frequencies between 8 MHz and 24 MHz,  
FMAX = (13.33 MHz/V) * (VDD – 1.8V) + 8 MHz.  
DS39927C-page 216  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-1: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+175  
+125  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
PI/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 29-2: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 20-Pin PDIP  
Package Thermal Resistance, 28-Pin SPDIP  
Package Thermal Resistance, 20-Pin SSOP  
Package Thermal Resistance, 28-Pin SSOP  
Package Thermal Resistance, 20-Pin SOIC  
Package Thermal Resistance, 28-Pin SOIC  
Package Thermal Resistance, 20-Pin QFN  
Package Thermal Resistance, 28-Pin QFN  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
62.4  
60  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
1
1
108  
71  
75  
80.2  
43  
32  
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 217  
PIC24F16KA102 FAMILY  
TABLE 29-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
DC10 VDD  
DC12 VDR  
Supply Voltage  
1.8  
1.5  
3.6  
V
V
RAM Data Retention  
Voltage(2)  
DC16 VPOR  
DC17 SVDD  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
VSS  
0.7  
V
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
0.05  
V/ms 0-3.3V in 0.1s  
0-2.5V in 60 ms  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
TABLE 29-4: HIGH/LOW–VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
DC18 VHLVD  
HLVD Voltage on VDD HLVDL<3:0> = 0000  
1.85  
1.90  
1.95  
2.00  
2.05  
2.17  
2.23  
2.36  
2.43  
2.60  
2.78  
2.88  
3.00  
3.12  
3.39  
1.94  
2.00  
2.05  
2.10  
2.15  
2.28  
2.34  
2.48  
2.55  
2.73  
2.92  
3.02  
3.15  
3.28  
3.56  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Transition  
HLVDL<3:0> = 0001 1.81  
HLVDL<3:0> = 0010 1.85  
HLVDL<3:0> = 0011 1.90  
HLVDL<3:0> = 0100 1.95  
HLVDL<3:0> = 0101 2.06  
HLVDL<3:0> = 0110 2.12  
HLVDL<3:0> = 0111 2.24  
HLVDL<3:0> = 1000 2.31  
HLVDL<3:0> = 1001 2.47  
HLVDL<3:0> = 1010 2.64  
HLVDL<3:0> = 1011 2.74  
HLVDL<3:0> = 1100 2.85  
HLVDL<3:0> = 1101 2.96  
HLVDL<3:0> = 1110 3.22  
DS39927C-page 218  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 29-3:  
BROWN-OUT RESET CHARACTERISTICS  
VDDCORE  
(Device not in Brown-out Reset)  
BO15  
BO10  
(Device in Brown-out Reset)  
Reset (Due to BOR)  
SY25  
TVREG + TRST  
TABLE 29-5: BOR TRIP POINTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Sym  
Characteristic  
Min Typ Max Units  
Conditions  
(1)  
DC19 VBOR  
BOR Voltage on VDD Transition BOR = 00  
3
V
LPBOR  
BOR = 01 2.92  
3.08  
BOR = 10 2.63 2.7 2.77  
BOR = 11 1.75 1.82 1.85  
V
V
DC14 VBHYS  
BOR Hysteresis  
5
mV  
Note 1: LPBOR re-arms the POR circuit, but does not cause a BOR. LPBOR can be used to ensure a POR after the sup-  
ply voltage rises to a safe operating level. It does not stop code execution after the supply voltage falls below a  
chosen trip point.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 219  
PIC24F16KA102 FAMILY  
TABLE 29-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
(1)  
Parameter No. Typical  
Max  
Units  
Conditions  
(2)  
IDD Current  
DC20  
330  
330  
330  
330  
500  
590  
590  
645  
720  
800  
600  
600  
600  
600  
800  
1100  
1100  
1100  
1100  
1500  
18  
-40°C  
DS20a  
+25°C  
+60°C  
+85°C  
DC20b  
DC20c  
DC20d  
DC20e  
DC20f  
DC20g  
DC20h  
DC20i  
DC22  
195  
365  
363  
695  
11  
A  
A  
1.8V  
+125°C  
-40°C  
0.5 MIPS,  
FOSC = 1 MHz  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
3.3V  
1.8V  
3.3V  
3.3V  
2.5V  
3.3V  
DC22a  
DC22b  
DC22c  
DC22d  
DC22e  
DC22f  
DC22g  
DC22h  
DC22i  
DC23  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
A  
1 MIPS,  
FOSC = 2 MHz  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
A  
DC23a  
DC23b  
DC23c  
DC23d  
DC27  
18  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
16 MIPS,  
FOSC = 32 MHz  
18  
mA  
mA  
mA  
18  
18  
3.40  
3.40  
3.40  
3.40  
3.40  
4.60  
4.60  
4.60  
4.60  
5.40  
DC27a  
DC27b  
DC27c  
DC27d  
DC27e  
DC27f  
DC27g  
DC27h  
DC27i  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
2.25  
3.05  
FRC (4 MIPS),  
FOSC = 8 MHz  
+25°C  
+60°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: Operating Parameters:  
• EC mode with clock input driven with a square wave rail-to-rail  
• I/Os are configured as outputs, driven low  
• MCLR – VDD  
• WDT FSCM is disabled  
• SRAM, program and data memory are active  
• All PMD bits are set except for modules being measured  
DS39927C-page 220  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
(1)  
Parameter No. Typical  
Max  
Units  
Conditions  
(2)  
IDD Current  
DC31  
28  
28  
28  
28  
55  
55  
55  
55  
250  
-40°C  
DC31a  
8
+25°C  
+60°C  
+85°C  
-40°C  
A  
A  
1.8V  
DC31b  
DC31c  
DC31d  
DC31e  
LPRC (31 kHz)  
+25°C  
+60°C  
+85°C  
+125°C  
DC31f  
DC31g  
DC31h  
15  
3.3V  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: Operating Parameters:  
• EC mode with clock input driven with a square wave rail-to-rail  
• I/Os are configured as outputs, driven low  
• MCLR – VDD  
• WDT FSCM is disabled  
• SRAM, program and data memory are active  
• All PMD bits are set except for modules being measured  
2008-2011 Microchip Technology Inc.  
DS39927C-page 221  
PIC24F16KA102 FAMILY  
TABLE 29-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param No.  
Typical(1)  
Max  
Units  
Conditions  
Idle Current (IIDLE): Core Off, Clock on Base Current, PMD Bits are Set(2)  
DC40  
100  
100  
100  
100  
100  
215  
215  
215  
215  
450  
200  
200  
200  
200  
300  
395  
395  
395  
395  
600  
6.0  
-40°C  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
DC40a  
DC40b  
DC40c  
DC40d  
DC40e  
DC40f  
DC40g  
DC40h  
DC40i  
DC42  
48  
106  
94  
A  
A  
1.8V  
3.3V  
1.8V  
3.3V  
3.3V  
1.8V  
3.3V  
0.5 MIPS,  
FOSC = 1 MHz  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
DC42a  
DC42b  
DC42c  
DC42d  
DC42e  
DC42f  
DC42g  
DC42h  
DC42i  
DC43  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
A  
1 MIPS,  
FOSC = 2 MHz  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
160  
3.1  
A  
DC43a  
DC43b  
DC43c  
DC43d  
DC44  
6.0  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
16 MIPS,  
FOSC = 32 MHz  
6.0  
mA  
mA  
mA  
6.0  
6.0  
0.74  
0.74  
0.74  
0.74  
0.74  
1.50  
1.50  
1.50  
1.50  
1.50  
DC44a  
DC44b  
DC44c  
DC44d  
DC44e  
DC44f  
DC44g  
DC44h  
DC44i  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
0.56  
0.95  
FRC (4 MIPS),  
FOSC = 8 MHz  
+25°C  
+60°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Operating Parameters:  
• Core is off  
• EC mode with the clock input driven with a square wave rail-to-rail  
• I/Os are configured as outputs, driven low  
• MCLR – VDD  
• WDT FSCM are disabled  
• SRAM, program and data memory are active  
• All PMD bits are set except for the modules being measured  
DS39927C-page 222  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param No.  
Typical(1)  
Max  
Units  
Conditions  
Idle Current (IIDLE): Core Off, Clock on Base Current, PMD Bits are Set(2)  
DC50  
18  
18  
18  
18  
40  
40  
40  
40  
60  
-40°C  
+25°C  
+60°C  
+85°C  
-40°C  
DC50a  
DC50b  
DC50c  
DC50d  
DC50e  
DC50f  
DC50g  
DC50h  
2
1.8V  
3.3V  
A  
LPRC (31 kHz)  
+25°C  
+60°C  
+85°C  
+125°C  
4
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Operating Parameters:  
• Core is off  
• EC mode with the clock input driven with a square wave rail-to-rail  
• I/Os are configured as outputs, driven low  
• MCLR – VDD  
• WDT FSCM are disabled  
• SRAM, program and data memory are active  
• All PMD bits are set except for the modules being measured  
2008-2011 Microchip Technology Inc.  
DS39927C-page 223  
PIC24F16KA102 FAMILY  
TABLE 29-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical  
No.  
(1)  
Max  
Units  
Conditions  
(2)  
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is ‘0’  
DC60  
0.200  
0.200  
0.870  
1.350  
10.00  
0.540  
0.540  
1.680  
2.450  
11.00  
0.150  
0.150  
0.430  
0.630  
3.00  
-40°C  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
DC60a  
DC60b  
DC60c  
DC60d  
DC60e  
DC60f  
DC60g  
DC60h  
DC60i  
DC70  
0.025  
0.105  
0.020  
0.035  
0.55  
A  
A  
A  
A  
A  
A  
1.8V  
Base Power-Down Current  
(3)  
(Sleep)  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
3.3V  
1.8V  
3.3V  
1.8V  
3.3V  
DC70a  
DC70b  
DC70c  
DC70d  
DC70e  
DC70f  
DC70g  
DC70h  
DC70i  
DC61  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
Base Deep Sleep Current  
0.300  
0.300  
0.700  
0.980  
5.00  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
0.65  
DC61a  
DC61b  
DC61c  
DC61d  
DC61e  
DC61f  
DC61g  
DC61h  
DC61i  
0.65  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
0.65  
0.65  
1.20  
(3,4)  
Watchdog Timer Current (WDT)  
0.95  
0.95  
+25°C  
+60°C  
+85°C  
+125°C  
0.87  
0.95  
0.95  
1.50  
Note 1: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low.  
WDT, etc., are all switched off.  
3: The current is the additional current consumed when the module is enabled. This current should be added to  
the base IPD current.  
4: Current applies to Sleep only.  
5: Current applies to Sleep and Deep Sleep.  
6: Current applies to Deep Sleep only.  
DS39927C-page 224  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical  
No.  
(1)  
Max  
Units  
Conditions  
(2)  
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is ‘0’  
DC62  
0.650  
0.650  
0.650  
0.650  
-40°C  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
DC62a  
DC62b  
DC62c  
DC62d  
DC62e  
DC62f  
DC62g  
DC62h  
DC62i  
DC64  
0.450  
0.730  
5.5  
A  
A  
A  
A  
A  
A  
A  
1.8V  
Timer1 w/32 kHz Crystal: T132  
(3)  
(SOSC – LP)  
0.980  
0.980  
0.980  
0.980  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
3.3V  
1.8V  
3.3V  
3.3V  
1.8V  
3.3V  
7.10  
7.10  
7.80  
8.30  
10.00  
7.10  
7.10  
7.80  
8.30  
9.00  
6.60  
6.60  
6.60  
6.60  
9.00  
0.65  
0.65  
0.65  
0.65  
0.98  
0.98  
0.98  
0.98  
0.98  
0.98  
DC64a  
DC64b  
DC64c  
DC64d  
DC64e  
DC64f  
DC64g  
DC64h  
DC64i  
DC63  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
(3,4)  
HLVD  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
6.2  
DC63a  
DC63b  
DC63c  
DC63d  
DC62  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
(3,4)  
4.5  
BOR  
DC62a  
DC62b  
DC62c  
DC62d  
DC62e  
DC62f  
DC62g  
DC62h  
DC62i  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
0.49  
0.80  
(3,5)  
RTCC  
+25°C  
+60°C  
+85°C  
+125°C  
Note 1: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low.  
WDT, etc., are all switched off.  
3: The current is the additional current consumed when the module is enabled. This current should be added to  
the base IPD current.  
4: Current applies to Sleep only.  
5: Current applies to Sleep and Deep Sleep.  
6: Current applies to Deep Sleep only.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 225  
PIC24F16KA102 FAMILY  
TABLE 29-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical  
No.  
(1)  
Max  
Units  
Conditions  
(2)  
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is ‘0’  
DC70  
0.200  
0.200  
0.200  
0.200  
1.45  
-40°C  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
DC70a  
DC70b  
DC70c  
DC70d  
DC70e  
DC70f  
DC70g  
DC70h  
DC70i  
DC71  
0.045  
0.095  
0.35  
A  
A  
A  
A  
A  
A  
1.8V  
(3,4)  
LPBOR  
0.200  
0.200  
0.200  
0.200  
1.55  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
3.3V  
0.55  
DC71a  
DC71b  
DC71c  
DC71d  
DC71e  
DC71f  
DC71g  
DC71h  
DC71i  
DC72  
0.55  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
0.55  
1.8V  
0.55  
1.70  
Deep Sleep Watchdog Timer:  
(6)  
DSWDT (SOSC – LP)  
0.75  
0.75  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
0.55  
0.75  
3.3V  
1.8V  
3.3V  
0.75  
2.10  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
0.200  
DC72a  
DC72b  
DC72c  
DC72d  
DC72e  
DC72f  
DC72g  
DC72h  
DC72i  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
0.005  
0.010  
(6)  
Deep Sleep BOR (DSBOR)  
+25°C  
+60°C  
+85°C  
+125°C  
Note 1: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low.  
WDT, etc., are all switched off.  
3: The current is the additional current consumed when the module is enabled. This current should be added to  
the base IPD current.  
4: Current applies to Sleep only.  
5: Current applies to Sleep and Deep Sleep.  
6: Current applies to Deep Sleep only.  
DS39927C-page 226  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage(4)  
I/O Pins  
V
DI10  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
MCLR  
V
DI15  
DI16  
DI17  
DI18  
DI19  
OSCI (XT mode)  
OSCI (HS mode)  
I/O Pins with I2C™ Buffer  
I/O Pins with SMBus Buffer  
Input High Voltage(4)  
V
V
V
SMBus disabled  
V
SMBus enabled  
(5)  
VIH  
DI20  
I/O Pins:  
with Analog Functions  
Digital Only  
0.8 VDD  
0.8 VDD  
VDD  
VDD  
V
V
DI25  
DI26  
DI27  
DI28  
MCLR  
0.8 VDD  
0.7 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
V
V
V
OSCI (XT mode)  
OSCI (HS mode)  
I/O Pins with I2C Buffer:  
with Analog Functions  
Digital Only  
0.7 VDD  
0.7 VDD  
VDD  
VDD  
V
V
DI29  
DI30  
I/O Pins with SMBus  
2.1  
50  
VDD  
500  
V
2.5V VPIN VDD  
ICNPU CNx Pull-up Current  
250  
A  
VDD = 3.3V, VPIN = VSS  
IIL  
Input Leakage  
Current(2,3)  
DI50  
DI51  
I/O Ports  
0.050  
0.300  
±0.100  
±0.500  
A  
A  
VSS VPIN VDD,  
Pin at high-impedance  
VREF+, VREF-, AN0, AN1  
VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSCI  
±5.0  
±5.0  
A  
A  
VSS VPIN VDD  
VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Refer to Table 1-2 for I/O pin buffer types.  
5: VIH requirements are met when internal pull-ups are enabled.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 227  
PIC24F16KA102 FAMILY  
TABLE 29-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
(1)  
Sym  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
DO10  
DO16  
All I/O Pins  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 4.0 mA, VDD = 3.6V  
IOL = 3.5 mA, VDD = 2.0V  
IOL = 8.0 mA, VDD = 3.6V  
IOL = 4.5 mA, VDD = 1.8V  
OSC2/CLKO  
VOH  
Output High Voltage  
DO20  
DO26  
All I/O Pins  
3
V
V
V
V
IOH = -3.0 mA, VDD = 3.6V  
IOH = -1.0 mA, VDD = 2.0V  
IOH = -2.5 mA, VDD = 3.6V  
IOH = -1.0 mA, VDD = 2.0V  
1.8  
3
OSC2/CLKO  
1.8  
Note 1: Data in “Typ” column is at 25°C unless otherwise stated. Parameters are for design guidance only and are not  
tested.  
DS39927C-page 228  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-11: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Sym  
No.  
(1)  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
(2)  
D130  
D131  
D133A  
D134  
EP  
10,000  
VMIN  
2
3.6  
E/W  
V
VPR  
TIW  
VDD for Read  
VMIN = Minimum operating voltage  
Self-Timed Write Cycle Time  
ms  
TRETD Characteristic Retention  
40  
Year Provided no other specifications are  
violated  
D135  
IDDP  
Supply Current During  
Programming  
10  
mA  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Self-write and block erase.  
TABLE 29-12: DC CHARACTERISTICS: DATA EEPROM MEMORY  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Sym  
No.  
(1)  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Data EEPROM Memory  
Cell Endurance  
D140  
D141  
D143A  
EPD  
100,000  
VMIN  
4
3.6  
E/W  
V
VPRD  
TIWD  
VDD for Read  
VMIN = Minimum operating voltage  
Self-Timed Write Cycle  
Time  
ms  
D143B  
D144  
D145  
TREF  
Number of Total Write/Erase  
Cycles Before Refresh  
40  
10M  
E/W  
TRETDD Characteristic Retention  
Year Provided no other specifications are  
violated  
IDDPD  
Supply Current During  
Programming  
7
mA  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 229  
PIC24F16KA102 FAMILY  
TABLE 29-13: COMPARATOR DC SPECIFICATIONS  
Operating Conditions: 2.0V < VDD < 3.6V  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
D300  
D301  
D302  
VIOFF  
VICM  
Input Offset Voltage*  
0
20  
40  
VDD  
mV  
V
Input Common Mode Voltage*  
CMRR  
Common Mode Rejection  
Ratio*  
55  
dB  
* Parameters are characterized but not tested.  
TABLE 29-14: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS  
Operating Conditions: 2.0V < VDD < 3.6V  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
VRD310 CVRES  
VRD311 CVRAA  
VRD312 CVRUR  
Resolution  
Absolute Accuracy  
Unit Resistor Value (R)  
VDD/24  
2k  
VDD/32  
AVDD – 1.5  
LSb  
LSb  
TABLE 29-15: INTERNAL VOLTAGE REFERENCES  
Operating Conditions: 2.0V < VDD < 3.6V  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
VBG  
Internal Band Gap Reference  
1.14  
1.2  
1.26  
250  
V
TIRVST  
Internal Reference Stabilization Time  
200  
s  
TABLE 29-16: CTMU CURRENT SOURCE SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
IOUT1 CTMU Current Source,  
Base Range  
550  
nA  
CTMUICON<1:0> = 01  
IOUT2 CTMU Current Source,  
10x Range  
5.5  
55  
A  
A  
CTMUICON<1:0> = 10  
CTMUICON<1:0> = 11  
IOUT3 CTMU Current Source,  
100x Range  
Note 1: Nominal value at the center point of the current trim range (CTMUICON<7:2> = 000000).  
DS39927C-page 230  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
29.2 AC Characteristics and Timing Parameters  
The information contained in this section defines the PIC24F16KA102 family AC characteristics and timing parameters.  
TABLE 29-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Section 29.1 “DC Characteristics”.  
FIGURE 29-4:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSCO  
VDD/2  
Load Condition 2 – for OSCO  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSCO  
15 pF for OSCO output  
VSS  
TABLE 29-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
No.  
DO50 COSC2  
OSCO/CLKO pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSCI  
DO56 CIO  
DO58 CB  
All I/O Pins and OSCO  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 231  
PIC24F16KA102 FAMILY  
FIGURE 29-5:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q3  
Q2  
OSCI  
OS20  
OS25  
OS30 OS30  
OS31 OS31  
CLKO  
OS40  
OS41  
TABLE 29-19: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 1.8 to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FOSC External CLKI Frequency  
(External clocks allowed  
only in EC mode)(2)  
DC  
4
32  
8
MHz EC  
MHz ECPLL  
Oscillator Frequency(2)  
0.2  
4
4
4
25  
8
MHz XT  
MHz HS  
MHz HSPLL  
kHz SOSC  
31  
33  
OS20 TOSC TOSC = 1/FOSC  
See Parameter OS10 for FOSC  
value  
OS25 TCY  
Instruction Cycle Time(3)  
62.5  
DC  
ns  
ns  
OS30 TosL, External Clock in (OSCI)  
TosH High or Low Time  
0.45 x TOSC  
EC  
EC  
OS31 TosR, External Clock in (OSCI)  
TosF Rise or Fall Time  
20  
ns  
OS40 TckR CLKO Rise Time(4)  
OS41 TckF CLKO Fall Time(4)  
6
6
10  
10  
ns  
ns  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Refer to Figure 29-1 for the minimum voltage at a given frequency.  
3: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at “Min.” values with an  
external clock applied to the OSCI/CLKI pin. When an external clock input is used, the “Max.” cycle time  
limit is “DC” (no clock) for all devices.  
4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the  
Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
DS39927C-page 232  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-20: PLL CLOCK TIMING SPECIFICATIONS (VDD = 1.8V TO 3.6V)  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50 FPLLI PLL Input Frequency  
Range  
4
8
MHz ECPLL, HSPLL modes,  
-40°C TA +85°C  
OS51 FSYS PLL Output Frequency  
Range  
16  
-2  
1
32  
2
MHz -40°C TA +85°C  
OS52 TLOCK PLL Start-up Time  
(Lock Time)  
ms  
OS53 DCLK CLKO Stability (Jitter)  
1
2
%
Measured over a 100 ms  
period  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 29-21: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ 8 MHz(1)  
F20  
FRC  
-1  
-3  
+1  
+3  
%
%
%
%
+25°C  
3.0V VDD 3.6V  
1.8V VDD 3.6V  
-40°C TA +85°C  
-40°C TA +85°C  
-40°C TA +125°C  
-5  
+5  
-10  
+10  
LPRC @ 31 kHz(2)  
F21  
-15  
-15  
-30  
15  
15  
%
%
%
+25°C  
-40°C TA +85°C  
-40°C TA +125°C  
1.8V VDD 3.6V  
+30  
Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.  
2: Change of LPRC frequency as VDD changes.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 233  
PIC24F16KA102 FAMILY  
TABLE 29-22: AC SPECIFICATIONS  
Symbol  
Characteristics  
BCLKx High Time  
Min  
Typ  
Max  
Units  
TLW  
20  
20  
TCY/2  
ns  
ns  
ns  
ns  
s  
ns  
THW  
TBLD  
TBHD  
TWAK  
TCTS  
BCLKx Low Time  
(TCY * BRGx) + TCY/2  
BCLKx Falling Edge Delay from UxTX  
BCLKx Rising Edge Delay from UxTX  
Min. Low on UxRX Line to Cause Wake-up  
-50  
1
50  
TCY/2 + 50  
TCY/2 – 50  
Min. Low on UxCTS Line to Start  
Transmission  
TCY  
TSETUP  
Start bit Falling Edge to System Clock Rising  
Edge Setup Time  
3
ns  
ns  
TSTDELAY Maximum Delay in the Detection of the  
TCY + TSETUP  
Start bit Falling Edge  
TABLE 29-23: A/D CONVERSION TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 1.8V to 3.6V  
(unless otherwise stated)  
A/D CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
TRC  
A/D Clock Period  
75  
ns  
ns  
TCY = 75 ns, AD1CON3  
is in the default state  
A/D Internal RC Oscillator Period  
250  
Conversion Rate  
AD55  
AD56  
AD57  
AD58  
AD59  
TCONV  
FCNV  
TSAMP  
TACQ  
Conversion Time  
Throughput Rate  
Sample Time  
12  
1
500  
TAD  
ksps AVDD 2.7V  
TAD  
Acquisition Time  
750  
ns  
(Note 2)  
TSWC  
Switching Time from Convert to  
Sample  
(Note 3)  
AD60  
AD61  
TDIS  
Discharge Time  
0.5  
3
TAD  
TAD  
Clock Parameters  
Sample Start Delay from Setting  
Sample bit (SAMP)  
TPSS  
2
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
2: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (VDD to VSS or VSS to VDD).  
3: On the following cycle of the device clock.  
DS39927C-page 234  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-24: A/D MODULE SPECIFICATIONS  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
A/D CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 1.8  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05 VREFH  
AD06 VREFL  
AD07 VREF  
Reference Voltage High AVSS + 1.7  
AVDD  
V
V
V
Reference Voltage Low  
AVSS  
AVDD – 1.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS – 0.3  
AD08 IVREF  
AD09 ZVREF  
Reference Voltage Input  
Current  
200  
1.0  
A  
mA  
VREF+ = 3.3V; sampling  
VREF+ = 3.3V; converting  
(Note 3)  
Reference Input  
Impedance  
10K  
Analog Input  
AD10 VINH-VINL Full-Scale Input Span  
VREFL  
VREFH  
AVDD + 0.3  
AVDD/2  
V
V
V
(Note 2)  
AD11 VIN  
AD12 VINL  
Absolute Input Voltage  
AVSS – 0.3  
AVSS – 0.3  
Absolute VINL Input  
Voltage  
AD17 RIN  
Recommended  
2.5K  
10-bit  
Impedance of Analog  
Voltage Source  
A/D Accuracy  
AD20b NR  
AD21b INL  
Resolution  
10  
±1  
±2  
bits  
Integral Nonlinearity  
LSb  
VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
AD22b DNL  
AD23b GERR  
AD24b EOFF  
AD25b  
Differential Nonlinearity  
Gain Error  
±1  
±1  
±1  
-1  
+1.5  
LSb  
LSb  
LSb  
VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
±3  
±2  
VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Offset Error  
VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Monotonicity  
(Note 1)  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.  
3: Impedance during sampling is at 3.3V, 25°C. This parameter is for design guidance only and is not tested.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 235  
PIC24F16KA102 FAMILY  
FIGURE 29-6:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note:  
Refer to Figure 29-4 for load conditions.  
TABLE 29-25: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 1.8V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31 TIOR Port Output Rise Time  
DO32 TIOF Port Output Fall Time  
20  
10  
10  
25  
25  
ns  
ns  
ns  
DI35  
TINP  
INTx pin High or Low  
Time (output)  
DI40  
TRBP CNx High or Low Time  
(input)  
2
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
DS39927C-page 236  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-26: COMPARATOR TIMINGS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
No.  
300  
301  
TRESP  
Response Time*(1)  
150  
400  
10  
ns  
TMC2OV Comparator Mode Change to  
Output Valid*  
s  
*
Parameters are characterized but not tested.  
Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions  
from VSS to VDD.  
TABLE 29-27: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
No.  
VR310 TSET  
Settling Time(1)  
10  
s  
Note 1: Settling time is measured while CVRR = 1and CVR<3:0> bits transition from ‘0000’ to ‘1111’.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 237  
PIC24F16KA102 FAMILY  
FIGURE 29-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
MCLR  
SY12  
SY10  
Internal  
POR  
PWRT  
SY11  
SYSRST  
System  
Clock  
Watchdog  
Timer Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
DS39927C-page 238  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-28: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET TIMING REQUIREMENTS  
Standard Operating Conditions: 1.8V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ(1) Max. Units  
Conditions  
SY10  
SY11  
SY12  
SY13  
TmcL  
TPWRT  
TPOR  
TIOZ  
MCLR Pulse Width (low)  
Power-up Timer Period  
Power-on Reset Delay  
2
50  
1
64  
5
90  
s  
ms  
s  
ns  
10  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
100  
SY20  
TWDT  
Watchdog Timer Time-out Period  
0.85  
3.4  
1
1.0  
4.0  
1.15  
4.6  
ms 1.32 prescaler  
ms 1:128 prescaler  
SY25  
SY35  
SY45  
SY55  
SY65  
SY75  
SY85  
TBOR  
TFSCM  
TRST  
Brown-out Reset Pulse Width  
Fail-Safe Clock Monitor Delay  
Configuration Update Time  
PLL Start-up Time  
s  
s  
2
2.3  
20  
1
s  
TLOCK  
TOST  
ms  
TOSC  
s  
Oscillator Start-up Time  
1024  
1
TFRC  
Fast RC Oscillator Start-up Time  
1.5  
100  
TLPRC  
Low-Power Oscillator Start-up  
Time  
s  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
FIGURE 29-8: BAUD RATE GENERATOR OUTPUT TIMING  
BRGx + 1 * TCY TLW  
THW  
BCLKx  
UxTX  
TBLD  
TBHD  
2008-2011 Microchip Technology Inc.  
DS39927C-page 239  
PIC24F16KA102 FAMILY  
FIGURE 29-9:  
I2C™ BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 29-4 for load conditions.  
TABLE 29-29: I2C™ BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial)  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM30  
TSU:STA Start Condition 100 kHz mode  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode  
1 MHz mode(2) TCY/2 (BRG + 1)  
IM31  
IM33  
IM34  
THD:STA Start Condition 100 kHz mode  
Hold Time  
TCY/2 (BRG + 1)  
After this period, the  
first clock pulse is  
generated  
400 kHz mode  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode  
TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
TCY/2 (BRG + 1)  
400 kHz mode  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
Note 1: BRG is the value of the I2C™ Baud Rate Generator. Refer to Section 17.3 “Setting Baud Rate When  
Operating as a Bus Master” for details.  
2: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
FIGURE 29-10:  
I2C™ BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM11  
IM21  
SCLx  
IM25  
IM10  
IM26  
IM20  
SDAx  
In  
IM45  
IM40  
SDAx  
Out  
Note: Refer to Figure 29-4 for load conditions.  
DS39927C-page 240  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-30: I2C™ BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM40  
IM45  
IM50  
TLO:SCL  
THI:SCL  
TF:SCL  
Clock Low Time 100 kHz mode  
400 kHz mode  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
1 MHz mode(2) TCY/2 (BRG + 1)  
Clock High Time 100 kHz mode  
400 kHz mode  
TCY/2 (BRG + 1)  
TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
TR:SCL  
TSU:DAT  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
250  
100  
TBD  
0
Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
THD:DAT Data Input  
Hold Time  
0
0.9  
TBD  
TAA:SCL  
TBF:SDA  
CB  
Output Valid  
From Clock  
3500  
1000  
Bus Free Time 100 kHz mode  
400 kHz mode  
4.7  
1.3  
TBD  
Time the bus must be  
free before a new  
transmission can start  
1 MHz mode(2)  
Bus Capacitive Loading  
400  
Legend: TBD = To Be Determined  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 17.3 “Setting Baud Rate When Operating  
as a Bus Master” for details.  
2: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
2008-2011 Microchip Technology Inc.  
DS39927C-page 241  
PIC24F16KA102 FAMILY  
FIGURE 29-11:  
I2C™ BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 29-12:  
I2C™ BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS11  
IS21  
IS10  
SCLx  
IS25  
IS20  
IS26  
SDAx  
In  
IS45  
IS40  
SDAx  
Out  
TABLE 29-31: I2C™ BUS START/STOP BIT TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C (Industrial)  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
IS30  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
4.7  
0.6  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Only relevant for Repeated  
Start condition  
0.25  
4.0  
IS31  
IS33  
IS34  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
0.6  
0.25  
4.7  
TSU:STO Stop Condition  
Setup Time  
0.6  
0.6  
THD:STO Stop Condition  
Hold Time  
4000  
600  
250  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins (for 1 MHz mode only).  
DS39927C-page 242  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
TABLE 29-32: I2C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C (Industrial)  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Max Units  
Conditions  
IS10  
IS11  
TLO:SCL  
Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
1.3  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
s  
s  
THI:SCL  
Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
s  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
300  
300  
100  
1000  
300  
300  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
ns  
ns  
ns  
s  
s  
s  
pF  
IS20  
IS21  
IS25  
IS26  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
TSU:DAT  
THD:DAT  
TAA:SCL  
TBF:SDA  
CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
250  
100  
100  
0
Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
Data Input  
Hold Time  
0
0.9  
0.3  
3500  
1000  
350  
0
Output Valid From 100 kHz mode  
0
Clock  
400 kHz mode  
1 MHz mode(1)  
0
0
Bus Free Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins (for 1 MHz mode only).  
FIGURE 29-13:  
START BIT EDGE DETECTION  
BRGx  
Any Value  
Start bit Detected, BRGx Started  
TCY  
Cycle  
Clock  
TSETUP  
TSTDELAY  
UxRX  
2008-2011 Microchip Technology Inc.  
DS39927C-page 243  
PIC24F16KA102 FAMILY  
FIGURE 29-14:  
INPUT CAPTURE TIMINGS  
ICx pin  
(Input Capture Mode)  
IC10  
IC11  
IC15  
TABLE 29-33: INPUT CAPTURE  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
IC10  
TccL  
ICx Input Low Time – No Prescaler  
TCY + 20  
20  
ns  
ns  
ns  
ns  
ns  
Must also meet  
Parameter IC15  
Synchronous Timer  
With Prescaler  
IC11  
IC15  
TccH  
TccP  
ICx Input Low Time – No Prescaler  
TCY + 20  
20  
Must also meet  
Parameter IC15  
Synchronous Timer  
With Prescaler  
ICx Input Period – Synchronous Timer  
2 * TCY + 40  
N
N = prescale  
value (1, 4, 16)  
TABLE 29-34: OUTPUT CAPTURE  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
OC11  
TCCR  
OC1 Output Rise Time  
10  
10  
ns  
ns  
ns  
ns  
OC10  
TCCF  
OC1 Output Fall Time  
FIGURE 29-15:  
OUTPUT COMPARE TIMINGS  
OCx  
(Output Compare or PWM Mode)  
OC11  
OC10  
DS39927C-page 244  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 29-16:  
PWM MODULE TIMING REQUIREMENTS  
OC20  
OCFx  
PWM  
OC15  
TABLE 29-35: PWM TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
25  
ns  
VDD = 3.0V, -40C to +125C  
OC20  
TFH  
Fault Input Pulse Width  
50  
ns  
VDD = 3.0V, -40C to +125C  
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 245  
PIC24F16KA102 FAMILY  
FIGURE 29-17:  
SPIx MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
SP31  
Bit 14 - - - - - -1  
LSb  
MSb  
SDOx  
SDIx  
SP30  
MSb In  
SP40  
Bit 14 - - - -1  
LSb In  
SP41  
TABLE 29-36: SPIx MASTER MODE TIMING REQUIREMENTS (CKE = 0)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
SP31  
SP35  
TscL  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Low Time(2)  
SCKx Output High Time(2)  
SCKx Output Fall Time(3)  
SCKx Output Rise Time(3)  
SDOx Data Output Fall Time(3)  
SDOx Data Output Rise Time(3)  
TCY/2  
TCY/2  
10  
10  
10  
10  
25  
25  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP40  
SP41  
TdiV2scH, Setup Time of SDIx Data Input  
20  
20  
ns  
ns  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not  
violate this specification.  
3: Assumes 50 pF load on all SPIx pins.  
DS39927C-page 246  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 29-18:  
SPIx MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)  
SP36  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
Bit 14 - - - - - -1  
LSb  
MSb  
SDOx  
SDIx  
SP40  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
TABLE 29-37: SPIx MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
SP31  
SP35  
SCKx Output Low Time(2)  
SCKx Output High Time(2)  
SCKx Output Fall Time(3)  
SCKx Output Rise Time(3)  
SDOx Data Output Fall Time(3)  
SDOx Data Output Rise Time(3)  
TCY/2  
TCY/2  
10  
10  
10  
10  
25  
25  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
TdoR  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP36  
SP40  
SP41  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
20  
20  
ns  
ns  
ns  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
3: Assumes 50 pF load on all SPIx pins.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 247  
PIC24F16KA102 FAMILY  
FIGURE 29-19:  
SPIx MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 0)  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
MSb  
LSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
TABLE 29-38: SPIx MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 0)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
(1)  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
SP70 TscL  
SP71 TscH  
SP72 TscF  
SP73 TscR  
SP30 TdoF  
SP31 TdoR  
SCKx Input Low Time  
SCKx Input High Time  
30  
30  
10  
10  
10  
10  
25  
25  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
SCKx Input Fall Time  
(2)  
SCKx Input Rise Time  
SDOx Data Output Fall Time  
(2)  
(2)  
SDOx Data Output Rise Time  
SP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP40 TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
SP41 TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
20  
20  
ns  
ns  
ns  
SP50 TssL2scH, SSx to SCKx or SCKx Input  
120  
TssL2scL  
(3)  
SP51 TssH2doZ SSx to SDOx Output High-Impedance  
10  
50  
ns  
ns  
SP52  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are  
not tested.  
2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate  
this specification.  
3: Assumes 50 pF load on all SPIx pins.  
DS39927C-page 248  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
FIGURE 29-20:  
SPIx MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 1)  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
SP73  
SP52  
Bit 14 - - - - - -1  
MSb  
LSb  
SDOx  
SDIx  
SP51  
SP30,SP31  
LSb In  
MSb In  
SP41  
Bit 14 - - - -1  
SP40  
TABLE 29-39: SPIx MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
(1)  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
SP70 TscL  
SP71 TscH  
SP72 TscF  
SP73 TscR  
SP30 TdoF  
SP31 TdoR  
SCKx Input Low Time  
SCKx Input High Time  
30  
30  
10  
10  
10  
10  
25  
25  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2)  
SCKx Input Fall Time  
SCKx Input Rise Time  
(2)  
(2)  
SDOx Data Output Fall Time  
(2)  
SDOx Data Output Rise Time  
SP35 TscH2doV, SDOx Data Output Valid after SCKx Edge  
TscL2doV  
SP40 TdiV2scH, Setup Time of SDIx Data Input to  
TdiV2scL SCKx Edge  
20  
20  
ns  
ns  
ns  
SP41 TscH2diL, Hold Time of SDIx Data Input to  
TscL2diL SCKx Edge  
SP50 TssL2scH, SSx to SCKx or SCKx Input  
120  
TssL2scL  
(3)  
SP51 TssH2doZ SSx to SDOx Output High-Impedance  
10  
50  
ns  
ns  
SP52 TscH2ssH SSx after SCKx Edge  
1.5 TCY + 40  
TscL2ssH  
SP60 TssL2doV SDOx Data Output Valid after SSx Edge  
50  
ns  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not  
tested.  
2: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this  
specification.  
3: Assumes 50 pF load on all SPIx pins.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 249  
PIC24F16KA102 FAMILY  
NOTES:  
DS39927C-page 250  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
30.0 PACKAGING INFORMATION  
30.1 Package Marking Information  
20-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC24F16KA101  
-I/P  
e
3
1110017  
28-Lead SPDIP  
Example  
PIC24F16KA102  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
e
3
-I/SP  
YYWWNNN  
1110017  
20-Lead SSOP  
Example  
PIC24F16KA  
XXXXXXXXXXX  
XXXXXXXXXXX  
e
3
101-I/SS  
YYWWNNN  
1110017  
28-Lead SSOP  
Example  
PIC24F08KA  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
e
3
102-I/SS  
YYWWNNN  
1110017  
Legend: XX...X Product-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 251  
PIC24F16KA102 FAMILY  
Example  
-I/SO  
20-Lead SOIC (.300”)  
PIC24F16KA101  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
e
3
1110017  
YYWWNNN  
28-Lead SOIC (.300”)  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC24F16KA102  
e
3
-I/SO  
YYWWNNN  
1110017  
20-Lead QFN  
Example  
PIC24F  
16KA101  
XXXXXX  
XXXXXX  
e
3
-I/MQ  
1110017  
XXXXXX  
YYWWNNN  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
24F16KA  
102-I/ML  
1110017  
e
3
DS39927C-page 252  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
30.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢁꢁꢇꢕꢌꢉꢇꢖꢗꢆꢘꢇꢙꢈꢎꢐꢈꢚ  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
E1  
NOTE 1  
1
2
3
D
E
A2  
A
L
c
A1  
b1  
eB  
e
b
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎꢕ  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢁꢕ  
ꢂꢁꢛꢘ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ=ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢁꢘ  
ꢂꢕꢁꢘ  
ꢂ-ꢕꢕ  
ꢂꢎꢖꢕ  
ꢂꢛ>ꢕ  
ꢂꢁꢁꢘ  
ꢂꢕꢕ>  
ꢂꢕꢖꢘ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢕ  
M
ꢂ-ꢁꢕ  
ꢂꢎꢘꢕ  
ꢁꢂꢕ-ꢕ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕ?ꢕ  
ꢂꢕꢁ>  
M
ꢂ-ꢎꢘ  
ꢂꢎ>ꢕ  
ꢁꢂꢕ?ꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢘ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢛꢗꢋꢄꢊꢜ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢁꢛ1  
2008-2011 Microchip Technology Inc.  
DS39927C-page 253  
PIC24F16KA102 FAMILY  
ꢀ ꢂꢃꢄꢅꢆꢇ!"ꢌꢑꢑꢘꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒ!ꢈꢓꢇMꢇꢔꢁꢁꢇꢕꢌꢉꢇꢖꢗꢆꢘꢇꢙ!ꢈꢎꢐꢈꢚ  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎ>  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢕꢕ  
ꢂꢁꢘꢕ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ=ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢎꢕ  
ꢂꢕꢁꢘ  
ꢂꢎꢛꢕ  
ꢂꢎꢖꢕ  
ꢁꢂ-ꢖꢘ  
ꢂꢁꢁꢕ  
ꢂꢕꢕ>  
ꢂꢕꢖꢕ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢘ  
M
ꢂ-ꢁꢕ  
ꢂꢎ>ꢘ  
ꢁꢂ-?ꢘ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕꢘꢕ  
ꢂꢕꢁ>  
M
ꢂ--ꢘ  
ꢂꢎꢛꢘ  
ꢁꢂꢖꢕꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢘ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢛꢗꢋꢄꢊꢜ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜꢕ1  
DS39927C-page 254  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ!#$ꢌꢑ"ꢇ!ꢕꢅꢉꢉꢇ%ꢏꢋꢉꢌꢑꢄꢇꢒ!!ꢓꢇMꢇ&'ꢔꢁꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ!!%ꢈꢚꢇ  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢎꢕ  
ꢕꢂ?ꢘꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
: ꢈꢉꢆꢇꢇꢀ=ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢄꢅ&  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
M
M
ꢁꢂꢜꢘ  
M
ꢜꢂ>ꢕ  
ꢘꢂ-ꢕ  
ꢜꢂꢎꢕ  
ꢕꢂꢜꢘ  
ꢁꢂꢎꢘꢀꢝ.3  
M
ꢎꢂꢕꢕ  
ꢁꢂ>ꢘ  
M
>ꢂꢎꢕ  
ꢘꢂ?ꢕ  
ꢜꢂꢘꢕ  
ꢕꢂꢛꢘ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
9ꢁ  
ꢁꢂ?ꢘ  
ꢕꢂꢕꢘ  
ꢜꢂꢖꢕ  
ꢘꢂꢕꢕ  
?ꢂꢛꢕ  
ꢕꢂꢘꢘ  
ꢕꢂꢕꢛ  
ꢕꢟ  
ꢕꢂꢎꢘ  
>ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
)
ꢕꢂꢎꢎ  
M
ꢕꢂ->  
ꢛꢗꢋꢄꢊꢜ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢎꢕꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜꢎ1  
2008-2011 Microchip Technology Inc.  
DS39927C-page 255  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39927C-page 256  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
ꢀ ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ!#$ꢌꢑ"ꢇ!ꢕꢅꢉꢉꢇ%ꢏꢋꢉꢌꢑꢄꢇꢒ!!ꢓꢇMꢇ&'ꢔꢁꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ!!%ꢈꢚ  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢎ>  
ꢕꢂ?ꢘꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
: ꢈꢉꢆꢇꢇꢀ=ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢄꢅ&  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
M
M
ꢁꢂꢜꢘ  
M
ꢜꢂ>ꢕ  
ꢘꢂ-ꢕ  
ꢁꢕꢂꢎꢕ  
ꢕꢂꢜꢘ  
ꢁꢂꢎꢘꢀꢝ.3  
M
ꢎꢂꢕꢕ  
ꢁꢂ>ꢘ  
M
>ꢂꢎꢕ  
ꢘꢂ?ꢕ  
ꢁꢕꢂꢘꢕ  
ꢕꢂꢛꢘ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
9ꢁ  
ꢁꢂ?ꢘ  
ꢕꢂꢕꢘ  
ꢜꢂꢖꢕ  
ꢘꢂꢕꢕ  
ꢛꢂꢛꢕ  
ꢕꢂꢘꢘ  
ꢕꢂꢕꢛ  
ꢕꢟ  
ꢕꢂꢎꢘ  
>ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢀ=ꢄ#&ꢍ  
)
ꢕꢂꢎꢎ  
M
ꢕꢂ->  
ꢛꢗꢋꢄꢊꢜ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢎꢕꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜ-1  
2008-2011 Microchip Technology Inc.  
DS39927C-page 257  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39927C-page 258  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2008-2011 Microchip Technology Inc.  
DS39927C-page 259  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39927C-page 260  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2008-2011 Microchip Technology Inc.  
DS39927C-page 261  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39927C-page 262  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2008-2011 Microchip Technology Inc.  
DS39927C-page 263  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39927C-page 264  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
20-Lead Plastic Quad Flat, No Lead Package (MQ) – 5x5x0.9 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2008-2011 Microchip Technology Inc.  
DS39927C-page 265  
PIC24F16KA102 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39927C-page 266  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
ꢀ ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ(ꢏꢅꢆꢇ)ꢉꢅꢋ*ꢇꢛꢗꢇꢃꢄꢅꢆꢇꢈꢅꢍ"ꢅ+ꢄꢇꢒ,ꢃꢓꢇMꢇ-.-ꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ()ꢛꢚ  
/ꢌꢋ#ꢇꢁ'&&ꢇꢕꢕꢇ0ꢗꢑꢋꢅꢍꢋꢇꢃꢄꢑ+ꢋ#  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
,ꢋꢅ&ꢆꢌ&ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
: ꢈꢉꢆꢇꢇꢀ=ꢄ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ=ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ=ꢄ#&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢀꢃꢆ#  
7
ꢗꢁ  
ꢗ-  
.
.ꢎ  
ꢎ>  
ꢕꢂ?ꢘꢀ1ꢐ,  
ꢕꢂꢛꢕ  
ꢕꢂ>ꢕ  
ꢕꢂꢕꢕ  
ꢁꢂꢕꢕ  
ꢕꢂꢕꢘ  
ꢕꢂꢕꢎ  
ꢕꢂꢎꢕꢀꢝ.3  
?ꢂꢕꢕꢀ1ꢐ,  
-ꢂꢜꢕ  
?ꢂꢕꢕꢀ1ꢐ,  
-ꢂꢜꢕ  
ꢕꢂ-ꢕ  
ꢕꢂꢘꢘ  
M
-ꢂ?ꢘ  
ꢖꢂꢎꢕ  
ꢒꢎ  
)
9
-ꢂ?ꢘ  
ꢕꢂꢎ-  
ꢕꢂꢘꢕ  
ꢕꢂꢎꢕ  
ꢖꢂꢎꢕ  
ꢕꢂ-ꢘ  
ꢕꢂꢜꢕ  
M
A
ꢛꢗꢋꢄꢊꢜ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢃꢆꢌ4ꢆꢑꢈꢀꢄ!ꢀ!ꢆ*ꢀ!ꢄꢅꢑ"ꢇꢆ&ꢈ#ꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢁꢕꢘ1  
2008-2011 Microchip Technology Inc.  
DS39927C-page 267  
PIC24F16KA102 FAMILY  
ꢀ ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ(ꢏꢅꢆꢇ)ꢉꢅꢋ*ꢇꢛꢗꢇꢃꢄꢅꢆꢇꢈꢅꢍ"ꢅ+ꢄꢇꢒ,ꢃꢓꢇMꢇ-.-ꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ()ꢛꢚ  
/ꢌꢋ#ꢇꢁ'&&ꢇꢕꢕꢇ0ꢗꢑꢋꢅꢍꢋꢇꢃꢄꢑ+ꢋ#  
ꢛꢗꢋꢄꢜ 3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
DS39927C-page 268  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
• Imported Figure 40.10 from PIC24F FRM,  
Section 40.  
• Deleted TVREG spec.  
• Imported Figure 15-5 from PIC24F FRM,  
Section 15.  
• Imported Table 15-4 from PIC24F FRM,  
Section 15.  
APPENDIX A: REVISION HISTORY  
Revision A (November 2008)  
Original data sheet for the PIC24F16KA102 family of  
devices.  
• Imported Figure 16-22 from PIC24F FRM,  
Section 16.  
Revision B (March 2009)  
• Imported Table 16-9 from PIC24F FRM,  
Section 16.  
• Imported Figure 16-23 from PIC24F FRM,  
Section 16.  
Section 29.0 “Electrical Characteristics” was  
revised and minor text edits were made throughout the  
document.  
• Imported Table 16-10 from PIC24F FRM,  
Section 16.  
Revision C (October 2011)  
• Imported Figure 21-24 from PIC24F FRM.  
Section 21.  
• Imported Figure 21-25 from PIC24F FRM,  
Section 21.  
• Imported Table 21-5 from PIC24F FRM,  
Section 21.  
• Imported Figure 23-17 from PIC24F FRM,  
Section 23.  
• Imported Table 23-3 from PIC24F FRM,  
Section 23.  
• Imported Figure 23-18 from PIC24F FRM,  
Section 23.  
• Imported Table 23-4 from PIC24F FRM,  
Section 23.  
• Imported Figure 23-19 from PIC24F FRM,  
Section 23.  
• Imported Table 23-5 from PIC24F FRM,  
Section 23.  
• Imported Figure 23-20 from PIC24F FRM,  
Section 23.  
• Imported Table 23-6 from PIC24F FRM,  
Section 23.  
• Imported Figure 24-33 from PIC24F FRM,  
Section 24.  
• Imported Table 24-6 from PIC24F FRM,  
Section 24.  
• Imported Figure 24-34 from PIC24F FRM,  
Section 24.  
• Imported Table 24-7 from PIC24F FRM,  
Section 24.  
• Imported Figure 24-35 from PIC24F FRM,  
Section 24.  
• Changed all instances of DSWSRC to DSWAKE.  
• Corrected Example 5-2.  
• Corrected Example 5-4.  
• Corrected Example 6-1.  
• Corrected Example 6-3.  
• Added a comment to Example 6-5.  
• Corrected Figure 9-1 to connect the SOSCI and  
SOSCO pins to the Schmitt trigger correctly.  
• Added register descriptions for PMD1, PMD2,  
PMD3 and PMD4.  
• Added note that RTCC will run in Reset.  
• Corrected time values of ADCS  
(AD1CON3<5:0>).  
• Corrected CH0SB and CH0SA (AD1CHS<11:8>  
and AD1CHS<3:0>) to correctly reference AVDD  
and AN3.  
• Added description of PGCF15 and PGCF14  
(AD1PCFG<15:14>).  
• Edited Figure 22-2 to correctly reference RIC and  
the A/D capacitance.  
• Changed all references from CTEDG1 to CTED1.  
• Changed all references from CTEDG2 to CTED2.  
• Changed description of CMIDL: it used to say it  
disables all comparators in Idle, now only disables  
interrupts in Idle mode.  
• Changed all references of RTCCKSEL to  
RTCOSC.  
• Changed all references of DSLPBOR to  
DSBOREN.  
• Changed all references of DSWCKSEL to  
DSWDTOSC  
• Imported Figure 40-9 from PIC24F FRM,  
Section 40.  
• Added spec for BOR hysteresis.  
• Edited Note 1 for Table 29-5 to further describe  
LPBOR.  
• Edited max values of DC20d and DC20e on  
Table 29-6.  
• Imported Table 24-8 from PIC24F FRM,  
Section 24.  
• Imported Figure 24-36 from PIC24F FRM,  
Section 24.  
• Imported Table 24-9 from PIC24F FRM,  
Section 24.  
• Edited typical value for DC61-DC61c in  
Table 29-8.  
• Edited Note 2 of Table 29-8.  
• Added Note 5 to Table 29-9.  
• Added Table 29-15.  
• Added AD08 and AD09 in Table 29-26.  
• Added Note 3 to Table 29-26.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 269  
PIC24F16KA102 FAMILY  
NOTES:  
DS39927C-page 270  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
INDEX  
Reset System ............................................................ 57  
RTCC ....................................................................... 155  
Shared I/O Port Structure ........................................ 113  
Simplified UART ...................................................... 147  
SPI1 Module (Enhanced Buffer Mode) .................... 133  
SPI1 Module (Standard Buffer Mode) ..................... 132  
System Clock ............................................................. 91  
Timer2 (16-Bit Synchronous Mode) ......................... 119  
Timer2/3 (32-Bit Mode) ............................................ 118  
Timer3 (16-Bit Synchronous Mode) ......................... 119  
Watchdog Timer (WDT) ........................................... 201  
Brown-out Reset (BOR) ..................................................... 61  
A
A/D  
10-Bit High-Speed A/D Converter ............................ 173  
A/D Characteristics  
Conversion Timing Requirements ............................ 234  
Module Specifications .............................................. 235  
A/D Converter  
Analog Input Model .................................................. 181  
Transfer Function ..................................................... 182  
AC Characteristics  
Capacitive Loading Requirements on  
Output Pins ...................................................... 231  
Comparator Timings ................................................ 237  
Comparator Voltage Reference Settling  
Time Specifications .......................................... 237  
Input Capture ........................................................... 244  
Internal RC Accuracy ............................................... 233  
Load Conditions for Device Timing  
Specifications ................................................... 231  
Output Capture ........................................................ 244  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out Reset  
Timing Requirements ....................................... 239  
Specifications ........................................................... 234  
C
C Compilers  
MPLAB C18 ............................................................. 204  
Charge Time Measurement Unit. See CTMU.  
Code Examples  
Data EEPROM Bulk Erase ........................................ 55  
Data EEPROM Unlock Sequence ............................. 51  
Erasing a Program Memory Row,  
‘C’ Language Code ............................................ 48  
Erasing a Program Memory Row,  
Assembly Language Code ................................ 48  
I/O Port Write/Read ................................................. 114  
Initiating a Programming Sequence,  
‘C’ Language Code ............................................ 50  
Initiating a Programming Sequence,  
Assembly Language Code ................................ 50  
Loading the Write Buffers, ‘C’ Language Code ......... 49  
Loading the Write Buffers, Assembly  
Language Code ................................................. 49  
PWRSAV Instruction Syntax ................................... 101  
Reading Data EEPROM Using the  
Assembler  
MPASM Assembler .................................................. 204  
B
Baud Rate Generator  
Setting as a Bus Master ........................................... 141  
Block Diagrams  
10-Bit High-Speed A/D Converter ............................ 174  
16-Bit Timer1 ........................................................... 115  
Accessing Program Memory with  
TBLRD Command ............................................. 56  
Sequence for Clock Switching ................................... 98  
Setting the RTCWREN Bit ....................................... 156  
Single-Word Erase .................................................... 54  
Single-Word Write to Data EEPROM ........................ 55  
Code Protection ............................................................... 202  
Comparator ...................................................................... 183  
Comparator Voltage Reference ....................................... 187  
Configuration ........................................................... 187  
Configuration Bits ............................................................ 193  
Core Features ...................................................................... 9  
CPU  
Arithmetic (Logic Unit (ALU) ...................................... 27  
Control Registers ....................................................... 26  
Core Registers ........................................................... 24  
Programmer’s Model ................................................. 23  
CRC  
Operation in Power Save Modes ............................. 168  
User Interface .......................................................... 168  
CTMU  
Measuring Capacitance ........................................... 189  
Measuring Time ....................................................... 190  
Pulse Generation and Delay .................................... 190  
Customer Change Notification Service ............................ 275  
Customer Notification Service ......................................... 275  
Customer Support ............................................................ 275  
Table Instructions .............................................. 43  
CALL Stack Frame ..................................................... 41  
Comparator Module ................................................. 183  
Comparator Voltage Reference ............................... 187  
CPU Programmer’s Model ......................................... 25  
CRC Reconfigured for Polynomial ........................... 168  
CRC Shifter Details .................................................. 167  
CTMU Connections and Internal Configuration for  
Capacitance Measurement .............................. 189  
CTMU Typical Connections and Internal  
Configuration for Pulse Delay Generation ....... 190  
CTMU Typical Connections and Internal  
Configuration for Time Measurement .............. 190  
Data Access from Program Space  
Address Generation ........................................... 42  
Data EEPROM Addressing with TBLPAG,  
NVM Address Registers .................................... 53  
High/Low-Voltage Detect (HLVD) ............................ 171  
2
I C Module ............................................................... 140  
Individual Comparator Configurations ...................... 184  
Input Capture ........................................................... 123  
Output Compare ...................................................... 128  
PIC24F CPU Core ..................................................... 24  
PIC24F16KA102 Family (General) ............................ 12  
PSV Operation ........................................................... 44  
2008-2011 Microchip Technology Inc.  
DS39927C-page 271  
PIC24F16KA102 FAMILY  
Examples  
D
Baud Rate Error Calculation (BRG) ......................... 148  
PWM Frequencies, Resolutions at 16 MIPS ............ 127  
PWM Frequencies, Resolutions at 4 MIPS .............. 127  
PWM Period, Duty Cycle Calculations ..................... 127  
Data EEPROM  
Bulk Erase ..................................................................55  
Erasing .......................................................................54  
Operations .................................................................53  
Programming  
F
Reading Data EEPROM ....................................56  
Single-Word Write ..............................................55  
Data Memory  
Flash and Data EEPROM  
Programming  
Control Registers ............................................... 51  
Flash and Data EEPROM Programming  
Control Registers  
Address Space ...........................................................31  
Memory Map ..............................................................31  
Near Data Space .......................................................32  
Organization, Alignment .............................................32  
SFR Space .................................................................32  
Software Stack ...........................................................41  
Space Width ...............................................................31  
NVM Address Registers (NVMADRU,  
NVMADR ................................................... 53  
NVMCON ........................................................... 51  
NVMKEY ........................................................... 51  
Flash Program Memory  
DC Characteristics  
Control Registers ....................................................... 46  
Enhanced ICSP Operation ........................................ 46  
Programming Algorithm ............................................. 48  
Programming Operations ........................................... 46  
RTSP Operation ........................................................ 46  
Table Instructions ...................................................... 45  
Brown-out Reset Trip Points ....................................219  
Comparator Specifications .......................................230  
Comparator Voltage Reference Specifications ........230  
CTMU Current Source Specifications ......................230  
Data EEPROM Memory ...........................................229  
High/Low-Voltage Detect .........................................218  
I/O Pin Input Specifications ......................................227  
I/O Pin Output Specifications ...................................228  
Idle Current IIDLE ......................................................222  
Internal Voltage References ....................................230  
Operating Current IDD ..............................................220  
Power-Down Current IPD .........................................224  
Program Memory .....................................................229  
Temperature and Voltage Specifications .................218  
Thermal Operating Conditions .................................217  
Thermal Packaging Characteristics .........................217  
H
High/Low-Voltage Detect (HLVD) .................................... 171  
I
I/O Ports  
Analog Pins Configuration ....................................... 114  
Input Change Notification ........................................ 114  
Open-Drain Configuration ........................................ 114  
Parallel (PIO) ........................................................... 113  
2
I C  
Deep Sleep  
Clock Rates ............................................................. 141  
Communicating as Master in Single Master  
Checking, Clearing Status .......................................104  
Entering ....................................................................102  
Sequence ................................................. 102, 103  
Environment .................................................... 139  
Pin Remapping Options ........................................... 139  
Reserved Addresses ............................................... 141  
Slave Address Masking ........................................... 141  
In-Circuit Debugger .......................................................... 202  
In-Circuit Serial Programming (ICSP) .............................. 202  
Input Capture ................................................................... 123  
Instruction Set  
Exiting ......................................................................103  
I/O Pins ....................................................................103  
POR .........................................................................104  
Sequence Summary ................................................104  
WDT .........................................................................104  
Deep Sleep BOR (DSBOR) ...............................................61  
Development Support ......................................................203  
Device Features (Summary) ..............................................11  
Doze Mode .......................................................................107  
Opcode Symbols ..................................................... 208  
Overview .................................................................. 209  
Summary ................................................................. 207  
2
Inter-Integrated Circuit. See I C.  
E
Internet Address .............................................................. 275  
Interrupts  
Electrical Characteristics  
Absolute Maximum Ratings .....................................215  
V/F Graphs (Industrial, Extended) ...........................216  
V/F Graphs (Industrial) .............................................216  
Equations  
A/D Conversion Clock Period ..................................181  
Baud Rate Reload Calculation .................................141  
Calculating the PWM Period ....................................126  
Calculation for Maximum PWM Resolution ..............126  
CRC .........................................................................167  
Device and SPI Clock Speed Relationship ..............138  
UART Baud Rate with BRGH = 0 ............................148  
UART Baud Rate with BRGH = 1 ............................148  
Errata ...................................................................................8  
Alternate Interrupt Vector Table (AIVT) ..................... 63  
Control and Status Registers ..................................... 66  
Implemented Vectors ................................................. 65  
Interrupt Service Routine (ISR) .................................. 90  
Interrupt Vector Table (IVT) ....................................... 63  
Reset Sequence ........................................................ 63  
Setup and Service Procedures .................................. 90  
Trap Service Routine (TSR) ...................................... 90  
Trap Vectors .............................................................. 65  
Vector Table .............................................................. 64  
DS39927C-page 272  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
Output Compare ........................................................ 35  
Pad Configuration ...................................................... 37  
PMD ........................................................................... 40  
PORTA ...................................................................... 37  
PORTB ...................................................................... 37  
RTCC ......................................................................... 39  
SPI ............................................................................. 36  
Timer ......................................................................... 35  
UART ......................................................................... 36  
Registers  
M
Microchip Internet Web Site ............................................. 275  
MPLAB ASM30 Assembler, Linker, Librarian .................. 204  
MPLAB Integrated Development  
Environment Software .............................................. 203  
MPLAB PM3 Device Programmer ................................... 206  
MPLAB REAL ICE In-Circuit Emulator System ................ 205  
MPLINK Object Linker/MPLIB Object Librarian ............... 204  
N
AD1CHS (A/D Input Select) ..................................... 178  
AD1CON1 (A/D Control 1) ....................................... 175  
AD1CON2 (A/D Control 2) ....................................... 176  
AD1CON3 (A/D Control 3) ....................................... 177  
AD1CSSL (A/D Input Scan Select, Low) ................. 180  
AD1PCFG (A/D Port Configuration) ........................ 179  
ALCFGRPT (Alarm Configuration) .......................... 159  
ALMINSEC (Alarm Minutes and  
Seconds Value) ............................................... 163  
ALMTHDY (Alarm Month and Day Value) ............... 162  
ALWDHR (Alarm Weekday and Hours Value) ........ 162  
CLKDIV (Clock Divider) ............................................. 95  
CMSTAT (Comparator Status) ................................ 186  
CMxCON (Comparator x Control) ........................... 185  
CORCON (CPU Control) ..................................... 27, 68  
CRCCON (CRC Control) ......................................... 169  
CRCXOR (CRC XOR Polynomial) .......................... 170  
CTMUCON (CTMU Control) .................................... 191  
CTMUICON (CTMU Current Control) ...................... 192  
CVRCON (Comparator Voltage  
Reference Control) .......................................... 188  
DEVID (Device ID) ................................................... 200  
DEVREV (Device Revision) ..................................... 200  
DSCON (Deep Sleep Control) ................................. 105  
DSWAKE (Deep Sleep Wake-up Source) ............... 106  
FBS (Boot Segment Configuration) ......................... 193  
FDS (Deep Sleep Configuration) ............................. 199  
FGS (General Segment Configuration) ................... 194  
FICD (In-Circuit Debugger Configuration) ............... 198  
FOSC (Oscillator Configuration) .............................. 195  
FOSCSEL (Oscillator Selection Configuration) ....... 194  
FPOR (Reset Configuration) ................................... 197  
FWDT (Watchdog Timer Configuration) .................. 196  
HLVDCON (High/Low-Voltage Detect Control) ....... 172  
I2C1CON (I2C1 Control) ......................................... 142  
I2C1MSK (I2C1 Slave Mode Address Mask) .......... 146  
I2C1STAT (I2C1 Status) .......................................... 144  
IC1CON (Input Capture 1 Control) .......................... 124  
IEC0 (Interrupt Enable Control 0) .............................. 75  
IEC1 (Interrupt Enable Control 1) .............................. 76  
IEC3 (Interrupt Enable Control 3) .............................. 77  
IEC4 (Interrupt Enable Control 4) .............................. 78  
IFS0 (Interrupt Flag Status 0) .................................... 71  
IFS1 (Interrupt Flag Status 1) .................................... 72  
IFS3 (Interrupt Flag Status 3) .................................... 73  
IFS4 (Interrupt Flag Status 4) .................................... 74  
INTCON1 (Interrupt Control 1) .................................. 69  
INTCON2 (Interrupt Control 2) .................................. 70  
INTTREG Interrupt Control and Status ...................... 89  
IPC0 (Interrupt Priority Control 0) .............................. 79  
IPC1 (Interrupt Priority Control 1) .............................. 80  
IPC15 (Interrupt Priority Control 15) .......................... 86  
IPC16 (Interrupt Priority Control 16) .......................... 87  
IPC18 (Interrupt Priority Control 18) .......................... 88  
IPC19 (Interrupt Priority Control 19) .......................... 88  
Near Data Space ............................................................... 32  
O
Oscillator Configuration  
Bit Values for Clock Selection .................................... 92  
Clock Switching .......................................................... 97  
Sequence ........................................................... 97  
CPU Clocking Scheme .............................................. 92  
Initial Configuration on POR ...................................... 92  
Reference Clock Output ............................................. 98  
Output Compare  
Continuous Output Pulse Generation ...................... 125  
Single Output Pulse Generation .............................. 125  
P
Packaging  
Details ...................................................................... 253  
Marking .................................................................... 251  
Pinout Descriptions ...................................................... 13–16  
Power-Saving Features ................................................... 101  
Clock Frequency, Clock Switching ........................... 101  
Instruction-Based Modes ......................................... 101  
Deep Sleep ...................................................... 102  
Idle ................................................................... 102  
Sleep ................................................................ 101  
Product Identification System .......................................... 277  
Program and Data Memory  
Access Using Table Instructions ................................ 43  
Program Space Visibility ............................................ 44  
Program and Data Memory Spaces  
Interfacing, Addressing .............................................. 41  
Program Memory  
Address Space ........................................................... 29  
Configuration Word Addresses .................................. 30  
Memory Map .............................................................. 29  
Program Verification ........................................................ 202  
Programmable Cyclic Redundancy Check (CRC)  
Generator ................................................................. 167  
Pulse-Width Modulation. See PWM.  
R
Reader Response ............................................................ 276  
Register Maps  
A/D ............................................................................. 38  
Clock Control ............................................................. 40  
CPU Core ................................................................... 33  
CRC ........................................................................... 39  
CTMU ......................................................................... 38  
Deep Sleep ................................................................ 40  
Dual Comparator ........................................................ 39  
2
I C .............................................................................. 36  
ICN ............................................................................. 34  
Input Capture ............................................................. 35  
Interrupt Controller ..................................................... 34  
NVM ........................................................................... 40  
2008-2011 Microchip Technology Inc.  
DS39927C-page 273  
PIC24F16KA102 FAMILY  
IPC2 (Interrupt Priority Control 2) ..............................81  
T
IPC3 (Interrupt Priority Control 3) ..............................82  
IPC4 (Interrupt Priority Control 4) ..............................83  
IPC5 (Interrupt Priority Control 5) ..............................84  
IPC7 (Interrupt Priority Control 7) ..............................85  
MINSEC (RTCC Minutes and Seconds Value) ........161  
MTHDY (RTCC Month and Day Value) ...................160  
NVMCON (Flash Memory Control) ............................47  
NVMCON (Nonvolatile Memory Control) ...................52  
OC1CON (Output Compare 1 Control) ....................129  
OSCCON (Oscillator Control) ....................................93  
OSCTUN (FRC Oscillator Tune) ................................96  
PADCFG1 (Pad  
Configuration Control) ......................130, 146, 158  
PMD1 (Peripheral Module Disable 1) ......................108  
PMD2 (Peripheral Module Disable 2) ......................109  
PMD3 (Peripheral Module Disable 3) ......................110  
PMD4 (Peripheral Module Disable 4) ......................111  
RCFGCAL (RTCC Calibration and  
Configuration) ..................................................157  
RCON (Reset Control) ...............................................58  
REFOCON (Reference Oscillator Control) .................99  
SPI1CON1 (SPI1 Control 1) ....................................136  
SPI1CON2 (SPI1 Control 2) ....................................137  
SPI1STAT (SPI1 Status and Control) ......................134  
SR (ALU STATUS) .............................................. 26, 67  
T1CON (Timer1 Control) ..........................................116  
T2CON (Timer2 Control) ..........................................120  
T3CON (Timer3 Control) ..........................................121  
UxMODE (UARTx Mode) .........................................150  
UxRXREG (UARTx Receive) ...................................154  
UxSTA (UARTx Status and Control) ........................152  
UxTXREG (UARTx Transmit) ..................................154  
WKDYHR (RTCC Weekday and Hours Value) ........161  
YEAR (RTCC Year Value) .......................................160  
Timer1 .............................................................................. 115  
Timer2/3 ........................................................................... 117  
Timing Diagrams  
Baud Rate Generator Output ........................... 239, 240  
Brown-out Reset Characteristics ............................. 219  
CLKO and I/O Timing .............................................. 236  
External Clock .......................................................... 232  
2
I C Bus Data (Master Mode) ................................... 240  
2
I C Bus Data (Slave Mode) ..................................... 242  
2
I C Bus Start/Stop Bits (Master Mode) .................... 240  
2
I C Bus Start/Stop Bits (Slave Mode) ...................... 242  
Input Capture ........................................................... 244  
Output Compare ...................................................... 244  
PWM Requirements ................................................. 245  
Reset, Watchdog Timer. Oscillator Start-up  
Timer, Power-up Timer Characteristics ........... 238  
SPIx Master Mode (CKE = 0) .................................. 246  
SPIx Master Mode (CKE = 1) .................................. 247  
SPIx Slave Mode (CKE = 0) .................................... 248  
SPIx Slave Mode (CKE = 1) .................................... 249  
Start Bit Edge Detection .......................................... 243  
Timing Requirements  
CLKO and I/O .......................................................... 236  
External Clock .......................................................... 232  
2
I C Bus Data (Master Mode) ........................... 240, 241  
2
I C Bus Data (Slave Mode) ..................................... 243  
2
I C Bus Start/Stop Bit (Slave Mode) ........................ 242  
PLL Clock Specifications ......................................... 233  
PWM ........................................................................ 245  
SPIx Master Mode (CKE = 0) .................................. 246  
SPIx Master Mode (CKE = 1) .................................. 247  
SPIx Slave Mode (CKE = 0) .................................... 248  
SPIx Slave Mode (CKE = 1) .................................... 249  
Resets  
U
Clock Source Selection ..............................................60  
Delay Times for Various Device Resets ....................60  
Device Times .............................................................60  
RCON Flags Operation ..............................................59  
SFR States .................................................................61  
Revision History ...............................................................269  
RTCC ...............................................................................155  
Alarm Configuration .................................................164  
Alarm Mask Settings (figure) ....................................165  
Calibration ................................................................164  
Register Mapping .....................................................156  
Source Clock ............................................................155  
Selection ..........................................................156  
UART ............................................................................... 147  
Baud Rate Generator (BRG) ................................... 148  
Break and Sync Transmit Sequence ....................... 149  
IrDA Support ............................................................ 149  
Operation of UxCTS and UxRTS Control Pins ........ 149  
Receiving in 8-Bit or 9-Bit Data Mode ...................... 149  
Transmitting in 8-Bit Data Mode .............................. 149  
Transmitting in 9-Bit Data Mode .............................. 149  
W
Watchdog Timer  
Deep Sleep (DSWDT) ............................................. 202  
Watchdog Timer (WDT) ................................................... 201  
Windowed Operation ............................................... 201  
WWW Address ................................................................ 275  
WWW, On-Line Support ...................................................... 8  
Write Lock ................................................................156  
S
Selective Peripheral Power Control .................................107  
Serial Peripheral Interface. See SPI.  
SFR Space .........................................................................32  
Software Simulator (MPLAB SIM) ....................................205  
Software Stack ...................................................................41  
DS39927C-page 274  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2008-2011 Microchip Technology Inc.  
DS39927C-page 275  
PIC24F16KA102 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS39927C  
Application (optional):  
Would you like a reply?  
Y
N
Device: PIC24F16KA102 Family  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39927C-page 276  
2008-2011 Microchip Technology Inc.  
PIC24F16KA102 FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
a) PIC24F16KA102-I/ML: General purpose,  
PIC 24 F 16 KA1 02 T - I / PT - XXX  
16-Kbyte program memory, 28-pin, Industrial  
temp., QFN package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture  
24 = 16-bit modified Harvard without DSP  
Flash Memory Family  
Product Group  
Pin Count  
F
= Flash program memory  
KA1 = General purpose microcontrollers  
01 = 20-pin  
02 = 28-pin  
Temperature Range  
Package  
I
E
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
SP = SPDIP  
SO = SOIC  
SS = SSOP  
ML = QFN  
P
= PDIP  
Pattern  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
ES = Engineering Sample  
2008-2011 Microchip Technology Inc.  
DS39927C-page 277  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/02/11  
DS39927C-page 278  
2008-2011 Microchip Technology Inc.  

相关型号:

PIC24F16KA101-E/SS

IC,MICROCONTROLLER,16-BIT,PIC CPU,CMOS,SSOP,20PIN,PLASTIC
MICROCHIP

PIC24F16KA101-I/ML

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP™ Technology
MICROCHIP

PIC24F16KA101-I/MQ

16-BIT, FLASH, 32 MHz, MICROCONTROLLER, PQCC20, 5 X 5 MM, 0.90 MM HEIGHT, LEAD FREE, PLASTIC, QFN-20
MICROCHIP

PIC24F16KA101-I/P

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP™ Technology
MICROCHIP

PIC24F16KA101-I/SO

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP™ Technology
MICROCHIP

PIC24F16KA101-I/SP

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP™ Technology
MICROCHIP

PIC24F16KA101-I/SS

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP™ Technology
MICROCHIP

PIC24F16KA101T-E

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC24F16KA101T-E/MQ

IC,MICROCONTROLLER,16-BIT,PIC CPU,CMOS,LLCC,20PIN,PLASTIC
MICROCHIP

PIC24F16KA101T-E/SS

IC,MICROCONTROLLER,16-BIT,PIC CPU,CMOS,SSOP,20PIN,PLASTIC
MICROCHIP

PIC24F16KA101T-EML-ES

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC24F16KA101T-EP-ES

20/28-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP