PIC24FJ128GA308 [MICROCHIP]

64/80/100-Pin, General Purpose, 16-Bit Flash Microcontrollers with LCD Controller and nanoWatt XLP Technology; 八十〇分之六十四/ 100-引脚,通用, 16位闪存微控制器与LCD控制器,并采用nanoWatt XLP技术
PIC24FJ128GA308
型号: PIC24FJ128GA308
厂家: MICROCHIP    MICROCHIP
描述:

64/80/100-Pin, General Purpose, 16-Bit Flash Microcontrollers with LCD Controller and nanoWatt XLP Technology
八十〇分之六十四/ 100-引脚,通用, 16位闪存微控制器与LCD控制器,并采用nanoWatt XLP技术

闪存 微控制器 CD
文件: 总406页 (文件大小:3268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC24FJ128GA310 FAMILY  
64/80/100-Pin, General Purpose, 16-Bit Flash Microcontrollers  
with LCD Controller and nanoWatt XLP Technology  
Extreme Low-Power Features:  
Peripheral Features (continued):  
• Multiple Power Management Options for Extreme  
Power Reduction:  
• Seven Input Capture modules, each with a  
Dedicated 16-Bit Timer  
- VBAT allows the device to transition to a back-up  
battery for the lowest power consumption with  
RTCC  
- Deep Sleep allows near total power-down, with  
the ability to wake-up on external triggers  
- Sleep and Idle modes selectively shut down  
peripherals and/or core for substantial power  
reduction and fast wake-up  
• Seven Output Compare/PWM modules, each with a  
Dedicated 16-Bit Timer  
• Enhanced Parallel Master/Slave Port (EPMP/EPSP)  
• Hardware Real-Time Clock/Calendar (RTCC):  
- Runs in Deep Sleep and VBAT modes  
• Two 3-Wire/4-Wire SPI modules (support 4 Frame  
modes) with 8-Level FIFO Buffer  
2
• Two I C™ modules Support Multi-Master/Slave  
- Doze mode allows CPU to run at a lower clock  
speed than peripherals  
mode and 7-Bit/10-Bit Addressing  
• Four UART modules:  
• Alternate Clock modes Allow On-the-Fly Switching to  
a Lower Clock Speed for Selective Power Reduction  
• Extreme Low-Power Current Consumption for  
Deep Sleep:  
- WDT: 270 nA @ 3.3V typical  
- RTCC: 400 nA @ 32 kHz, 3.3V typical  
- Deep Sleep current, 40 na, 3.3V typical  
- Support RS-485, RS-232 and LIN/J2602  
- On-chip hardware encoder/decoder for IrDA®  
- Auto-wake-up on Auto-Baud Detect  
- 4-level deep FIFO buffer  
• Programmable 32-bit Cyclic Redundancy Check  
(CRC) Generator  
• Digital Signal Modulator Providers On-Chip FSK and  
PSK Modulation for a Digital Signal Stream  
• Configurable Open-Drain Outputs on Digital I/O Pins  
• High-Current Sink/Source (18 mA/18 mA) on All I/O Pins  
Peripheral Features:  
• LCD Display Controller:  
- Up to 60 segments by 8 commons  
- Internal charge pump and low-power, internal  
resistor biasing  
Analog Features:  
• 10/12-Bit, 24-Channel Analog-to-Digital (A/D) Converter:  
- Conversion rate of 500 ksps (10-bit), 200 ksps (12-bit)  
- Conversion available during Sleep and Idle  
• Three Rail-to-Rail Enhanced Analog Comparators  
with Programmable Input/Output Configuration  
• On-Chip Programmable Voltage Reference  
• Charge Time Measurement Unit (CTMU):  
- Operation in Sleep mode  
• Up to Five External Interrupt Sources  
• Peripheral Pin Select (PPS): Allows Independent I/O  
Mapping of Many Peripherals  
• Five 16-Bit Timers/Counters with Prescaler:  
- Can be paired as 32-bit timers/counters  
• Six-Channel DMA supports All Peripheral modules  
- Minimizes CPU overhead and increases data  
throughput  
- Used for capacitive touch sensing, up to 24 channels  
- Time measurement down to 1 ns resolution  
- CTMU temperature sensing  
Memory  
Remappable Peripherals  
Device  
PIC24FJ128GA310  
PIC24FJ128GA308  
PIC24FJ128GA306  
PIC24FJ64GA310  
PIC24FJ64GA308  
PIC24FJ64GA306  
100  
80  
128K  
8K  
8K  
8K  
8K  
8K  
8K  
5
5
5
5
5
5
7
7
7
7
7
7
7
7
7
7
7
7
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
24  
16  
16  
24  
16  
16  
3
3
3
3
3
3
24  
16  
16  
24  
16  
16  
Y
Y
Y
Y
Y
Y
480  
368  
240  
480  
368  
240  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
128K  
128K  
64K  
64  
100  
80  
64K  
64  
64K  
2010-2011 Microchip Technology Inc.  
DS39996F-page 1  
PIC24FJ128GA310 FAMILY  
High-Performance CPU:  
Special Microcontroller Features:  
• Modified Harvard Architecture  
• Up to 16 MIPS Operation @ 32 MHz  
• 8 MHz Internal Oscillator:  
- 4x PLL option  
- Multiple clock divide options  
• Operating Voltage Range of 2.0V to 3.6V  
• Two On-Chip Voltage Regulators (1.8V and 1.2V) for  
Regular and Extreme Low-Power Operation  
• 20,000 Erase/Write Cycle Endurance Flash Program  
Memory, typical  
• Flash Data Retention: 20 Years Minimum  
• Self-Programmable under Software Control  
• Programmable Reference Clock Output  
• In-Circuit Serial Programming™ (ICSP™) and  
In-Circuit Emulation (ICE) via 2 Pins  
- Fast start-up  
• 17-Bit x 17-Bit Single-Cycle Hardware  
Fractional/Integer Multiplier  
• 32-Bit by 16-Bit Hardware Divider  
• 16 x 16-Bit Working Register Array  
• C Compiler Optimized Instruction Set Architecture  
• Two Address Generation Units for Separate Read  
and Write Addressing of Data Memory  
• JTAG Boundary Scan Support  
• Fail-Safe Clock Monitor Operation:  
- Detects clock failure and switches to on-chip,  
low-power RC oscillator  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Brown-out Reset (BOR) with Operation below VBOR  
• Low-Voltage Detect (LVD)  
• Flexible Watchdog Timer (WDT) with its own  
RC Oscillator for Reliable Operation  
• Standard and Ultra Low-Power Watchdog Timers  
(WDT) for Reliable Operation in Standard and Deep  
Sleep modes  
DS39996F-page 2  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Pin Diagrams  
64-Pin TQFP, QFN  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCO/RPI37/SCKLI/RC14  
1
PMD5/CTED4/LCDBIAS2/CN63/RE5  
SOSCI/RC13  
PMD6/LCDBIAS1/CN64/RE6  
PMD7/LCDBIAS0/CN65/RE7  
2
RP11/SEG17/CN49/RD0  
3
RP12/C3INC/SEG16/PMA14/CS1/CN56/RD11  
RP3/SEG15/PMA15/C3IND/CS2/CN55/RD10  
RP4/SEG14/PMACK2/CN54/RD9  
RP2/SEG13/RTCC/CN53/RD8  
C1IND/RP21/SEG0/PMA5/CN8/RG6  
4
V
LCAP1/C1INC/RP26/PMA4/CN9/RG7  
LCAP2/C2IND/RP19/PMA3/CN10/RG8  
MCLR  
5
V
6
7
VSS  
C2INC/RP27/SEG1/PMA2/CN11/RG9  
8
PIC24FJXXXGA306  
OSCO/CLKO/CN22/RC15  
OSCI/CLKI/CN23/RC12  
VSS  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
VDD  
PGEC3/AN5/C1INA/RP18/SEG2/CN7/RB5  
PGED3/AN4/C1INB/RP28/SEG3/CN6/RB4  
AN3/C2INA/SEG4/CN5/RB3  
SEG28/CN72/SCL1/RG2  
SEG47/CN73/SDA1/RG3  
INT0/CN84/RF6  
AN2/C2INB/CTCMP/CTED13/RP13/SEG5/CN4/RB2  
PGEC1/CVREF-/AN1/RP1/SEG6/CTED12/CN3/RB1  
PGED1/CVREF+/AN0/RP0/SEG7/PMA6/CN2/RB0  
RP30/CN70/RF2  
RP16/SEG12/CN71/RF3  
Legend:  
Note:  
RPn and RPIn represent remappable pins for Peripheral Pin Select feature. Shaded pins indicate pins that are tolerant up to +5.5V.  
Pinouts are subject to change.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 3  
PIC24FJ128GA310 FAMILY  
Pin Diagrams (continued)  
80-Pin TQFP  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
RPI37/SOSCO/SCKLI/RC14  
SOSCI/RC13  
RP11/SEG17/CN49/RD0  
1
PMD5/CTED4/LCDBIAS2/CN63/RE5  
PMD6/LCDBIAS1/CN64/RE6  
PMD7/LCDBIAS0/CN65/RE7  
RPI38/SEG32/CN45/RC1  
RPI40/SEG33/CN47/RC3  
C1IND/RP21/SEG0/PMA5/CN8/RG6  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RP12/C3INC/SEG16/PMA14/CS1/CN56/RD11  
RP3/SEG15/C3IND/PMA15/CS2/CN55/RD10  
RP4/SEG14/PMACK2/CN54/RD9  
RP2/SEG13/RTCC/CN53/RD8  
RPI35/SEG43/PMBE1/CN44/RA15  
RPI36/SEG42/PMA22/CN43/RA14  
VLCAP1/C1INC/RP26/PMA4/CN9/RG7  
V
LCAP2/C2IND/RP19/PMA3/CN10/RG8  
MCLR  
VSS  
C2INC/RP27/SEG1/PMA2/CN11/RG9  
PIC24FJXXXGA308  
OSCO/CLKO/CN22/RC15  
OSCI/CLKI/CN23/RC12  
VSS  
VDD  
VDD  
TMS/RPI33/SEG34/PMCS1/CN66/RE8  
TDO/RPI34/SEG35/PMA19/CN67/RE9  
PGEC3/AN5/C1INA/RP18/SEG2/CN7/RB5  
PGED3/AN4/C1INB/RP28/SEG3/CN6/RB4  
AN3/C2INA/SEG4/CN5/RB3  
SEG28/SCL1/CN72/RG2  
SEG47/SDA1/CN73/RG3  
INT0/CN84/RF6  
CN83/RF7  
AN2/C2INB/RP13/CTCMP/SEG5/CTED13/CN4/RB2  
PGEC1/CVREF-/AN1/RP1/SEG6/CTED12/CN3/RB1  
PGED1/CVREF+/AN0/RP0/SEG7/CN2/RB0  
RP15/SEG41/CN74/RF8  
RP30/SEG40/CN70/RF2  
RP16/SEG12/CN71/RF3  
Legend:  
Note:  
RPn and RPIn represent remappable pins for Peripheral Pin Select feature. Shaded pins indicate pins that are tolerant up to +5.5V.  
Pinouts are subject to change.  
DS39996F-page 4  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Pin Diagrams (continued)  
100-Pin TQFP  
V
SS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
SEG51/CTED3/CN82/RG15  
RPI37/SOSCO/SCLKI/RC14  
SOSCI/RC13  
RP11/SEG17/CN49/RD0  
RP12/SEG16/C3INC/PMA14/CS1/CN56/RD11  
RP3/SEG15/C3IND/PMA15/CS2/CN55/RD10  
RP4/SEG14/PMACK2/CN54/RD9  
RP2/SEG13/RTCC/CN53/RD8  
RPI35/SEG43/PMBE1/CN44/RA15  
RPI36/SEG42/PMA22/CN43/RA14  
VDD  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
CTED4/PMD5/LCDBIAS2/CN63/RE5  
PMD6/LCDBIAS1/CN64/RE6  
PMD7/LCDBIAS0/CN65/RE7  
RPI38/SEG32/CN45/RC1  
RPI39/SEG52/CN46/RC2  
RPI40/SEG33/CN47/RC3  
AN16/RPI41/SEG53/PMCS2/CN48/RC4  
AN17/C1IND/RP21/SEG0/PMA5/CN8/RG6  
LCAP1/AN18/C1INC/RP26/PMA4/CN9/RG7  
LCAP2/AN19/C2IND/RP19/PMA3/CN10/RG8  
MCLR  
VSS  
V
V
OSCO/CLKO/CN22/RC15  
PIC24FJXXXGA310  
OSCI/CLKI/CN23/RC12  
VDD  
TDO/CN38/RA5  
TDI/PMA21/CN37/RA4  
SDA2/SEG57/PMA20/CN36/RA3  
SCL2/SEG56/CN35/RA2  
SCL1/SEG28/CN72/RG2  
SDA1/SEG47/CN73/RG3  
INT0/CN84/RF6  
AN20/C2INC/RP27/SEG1/PMA2/CN11/RG9  
VSS  
VDD  
TMS/CTED0/SEG49/CN33/RA0  
RPI33/SEG34/PMCS1/CN66/RE8  
AN21/RPI34/SEG35/PMA19/CN67/RE9  
PGEC3/AN5/C1INA/RP18/SEG2/CN7/RB5  
PGED3/AN4/C1INB/RP28/SEG3/CN6/RB4  
AN3/C2INA/SEG4/CN5/RB3  
CN83/RF7  
AN2/C2INB/RP13/SEG5/CTED13/CTCMP/CN4/RB2  
PGEC1/CVREF-/AN1/RP1/SEG6/CTED12/CN3/RB1  
PGED1/CVREF+/AN0/RP0/SEG7/CN2/RB0  
RP15/SEG41/CN74/RF8  
RP30/SEG40/CN70/RF2  
RP16/SEG12/CN71/RF3  
Legend:  
Note:  
RPn and RPIn represent remappable pins for Peripheral Pin Select feature. Shaded pins indicate pins that are tolerant up to +5.5V.  
Pinouts are subject to change.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 5  
PIC24FJ128GA310 FAMILY  
Pin Diagrams (continued)  
121-Pin BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
A
RE4  
RE3  
RG13  
RE0  
RG0  
RF1  
VBAT  
N/C  
RD12  
RD2  
RD1  
B
C
D
E
N/C  
RG15  
VDD  
RE2  
RE1  
RA7  
RA6  
RF0  
N/C  
VCAP/  
RD5  
RD4  
RD3  
N/C  
VSS  
RC14  
RD11  
VDDCORE  
RE6  
RG12  
RG14  
RD7  
RC13  
RC1  
RC4  
RE7  
RC3  
RG8  
RE5  
RG6  
RG9  
N/C  
RC2  
RG7  
N/C  
N/C  
VSS  
N/C  
RG1  
N/C  
RD6  
N/C  
N/C  
RD13  
RA15  
VDD  
RD0  
RD8  
N/C  
RD9  
VSS  
RD10  
RA14  
F
MCLR  
OSCI/  
RC12  
OSCO/  
RC15  
G
RE8  
RE9  
RA0  
N/C  
VDD  
VSS  
VSS  
N/C  
RA5  
RA3  
RA4  
H
J
RB5  
RB3  
RB4  
RB2  
N/C  
N/C  
N/C  
VDD  
RA1  
N/C  
RF7  
N/C  
RF6  
N/C  
RG2  
RF8  
RA2  
RG3  
RB7  
AVDD  
RB11  
RB12  
K
L
RB1  
RB6  
RB0  
RA9  
RA10  
AVSS  
RB8  
RB9  
N/C  
RF12  
RF13  
RB14  
RB13  
VDD  
RD15  
RD14  
RF3  
RF4  
RF2  
RF5  
RB10  
RB15  
Legend:  
Note:  
Shaded pins indicate pins that are tolerant up to +5.5V.  
See Table 1 for complete pinout descriptions. Pinouts are subject to change.  
DS39996F-page 6  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1:  
COMPLETE PIN FUNCTION DESCRIPTIONS FOR 121-PIN DEVICES  
Pin  
Function  
Pin  
Function  
A1  
A2  
SEG63/PMD4/LVDIN/CTED8/CN62/RE4  
COM0/PMD3/CTED9/CN61/RE3  
SEG62/CTED10/CN80/RG13  
COM3/PMD0/CN58/RE0  
SEG50/PMD8/CN77/RG0  
SEG48/COM4/PMD10/CN69/RF1  
VBAT  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
AN16/RPI41/SEG53/PMCS2/CN48/RC4  
RPI40/SEG33/CN47/RC3  
AN17/C1IND/RP21/SEG0/PMA5/CN8/RG6  
RPI39/SEG52/CN46/RC2  
N/C  
A3  
A4  
A5  
A6  
SEG46/PMD9/CN78/RG1  
N/C  
A7  
A8  
N/C  
RPI35/SEG43/PMBE1/CN44/RA15  
RP2/SEG13/RTCC/CN53/RD8  
RP4/SEG14/PMACK2/CN54/RD9  
RPI36/SEG42/PMA22/CN43/RA14  
A9  
RPI42/SEG44/PMD12/CN57/RD12  
RP23/SEG21/PMACK1/CN51/RD2  
RP24/SEG20/CN50/RD1  
A10  
A11  
B1  
B2  
N/C  
F1  
F2  
MCLR  
SEG51/CTED3/CN82/RG15  
COM1/PMD2/CN60/RE2  
COM2/PMD1/CN59/RE1  
AN22/SEG59/PMA17/CN40/RA7  
SEG27/PMD11/CN68/RF0  
VCAP  
VLCAP2/AN19/C2IND/RP19/PMA3/CN10/RG8  
B3  
F3  
AN20/C2INC/RP27/SEG1/PMA2/CN11/RG9  
B4  
F4  
VLCAP1/AN18/C1INC/RP26/PMA4/CN9/RG7  
B5  
F5  
VSS  
B6  
F6  
N/C  
B7  
F7  
N/C  
B8  
RP20/SEG24/PMRD/CN14/RD5  
RP22/SEG22/PMBE0/CN52/RD3  
VSS  
F8  
VDD  
B9  
F9  
OSCI/CLKI/CN23/RC12  
B10  
B11  
C1  
F10  
F11  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
VSS  
RPI37/SOSCO/SCLKI/RC14  
PMD6/LCDBIAS1/CN64/RE6  
VDD  
OSCO/CLKO/CN22/RC15  
RPI33/SEG34/PMCS1/CN66/RE8  
C2  
AN21/RPI34/SEG35/PMPA19/CN67/RE9  
C3  
SEG61/CN79/RG12  
TMS/SEG49/CTED0/CN33/RA0  
C4  
SEG60/PMA16/CTED11/CN81/RG14  
AN23/SEG58/CN39/RA6  
N/C  
N/C  
C5  
VDD  
C6  
VSS  
C7  
C3INA/SEG26/PMD15/CN16/RD7  
RP25/SEG23/PMWR/CN13/RD4  
N/C  
VSS  
C8  
N/C  
C9  
TDO/CN38/RA5  
C10  
C11  
D1  
SOSCI/RC13  
SDA2/SEG57/PMA20/CN36/RA3  
RP12/SEG16/C3INC/PMA14/CS1/CN56/RD11  
RPI38/SEG32/CN45/RC1  
PMD7/LCDBIAS0/CN65/RE7  
PMD5/CTED4/LCDBIAS2/CN63/RE5  
N/C  
TDI/PMA21/CN37/RA4  
PGEC3/AN5/C1INA/RP18/SEG2/CN7/RB5  
D2  
PGED3/AN4/C1INB/RP28/SEG3/CN6/RB4  
D3  
N/C  
D4  
N/C  
D5  
N/C  
N/C  
D6  
N/C  
VDD  
D7  
C3INB/SEG25/PMD14/CN15/RD6  
SEG45/PMD13/CN19/RD13  
RP11/SEG17/CN49/RD0  
N/C  
N/C  
D8  
CN83/RF7  
D9  
INT0/CN84/RF6  
SCL1/SEG28/CN72/RG2  
SCL2/SEG56/CN35/RA2  
D10  
D11  
Legend:  
Note:  
RP3/SEG15/C3IND/PMA15/CS2/CN55/RD10  
RPn and RPIn represent remappable pins for Peripheral Pin Select functions.  
Pinouts are subject to change.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 7  
PIC24FJ128GA310 FAMILY  
TABLE 1:  
COMPLETE PIN FUNCTION DESCRIPTIONS FOR 121-PIN DEVICES (CONTINUED)  
Pin  
Function  
Pin  
Function  
J1  
J2  
AN3/C2INA/SEG4/CN5/RB3  
K7  
K8  
K9  
K10  
K11  
L1  
AN14/RP14/SEG8/CTPLS/CTED5/PMA1/CN32/RB14  
VDD  
AN2/C2INB/RP13/SEG5/CTCMP/CTED13/CN4/RB2  
PGED2/AN7/RP7/CN25/RB7  
AVDD  
J3  
RP5/SEG39/CN21/RD15  
J4  
RP16/SEG12/CN71/RF3  
J5  
AN11/PMA12/CN29/RB11  
TCK/CN34/RA1  
RP30/SEG40/CN70/RF2  
J6  
PGEC2/AN6/RP6/LCDBIAS3/CN24/RB6  
VREF-/SEG36/PMA7/CN41/RA9  
AVSS  
J7  
AN12/SEG18/CTED2/PMA11/CN30/RB12  
N/C  
L2  
J8  
L3  
J9  
N/C  
L4  
AN9/RP9/COM6/SEG30/T1CK/CN27/RB9  
CVREF/AN10/COM5/SEG29/PMA13/CN28/RB10  
RP31/SEG54/CN76/RF13  
J10  
J11  
K1  
RP15/SEG41/CN74/RF8  
L5  
SDA1/SEG47/CN73/RG3  
PGEC1/CVREF-/AN1/RP1/SEG6/CTED12/CN3/RB1  
PGD1/CVREF+/AN0/RP0/SEG7/CN2/RB0  
VREF+/SEG37/PMA6/CN42/RA10  
AN8/RP8/COM7/SEG31/CN26/RB8  
N/C  
L6  
L7  
AN13/SEG19/CTED1/PMA10/CN31/RB13  
AN15/RP29/SEG9/CTED6/REFO/PMA0/CN12/RB15  
RPI43/SEG38/CN20/RD14  
K2  
L8  
K3  
L9  
K4  
L10  
L11  
RP10/SEG10/PMA9/CN17/RF4  
RP17/SEG11/PMA8/CN18/RF5  
K5  
K6  
RPI32/SEG55/CTED7/PMA18/CN75/RF12  
Legend:  
Note:  
RPn and RPIn represent remappable pins for Peripheral Pin Select functions.  
Pinouts are subject to change.  
DS39996F-page 8  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 11  
2.0 Guidelines for Getting Started with 16-bit Microcontrollers ........................................................................................................ 29  
3.0 CPU ........................................................................................................................................................................................... 35  
4.0 Memory Organization................................................................................................................................................................. 41  
5.0 Direct Memory Access Controller (DMA) ................................................................................................................................... 75  
6.0 Flash Program Memory.............................................................................................................................................................. 83  
7.0 Resets ........................................................................................................................................................................................ 89  
8.0 Interrupt Controller ..................................................................................................................................................................... 95  
9.0 Oscillator Configuration............................................................................................................................................................ 145  
10.0 Power-Saving Features............................................................................................................................................................ 155  
11.0 I/O Ports ................................................................................................................................................................................... 167  
12.0 Timer1 ...................................................................................................................................................................................... 197  
13.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 199  
14.0 Input Capture with Dedicated Timers....................................................................................................................................... 205  
15.0 Output Compare with Dedicated Timers .................................................................................................................................. 211  
16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 221  
2
17.0 Inter-Integrated Circuit™ (I C™).............................................................................................................................................. 233  
18.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 241  
19.0 Data Signal Modulator.............................................................................................................................................................. 249  
20.0 Enhanced Parallel Master Port (EPMP)................................................................................................................................... 253  
21.0 Liquid Crystal Display (LCD) Controller.................................................................................................................................... 265  
22.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 275  
23.0 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator........................................................................................ 289  
24.0 12-Bit A/D Converter with Threshold Scan............................................................................................................................... 295  
25.0 Triple Comparator Module........................................................................................................................................................ 315  
26.0 Comparator Voltage Reference................................................................................................................................................ 321  
27.0 Charge Time Measurement Unit (CTMU) ................................................................................................................................ 323  
28.0 High/Low-Voltage Detect (HLVD)............................................................................................................................................. 331  
29.0 Section Special Features ........................................................................................................................................................ 333  
30.0 Development Support............................................................................................................................................................... 347  
31.0 Instruction Set Summary.......................................................................................................................................................... 351  
32.0 Electrical Characteristics.......................................................................................................................................................... 359  
33.0 Packaging Information.............................................................................................................................................................. 377  
Appendix A: Revision History............................................................................................................................................................. 393  
Index .................................................................................................................................................................................................. 395  
The Microchip Web Site..................................................................................................................................................................... 401  
Customer Change Notification Service .............................................................................................................................................. 401  
Customer Support.............................................................................................................................................................................. 401  
Reader Response.............................................................................................................................................................................. 402  
Product Identification System ............................................................................................................................................................ 403  
2010-2011 Microchip Technology Inc.  
DS39996F-page 9  
PIC24FJ128GA310 FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39996F-page 10  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Many of these new low-power modes also support the  
continuous operation of the low-power, on-chip  
Real-Time Clock/Calendar (RTCC), making it possible  
for an application to keep time while the device is  
otherwise asleep.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the following devices:  
• PIC24FJ64GA306  
• PIC24FJ64GA308  
• PIC24FJ64GA310  
• PIC24FJ128GA306  
• PIC24FJ128GA308  
• PIC24FJ128GA310  
Aside from these new features, PIC24FJ128GA310 fam-  
ily devices also include all of the legacy power-saving  
features of previous PIC24F microcontrollers, such as:  
The PIC24FJ128GA310 family adds many new fea-  
tures to Microchip‘s 16-bit microcontrollers, including  
new ultra low-power features, Direct Memory Access  
(DMA) for peripherals, and a built-in LCD Controller  
and Driver. Together, these provide a wide range of  
powerful features in one economical and power-saving  
package.  
• On-the-Fly Clock Switching, allowing the selection  
of a lower-power clock during run time  
• Doze Mode Operation, for maintaining peripheral  
clock speed while slowing the CPU clock  
• Instruction-Based Power-Saving Modes, for quick  
invocation of Idle and the many Sleep modes.  
1.1.3  
OSCILLATOR OPTIONS AND  
FEATURES  
1.1  
Core Features  
All of the devices in the PIC24FJ128GA310 family offer  
five different oscillator options, allowing users a range  
of choices in developing application hardware. These  
include:  
1.1.1  
16-BIT ARCHITECTURE  
Central to all PIC24F devices is the 16-bit modified  
Harvard architecture, first introduced with Microchip’s  
dsPIC® Digital Signal Controllers (DSCs). The PIC24F  
CPU core offers a wide range of enhancements, such  
as:  
• Two Crystal modes  
• Two External Clock modes  
• A Phase Lock Loop (PLL) frequency multiplier,  
which allows clock speeds of up to 32 MHz  
• 16-bit data and 24-bit address paths with the  
ability to move information between data and  
memory spaces  
• A Fast Internal Oscillator (FRC) (nominal 8 MHz  
output) with multiple frequency divider options  
• Linear addressing of up to 12 Mbytes (program  
space) and 32 Kbytes (data)  
• A separate Low-Power Internal RC Oscillator  
(LPRC) (31 kHz nominal) for low-power,  
timing-insensitive applications.  
• A 16-element working register array with built-in  
software stack support  
• A 17 x 17 hardware multiplier with support for  
integer math  
The internal oscillator block also provides a stable  
reference source for the Fail-Safe Clock Monitor  
(FSCM). This option constantly monitors the main clock  
source against a reference signal provided by the inter-  
nal oscillator and enables the controller to switch to the  
internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
• Hardware support for 32 by 16-bit division  
• An instruction set that supports multiple  
addressing modes and is optimized for high-level  
languages, such as ‘C’  
• Operational performance up to 16 MIPS  
1.1.4  
EASY MIGRATION  
1.1.2  
nanoWatt XLP POWER-SAVING  
TECHNOLOGY  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve. The  
consistent pinout scheme used throughout the entire  
family also aids in migrating from one device to the next  
larger, or even in jumping from 64-pin to 100-pin  
devices.  
The PIC24FJ128GA310 family of devices introduces a  
greatly-expanded range of power-saving operating  
modes for the ultimate in power conservation. The new  
modes include:  
• Retention Sleep, with essential circuits being  
powered from a separate low-voltage regulator  
The PIC24F family is pin compatible with devices in the  
dsPIC33 family, and shares some compatibility with the  
pinout schema for PIC18 and dsPIC30. This extends  
the ability of applications to grow from the relatively  
simple, to the powerful and complex, yet still selecting  
a Microchip device.  
• Deep Sleep without RTCC, for the lowest possible  
power consumption under software control  
• VBAT mode (with or without RTCC), to continue  
operation limited operation from a back-up battery  
when VDD is removed  
2010-2011 Microchip Technology Inc.  
DS39996F-page 11  
PIC24FJ128GA310 FAMILY  
Enhanced Parallel Master/Parallel Slave Port:  
This module allows rapid and transparent access  
to the microcontroller data bus, and enables the  
CPU to directly address external data memory. The  
parallel port can function in Master or Slave mode,  
accommodating data widths of 4, 8 or 16 bits, and  
address widths up to 23 bits in Master modes.  
1.2  
DMA Controller  
PIC24FJ128GA310 family devices also introduce a  
new Direct Memory Access Controller (DMA) to the  
PIC24F architecture. This module acts in concert with  
the CPU, allowing data to move between data memory  
and peripherals without the intervention of the CPU,  
increasing data throughput and decreasing execution  
time overhead. Six independently programmable chan-  
nels make it possible to service multiple peripherals at  
virtually the same time, with each channel peripheral  
performing a different operation. Many types of data  
transfer operations are supported.  
Real-Time Clock and Calendar (RTCC): This  
module implements a full-featured clock and  
calendar with alarm functions in hardware, freeing  
up timer resources and program memory space  
for use of the core application.  
Data Signal Modulator (DSM): The Data Signal  
Modulator (DSM) allows the user to mix a digital  
data stream (the “modulator signal”) with a carrier  
signal to produce a modulated output.  
1.3  
LCD Controller  
With the PIC24FJ128GA310 family of devices,  
Microchip introduces its versatile Liquid Crystal Display  
(LCD) controller and driver to the PIC24F family. The  
on-chip LCD driver includes many features that make  
the integration of displays in low-power applications  
easier. These include an integrated voltage regulator  
with charge pump and an integrated internal resistor  
ladder that allows contrast control in software and  
display operation above device VDD.  
1.5  
Details on Individual Family  
Members  
Devices in the PIC24FJ128GA310 family are available  
in 64-pin, 80-pin and 100-pin packages. The general  
block diagram for all devices is shown in Figure 1-1.  
The devices are differentiated from each other in  
six ways:  
1.4  
Other Special Features  
1. Flash program memory (64 Kbytes for  
PIC24FJ64GA3XX devices and 128 Kbytes for  
PIC24FJ128GA3XX devices).  
Peripheral Pin Select: The Peripheral Pin Select  
(PPS) feature allows most digital peripherals to be  
mapped over a fixed set of digital I/O pins. Users  
may independently map the input and/or output of  
any one of the many digital peripherals to any one  
of the I/O pins.  
2. Available I/O pins and ports (53 pins on 6 ports  
for 64-pin devices, 69 pins on 7 ports for 80-pin  
devices and 85 pins on 7 ports for 100-pin  
devices).  
3. Available Interrupt-on-Change Notification (ICN)  
inputs (52 on 64-pin devices, 66 on 80-pin  
devices and 82 on 100-pin devices).  
Communications: The PIC24FJ128GA310 family  
incorporates a range of serial communication  
peripherals to handle a range of application  
requirements. There are two independent I2C™  
modules that support both Master and Slave  
modes of operation. Devices also have, through  
the PPS feature, four independent UARTs with  
built-in IrDA® encoders/decoders and two SPI  
modules.  
4. Available remappable pins (29 pins on 64-pin  
devices, 40 on 80-pin devices and 44 pins on  
100-pin devices).  
5. Maximum available drivable LCD pixels (272 on  
64-pin devices, 368 on 80-pin devices and  
480 on 100-pin devices.)  
Analog Features: All members of the  
PIC24FJ128GA310 family include the new 12-bit  
A/D Converter (A/D) module and a triple compara-  
tor module. The A/D module incorporates a range  
of new features that allow the converter to assess  
and make decisions on incoming data, reducing  
CPU overhead for routine A/D conversions. The  
comparator module includes three analog com-  
parators that are configurable for a wide range of  
operations.  
6. Analog input channels (16 channels for 64-pin  
and 80-pin devices, and 24 channels for 100-pin  
devices).  
All other features for devices in this family are identical.  
These are summarized in Table 1-1, Table 1-2 and  
Table 1-3.  
A
list of the pin features available on the  
PIC24FJ128GA310 family devices, sorted by function,  
is shown in Table 1-4. Note that this table shows the pin  
location of individual peripheral features and not how  
they are multiplexed on the same pin. This information  
is provided in the pinout diagrams in the beginning of  
the data sheet. Multiplexed features are sorted by the  
priority given to a feature, with the highest priority  
peripheral being listed first.  
CTMU Interface: In addition to their other analog  
features, members of the PIC24FJ128GA310  
family include the CTMU interface module. This  
provides a convenient method for precision time  
measurement and pulse generation, and can  
serve as an interface for capacitive sensors.  
PIC24FJDS39996F-page 12  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC24FJ128GA310 FAMILY: 64-PIN  
Features  
PIC24FJ64GA306  
PIC24FJ128GA306  
Operating Frequency  
DC – 32 MHz  
Program Memory (bytes)  
Program Memory (instructions)  
Data Memory (bytes)  
64K  
128K  
22,016  
44,032  
8K  
Interrupt Sources (soft vectors/  
NMI traps)  
65 (61/4)  
I/O Ports  
Ports B, C, D, E, F, G  
53  
Total I/O Pins  
Remappable Pins  
30 (29 I/O, 1 Input only)  
Timers:  
Total Number (16-bit)  
32-Bit (from paired 16-bit timers)  
Input Capture Channels  
Output Compare/PWM Channels  
Input Change Notification Interrupt  
Serial Communications:  
UART  
5(1)  
2
7(1)  
7(1)  
52  
4(1)  
2(1)  
2
SPI (3-wire/4-wire)  
I2C™  
Digital Signal Modulator  
ParallelCommunications (EPMP/PSP)  
JTAG Boundary Scan  
Yes  
Yes  
Yes  
16  
12/10-Bit Analog-to-Digital Converter  
(A/D) Module (input channels)  
Analog Comparators  
CTMU Interface  
3
Yes  
LCD Controller (available pixels)  
Resets (and Delays)  
240 (30 SEG x 8 COM)  
Core POR, VDD POR, VBAT POR,BOR, RESETInstruction,  
MCLR, WDT; Illegal Opcode, REPEATInstruction,  
Hardware Traps, Configuration Word Mismatch  
(OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
64-Pin TQFP and QFN  
Note 1: Peripherals are accessible through remappable pins.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 13  
PIC24FJ128GA310 FAMILY  
TABLE 1-2:  
DEVICE FEATURES FOR THE PIC24FJ128GA310 FAMILY: 80-PIN  
Features  
PIC24FJ64GA308  
PIC24FJ128GA308  
Operating Frequency  
DC – 32 MHz  
Program Memory (bytes)  
Program Memory (instructions)  
Data Memory (bytes)  
64K  
128K  
22,016  
44,032  
8K  
Interrupt Sources (soft vectors/  
NMI traps)  
65 (61/4)  
I/O Ports  
Ports A, B, C, D, E, F, G  
69  
Total I/O Pins  
Remappable Pins  
40 (31 I/O, 9 Input only)  
Timers:  
Total Number (16-bit)  
32-Bit (from paired 16-bit timers)  
Input Capture Channels  
Output Compare/PWM Channels  
Input Change Notification Interrupt  
Serial Communications:  
UART  
5(1)  
2
7(1)  
7(1)  
66  
4(1)  
2(1)  
2
SPI (3-wire/4-wire)  
I2C™  
Digital Signal Modulator  
ParallelCommunications (EPMP/PSP)  
JTAG Boundary Scan  
Yes  
Yes  
Yes  
16  
12/10-Bit Analog-to-Digital Converter  
(A/D) Module (input channels)  
Analog Comparators  
CTMU Interface  
3
Yes  
LCD Controller (available pixels)  
Resets (and Delays)  
368 (46 SEG x 8 COM)  
Core POR, VDD POR, VBAT POR,BOR, RESETInstruction,  
MCLR, WDT; Illegal Opcode, REPEATInstruction,  
Hardware Traps, Configuration Word Mismatch  
(OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
80-Pin TQFP and QFN  
Note 1: Peripherals are accessible through remappable pins.  
PIC24FJDS39996F-page 14  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1-3:  
DEVICE FEATURES FOR THE PIC24FJ128GA310 FAMILY: 100-PIN DEVICES  
Features  
PIC24FJ64GA310  
PIC24FJ128GA310  
Operating Frequency  
DC – 32 MHz  
Program Memory (bytes)  
Program Memory (instructions)  
Data Memory (bytes)  
64K  
128K  
22,016  
44,032  
8K  
Interrupt Sources (soft vectors/NMI  
traps)  
66 (62/4)  
I/O Ports  
Ports A, B, C, D, E, F, G  
85  
Total I/O Pins  
Remappable Pins  
Timers:  
44 (32 I/O, 12 input only)  
Total Number (16-bit)  
32-Bit (from paired 16-bit timers)  
Input Capture Channels  
Output Compare/PWM Channels  
Input Change Notification Interrupt  
Serial Communications:  
UART  
5(1)  
2
7(1)  
7(1)  
82  
4(1)  
2(1)  
2
SPI (3-wire/4-wire)  
I2C™  
Digital Signal Modulator  
Yes  
Yes  
Parallel Communications  
(EPMP/PSP)  
JTAG Boundary Scan  
Yes  
24  
12/10-Bit Analog-to-Digital Converter  
(A/D) Module (input channels)  
Analog Comparators  
CTMU Interface  
3
Yes  
LCD Controller (available pixels)  
Resets (and delays)  
480 (60 SEG x 8 COM)  
Core POR, VDD POR, VBAT POR,BOR, RESETInstruction,  
MCLR, WDT; Illegal Opcode, REPEATInstruction,  
Hardware Traps, Configuration Word Mismatch  
(OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
100-Pin TQFP and 121-Pin BGA  
Note 1: Peripherals are accessible through remappable pins.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 15  
PIC24FJ128GA310 FAMILY  
FIGURE 1-1:  
PIC24FJ128GA310 FAMILY GENERAL BLOCK DIAGRAM  
Data Bus  
Interrupt  
Controller  
PORTA(1)  
(12 I/O)  
16  
16  
16  
8
EDS and  
Table Data  
Access Control  
Data Latch  
Data RAM  
DMA  
Controller  
PCH  
PCL  
23  
Program Counter  
Address  
Latch  
PORTB  
(16 I/O)  
Repeat  
Control  
Logic  
Stack  
Control  
Logic  
16  
23  
16  
16  
Read AGU  
Write AGU  
Address Latch  
PORTC(1)  
(8 I/O)  
Program Memory/  
Extended Data  
Space  
Data Latch  
Address Bus  
24  
16  
EA MUX  
16  
16  
Inst Latch  
PORTD(1)  
(16 I/O)  
Literal  
Data  
Inst Register  
DMA  
Data Bus  
Instruction  
Control Signals  
Decode and  
Control  
PORTE(1)  
(10 I/O)  
Divide  
Support  
16 x 16  
OSCO/CLKO  
OSCI/CLKI  
W Reg Array  
17x17  
Multiplier  
Power-up  
Timer  
Timing  
Generation  
Oscillator  
Start-up Timer  
REFO  
FRC/LPRC  
Oscillators  
PORTF(1)  
(10 I/O)  
16-Bit ALU  
16  
Power-on  
Reset  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
LVD & BOR(2)  
Voltage  
Regulators  
PORTG(1)  
(12 I/O)  
VCAP VBAT  
Timer2/3(3)  
VDD, VSS  
MCLR  
Digital  
12-Bit  
Timer1  
Comparators(3)  
Timer4/5(3)  
RTCC  
Modulator  
A/D  
EPMP/PSP  
I2C™  
1/2  
OC/PWM  
1-7(3)  
SPI  
1/2(3)  
IC  
1-7(3)  
UART  
1/2/3/4(3)  
LCD  
Driver  
ICNs(1)  
CTMU  
Note 1: Not all I/O pins or features are implemented on all device pinout configurations. See Table 1-4 for specific implementations by pin count  
2: BOR functionality is provided when the on-board voltage regulator is enabled.  
.
3: These peripheral I/Os are only accessible through remappable pins.  
PIC24FJDS39996F-page 16  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
AN0  
16  
15  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
19  
20  
11  
12  
5
20  
19  
19  
18  
17  
16  
15  
21  
22  
27  
28  
29  
30  
33  
34  
35  
36  
25  
26  
15  
16  
7
25  
24  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
9
K2  
K1  
K1  
J2  
I
I
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
A/D Analog Inputs.  
A/D Analog Inputs.  
AN1  
AN1-  
AN2  
I
I
AN3  
J1  
I
AN4  
H2  
H1  
L1  
J3  
I
AN5  
I
AN6  
I
AN7  
I
AN8  
K4  
L4  
L5  
J5  
I
AN9  
I
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AVDD  
AVSS  
C1INA  
C1INB  
C1INC  
C1IND  
C2INA  
C2INB  
C2INC  
C2IND  
C3INA  
C3INB  
C3INC  
C3IND  
CLKI  
I
I
J7  
I
L7  
K7  
L8  
E1  
E3  
F4  
F2  
F3  
G2  
B5  
C5  
J4  
I
I
I
I
10  
11  
12  
14  
19  
92  
91  
30  
31  
20  
21  
11  
10  
22  
23  
14  
12  
84  
83  
71  
70  
63  
64  
I
I
I
I
I
I
I
P
P
I
Positive Supply for Analog modules.  
Ground Reference for Analog modules.  
Comparator 1 Input A.  
L3  
H1  
H2  
F4  
E3  
J1  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
I
Comparator 1 Input B.  
I
Comparator 1 Input C.  
4
6
I
Comparator 1 Input D.  
13  
14  
8
17  
18  
10  
8
I
Comparator 2 Input A.  
J2  
I
Comparator 2 Input B.  
F3  
F2  
C7  
D7  
C11  
D11  
F9  
F11  
I
Comparator 2 Input C.  
6
I
Comparator 2 Input D.  
55  
54  
45  
44  
39  
40  
69  
68  
57  
56  
49  
50  
I
Comparator 3 Input A.  
I
Comparator 3 Input B.  
I
Comparator 3 Input C.  
I
Comparator 3 Input D.  
I
Main Clock Input Connection.  
System Clock Output.  
CLKO  
O
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
2010-2011 Microchip Technology Inc.  
DS39996F-page 17  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
CN2  
16  
15  
14  
13  
12  
11  
4
20  
19  
18  
17  
16  
15  
6
25  
24  
23  
22  
21  
20  
10  
11  
12  
14  
44  
81  
82  
83  
84  
49  
50  
80  
47  
48  
64  
63  
26  
27  
32  
33  
34  
35  
41  
42  
43  
17  
38  
58  
59  
60  
61  
91  
92  
28  
29  
66  
K2  
K1  
J2  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Interrupt-on-Change Inputs.  
CN3  
CN4  
CN5  
J1  
CN6  
H2  
H1  
E3  
F4  
F2  
F3  
L8  
CN7  
CN8  
CN9  
5
7
CN10  
CN11  
CN12  
CN13  
CN14  
CN15  
CN16  
CN17  
CN18  
CN19  
CN20  
CN21  
CN22  
CN23  
CN24  
CN25  
CN26  
CN27  
CN28  
CN29  
CN30  
CN31  
CN32  
CN33  
CN34  
CN35  
CN36  
CN37  
CN38  
CN39  
CN40  
CN41  
CN42  
CN43  
6
8
8
10  
36  
66  
67  
68  
69  
39  
40  
65  
37  
38  
50  
49  
21  
22  
27  
28  
29  
30  
33  
34  
35  
23  
24  
52  
30  
52  
53  
54  
55  
31  
32  
40  
39  
17  
18  
21  
22  
23  
24  
27  
28  
29  
C8  
B8  
D7  
C7  
L10  
L11  
D8  
L9  
K9  
F11  
F9  
L1  
J3  
K4  
L4  
L5  
J5  
J7  
L7  
K7  
G3  
J6  
H11  
G10  
G11  
G9  
C5  
B5  
L2  
K3  
E11  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
PIC24FJDS39996F-page 18  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin 80-Pin 100-Pin 121-Pin  
TQFP  
TQFP  
TQFP  
BGA  
CN44  
CN45  
CN46  
CN47  
CN48  
CN49  
CN50  
CN51  
CN52  
CN53  
CN54  
CN55  
CN56  
CN57  
CN58  
CN59  
CN60  
CN61  
CN62  
CN63  
CN64  
CN65  
CN66  
CN67  
CN68  
CN69  
CN70  
CN71  
CN72  
CN73  
CN74  
CN75  
CN76  
CN77  
CN78  
CN79  
CN80  
CN81  
CN82  
CN83  
CN84  
46  
49  
50  
51  
42  
43  
44  
45  
60  
61  
62  
63  
64  
1
53  
4
67  
6
E8  
D1  
E4  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Interrupt-on-Change Inputs.  
5
7
8
E2  
58  
61  
62  
63  
54  
55  
56  
57  
64  
76  
77  
78  
79  
80  
1
9
E1  
72  
76  
77  
78  
68  
69  
70  
71  
79  
93  
94  
98  
99  
100  
3
D9  
A11  
A10  
B9  
E9  
E10  
D11  
C11  
A9  
A4  
B4  
119  
A2  
A1  
D3  
C1  
D2  
G1  
G2  
B6  
2
2
4
3
3
5
58  
59  
34  
33  
37  
36  
35  
13  
14  
72  
73  
42  
41  
47  
46  
43  
75  
74  
44  
45  
18  
19  
87  
88  
52  
51  
57  
56  
53  
40  
39  
90  
89  
96  
97  
95  
1
A6  
K11  
K10  
H10  
J11  
J10  
K6  
L6  
A5  
E6  
C3  
A3  
C4  
B2  
54  
55  
H8  
H9  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
2010-2011 Microchip Technology Inc.  
DS39996F-page 19  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
CS1  
63  
62  
61  
60  
59  
23  
22  
21  
45  
79  
78  
77  
76  
73  
29  
28  
27  
57  
99  
98  
94  
93  
88  
34  
33  
32  
71  
A2  
B3  
B4  
A4  
A6  
L5  
O
O
LCD Driver Common Outputs.  
O
O
O
O
L4  
O
K4  
C11  
O
I/O  
ST/TTL Parallel Master Port Chip Select 1 Strobe (shared  
with PMA14)  
CS2  
44  
56  
70  
D11  
O
Parallel Master Port Chip Select 2 Strobe (shared  
with PMA15)  
CTCMP  
CTED0  
CTED1  
CTED2  
CTED3  
CTED4  
CTED5  
CTED6  
CTED7  
CTED8  
CTED9  
CTED10  
CTED11  
CTED12  
CTED13  
CTPLS  
CVREF  
14  
28  
27  
1
18  
34  
33  
1
23  
17  
42  
41  
1
J2  
G3  
L7  
J7  
I
I
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
CTMU Comparator 2 Input (Pulse mode).  
CTMU External Edge Inputs.  
I
I
B2  
D3  
K7  
L8  
47  
A1  
A2  
A3  
C4  
K1  
J2  
I
3
I
29  
30  
64  
63  
15  
14  
29  
23  
16  
15  
35  
3
35  
36  
80  
79  
19  
18  
35  
29  
20  
19  
45  
3
43  
44  
40  
100  
99  
97  
95  
24  
23  
43  
34  
25  
24  
55  
5
I
I
I
I
I
I
I
I
I
K7  
L5  
K2  
K1  
H9  
D2  
C1  
D3  
L1  
A1  
F1  
O
O
I
CTMU Pulse Output.  
Comparator Voltage Reference Output.  
Comparator/A/D Reference Voltage (low) Input.  
Comparator/A/D Reference Voltage (high) Input.  
External Interrupt Input 0.  
CVREF+  
CVREF-  
INT0  
ANA  
ANA  
ST  
I
I
LCDBIAS0  
LCDBIAS1  
LCDBIAS2  
LCDBIAS3  
LVDIN  
I
ANA  
ANA  
ANA  
ANA  
ANA  
ST  
Bias Inputs for LCD Driver Charge Pump.  
2
2
4
I
1
1
3
I
17  
64  
7
21  
80  
9
26  
100  
13  
I
I
Low-Voltage Detect Input.  
MCLR  
I
Master Clear (device Reset) Input. This line is  
brought low to cause a Reset.  
OSCI  
39  
40  
49  
50  
63  
64  
F9  
I
ANA  
Main Oscillator Input Connection.  
Main Oscillator Output Connection.  
OSCO  
F11  
O
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
PIC24FJDS39996F-page 20  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
PGEC1  
PGED1  
PGEC2  
PGED2  
PGEC3  
PGED3  
PMA0  
15  
19  
20  
21  
22  
15  
16  
36  
35  
24  
K1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
In-Circuit Debugger/Emulator/ICSP™ Programming  
Clock.  
16  
17  
18  
11  
12  
30  
29  
25  
26  
27  
20  
21  
44  
43  
K2  
L1  
J3  
In-Circuit Debugger/Emulator/ICSP Programming  
Data.  
In-Circuit Debugger/Emulator/ICSP Programming  
Clock.  
In-Circuit Debugger/Emulator/ICSP Programming  
Data.  
H1  
H2  
L8  
K7  
In-Circuit Debugger/Emulator/ICSP Programming  
Clock.  
In-Circuit Debugger/Emulator/ICSP Programming  
Data.  
Parallel Master Port Address Bit 0 Input (Buffered  
Slave modes) and Output (Master modes).  
PMA1  
Parallel Master Port Address Bit 1 Input (Buffered  
Slave modes) and Output (Master modes).  
PMA2  
8
10  
8
14  
12  
11  
10  
29  
28  
50  
49  
42  
41  
35  
34  
71  
70  
95  
92  
40  
19  
59  
60  
66  
77  
69  
78  
67  
18  
9
F3  
F2  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Parallel Master Port Address (bits<22:2>).  
PMA3  
6
PMA4  
5
7
F4  
PMA5  
4
6
E3  
PMA6  
16  
22  
32  
31  
28  
27  
24  
23  
45  
44  
50  
43  
51  
24  
23  
40  
39  
34  
33  
30  
29  
57  
56  
14  
52  
62  
55  
63  
53  
13  
K3  
PMA7  
L2  
PMA8  
L11  
L10  
L7  
PMA9  
PMA10  
PMA11  
PMA12  
PMA13  
PMA14  
PMA15  
PMA16  
PMA17  
PMA18  
PMA19  
PMA20  
PMA21  
PMA22  
PMACK1  
PMACK2  
PMBE0  
PMBE1  
PMCS1  
PMCS2  
J7  
J5  
L5  
C11  
D11  
C4  
B5  
K6  
G2  
G10  
G11  
E11  
A10  
E10  
B9  
ST/TTL Parallel Master Port Acknowledge Input 1.  
ST/TTL Parallel Master Port Acknowledge Input 2.  
I
O
O
I/O  
O
Parallel Master Port Byte Enable 0 Strobe.  
Parallel Master Port Byte Enable 1 Strobe.  
E8  
G1  
E1  
ST/TTL Parallel Master Port Chip Select 1 Strobe.  
Parallel Master Port Chip Select 2 Strobe.  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
2010-2011 Microchip Technology Inc.  
DS39996F-page 21  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
PMD0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
PMD7  
PMD8  
PMD9  
PMD10  
PMD11  
PMD12  
PMD13  
PMD14  
PMD15  
PMRD  
PMWR  
RA0  
60  
61  
62  
63  
64  
1
76  
77  
78  
79  
80  
1
93  
94  
98  
99  
100  
3
A4  
B4  
B3  
A2  
A1  
D3  
C1  
D2  
A5  
E6  
A6  
B6  
A9  
D8  
D7  
C7  
B8  
C8  
G3  
J6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
ST/TTL Parallel Master Port Data (Demultiplexed Master  
mode) or Address/Data (Multiplexed Master modes).  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
2
2
4
3
3
5
53  
52  
75  
74  
73  
72  
64  
65  
68  
69  
67  
66  
23  
24  
52  
53  
90  
89  
88  
87  
79  
80  
83  
84  
82  
81  
17  
38  
58  
59  
60  
61  
91  
92  
28  
29  
66  
67  
Parallel Master Port Read Strobe.  
Parallel Master Port Write Strobe.  
PORTA Digital I/O.  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RA1  
RA2  
H11  
G10  
G11  
G9  
C5  
B5  
L2  
RA3  
RA4  
RA5  
RA6  
RA7  
RA9  
RA10  
RA14  
RA15  
K3  
E11  
E8  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
PIC24FJDS39996F-page 22  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
RB0  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
39  
47  
48  
40  
46  
49  
50  
51  
52  
53  
54  
55  
42  
43  
44  
45  
20  
19  
18  
17  
16  
15  
21  
22  
27  
28  
29  
30  
33  
34  
35  
36  
4
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
6
K2  
K1  
J2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTB Digital I/O.  
RB1  
RB2  
RB3  
J1  
RB4  
H2  
H1  
L1  
RB5  
RB6  
RB7  
J3  
RB8  
K4  
L4  
RB9  
RB10  
RB11  
RB12  
RB13  
RB14  
RB15  
RC1  
RC2  
RC3  
RC4  
RC12  
RC13  
RC14  
RC15  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD8  
RD9  
RD10  
RD11  
RD12  
RD13  
RD14  
RD15  
L5  
J5  
J7  
L7  
K7  
L8  
D1  
E4  
E2  
E1  
F9  
PORTC Digital I/O.  
5
7
8
49  
59  
60  
50  
58  
61  
62  
63  
66  
67  
68  
69  
54  
55  
56  
57  
64  
65  
37  
38  
9
63  
73  
74  
64  
72  
76  
77  
78  
81  
82  
83  
84  
68  
69  
70  
71  
79  
80  
47  
48  
C10  
B11  
F11  
D9  
A11  
A10  
B9  
C8  
B8  
D7  
C7  
E9  
E10  
D11  
C11  
A9  
D8  
L9  
I
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PORTD Digital I/O.  
K9  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
2010-2011 Microchip Technology Inc.  
DS39996F-page 23  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
RE8  
RE9  
REFO  
RF0  
60  
61  
62  
63  
64  
1
76  
77  
78  
79  
80  
1
93  
94  
98  
99  
100  
3
A4  
B4  
B3  
A2  
A1  
D3  
C1  
D2  
G1  
G2  
L8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTE Digital I/O.  
2
2
4
3
3
5
30  
58  
59  
34  
33  
31  
32  
35  
37  
36  
4
13  
14  
36  
72  
73  
42  
41  
39  
40  
45  
44  
43  
75  
74  
47  
46  
6
18  
19  
44  
87  
88  
52  
51  
49  
50  
55  
54  
53  
40  
39  
90  
89  
57  
56  
10  
11  
12  
14  
96  
97  
95  
1
Reference Clock Output.  
PORTF Digital I/O.  
B6  
A6  
K11  
K10  
L10  
L11  
H9  
H8  
J10  
K6  
L6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RF1  
RF2  
RF3  
RF4  
RF5  
RF6  
RF7  
RF8  
RF12  
RF13  
RG0  
RG1  
RG2  
RG3  
RG6  
RG7  
RG8  
RG9  
RG12  
RG13  
RG14  
RG15  
PORTG Digital I/O.  
A5  
E6  
H10  
J11  
E3  
F4  
5
7
6
8
F2  
8
10  
F3  
C3  
A3  
C4  
B2  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
PIC24FJDS39996F-page 24  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
RP0  
16  
15  
42  
44  
43  
17  
18  
21  
22  
31  
46  
45  
14  
29  
33  
32  
11  
6
20  
19  
54  
56  
55  
38  
21  
22  
27  
28  
39  
58  
57  
18  
35  
43  
41  
40  
15  
8
25  
24  
68  
70  
69  
48  
26  
27  
32  
33  
49  
72  
71  
23  
43  
53  
51  
50  
20  
12  
82  
10  
78  
77  
76  
81  
11  
14  
21  
44  
52  
39  
40  
18  
19  
67  
66  
74  
6
K2  
K1  
E9  
D11  
E10  
K9  
L1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Remappable Peripheral (input or output).  
RP1  
RP2  
RP3  
RP4  
RP5  
RP6  
RP7  
J3  
RP8  
K4  
L4  
RP9  
RP10  
RP11  
RP12  
RP13  
RP14  
RP15  
RP16  
RP17  
RP18  
RP19  
RP20  
RP21  
RP22  
RP23  
RP24  
RP25  
RP26  
RP27  
RP28  
RP29  
RP30  
RP31  
RPI32  
RPI33  
RPI34  
RPI35  
RPI36  
RPI37  
RPI38  
RPI39  
RPI40  
RPI41  
RPI42  
RPI43  
L10  
D9  
C11  
J2  
K7  
J10  
K10  
L11  
H1  
F2  
53  
4
67  
6
B8  
E3  
B9  
A10  
A11  
C8  
F4  
51  
50  
49  
52  
5
63  
62  
61  
66  
7
8
10  
16  
36  
42  
13  
14  
53  
52  
60  
4
F3  
12  
30  
34  
48  
H2  
L8  
K11  
L6  
K6  
G1  
G2  
E8  
E11  
B11  
D1  
E4  
E2  
E1  
A9  
L9  
Remappable Peripheral (input only).  
I
I
I
I
I
I
5
7
I
8
I
64  
37  
9
I
79  
47  
I
I
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
2010-2011 Microchip Technology Inc.  
DS39996F-page 25  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
RTCC  
SCL1  
42  
37  
32  
48  
36  
31  
4
54  
47  
40  
60  
46  
39  
6
68  
57  
58  
74  
56  
59  
10  
14  
20  
21  
22  
23  
24  
25  
43  
44  
49  
50  
51  
68  
69  
70  
71  
72  
41  
42  
76  
77  
78  
81  
82  
83  
84  
87  
57  
34  
33  
32  
6
E9  
H10  
H11  
B11  
J11  
G10  
E3  
O
Real-Time Clock Alarm/Seconds Pulse Output.  
I2C1 Synchronous Serial Clock Input/Output.  
I2C2 Synchronous Serial Clock Input/Output.  
2
I/O  
I/O  
I C  
2
SCL2  
I C  
SCLKI  
SDA1  
2
I/O  
I/O  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I C  
I2C1 Data Input/Output.  
I2C2 Data Input/Output.  
LCD Driver Segment Outputs.  
2
SDA2  
I C  
SEG0  
SEG1  
8
10  
15  
16  
17  
18  
19  
20  
35  
36  
39  
40  
41  
54  
55  
56  
57  
58  
33  
34  
61  
62  
63  
66  
67  
68  
69  
72  
47  
29  
28  
27  
4
F3  
SEG2  
11  
12  
13  
14  
15  
16  
29  
30  
31  
32  
33  
42  
43  
44  
45  
46  
27  
28  
49  
50  
51  
52  
53  
54  
55  
58  
37  
23  
22  
21  
H1  
H2  
J1  
SEG3  
SEG4  
SEG5  
J2  
SEG6  
K1  
SEG7  
K2  
SEG8  
K7  
SEG9  
L8  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
L10  
L11  
K10  
E9  
E10  
D11  
C11  
D9  
J7  
L7  
A11  
A10  
B9  
C8  
B8  
D7  
C7  
B6  
H10  
L5  
L4  
K4  
D1  
E2  
5
8
13  
18  
G1  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
PIC24FJDS39996F-page 26  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SOSCI  
SOSCO  
T1CK  
36  
59  
47  
48  
22  
27  
28  
24  
23  
14  
23  
24  
37  
38  
42  
43  
52  
53  
64  
65  
74  
46  
73  
75  
59  
60  
28  
33  
34  
14  
13  
19  
28  
29  
47  
48  
52  
53  
66  
67  
79  
80  
89  
56  
88  
17  
90  
1
G2  
L2  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
LCD Driver Segment Outputs.  
K3  
L9  
K9  
K11  
J10  
E11  
E8  
A9  
D8  
E6  
J11  
A6  
G3  
A5  
B2  
7
E4  
9
E1  
39  
40  
58  
59  
91  
92  
95  
96  
97  
100  
73  
74  
33  
38  
60  
61  
17  
L6  
K6  
H11  
G10  
C5  
B5  
C4  
C3  
A3  
A1  
C10  
B11  
L4  
ANA  
ANA  
ST  
ST  
ST  
Secondary Oscillator/Timer1 Clock Input.  
Secondary Oscillator/Timer1 Clock Output.  
Timer1 Clock.  
O
I
TCK  
J6  
I
JTAG Test Clock/Programming Clock Input.  
JTAG Test Data/Programming Data Input.  
JTAG Test Data Output.  
TDI  
G11  
G9  
G3  
I
TDO  
O
I
TMS  
ST  
JTAG Test Mode Select Input.  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
2010-2011 Microchip Technology Inc.  
DS39996F-page 27  
PIC24FJ128GA310 FAMILY  
TABLE 1-4:  
PIC24FJ128GA310 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number/Grid Locator  
Pin  
Function  
Input  
Buffer  
I/O  
Description  
64-Pin  
80-Pin  
TQFP  
100-Pin 121-Pin  
TQFP  
TQFP  
BGA  
VBAT  
VCAP  
57  
56  
71  
70  
86  
85  
A7  
B7  
P
P
Back-up Battery.  
External Filter Capacitor Connection (regulator  
enabled).  
VDD  
10, 26,  
38  
12, 32,  
48  
2, 16,  
37, 46,  
62  
C2, F8,  
G5, H6,  
K8  
P
Positive Supply for Peripheral Digital Logic and I/O  
Pins.  
VLCAP1  
VLCAP2  
VREF+  
5
6
7
8
11  
12  
29  
F4  
F2  
K3  
I
I
I
ANA  
ANA  
ANA  
LCD Drive Charge Pump Capacitor Inputs.  
24  
Comparator/A/D Reference Voltage (low) Input  
(default).  
VREF-  
Vss  
23  
28  
L2  
I
ANA  
Comparator/A/D Reference Voltage (high) Input  
(default).  
9, 25, 41 11, 31,  
51  
15, 36, B10, F5,  
45, 65, F10, G6,  
P
Ground Reference for Logic and I/O Pins.  
75  
G7  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
PIC24FJDS39996F-page 28  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTIONS  
2.0  
2.1  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
MICROCONTROLLERS  
(2)  
C2  
VDD  
Basic Connection Requirements  
Getting started with the PIC24FJ128GA310 family  
family of 16-bit microcontrollers requires attention to a  
minimal set of device pin connections before  
proceeding with development.  
R1  
R2  
MCLR  
VCAP  
(1)  
C1  
C7  
The following pins must always be connected:  
PIC24FJXXXX  
• All VDD and VSS pins  
(see Section 2.2 “Power Supply Pins”)  
VDD  
VSS  
VDD  
(2)  
(2)  
C3  
C6  
• All AVDD and AVSS pins, regardless of whether or  
not the analog device features are used  
VSS  
(see Section 2.2 “Power Supply Pins”)  
• MCLR pin  
(see Section 2.3 “Master Clear (MCLR) Pin”)  
(2)  
(2)  
C4  
C5  
• VCAP pin  
(see Section 2.4 “Voltage Regulator Pin (VCAP)”)  
These pins must also be connected if they are being  
used in the end application:  
Key (all values are recommendations):  
C1 through C6: 0.1 F, 20V ceramic  
C7: 10 F, 6.3V or greater, tantalum or ceramic  
R1: 10 k  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
R2: 100to 470Ω  
• OSCI and OSCO pins when an external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
Note 1: See Section 2.4 “Voltage Regulator Pin  
(VCAP)” for details on selecting the proper  
capacitor for Vcap.  
2: The example shown is for a PIC24F device  
with five VDD/VSS and AVDD/AVSS pairs.  
Other devices may have more or less pairs;  
adjust the number of decoupling capacitors  
appropriately.  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for analog modules is implemented  
Note:  
The AVDD and AVSS pins must always be  
connected, regardless of whether any of  
the analog modules are being used.  
The minimum mandatory connections are shown in  
Figure 2-1.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 29  
PIC24FJ128GA310 FAMILY  
2.2  
Power Supply Pins  
2.3  
Master Clear (MCLR) Pin  
The MCLR pin provides two specific device  
functions: device Reset, and device programming  
and debugging. If programming and debugging are  
2.2.1  
DECOUPLING CAPACITORS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
not required in the end application,  
a
direct  
connection to VDD may be all that is required. The  
addition of other components, to help increase the  
application’s resistance to spurious Resets from  
Consider the following criteria when using decoupling  
capacitors:  
voltage sags, may be beneficial.  
A
typical  
Value and type of capacitor: A 0.1 F (100 nF),  
10-20V capacitor is recommended. The capacitor  
should be a low-ESR device with a resonance  
frequency in the range of 200 MHz and higher.  
Ceramic capacitors are recommended.  
configuration is shown in Figure 2-1. Other circuit  
designs may be implemented, depending on the  
application’s requirements.  
During programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R1 and C1 will need to be adjusted based on the  
application and PCB requirements. For example, it is  
recommended that the capacitor, C1, be isolated  
from the MCLR pin during programming and  
debugging operations by using a jumper (Figure 2-2).  
The jumper is replaced for normal run-time  
operations.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is no greater  
than 0.25 inch (6 mm).  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise (upward of  
tens of MHz), add a second ceramic type capaci-  
tor in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 F to 0.001 F. Place this  
second capacitor next to each primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible  
(e.g., 0.1 F in parallel with 0.001 F).  
Any components associated with the MCLR pin  
should be placed within 0.25 inch (6 mm) of the pin.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB trace  
R1  
R2  
MCLR  
PIC24FXXXX  
JP  
C1  
inductance.  
Note 1: R1 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2.2.2  
TANK CAPACITORS  
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including microcontrollers to  
supply a local power source. The value of the tank  
capacitor should be determined based on the trace  
resistance that connects the power supply source to  
the device, and the maximum current drawn by the  
device in the application. In other words, select the tank  
capacitor so that it meets the acceptable voltage sag at  
the device. Typical values range from 4.7 F to 47 F.  
2: R2 470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
DS39996F-page 30  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 2-3:  
FREQUENCY vs. ESR  
PERFORMANCE FOR  
SUGGESTED VCAP  
2.4  
Voltage Regulator Pin (VCAP)  
A low-ESR (< 5) capacitor is required on the VCAP pin  
to stabilize the output voltage of the on-chip voltage  
regulator . The VCAP pin must not be connected to VDD  
and must use a capacitor of 10 µF connected to ground.  
The type can be ceramic or tantalum. Suitable examples  
of capacitors are shown in Table 2-1. Capacitors with  
equivalent specification can be used.  
10  
1
0.1  
The placement of this capacitor should be close to  
VCAP. It is recommended that the trace length not  
exceed 0.25 inch (6 mm). Refer to Section 32.0  
0.01  
“Electrical  
Characteristics”  
for  
additional  
information.  
0.001  
0.01  
0.1  
1
10  
100  
1000 10,000  
Designers may use Figure 2-3 to evaluate ESR  
equivalence of candidate devices.  
Frequency (MHz)  
Note:  
Typical data measurement at 25°C, 0V DC bias.  
Refer to Section 29.2 “On-Chip Voltage Regulator”  
for details on connecting and using the on-chip  
regulator.  
.
TABLE 2-1:  
Make  
SUITABLE CAPACITOR EQUIVALENTS  
Nominal  
Part #  
Base Tolerance Rated Voltage Temp. Range  
Capacitance  
TDK  
TDK  
C3216X7R1C106K  
C3216X5R1C106K  
10 µF  
10 µF  
10 µF  
10 µF  
10 µF  
10 µF  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
16V  
16V  
16V  
16V  
16V  
16V  
-55 to 125ºC  
-55 to 85ºC  
-55 to 125ºC  
-55 to 85ºC  
-55 to 125ºC  
-55 to 85ºC  
Panasonic  
Panasonic  
Murata  
ECJ-3YX1C106K  
ECJ-4YB1C106K  
GRM32DR71C106KA01L  
GRM31CR61C106KC31L  
Murata  
2010-2011 Microchip Technology Inc.  
DS39996F-page 31  
PIC24FJ128GA310 FAMILY  
2.4.1  
CONSIDERATIONS FOR CERAMIC  
CAPACITORS  
FIGURE 2-4:  
DC BIAS VOLTAGE vs.  
CAPACITANCE  
CHARACTERISTICS  
In recent years, large value, low-voltage, surface-mount  
ceramic capacitors have become very cost effective in  
sizes up to a few tens of microfarad. The low-ESR, small  
physical size and other properties make ceramic  
capacitors very attractive in many types of applications.  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
16V Capacitor  
10V Capacitor  
Ceramic capacitors are suitable for use with the inter-  
nal voltage regulator of this microcontroller. However,  
some care is needed in selecting the capacitor to  
ensure that it maintains sufficient capacitance over the  
intended operating range of the application.  
6.3V Capacitor  
-80  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14 15  
16 17  
DC Bias Voltage (VDC)  
Typical low-cost, 10 F ceramic capacitors are available  
in X5R, X7R and Y5V dielectric ratings (other types are  
also available, but are less common). The initial toler-  
ance specifications for these types of capacitors are  
often specified as ±10% to ±20% (X5R and X7R), or  
-20%/+80% (Y5V). However, the effective capacitance  
that these capacitors provide in an application circuit will  
also vary based on additional factors, such as the  
applied DC bias voltage and the temperature. The total  
in-circuit tolerance is, therefore, much wider than the  
initial tolerance specification.  
When selecting a ceramic capacitor to be used with the  
internal voltage regulator, it is suggested to select a  
high-voltage rating, so that the operating voltage is a  
small percentage of the maximum rated capacitor volt-  
age. For example, choose a ceramic capacitor rated at  
16V for the 2.5V or 1.8V core voltage. Suggested  
capacitors are shown in Table 2-1.  
2.5  
ICSP Pins  
The X5R and X7R capacitors typically exhibit satisfac-  
tory temperature stability (ex: ±15% over a wide  
temperature range, but consult the manufacturer’s data  
sheets for exact specifications). However, Y5V capaci-  
tors typically have extreme temperature tolerance  
specifications of +22%/-82%. Due to the extreme tem-  
perature tolerance, a 10 F nominal rated Y5V type  
capacitor may not deliver enough total capacitance to  
meet minimum internal voltage regulator stability and  
transient response requirements. Therefore, Y5V  
capacitors are not recommended for use with the  
internal regulator if the application must operate over a  
wide temperature range.  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming (ICSP) and debugging purposes.  
It is recommended to keep the trace length between  
the ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is recom-  
mended, with the value in the range of a few tens of  
ohms, not to exceed 100.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
In addition to temperature tolerance, the effective  
capacitance of large value ceramic capacitors can vary  
substantially, based on the amount of DC voltage  
applied to the capacitor. This effect can be very signifi-  
cant, but is often overlooked or is not always  
documented.  
Typical DC bias voltage vs. capacitance graph for X7R  
type capacitors is shown in Figure 2-4.  
For device emulation, ensure that the “Communication  
Channel Select” (i.e., PGECx/PGEDx pins),  
programmed into the device, matches the physical  
connections for the ICSP to the Microchip  
debugger/emulator tool.  
For more information on available Microchip  
development tools connection requirements, refer to  
Section 30.0 “Development Support”.  
DS39996F-page 32  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 2-5:  
SUGGESTED  
2.6  
External Oscillator Pins  
PLACEMENT OF THE  
OSCILLATOR CIRCUIT  
Many microcontrollers have options for at least two  
oscillators: a high-frequency primary oscillator and a  
low-frequency  
secondary  
oscillator  
(refer to  
Single-Sided and In-line Layouts:  
Section 9.0 “Oscillator Configuration” for details).  
Copper Pour  
(tied to ground)  
Primary Oscillator  
Crystal  
The oscillator circuit should be placed on the same  
side of the board as the device. Place the oscillator  
circuit close to the respective oscillator pins with no  
more than 0.5 inch (12 mm) between the circuit  
components and the pins. The load capacitors should  
be placed next to the oscillator itself, on the same side  
of the board.  
DEVICE PINS  
Primary  
OSCI  
OSCO  
GND  
Oscillator  
C1  
C2  
`
`
Use a grounded copper pour around the oscillator cir-  
cuit to isolate it from surrounding circuits. The  
grounded copper pour should be routed directly to the  
MCU ground. Do not run any signal traces or power  
traces inside the ground pour. Also, if using a two-sided  
board, avoid any traces on the other side of the board  
where the crystal is placed.  
SOSCO  
SOSC I  
Secondary  
Oscillator  
Crystal  
`
Layout suggestions are shown in Figure 2-5. In-line  
packages may be handled with a single-sided layout  
that completely encompasses the oscillator pins. With  
fine-pitch packages, it is not always possible to com-  
pletely surround the pins and components. A suitable  
solution is to tie the broken guard sections to a mirrored  
ground layer. In all cases, the guard trace(s) must be  
returned to ground.  
Sec Oscillator: C2  
Sec Oscillator: C1  
Fine-Pitch (Dual-Sided) Layouts:  
Top Layer Copper Pour  
(tied to ground)  
In planning the application’s routing and I/O assign-  
ments, ensure that adjacent port pins, and other  
signals in close proximity to the oscillator, are benign  
(i.e., free of high frequencies, short rise and fall times  
and other similar noise).  
Bottom Layer  
Copper Pour  
(tied to ground)  
OSCO  
For additional information and design guidance on  
oscillator circuits, please refer to these Microchip  
Application Notes, available at the corporate web site  
(www.microchip.com):  
C2  
Oscillator  
Crystal  
GND  
• AN826, “Crystal Oscillator Basics and Crystal  
Selection for rfPIC™ and PICmicro® Devices”  
C1  
• AN849, “Basic PICmicro® Oscillator Design”  
OSCI  
• AN943, “Practical PICmicro® Oscillator Analysis  
and Design”  
AN949, “Making Your Oscillator Work”  
DEVICE PINS  
2010-2011 Microchip Technology Inc.  
DS39996F-page 33  
PIC24FJ128GA310 FAMILY  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must modify the appropriate bits during  
initialization of the A/D module, as follows:  
2.7  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If an ICSP compliant emulator is selected as a debug-  
ger, it automatically initializes all of the A/D input pins  
(ANx) as “digital” pins. Depending on the particular  
device, this is done by setting all bits in the ADnPCFG  
register(s), or clearing all bit in the ANSx registers.  
• For devices with an ADnPCFG register, clear the  
bits corresponding to the pin(s) to be configured  
as analog. Do not change any other bits, particu-  
larly those corresponding to the PGECx/PGEDx  
pair, at any time.  
All PIC24F devices will have either one or more  
ADnPCFG registers or several ANSx registers (one for  
each port); no device will have both. Refer to  
Section 11.2 “Configuring Analog Port Pins  
(ANSx)” for more specific information.  
• For devices with ANSx registers, set the bits  
corresponding to the pin(s) to be configured as  
analog. Do not change any other bits, particularly  
those corresponding to the PGECx/PGEDx pair,  
at any time.  
The bits in these registers that correspond to the A/D  
pins that initialized the emulator must not be changed  
by the user application firmware; otherwise,  
communication errors will result between the debugger  
and the device.  
When a Microchip debugger/emulator is used as a  
programmer, the user application firmware must  
correctly configure the ADnPCFG or ANSx registers.  
Automatic initialization of this register is only done  
during debugger operation. Failure to correctly  
configure the register(s) will result in all A/D pins being  
recognized as analog input pins, resulting in the port  
value being read as a logic ‘0’, which may affect user  
application functionality.  
2.8  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state. Alternatively, connect a 1 kΩ  
to 10 kresistor to VSS on unused pins and drive the  
output to logic low.  
DS39996F-page 34  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The core supports Inherent (no operand), Relative,  
Literal and Memory Direct Addressing modes, along  
3.0  
CPU  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
with three other groups of addressing modes. All  
modes support Register Direct and various Register  
Indirect modes. Each group offers up to seven  
addressing modes. Instructions are associated with  
predefined addressing modes depending upon their  
functional requirements.  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 44. “CPU with Extended Data  
Space (EDS)” (DS39732). The information  
in this data sheet supersedes the  
information in the FRM.  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working reg-  
ister (data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, three parameter instructions can be supported,  
allowing trinary operations (that is, A + B = C) to be  
executed in a single cycle.  
The PIC24F CPU has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set and a  
24-bit instruction word with a variable length opcode  
field. The Program Counter (PC) is 23 bits wide and  
addresses up to 4M instructions of user program  
memory space. A single-cycle instruction prefetch  
mechanism is used to help maintain throughput and  
provides predictable execution. All instructions execute  
in a single cycle, with the exception of instructions that  
change the program flow, the double-word move  
(MOV.D) instruction and the table instructions.  
Overhead-free program loop constructs are supported  
using the REPEATinstructions, which are interruptible  
at any point.  
A high-speed, 17-bit x 17-bit multiplier has been  
included to significantly enhance the core arithmetic  
capability and throughput. The multiplier supports  
Signed, Unsigned and Mixed mode, 16-bit x 16-bit or  
8-bit  
x 8-bit, integer multiplication. All multiply  
instructions execute in a single cycle.  
The 16-bit ALU has been enhanced with integer divide  
assist hardware that supports an iterative non-restoring  
divide algorithm. It operates in conjunction with the  
REPEATinstruction looping mechanism and a selection  
of iterative divide instructions to support 32-bit (or  
16-bit), divided by 16-bit, integer signed and unsigned  
division. All divide operations require 19 cycles to  
complete but are interruptible at any cycle boundary.  
PIC24F devices have sixteen, 16-bit working registers  
in the programmer’s model. Each of the working  
registers can act as a data, address or address offset  
register. The 16th working register (W15) operates as a  
Software Stack Pointer for interrupts and calls.  
The PIC24F has a vectored exception scheme with up  
to 8 sources of non-maskable traps and up to 118 inter-  
rupt sources. Each interrupt source can be assigned to  
one of seven priority levels.  
The lower 32 Kbytes of the data space can be  
accessed linearly. The upper 32 Kbytes of the data  
space are referred to as extended data space to which  
the extended data RAM, EPMP memory space or  
program memory can be mapped.  
A block diagram of the CPU is shown in Figure 3-1.  
The Instruction Set Architecture (ISA) has been  
significantly enhanced beyond that of the PIC18, but  
maintains an acceptable level of backward compatibil-  
ity. All PIC18 instructions and addressing modes are  
supported, either directly, or through simple macros.  
Many of the ISA enhancements have been driven by  
compiler efficiency needs.  
3.1  
Programmer’s Model  
The programmer’s model for the PIC24F is shown in  
Figure 3-2. All registers in the programmer’s model are  
memory mapped and can be manipulated directly by  
instructions. A description of each register is provided  
in Table 3-1. All registers associated with the  
programmer’s model are memory mapped.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 35  
PIC24FJ128GA310 FAMILY  
FIGURE 3-1:  
PIC24F CPU CORE BLOCK DIAGRAM  
EDS and Table  
Data Access  
Control Block  
Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
23  
Data RAM  
Up to 0x7FFF  
16  
PCH  
Program Counter  
PCL  
23  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
RAGU  
WAGU  
Address Latch  
Program Memory/  
Extended Data  
Space  
EA MUX  
Address Bus  
24  
Data Latch  
ROM Latch  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
Hardware  
Multiplier  
16 x 16  
W Register Array  
Divide  
Support  
16  
16-Bit ALU  
16  
To Peripheral Modules  
TABLE 3-1:  
CPU CORE REGISTERS  
Register(s) Name  
Description  
W0 through W15  
PC  
Working Register Array  
23-Bit Program Counter  
ALU STATUS Register  
SR  
SPLIM  
Stack Pointer Limit Value Register  
Table Memory Page Address Register  
Repeat Loop Counter Register  
CPU Control Register  
TBLPAG  
RCOUNT  
CORCON  
DISICNT  
DSRPAG  
DSWPAG  
Disable Interrupt Count Register  
Data Space Read Page Register  
Data Space Write Page Register  
DS39996F-page 36  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 3-2:  
PROGRAMMER’S MODEL  
15  
0
W0 (WREG)  
W1  
Divider Working Registers  
W2  
Multiplier Registers  
W3  
W4  
W5  
W6  
W7  
Working/Address  
Registers  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
Frame Pointer  
Stack Pointer  
0
Stack Pointer Limit  
Value Register  
0
SPLIM  
22  
0
0
PC  
Program Counter  
7
0
0
Table Memory Page  
Address Register  
TBLPAG  
9
Data Space Read Page Register  
Data Space Write Page Register  
DSRPAG  
DSWPAG  
8
0
0
15  
15  
Repeat Loop Counter  
Register  
RCOUNT  
SRH  
SRL  
0
IPL  
— — — — — — —  
ALU STATUS Register (SR)  
DC  
RA N OV Z C  
2
1 0  
15  
0
— — — — — — — — — — — — IPL3  
CPU Control Register (CORCON)  
Disable Interrupt Count Register  
———  
13  
0
DISICNT  
Registers or bits are shadowed for PUSH.Sand POP.Sinstructions.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 37  
PIC24FJ128GA310 FAMILY  
3.2  
CPU Control Registers  
REGISTER 3-1:  
SR: ALU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(1)  
IPL2(2)  
bit 7  
R/W-0(1)  
IPL1(2)  
R/W-0(1)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0,  
Z
R/W-0  
C
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DC: ALU Half Carry/Borrow bit  
1= A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry out from the 4th or 8th low-order bit of the result has occurred  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2)  
111= CPU interrupt priority level is 7 (15); user interrupts are disabled  
110= CPU interrupt priority level is 6 (14)  
101= CPU interrupt priority level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: ALU Negative bit  
1= Result was negative  
0= Result was not negative (zero or positive)  
OV: ALU Overflow bit  
1= Overflow occurred for signed (2’s complement) arithmetic in this arithmetic operation  
0= No overflow has occurred  
Z: ALU Zero bit  
1= An operation, which affects the Z bit, has set it at some time in the past  
0= The most recent operation, which affects the Z bit, has cleared it (i.e., a non-zero result)  
C: ALU Carry/Borrow bit  
1= A carry out from the Most Significant bit of the result occurred  
0= No carry out from the Most Significant bit of the result occurred  
Note 1: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
2: The IPL Status bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.  
DS39996F-page 38  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 3-2:  
CORCON: CPU CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(1)  
R-1  
r
U-0  
U-0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
r = Reserved bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit(1)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 2  
Reserved: Read as ‘1’  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level; see  
Register 3-1 for bit description.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 39  
PIC24FJ128GA310 FAMILY  
3.3.2  
DIVIDER  
3.3  
Arithmetic Logic Unit (ALU)  
The divide block supports signed and unsigned integer  
divide operations with the following data sizes:  
The PIC24F ALU is 16 bits wide and is capable of addi-  
tion, subtraction, bit shifts and logic operations. Unless  
otherwise mentioned, arithmetic operations are 2’s  
complement in nature. Depending on the operation, the  
ALU may affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC)  
Status bits in the SR register. The C and DC Status bits  
operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. Sixteen-bit signed and  
unsigned DIV instructions can specify any W register  
for both the 16-bit divisor (Wn), and any W register  
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.  
The divide algorithm takes one cycle per bit of divisor,  
so both 32-bit/16-bit and 16-bit/16-bit instructions take  
the same number of cycles to execute.  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array, or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
3.3.3  
MULTI-BIT SHIFT SUPPORT  
The PIC24F CPU incorporates hardware support for  
both multiplication and division. This includes a  
dedicated hardware multiplier and support hardware  
for 16-bit divisor division.  
The PIC24F ALU supports both single bit and  
single-cycle, multi-bit arithmetic and logic shifts.  
Multi-bit shifts are implemented using a shifter block,  
capable of performing up to a 15-bit arithmetic right  
shift, or up to a 15-bit left shift, in a single cycle. All  
multi-bit shift instructions only support Register Direct  
Addressing for both the operand source and result  
destination.  
3.3.1  
MULTIPLIER  
The ALU contains a high-speed, 17-bit x 17-bit  
multiplier. It supports unsigned, signed or mixed sign  
operation in several multiplication modes:  
A full summary of instructions that use the shift  
operation is provided in Table 3-2.  
1. 16-bit x 16-bit signed  
2. 16-bit x 16-bit unsigned  
3. 16-bit signed x 5-bit (literal) unsigned  
4. 16-bit unsigned x 16-bit unsigned  
5. 16-bit unsigned x 5-bit (literal) unsigned  
6. 16-bit unsigned x 16-bit signed  
7. 8-bit unsigned x 8-bit unsigned  
TABLE 3-2:  
Instruction  
INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION  
Description  
ASR  
SL  
Arithmetic shift right source register by one or more bits.  
Shift left source register by one or more bits.  
LSR  
Logical shift right source register by one or more bits.  
DS39996F-page 40  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
from either the 23-bit Program Counter (PC) during pro-  
gram execution, or from table operation or data space  
remapping, as described in Section 4.3 “Interfacing  
Program and Data Memory Spaces”.  
4.0  
MEMORY ORGANIZATION  
As Harvard architecture devices, PIC24F micro-  
controllers feature separate program and data memory  
spaces and busses. This architecture also allows direct  
access of program memory from the data space during  
code execution.  
User access to the program memory space is restricted  
to the lower half of the address range (000000h to  
7FFFFFh). The exception is the use of TBLRD/TBLWT  
operations, which use TBLPAG<7> to permit access to  
the Configuration bits and Device ID sections of the  
configuration memory space.  
4.1  
Program Memory Space  
The program address memory space of the  
PIC24FJ128GA310 family devices is 4M instructions.  
The space is addressable by a 24-bit value derived  
Memory maps for the PIC24FJ128GA310 family of  
devices are shown in Figure 4-1.  
FIGURE 4-1:  
PROGRAM SPACE MEMORY MAP FOR PIC24FJ128GA310 FAMILY DEVICES  
PIC24FJ64GA3XX  
PIC24F128GA3XX  
000000h  
000002h  
000004h  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
0000FEh  
000100h  
000104h  
Reserved  
Alternate Vector Table  
Alternate Vector Table  
0001FEh  
000200h  
User Flash  
Program Memory  
(22K instructions)  
User Flash  
Program Memory  
(44K instructions)  
00ABFEh  
00AC00h  
Flash Config Words  
0157FEh  
015800h  
Flash Config Words  
Unimplemented  
Unimplemented  
Read ‘0’  
Read ‘0’  
7FFFFEh  
800000h  
Reserved  
Reserved  
F7FFFEh  
F80000h  
Device Config Registers  
Reserved  
Device Config Registers  
Reserved  
F8000Eh  
F80010h  
FEFFFEh  
FF0000h  
DEVID (2)  
DEVID (2)  
FFFFFEh  
Note:  
Memory areas are not shown to scale.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 41  
PIC24FJ128GA310 FAMILY  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.3  
FLASH CONFIGURATION WORDS  
In PIC24FJ128GA310 family devices, the top four words  
of on-chip program memory are reserved for configura-  
tion information. On device Reset, the configuration  
information is copied into the appropriate Configuration  
register. The addresses of the Flash Configuration Word  
for devices in the PIC24FJ128GA310 family are shown  
in Table 4-1. Their location in the memory map is shown  
with the other memory vectors in Figure 4-1.  
The program memory space is organized in  
word-addressable blocks. Although it is treated as  
24 bits wide, it is more appropriate to think of each  
address of the program memory as a lower and upper  
word, with the upper byte of the upper word being  
unimplemented. The lower word always has an even  
address, while the upper word has an odd address  
(Figure 4-2).  
The Configuration Words in program memory are a  
compact format. The actual Configuration bits are  
mapped in several different registers in the configuration  
memory space. Their order in the Flash Configuration  
Words does not reflect a corresponding arrangement in  
the configuration space. Additional details on the device  
Configuration Words are provided in Section 29.0  
“Special Features”.  
Program memory addresses are always word-aligned  
on the lower word and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
4.1.2  
HARD MEMORY VECTORS  
TABLE 4-1:  
FLASH CONFIGURATION  
WORDS FOR  
PIC24FJ128GA310 FAMILY  
DEVICES  
All PIC24F devices reserve the addresses between  
000000h and 000200h for hard-coded program execu-  
tion vectors. A hardware Reset vector is provided to  
redirect code execution from the default value of the  
PC on device Reset to the actual start of code. A GOTO  
instruction is programmed by the user at 000000h with  
the actual address for the start of code at 000002h.  
Program  
Configuration Word  
Memory  
Device  
Addresses  
(Words)  
PIC24F devices also have two interrupt vector tables,  
located from 000004h to 0000FFh and 000100h to  
0001FFh. These vector tables allow each of the many  
device interrupt sources to be handled by separate  
ISRs. A more detailed discussion of the interrupt vector  
tables is provided in Section 8.1 “Interrupt Vector  
Table”.  
PIC24FJ64GA3XX  
22,016 00ABF8h:00ABFEh  
PIC24FJ128GA3XX  
44,032 0157F8h:0157FEh  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
8
msw  
Address  
PC Address  
(lsw Address)  
most significant word  
23  
16  
0
0x000000  
0x000002  
00000000  
0x000001  
0x000003  
0x000005  
0x000007  
00000000  
00000000  
0x000004  
0x000006  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS39996F-page 42  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The upper half of data memory address space (8000h to  
FFFFh) is used as a window into the Extended Data  
Space (EDS). This allows the microcontroller to directly  
access a greater range of data beyond the standard  
16-bit address range. EDS is discussed in detail in  
Section 4.2.5 “Extended Data Space (EDS)”.  
4.2  
Data Memory Space  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 45. “Data Memory with  
Extended Data Space (EDS)” (DS39733).  
The information in this data sheet  
supersedes the information in the FRM.  
The lower half of DS is compatible with previous PIC24F  
microcontrollers without EDS. All PIC24FJ128GA310  
family devices implement 8 Kbytes of data RAM in the  
lower half of DS, from 0800h to 27FFh.  
4.2.1  
DATA SPACE WIDTH  
The PIC24F core has a 16-bit wide data memory space,  
addressable as a single linear range. The data space is  
accessed using two Address Generation Units (AGUs),  
one each for read and write operations. The data space  
memory map is shown in Figure 4-3.  
The data memory space is organized in  
byte-addressable, 16-bit wide blocks. Data is aligned  
in data memory and registers as 16-bit words, but all  
data space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
The 16-bit wide data addresses in the data memory  
space point to bytes within the Data Space (DS). This  
gives a DS address range of 64 Kbytes or 32K words.  
The lower half (0000h to 7FFFh) is used for  
implemented (on-chip) memory addresses.  
FIGURE 4-3:  
DATA SPACE MEMORY MAP FOR PIC24FJ128GA310 FAMILY DEVICES  
MSB  
LSB  
Address  
MSB  
LSB  
Address  
0000h  
0001h  
SFR  
Space  
SFR Space  
07FFh  
0801h  
07FEh  
0800h  
Near  
Data Space  
1FFFh  
2001h  
1FFEh  
2000h  
8 Kbytes Data RAM  
Unimplemented  
(1)  
Lower 32 Kbytes  
Data Space  
2800h  
2801h  
EDS Page 0x1  
(32 Kbytes)  
Internal Extended  
Data RAM (66 Kbytes)  
EDS Page 0x2  
(32 Kbytes)  
7FFFh  
8001h  
7FFEh  
8000h  
EPMP Memory Space  
EDS Page 0x3 (2 Kbytes)  
EDS Page 0x4  
EDS Window  
Upper 32 Kbytes  
Data Space  
EDS Page 0x1FF  
EDS Page 0x200  
Program Space Visibility  
Area to Access Lower  
Word of Program Memory  
EDS Page 0x2FF  
EDS Page 0x300  
FFFFh  
FFFEh  
Program Space Visibility  
Area to Access Upper  
Word of Program Memory  
EDS Page 0x3FF  
Note:  
Memory areas not shown to scale.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 43  
PIC24FJ128GA310 FAMILY  
A Sign-Extend instruction (SE) is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
Zero-Extend (ZE) instruction on the appropriate  
address.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCUs and  
improve data space memory usage efficiency, the  
PIC24F instruction set supports both word and byte  
operations. As a consequence of byte accessibility, all  
EA calculations are internally scaled to step through  
word-aligned memory. For example, the core recognizes  
that Post-Modified Register Indirect Addressing mode  
[Ws++] will result in a value of Ws + 1 for byte operations  
and Ws + 2 for word operations.  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions operate only on words.  
4.2.3  
NEAR DATA SPACE  
The 8-Kbyte area between 0000h and 1FFFh is  
referred to as the near data space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions. The  
remainder of the data space is addressable indirectly.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing with a 16-bit address field.  
Data byte reads will read the complete word, which  
contains the byte, using the LSB of any EA to deter-  
mine which byte to select. The selected byte is placed  
onto the LSB of the data path. That is, data memory  
and registers are organized as two parallel, byte-wide  
entities with shared (word) address decode but  
separate write lines. Data byte writes only write to the  
corresponding side of the array or register which  
matches the byte address.  
4.2.4  
SPECIAL FUNCTION REGISTER  
(SFR) SPACE  
All word accesses must be aligned to an even address.  
Mis-aligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap will be generated. If the error occurred on a read,  
the instruction underway is completed; if it occurred on  
a write, the instruction will be executed but the write will  
not occur. In either case, a trap is then executed, allow-  
ing the system and/or user to examine the machine  
state prior to execution of the address Fault.  
The first 2 Kbytes of the near data space, from 0000h  
to 07FFh, are primarily occupied with Special Function  
Registers (SFRs). These are used by the PIC24F core  
and peripheral modules for controlling the operation of  
the device.  
SFRs are distributed among the modules that they con-  
trol and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’. A diagram of the SFR space,  
showing where the SFRs are actually implemented, is  
shown in Table 4-2. Each implemented area indicates  
a 32-byte region where at least one address is imple-  
mented as an SFR. A complete list of implemented  
SFRs, including their addresses, is shown in Tables 4-3  
through 4-34.  
All byte loads into any W register are loaded into the  
LSB. The Most Significant Byte (MSB) is not modified.  
TABLE 4-2:  
IMPLEMENTED REGIONS OF SFR DATA SPACE  
SFR Space Address  
xx00  
xx20  
xx40  
xx60  
xx80  
xxA0  
xxC0  
xxE0  
000h  
100h  
200h  
300h  
400h  
500h  
600h  
700h  
Core  
ICN  
Interrupts  
Timers  
Capture  
Compare  
UART  
DMA  
I2C™  
UART  
SPI/UART  
I/O  
A/D/CTMU  
ANA  
LCD  
LCD  
EPMP  
RTC/CMP  
CRC  
System  
PPS  
NVM/PMD  
Legend: — = No implemented SFRs in this block  
DS39996F-page 44  
2010-2011 Microchip Technology Inc.  
TABLE 4-3:  
CPU CORE REGISTERS MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0042  
0044  
0052  
0054  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0001  
0001  
xxxx  
0000  
0004  
xxxx  
0000  
Stack Pointer Limit Value Register  
Program Counter Low Word Register  
PCL  
PCH  
Program Counter Register High Byte  
Extended Data Space Read Page Address Register  
Extended Data Space Write Page Address Register  
DSRPAG  
DSWPAG  
RCOUNT  
SR  
Repeat Loop Counter Register  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
r
Z
C
CORCON  
DISICNT  
TBLPAG  
IPL3  
Disable Interrupts Counter Register  
Table Memory Page Address Register  
Legend: — = unimplemented, read as ‘0’; r = reserved, do not modify. Reset values are shown in hexadecimal.  
TABLE 4-4:  
ICN REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNPD1 0056 CN15PDE  
CNPD2 0058 CN31PDE  
CN14PDE  
CN30PDE  
CN13PDE  
CN29PDE  
CN12PDE  
CN28PDE  
CN11PDE  
CN10PDE  
CN9PDE  
CN8PDE  
CN7PDE  
CN6PDE  
CN5PDE  
CN4PDE  
CN3PDE  
CN2PDE  
0000  
(1)  
(1)  
(1)  
CN27PDE CN26PDE CN25PDE CN24PDE  
CN23PDE  
CN22PDE CN21PDE CN20PDE CN19PDE  
CN18PDE CN17PDE CN16PDE 0000  
(2)  
(1)  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
CNPD3 005A CN47PDE(1) CN46PDE  
CNPD4 005C CN63PDE CN62PDE  
CNPD5 005E CN79PDE(2) CN78PDE  
CN45PDE  
CN44PDE  
CN43PDE CN42PDE CN41PDE CN40PDE  
CN39PDE  
CN55PDE  
CN71PDE  
CN38PDE  
CN37PDE CN36PDE CN35PDE  
CN34PDE  
CN33PDE  
CN32PDE 0000  
(2)  
CN61PDE  
CN60PDE  
CN59PDE CN58PDE CN57PDE CN56PDE  
CN54PDE  
CN70PDE  
CN53PDE CN52PDE CN51PDE  
CN50PDE CN49PDE CN48PDE  
0000  
(1)  
(1)  
(2)  
(2)  
(1)  
(1)  
(1)  
CN77PDE  
CN76PDE  
CN75PDE CN74PDE  
CN73PDE CN72PDE  
CN69PDE CN68PDE CN67PDE  
CN66PDE  
CN82PDE  
CN2IE  
CN65PDE CN64PDE 0000  
(1)  
(2)  
(2)  
(2)  
CNPD6 0060  
CNEN1 0062  
CNEN2 0064  
CN84PDE CN83PDE  
CN4IE CN3IE  
CN81PDE CN80PDE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
CN15IE  
CN31IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN28IE  
CN11IE  
CN27IE  
CN10IE  
CN26IE  
CN9IE  
CN25IE  
CN8IE  
CN24IE  
CN7IE  
CN6IE  
CN5IE  
(1)  
(1)  
(1)  
CN23IE  
CN22IE  
CN21IE  
CN37IE  
CN20IE  
CN36IE  
CN19IE  
CN35IE  
CN18IE  
CN17IE  
CN16IE  
CN32IE  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
CNEN3 0066 CN47IE(1)  
CNEN4 0068 CN63IE  
CNEN5 006A CN79IE(2)  
CNEN6 006C  
CN46IE  
CN62IE  
CN45IE  
CN61IE  
CN44IE  
CN60IE  
CN43IE  
CN59IE  
CN42IE  
CN58IE  
CN41IE  
CN57IE  
CN73IE  
CN40IE  
CN56IE  
CN72IE  
CN39IE  
CN38IE  
CN34IE  
CN50IE  
CN33IE  
CN49IE  
CN65IE  
(2)  
CN55IE  
CN71IE  
CN54IE  
CN70IE  
CN53IE  
CN69IE  
CN52IE  
CN68IE  
CN84IE  
CN4PUE  
CN51IE  
CN48IE  
CN64IE  
(1)  
(1)  
(2)  
(2)  
(1)  
(1)  
(1)  
CN78IE  
CN77IE  
CN76IE  
CN75IE  
CN74IE  
CN67IE  
CN83IE  
CN66IE  
(1)  
(2)  
(2)  
(2)  
CN82IE  
CN2PUE  
CN81IE  
CN80IE  
CNPU1 006E CN15PUE  
CN14PUE  
CN30PUE  
CN13PUE  
CN29PUE  
CN12PUE  
CN28PUE  
CN11PUE  
CN10PUE  
CN9PUE  
CN8PUE  
CN7PUE  
CN23PUE  
CN6PUE  
CN5PUE  
CN3PUE  
(1)  
(1)  
(1)  
CNPU2 0070 CN31PUE  
CN27PUE CN26PUE CN25PUE CN24PUE  
CN22PUE CN21PUE CN20PUE CN19PUE  
CN18PUE CN17PUE CN16PUE 0000  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
CNPU3 0072 CN47PUE(1) CN46PUE  
CN45PUE  
CN44PUE  
CN43PUE CN42PUE CN41PUE CN40PUE  
CN39PUE  
CN55PUE  
CN71PUE  
CN38PUE  
CN37PUE CN36PUE CN35PUE  
CN34PUE  
CN33PUE  
CN32PUE 0000  
(2)  
CNPU4 0074 CN63PUE  
CN62PUE  
CN61PUE  
CN60PUE  
CN59PUE CN58PUE CN57PUE CN56PUE  
CN54PUE  
CN70PUE  
CN53PUE CN52PUE CN51PUE  
CN50PUE CN49PUE CN48PUE  
0000  
(1)  
(1)  
(2)  
(2)  
(1)  
(1)  
(1)  
CNPU5 0076 CN79PUE(2) CN78PUE  
CN77PUE  
CN76PUE  
CN75PUE CN74PUE  
CN73PUE CN72PUE  
CN69PUE CN68PUE CN67PUE  
CN66PUE  
CN82PUE  
CN65PUE CN64PUE 0000  
(1)  
(2)  
(2)  
(2)  
CNPU6 0078  
CN84PUE CN83PUE  
CN81PUE CN80PUE  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are unimplemented in 64-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
TABLE 4-5:  
INTERRUPT CONTROLLER REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS  
DISI  
MATHERR ADDRERR STKERR OSCFAIL  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4444  
INTCON2  
IFS0  
0082  
0084  
0086  
0088  
008A  
008C  
008E  
0090  
0092  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00B8  
00BA  
00BC  
00BE  
00C2  
ALTIVT  
INT4EP  
DMA0IF  
INT1IF  
DMA3IF  
INT3EP  
T1IF  
CNIF  
INT2EP  
OC1IF  
CMIF  
INT1EP  
IC1IF  
INT0EP  
INT0IF  
DMA1IF  
U2RXIF  
DMA4IF  
RTCIF  
AD1IF  
INT2IF  
PMPIF  
DMA5IF  
CTMUIF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
OC7IF  
SPI1IF  
OC4IF  
OC6IF  
SPF1IF  
OC3IF  
OC5IF  
T3IF  
T2IF  
OC2IF  
IC7IF  
IC4IF  
INT4IF  
IC2IF  
IFS1  
U2TXIF  
DMA2IF  
IC6IF  
MI2C1IF SI2C1IF  
IFS2  
IC5IF  
IC3IF  
INT3IF  
SPI2IF  
SPF2IF  
IFS3  
MI2C2IF SI2C2IF  
IFS4  
LVDIF  
U4RXIF  
CRCIF  
U3TXIF  
U2ERIF  
U3RXIF  
U1ERIF  
U3ERIF  
IFS5  
U4TXIF  
U4ERIF  
IFS6  
LCDIF  
IFS7  
JTAGIF  
IC2IE  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
IPC12  
IPC13  
IPC15  
DMA1IE  
U2RXIE  
DMA4IE  
RTCIE  
AD1IE  
INT2IE  
PMPIE  
DMA5IE  
CTMUIE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
OC7IE  
SPI1IE  
OC4IE  
OC6IE  
SPF1IE  
OC3IE  
OC5IE  
T3IE  
T2IE  
OC2IE  
IC7IE  
IC4IE  
INT4IE  
DMA0IE  
INT1IE  
DMA3IE  
T1IE  
CNIE  
OC1IE  
CMIE  
IC1IE  
INT0IE  
U2TXIE  
DMA2IE  
IC6IE  
MI2C1IE SI2C1IE  
IC5IE  
IC3IE  
INT3IE  
SPI2IE  
SPF2IE  
MI2C2IE SI2C2IE  
LVDIE  
U4RXIE  
CRCIE  
U3TXIE  
U2ERIE  
U3RXIE  
U1ERIE  
U3ERIE  
U4TXIE  
U4ERIE  
LCDIE  
JTAGIE  
IC1IP1  
IC2IP1  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
IC1IP0  
IC2IP0  
INT0IP2  
INT0IP1  
INT0IP0  
DMA0IP2 DMA0IP1 DMA0IP0 4444  
T3IP2 T3IP1 T3IP0 4444  
U1RXIP2 U1RXIP1 U1RXIP0  
SPF1IP2 SPF1IP1 SPF1IP0  
AD1IP2 AD1IP1 AD1IP0  
MI2C1IP2 MI2C1IP1 MI2C1IP0  
CNIP2  
CNIP1  
CNIP0  
DMA1IP2 DMA1IP1 DMA1IP0  
U1TXIP2 U1TXIP1 U1TXIP0 0044  
SI2C1IP2 SI2C1IP1 SI2C1IP0 4444  
CMIP2  
IC7IP2  
OC4IP2  
CMIP1  
IC7IP1  
OC4IP1  
CMIP0  
IC7IP0  
OC4IP0  
INT1IP2  
DMA2IP2 DMA2IP1 DMA2IP0 4444  
T5IP2 T5IP1 T5IP0 4444  
INT1IP1  
INT1IP0  
4404  
T4IP2  
T4IP1  
T4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC5IP2  
PMPIP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC5IP1  
PMPIP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
IC5IP2  
OC7IP2  
IC5IP1  
OC7IP1  
IC5IP0  
OC7IP0  
SPF2IP2 SPF2IP1 SPF2IP0 0044  
DMA3IP2 DMA3IP1 DMA3IP0 4444  
IC4IP2  
OC6IP2  
IC4IP1  
OC6IP1  
IC4IP0  
OC6IP0  
OC5IP0  
PMPIP0  
IC6IP2  
IC6IP1  
IC6IP0  
4444  
0440  
0440  
0440  
0440  
DMA4IP2 DMA4IP1 DMA4IP0  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
SI2C2IP2 SI2C2IP1 SI2C2IP0  
INT3IP2 INT3IP1 INT3IP0  
DMA5IP2 DMA5IP1 DMA5IP0  
INT4IP2  
RTCIP2  
INT4IP1  
RTCIP1  
INT4IP0  
RTCIP0  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-5:  
INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC16  
IPC18  
IPC19  
IPC20  
IPC21  
IPC22  
IPC25  
IPC29  
00C4  
00C8  
00CA  
00CC  
00CE  
00D0  
00D6  
00DE  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2 U2ERIP1 U2ERIP0  
U1ERIP2 U1ERIP1 U1ERIP0  
LVDIP2  
LVDIP1  
LVDIP0  
4440  
0004  
0040  
4440  
4000  
CTMUIP2 CTMUIP1 CTMUIP0  
U3ERIP2 U3ERIP1 U3ERIP0  
U3TXIP2 U3TXIP1 U3TXIP0  
U4ERIP2 U4ERIP1 U4ERIP0  
U3RXIP2 U3RXIP1 U3RXIP0  
U4TXIP2 U4TXIP1 U4TXIP0  
U4RXIP2 U4RXIP1 U4RXIP0 0044  
LCDIP2  
LCDIP1  
LCDIP0  
0004  
0040  
JTAGIP2 JTAGIP1 JTAGIP0  
INTTREG 00E0 CPUIRQ  
VHOLD  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
TIMER REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
0108  
010A  
010C  
010E  
0110  
0112  
0114  
0116  
0118  
011A  
011C  
011E  
0120  
Timer1 Register  
0000  
FFFF  
0000  
0000  
0000  
0000  
FFFF  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
FFFF  
0000  
0000  
Timer1 Period Register  
T1CON  
TMR2  
TMR3HLD  
TMR3  
PR2  
TON  
TSIDL  
TIECS1  
TIECS0  
TGATE TCKPS1 TCKPS0  
TSYNC  
TCS  
Timer2 Register  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
Timer2 Period Register  
PR3  
Timer3 Period Register  
T2CON  
T3CON  
TMR4  
TMR5HLD  
TMR5  
PR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Timer4 Register  
Timer5 Holding Register (for 32-bit operations only)  
Timer5 Register  
Timer4 Period Register  
PR5  
Timer5 Period Register  
T4CON  
T5CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T45  
TCS  
TCS  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
INPUT CAPTURE REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1CON1 0140  
IC1CON2 0142  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
IC1BUF  
IC1TMR  
0144  
0146  
Input Capture 1 Buffer Register  
Timer Value 1 Register  
0000  
xxxx  
IC2CON1 0148  
IC2CON2 014A  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
IC2BUF  
IC2TMR  
014C  
014E  
Input Capture 2 Buffer Register  
Timer Value 2 Register  
0000  
xxxx  
IC3CON1 0150  
IC3CON2 0152  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
IC3BUF  
IC3TMR  
0154  
0156  
Input Capture 3 Buffer Register  
Timer Value 3 Register  
0000  
xxxx  
IC4CON1 0158  
IC4CON2 015A  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
IC4BUF  
IC4TMR  
015C  
015E  
Input Capture 4 Buffer Register  
Timer Value 4 Register  
0000  
xxxx  
IC5CON1 0160  
IC5CON2 0162  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
IC5BUF  
IC5TMR  
0164  
0166  
Input Capture 5 Buffer Register  
Timer Value 5 Register  
0000  
xxxx  
IC6CON1 0168  
IC6CON2 016A  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
IC6BUF  
IC6TMR  
016C  
016E  
Input Capture 6 Buffer Register  
Timer Value 6 Register  
0000  
xxxx  
IC7CON1 0170  
IC7CON2 0172  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
IC7BUF  
IC7TMR  
0174  
0176  
Input Capture 7 Buffer Register  
Timer Value 7 Register  
0000  
xxxx  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
OUTPUT COMPARE REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1CON1 0190  
OC1CON2 0192  
OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2  
OCINV DCB1 DCB0  
ENFLT1  
OC32  
ENFLT0  
OCFLT2  
OCFLT1  
OCFLT0  
TRIGMODE  
OCM2  
OCM1  
OCM0  
0000  
FLTMD FLTOUT FLTTRIEN  
OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000C  
OC1RS  
OC1R  
0194  
0196  
0198  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
Timer Value 1 Register  
0000  
0000  
xxxx  
0000  
OC1TMR  
OC2CON1 019A  
OC2CON2 019C  
OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2  
ENFLT1  
OC32  
ENFLT0  
OCFLT2  
OCFLT1  
OCFLT0  
TRIGMODE  
OCM2  
OCM1  
OCM0  
FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0  
OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000C  
OC2RS  
OC2R  
019E  
01A0  
01A2  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
Timer Value 2 Register  
0000  
0000  
xxxx  
0000  
OC2TMR  
OC3CON1 01A4  
OC3CON2 01A6  
OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2  
ENFLT1  
OC32  
ENFLT0  
OCFLT2  
OCFLT1  
OCFLT0  
TRIGMODE  
OCM2  
OCM1  
OCM0  
FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0  
OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000C  
OC3RS  
OC3R  
01A8  
01AA  
01AC  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
Timer Value 3 Register  
0000  
0000  
xxxx  
0000  
OC3TMR  
OC4CON1 01AE  
OC4CON2 01B0  
OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2  
ENFLT1  
OC32  
ENFLT0  
OCFLT2  
OCFLT1  
OCFLT0  
TRIGMODE  
OCM2  
OCM1  
OCM0  
FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0  
OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000C  
OC4RS  
OC4R  
01B2  
01B4  
01B6  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
Timer Value 4 Register  
0000  
0000  
xxxx  
0000  
OC4TMR  
OC5CON1 01B8  
OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2  
OCINV DCB1 DCB0  
ENFLT1  
OC32  
ENFLT0  
OCFLT1  
OCFLT1  
OCFLT0  
TRIGMODE  
OCM2  
OCM1  
OCM0  
OC5CON2 01BA FLTMD FLTOUT FLTTRIEN  
OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000C  
OC5RS  
OC5R  
01BC  
01BE  
01C0  
Output Compare 5 Secondary Register  
Output Compare 5 Register  
Timer Value 5 Register  
0000  
0000  
xxxx  
0000  
OC5TMR  
OC6CON1 01C2  
OC6CON2 01C4  
OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2  
ENFLT1  
OC32  
ENFLT0  
OCFLT2  
OCFLT1  
OCFLT0  
TRIGMODE  
OCM2  
OCM1  
OCM0  
FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0  
OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000C  
OC6RS  
OC6R  
01C6  
01C8  
01CA  
Output Compare 6 Secondary Register  
Output Compare 6 Register  
Timer Value 6 Register  
0000  
0000  
xxxx  
OC6TMR  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
OUTPUT COMPARE REGISTER MAP (CONTINUED)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC7CON1 01CC  
OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2  
OCINV DCB1 DCB0  
ENFLT1  
OC32  
ENFLT0  
OCFLT2  
OCFLT1  
OCFLT0  
TRIGMODE  
OCM2  
OCM1  
OCM0  
0000  
OC7CON2 01CE FLTMD FLTOUT FLTTRIEN  
OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000C  
OC7RS  
OC7R  
01D0  
01D2  
01D4  
Output Compare 7 Secondary Register  
Output Compare 7 Register  
Timer Value 7 Register  
0000  
0000  
xxxx  
OC7TMR  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
I2C™ REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
0200  
0202  
0204  
0206  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL  
IPMIEN  
A10M  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
S
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
I2C1STAT  
I2C1ADD  
I2C1MSK  
I2C2RCV  
I2C2TRN  
I2C2BRG  
I2C2CON  
0208  
020A  
020C  
0210  
0212  
0214  
0216  
ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
0000  
0000  
0000  
0000  
00FF  
0000  
1000  
Address Register  
Address Mask Register  
Receive Register  
Transmit Register  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL  
IPMIEN  
A10M  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
S
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
I2C2STAT  
I2C2ADD  
I2C2MSK  
0218  
021A  
021C  
ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
0000  
0000  
0000  
Address Register  
Address Mask Register  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-10: UART REGISTER MAPS  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
0230  
0232  
0234  
0236  
0238  
0250  
0252  
0254  
0256  
0258  
02B0  
02B2  
02B4  
02B6  
02B8  
UARTEN  
USIDL  
IREN  
RTSMD  
UTXBRK  
UTXEN  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1  
FERR  
PDSEL0  
OERR  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0000  
0110  
xxxx  
0000  
0000  
0000  
0110  
xxxx  
0000  
0000  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
URXISEL1 URXISEL0 ADDEN  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
Transmit Register  
Receive Register  
Baud Rate Generator Prescaler Register  
U2MODE  
U2STA  
UARTEN  
USIDL  
IREN  
RTSMD  
UTXBRK  
UTXEN  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1  
FERR  
PDSEL0  
OERR  
STSEL  
UTXISEL1 UTXINV UTXISEL0  
URXISEL1 URXISEL0 ADDEN  
URXDA  
U2TXREG  
U2RXREG  
U2BRG  
Transmit Register  
Receive Register  
Baud Rate Generator Prescaler Register  
U3MODE  
U3STA  
UARTEN  
USIDL  
IREN  
RTSMD  
UTXBRK  
UTXEN  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1  
FERR  
PDSEL0  
OERR  
STSEL  
UTXISEL1 UTXINV UTXISEL0  
URXISEL1 URXISEL0 ADDEN  
URXDA  
U3TXREG  
U3RXREG  
U3BRG  
Transmit Register  
Receive Register  
Baud Rate Generator Prescaler Register  
U4MODE  
U4STA  
UARTEN  
USIDL  
IREN  
RTSMD  
UTXBRK  
UTXEN  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1  
FERR  
PDSEL0  
OERR  
STSEL  
UTXISEL1 UTXINV UTXISEL0  
URXISEL1 URXISEL0 ADDEN  
URXDA  
U4TXREG  
U4RXREG  
U4BRG  
Transmit Register  
Receive Register  
Baud Rate Generator Prescaler Register  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: SPI REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
0240  
0242  
0244  
0248  
0260  
0262  
0264  
0268  
SPIEN  
SPISIDL  
SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF SPIRBF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
SMP  
CKE  
SSEN  
CKP  
MSTEN  
SPRE2  
PPRE1  
SPIFE  
PPRE0  
FRMEN SPIFSD SPIFPOL  
SPIBEN  
Transmit and Receive Buffer  
SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2  
SPI2STAT  
SPI2CON1  
SPI2CON2  
SPI2BUF  
SPIEN  
SPISIDL  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF SPIRBF  
DISSCK DISSDO MODE16  
SMP  
CKE  
SSEN  
CKP  
MSTEN  
SPRE2  
PPRE1  
SPIFE  
PPRE0  
FRMEN SPIFSD SPIFPOL  
SPIBEN  
Transmit and Receive Buffer  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: PORTA REGISTER MAP(1)  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7(2)  
Bit 6(2)  
Bit 5(2)  
Bit 4(2)  
Bit 3(2)  
Bit2(2)  
Bit 1(2)  
Bit 0(2)  
TRISA  
PORTA  
LATA  
02C0 TRISA15 TRISA14  
TRISA10 TRISA9  
TRISA7  
RA7  
TRISA6  
RA6  
TRISA5  
RA5  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
C6FF  
xxxx  
xxxx  
0000  
02C2  
02C4  
02C6  
RA15  
LATA15  
ODA15  
RA14  
LATA14  
ODA14  
RA10  
LATA10  
ODA10  
RA9  
LATA9  
ODA9  
LATA7  
ODA7  
LATA6  
ODA6  
LATA5  
ODA5  
LATA4  
ODA4  
LATA3  
ODA3  
LATA2  
ODA2  
LATA1  
ODA1  
LATA0  
ODA0  
ODCA  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Note 1: PORTA and all associated bits are unimplemented in 64-pin devices and read as ‘0’.  
2: These bits are also unimplemented in 80-pin devices, read as ‘0’.  
TABLE 4-13: PORTB REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8  
02CA  
02CC  
02CE  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9  
TRISB8  
RB8  
TRISB7  
RB7  
TRISB6  
RB6  
TRISB5  
RB5  
TRISB4  
RB4  
TRISB3 TRISB2  
TRISB1  
RB1  
TRISB0  
RB0  
FFFF  
xxxx  
xxxx  
0000  
RB15  
LATB15 LATB14 LATB13 LATB12  
ODB15 ODB14 ODB13 ODB12  
RB14  
RB13  
RB12  
RB11  
LATB11  
ODB11  
RB10  
LATB10  
ODB10  
RB9  
RB3  
RB2  
LATB9  
ODB9  
LATB8  
ODB8  
LATB7  
ODB7  
LATB6  
ODB6  
LATB5  
ODB5  
LATB4  
ODB4  
LATB3  
ODB3  
LATB2  
ODB2  
LATB1  
ODB1  
LATB0  
ODB0  
ODCB  
Legend: Reset values are shown in hexadecimal.  
TABLE 4-14: PORTC REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4(1)  
Bit 3(2)  
Bit 2(1)  
Bit 1(2)  
Bit 0  
TRISC  
PORTC  
LATC  
02D0 TRISC15  
02D2 RC15(3,4) RC14(5) RC13(5)  
TRISC12  
RC12(3)  
TRISC4 TRISC3 TRISC2 TRISC1  
901E  
xxxx  
xxxx  
0000  
RC4  
RC3  
RC2  
RC1  
02D4  
02D6  
LATC15 LATC14 LATC13 LATC12  
ODC15 ODC14 ODC13 ODC12  
LATC4  
ODC4  
LATC3  
ODC3  
LATC2  
ODC2  
LATC1  
ODC1  
ODCC  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Note 1: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin devices, read as ‘0’.  
3: RC12 and RC15 are only available when the primary oscillator is disabled or when EC mode is selected (POSCMD<1:0> Configuration bits = 11 or 00); otherwise read as ‘0’.  
4: RC15 is only available when the POSCMD<1:0> Configuration bits = 11 or 00and the OSCIOFN Configuration bit = 1.  
5: RC13 and RC14 are input ports only and cannot be used as output ports.  
TABLE 4-15: PORTD REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15(1) Bit 14(1) Bit 13(1) Bit 12(1)  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
PORTD  
LATD  
02D8  
02DA  
02DC  
02DE  
TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0  
FFFF  
xxxx  
xxxx  
0000  
RD15  
LATD15 LATD14 LATD13 LATD12 LATD11 LATD10  
ODD15 ODD14 ODD13 ODD12 ODD11 ODD10  
RD14  
RD13  
RD12  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
LATD9  
ODD9  
LATD8  
ODD8  
LATD7  
ODD7  
LATD6  
ODD6  
LATD5  
ODD5  
LATD4  
ODD4  
LATD3  
ODD3  
LATD2  
ODD2  
LATD1  
ODD1  
LATD0  
ODD0  
ODCD  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Note 1: These bits are unimplemented in 64-pin devices, read as ‘0’.  
TABLE 4-16: PORTE REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9(1)  
Bit 8(1)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISE  
PORTE  
LATE  
02E0  
02E2  
02E4  
02E6  
TRISE9  
RE9  
TRISE8  
RE8  
TRISE7  
RE7  
TRISE6  
RE6  
TRISE5  
RE5  
TRISE4  
RE4  
TRISE3  
RE3  
TRISE2  
RE2  
TRISE1  
RE1  
TRISE0  
RE0  
03FF  
xxxx  
xxxx  
0000  
LATE9  
ODE9  
LATE8  
ODE8  
LATE7  
ODE7  
LATE6  
ODE6  
LATE5  
ODE5  
LATE4  
ODE4  
LATE3  
ODE3  
LATE2  
ODE2  
LATE1  
ODE1  
LATE0  
ODE0  
ODCE  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Note 1: These bits are unimplemented in 64-pin devices, read as ‘0’.  
TABLE 4-17: PORTF REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13(1) Bit 12(1)  
Bit 11  
Bit 10  
Bit 9  
Bit 8(2)  
Bit 7(2)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISF  
PORTF  
LATF  
02E8  
02EA  
02EC  
02EE  
TRISF13 TRISF12  
TRISF8  
RF8  
TRISF7  
RF7  
TRISF6  
RF6  
TRISF5  
RF5  
TRISF4  
RF4  
TRISF3  
RF3  
TRISF2  
RF2  
TRISF1  
RF1  
TRISF0  
RF0  
31FF  
xxxx  
xxxx  
0000  
RF13  
LATF13  
ODF13  
RF12  
LATF12  
ODF12  
LATF8  
ODF8  
LATF7  
ODF7  
LATF6  
ODF6  
LATF5  
ODF5  
LATF4  
ODF4  
LATF3  
ODF3  
LATF2  
ODF2  
LATF1  
ODF1  
LATF0  
ODF0  
ODCF  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Note 1: These bits are unimplemented in 64-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
TABLE 4-18: PORTG REGISTER MAP  
File  
Name  
All  
Resets  
Addr Bit 15(1) Bit 14(1) Bit 13(1) Bit 12(1)  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1(2)  
Bit 0(2)  
TRISG  
PORTG  
LATG  
02F0 TRISG15 TRISG14 TRISG13 TRISG12  
TRISG9 TRISG8 TRISG7 TRISG6  
TRISG3 TRISG2 TRISG1 TRISG0  
F3CF  
xxxx  
xxxx  
0000  
02F2  
02F4 LATG15 LATG14 LATG13 LATG12  
02F6 ODG15 ODG14 ODG13 ODG12  
RG15  
RG14  
RG13  
RG12  
RG9  
RG8  
RG7  
LATG7  
ODG7  
RG6  
LATG6  
ODG6  
RG3  
RG2  
LATG2  
ODG2  
RG1  
RG0  
LATG9  
ODG9  
LATG8  
ODG8  
LATG1  
ODG1  
LATG0  
ODG0  
LATG3  
ODG3  
ODCG  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Note 1: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin devices, read as ‘0’.  
TABLE 4-19: PAD CONFIGURATION REGISTER MAP (PADCFG1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PADCFG1 02FC  
PMPTTL  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-20: A/D REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
A/D Data Buffer 0/Threshold for Channel 0  
A/D Data Buffer 1/Threshold for Channel 1  
A/D Data Buffer 2/Threshold for Channel 2  
A/D Data Buffer 3/Threshold for Channel 3  
A/D Data Buffer 4/Threshold for Channel 4  
A/D Data Buffer 5/Threshold for Channel 5  
A/D Data Buffer 6/Threshold for Channel 6  
A/D Data Buffer 7/Threshold for Channel 7  
A/D Data Buffer 8/Threshold for Channel 8  
A/D Data Buffer 9/Threshold for Channel 9  
A/D Data Buffer 10/Threshold for Channel 10  
A/D Data Buffer 11/Threshold for Channel 11  
A/D Data Buffer 12/Threshold for Channel 12  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
ADC1BUF10 0314  
ADC1BUF11 0316  
ADC1BUF12 0318  
ADC1BUF13 031A  
ADC1BUF14 031C  
ADC1BUF15 031E  
ADC1BUF16 0320  
ADC1BUF17 0322  
ADC1BUF18 0324  
ADC1BUF19 0326  
ADC1BUF20 0328  
ADC1BUF21 032A  
ADC1BUF22 032C  
ADC1BUF23 032E  
ADC1BUF24 0330  
ADC1BUF25 0332  
A/D Data Buffer 13/Threshold for Channel 13/Threshold for Channel 0 in Windowed Compare  
A/D Data Buffer 14/Threshold for Channel 14/Threshold for Channel 1 in Windowed Compare  
A/D Data Buffer 15/Threshold for Channel 15/Threshold for Channel 2 in Windowed Compare  
A/D Data Buffer 16/Threshold for Channel 16/Threshold for Channel 3 in Windowed Compare(1)  
A/D Data Buffer 17/Threshold for Channel 17/Threshold for Channel 4 in Windowed Compare(1)  
A/D Data Buffer 18/Threshold for Channel 18/Threshold for Channel 5 in Windowed Compare(1)  
A/D Data Buffer 19/Threshold for Channel 19/Threshold for Channel 6 in Windowed Compare(1)  
A/D Data Buffer 20/Threshold for Channel 20/Threshold for Channel 7 in Windowed Compare(1)  
A/D Data Buffer 21/Threshold for Channel 21/Threshold for Channel 8 in Windowed Compare(1)  
A/D Data Buffer 22/Threshold for Channel 22/Threshold for Channel 9 in Windowed Compare(1)  
A/D Data Buffer 23/Threshold for Channel 23/Threshold for Channel 10 in Windowed Compare(1)  
A/D Data Buffer 24/Threshold for Channel 24/Threshold for Channel 11 in Windowed Compare  
A/D Data Buffer 25/Threshold for Channel 25/Threshold for Channel 12 in Windowed Compare  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
0340  
0342  
0344  
0348  
034E  
0350  
ADON  
ADSIDL DMABM  
DMAEN MODE12 FORM1 FORM0  
SSRC3  
BUFS  
SSRC2  
SMPI4  
ADCS6  
SSRC1  
SMPI3  
ADCS5  
SSRC0  
SMPI2  
ADCS4  
ASAM  
SMPI0  
ADCS2  
SAMP  
BUFM  
ADCS1  
DONE  
ALTS  
PVCFG1 PVCFG0 NVCFG0 OFFCAL BUFREGEN CSCNA  
SMPI1  
ADCS3  
ADRC EXTSAM PUMPEN SAMC4 SAMC3 SAMC2 SAMC1 SAMC0  
ADCS7  
ADCS0  
CH0NB2 CH0NB1 CH0NB0 CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA2 CH0NA1 CH0NA0 CH0SA4 CH0SA3 CH0SA2 CH0SA1 CH0SA0 0000  
AD1CSSH  
AD1CSSL  
CSS30  
CSS14  
CSS29  
CSS13  
CSS28  
CSS12  
CSS27  
CSS11  
CSS26  
CSS10  
CSS25  
CSS9  
CSS24  
CSS8  
CSS23  
CSS7  
CSS22  
CSS6  
CSS21  
CSS5  
CSS20  
CSS4  
CSS19  
CSS3  
CSS18  
CSS2  
CSS17  
CSS1  
CSS16  
CSS0  
0000  
0000  
CSS15  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
TABLE 4-20: A/D REGISTER MAP (CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AD1CON4  
AD1CON5  
AD1CHITH  
AD1CHITL  
0352  
0354  
0356  
0358  
ASEN  
LPEN  
DMABL2 DMABL1 DMABL0 0000  
WM0 CM1 CM0 0000  
CTMREQ BGREQ  
ASINT1 ASINT0  
WM1  
CHH25(1) CHH24(1) CHH23(1) CHH22(1) CHH21(1) CHH20(1) CHH19(1) CHH18(1) CHH17(1) CHH16(1) 0000  
CHH15  
CHH14  
CHH13  
CHH12  
CHH11  
CHH10  
CHH9 CHH8 CHH7 CHH6 CHH5 CHH4 CHH3 CHH2 CHH1 CHH0 0000  
AD1CTMENH 0360  
CTMEN30 CTMEN29 CTMEN28 CTMEN27 CTMEN26 CTMEN25 CTMEN24 CTMEN23 CTMEN22 CTMEN21 CTMEN20 CTMEN19 CTMEN18 CTMEN17 CTMEN16 0000  
AD1CTMENL 0362 CTMEN15 CTMEN14 CTMEN13 CTMEN12 CTMEN11 CTMEN10 CTMEN9 CTMEN8 CTMEN7 CTMEN6 CTMEN5 CTMEN4 CTMEN3 CTMEN2 CTMEN1 CTMEN0 0000  
AD1DMBUF  
0364  
Conversion Data Buffer (Extended Buffer mode)  
xxxx  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
TABLE 4-21: CTMU REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CTMUCON1 035A CTMUEN  
CTMUSIDL  
TGEN  
EDGEN EDGSEQEN IDISSEN  
CTTRIG  
0000  
0000  
CTMUCON2 035C EDG1MOD EDG1POL EDG1SEL3 EDG1SEL2 EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT EDG2MOD EDG2POL EDG2SEL3 EDG2SEL2 EDG2SEL1 EDG2SEL0  
CTMUICON 035E ITRIM5 ITRIM4 ITRIM3 ITRIM2 ITRIM1 ITRIM0 IRNG1 IRNG0  
Legend: — = unimplemented, read as ‘ ’. Reset values are shown in hexadecimal.  
0000  
0
TABLE 4-22: ANALOG CONFIGURATION REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANCFG  
ANSA  
ANSB  
ANSC  
ANSD  
ANSE  
ANSG  
04DE  
04E0  
VBG6EN VBG2EN VBGEN  
0000  
00C0  
FFFF  
0010  
0CC0  
02F0  
03C0  
ANSA7(1) ANSA6(1)  
ANSB2  
ANSB1  
ANSB0  
04E2 ANSB15 ANSB14 ANSB13 ANSB12 ANSB11 ANSB10 ANSB9  
ANSB8  
ANSB7  
ANSB6  
ANSB5  
ANSB4  
ANSC4(1)  
ANSB3  
04E4  
04E6  
04E8  
04EC  
ANSD11 ANSD10  
ANSD7  
ANSE7  
ANSG7  
ANSD6  
ANSE6  
ANSG6  
ANSE9(2)  
ANSE5  
ANSE4  
ANSG9  
ANSG8  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin devices. In 80-pin devices, this bit needs to be cleared to get digital functionality on RE9.  
TABLE 4-23: DMA REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMACON  
DMABUF  
DMAL  
0380  
0382  
0384  
0386  
0388  
DMAEN  
PRSSEL 0000  
0000  
DMA Transfer Data Buffer  
DMA High Address Limit  
DMA Low Address Limit  
0000  
DMAH  
0000  
DMACH0  
DMAINT0  
NULLW RELOAD CHREQ SAMODE1 SAMODE0 DAMODE1 DAMODE0 TRMODE1 TRMODE0 BYTE  
LOWIF DONEIF HALFIF OVRUNIF  
CHEN  
0000  
038A DBUFWF  
CHSEL5 CHSEL4 CHSEL3 CHSEL2 CHSEL1 CHSEL0 HIGHIF  
HALFEN 0000  
0000  
DMASRC0 038C  
DMA Channel 0 Source Address  
DMA Channel 0 Destination Address  
DMA Channel 0 Transaction Count  
DMADST0  
DMACNT0  
DMACH1  
DMAINT1  
DMASRC1  
DMADST1  
DMACNT1  
DMACH2  
DMAINT2  
DMASRC2  
DMADST2  
DMACNT2  
DMACH3  
DMAINT3  
038E  
0390  
0392  
0000  
0001  
NULLW RELOAD CHREQ SAMODE1 SAMODE0 DAMODE1 DAMODE0 TRMODE1 TRMODE0 BYTE  
CHEN  
0000  
0394 DBUFWF  
CHSEL5 CHSEL4 CHSEL3 CHSEL2 CHSEL1 CHSEL0 HIGHIF LOWIF DONEIF HALFIF OVRUNIF  
HALFEN 0000  
0000  
0396  
0398  
039A  
DMA Channel 1 Source Address  
DMA Channel 1 Destination Address  
DMA Channel 1 Transaction Count  
0000  
0001  
039C  
NULLW RELOAD CHREQ SAMODE1 SAMODE0 DAMODE1 DAMODE0 TRMODE1 TRMODE0 BYTE  
CHEN  
0000  
039E DBUFWF  
CHSEL5 CHSEL4 CHSEL3 CHSEL2 CHSEL1 CHSEL0 HIGHIF LOWIF DONEIF HALFIF OVRUNIF  
HALFEN 0000  
0000  
03A0  
03A2  
03A4  
DMA Channel 2 Source Address  
DMA Channel 2 Destination Address  
DMA Channel 2 Transaction Count  
0000  
0001  
03A6  
03A8 DBUFWF  
DMASRC3 03AA  
NULLW RELOAD CHREQ SAMODE1 SAMODE0 DAMODE1 DAMODE0 TRMODE1 TRMODE0 BYTE  
CHEN  
0000  
CHSEL5 CHSEL4 CHSEL3 CHSEL2 CHSEL1 CHSEL0 HIGHIF LOWIF DONEIF HALFIF OVRUNIF  
HALFEN 0000  
0000  
DMA Channel 3 Source Address  
DMA Channel 3 Destination Address  
DMA Channel 3 Transaction Count  
DMADST3  
DMACNT3  
DMACH4  
DMAINT4  
DMASRC4  
DMADST4  
DMACNT4  
DMACH5  
DMAINT5  
03AC  
03AE  
03B0  
0000  
0001  
NULLW RELOAD CHREQ SAMODE1 SAMODE0 DAMODE1 DAMODE0 TRMODE1 TRMODE0 BYTE  
CHEN  
0000  
03B2 DBUFWF  
CHSEL5 CHSEL4 CHSEL3 CHSEL2 CHSEL1 CHSEL0 HIGHIF LOWIF DONEIF HALFIF OVRUNIF  
HALFEN 0000  
0000  
03B4  
03B6  
03B8  
DMA Channel 4 Source Address  
DMA Channel 4 Destination Address  
DMA Channel 4 Transaction Count  
0000  
0001  
03BA  
NULLW RELOAD CHREQ SAMODE1 SAMODE0 DAMODE1 DAMODE0 TRMODE1 TRMODE0 BYTE  
CHEN  
0000  
03BC DBUFWF  
CHSEL4 CHSEL3 CHSEL2 CHSEL1 CHSEL0 HIGHIF LOWIF DONEIF HALFIF OVRUNIF  
HALFEN 0000  
0000  
DMASRC5 03BE  
DMA Channel 5 Source Address  
DMA Channel 5 Destination Address  
DMA Channel 5 Transaction Count  
DMADST5  
DMACNT5  
03C0  
03C2  
0000  
0001  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-24: LCD REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LCDREG  
0580  
0582  
0584  
0586  
0590  
0592  
0594  
CPEN  
LCDIRE  
LCDEN  
BIAS2  
BIAS1  
BIAS0  
MODE13 CKSEL1 CKSEL0 0000  
LCDREF  
LCDCST2 LCDCST1 LCDCST0 VLCD3PE VLCD2PE VLCD1PE LRLAP1 LRLAP0 LRLBP1 LRLBP0  
LRLAT2  
LMUX2  
LP2  
LRLAT1  
LMUX1  
LP1  
LRLAT0  
LMUX0  
LP0  
0000  
0000  
0000  
0000  
0000  
LCDCON  
LCDSIDL  
SLPEN  
BIASMD  
S06C0  
WERR  
LCDA  
CS1  
WA  
CS0  
LCDPS  
WFT  
LP3  
LCDDATA0  
LCDDATA1  
LCDDATA2  
LCDDATA3  
LCDDATA4  
LCDDATA5  
LCDDATA6  
LCDDATA7  
LCDDATA8  
LCDDATA9  
S15C0  
S14C0  
S30C0  
S13C0  
S12C0  
S28C0  
S11C0  
S27C0  
S10C0  
S26C0  
S09C0  
S25C0  
S08C0  
S24C0  
S07C0  
S23C0  
S05C0  
S04C0  
S03C0  
S19C0  
S02C0  
S01C0  
S00C0  
S31C0  
S29C0  
S22C0  
S21C0  
S20C0  
S18C0  
S17C0  
S16C0  
S47C0 S46C0(1) S45C0(1) S44C0(1) S43C0(1) S42C0(1) S41C0(1) S40C0(1) S39C0(1) S38C0(1) S37C0(1) S36C0(1) S35C0(1) S34C0(1) S33C0(1) S32C0(1) 0000  
0596 S63C0(2) S62C0(2) S61C0(2) S60C0(2) S59C0(2) S58C0(2) S57C0(2) S56C0(2) S55C0(2) S54C0(2) S53C0(2) S52C0(2) S51C0(2) S50C0(1) S49C0(2) S48C0  
0000  
0000  
0000  
0598  
059A  
059C  
S15C1  
S14C1  
S13C1  
S12C1  
S11C1  
S10C1  
S09C1  
S08C1  
S07C1  
S06C1  
S05C1  
S04C1  
S03C1  
S02C1  
S01C1  
S00C1  
S31C1  
S30C1  
S29C1  
S28C1  
S27C1  
S26C1  
S25C1  
S24C1  
S23C1  
S22C1  
S21C1  
S20C1  
S19C1  
S18C1  
S17C1  
S16C1  
S47C1 S46C1(1) S45C1(1) S44C1(1) S43C1(1) S42C1(1) S41C1(1) S40C1(1) S39C1(1) S38C1(1) S37C1(1) S36C1(1) S35C1(1) S34C1(1) S33C1(1) S32C1(1) 0000  
059E S63C1(2) S62C1(2) S61C1(2) S60C1(2) S59C1(2) S58C1(2) S57C1(2) S56C1(2) S55C1(2) S54C1(2) S53C1(2) S52C1(2) S51C1(2) S50C1(1) S49C1(2) S48C1  
0000  
0000  
0000  
05A0  
05A2  
S15C2  
S31C2  
S14C2  
S30C2  
S13C2  
S29C2  
S12C2  
S28C2  
S11C2  
S27C2  
S10C2  
S26C2  
S09C2  
S25C2  
S08C2  
S24C2  
S07C2  
S23C2  
S06C2  
S22C2  
S05C2  
S21C2  
S04C2  
S20C2  
S03C2  
S19C2  
S02C2  
S18C2  
S01C2  
S17C2  
S00C2  
S16C2  
LCDDATA10 05A4  
LCDDATA11 05A6 S63C2(2) S62C2(2) S61C2(2) S60C2(2) S59C2(2) S58C2(2) S57C2(2) S56C2(2) S55C2(2) S54C2(2) S53C2(2) S52C2(2) S51C2(2) S50C2(1) S49C2(2) S48C2  
S47C2 S46C2(1) S45C2(1) S44C2(1) S43C2(1) S42C2(1) S41C2(1) S40C2(1) S39C2(1) S38C2(1) S37C2(1) S36C2(1) S35C2(1) S34C2(1) S33C2(1) S32C2(1) 0000  
0000  
0000  
0000  
LCDDATA12 05A8  
LCDDATA13 05AA  
LCDDATA14 05AC  
S15C3  
S14C3  
S13C3  
S12C3  
S11C3  
S10C3  
S09C3  
S08C3  
S07C3  
S06C3  
S05C3  
S04C3  
S03C3  
S02C3  
S01C3  
S00C3  
S31C3  
S30C3  
S29C3  
S28C3  
S27C3  
S26C3  
S25C3  
S24C3  
S23C3  
S22C3  
S21C3  
S20C3  
S19C3  
S18C3  
S17C3  
S16C3  
S47C3 S46C3(1) S45C3(1) S44C3(1) S43C3(1) S42C3(1) S41C3(1) S40C3(1) S39C3(1) S38C3(1) S37C3(1) S36C3(1) S35C3(1) S34C3(1) S33C3(1) S32C3(1) 0000  
LCDDATA15 05AE S63C3(2) S62C3(2) S61C3(2) S60C3(2) S59C3(2) S58C3(2) S57C3(2) S56C3(2) S55C3(2) S54C3(2) S53C3(2) S52C3(2) S51C3(2) S50C3(1) S49C3(2) S48C3  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
LCDSE3  
LCDSE2  
LCDSE1  
LCDSE0  
058E  
058C  
058A  
0588  
SE63(2)  
SE62(2)  
SE46(1)  
SE30  
SE61(2)  
SE45(1)  
SE29  
SE60(2)  
SE44(1)  
SE28  
SE59(2)  
SE43(1)  
SE27  
SE58(2)  
SE42(1)  
SE26  
SE57(2)  
SE41(1)  
SE25  
SE56(2)  
SE40(1)  
SE24  
SE55(2)  
SE39(1)  
SE23  
SE54(2)  
SE38(1)  
SE22  
SE53(2)  
SE37(1)  
SE21  
SE52(2)  
SE36(1)  
SE20  
SE51(2)  
SE35(1)  
SE019  
SE03  
SE50(1)  
SE34(1)  
SE18  
SE49(2)  
SE33(1)  
SE17  
SE48  
SE32(1)  
SE16  
SE47  
SE31  
SE15  
SE14  
SE13  
SE12  
SE11  
SE10  
SE09  
SE08  
SE07  
SE06  
SE05  
SE04  
SE02  
SE01  
SE00  
LCDDATA16 05B0  
LCDDATA17 05B2  
LCDDATA18 05B4  
S15C4  
S31C4  
S14C4  
S30C4  
S13C4  
S29C4  
S12C4  
S28C4  
S11C4  
S27C4  
S10C4  
S26C4  
S09C4  
S25C4  
S08C4  
S24C4  
S07C4  
S23C4  
S06C4  
S22C4  
S05C4  
S21C4  
S04C4  
S20C4  
S03C4  
S19C4  
S02C4  
S18C4  
S01C4  
S17C4  
S00C4  
S16C4  
S47C4 S46C4(1) S45C4(1) S44C4(1) S43C4(1) S42C4(1) S41C4(1) S40C4(1) S39C4(1) S38C4(1) S37C4(1) S36C4(1) S35C4(1) S34C4(1) S33C4(1) S32C4(1) 0000  
LCDDATA19 05B6 S63C4(2) S62C4(2) S61C4(2) S60C4(2) S59C4(2) S58C4(2) S57C4(2) S56C4(2) S55C4(2) S54C4(2) S53C4(2) S52C4(2) S51C4(2) S50C4(1) S49C4(2) S48C4  
0000  
0000  
0000  
LCDDATA20 05B8  
LCDDATA21 05BA  
LCDDATA22 05BC  
S15C5  
S14C5  
S13C5  
S12C5  
S11C5  
S10C5  
S09C5  
S08C5  
S07C5  
S06C5  
S05C5  
S04C5  
S03C5  
S02C5  
S01C5  
S00C5  
S31C5  
S30C5  
S29C5  
S28C5  
S27C5  
S26C5  
S25C5  
S24C5  
S23C5  
S22C5  
S21C5  
S20C5  
S19C5  
S18C5  
S17C5  
S16C5  
S47C5 S46C5(1) S45C5(1) S44C5(1) S43C5(1) S42C5(1) S41C5(1) S40C5(1) S39C5(1) S38C5(1) S37C5(1) S36C5(1) S35C5(1) S34C5(1) S33C5(1) S32C5(1) 0000  
LCDDATA23 05BE S63C5(2) S62C5(2) S61C5(2) S60C5(2) S59C5(2) S58C5(2) S57C5(2) S56C5(2) S55C5(2) S54C5(2) S53C5(2) S52C5(2) S51C5(2) S50C5(1) S49C5(2) S48C5  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are unimplemented in 64-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin and 80-pin devices, devices, read as ‘0’.  
TABLE 4-24: LCD REGISTER MAP (CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LCDDATA24 05C0  
LCDDATA25 05C2  
LCDDATA26 05C4  
S15C6  
S31C6  
S14C6  
S30C6  
S13C6  
S29C6  
S12C6  
S28C6  
S11C6  
S27C6  
S10C6  
S26C6  
S09C6  
S25C6  
S08C6  
S24C6  
S07C6  
S23C6  
S06C6  
S22C6  
S05C6  
S21C6  
S04C6  
S20C6  
S03C6  
S19C6  
S02C6  
S18C6  
S01C6  
S17C6  
S00C6  
S16C6  
0000  
0000  
S47C6 S46C6(1) S45C6(1) S44C6(1) S43C6(1) S42C6(1) S41C6(1) S40C6(1) S39C6(1) S38C6(1) S37C6(1) S36C6(1) S35C6(1) S34C6(1) S33C6(1) S32C6(1) 0000  
LCDDATA27 05C6 S63C6(2) S62C6(2) S61C6(2) S60C6(2) S59C6(2) S58C6(2) S57C6(2) S56C6(2) S55C6(2) S54C6(2) S53C6(2) S52C6(2) S51C6(2) S50C6(1) S49C6(2) S48C6  
0000  
0000  
0000  
LCDDATA28 05C8  
LCDDATA29 05CA  
LCDDATA30 05CC  
S15C7  
S14C7  
S13C7  
S12C7  
S11C7  
S10C7  
S09C7  
S08C7  
S07C7  
S06C7  
S05C7  
S04C7  
S03C7  
S02C7  
S01C7  
S00C7  
S31C7  
S30C7  
S29C7  
S28C7  
S27C7  
S26C7  
S25C7  
S24C7  
S23C7  
S22C7  
S21C7  
S20C7  
S19C7  
S18C7  
S17C7  
S16C7  
S47C7 S46C7(1) S45C7(1) S44C7(1) S43C7(1) S42C7(1) S41C7(1) S40C7(1) S39C7(1) S38C7(1) S37C7(1) S36C7(1) S35C7(1) S34C7(1) S33C7(1) S32C7(1) 0000  
LCDDATA31 05CE S63C7(2) S62C7(2) S61C7(2) S60C7(2) S59C7(2) S58C7(2) S57C7(2) S56C7(2) S55C7(2) S54C7(2) S53C7(2) S52C7(2) S51C7(2) S50C7(1) S49C7(2) S48C7  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are unimplemented in 64-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin and 80-pin devices, devices, read as ‘0’.  
TABLE 4-25: PARALLEL MASTER/SLAVE PORT REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON1  
PMCON2  
PMCON3  
PMCON4  
0600  
0602  
PMPEN  
BUSY  
PSIDL ADRMUX1 ADRMUX0  
MODE1  
MODE0  
CSF1  
CSF0  
ALP  
ALMODE  
BUSKEEP IRQM1  
IRQM0  
0000  
ERROR TIMEOUT  
RADDR23 RADDR22 RADDR21 RADDR20 RADDR19 RADDR18 RADDR17 RADDR16 0000  
0604 PTWREN PTRDEN PTBE1EN PTBE0EN  
0606 PTEN15 PTEN14 PTEN13 PTEN12  
CSDIS CSP CSPTEN BEP  
PMCS1BS 060A BASE23 BASE22 BASE21 BASE20  
AWAITM1 AWAITM0 AWAITE  
PTEN22  
PTEN6  
PTSZ1  
PTEN21  
PTEN5  
PTSZ0  
PTEN20  
PTEN4  
PTEN19  
PTEN3  
PTEN18  
PTEN2  
PTEN17  
PTEN1  
PTEN16  
PTEN0  
0000  
0000  
0000  
0200  
PTEN11  
PTEN10  
WRSP  
BASE18  
PTEN9  
RDSP  
BASE17  
PTEN8  
SM  
PTEN7  
ACKP  
PMCS1CF 0608  
BASE19  
BASE16  
BASE15  
BASE11  
PMCS1MD 060C  
PMCS2CF 060E  
ACKM1  
CSDIS  
ACKM0 AMWAIT2 AMWAIT1 AMWAIT0  
DWAITB1 DWAITB0 DWAITM3 DWAITM2 DWAITM1 DWAITM0 DWAITE1 DWAITE0 0000  
CSP  
CSPTEN  
BEP  
WRSP  
BASE18  
RDSP  
BASE17  
SM  
ACKP  
PTSZ1  
PTSZ0  
0000  
0600  
PMCS2BS 0610 BASE23  
BASE22 BASE21 BASE20  
BASE19  
BASE16  
BASE15  
BASE11  
PMCS2MD 0612  
PMDOUT1 0614  
PMDOUT2 0616  
ACKM1  
ACKM0 AMWAIT2 AMWAIT1 AMWAIT0  
Data Out Register 1<15:8>  
Data Out Register 2<15:8>  
Data In Register 1<15:8>  
DWAITB1 DWAITB0 DWAITM3 DWAITM2 DWAITM1 DWAITM0 DWAITE1 DWAITE0 0000  
Data Out Register 1<7:0>  
Data Out Register 2<7:0>  
Data In Register 1<7:0>  
Data In Register 2<7:0>  
xxxx  
xxxx  
xxxx  
xxxx  
008F  
PMDIN1  
PMDIN2  
PMSTAT  
0618  
061A  
061C  
Data In Register 2<15:8>  
IBF  
IBOV  
IB3F  
IB2F  
IB1F  
IB0F  
OBE  
OBUF  
OB3E  
OB2E  
OB1E  
OB0E  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-26: REAL-TIME CLOCK AND CALENDAR (RTCC) REGISTER MAP  
All  
Resets  
File Name Addr  
0620  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALRMVAL  
ALCFGRPT 0622 ALRMEN CHIME  
RTCVAL 0624  
RCFGCAL 0626 RTCEN  
RTCPWC 0628 PWCEN PWCPOL PWCPRE PWSPRE RTCLK1 RTCLK0 RTCOUT1 RTCOUT0  
Alarm Value Register Window Based on ALRMPTR<1:0>  
AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6  
RTCC Value Register Window Based on RTCPTR<1:0>  
xxxx  
AMASK3  
ARPT5  
ARPT4  
ARPT3  
ARPT2 ARPT1 ARPT0 0000  
xxxx  
RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR1 RTCPTR0  
CAL7  
CAL6  
CAL5  
CAL4  
CAL3  
CAL2  
CAL1  
CAL0 Note 1  
Note 1  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: The status of the RCFGCAL and RTCPWR registers on POR is ‘0000’, and on other Resets, it is unchanged.  
TABLE 4-27: DATA SIGNAL MODULATOR (DSM) REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MDCON  
MDSRC  
MDCAR  
062A  
062C  
MDEN  
MDSIDL  
MDOE  
MDSLR MDOPOL  
MDBIT  
MS0  
0020  
000x  
0000  
SODIS  
MS3  
CL3  
MS2  
CL2  
MS1  
CL1  
062E CHODIS CHPOL CHSYNC  
CH3  
CH2  
CH1  
CH0  
CLODIS  
CLPOL CLSYNC  
CL0  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-28: COMPARATORS REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMSTAT  
CVRCON  
CM1CON  
CM2CON  
CM3CON  
0630  
0632  
0634  
0636  
0638  
CMIDL  
C3EVT  
C2EVT  
C1EVT  
CVRR  
CVR3  
C3OUT  
CVR2  
C2OUT  
CVR1  
CCH1  
CCH1  
CCH1  
C1OUT  
CVR0  
CCH0  
CCH0  
CCH0  
0000  
0000  
0000  
0000  
0000  
CVREFP CVREFM1 CVREFM0 CVREN CVROE  
CVRSS  
CREF  
CREF  
CREF  
CON  
CON  
CON  
COE  
COE  
COE  
CPOL  
CPOL  
CPOL  
CEVT  
CEVT  
CEVT  
COUT  
COUT  
COUT  
EVPOL1 EVPOL0  
EVPOL1 EVPOL0  
EVPOL1 EVPOL0  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-29: CRC REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CRCCON1  
0640  
CRCEN  
CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN  
0040  
PLEN2  
PLEN1  
PLEN0  
CRCCON2  
CRCXORL  
CRCXORH  
CRCDATL  
CRCDATH  
0642  
0644  
0646  
0648  
064A  
DWIDTH4 DWIDTH3 DWIDTH2 DWIDTH1 DWIDTH0  
X7  
X6  
X5  
PLEN4  
X4  
PLEN3  
X3  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
X15  
X31  
X14  
X30  
X13  
X29  
X12  
X28  
X11  
X27  
X10  
X26  
X9  
X8  
X2  
X1  
X25  
X24  
X23  
X22  
X21  
X20  
X19  
X18  
X17  
X16  
CRC Data Input Register Low  
CRC Data Input Register High  
CRC Result Register Low  
CRC Result Register High  
CRCWDATL 064C  
CRCWDATH 064E  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
RPINR1  
RPINR2  
RPINR3  
RPINR4  
RPINR7  
RPINR8  
RPINR9  
RPINR10  
RPINR11  
RPINR17  
RPINR18  
RPINR19  
RPINR20  
0680  
0682  
0684  
0686  
0688  
068E  
0690  
0692  
0694  
0696  
06A2  
06A4  
06A6  
06A8  
INT1R5  
INT3R5  
INT1R4  
INT3R4  
INT1R3  
INT3R3  
INT1R2  
INT3R2  
INT1R1  
INT3R1  
INT1R0  
INT3R0  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
003F  
INT2R5  
INT4R5  
INT2R4  
INT4R4  
INT2R3  
INT4R3  
INT2R2  
INT4R2  
INT2R1  
INT4R1  
INT2R0  
INT4R0  
T3CKR5  
T5CKR5  
IC2R5  
IC4R5  
IC6R5  
T3CKR4  
T5CKR4  
IC2R4  
IC4R4  
IC6R4  
T3CKR3  
T5CKR3  
IC2R3  
IC4R3  
IC6R3  
T3CKR2  
T5CKR2  
IC2R2  
IC4R2  
IC6R2  
T3CKR1  
T5CKR1  
IC2R1  
IC4R1  
IC6R1  
T3CKR0  
T5CKR0  
IC2R0  
IC4R0  
IC6R0  
T2CKR5 T2CKR4 T2CKR3 T2CKR2 T2CKR1 T2CKR0  
T4CKR5 T4CKR4 T4CKR3 T4CKR2 T4CKR1 T4CKR0  
IC1R5  
IC3R5  
IC5R5  
IC7R5  
IC1R4  
IC3R4  
IC5R4  
IC7R4  
IC1R3  
IC3R3  
IC5R3  
IC7R3  
IC1R2  
IC3R2  
IC5R2  
IC7R2  
IC1R1  
IC3R1  
IC5R1  
IC7R1  
IC1R0  
IC3R0  
IC5R0  
IC7R0  
OCFBR5 OCFBR4 OCFBR3 OCFBR2 OCFBR1 OCFBR0  
U3RXR5 U3RXR4 U3RXR3 U3RXR2 U3RXR1 U3RXR0  
OCFAR5 OCFAR4 OCFAR3 OCFAR2 OCFAR1 OCFAR0 3F3F  
3F00  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
003F  
3F3F  
003F  
U1CTSR5 U1CTSR4 U1CTSR3 U1CTSR2 U1CTSR1 U1CTSR0  
U2CTSR5 U2CTSR4 U2CTSR3 U2CTSR2 U2CTSR1 U2CTSR0  
U1RXR5 U1RXR4 U1RXR3 U1RXR2 U1RXR1 U1RXR0  
U2RXR5 U2RXR4 U2RXR3 U2RXR2 U2RXR1 U2RXR0  
SCK1R5  
SCK1R4  
SCK1R3  
SCK1R2  
SCK1R1  
SCK1R0  
SDI1R5  
SS1R5  
SDI2R5  
SS2R5  
SDI1R4  
SS1R4  
SDI2R4  
SS2R4  
SDI1R3  
SS1R3  
SDI2R3  
SS2R3  
SDI1R2  
SS1R2  
SDI2R2  
SS2R2  
SDI1R1  
SS1R1  
SDI2R1  
SS2R1  
SDI1R0  
SS1R0  
SDI2R0  
SS2R0  
RPINR21 06AA  
RPINR22 06AC  
RPINR23 06AE  
U3CTSR5 U3CTSR4 U3CTSR3 U3CTSR2 U3CTSR1 U3CTSR0  
SCK2R5  
T1CKR5  
SCK2R4  
T1CKR4  
SCK2R3  
T1CKR3  
SCK2R2  
T1CKR2  
SCK2R1  
T1CKR1  
SCK2R0  
T1CKR0  
RPINR27  
06B6  
U4CTSR5 U4CTSR4 U4CTSR3 U4CTSR2 U4CTSR1 U4CTSR0  
U4RXR5 U4RXR4 U4RXR3 U4RXR2 U4RXR1 U4RXR0  
MDMIR5 MDMIR4 MDMIR3 MDMIR2 MDMIR1 MDMIR0  
RPINR30 06BC  
RPINR31 06BE  
MDC2R5 MDC2R4 MDC2R3 MDC2R2 MDC2R1 MDC2R0  
MDC1R5 MDC1R4 MDC1R3 MDC1R2 MDC1R1 MDC1R0 3F3F  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are unimplemented in 64-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
RPOR7  
RPOR8  
RPOR9  
RPOR10  
RPOR11  
RPOR12  
RPOR13  
RPOR14  
RPOR15  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
06D0  
06D2  
06D4  
06D6  
06D8  
06DA  
06DC  
06DE  
RP1R5  
RP3R5  
RP1R4  
RP3R4  
RP1R3  
RP3R3  
RP1R2  
RP3R2  
RP1R1  
RP3R1  
RP1R0  
RP3R0  
RP0R5  
RP2R5  
RP4R5  
RP6R5  
RP8R5  
RP0R4  
RP2R4  
RP4R4  
RP6R4  
RP8R4  
RP0R3  
RP2R3  
RP4R3  
RP6R3  
RP8R3  
RP0R2  
RP2R2  
RP4R2  
RP6R2  
RP8R2  
RP0R1  
RP2R1  
RP4R1  
RP6R1  
RP8R1  
RP0R0  
RP2R0  
RP4R0  
RP6R0  
RP8R0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
RP5R5(1) RP5R4(1) RP5R3(1) RP5R2(1) RP5R1(1) RP5R0(1)  
RP7R5  
RP9R5  
RP11R5  
RP13R5  
RP7R4  
RP9R4  
RP11R4  
RP13R4  
RP7R3  
RP9R3  
RP11R3  
RP13R3  
RP7R2  
RP9R2  
RP11R2  
RP13R2  
RP7R1  
RP9R1  
RP11R1  
RP13R1  
RP7R0  
RP9R0  
RP11R0  
RP13R0  
RP10R5 RP10R4 RP10R3 RP10R2 RP10R1 RP10R0  
RP12R5 RP12R4 RP12R3 RP12R2 RP12R1 RP12R0  
RP14R5 RP14R4 RP14R3 RP14R2 RP14R1 RP14R0  
RP16R5 RP16R4 RP16R3 RP16R2 RP16R1 RP16R0  
RP18R5 RP18R4 RP18R3 RP18R2 RP18R1 RP18R0  
RP20R5 RP20R4 RP20R3 RP20R2 RP20R1 RP20R0  
RP22R5 RP22R4 RP22R3 RP22R2 RP22R1 RP22R0  
RP24R5 RP24R4 RP24R3 RP24R2 RP24R1 RP24R0  
RP26R5 RP26R4 RP26R3 RP26R2 RP26R1 RP26R0  
RP28R5 RP28R4 RP28R3 RP28R2 RP28R1 RP28R0  
RP30R5 RP30R4 RP30R3 RP30R2 RP30R1 RP30R0  
RP15R5(1) RP15R4(1) RP15R3(1) RP15R2(1) RP15R1(1) RP15R0(1)  
RP17R5  
RP19R5  
RP21R5  
RP23R5  
RP25R5  
RP27R5  
RP29R5  
RP17R4  
RP19R4  
RP21R4  
RP23R4  
RP25R4  
RP27R4  
RP29R4  
RP17R3  
RP19R3  
RP21R3  
RP23R3  
RP25R3  
RP27R3  
RP29R3  
RP17R2  
RP19R2  
RP21R2  
RP23R2  
RP25R2  
RP27R2  
RP29R2  
RP17R1  
RP19R1  
RP21R1  
RP23R1  
RP25R1  
RP27R1  
RP29R1  
RP17R0  
RP19R0  
RP21R0  
RP23R0  
RP25R0  
RP27R0  
RP29R0  
RP31R5(2) RP31R4(2) RP31R3(2) RP31R2(2) RP31R1(2) RP31R0(2)  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: These bits are unimplemented in 64-pin devices, read as ‘0’.  
2: These bits are unimplemented in 64-pin and 80-pin devices, read as ‘0’.  
TABLE 4-31: SYSTEM CONTROL (CLOCK AND RESET) REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740 TRAPR IOPUWR  
RETEN  
COSC0  
DOZE0  
DPSLP  
NOSC2  
CM  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
Note 1  
OSCCON  
CLKDIV  
OSCTUN  
0742  
0744  
0748  
ROI  
COSC2  
DOZE2  
COSC1  
DOZE1  
NOSC1  
NOSC0 CLKLOCK IOLOCK  
LOCK  
POSCEN SOSCEN OSWEN Note 2  
DOZEN RCDIV2 RCDIV1 RCDIV0  
TUN2  
TUN1  
3100  
0000  
0000  
0000  
Note 1  
TUN5  
TUN4  
TUN3  
TUN0  
REFOCON 074E  
ROEN  
LVDEN  
ROSSLP ROSEL  
RODIV3 RODIV2 RODIV1 RODIV0  
LVDCON  
RCON2  
0756  
0762  
LSIDL  
DIR  
BGVST  
IRVST  
LVDL3  
LVDL2  
LVDL1  
LVDL0  
VBAT  
r
VDDBOR VDDPOR VBPOR  
Legend: — = unimplemented, read as ‘0’; r = reserved. Reset values are shown in hexadecimal.  
Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 7.0 “Resets” for more information.  
2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 9.0 “Oscillator Configuration” for more information.  
TABLE 4-32: DEEP SLEEP REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DSCON  
0758  
075A  
075C  
075E  
DSEN  
r
DSBOR RELEASE 0000(1)  
DSWAKE  
DSGPR0  
DSGPR1  
DSINT0  
DSFLT  
DSWDT DSRTCC DSMCLR  
0000(1)  
0000(1)  
0000(1)  
Deep Sleep Semaphore Data 0  
Deep Sleep Semaphore Data 1  
Legend: — = unimplemented, read as ‘0’; r = reserved. Reset values are shown in hexadecimal.  
Note 1: These registers are only reset on a VDD POR event.  
TABLE 4-33: NVM REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000(1)  
NVMKEY Register<7:0>  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-34: PMD REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD6  
PMD7  
0770  
0772  
0774  
0776  
077A  
077C  
T5MD  
T4MD  
IC7MD  
T3MD  
IC6MD  
T2MD  
IC5MD  
T1MD  
I2C1MD  
U2MD  
OC7MD  
U1MD  
SPI2MD SPI1MD  
ADC1MD 0000  
IC4MD  
IC3MD  
IC2MD  
IC1MD  
OC6MD OC5MD OC4MD OC3MD OC2MD OC1MD 0000  
DSMMD CMPMD RTCCMD PMPMD CRCMD  
U3MD  
I2C2MD  
0000  
0000  
UPWMMD U4MD  
REFOMD CTMUMD LVDMD  
LCDMD  
SPI3MD 0000  
0000  
DMA1MD DMA0MD  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
PIC24FJ128GA310 FAMILY  
The data addressing range of PIC24FJ128GA310 family  
devices depends on the version of the Enhanced  
Parallel Master Port implemented on a particular device;  
this is in turn a function of device pin count. Table 4-35  
lists the total memory accessible by each of the devices  
in this family. For more details on accessing external  
memory using EPMP, refer to the “PIC24F Family Refer-  
ence Manual”, Section 42. “Enhanced Parallel Master  
Port (EPMP)” (DS39730).  
4.2.5  
EXTENDED DATA SPACE (EDS)  
The Extended Data Space (EDS) allows PIC24F  
devices to address a much larger range of data than  
would otherwise be possible with a 16-bit address  
range. EDS includes any additional internal data mem-  
ory not directly accessible by the lower 32-Kbyte data  
address space, and any external memory through  
EPMP.  
In addition, EDS also allows read access to the  
program memory space. This feature is called Program  
Space Visibility (PSV), and is discussed in detail in  
Section 4.3.3 “Reading Data from Program Memory  
Using EDS”.  
.
TABLE 4-35: TOTAL ACCESSIBLE DATA  
MEMORY  
External RAM  
Internal  
RAM  
Family  
Access Using  
EPMP  
Figure 4-4 displays the entire EDS space. The EDS is  
organized as pages, called EDS pages, with one page  
equal to size of the EDS window (32 Kbytes). A partic-  
ular EDS page is selected through the Data Space  
Read register (DSRPAG) or Data Space Write register  
(DSWPAG). For PSV, only the DSRPAG register is  
used. The combination of the DSRPAG register value  
and the 16-bit wide data address forms a 24-bit  
Effective Address (EA).  
PIC24FJXXXGA310  
PIC24FJXXXGA308  
PIC24FJXXXGA306  
8K  
8K  
8K  
Up to 16 MB  
Up to 64K  
Up to 64K  
Note:  
Accessing Page 0 in the EDS window will  
generate an address error trap as Page 0  
is the base data memory (data locations  
0800h to 7FFFh in the lower data space).  
FIGURE 4-4:  
EXTENDED DATA SPACE  
0000h  
Special  
Function  
Registers  
0800h  
Internal  
Data  
Memory  
Space  
(up to  
30 Kbytes)  
EDS Pages  
8000h  
008000h  
FF8000h  
000000h  
7F8000h  
000001h  
7F8001h  
32-Kbyte  
EDS  
Window  
Program  
Space  
Access  
(Lower  
Word)  
Program  
Space  
Access  
(Lower  
Word)  
Program  
Space  
Access  
(Upper  
Word)  
Program  
Space  
Access  
(Upper  
External  
Memory  
Access  
using  
External  
Memory  
Access  
using  
Word)  
EPMP(1)  
EPMP(1)  
00FFFEh  
FFFFFEh  
007FFEh  
7FFFFEh  
007FFFh  
7FFFFFh  
FFFEh  
DSxPAG  
= 001h  
DSx PAG  
= 1FFh  
DSRPAG  
= 200h  
DSRPAG  
= 2FFh  
DSRPAG  
= 300h  
DSRPAG  
= 3FFh  
EPMP Memory Space(1)  
The range of addressable memory available is dependent on the device pin count and EPMP implementation.  
Program Memory  
Note 1:  
2010-2011 Microchip Technology Inc.  
DS39996F-page 65  
PIC24FJ128GA310 FAMILY  
Example 4-1 shows how to read a byte, word and  
double-word from EDS.  
4.2.5.1  
Data Read from EDS  
In order to read the data from the EDS space, first, an  
Address Pointer is set up by loading the required EDS  
page number into the DSRPAG register and assigning  
the offset address to one of the W registers. Once the  
above assignment is done, the EDS window is enabled  
by setting bit 15 of the working register, assigned with  
the offset address; then, the contents of the pointed  
EDS location can be read.  
Note:  
All read operations from EDS space have  
an overhead of one instruction cycle.  
Therefore, a minimum of two instruction  
cycles is required to complete an EDS  
read. EDS reads under the REPEAT  
instruction; the first two accesses take  
three cycles and the subsequent  
accesses take one cycle.  
Figure 4-5 illustrates how the EDS space address is  
generated for read operations.  
When the Most Significant bit (MSBs) of EA is ‘1’ and  
DSRPAG<9> = 0, the lower 9 bits of DSRPAG are con-  
catenated to the lower 15 bits of EA to form a 24-bit  
EDS space address for read operations.  
FIGURE 4-5:  
EDS ADDRESS GENERATION FOR READ OPERATIONS  
Select  
1
Wn  
0
9
8
DSRPAG Reg  
9 Bits  
15 Bits  
24-Bit EA  
0= Extended SRAM and EPMP  
Wn<0> is Byte Select  
EXAMPLE 4-1:  
EDS READ CODE IN ASSEMBLY  
; Set the EDS page from where the data to be read  
mov  
mov  
mov  
bset  
#0x0002 , w0  
w0 , DSRPAG  
;page 2 is selected for read  
#0x0800 , w1 ;select the location (0x800) to be read  
w1 , #15 ;set the MSB of the base address, enable EDS mode  
;Read a byte from the selected location  
mov.b  
mov.b  
[w1++] ,  
[w1++] , w3  
w2 ;read Low byte  
;read High byte  
;Read a word from the selected location  
mov [w1] , w2  
;
;Read Double - word from the selected location  
mov.d  
[w1] , w2  
;two word read, stored in w2 and w3  
DS39996F-page 66  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
While developing code in assembly, care must be taken  
to update the page registers when an Address Pointer  
crosses the page boundary. The ‘C’ compiler keeps  
track of the addressing, and increments or decrements  
the Page registers accordingly while accessing  
contiguous data memory locations.  
4.2.5.2  
Data Write into EDS  
In order to write data to EDS space, such as in EDS  
reads, an Address Pointer is set up by loading the  
required EDS page number into the DSWPAG register,  
and assigning the offset address to one of the W regis-  
ters. Once the above assignment is done, then the  
EDS window is enabled by setting bit 15 of the working  
register, assigned with the offset address, and the  
accessed location can be written.  
Note 1: All write operations to EDS are executed  
in a single cycle.  
2: Use of Read/Modify/Write operation on  
any EDS location under a REPEAT  
instruction is not supported. For example,  
BCLR, BSW, BTG, RLC f, RLNC f,  
RRC f, RRNC f, ADD f, SUB f,  
SUBR f, AND f, IOR f, XOR f,  
ASR f, ASL f.  
Figure 4-2 illustrates how the EDS space address is  
generated for write operations.  
When the MSBs of EA are ‘1’, the lower 9 bits of  
DSWPAG are concatenated to the lower 15 bits of EA  
to form a 24-bit EDS address for write operations.  
Example 4-2 shows how to write a byte, word and  
double-word to EDS.  
3: Use the DSRPAG register while  
The Page registers (DSRPAG/DSWPAG) do not  
update automatically while crossing a page boundary,  
when the rollover happens from 0xFFFF to 0x8000.  
performing Read/Modify/Write operations.  
FIGURE 4-6:  
EDS ADDRESS GENERATION FOR WRITE OPERATIONS  
Select  
Wn  
1
8
0
DSWPAG Reg  
9 Bits  
15 Bits  
24-Bit EA  
Wn<0> is Byte Select  
EXAMPLE 4-2:  
EDS WRITE CODE IN ASSEMBLY  
; Set the EDS page where the data to be written  
mov  
mov  
mov  
bset  
#0x0002 , w0  
w0 , DSWPAG  
;page 2 is selected for write  
#0x0800 , w1 ;select the location (0x800) to be written  
w1 , #15 ;set the MSB of the base address, enable EDS mode  
;Write a byte to the selected location  
mov  
mov  
mov.b  
mov.b  
#0x00A5 , w2  
#0x003C , w3  
w2 , [w1++]  
w3 , [w1++]  
;write Low byte  
;write High byte  
;Write a word to the selected location  
mov  
mov  
#0x1234 , w2  
w2 , [w1]  
;
;
;Write a Double - word to the selected location  
mov  
mov  
mov.d  
#0x1122 , w2  
#0x4455 , w3  
w2 , [w1]  
;2 EDS writes  
2010-2011 Microchip Technology Inc.  
DS39996F-page 67  
PIC24FJ128GA310 FAMILY  
TABLE 4-36: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES  
Source/Destination  
DSRPAG  
DSWPAG  
Address while  
Indirect  
Addressing  
24-Bit EA  
Pointing to EDS  
(Data Space Read (Data Space Write  
Comment  
Register)  
Register)  
x(1)  
x(1)  
0000h to 1FFFh  
2000h to 7FFFh  
000000h to  
001FFFh  
Near data space(2)  
002000h to  
007FFFh  
001h  
002h  
001h  
002h  
008000h to  
00FFFEh  
010000h to  
017FFEh  
003h  
003h  
018000h to  
0187FEh  
EPMP memory space  
8000h to FFFFh  
FF8000h to  
FFFFFEh  
1FFh  
1FFh  
000h  
000h  
Invalid Address  
Address error trap(3)  
Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.  
2: This data space can also be accessed by Direct Addressing.  
3: When the source/destination address is above 8000h and DSRPAG/DSWPAG are ‘0’, an address error  
trap will occur.  
example, if it is desirable to cause a stack error trap  
when the stack grows beyond address 2000h in RAM,  
initialize the SPLIM with the value, 1FFEh.  
4.2.6  
SOFTWARE STACK  
Apart from its use as a working register, the W15  
register in PIC24F devices is also used as a Software  
Stack Pointer (SSP). The pointer always points to the  
first available free word and grows from lower to higher  
addresses. It pre-decrements for stack pops and  
post-increments for stack pushes, as shown in  
Figure 4-7. Note that for a PC push during any CALL  
instruction, the MSB of the PC is zero-extended before  
the push, ensuring that the MSB is always clear.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0800h. This prevents the stack from  
interfering with the SFR space.  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 4-7:  
CALLSTACK FRAME  
Note:  
A PC push during exception processing  
will concatenate the SRL register to the  
MSB of the PC prior to the push.  
0000h  
15  
0
The Stack Pointer Limit Value register (SPLIM), associ-  
ated with the Stack Pointer, sets an upper address  
boundary for the stack. SPLIM is uninitialized at Reset.  
As is the case for the Stack Pointer, SPLIM<0> is  
forced to ‘0’ as all stack operations must be  
word-aligned. Whenever an EA is generated using  
W15 as a source or destination pointer, the resulting  
address is compared with the value in SPLIM. If the  
contents of the Stack Pointer (W15) and the SPLIM reg-  
ister are equal, and a push operation is performed, a  
stack error trap will not occur. The stack error trap will  
occur on a subsequent push operation. Thus, for  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
DS39996F-page 68  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
4.3.1  
ADDRESSING PROGRAM SPACE  
4.3  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The PIC24F architecture uses a 24-bit wide program  
space and 16-bit wide data space. The architecture is  
also a modified Harvard scheme, meaning that data  
can also be present in the program space. To use this  
data successfully, it must be accessed in a way that  
preserves the alignment of information in both spaces.  
For table operations, the 8-bit Table Memory Page  
Address register (TBLPAG) is used to define a 32K word  
region within the program space. This is concatenated  
with a 16-bit EA to arrive at a full 24-bit program space  
address. In this format, the MSBs of TBLPAG is used to  
determine if the operation occurs in the user memory  
Aside from normal execution, the PIC24F architecture  
provides two methods by which program space can be  
accessed during operation:  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
(TBLPAG<7>  
(TBLPAG<7> = 1).  
= 0) or the configuration memory  
• Remapping a portion of the program space into  
the data space (program space visibility)  
For remapping operations, the 10-bit Extended Data  
Space Read register (DSRPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit (MSb) of the EA is ‘1’, and the MSb (bit 9)  
of DSRPAG is ‘1’, the lower 8 bits of DSRPAG are con-  
catenated with the lower 15 bits of the EA to form a  
23-bit program space address. The DSRPAG<8> bit  
decides whether the lower word (when bit is ‘0’) or the  
higher word (when bit is ‘1’) of program memory is  
mapped. Unlike table operations, this strictly limits  
remapping operations to the user memory area.  
Table instructions allow an application to read or write  
to small areas of the program memory. This makes the  
method ideal for accessing data tables that need to be  
updated from time to time. It also allows access to all  
bytes of the program word. The remapping method  
allows an application to access a large block of data on  
a read-only basis, which is ideal for look ups from a  
large table of static data. It can only access the least  
significant word of the program word.  
Table 4-37 and Figure 4-8 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, whereas D<15:0> refers to a data space  
word.  
TABLE 4-37: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLPAG<7:0> Data EA<15:0>  
0xxx xxxx  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Data EA<14:0>(1)  
Program Space Visibility User  
(Block Remap/Read)  
0
0
DSRPAG<7:0>(2)  
xxxx xxxx  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is DSRPAG<0>.  
2: DSRPAG<9> is always ‘1’ in this case. DSRPAG<8> decides whether the lower word or higher word of  
program memory is read. When DSRPAG<8> is ‘0’, the lower word is read and when it is ‘1’, the higher  
word is read.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 69  
PIC24FJ128GA310 FAMILY  
FIGURE 4-8:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter  
Program Counter  
23 Bits  
0
0
EA  
1/0  
(2)  
1/0  
TBLPAG  
8 Bits  
Table Operations  
16 Bits  
24 Bits  
Select  
1
1/0  
EA  
(1)  
Program Space Visibility  
(Remapping)  
0
DSRPAG<7:0>  
8 Bits  
1-Bit  
15 Bits  
23 Bits  
User/Configuration  
Space Select  
Byte Select  
Note 1: DSRPAG<8> acts as word select. DSRPAG<9> should always be ‘1’ to map program memory to data memory.  
2: The instructions, TBLRDH/TBLWTH/TBLRDL/TBLWTL, decide if the higher or lower word of program memory is  
accessed. TBLRDH/TBLWTHinstructions access the higher word and TBLRDL/TBLWTLinstructions access the  
lower word. Table read operations are permitted in the configuration memory space.  
DS39996F-page 70  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
2. TBLRDH (Table Read High): In Word mode, it  
maps the entire upper word of a program address  
(P<23:16>) to a data address. Note that  
D<15:8>, the ‘phantom’ byte, will always be ‘0’.  
4.3.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going through  
data space. The TBLRDH and TBLWTH instructions are  
the only method to read or write the upper 8 bits of a  
program space word as data.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper ‘phantom’ byte is  
selected (byte select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are described in Section 6.0 “Flash  
Program Memory”.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two, 16-bit  
word-wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table  
Memory Page Address register (TBLPAG). TBLPAG  
covers the entire program memory space of the  
device, including user and configuration spaces. When  
TBLPAG<7> = 0, the table page is located in the user  
memory space. When TBLPAG<7> = 1, the page is  
located in configuration space.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
Note:  
Only table read operations will execute in  
the configuration memory space where  
Device IDs are located. Table write  
operations are not allowed.  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when byte select is ‘1’; the lower byte  
is selected when it is ‘0’.  
FIGURE 4-9:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
Data EA<15:0>  
23  
15  
0
000000h  
23  
16  
8
0
00000000  
00000000  
00000000  
00000000  
020000h  
030000h  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
800000h  
2010-2011 Microchip Technology Inc.  
DS39996F-page 71  
PIC24FJ128GA310 FAMILY  
Table 4-38 provides the corresponding 23-bit EDS  
address for program memory with EDS page and  
source addresses.  
4.3.3  
READING DATA FROM PROGRAM  
MEMORY USING EDS  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This provides transparent access of stored constant  
data from the data space without the need to use  
special instructions (i.e., TBLRDL/H).  
For operations that use PSV and are executed outside  
a REPEATloop, the MOV and MOV.Dinstructions will  
require one instruction cycle in addition to the specified  
execution time. All other instructions will require two  
instruction cycles in addition to the specified execution  
time.  
Program space access through the data space occurs  
when the MSb of EA is ‘1’ and the DSRPAG<9> is also  
1’. The lower 8 bits of DSRPAG are concatenated to the  
Wn<14:0> bits to form a 23-bit EA to access program  
memory. The DSRPAG<8> decides which word should  
be addressed; when the bit is ‘0’, the lower word and  
when ‘1’, the upper word of the program memory is  
accessed.  
For operations that use PSV, which are executed inside  
a REPEAT loop, there will be some instances that  
require two instruction cycles in addition to the  
specified execution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
The entire program memory is divided into 512 EDS  
pages, from 200h to 3FFh, each consisting of 16K words  
of data. Pages, 200h to 2FFh, correspond to the lower  
words of the program memory, while 300h to 3FFh  
correspond to the upper words of the program memory.  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data, using PSV, to execute in a  
single cycle.  
Using this EDS technique, the entire program memory  
can be accessed. Previously, the access to the upper  
word of the program memory was not supported.  
TABLE 4-38: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES  
DSRPAG  
Source Address while  
Indirect Addressing  
23-Bit EA Pointing to  
EDS  
(Data Space Read  
Register)  
Comment  
200h  
8000h to FFFFh  
000000h to 007FFEh  
Lower words of 4M program  
instructions; (8 Mbytes) for  
read operations only.  
2FFh  
7F8000h to 7FFFFEh  
300h  
000001h to 007FFFh  
Upper words of 4M program  
instructions (4 Mbytes remaining;  
4 Mbytes are phantom bytes) for  
read operations only.  
3FFh  
7F8001h to 7FFFFFh  
000h  
Invalid Address  
Address error trap(1)  
Note 1: When the source/destination address is above 8000h and DSRPAG/DSWPAG is ‘0’, an address error trap  
will occur.  
EXAMPLE 4-3:  
EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY  
; Set the EDS page from where the data to be read  
mov  
mov  
mov  
bset  
#0x0202 , w0  
w0 , DSRPAG  
#0x000A , w1  
w1 , #15  
;page 0x202, consisting lower words, is selected for read  
;select the location (0x0A) to be read  
;set the MSB of the base address, enable EDS mode  
;Read a byte from the selected location  
mov.b  
mov.b  
[w1++] , w2  
[w1++] , w3  
;read Low byte  
;read High byte  
;Read a word from the selected location  
mov  
[w1] , w2  
;
;Read Double - word from the selected location  
mov.d [w1] , w2 ;two word read, stored in w2 and w3  
DS39996F-page 72  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 4-10:  
PROGRAM SPACE VISIBILITY OPERATION TO ACCESS LOWER WORD  
When DSRPAG<9:8> = 10and EA<15> = 1  
Program Space  
Data Space  
DSRPAG  
202h  
23  
15  
0
000000h  
0000h  
Data EA<14:0>  
010000h  
017FFEh  
The data in the page  
designated by DSRPAG  
is mapped into the  
upper half of the data  
memory space....  
8000h  
EDS Window  
...while the lower  
15 bits of the EA  
specify an exact  
address within the  
EDS area. This corre-  
sponds exactly to the  
same lower 15 bits of  
the actual program  
space address.  
FFFFh  
7FFFFEh  
FIGURE 4-11:  
PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD  
When DSRPAG<9:8> = 11and EA<15> = 1  
Program Space  
Data Space  
DSRPAG  
302h  
23  
15  
0
000000h  
0000h  
Data EA<14:0>  
010001h  
017FFFh  
The data in the page  
designated by DSRPAG  
is mapped into the  
upper half of the data  
memory space....  
8000h  
EDS Window  
...while the lower  
15 bits of the EA  
specify an exact  
address within the  
EDS area. This corre-  
sponds exactly to the  
same lower 15 bits of  
the actual program  
space address.  
FFFFh  
7FFFFEh  
2010-2011 Microchip Technology Inc.  
DS39996F-page 73  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 74  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The controller also monitors CPU instruction process-  
ing directly, allowing it to be aware of when the CPU  
requires access to peripherals on the DMA bus, and  
automatically relinquishing control to the CPU as  
needed. This increases the effective bandwidth for  
handling data without DMA operations causing a  
processor stall. This makes the controller essentially  
transparent to the user.  
5.0  
DIRECT MEMORY ACCESS  
CONTROLLER (DMA)  
Note:  
This data sheet summarizes the features  
of the PIC24FJ128GA310 family of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
the “PIC24F Family Reference Manual”,  
Section 54. “Direct Memory Access  
Controller (DMA)” (DS39742). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
The DMA Controller has these features:  
• Six multiple independent and independently  
programmable channels  
• Concurrent operation with the CPU (no DMA  
caused Wait states)  
The Direct Memory Access Controller (DMA) is  
designed to service high-data-throughput peripherals  
operating on the SFR bus, allowing them to access  
data memory directly and alleviating the need for CPU  
intensive management. By allowing these data inten-  
sive peripherals to share their own data path, the main  
data bus is also de-loaded, resulting in additional  
power savings.  
• DMA bus arbitration  
• Five Programmable Address modes  
• Four Programmable Transfer modes  
• Four Flexible Internal Data Transfer modes  
• Byte or word support for data transfer  
• 16-Bit Source and Destination Address register  
for each channel, dynamically updated and  
reloadable  
The DMA Controller functions both as a peripheral and  
a direct extension of the CPU. It is located on the micro-  
controller data bus between the CPU and  
DMA-enabled peripherals, with direct access to SRAM.  
This partitions the SFR bus into two buses, allowing the  
DMA Controller access to the DMA-capable peripher-  
als located on the new DMA SFR bus. The controller  
serves as a master device on the DMA SFR bus,  
controlling data flow from DMA capable peripherals.  
• 16-Bit Transaction Count register, dynamically  
updated and reloadable  
• Upper and Lower Address Limit registers  
• Counter half-full level interrupt  
• Software triggered transfer  
• Null Write mode for symmetric buffer operations  
A simplified block diagram of the DMA Controller is  
shown if Figure 5-1.  
FIGURE 5-1:  
DMA FUNCTIONAL BLOCK DIAGRAM  
CPU Execution Monitoring  
To DMA-Enabled  
Peripherals  
To I/O Ports  
and Peripherals  
DMACON  
DMAH  
Control  
Logic  
DMAL  
DMABUF  
Data  
Bus  
DMACH0  
DMAINT0  
DMASRC0  
DMADST0  
DMACNT0  
DMACH1  
DMAINT1  
DMASRC1  
DMADST1  
DMACNT1  
DMACH2  
DMACHn  
DMAINTn  
DMASRCn  
DMADSTn  
DMACNTn  
DMAINT2  
DMASRC2  
DMADST2  
DMACNT2  
Channel 4  
Channel 5  
Channel 0  
Channel 1  
Data RAM  
Data RAM  
Address Generation  
2010-2011 Microchip Technology Inc.  
DS39996F-page 75  
PIC24FJ128GA310 FAMILY  
Since the source and destination addresses for any  
transaction can be programmed independently of the  
trigger source, the DMA Controller can use any trigger  
to perform an operation on any peripheral. This also  
allows DMA channels to be cascaded to perform more  
complex transfer operations.  
5.1  
Summary of DMA Operations  
The DMA Controller is capable of moving data between  
addresses according to a number of different parame-  
ters. Each of these parameters can be independently  
configured for any transaction; in addition, any or all of  
the DMA channels can independently perform a differ-  
ent transaction at the same time. Transactions are  
classified by these parameters:  
5.1.4  
TRANSFER MODE  
The DMA Controller supports four types of data trans-  
fers, based on the volume of data to be moved for each  
trigger.  
• Source and destination (SFRs and data RAM)  
• Data Size (byte or word)  
• Trigger source  
• One-Shot: A single transaction occurs for each  
trigger.  
• Transfer mode (One-Shot, Repeated or  
Continuous)  
• Continuous: A series of back-to-back transactions  
occur for each trigger; the number of transactions  
is determined by the DMACNT transaction  
counter.  
• Addressing modes (fixed address or address  
blocks, with or without address increment/  
decrement)  
• Repeated One-Shot: A single transaction is per-  
formed repeatedly, once per trigger, until the DMA  
channel is disabled.  
In addition, the DMA controller provides channel priority  
arbitration for all channels.  
5.1.1  
SOURCE AND DESTINATION  
• Repeated Continuous: A series of transactions  
are performed repeatedly, one cycle per trigger,  
until the DMA channel is disabled.  
Using the DMA Controller, data may be moved  
between any two addresses in the data space. The  
SFR space (0000h to 07FFh) or the data RAM space  
(0800h to FFFFh) can serve as either the source or the  
destination. Data can be moved between these areas  
in either direction, or between addresses in either area.  
The four different combinations are shown in  
Figure 5-2.  
All transfer modes allow the option to have the source  
and destination addresses and counter value automat-  
ically reloaded after the completion of a transaction.  
Repeated mode transfers do this automatically.  
5.1.5  
ADDRESSING MODES  
If it is necessary to protect areas of data RAM, the DMA  
Controller allows the user to set upper and lower address  
boundaries for operations in the data space above the  
SFR space. The boundaries are set by the DMAH and  
DMAL Limit registers. If a DMA channel attempts an  
operation outside of the address boundaries, the  
transaction is terminated and an interrupt is generated.  
The DMA Controller also supports transfers between  
single addresses or address ranges. The four basic  
options are:  
• Fixed-to-Fixed: Between two constant addresses  
• Fixed-to-Block: From a constant source address  
to a range of destination addresses  
• Block-to-Fixed: From a range of source  
addresses to a single, constant destination  
address  
5.1.2  
DATA SIZE  
The DMA Controller can handle both 8-bit and 16-bit  
transactions. Size is user-selectable using the SIZE bit  
(DMACHn<1>). By default, each channel is configured  
for word-size transactions. When byte-size transac-  
tions are chosen, the LSb of the source and/or  
destination address determines if the data represents  
the upper or lower byte of the data RAM location.  
• Block-to-Block: From a range to source  
addresses to a range of destination addresses  
The option to select auto-increment or auto-decrement  
of source and/or destination addresses is available for  
Block Addressing modes.  
In addition to the four basic modes, the DMA Controller  
also supports Peripheral Indirect Addressing (PIA)  
mode, where the source or destination address is gen-  
erated jointly by the DMA controller and a PIA capable  
peripheral. When enabled, the DMA channel provides  
a base source and/or destination address, while the  
peripheral provides a fixed-range offset address.  
5.1.3  
TRIGGER SOURCE  
The DMA Controller can use any one of the device’s  
60 interrupt sources to initiate a transaction. The DMA  
trigger sources are listed in reverse order their natural  
interrupt priority, and are shown in Table 5-1.  
For PIC24FJ128GA310 family devices, the 12-bit A/D  
Converter module is the only PIA-capable peripheral.  
Details for its use in PIA mode are provided in  
Section 24.0 “12-Bit A/D Converter with Threshold  
Scan”.  
DS39996F-page 76  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 5-2:  
TYPES OF DMA DATA TRANSFERS  
Peripheral to Memory  
SFR Area  
Memory to Peripheral  
SFR Area  
DMASRCn  
DMADSTn  
07FFh  
0800h  
07FFh  
0800h  
Data RAM  
Data RAM  
DMAL  
DMAL  
DMA RAM Area  
DMA RAM Area  
DMADSTn  
DMAH  
DMASRCn  
DMAH  
Peripheral to Peripheral  
SFR Area  
Memory to Memory  
SFR Area  
DMASRCn  
DMADSTn  
07FFh  
0800h  
07FFh  
0800h  
Data RAM  
Data RAM  
DMAL  
DMAL  
DMAH  
DMA RAM Area  
DMA RAM Area  
DMASRCn  
DMADSTn  
DMAH  
Note:  
Relative sizes of memory areas are not shown to scale.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 77  
PIC24FJ128GA310 FAMILY  
5.1.6  
CHANNEL PRIORITY  
5.3  
Peripheral Module Disable  
Each DMA channel functions independently of the oth-  
ers, but also competes with the others for access to the  
data and DMA busses. When access collisions occur,  
the DMA Controller arbitrates between the channels  
using a user-selectable priority scheme. Two schemes  
are available:  
Unlike other peripheral modules, the channels of the  
DMA Controller cannot be individually powered down  
using the Peripheral Module Disable (PMD) registers.  
Instead, the channels are controlled as two groups.  
The DMA0MD bit (PMD7<4>) selectively controls  
DMACH0 through DMACH3. The DMA1MD bit  
(PMD7<5>) controls DMACH4 and DMACH5. Setting  
both bits effectively disables the DMA Controller.  
• Round-Robin: When two or more channels col-  
lide, the lower-numbered channel receives priority  
on the first collision. On subsequent collisions, the  
higher numbered channels each receive priority,  
based on their channel number.  
5.4  
Registers  
The DMA Controller uses a number of registers to con-  
trol its operation. The number of registers depends on  
the number of channels implemented for a particular  
device.  
• Fixed: When two or more channels collide, the  
lowest numbered channel always receives  
priority, regardless of past history.  
There are always four module level registers (one  
control and three buffer/address):  
5.2  
Typical Setup  
To set up a DMA channel for a basic data transfer:  
• DMACON: DMA Control Register (Register 5-1)  
1. Enable the DMA Controller (DMAEN = 1) and  
select an appropriate channel priority scheme  
by setting or clearing PRSSEL.  
• DMAH and DMAL: High and Low Address Limit  
Registers  
• DMABUF: DMA Data Buffer  
2. Program DMAH and DMAL with appropriate  
upper and lower address boundaries for data  
RAM operations.  
Each of the DMA channels implements five registers  
(two control and three buffer/address):  
• DMACHn: DMA Channel Control Register  
(Register 5-2)  
3. Select the DMA channel to be used and disable  
its operation (CHEN = 0).  
• DMAINTn: DMA Channel Interrupt Control Register  
(Register 5-3)  
4. Program the appropriate Source and Destination  
addresses for the transaction into the channel’s  
DMASRCn and DMADSTn registers. For PIA  
mode addressing, use the base address value.  
• DMASRCn: Data Source Address Pointer for  
Channel n  
5. Program the DMACNTn register for the number  
of triggers per transfer (One-Shot or Continuous  
modes), or the number of words (bytes) to be  
transferred (Repeated modes).  
• DMADSTn: Data Destination Source for Channel n  
• DMACNTn: Transaction Counter for Channel n  
For PIC24FJ128GA310 family devices, there are a  
total of 34 registers.  
6. Set or clear the SIZE bit to select the data size.  
7. Program the TRMODE bits to select the Data  
Transfer mode.  
8. Program the SAMODE and DAMODE bits to  
select the addressing mode.  
9. Enable the DMA channel by setting CHEN.  
10. Enable the trigger source interrupt.  
DS39996F-page 78  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 5-1:  
DMACON: DMA ENGINE CONTROL REGISTER  
R/W-0  
DMAEN  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PRSSEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
DMAEN: DMA Module Enable bit  
1= Enables module  
0= Disables module and terminates all active DMA operation(s)  
bit 14-1  
bit 0  
Unimplemented: Read as ‘0’  
PRSSEL: Channel Priority Scheme Selection bit  
1= Round-robin scheme  
0= Fixed priority scheme  
2010-2011 Microchip Technology Inc.  
DS39996F-page 79  
PIC24FJ128GA310 FAMILY  
REGISTER 5-2:  
DMACHn: DMA CHANNEL n CONTROL REGISTER  
U-0  
U-0  
U-0  
r-0  
r
R/W-0  
R/W-0  
R/W-0  
RELOAD(1)  
R/W-0  
CHREQ(3)  
NULLW  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SIZE  
R/W-0  
CHEN  
SAMODE1  
bit 7  
SAMODE0  
DAMODE1  
DAMODE0  
TRMODE1  
TRMODE0  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 12  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
Unimplemented: Read as ‘0’  
NULLW: Null Write Mode bit  
bit 11  
bit 10  
1= A dummy write is initiated to DMASRC for every write to DMADST  
0= No dummy write is initiated  
bit 9  
RELOAD: Address and Count Reload bit(1)  
1= DMASRC, DMADST, and DMACNT registers are reloaded to their previous values upon the start  
of the next operation  
0= DMASRC, DMADST and DMACNT are not reloaded on the start of the next operation(2)  
bit 8  
CHREQ: DMA Channel Software Request bit(3)  
1= A DMA request is initiated by software; automatically cleared upon completion of a DMA transfer  
0= No DMA request is pending  
bit 7-6  
SAMODE<1:0>: Source Address Mode Selection bits  
11= DMASRC is used in Peripheral Indirect Addressing and remains unchanged  
10= DMASRC is decremented based on SIZE bit after a transfer completion  
01= DMASRC is incremented based on SIZE bit after a transfer completion  
00= DMASRC remains unchanged after a transfer completion  
bit 5-4  
bit 3-2  
DAMODE<1:0>: Destination Address Mode Selection bits  
11= DMADST is used in Peripheral Indirect Addressing and remains unchanged  
10= DMADST is decremented based on SIZE bit after a transfer completion  
01= DMADST is incremented based on SIZE bit after a transfer completion  
00= DMADST remains unchanged after a transfer completion  
TRMODE<1:0>: Transfer Mode Selection bits  
11= Repeated Continuous  
10= Continuous  
01= Repeated One-Shot  
00= One-Shot  
bit 1  
bit 0  
SIZE: Data Size Selection bit  
1= Byte (8-bit)  
0= Word (16-bit)  
CHEN: DMA Channel Enable bit  
1= The corresponding channel is enabled  
0= The corresponding channel is disabled  
Note 1: Only the original DMACNT is required to be stored to recover the original DMASRC and DMADST.  
2: DMASRC, DMADST and DMACNT are always reloaded in Repeated mode transfers (DMACHn<2> = 1),  
regardless of the state of the RELOAD bit.  
3: The number of transfers executed while CHREQ is set depends on the configuration of TRMODE<1:0>.  
DS39996F-page 80  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 5-3:  
DMAINTn: DMA CHANNEL n INTERRUPT REGISTER  
R-0  
DBUFWF(1)  
bit 15  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHSEL5  
CHSEL4  
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
bit 8  
R/W-0  
HIGHIF(1,2)  
R/W-0  
LOWIF(1,2)  
R/W-0  
DONEIF(1)  
R/W-0  
HALFIF(1)  
R/W-0  
OVRUNIF(1)  
U-0  
U-0  
R/W-0  
HALFEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
DBUFWF: Buffered Data Write Flag bit(1)  
1= The content of the DMA buffer has not been written to the location specified in DMADST, or  
DMASRC in Null Write mode  
0= The content of the DMA buffer has been written to the location specified in DMADST, or DMASRC  
in Null Write mode  
bit 14  
Unimplemented: Read as ‘0’  
bit 13-8  
CHSEL<5:0>: DMA Channel Trigger Selection bits  
See Table 5-1 for a complete list.  
bit 7  
bit 6  
bit 5  
HIGHIF: DMA High Address Limit Interrupt Flag bit(1,2)  
1= The DMA channel has attempted to access an address higher than DMAH, or the upper limit of the  
data RAM space.  
0= The DMA channel has not invoked the high address limit interrupt.  
LOWIF: DMA Low Address Limit Interrupt Flag bit(1,2)  
1= The DMA channel has attempted to access the DMA SFR address lower than DMAL, but above  
the SFR range (07FFh)  
0= The DMA channel has not invoked the low address limit interrupt  
DONEIF: DMA Complete Operation Interrupt Flag bit(1)  
If CHEN = 1:  
1= The previous DMA session has ended with completion  
0= The current DMA session has not yet completed  
If CHEN = 0:  
1= The previous DMA session has ended with completion  
0= The previous DMA session has ended without completion  
bit 4  
bit 3  
HALFIF: DMA 50% Water Mark Level Interrupt Flag bit(1)  
1= DMACNT has reached the halfway point to 0000h  
0= DMACNT has not reached the halfway point  
OVRUNIF: DMA Channel Overrun Flag bit(1)  
1= The DMA channel is triggered while it is still completing the operation based on the previous trigger  
0= The overrun condition has not occurred  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
HALFEN: Halfway Completion Water Mark bit  
1= Interrupts are invoked when DMACNT has reached its halfway point and at completion  
0= An interrupt is invoked only at the completion of the transfer  
Note 1: Setting these flags in software does not generate an interrupt.  
2: Testing for address limit violations (DMASRC or DMADST is either greater than DMAH or less than  
DMAL) is NOT done before the actual access.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 81  
PIC24FJ128GA310 FAMILY  
TABLE 5-1:  
CHSEL<5:0>  
DMA TRIGGER SOURCES  
Trigger (Interrupt)  
CHSEL<5:0>  
Trigger (Interrupt)  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
(Unimplemented)  
JTAG  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
UART2 Transmit  
UART2 Receive  
External Interrupt 2  
Timer5  
LCD  
UART4 Transmit  
UART4 Receive  
UART4 Error  
UART3 Transmit  
UART3 Receive  
UART3 Error  
CTMU Event  
HLVD  
Timer4  
Output Compare 4  
Output Compare 3  
DMA Channel 2  
Input Capture 7  
External Interrupt 1  
Interrupt-on-Change  
Comparators Event  
I2C1 Master Event  
I2C1 Slave Event  
DMA Channel 1  
A/D Converter  
UART1 Transmit  
UART1 Receive  
SPI1 Event  
CRC Done  
UART2 Error  
UART1 Error  
RTCC  
DMA Channel 5  
External Interrupt 4  
External Interrupt 3  
I2C2 Master Event  
I2C2 Slave Event  
DMA Channel 4  
EPMP  
SPI1 Error  
Timer3  
Timer2  
Output Compare 7  
Output Compare 6  
Output Compare 5  
Input Capture 6  
Input Capture 5  
Input Capture 4  
Input Capture 3  
DMA Channel 3  
SPI2 Event  
Output Compare 2  
Input Capture 2  
DMA Channel 0  
Timer1  
Output Compare 1  
Input Capture 1  
External Interrupt 0  
(Unimplemented)  
(Unimplemented)  
(Unimplemented)  
SPI2 Error  
DS39996F-page 82  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
6.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
may write program memory data in blocks of 64 instruc-  
tions (192 bytes) at a time and erase program memory  
in blocks of 512 instructions (1536 bytes) at a time.  
Section  
4.  
“Program  
Memory”  
(DS39715). The information in this data  
sheet supersedes the information in the  
FRM.  
6.1  
Table Instructions and Flash  
Programming  
The PIC24FJ128GA310 family of devices contains  
internal Flash program memory for storing and execut-  
ing application code. The program memory is readable,  
writable and erasable. The Flash can be programmed  
in four ways:  
Regardless of the method used, all programming of  
Flash memory is done with the table read and write  
instructions. These allow direct read and write access to  
the program memory space from the data memory while  
the device is in normal operating mode. The 24-bit target  
address in the program memory is formed using the  
TBLPAG<7:0> bits and the Effective Address (EA) from  
a W register, specified in the table instruction, as shown  
in Figure 6-1.  
• In-Circuit Serial Programming™ (ICSP™)  
• Run-Time Self-Programming (RTSP)  
• JTAG  
• Enhanced In-Circuit Serial Programming  
(Enhanced ICSP)  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
ICSP allows a PIC24FJ128GA310 family device to be  
serially programmed while in the end application circuit.  
This is simply done with two lines for the programming  
clock and programming data (named PGECx and  
PGEDx, respectively), and three other lines for power  
(VDD), ground (VSS) and Master Clear (MCLR). This  
allows customers to manufacture boards with  
unprogrammed devices and then program the  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 6-1:  
ADDRESSING FOR TABLE REGISTERS  
24 Bits  
Program Counter  
Using  
Program  
Counter  
0
0
Working Reg EA  
Using  
Table  
Instruction  
1
/
0
TBLPAG Reg  
8 Bits  
16 Bits  
User/Configuration  
Space Select  
Byte  
Select  
24-Bit EA  
2010-2011 Microchip Technology Inc.  
DS39996F-page 83  
PIC24FJ128GA310 FAMILY  
6.2  
RTSP Operation  
6.3  
JTAG Operation  
The PIC24F Flash program memory array is organized  
into rows of 64 instructions or 192 bytes. RTSP allows  
the user to erase blocks of eight rows (512 instructions)  
at a time and to program one row at a time. It is also  
possible to program single words.  
The PIC24F family supports JTAG boundary scan.  
Boundary scan can improve the manufacturing  
process by verifying pin to PCB connectivity.  
6.4  
Enhanced In-Circuit Serial  
Programming  
The 8-row erase blocks and single row write blocks are  
edge-aligned, from the beginning of program memory, on  
boundaries of 1536 bytes and 192 bytes, respectively.  
Enhanced In-Circuit Serial Programming uses an  
on-board bootloader, known as the program executive,  
to manage the programming process. Using an SPI  
data frame format, the program executive can erase,  
program and verify program memory. For more  
information on Enhanced ICSP, see the device  
programming specification.  
When data is written to program memory using TBLWT  
instructions, the data is not written directly to memory.  
Instead, data written using table writes is stored in  
holding latches until the programming sequence is  
executed.  
Any number of TBLWT instructions can be executed  
and a write will be successfully performed. However,  
64 TBLWTinstructions are required to write the full row  
of memory.  
6.5  
Control Registers  
There are two SFRs used to read and write the  
program Flash memory: NVMCON and NVMKEY.  
To ensure that no data is corrupted during a write, any  
unused address should be programmed with  
FFFFFFh. This is because the holding latches reset to  
an unknown state, so if the addresses are left in the  
Reset state, they may overwrite the locations on rows  
which were not rewritten.  
The NVMCON register (Register 6-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and when the programming cycle starts.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 55h and AAh to the  
NVMKEY register. Refer to Section 6.6 “Programming  
Operations” for further details.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register.  
6.6  
Programming Operations  
Data can be loaded in any order and the holding regis-  
ters can be written to multiple times before performing  
a write operation. Subsequent writes, however, will  
wipe out any previous writes.  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. During a programming or erase operation, the  
processor stalls (Waits) until the operation is finished.  
Setting the WR bit (NVMCON<15>) starts the opera-  
tion and the WR bit is automatically cleared when the  
operation is finished.  
Note:  
Writing to a location multiple times without  
erasing is not recommended.  
All of the table write operations are single-word writes  
(2 instruction cycles), because only the buffers are writ-  
ten. A programming cycle is required for programming  
each row.  
DS39996F-page 84  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 6-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/S-0, HC(1)  
WR  
R/W-0(1)  
WREN  
R-0, HSC(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP3(2) NVMOP2(2) NVMOP1(2) NVMOP0(2)  
bit 7  
bit 0  
Legend:  
S = Settable bit  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Clearable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
HSC = Hardware Settable/Clearable bit  
bit 15  
WR: Write Control bit(1)  
1= Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is  
cleared by hardware once the operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit(1)  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit(1)  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit(1)  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(1,2)  
1111= Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)(3)  
0011= Memory word program operation (ERASE = 0) or no operation (ERASE = 1)  
0010= Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)  
0001= Memory row program operation (ERASE = 0) or no operation (ERASE = 1)  
Note 1: These bits can only be reset on a Power-on Reset.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
3: Available in ICSP™ mode only; refer to the device programming specification.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 85  
PIC24FJ128GA310 FAMILY  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 6-3).  
6.6.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of Flash program memory  
at a time. To do this, it is necessary to erase the 8-row  
erase block containing the desired row. The general  
process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 55h to NVMKEY.  
c) Write AAh to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration  
of the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 6-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat Steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash  
memory.  
b) Write the starting address of the block to be  
erased into the TBLPAG and W registers.  
c) Write 55h to NVMKEY.  
d) Write AAh to NVMKEY.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as shown  
in Example 6-4.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 6-1:  
ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0 ;  
W0, NVMCON  
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize Program Memory (PM) Page Boundary SFR  
; Initialize in-page EA<15:0> pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI #5  
MOV.B #0x55, W0  
MOV W0, NVMKEY  
MOV.B #0xAA, W1 ;  
; Write the 0x55 key  
MOV  
BSET  
NOP  
NOP  
W1, NVMKEY  
NVMCON, #WR  
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
DS39996F-page 86  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
EXAMPLE 6-2:  
ERASING A PROGRAM MEMORY BLOCK (‘C’ LANGUAGE CODE)  
// C example using MPLAB C30  
unsigned long progAddr = 0xXXXXXX;  
unsigned int offset;  
// Address of row to write  
//Set up pointer to the first memory location to be written  
TBLPAG = progAddr>>16;  
// Initialize PM Page Boundary SFR  
offset = progAddr & 0xFFFF;  
__builtin_tblwtl(offset, 0x0000);  
// Initialize lower word of address  
// Set base address of erase block  
// with dummy latch write  
NVMCON = 0x4042;  
asm("DISI #5");  
// Initialize NVMCON  
// Block all interrupts with priority <7  
// for next 5 instructions  
__builtin_write_NVM();  
// check function to perform unlock  
// sequence and set WR  
EXAMPLE 6-3:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_63, W2  
#HIGH_BYTE_63, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 6-4:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV.B  
MOV  
MOV.B  
MOV  
BSET  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the programming sequence  
; Required delays  
NOP  
BTSC  
BRA  
NVMCON, #15  
$-2  
; and wait for it to be  
; completed  
2010-2011 Microchip Technology Inc.  
DS39996F-page 87  
PIC24FJ128GA310 FAMILY  
write latches and specify the lower 16 bits of the pro-  
gram memory address to write to. To configure the  
NVMCON register for a word write, set the NVMOP bits  
(NVMCON<3:0>) to ‘0011’. The write is performed by  
executing the unlock sequence and setting the WR bit  
(see Example 6-5). An equivalent procedure in ‘C’  
compiler, using the MPLAB C30 compiler and built-in  
hardware functions, is shown in Example 6-6.  
6.6.2  
PROGRAMMING A SINGLE WORD  
OF FLASH PROGRAM MEMORY  
If a Flash location has been erased, it can be pro-  
grammed using table write instructions to write an  
instruction word (24-bit) into the write latch. The  
TBLPAG register is loaded with the 8 Most Significant  
Bytes (MSBs) of the Flash address. The TBLWTLand  
TBLWTH instructions write the desired data into the  
EXAMPLE 6-5:  
PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY  
; Setup a pointer to data Program Memory  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
;Initialize PM Page Boundary SFR  
;Initialize a register with program memory address  
MOV  
MOV  
#LOW_WORD_N, W2  
#HIGH_BYTE_N, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; Setup NVMCON for programming one word to data Program Memory  
MOV  
MOV  
#0x4003, W0  
W0, NVMCON  
;
; Set NVMOP bits to 0011  
DISI  
MOV.B  
MOV  
MOV.B  
MOV  
#5  
; Disable interrupts while the KEY sequence is written  
; Write the key sequence  
#0x55, W0  
W0, NVMKEY  
#0xAA, W0  
W0, NVMKEY  
NVMCON, #WR  
BSET  
NOP  
; Start the write cycle  
; Required delays  
NOP  
EXAMPLE 6-6:  
PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY  
(‘C’ LANGUAGE CODE)  
// C example using MPLAB C30  
unsigned int offset;  
unsigned long progAddr = 0xXXXXXX;  
unsigned int progDataL = 0xXXXX;  
unsigned char progDataH = 0xXX;  
// Address of word to program  
// Data to program lower word  
// Data to program upper byte  
//Set up NVMCON for word programming  
NVMCON = 0x4003;  
// Initialize NVMCON  
//Set up pointer to the first memory location to be written  
TBLPAG = progAddr>>16;  
// Initialize PM Page Boundary SFR  
offset = progAddr & 0xFFFF;  
// Initialize lower word of address  
//Perform TBLWT instructions to write latches  
__builtin_tblwtl(offset, progDataL);  
__builtin_tblwth(offset, progDataH);  
asm(“DISI #5”);  
// Write to address low word  
// Write to upper byte  
// Block interrupts with priority <7  
// for next 5 instructions  
// C30 function to perform unlock  
// sequence and set WR  
__builtin_write_NVM();  
DS39996F-page 88  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Any active source of Reset will make the SYSRST  
signal active. Many registers associated with the CPU  
7.0  
RESETS  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 7. “Reset” (DS39712). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
and peripherals are forced to a known Reset state.  
Most registers are unaffected by a Reset; their status is  
unknown on POR and unchanged by all other Resets.  
Note:  
Refer to the specific peripheral or CPU  
section of this manual for register Reset  
states.  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 7-1). In addition, Reset events occurring  
while an extreme power-saving feature is in use (such  
as VBAT) will set one or more status bits in the RCON2  
register (Register 7-2). A POR will clear all bits, except  
for the BOR and POR (RCON<1:0>) bits, which are  
set. The user may set or clear any bit at any time during  
code execution. The RCON bits only serve as status  
bits. Setting a particular Reset status bit in software will  
not cause a device Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
• POR: Power-on Reset  
• MCLR: Pin Reset  
• SWR: RESETInstruction  
• WDT: Watchdog Timer Reset  
• BOR: Brown-out Reset  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Opcode Reset  
• UWR: Uninitialized W Register Reset  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this data sheet.  
A simplified block diagram of the Reset module is  
shown in Figure 7-1.  
Note:  
The status bits in the RCON registers  
should be cleared after they are read so  
that the next RCON register values after a  
device Reset will be meaningful.  
FIGURE 7-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
POR  
BOR  
VDD Rise  
Detect  
SYSRST  
VDD  
Brown-out  
Reset  
Enable Voltage Regulator  
Trap Conflict  
Illegal Opcode  
Configuration Mismatch  
Uninitialized W Register  
2010-2011 Microchip Technology Inc.  
DS39996F-page 89  
PIC24FJ128GA310 FAMILY  
REGISTER 7-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
TRAPR(1)  
R/W-0  
IOPUWR(1)  
U-0  
R/W-0  
RETEN(2)  
U-0  
R/W-0  
DPSLP(1)  
R/W-0  
CM(1)  
R/W-0  
VREGS(3)  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
EXTR(1)  
SWR(1)  
SWDTEN(4)  
WDTO(1)  
SLEEP(1)  
IDLE(1)  
BOR(1)  
POR(1)  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit(1)  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit(1)  
1= An illegal opcode detection, an illegal address mode or uninitialized W register is used as an  
Address Pointer and caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 12  
Unimplemented: Read as ‘0’  
RETEN: Retention Mode Enable bit(2)  
1= Retention mode is enabled while device is in Sleep modes (1.2V regulator supplies to the core)  
0= Retention mode is disabled; normal voltage levels are present  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
DPSLP: Deep Sleep Flag bit(1)  
1= Device has been in Deep Sleep mode  
0= Device has not been in Deep Sleep mode  
bit 9  
bit 8  
bit 7  
bit 6  
CM: Configuration Word Mismatch Reset Flag bit(1)  
1= A Configuration Word Mismatch Reset has occurred  
0= A Configuration Word Mismatch Reset has not occurred  
VREGS: Program Memory Power During Sleep bit(3)  
1= Program memory bias voltage remains powered during Sleep  
0= Program memory bias voltage is powered down during Sleep  
EXTR: External Reset (MCLR) Pin bit(1)  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit(1)  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the LPCFG Configuration bit is 1’ (unprogrammed), the retention regulator is disabled and the RETEN bit  
has no effect.  
3: Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from  
Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from  
occurring.  
4: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS39996F-page 90  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 7-1:  
RCON: RESET CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SWDTEN: Software Enable/Disable of WDT bit(4)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit(1)  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake From Sleep Flag bit(1)  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up From Idle Flag bit(1)  
1= Device has been in Idle mode  
0= Device has not been in Idle mode  
BOR: Brown-out Reset Flag bit(1)  
1= A Brown-out Reset has occurred (also set after a Power-on Reset).  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit(1)  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the LPCFG Configuration bit is 1’ (unprogrammed), the retention regulator is disabled and the RETEN bit  
has no effect.  
3: Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from  
Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from  
occurring.  
4: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 91  
PIC24FJ128GA310 FAMILY  
REGISTER 7-2:  
RCON2: RESET AND SYSTEM CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
r-0  
r
R/CO-1  
R/CO-1  
R/CO-1  
R/CO-0  
VBAT(1)  
VDDBOR(1) VDDPOR(1,2) VBPOR(1,3)  
bit 7  
bit 0  
Legend:  
CO = Clearable Only bit  
W = Writable bit  
r = Reserved bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
bit 3  
VDDBOR: VDD Brown-out Reset Flag bit(1)  
1= A VDD Brown-out Reset has occurred (set by hardware)  
0= A VDD Brown-out Reset has not occurred  
bit 2  
bit 1  
VDDPOR: VDD Power-On Reset Flag bit(1,2)  
1= A VDD Power-up Reset has occurred (set by hardware)  
0= A VDD Power-up Reset has not occurred  
VBPOR: VBPOR Flag bit(1,3)  
1= A VBAT POR has occurred (no battery connected to VBAT pin, or VBAT power below Deep Sleep  
Semaphore retention level, set by hardware)  
0= A VBAT POR has not occurred  
bit 0  
VBAT: VBAT Flag bit(1)  
1= A POR exit has occurred while power was applied to VBAT pin (set by hardware)  
0= A POR exit from VBAT has not occurred  
Note 1: This bit is set in hardware only; it can only be cleared in software.  
2: Indicates a VDD POR. Setting the POR bit (RCON<0>) indicates a VCORE POR.  
3: This bit is set when the device is originally powered up, even if power is present on VBAT.  
DS39996F-page 92  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 7-1:  
RESET FLAG BIT OPERATION  
Setting Event  
Flag Bit  
Clearing Event  
TRAPR (RCON<15>)  
IOPUWR (RCON<14>)  
CM (RCON<9>)  
Trap Conflict Event  
POR  
POR  
POR  
POR  
POR  
Illegal Opcode or Uninitialized W Register Access  
Configuration Mismatch Reset  
MCLR Reset  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
RESETInstruction  
WDT Time-out  
CLRWDT, PWRSAV  
Instruction, POR  
SLEEP (RCON<3>)  
DPSLP (RCON<10>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #0Instruction  
PWRSAV #0Instruction while DSEN bit set  
PWRSAV #1Instruction  
POR, BOR  
POR  
POR  
POR  
POR  
Note:  
All Reset flag bits may be set or cleared by the user software.  
7.1  
Special Function Register Reset  
States  
7.3  
Brown-out Reset (BOR)  
PIC24FJ128GA310 family devices implement a BOR  
circuit that provides the user with several configuration  
and power-saving options. The BOR is controlled by  
the BOREN (CW3<12>) Configuration bit.  
Most of the Special Function Registers (SFRs) associ-  
ated with the PIC24F CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function and their  
Reset values are specified in each section of this manual.  
When BOR is enabled, any drop of VDD below the BOR  
threshold results in a device BOR. Threshold levels are  
described in Section 32.1 “DC Characteristics”  
(Parameter DC17).  
The Reset value for each SFR does not depend on the  
type of Reset, with the exception of four registers. The  
Reset value for the Reset Control register, RCON, will  
depend on the type of device Reset. The Reset value  
for the Oscillator Control register, OSCCON, will  
depend on the type of Reset and the programmed  
values of the FNOSC bits in Flash Configuration  
Word 2 (CW2) (see Table 7-2). The RCFGCAL and  
NVMCON registers are only affected by a POR.  
7.4  
Clock Source Selection at Reset  
If clock switching is enabled, the system clock source  
at device Reset is chosen, as shown in Table 7-2. If  
clock switching is disabled, the system clock source is  
always selected according to the Oscillator Configura-  
tion bits. Refer to the “PIC24F Family Reference  
Manual”, Section 6.0 “Oscillator” (DS39700) for  
further details.  
7.2  
Device Reset Times  
The Reset times for various types of device Reset are  
summarized in Table 7-3. Note that the system Reset  
signal, SYSRST, is released after the POR delay time  
expires.  
TABLE 7-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
The time at which the device actually begins to execute  
code will also depend on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable SYSRST delay times.  
Reset Type  
Clock Source Determinant  
POR  
BOR  
FNOSC Configuration bits  
(CW2<10:8>)  
MCLR  
WDTO  
SWR  
COSC Control bits  
(OSCCON<14:12>)  
The Fail-Safe Clock Monitor (FSCM) delay determines  
the time at which the FSCM begins to monitor the  
system clock source after the SYSRST signal is  
released.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 93  
PIC24FJ128GA310 FAMILY  
TABLE 7-3:  
Reset Type  
POR  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
Clock Source  
SYSRST Delay  
Notes  
1, 2, 3  
EC  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TRST  
ECPLL  
TLOCK  
1, 2, 3, 5  
1, 2, 3, 4, 8  
1, 2, 3, 4, 5, 8  
1, 2, 3, 6, 7  
1, 2, 3, 5, 6  
1, 2, 3, 6  
2, 3  
XT, HS, SOSC  
XTPLL, HSPLL  
FRC, FRCDIV  
FRCPLL  
TOST  
TOST + TLOCK  
TFRC  
TFRC + TLOCK  
LPRC  
TLPRC  
BOR  
EC  
ECPLL  
TLOCK  
2, 3, 5  
2, 3, 4, 8  
2, 3, 4, 5, 8  
2, 3, 6, 7  
2, 3, 5, 6  
2, 3, 6  
3
XT, HS, SOSC  
XTPLL, HSPLL  
FRC, FRCDIV  
FRCPLL  
TOST  
TOST + TLOCK  
TFRC  
TFRC + TLOCK  
LPRC  
TLPRC  
MCLR  
WDT  
Any Clock  
Any Clock  
Any clock  
TRST  
3
Software  
TRST  
3
Illegal Opcode Any Clock  
Uninitialized W Any Clock  
TRST  
3
TRST  
3
Trap Conflict  
Any Clock  
TRST  
3
Note 1: TPOR = Power-on Reset delay (10 s nominal).  
2: TSTARTUP = TVREG (10 s nominal when VREGS = 1and when VREGS = 0;depends upon  
WDTWIN<1:0> bits setting).  
3: TRST = Internal State Reset time (2 s nominal).  
4: TOST = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing  
the oscillator clock to the system.  
5: TLOCK = PLL lock time.  
6: TFRC and TLPRC = RC oscillator start-up times.  
7: If Two-speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC  
so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid. It switches to the  
primary oscillator after its respective clock delay.  
8: TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the  
oscillator clock to the system.  
The device will not begin to execute code until a valid  
clock source has been released to the system. There-  
fore, the oscillator and PLL start-up delays must be  
considered when the Reset delay time must be known.  
7.4.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) will have a relatively long  
start-up time. Therefore, one or more of the following  
conditions is possible after SYSRST is released:  
7.4.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
If the FSCM is enabled, it will begin to monitor the  
system clock source when SYSRST is released. If a  
valid clock source is not available at this time, the  
device will automatically switch to the FRC oscillator  
and the user can switch to the desired crystal oscillator  
in the Trap Service Routine (TSR).  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used).  
• The PLL has not achieved a lock (if PLL is used).  
DS39996F-page 94  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
8.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
8.0  
INTERRUPT CONTROLLER  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 8. “Interrupts” (DS39707). The  
information in this data sheet supersedes  
the information in the FRM.  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 8-1. The ALTIVT  
(INTCON2<15>) control bit provides access to the  
AIVT. If the ALTIVT bit is set, all interrupt and exception  
processes will use the alternate vectors instead of the  
default vectors. The alternate vectors are organized in  
the same manner as the default vectors.  
The AIVT supports emulation and debugging efforts by  
providing a means to switch between an application  
and a support environment without requiring the inter-  
rupt vectors to be reprogrammed. This feature also  
enables switching between applications for evaluation  
of different software algorithms at run time. If the AIVT  
is not needed, the AIVT should be programmed with  
the same addresses used in the IVT.  
The PIC24F interrupt controller reduces the numerous  
peripheral interrupt request signals to a single interrupt  
request signal to the PIC24F CPU. It has the following  
features:  
• Up to 8 processor exceptions and software traps  
• Seven user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• Unique vector for each interrupt or exception  
source  
8.2  
Reset Sequence  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The PIC24F devices clear their registers in response to  
a Reset, which forces the PC to zero. The micro-  
controller then begins program execution at location,  
000000h. The user programs a GOTOinstruction at the  
Reset address, which redirects program execution to  
the appropriate start-up routine.  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
8.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 8-1.  
The IVT resides in program memory, starting at location,  
000004h. The IVT contains 126 vectors, consisting of  
8 non-maskable trap vectors, plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt vec-  
tor location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note:  
Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
Interrupt vectors are prioritized in terms of their natural  
priority; this is linked to their position in the vector table.  
All other things being equal, lower addresses have a  
higher natural priority. For example, the interrupt asso-  
ciated with Vector 0 will take priority over interrupts at  
any other vector address.  
PIC24FJ128GA310  
family  
devices  
implement  
non-maskable traps and unique interrupts. These are  
summarized in Table 8-1 and Table 8-2.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 95  
PIC24FJ128GA310 FAMILY  
FIGURE 8-1:  
PIC24F INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
000000h  
000002h  
000004h  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000014h  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00007Ch  
00007Eh  
000080h  
(1)  
Interrupt Vector Table (IVT)  
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0000FCh  
0000FEh  
000100h  
000102h  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000114h  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00017Ch  
00017Eh  
000180h  
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0001FEh  
000200h  
Note 1: See Table 8-2 for the interrupt vector list.  
TABLE 8-1:  
TRAP VECTOR DETAILS  
IVT Address  
Vector Number  
AIVT Address  
Trap Source  
0
1
2
3
4
5
6
7
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000104h  
000106h  
000108h  
00010Ah  
00010Ch  
00010Eh  
000110h  
000112h  
Reserved  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
DS39996F-page 96  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 8-2:  
IMPLEMENTED INTERRUPT VECTORS  
Interrupt Bit Locations  
Enable  
Vector  
Number  
IVT  
Address  
AIVT  
Address  
Interrupt Source  
Flag  
Priority  
ADC1 Conversion Done  
Comparator Event  
CRC Generator  
13  
18  
67  
77  
4
00002Eh  
000038h  
00009Ah  
0000AEh  
00001Ch  
000030h  
000044h  
00005Ch  
000070h  
00008Eh  
000014h  
00003Ch  
00004Eh  
00007Eh  
000080h  
000036h  
000034h  
000078h  
000076h  
000016h  
00001Eh  
00005Eh  
000060h  
000062h  
000064h  
000040h  
0000FEh  
00003Ah  
0000DCh  
0000A4h  
000018h  
000020h  
000046h  
000048h  
000066h  
000068h  
00006Ah  
00006Eh  
000090h  
000026h  
000028h  
000054h  
000056h  
00012Eh  
000138h  
00019Ah  
0001AEh  
00011Ch  
000130h  
000144h  
00015Ch  
000170h  
00018Eh  
000114h  
00013Ch  
00014Eh  
00017Eh  
000180h  
000136h  
000134h  
000178h  
000176h  
000116h  
00011Eh  
00015Eh  
000160h  
000162h  
000164h  
000140h  
0001FEh  
00013Ah  
0001DCh  
0001A4h  
000118h  
000120h  
000146h  
000148h  
000166h  
000168h  
00016Ah  
00016Eh  
000190h  
000126h  
000128h  
000154h  
000156h  
IFS0<13>  
IFS1<2>  
IFS4<3>  
IFS4<13>  
IFS0<4>  
IFS0<14>  
IFS1<8>  
IFS2<4>  
IFS2<14>  
IFS3<13>  
IFS0<0>  
IFS1<4>  
IFS1<13>  
IFS3<5>  
IFS3<6>  
IFS1<1>  
IFS1<0>  
IFS3<2>  
IFS3<1>  
IFS0<1>  
IFS0<5>  
IFS2<5>  
IFS2<6>  
IFS2<7>  
IFS2<8>  
IFS1<6>  
IFS7<5>  
IFS1<3>  
IFS6<4>  
IFS4<8>  
IFS0<2>  
IFS0<6>  
IFS1<9>  
IFS1<10>  
IFS2<9>  
IFS2<10>  
IFS2<11>  
IFS2<13>  
IFS3<14>  
IFS0<9>  
IFS0<10>  
IFS2<0>  
IFS2<1>  
IEC0<13>  
IEC1<2>  
IEC4<3>  
IEC4<13>  
IEC0<4>  
IEC0<14>  
IEC1<8>  
IEC2<4>  
IEC2<14>  
IEC3<13>  
IEC0<0>  
IEC1<4>  
IEC1<13>  
IEC3<5>  
IEC3<6>  
IEC1<1>  
IEC1<0>  
IEC3<2>  
IEC3<1>  
IEC0<1>  
IEC0<5>  
IEC2<5>  
IEC2<6>  
IEC2<7>  
IEC2<8>  
IEC1<6>  
IEC7<5>  
IEC1<3>  
IEC6<4>  
IEC4<8>  
IEC0<2>  
IEC0<6>  
IEC1<9>  
IEC1<10>  
IEC2<9>  
IEC2<10>  
IEC2<11>  
IEC2<13>  
IEC3<14>  
IEC0<9>  
IEC0<10>  
IEC2<0>  
IEC2<1>  
IPC3<6:4>  
IPC4<10:8>  
IPC16<14:12>  
IPC19<6:4>  
IPC1<2:0>  
CTMU Event  
DMA Channel 0  
DMA Channel 1  
14  
24  
36  
46  
61  
0
IPC3<10:8>  
IPC6<2:0>  
DMA Channel 2  
DMA Channel 3  
IPC9<2:0>  
DMA Channel 4  
IPC11<10:8>  
IPC15<6:4>  
IPC0<2:0>  
DMA Channel 5  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
I2C1 Master Event  
I2C1 Slave Event  
I2C2 Master Event  
I2C2 Slave Event  
Input Capture 1  
20  
29  
53  
54  
17  
16  
50  
49  
1
IPC5<2:0>  
IPC7<6:4>  
IPC13<6:4>  
IPC13<10:8>  
IPC4<6:4>  
IPC4<2:0>  
IPC12<10:8>  
IPC12<6:4>  
IPC0<6:4>  
Input Capture 2  
5
IPC1<6:4>  
Input Capture 3  
37  
38  
39  
40  
22  
117  
19  
100  
72  
2
IPC9<6:4>  
Input Capture 4  
IPC9<10:8>  
IPC9<14:12>  
IPC10<2:0>  
IPC5<10:8>  
IPC29<6:4>  
IPC4<14:12>  
IPC25<2:0>  
IPC18<2:0>  
IPC0<10:8>  
IPC1<10:8>  
IPC6<6:4>  
Input Capture 5  
Input Capture 6  
Input Capture 7  
JTAG  
Input Change Notification (ICN)  
LCD Controller  
Low-Voltage Detect (LVD)  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
Output Compare 6  
Output Compare 7  
Enhanced Parallel Master Port (EPMP)  
Real-Time Clock and Calendar (RTCC)  
SPI1 Error  
6
25  
26  
41  
42  
43  
45  
62  
9
IPC6<10:8>  
IPC10<6:4>  
IPC10<10:8>  
IPC10<14:12>  
IPC11<6:4>  
IPC15<10:8>  
IPC2<6:4>  
SPI1 Event  
10  
32  
33  
IPC2<10:8>  
IPC8<2:0>  
SPI2 Error  
SPI2 Event  
IPC8<6:4>  
2010-2011 Microchip Technology Inc.  
DS39996F-page 97  
PIC24FJ128GA310 FAMILY  
TABLE 8-2:  
IMPLEMENTED INTERRUPT VECTORS (CONTINUED)  
Interrupt Bit Locations  
Enable  
Vector  
Number  
IVT  
Address  
AIVT  
Address  
Interrupt Source  
Flag  
Priority  
Timer1  
3
00001Ah  
000022h  
000024h  
00004Ah  
00004Ch  
000096h  
00002Ah  
00002Ch  
000098h  
000050h  
000052h  
0000B6h  
0000B8h  
0000BAh  
0000C2h  
0000C4h  
0000C6h  
00011Ah  
000122h  
000124h  
00014Ah  
00014Ch  
000196h  
00012Ah  
00012Ch  
000198h  
000150h  
000152h  
0001B6h  
0001B8h  
0001BAh  
0001C2h  
0001C4h  
0001C6h  
IFS0<3>  
IFS0<7>  
IFS0<8>  
IFS1<11>  
IFS1<12>  
IFS4<1>  
IFS0<11>  
IFS0<12>  
IFS4<2>  
IFS1<14>  
IFS1<15>  
IFS5<1>  
IFS5<2>  
IFS5<3>  
IFS5<7>  
IFS5<8>  
IFS5<9>  
IEC0<3>  
IEC0<7>  
IEC0<8>  
IEC1<11>  
IEC1<12>  
IEC4<1>  
IEC0<11>  
IEC0<12>  
IEC4<2>  
IEC1<14>  
IEC1<15>  
IEC5<1>  
IEC5<2>  
IEC5<3>  
IEC5<7>  
IEC5<8>  
IEC5<9>  
IPC0<14:12>  
IPC1<14:12>  
IPC2<2:0>  
Timer2  
7
Timer3  
8
Timer4  
27  
28  
65  
11  
12  
66  
30  
31  
81  
82  
83  
87  
88  
89  
IPC6<14:12>  
IPC7<2:0>  
Timer5  
UART1 Error  
UART1 Receiver  
UART1 Transmitter  
UART2 Error  
UART2 Receiver  
UART2 Transmitter  
UART3 Error  
UART3 Receiver  
UART3 Transmitter  
UART4 Error  
UART4 Receiver  
UART4 Transmitter  
IPC16<6:4>  
IPC2<14:12>  
IPC3<2:0>  
IPC16<10:8>  
IPC7<10:8>  
IPC7<14:12>  
IPC20<6:4>  
IPC20<10:8>  
IPC20<14:12>  
IPC21<14:12>  
IPC22<2:0>  
IPC22<6:4>  
The IPCx registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
8.3  
Interrupt Control and Status  
Registers  
The PIC24FJ128GA310 family of devices implements  
a total of 43 registers for the interrupt controller:  
The INTTREG register contains the associated  
interrupt vector number and the new CPU interrupt  
priority level, which are latched into the Vector  
Number (VECNUM<6:0>) and the Interrupt Level  
(ILR<3:0>) bit fields in the INTTREG register. The  
new interrupt priority level is the priority of the  
pending interrupt.  
• INTCON1  
• INTCON2  
• IFS0 through IFS7  
• IEC0 through IEC7  
• IPC0 through IPC13, ICP15 and ICP16, ICP18  
through ICP23, ICP25 and ICP29  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the order of their vector numbers,  
as shown in Table 8-2. For example, the INT0 (External  
Interrupt 0) is shown as having a vector number and a  
natural order priority of 0. Thus, the INT0IF status bit is  
found in IFS0<0>, the INT0IE enable bit in IEC0<0>  
and the INT0IP<2:0> priority bits in the first position of  
IPC0 (IPC0<2:0>).  
• INTTREG  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the Inter-  
rupt Nesting Disable (NSTDIS) bit, as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table (AIVT).  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers con-  
tain bits that control interrupt functionality. The ALU  
STATUS Register (SR) contains the IPL<2:0> bits  
(SR<7:5>). These indicate the current CPU interrupt  
priority level. The user can change the current CPU  
priority level by writing to the IPL bits.  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or an external signal  
and is cleared via software.  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
DS39996F-page 98  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The CORCON register contains the IPL3 bit, which  
priority level are latched into INTTREG. This informa-  
tion can be used to determine a specific interrupt  
source if a generic ISR is used for multiple vectors  
(such as when ISR remapping is used in bootloader  
applications) or to check if another interrupt is pending  
while in an ISR.  
together with the IPL<2:0> bits, indicate the current  
CPU priority level. IPL3 is a read-only bit so that trap  
events cannot be masked by the user software.  
The interrupt controller has the Interrupt Controller Test  
register, INTTREG, which displays the status of the  
interrupt controller. When an interrupt request occurs,  
it’s associated vector number and the new interrupt  
All interrupt registers are described in Register 8-1  
through Register 8-44 in the succeeding pages.  
REGISTER 8-1:  
SR: ALU STATUS REGISTER (IN CPU)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
DC(1)  
bit 15  
bit 8  
R/W-0  
IPL2(2,3)  
bit 7  
R/W-0  
IPL1(2,3)  
R/W-0  
IPL0(2,3)  
R-0  
RA(1)  
R/W-0  
N(1)  
R/W-0  
OV(1)  
R/W-0  
Z(1)  
R/W-0  
C(1)  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 7-5  
Unimplemented: Read as ‘0’  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU interrupt priority level is 7 (15); user interrupts are disabled  
110= CPU interrupt priority level is 6 (14)  
101= CPU interrupt priority level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
Note 1: See Register 3-1 for the description of the remaining bits (bits 8, 4, 3, 2, 1 and 0) that are not dedicated to  
interrupt control functions.  
2: The IPL bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU interrupt priority level.  
The value in parentheses indicates the interrupt priority level if IPL3 = 1.  
3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 99  
PIC24FJ128GA310 FAMILY  
REGISTER 8-2:  
CORCON: CPU CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(1)  
r-1  
r
U-0  
U-0  
bit 7  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit(1)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 2  
Reserved: Read as ‘1’  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level; see  
Register 3-2 for bit description.  
DS39996F-page 100  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
MATHERR  
ADDRERR  
STKERR  
OSCFAIL  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
bit 14-5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Trap Status bit  
1= Overflow trap has occurred  
0= Overflow trap has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 101  
PIC24FJ128GA310 FAMILY  
REGISTER 8-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
R-0, HSC  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ALTIVT  
DISI  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use Alternate Interrupt Vector Table  
0= Use standard (default) Interrupt Vector Table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 3  
bit 2  
bit 1  
bit 0  
INT3EP: External Interrupt 3 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS39996F-page 102  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
DMA1IF  
U1TXIF  
U1RXIF  
SPF1IF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
R/W-0  
R/W-0  
T1IF  
R/W-0,  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
DMA0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
AD1IF: A/D Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
DMA1IF: DMA Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPF1IF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
DMA0IF: DMA Channel 0 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2010-2011 Microchip Technology Inc.  
DS39996F-page 103  
PIC24FJ128GA310 FAMILY  
REGISTER 8-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS39996F-page 104  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
U2TXIF  
bit 15  
R/W-0  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
R/W-0  
U2RXIF  
DMA2IF  
bit 8  
R/W-0  
R/W-0  
IC7IF  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
CMIF  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
DMA2IF: DMA Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
IC7IF: Input Capture Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2010-2011 Microchip Technology Inc.  
DS39996F-page 105  
PIC24FJ128GA310 FAMILY  
REGISTER 8-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
bit 0  
CMIF: Comparator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: Master I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS39996F-page 106  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
U-0  
R/W-0  
R/W-0  
PMPIF  
U-0  
R/W-0  
OC7IF  
R/W-0  
OC6IF  
R/W-0  
OC5IF  
R/W-0  
IC6IF  
DMA4IF  
bit 15  
bit 8  
R/W-0  
IC5IF  
R/W-0  
IC4IF  
R/W-0  
IC3IF  
R/W-0  
U-0  
U-0  
R/W-0  
SPI2IF  
R/W-0  
DMA3IF  
SPF2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA4IF: DMA Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
PMPIF: Parallel Master Port Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
OC7IF: Output Compare Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-2  
OC6IF: Output Compare Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC5IF: Output Compare Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC6IF: Input Capture Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC5IF: Input Capture Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA3IF: DMA Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 107  
PIC24FJ128GA310 FAMILY  
REGISTER 8-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)  
bit 1  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SPF2IF: SPI2 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
REGISTER 8-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
R/W-0  
RTCIF  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMA5IF  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
INT4IF  
R/W-0  
INT3IF  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
MI2C2IF  
SI2C2IF  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
DMA5IF: DMA Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
INT4IF: External Interrupt 4 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
INT3IF: External Interrupt 3 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IF: Master I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
DS39996F-page 108  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LVDIF  
CTMUIF  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CRCIF  
R/W-0  
R/W-0  
U-0  
U2ERIF  
U1ERIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUIF: CTMU Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
LVDIF: Low-Voltage Detect Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIF: CRC Generator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
U2ERIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1ERIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 109  
PIC24FJ128GA310 FAMILY  
REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U4TXIF  
U4RXIF  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U4ERIF  
U3TXIF  
U3RXIF  
U3ERIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
U4TXIF: UART4 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
bit 7  
U4RXIF: UART4 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U4ERIF: UART4 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
U3TXIF: UART3 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
U3RXIF: UART3 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U3ERIF: UART3 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
DS39996F-page 110  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-11: IFS6: INTERRUPT FLAG STATUS REGISTER 6  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
LCDIF  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
LCDIF: LCD Controller Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 8-12: IFS7: INTERRUPT FLAG STATUS REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
JTAGIF  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
JTAGIF: JTAG Controller Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 111  
PIC24FJ128GA310 FAMILY  
REGISTER 8-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
DMA1IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPF1IE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
R/W-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
DMA0IE  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IE: DMA Channel 1 Interrupt Flag Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IE: A/D Conversion Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1IE: SPI1 Transfer Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPF1IE: SPI1 Fault Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4  
DMA0IE: DMA Channel 0 Interrupt Flag Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DS39996F-page 112  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-13: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 113  
PIC24FJ128GA310 FAMILY  
REGISTER 8-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
INT2IE(1)  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
R/W-0  
U2TXIE  
U2RXIE  
DMA2IE  
bit 15  
bit 8  
U-0  
R/W-0  
IC7IE  
U-0  
R/W-0  
INT1IE(1)  
R/W-0  
CNIE  
R/W-0  
CMIE  
R/W-0  
R/W-0  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT2IE: External Interrupt 2 Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
DMA2IE: DMA Channel 2 Interrupt Flag Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
IC7IE: Input Capture Channel 7 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx  
pin. See Section 11.4 “Peripheral Pin Select (PPS)” for more information.  
DS39996F-page 114  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
CMIE: Comparator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
MI2C1IE: Master I2C1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SI2C1IE: Slave I2C1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx  
pin. See Section 11.4 “Peripheral Pin Select (PPS)” for more information.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 115  
PIC24FJ128GA310 FAMILY  
REGISTER 8-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
OC7IE  
R/W-0  
OC6IE  
R/W-0  
OC5IE  
R/W-0  
IC6IE  
DMA4IE  
PMPIE  
bit 15  
bit 8  
R/W-0  
IC5IE  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
DMA3IE  
SPI2IE  
SPF2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA4IE: DMA Channel 4 Interrupt Flag Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13  
PMPIE: Parallel Master Port Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
OC7IE: Output Compare Channel 7 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-2  
OC6IE: Output Compare Channel 6 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC5IE: Output Compare Channel 5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC6IE: Input Capture Channel 6 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC5IE: Input Capture Channel 5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DMA3IF: DMA Channel 3 Interrupt Flag Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
DS39996F-page 116  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-15: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
bit 1  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
SPF2IE: SPI2 Fault Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
REGISTER 8-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
R/W-0  
RTCIE  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMA5IE  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
INT4IE(1)  
R/W-0  
INT3IE(1)  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
MI2C2IE  
SI2C2IE  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIE: Real-Time Clock/Calendar Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13  
DMA5IE: DMA Channel 5 Interrupt Flag Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
INT4IE: External Interrupt 4 Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
INT3IE: External Interrupt 3 Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IE: Master I2C2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
SI2C2IE: Slave I2C2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx  
pin. See Section 11.4 “Peripheral Pin Select (PPS)” for more information.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 117  
PIC24FJ128GA310 FAMILY  
REGISTER 8-17: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LVDIE  
CTMUIE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
CRCIE  
U2ERIE  
U1ERIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUIE: CTMU Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIE: CRC Generator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
U2ERIE: UART2 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
bit 0  
U1ERIE: UART1 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
DS39996F-page 118  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U4TXIE  
U4RXIE  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U4ERIE  
U3TXIE  
U3RXIE  
U3ERIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
U4TXIE: UART4 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
bit 7  
U4RXIE: UART4 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U4ERIE: UART4 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
U3TXIE: UART3 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
U3RXIE: UART3 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U3ERIE: UART3 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 119  
PIC24FJ128GA310 FAMILY  
REGISTER 8-19: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
LCDIE  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
LCDIE: LCD Controller Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 8-20: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
JTAGIE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
JTAGIE: JATG Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4-0  
Unimplemented: Read as ‘0’  
DS39996F-page 120  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-21: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
T1IP2  
R/W-0  
T1IP1  
R/W-0  
T1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC1IP2  
OC1IP1  
OC1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC1IP2  
R/W-0  
IC1IP1  
R/W-0  
IC1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT0IP2  
INT0IP1  
INT0IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 121  
PIC24FJ128GA310 FAMILY  
REGISTER 8-22: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
T2IP2  
R/W-0  
T2IP1  
R/W-0  
T2IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC2IP2  
OC2IP1  
OC2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC2IP2  
R/W-0  
IC2IP1  
R/W-0  
IC2IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA0IP2  
DMA0IP1  
DMA0IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA0IP<2:0>: DMA Channel 0 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39996F-page 122  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-23: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U1RXIP2  
U1RXIP1  
U1RXIP0  
SPI1IP2  
SPI1IP1  
SPI1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T3IP2  
R/W-0  
T3IP1  
R/W-0  
T3IP0  
SPF1IP2  
SPF1IP1  
SPF1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPF1IP<2:0>: SPI1 Fault Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 123  
PIC24FJ128GA310 FAMILY  
REGISTER 8-24: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA1IP2  
DMA1IP1  
DMA1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
AD1IP2  
AD1IP1  
AD1IP0  
U1TXIP2  
U1TXIP1  
U1TXIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
DMA1IP<2:0>: DMA Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39996F-page 124  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-25: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
CNIP2  
R/W-0  
CNIP1  
R/W-0  
CNIP0  
U-0  
R/W-1  
CMIP2  
R/W-0  
CMIP1  
R/W-0  
CMIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1IP2  
MI2C1IP1  
MI2C1IP0  
SI2C1IP2  
SI2C1IP1  
SI2C1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Input Change Notification Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
CMIP<2:0>: Comparator Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1IP<2:0>: Master I2C1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: Slave I2C1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 125  
PIC24FJ128GA310 FAMILY  
REGISTER 8-26: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
IC7IP2  
R/W-0  
IC7IP1  
R/W-0  
IC7IP0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT1IP2  
INT1IP1  
INT1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39996F-page 126  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-27: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
T4IP2  
R/W-0  
T4IP1  
R/W-0  
T4IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC4IP2  
OC4IP1  
OC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC3IP2  
OC3IP1  
OC3IP0  
DMA2IP2  
DMA2IP1  
DMA2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA2IP<2:0>: DMA Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 127  
PIC24FJ128GA310 FAMILY  
REGISTER 8-28: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U2TXIP2  
U2TXIP1  
U2TXIP0  
U2RXIP2  
U2RXIP1  
U2RXIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T5IP2  
R/W-0  
T5IP1  
R/W-0  
T5IP0  
INT2IP2  
INT2IP1  
INT2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39996F-page 128  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
SPI2IP2  
SPI2IP1  
SPI2IP0  
SPF2IP2  
SPF2IP1  
SPF2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
SPI2IP<2:0>: SPI2 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 129  
PIC24FJ128GA310 FAMILY  
REGISTER 8-30: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
R/W-1  
IC5IP2  
R/W-0  
IC5IP1  
R/W-0  
IC5IP0  
U-0  
R/W-1  
IC4IP2  
R/W-0  
IC4IP1  
R/W-0  
IC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC3IP2  
R/W-0  
IC3IP1  
R/W-0  
IC3IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA3IP2  
DMA3IP1  
DMA3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA3IP<2:0>: DMA Channel 3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39996F-page 130  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-31: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC7IP2  
OC7IP1  
OC7IP0  
OC6IP2  
OC6IP1  
OC6IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
IC6IP2  
R/W-0  
IC6IP1  
R/W-0  
IC6IP0  
OC5IP2  
OC5IP1  
OC5IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 131  
PIC24FJ128GA310 FAMILY  
REGISTER 8-32: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA4IP2  
DMA4IP1  
DMA4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PMPIP2  
PMPIP1  
PMPIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
DMA4IP<2:0>: DMA Channel 4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PMPIP<2:0>: Parallel Master Port Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39996F-page 132  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-33: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C2IP2  
MI2C2IP1  
MI2C2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
SI2C2IP2  
SI2C2IP1  
SI2C2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
MI2C2IP<2:0>: Master I2C2 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2IP<2:0>: Slave I2C2 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 133  
PIC24FJ128GA310 FAMILY  
REGISTER 8-34: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT4IP2  
INT4IP1  
INT4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT3IP2  
INT3IP1  
INT3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
INT4IP<2:0>: External Interrupt 4 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT3IP<2:0>: External Interrupt 3 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39996F-page 134  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-35: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
RTCIP2  
RTCIP1  
RTCIP0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA5IP2  
DMA5IP1  
DMA5IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
RTCIP<2:0>: Real-Time Clock and Calendar Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
DMA5IP<2:0>: DMA Channel 5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 135  
PIC24FJ128GA310 FAMILY  
REGISTER 8-36: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2  
U2ERIP1  
U2ERIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1ERIP2  
U1ERIP1  
U1ERIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CRCIP<2:0>: CRC Generator Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2ERIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1ERIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39996F-page 136  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-37: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
LVDIP2  
LVDIP1  
LVDIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
REGISTER 8-38: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CTMUIP2  
CTMUIP1  
CTMUIP0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
CTMUIP<2:0>: CTMU Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 137  
PIC24FJ128GA310 FAMILY  
REGISTER 8-39: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U3TXIP2  
U3TXIP1  
U3TXIP0  
U3RXIP2  
U3RXIP1  
U3RXIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U3ERIP2  
U3ERIP1  
U3ERIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U3TXIP<2:0>: UART3 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U3RXIP<2:0>: UART3 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U3ERIP<2:0>: UART3 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39996F-page 138  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-40: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U4ERIP2  
U4ERIP1  
U4ERIP0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U4ERIP<2:0>: UART4 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 139  
PIC24FJ128GA310 FAMILY  
REGISTER 8-41: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U4TXIP2  
U4TXIP1  
U4TXIP0  
U4RXIP2  
U4RXIP1  
U4RXIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
U4TXIP<2:0>: UART4 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U4RXIP<2:0>: UART4 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39996F-page 140  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 8-42: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 25  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
LCDIP2  
LCDIP1  
LCDIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
LCDIP<2:0>: LCD Controller Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
REGISTER 8-43: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
JTAGIP2  
JTAGIP1  
JTAGIP0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
JTAGIP<2:0>: JTAG Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 141  
PIC24FJ128GA310 FAMILY  
REGISTER 8-44: INTTREG: INTERRUPT CONTROLLER TEST REGISTER  
R-0, HSC  
CPUIRQ  
U-0  
R/W-0  
U-0  
R-0, HSC  
ILR3  
R-0, HSC  
ILR2  
R-0, HSC  
ILR1  
R-0, HSC  
ILR0  
VHOLD  
bit 15  
bit 8  
U-0  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
VECNUM6  
VECNUM5  
VECNUM4  
VECNUM3  
VECNUM2  
VECNUM1  
VECNUM0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CPUIRQ: Interrupt Request from Interrupt Controller CPU bit  
1= An interrupt request has occurred but has not yet been Acknowledged by the CPU. This happens  
when the CPU priority is higher than the interrupt priority  
0= No interrupt request is unacknowledged  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
VHOLD: Vector Number Capture Configuration bit  
1= The VECNUM bits contain the value of the highest priority pending interrupt  
0= The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that  
has occurred with higher priority than the CPU, even if other interrupts are pending)  
bit 12  
Unimplemented: Read as ‘0’  
bit 11-8  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU interrupt priority level is 15  
0001= CPU interrupt priority level is 1  
0000= CPU interrupt priority level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<5:0>: Vector Number of Pending Interrupt or Last Acknowledged Interrupt bits  
VHOLD = 1: The VECNUM bits indicate the vector number (from 0 to 118) of the last interrupt to occur  
VHOLD = 0: The VECNUM bits indicate the vector number (from 0 to 118) of the interrupt request  
currently being handled  
DS39996F-page 142  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
8.4.3  
TRAP SERVICE ROUTINE (TSR)  
8.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
8.4.1  
INITIALIZATION  
To configure an interrupt source:  
1. Set the NSTDIS (INTCON1<15>) control bit if  
nested interrupts are not desired.  
8.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources may be programmed  
to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to Priority Level 7 by inclusive  
ORing the value 0Eh with SRL.  
To enable user interrupts, the POPinstruction may be  
used to restore the previous SR value.  
Note:  
At a device Reset, the IPCx registers are  
initialized, such that all user interrupt  
sources are assigned to Priority Level 4.  
Note that only user interrupts with a priority level of 7 or  
less can be disabled. Trap sources (Level 8-15) cannot  
be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of Priority Levels 1-6 for a fixed  
period of time. Level 7 interrupt sources are not  
disabled by the DISIinstruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
8.4.2  
INTERRUPT SERVICE ROUTINE  
(ISR)  
The method that is used to declare an Interrupt Service  
Routine (ISR) and initialize the IVT with the correct vec-  
tor address will depend on the programming language  
(i.e., ‘C’ or assembler) and the language development  
toolsuite that is used to develop the application. In  
general, the user must clear the interrupt flag in the  
appropriate IFSx register for the source of the interrupt  
that the ISR handles; otherwise, the ISR will be  
re-entered immediately after exiting the routine. If the  
ISR is coded in assembly language, it must be termi-  
nated using a RETFIEinstruction to unstack the saved  
PC value, SRL value and old CPU priority level.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 143  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 144  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
• Software-controllable switching between various  
clock sources  
9.0  
OSCILLATOR  
CONFIGURATION  
• Software-controllable postscaler for selective  
clocking of CPU for system power savings  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
“Section 6. Oscillator” (DS39700).  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and permits safe application recovery  
or shutdown  
• A separate and independently configurable system  
clock output for synchronizing external hardware  
A simplified diagram of the oscillator system is shown  
in Figure 9-1.  
The oscillator system for PIC24FJ128GA310 family  
devices has the following features:  
• A total of four external and internal oscillator options  
as clock sources, providing 11 different clock modes  
• On-chip 4x PLL to boost internal operating frequency  
on select internal and external oscillator sources  
FIGURE 9-1:  
PIC24FJ128GA310 FAMILY CLOCK DIAGRAM  
Primary Oscillator  
REFOCON<15:8>  
XT, HS, EC  
OSCO  
OSCI  
Reference Clock  
Generator  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
4 x PLL  
REFO  
8 MHz  
4 MHz  
FRC  
Oscillator  
FRCDIV  
8 MHz  
(nominal)  
Peripherals  
CLKDIV<10:8>  
FRC  
CLKO  
CPU  
LPRC  
LPRC  
Oscillator  
31 kHz (nominal)  
Secondary Oscillator  
SOSC  
SOSCO  
SOSCI  
CLKDIV<14:12>  
SOSCEN  
Enable  
Oscillator  
Clock Control Logic  
Fail-Safe  
Clock  
Monitor  
WDT, PWRT  
Clock Source Option  
for Other Modules  
2010-2011 Microchip Technology Inc.  
DS39996F-page 145  
PIC24FJ128GA310 FAMILY  
9.1  
CPU Clocking Scheme  
9.2  
Initial Configuration on POR  
The system clock source can be provided by one of  
four sources:  
The oscillator source (and operating mode) that is  
used at a device Power-on Reset event is selected  
using Configuration bit settings. The Oscillator  
Configuration bit settings are located in the  
Configuration registers in the program memory (refer  
to Section 29.0 “Special Features” for further  
details). The Primary Oscillator Configuration bits,  
POSCMD<1:0> (Configuration Word 2<1:0>), and  
the Initial Oscillator Select Configuration bits,  
FNOSC<2:0> (Configuration Word 2<10:8>), select  
the oscillator source that is used at a Power-on Reset.  
The FRC Primary Oscillator (FRCDIV) with postscaler  
is the default (unprogrammed) selection. The second-  
ary oscillator, or one of the internal oscillators, may be  
chosen by programming these bit locations.  
• Primary Oscillator (POSC) on the OSCI and  
OSCO pins  
• Secondary Oscillator (SOSC) on the SOSCI and  
SOSCO pins  
• Fast Internal RC (FRC) Oscillator  
• Low-Power Internal RC (LPRC) Oscillator  
The primary oscillator and FRC sources have the  
option of using the internal 4x PLL. The frequency of  
the FRC clock source can optionally be reduced by the  
programmable clock divider. The selected clock source  
generates the processor and peripheral clock sources.  
The processor clock source is divided by two to pro-  
duce the internal instruction cycle clock, FCY. In this  
document, the instruction cycle clock is also denoted  
by FOSC/2. The internal instruction cycle clock, FOSC/2,  
can be provided on the OSCO I/O pin for some  
operating modes of the primary oscillator.  
The Configuration bits allow users to choose between  
the various clock modes, shown in Table 9-1.  
9.2.1  
CLOCK SWITCHING MODE  
CONFIGURATION BITS  
The FCKSM Configuration bits (Configuration  
Word 2<7:6>) are used to jointly configure device clock  
switching and the Fail-Safe Clock Monitor (FSCM).  
Clock switching is enabled only when FCKSM1 is  
programmed (‘0’). The FSCM is enabled only when the  
FCKSM<1:0> bits are both programmed (‘00’).  
TABLE 9-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
Note  
1, 2  
Fast RC Oscillator with Postscaler  
(FRCDIV)  
Internal  
11  
111  
(Reserved)  
Internal  
Internal  
xx  
11  
11  
110  
101  
100  
1
1
1
Low-Power RC Oscillator (LPRC)  
Secondary (Timer1) Oscillator  
(SOSC)  
Secondary  
Primary Oscillator (XT) with PLL  
Module (XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
Primary Oscillator (EC) with PLL  
Module (ECPLL)  
Primary Oscillator (HS)  
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Primary  
Primary  
Primary  
Internal  
10  
01  
00  
11  
010  
010  
010  
001  
Fast RC Oscillator with PLL Module  
(FRCPLL)  
1
1
Fast RC Oscillator (FRC)  
Internal  
11  
000  
Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
DS39996F-page 146  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The CLKDIV register (Register 9-2) controls the  
features associated with Doze mode, as well as the  
postscaler for the FRC oscillator.  
9.3  
Control Registers  
The operation of the oscillator is controlled by three  
Special Function Registers:  
The OSCTUN register (Register 9-3) allows the user to  
fine tune the FRC oscillator over a range of approxi-  
mately ±12%. Each bit increment or decrement  
changes the factory calibrated frequency of the FRC  
oscillator by a fixed amount.  
• OSCCON  
• CLKDIV  
• OSCTUN  
The OSCCON register (Register 9-1) is the main con-  
trol register for the oscillator. It controls clock source  
switching and allows the monitoring of clock sources.  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-x(1)  
NOSC2  
R/W-x(1)  
NOSC1  
R/W-x(1)  
NOSC0  
COSC2  
COSC1  
COSC0  
bit 15  
bit 8  
R/SO-0  
R/W-0  
IOLOCK(2)  
R-0(3)  
LOCK  
U-0  
R/CO-0  
CF  
R/W-0  
R/W-0  
R/W-0  
CLKLOCK  
bit 7  
POSCEN  
SOSCEN  
OSWEN  
bit 0  
Legend:  
CO = Clearable Only bit  
W = Writable bit  
SO = Settable Only bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(1)  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In  
addition, if the IOL1WAY Configuration bit is ‘1’ once the IOLOCK bit is set, it cannot be cleared.  
3: This bit also resets to ‘0’ during any valid clock switch or whenever a Non-PLL Clock mode is selected.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 147  
PIC24FJ128GA310 FAMILY  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 7  
CLKLOCK: Clock Selection Lock Enabled bit  
If FSCM is enabled (FCKSM1 = 1):  
1= Clock and PLL selections are locked  
0= Clock and PLL selections are not locked and may be modified by setting the OSWEN bit  
If FSCM is disabled (FCKSM1 = 0):  
Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.  
bit 6  
bit 5  
IOLOCK: I/O Lock Enable bit(2)  
1= I/O lock is active  
0= I/O lock is not active  
LOCK: PLL Lock Status bit(3)  
1= PLL module is in lock or PLL module start-up timer is satisfied  
0= PLL module is out of lock, PLL start-up timer is running or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit  
1= FSCM has detected a clock failure  
0= No clock failure has been detected  
bit 2  
bit 1  
bit 0  
POSCEN: Primary Oscillator Sleep Enable bit  
1= Primary oscillator continues to operate during Sleep mode  
0= Primary oscillator is disabled during Sleep mode  
SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
OSWEN: Oscillator Switch Enable bit  
1= Initiate an oscillator switch to a clock source specified by the NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In  
addition, if the IOL1WAY Configuration bit is ‘1’ once the IOLOCK bit is set, it cannot be cleared.  
3: This bit also resets to ‘0’ during any valid clock switch or whenever a Non-PLL Clock mode is selected.  
DS39996F-page 148  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 9-2:  
CLKDIV: CLOCK DIVIDER REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-1  
DOZE2  
DOZE1  
DOZE0  
RCDIV2  
RCDIV1  
RCDIV0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: CPU Peripheral Clock Ratio Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
bit 11  
DOZEN: DOZE Enable bit(1)  
1= DOZE<2:0> bits specify the CPU peripheral clock ratio  
0= CPU peripheral clock ratio set to 1:1  
bit 10-8  
RCDIV<2:0>: FRC Postscaler Select bits  
111= 31.25 kHz (divide by 256)  
110= 125 kHz (divide by 64)  
101= 250 kHz (divide by 32)  
100= 500 kHz (divide by 16)  
011= 1 MHz (divide by 8)  
010= 2 MHz (divide by 4)  
001= 4 MHz (divide by 2)  
000= 8 MHz (divide by 1)  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 149  
PIC24FJ128GA310 FAMILY  
REGISTER 9-3:  
OSCTUN: FRC OSCILLATOR TUNE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
TUN5(1)  
R/W-0  
TUN4(1)  
R/W-0  
TUN3(1)  
R/W-0  
TUN2(1)  
R/W-0  
TUN1(1)  
R/W-0  
TUN0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Maximum frequency deviation  
011110=  
000001=  
000000= Center frequency, oscillator is running at factory calibrated frequency  
111111=  
100001=  
100000= Minimum frequency deviation  
Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC  
tuning range and may not be monotonic.  
9.4.1  
ENABLING CLOCK SWITCHING  
9.4  
Clock Switching Operation  
To enable clock switching, the FCKSM Configuration bits  
in CW2 must be programmed to ‘00’. (Refer to  
Section 29.1 “Configuration Bits” for further details.)  
If the FCKSM Configuration bits are unprogrammed  
(‘1x’), the clock switching function and Fail-Safe Clock  
Monitor function are disabled. This is the default setting.  
With few limitations, applications are free to switch  
between any of the four clock sources (POSC, SOSC,  
FRC and LPRC) under software control and at any  
time. To limit the possible side effects that could result  
from this flexibility, PIC24F devices have a safeguard  
lock built into the switching process.  
The NOSCx control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is dis-  
abled. However, the COSCx bits (OSCCON<14:12>)  
will reflect the clock source selected by the FNOSCx  
Configuration bits.  
Note:  
The Primary Oscillator mode has three  
different submodes (XT, HS and EC)  
which are determined by the POSCMDx  
Configuration bits. While an application  
can switch to and from Primary Oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
DS39996F-page 150  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
A recommended code sequence for a clock switch  
includes the following:  
9.4.2  
OSCILLATOR SWITCHING  
SEQUENCE  
1. Disable interrupts during the OSCCON register  
unlock and write sequence.  
At a minimum, performing a clock switch requires this  
basic sequence:  
2. Execute the unlock sequence for the OSCCON  
high byte by writing 78h and 9Ah to  
1. If  
desired,  
read  
the  
COSCx  
bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
OSCCON<15:8>  
instructions.  
in  
two  
back-to-back  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write new oscillator source to the NOSCx bits in  
the instruction immediately following the unlock  
sequence.  
3. Write the appropriate value to the NOSCx bits  
(OSCCON<10:8>) for the new oscillator source.  
4. Execute the unlock sequence for the OSCCON  
low byte by writing 46h and 57h to  
OSCCON<7:0> in two back-to-back instructions.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
5. Set the OSWEN bit in the instruction immediately  
following the unlock sequence.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
6. Continue to execute code that is not  
clock-sensitive (optional).  
1. The clock switching hardware compares the  
COSCx bits with the new value of the NOSCx  
bits. If they are the same, then the clock switch  
is a redundant operation. In this case, the  
OSWEN bit is cleared automatically and the  
clock switch is aborted.  
7. Invoke an appropriate amount of software delay  
(cycle counting) to allow the selected oscillator  
and/or PLL to start and stabilize.  
8. Check to see if OSWEN is ‘0’. If it is, the switch  
was successful. If OSWEN is still set, then  
check the LOCK bit to determine the cause of  
failure.  
2. If a valid clock switch has been initiated, the  
LOCK (OSCCON<5>) and CF (OSCCON<3>)  
bits are cleared.  
The core sequence for unlocking the OSCCON register  
and initiating a clock switch is shown in Example 9-1.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware will wait until  
the OST expires. If the new source is using the  
PLL, then the hardware waits until a PLL lock is  
detected (LOCK = 1).  
EXAMPLE 9-1:  
BASIC CODE SEQUENCE  
FOR CLOCK SWITCHING  
;Place the new oscillator selection in W0  
;OSCCONH (high byte) Unlock Sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONH, w1  
#0x78, w2  
#0x9A, w3  
w2, [w1]  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
w3, [w1]  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the  
NOSCx bits values are transferred to the COSCx  
bits.  
;Set new oscillator selection  
MOV.b WREG, OSCCONH  
;OSCCONL (low byte) unlock sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONL, w1  
#0x46, w2  
#0x57, w3  
w2, [w1]  
6. The old clock source is turned off at this time, with  
the exception of LPRC (if WDT or FSCM are  
enabled) or SOSC (if SOSCEN remains set).  
w3, [w1]  
Note 1: The processor will continue to execute  
code throughout the clock switching  
sequence. Timing-sensitive code should  
not be executed during this time.  
;Start oscillator switch operation  
BSET OSCCON,#0  
2: Direct clock switches between any  
Primary Oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL modes.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 151  
PIC24FJ128GA310 FAMILY  
In general, the crystal circuit connections should be as  
short as possible. It is also good practice to surround  
the crystal circuit with a ground loop or ground plane.  
For more information on crystal circuit design, please  
refer to Section 6 “Oscillator” (DS39700) of the  
PIC24F Family Reference Manual”. Additional infor-  
mation is also available in these Microchip Application  
Notes:  
9.5  
Secondary Oscillator (SOSC)  
9.5.1  
BASIC SOSC OPERATION  
PIC24FJ128GA310 family devices do not have to set the  
SOSCEN bit to use the secondary oscillator. Any module  
requiring the SOSC (such as RTCC, Timer1 or DSWDT)  
will automatically turn on the SOSC when the clock signal  
is needed. The SOSC, however, has a long start-up time.  
To avoid delays for peripheral start-up, the SOSC can be  
manually started using the SOSCEN bit.  
AN826, Crystal Oscillator Basics and Crystal  
Selection for rfPIC® and PICmicro® Devices”  
(DS00826)  
AN849, “Basic PICmicro® Oscillator Design”  
To use the secondary oscillator, the SOSCSEL<1:0> bits  
(CW3<9:8>) must be configured in an oscillator mode –  
either ‘11’ or ‘01’. Setting the SOSCSEL bits to ‘00’  
configures the SOSC pins for Digital mode, enabling  
digital I/O functionality on the pins. Digital functionality  
will not be available if the SOSC is configured in either of  
the oscillator modes.  
(DS00849).  
9.6  
Reference Clock Output  
In addition to the CLKO output (FOSC/2) available in  
certain oscillator modes, the device clock in the  
PIC24FJ128GA310 family devices can also be config-  
ured to provide a reference clock output signal to a port  
pin. This feature is available in all oscillator configura-  
tions and allows the user to select a greater range of  
clock submultiples to drive external devices in the  
application.  
9.5.2  
LOW-POWER SOSC OPERATION  
The secondary oscillator can operate in two distinct  
levels of power consumption, based on device configu-  
ration. In Low-Power mode, the oscillator operates in a  
low drive strength, low-power state. By default, the  
oscillator uses a higher drive strength, and therefore,  
requires more power. The Secondary Oscillator Mode  
Configuration bits, SOSCSEL<1:0> (CW3<9:8>),  
determine the oscillator’s power mode. Programming  
the SOSCSEL bits to ‘01’ selects low-power operation.  
This reference clock output is controlled by the  
REFOCON register (Register 9-4). Setting the ROEN  
bit (REFOCON<15>) makes the clock signal available  
on the REFO pin. The RODIV bits (REFOCON<11:8>)  
enable the selection of 16 different clock divider  
options.  
The lower drive strength of this mode makes the SOSC  
more sensitive to noise and requires a longer start-up  
time. When Low-Power mode is used, care must be  
taken in the design and layout of the SOSC circuit to  
ensure that the oscillator starts up and oscillates  
properly.  
The ROSSLP and ROSEL bits (REFOCON<13:12>)  
control the availability of the reference output during  
Sleep mode. The ROSEL bit determines if the oscillator  
on OSC1 and OSC2, or the current system clock source,  
is used for the reference clock output. The ROSSLP bit  
determines if the reference source is available on REFO  
when the device is in Sleep mode.  
9.5.3  
EXTERNAL (DIGITAL) CLOCK  
MODE (SCLKI)  
To use the reference clock output in Sleep mode, both  
the ROSSLP and ROSEL bits must be set. The device  
clock must also be configured for one of the primary  
modes (EC, HS or XT). Otherwise, if the POSCEN bit  
is also not set, the oscillator on OSC1 and OSC2 will be  
powered down when the device enters Sleep mode.  
Clearing the ROSEL bit allows the reference output  
frequency to change as the system clock changes  
during any clock switches.  
The SOSC can also be configured to run from an  
external 32 kHz clock source, rather than the internal  
oscillator. In this mode, also referred to as Digital mode,  
the clock source provided on the SCLKI pin is used to  
clock any modules that are configured to use the  
secondary oscillator. In this mode, the crystal driving  
circuit is disabled and the SOSCEN bit (OSCCON<1>)  
has no effect.  
9.5.4  
SOSC LAYOUT CONSIDERATIONS  
The pinout limitations on low pin count devices, such as  
those in the PIC24FJ128GA310 family, may make the  
SOSC more susceptible to noise than other PIC24FJ  
devices. Unless proper care is taken in the design and  
layout of the SOSC circuit, this external noise may  
introduce inaccuracies into the oscillator’s period.  
DS39996F-page 152  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 9-4:  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER  
R/W-0  
ROEN  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ROSSLP  
ROSEL  
RODIV3  
RODIV2  
RODIV1  
RODIV0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROEN: Reference Oscillator Output Enable bit  
1= Reference oscillator is enabled on REFO pin  
0= Reference oscillator is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ROSSLP: Reference Oscillator Output Stop in Sleep bit  
1= Reference oscillator continues to run in Sleep  
0= Reference oscillator is disabled in Sleep  
bit 12  
ROSEL: Reference Oscillator Source Select bit  
1= Primary oscillator is used as the base clock. Note that the crystal oscillator must be enabled using  
the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.  
0= System clock is used as the base clock; base clock reflects any clock switching of the device  
bit 11-8  
RODIV<3:0>: Reference Oscillator Divisor Select bits  
1111= Base clock value divided by 32,768  
1110= Base clock value divided by 16,384  
1101= Base clock value divided by 8,192  
1100= Base clock value divided by 4,096  
1011= Base clock value divided by 2,048  
1010= Base clock value divided by 1,024  
1001= Base clock value divided by 512  
1000= Base clock value divided by 256  
0111= Base clock value divided by 128  
0110= Base clock value divided by 64  
0101= Base clock value divided by 32  
0100= Base clock value divided by 16  
0011= Base clock value divided by 8  
0010= Base clock value divided by 4  
0001= Base clock value divided by 2  
0000= Base clock value  
bit 7-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 153  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 154  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
10.1 Overview of Power-Saving Modes  
10.0 POWER-SAVING FEATURES  
In addition to full-power operation, otherwise known as  
Run mode, the PIC24FJ128GA310 family of devices  
offers three Instruction-Based, Power-Saving modes  
and one Hardware-Based mode:  
Note:  
This data sheet summarizes the features  
of this group of PIC24FJ devices. It is not  
intended to be  
a
comprehensive  
reference source. For more information,  
refer to the “PIC24F Family Reference  
Manual”, “Section 57. Power-Saving  
Features with VBAT(DS30622).  
• Idle  
• Sleep (Sleep and Low-Voltage Sleep)  
• Deep Sleep  
• VBAT (with and without RTCC)  
The PIC24FJ128GA310 family of devices provides the  
ability to manage power consumption by selectively  
managing clocking to the CPU and the peripherals. In  
general, a lower clock frequency and a reduction in the  
number of circuits being clocked reduces consumed  
power.  
All four modes can be activated by powering down dif-  
ferent functional areas of the microcontroller, allowing  
progressive reductions of operating and Idle power  
consumption. In addition, three of the modes can be  
tailored for more power reduction, at a trade-off of  
some operating features. Table 10-1 lists all of the  
operating modes, in order of increasing power savings.  
Table 10-2 summarizes how the microcontroller exits  
the different modes. Specific information is provided in  
the following sections.  
PIC24FJ128GA310 family devices manage power  
consumption with five strategies:  
• Instruction-Based Power Reduction Modes  
• Hardware-Based Power Reduction Features  
• Clock Frequency Control  
• Software Controlled Doze Mode  
• Selective Peripheral Control in Software  
Combinations of these methods can be used to  
selectively tailor an application’s power consumption,  
while still maintaining critical application features, such  
as timing-sensitive communications.  
TABLE 10-1: OPERATING MODES FOR PIC24FJ128GA310 FAMILY DEVICES  
Active Systems  
DSGPR0/  
DSGPR1  
Retention  
Mode  
Entry  
Data RAM  
Retention  
Core  
Peripherals  
RTCC(1)  
Run (default)  
Idle  
N/A  
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Instruction  
Sleep:  
Sleep  
Instruction  
N
N
S(2)  
S(2)  
Y
Y
Y
Y
Y
Y
Low-Voltage Sleep  
Instruction +  
RETEN bit  
Deep Sleep:  
Deep Sleep  
Instruction +  
DSEN bit +  
N
N
N
N
N
N
Y
Y
Y
Y
VBAT:  
with RTCC  
Hardware  
Note 1: If RTCC is otherwise enabled in firmware.  
2: A select peripheral can operate during this mode from LPRC or some external clock.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 155  
PIC24FJ128GA310 FAMILY  
TABLE 10-2: EXITING POWER SAVING MODES  
Exit Conditions  
Code  
Mode  
Interrupts  
All INT0  
Resets  
POR  
Execution  
RTCC  
Alarm  
VDD  
Restore  
Resumes(2)  
WDT  
All  
MCLR  
Idle  
Y
Y
Y
Y
N
N
Y
Y
Y
N
Y
Y
Y
N
Y
Y
Y
N
Y
Y
Y(1)  
N/A  
N/A  
N/A  
Y
Next instruction  
Sleep (all modes)  
Deep Sleep  
VBAT  
Y
N
N
Y
Y
N
Reset vector  
Reset vector  
N
Note 1: Deep Sleep WDT.  
2: Code execution resumption is also valid for all the exit conditions; for example, a MCLR and POR exit will  
cause code execution from the Reset vector.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset.  
When the device exits these modes, it is said to  
“wake-up”.  
10.1.1  
INSTRUCTION-BASED  
POWER-SAVING MODES  
Three of the power-saving modes are entered through  
the execution of the PWRSAV instruction. Sleep mode  
stops clock operation and halts all code execution. Idle  
mode halts the CPU and code execution, but allows  
peripheral modules to continue operation. Deep Sleep  
mode stops clock operation, code execution and all  
peripherals, except RTCC and DSWDT. It also freezes  
I/O states and removes power to Flash memory and  
may remove power to SRAM.  
The features enabled with the low-voltage/retention  
regulator results in some changes to the way that Sleep  
mode behaves. See Section 10.3 “Sleep Mode”.  
10.1.1.1  
Interrupts Coincident with Power  
Save Instructions  
Any interrupt that coincides with the execution of a  
PWRSAV instruction will be held off until entry into  
Sleep/Deep Sleep or Idle mode has completed. The  
device will then wake-up from Sleep/Deep Sleep or Idle  
mode.  
The assembly syntax of the PWRSAVinstruction is shown  
in Example 10-1. Sleep and Idle modes are entered  
directly with a single assembler command. Deep Sleep  
requires an additional sequence to unlock and enable  
the entry into Deep Sleep, which is described in  
Section 10.4.1 “Entering Deep Sleep Mode”.  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
To enter Deep Sleep, the DSCON<0> bit  
should be cleared before setting the  
DSEN bit,  
EXAMPLE 10-1:  
PWRSAVINSTRUCTION SYNTAX  
// Syntax to enter Sleep mode:  
PWRSAV  
//  
#SLEEP_MODE  
; Put the device into SLEEP mode  
//Synatx to enter Idle mode:  
PWRSAV  
//  
#IDLE_MODE  
; Put the device into IDLE mode  
// Syntax to enter Deep Sleep mode:  
// First use the unlock sequence to set the DSEN bit (see Example 10-2)  
CLR  
DSCON  
CLR  
DSCON  
; (repeat the command)  
BSET  
BSET  
PWRSAV  
DSCON, #DSEN  
DSCON, #DSEN  
; Enable Deep Sleep  
; Enable Deep Sleep (repeat the command)  
; Put the device into Deep SLEEP mode  
#SLEEP_MODE  
DS39996F-page 156  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
10.1.2  
HARDWARE-BASED  
POWER-SAVING MODE  
10.3 Sleep Mode  
Sleep mode includes these features:  
The hardware-based VBAT mode does not require any  
action by the user during code development. Instead, it  
is a hardware design feature that allows the micro-  
controller to retain critical data (using the DSGPRn  
registers) and maintain the RTCC when VDD is removed  
from the application. This is accomplished by supplying  
a backup power source to a specific power pin. VBAT  
mode is described in more detail in Section 10.5 “Vbat  
Mode”.  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption will be reduced  
to a minimum provided that no I/O pin is sourcing  
current.  
• The I/O pin directions and states are frozen.  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled.  
10.1.3  
LOW-VOLTAGE/RETENTION  
REGULATOR  
• The LPRC clock will continue to run in Sleep  
mode if the WDT or RTCC, with LPRC as clock  
source, is enabled.  
PIC24FJ128GA310 family devices incorporate  
a
second on-chip voltage regulator, designed to provide  
power to select microcontroller features at 1.2V nomi-  
nal. This regulator allows features, such as data RAM  
and the WDT, to be maintained in power-saving modes  
where they would otherwise be inactive, or maintain  
them at a lower power than would otherwise be the  
case.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
• Some device features or peripherals may  
continue to operate in Sleep mode. This includes  
items, such as the input change notification on the  
I/O ports, or peripherals that use an external clock  
input. Any peripheral that requires the system  
clock source for its operation will be disabled in  
Sleep mode.  
The low-voltage/retention regulator is only available  
when Sleep or Deep Sleep modes are invoked. It is  
controlled by the LPCFG Configuration bit (CW1<10>)  
and in firmware by the RETEN bit (RCON<12>).  
LPCFG must be programmed (= 0) and the RETEN bit  
must be set (= 1) for the regulator to be enabled.  
The device will wake-up from Sleep mode on any of  
these events:  
• On any interrupt source that is individually  
enabled  
• On any form of device Reset  
• On a WDT time-out  
10.2 Idle Mode  
Idle mode has these features:  
On wake-up from Sleep, the processor will restart with  
the same clock source that was active when Sleep  
mode was entered.  
• The CPU will stop executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 10.8  
“Selective Peripheral Module Control”).  
10.3.1  
LOW-VOLTAGE/RETENTION SLEEP  
MODE  
Low-Voltage/Retention Sleep mode functions as Sleep  
mode with the same features and wake-up triggers.  
The difference is that the low-voltage/retention regula-  
tor allows core digital logic voltage (VCORE) to drop to  
1.2V nominal. This permits an incremental reduction of  
power consumption over what would be required if  
VCORE was maintained at a 1.8V (minimum) level.  
• If the WDT or FSCM is enabled, the LPRC will  
also remain active.  
The device will wake from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled  
• Any device Reset  
Low-Voltage Sleep mode requires a longer wake-up  
time than Sleep mode, due to the additional time  
required to bring VCORE back to 1.8V (known as TREG).  
In addition, the use of the low-voltage/retention regula-  
tor limits the amount of current that can be sourced to  
any active peripherals, such as the RTCC/LCD, etc.  
• A WDT time-out  
On wake-up from Idle, the clock is re-applied to the  
CPU and instruction execution begins immediately,  
starting with the instruction following the PWRSAV  
instruction or the first instruction in the ISR.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 157  
PIC24FJ128GA310 FAMILY  
The sequence to enter Deep Sleep mode is:  
10.4 Deep Sleep Mode  
1. If the application requires the Deep Sleep WDT,  
enable it and configure its clock source. For  
more information on Deep Sleep WDT, see  
Section 10.4.5 “Deep Sleep WDT”.  
Deep Sleep mode provides the lowest levels of power  
consumption available from the Instruction-Based  
modes.  
Deep Sleep modes have these features:  
2. If the application requires Deep Sleep BOR,  
enable it by programming the DSBOREN  
Configuration bit (FDS<6>).  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption will be reduced  
to a minimum.  
3. If the application requires wake-up from Deep  
Sleep on RTCC alarm, enable and configure the  
RTCC module. For more information on RTCC,  
see 22.0 “Real-Time Clock and Calendar  
(RTCC)”.  
• The I/O pin directions and states are frozen.  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled.  
4. If needed, save any critical application context  
data by writing it to the DSGPR0 and DSGPR1  
registers (optional).  
• The LPRC clock will continue to run in Deep  
Sleep mode if the WDT or RTCC with LPRC as  
clock source is enabled.  
5. Enable Deep Sleep mode by setting the DSEN  
bit (DSCON<15>).  
• The dedicated Deep Sleep WDT and BOR  
systems, if enabled, are used.  
Note:  
A repeat sequence is required to set the  
DSEN bit. The repeat sequence (repeating  
the instruction twice) is required to write  
into any of the Deep Sleep registers  
(DSCON, DSWAKE, DSGPR0, DSGPR1).  
This is required to avoid the user from  
entering Deep Sleep by mistake. Any write  
to these registers has to be done twice to  
actually complete the write (see  
Example 10-2).  
• The RTCC and its clock source continue to run, if  
enabled. All other peripherals are disabled.  
Entry into Deep Sleep mode is completely under  
software control. Exit from the Deep Sleep modes can  
be triggered from any of the following events:  
• POR event  
• MCLR event  
• RTCC alarm (If the RTCC is present)  
• External Interrupt 0  
6. Enter Deep Sleep mode by issuing 3 NOP  
commands, and then a PWRSAV #0instruction.  
• Deep Sleep Watchdog Timer (DSWDT) time-out  
10.4.1  
ENTERING DEEP SLEEP MODE  
Any time the DSEN bit is set, all bits in the DSWAKE  
register will be automatically cleared.  
Deep Sleep mode is entered by setting the DSEN bit in  
the DSCON register, and then executing a Sleep  
command (PWRSAV#SLEEP_MODE) within one instruc-  
tion cycle, to minimize the chance that Deep Sleep will  
be spuriously entered.  
EXAMPLE 10-2:  
THE REPEAT SEQUENCE  
Example 1:  
mov #8000, w2  
mov w2, DSCON  
mov w2, DSCON  
; enable DS  
If the PWRSAV command is not given within one  
instruction cycle, the DSEN bit will be cleared by the  
hardware and must be set again by the software before  
entering Deep Sleep mode. The DSEN bit is also  
automatically cleared when exiting Deep Sleep mode.  
; second write required to  
actually write to DSCON  
Example 2:  
bset  
nop  
DSCON, #15  
Note: To re-enter Deep Sleep after a Deep Sleep  
wake-up, allow a delay of at least 3 TCY  
after clearing the RELEASE bit.  
nop  
nop  
bset  
DSCON, #15 ; enable DS (two writes required)  
DS39996F-page 158  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
10.4.2  
EXITING DEEP SLEEP MODES  
10.4.3  
SAVING CONTEXT DATA WITH THE  
DSGPRn REGISTERS  
Deep Sleep modes exit on any one of the following events:  
As exiting Deep Sleep mode causes a POR, most  
Special Function Registers reset to their default POR  
values. In addition, because VCORE power is not sup-  
plied in Deep Sleep mode, information in data RAM  
may be lost when exiting this mode.  
• POR event on VDD supply. If there is no DSBOR  
circuit to re-arm the VDD supply POR circuit, the  
external VDD supply must be lowered to the  
natural arming voltage of the POR circuit.  
• DSWDT time-out. When the DSWDT timer times  
out, the device exits Deep Sleep.  
Applications which require critical data to be saved  
prior to Deep Sleep may use the Deep Sleep General  
Purpose registers, DSGPR0 and DSGPR1, or data  
EEPROM (if available). Unlike other SFRs, the  
contents of these registers are preserved while the  
device is in Deep Sleep mode. After exiting Deep  
Sleep, software can restore the data by reading the  
registers and clearing the RELEASE bit (DSCON<0>).  
• RTCC alarm (if RTCEN = 1).  
• Assertion (‘0’) of the MCLR pin.  
• Assertion of the INT0 pin (if the interrupt was  
enabled before Deep Sleep mode was entered).  
The polarity configuration is used to determine the  
assertion level (‘0’ or ‘1’) of the pin that will cause  
an exit from Deep Sleep mode. Exiting from Deep  
Sleep mode requires a change on the INT0 pin  
while in Deep Sleep mode.  
10.4.4  
I/O PINS IN DEEP SLEEP MODES  
During Deep Sleep, the general purpose I/O pins retain  
their previous states and the Secondary Oscillator  
(SOSC) will remain running, if enabled. Pins that are  
configured as inputs (TRISx bit set), prior to entry into  
Deep Sleep, remain high-impedance during Deep  
Sleep. Pins that are configured as outputs (TRISx bit  
clear), prior to entry into Deep Sleep, remain as output  
pins during Deep Sleep. While in this mode, they  
continue to drive the output level determined by their  
corresponding LATx bit at the time of entry into Deep  
Sleep.  
Note:  
Any interrupt pending, when entering  
Deep Sleep mode, is cleared.  
Exiting Deep Sleep generally does not retain the state  
of the device and is equivalent to a Power-on Reset  
(POR) of the device. Exceptions to this include the  
RTCC (if present), which remains operational through  
the wake-up, the DSGPRx registers and DSWDT.  
Wake-up events that occur from the time Deep Sleep  
exits, until the time the POR sequence completes, are  
not ignored. The DSWAKE register will capture ALL  
wake-up events, from DSEN set to RELEASE clear.  
Once the device wakes back up, all I/O pins continue to  
maintain their previous states, even after the device  
has finished the POR sequence and is executing  
application code again. Pins configured as inputs  
during Deep Sleep remain high-impedance, and pins  
configured as outputs continue to drive their previous  
value. After waking up, the TRIS and LAT registers, and  
the SOSCEN bit (OSCCON<1>) are reset. If firmware  
modifies any of these bits or registers, the I/O will not  
immediately go to the newly configured states. Once  
the firmware clears the RELEASE bit (DSCON<0>),  
the I/O pins are “released”. This causes the I/O pins to  
take the states configured by their respective TRIS and  
LAT bit values.  
The sequence for exiting Deep Sleep mode is:  
1. After a wake-up event, the device exits Deep  
Sleep and performs a POR. The DSEN bit is  
cleared automatically. Code execution resumes  
at the Reset vector.  
2. To determine if the device exited Deep Sleep,  
read the Deep Sleep bit, DPSLP (RCON<10>).  
This bit will be set if there was an exit from Deep  
Sleep mode. If the bit is set, clear it.  
3. Determine the wake-up source by reading the  
DSWAKE register.  
4. Determine if a DSBOR event occurred during  
Deep Sleep mode by reading the DSBOR bit  
(DSCON<1>).  
This means that keeping the SOSC running after  
waking up requires the SOSCEN bit to be set before  
clearing RELEASE.  
5. If application context data has been saved, read  
it back from the DSGPR0 and DSGPR1 registers.  
If the Deep Sleep BOR (DSBOR) is enabled, and a  
DSBOR or a true POR event occurs during Deep  
Sleep, the I/O pins will be immediately released, similar  
to clearing the RELEASE bit. All previous state  
information will be lost, including the general purpose  
DSGPR0 and DSGPR1 contents.  
6. Clear the RELEASE bit (DSCON<0>).  
2010-2011 Microchip Technology Inc.  
DS39996F-page 159  
PIC24FJ128GA310 FAMILY  
If a MCLR Reset event occurs during Deep Sleep, the  
DSGPRx, DSCON and DSWAKE registers will remain  
valid, and the RELEASE bit will remain set. The state  
of the SOSC will also be retained. The I/O pins,  
however, will be reset to their MCLR Reset state. Since  
RELEASE is still set, changes to the SOSCEN bit  
(OSCCON<1>) cannot take effect until the RELEASE  
bit is cleared.  
10.4.6  
CHECKING AND CLEARING THE  
STATUS OF DEEP SLEEP  
Upon entry into Deep Sleep mode, the status bit,  
DPSLP (RCON<10>), becomes set and must be  
cleared by the software.  
On power-up, the software should read this status bit to  
determine if the Reset was due to an exit from Deep  
Sleep mode, and clear the bit if it is set. Of the four  
possible combinations of DPSLP and POR bit states,  
three cases can be considered:  
In all other Deep Sleep wake-up cases, application  
firmware must clear the RELEASE bit in order to  
reconfigure the I/O pins.  
• Both the DPSLP and POR bits are cleared. In this  
case, the Reset was due to some event other  
than a Deep Sleep mode exit.  
10.4.5  
DEEP SLEEP WDT  
To enable the DSWDT in Deep Sleep mode, program  
the Configuration bit, DSWDTEN (CW4<7>). The  
device WDT need not be enabled for the DSWDT to  
function. Entry into Deep Sleep modes automatically  
reset the DSWDT.  
• The DPSLP bit is clear, but the POR bit is set; this  
is a normal POR.  
• Both the DPSLP and POR bits are set. This  
means that Deep Sleep mode was entered, the  
device was powered down and Deep Sleep mode  
was exited.  
The DSWDT clock source is selected by the  
DSWDTOSC Configuration bit (CW4<4>). The post-  
scaler options are programmed by the DSWDPS<4:0>  
Configuration bits (FDS<3:0>). The minimum time-out  
period that can be achieved is 1 ms and the maximum is  
25.7 days. For more details on the FDS Configuration  
register and DSWDT configuration options, refer to 29.0  
“Special Features”.  
10.4.7  
POWER-ON RESETS (PORs)  
VDD voltage is monitored to produce PORs. Since  
exiting from Deep Sleep mode functionally looks like a  
POR, the technique described in Section 10.4.6  
“Checking and Clearing the Status of Deep Sleep”  
should be used to distinguish between Deep Sleep and  
a true POR event. When a true POR occurs, the entire  
device, including all Deep Sleep logic (Deep Sleep  
registers, RTCC, DSWDT, etc.) is reset.  
10.4.5.1  
Switching Clocks in Deep Sleep  
Mode  
Both the RTCC and the DSWDT may run from either  
SOSC or the LPRC clock source. This allows both the  
RTCC and DSWDT to run without requiring both the  
LPRC and SOSC to be enabled together, reducing  
power consumption.  
10.5 VBAT Mode  
This mode represents the lowest power state that the  
microcontroller can achieve and still resume operation.  
VBAT mode is automatically triggered when the micro-  
controller’s main power supply on VDD fails. When this  
happens, the microcontroller’s on-chip power switch  
connects to a back-up power source, such as a battery,  
supplied to the VBAT pin. This maintains a few key  
systems at an extremely low-power draw until VDD is  
restored.  
Running the RTCC from LPRC will result in a loss of  
accuracy in the RTCC, of approximately 5 to 10%. If a  
more accurate RTCC is required, it must be run from  
the SOSC clock source. The RTCC clock source is  
selected with the RTCOSC Configuration bit (FDS<5>).  
Under certain circumstances, it is possible for the  
DSWDT clock source to be off when entering Deep  
Sleep mode. In this case, the clock source is turned on  
automatically (if DSWDT is enabled), without the need  
for software intervention. However, this can cause a  
delay in the start of the DSWDT counters. In order to  
avoid this delay when using SOSC as a clock source,  
the application can activate SOSC prior to entering  
Deep Sleep mode.  
The power supplied on VBAT only runs two systems: the  
RTCC and the Deep Sleep Semaphore registers  
(DSGPR0 and DSGPR1). To maintain these systems  
during a sudden loss of VDD, it is essential to connect a  
power source, other than VDD or AVDD, to the VBAT pin.  
DS39996F-page 160  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
When the RTCC is enabled, it continues to operate with  
With VBPOR set, the user should clear it, and the next  
time, this bit will only set when VDD = 0and the VBAT  
pin has gone below level (0.4V-0.6V).  
the same clock source (SOSC or LPRC) that was  
selected prior to entering VBAT mode. There is no pro-  
vision to switch to a lower power clock source after the  
mode switch.  
10.5.3  
I/O PINS DURING VBAT MODES  
All I/O pins should be maintained at VSS level; no I/O  
pins should be given VDD (refer to “Absolute Maximum  
Ratings”) during VBAT mode. The only exceptions are  
the SOSCI and SOSCO pins, which maintain their states  
if the secondary oscillator is being used as the RTCC  
clock source. It is the user’s responsibility to restore the  
I/O pins to their proper states, using the TRIS and LAT  
bits, once VDD has been restored.  
Since the loss of VDD is usually an unforeseen event, it  
is recommended that the contents of the Deep Sleep  
Semaphore registers be loaded with the data to be  
retained at an early point in code execution.  
10.5.1  
VBAT MODE WITH NO RTCC  
By disabling RTCC operation during VBAT mode, power  
consumption is reduced to the lowest of all  
power-saving modes. In this mode, only the Deep  
Sleep Semaphore registers are maintained.  
10.5.4  
SAVING CONTEXT DATA WITH THE  
DSGPRn REGISTERS  
10.5.2  
WAKE-UP FROM VBAT MODES  
As with Deep Sleep mode, all SFRs are reset to their  
POR values after VDD has been restored. Only the  
Deep Sleep Semaphore registers are preserved. Appli-  
cations which require critical data to be saved should  
save it in DSGPR0 and DSGPR1.  
When VDD is restored to a device in VBAT mode, it auto-  
matically wakes. Wake-up occurs with a POR, after  
which the device starts executing code from the Reset  
vector. All SFRs, except the Deep Sleep Semaphores  
and RTCC registers are reset to their POR values. If  
the RTCC was not configured to run during VBAT mode,  
it will remain disabled and RTCC will not run. Wake-up  
timing is similar to that for a normal POR.  
Note:  
If the VBAT mode is not used, the  
recommendation is to connect the VBAT  
pin to VDD.  
When the VBAT mode is used (connected  
to the battery), as well as when it is not  
used, it is always recommended to  
connect a 0.1 µF capacitor from the VBAT  
pin to ground. The capacitor should be  
located very close to the VBAT pin.  
To differentiate a wake-up from VBAT mode from other  
POR states, check the VBAT status bit (RCON2<0>). If  
this bit is set while the device is starting to execute the  
code from Reset vector, it indicates that there has been  
an exit from VBAT mode. The application must clear the  
VBAT bit to ensure that future VBAT wake-up events are  
captured.  
The BOR should be enabled for the reliable operation  
of the VBAT.  
If a POR occurs without a power source connected to  
the VBAT pin, the VBPOR bit (RCON2<1>) is set. If this  
bit is set on a POR, it indicates that a battery needs to  
be connected to the VBAT pin.  
In addition, if the VBAT power source falls below the  
level needed for Deep Sleep Semaphore operation  
while in VBAT mode (e.g., the battery has been  
drained), the VBPOR bit will be set. VBPOR is also set  
when the microcontroller is powered up the very first  
time, even if power is supplied to VBAT.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 161  
PIC24FJ128GA310 FAMILY  
REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER(1)  
R/W-0  
DSEN  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
r-0  
r
R/W-0  
DSBOR(2)  
R/C-0, HS  
RELEASE  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
HS = Hardware Settable bit  
‘0’ = Bit is cleared  
r = Reserved bit  
x = Bit is unknown  
bit 15  
DSEN: Deep Sleep Enable bit  
1= Enters Deep Sleep on execution of PWRSAV #0  
0= Enters normal Sleep on execution of PWRSAV #0  
bit 14-3  
bit 2  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
bit 1  
DSBOR: Deep Sleep BOR Event bit(2)  
1= The DSBOR was active and a BOR event was detected during Deep Sleep  
0= The DSBOR was not active or was active but did not detect a BOR event during Deep Sleep  
bit 0  
RELEASE: I/O Pin State Release bit  
1= Upon waking from Deep Sleep, I/O pins maintain their states previous to Deep Sleep entry  
0= Release I/O pins from their state previous to Deep Sleep entry, and allow their respective TRIS and  
LAT bits to control their states  
Note 1: All register bits are reset only in the case of a POR event outside of Deep Sleep mode.  
2: Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this  
re-arms POR.  
DS39996F-page 162  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 10-2: DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0, HS  
DSINT0  
bit 15  
bit 8  
R/W-0, HS  
DSFLT  
U-0  
U-0  
R/W-0, HS  
DSWDT  
R/W-0, HS  
DSRTCC  
R/W-0, HS  
DSMCLR  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DSINT0: Interrupt-on-Change bit  
1= Interrupt-on-change was asserted during Deep Sleep  
0= Interrupt-on-change was not asserted during Deep Sleep  
bit 7  
DSFLT: Deep Sleep Fault Detected bit  
1= A Fault occurred during Deep Sleep and some Deep Sleep configuration settings may have been  
corrupted  
0= No Fault was detected during Deep Sleep  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
DSWDT: Deep Sleep Watchdog Timer Time-out bit  
1= The Deep Sleep Watchdog Timer timed out during Deep Sleep  
0= The Deep Sleep Watchdog Timer did not time out during Deep Sleep  
bit 3  
DSRTCC: Real-Time Clock and Calendar Alarm bit  
1= The Real-Time Clock and Calendar triggered an alarm during Deep Sleep  
0= The Real-Time Clock and Calendar did not trigger an alarm during Deep Sleep  
bit 2  
DSMCLR: MCLR Event bit  
1= The MCLR pin was active and was asserted during Deep Sleep  
0= The MCLR pin was not active, or was active, but not asserted during Deep Sleep  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: All register bits are cleared when the DSEN (DSCON<15>) bit is set.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 163  
PIC24FJ128GA310 FAMILY  
REGISTER 10-3: RCON2: RESET AND SYSTEM CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
r-0  
r
R/CO-1  
R/CO-1  
R/CO-1  
R/CO-0  
VBAT(1)  
VDDBOR(1) VDDPOR(1,2) VBPOR(1,3)  
bit 7  
bit 0  
Legend:  
CO = Clearable Only bit  
W = Writable bit  
r = Reserved bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
bit 3  
VDDBOR: VDD Brown-out Reset Flag bit(1)  
1= A VDD Brown-out Reset has occurred (set by hardware)  
0= A VDD Brown-out Reset has not occurred  
bit 2  
bit 1  
VDDPOR: VDD Power-On Reset Flag bit(1,2)  
1= A VDD Power-up Reset has occurred (set by hardware)  
0= A VDD Power-up Reset has not occurred  
VBPOR: VBPOR Flag bit(1,3)  
1= A VBAT POR has occurred (no battery connected to the VBAT pin, or VBAT power below Deep Sleep  
Semaphore retention level, set by hardware)  
0= A VBAT POR has not occurred  
bit 0  
VBAT: VBAT Flag bit(1)  
1= A POR exit has occurred while power applied to the VBAT pin (set by hardware)  
0= A POR exit from VBAT has not occurred  
Note 1: This bit is set in hardware only; it can only be cleared in software.  
2: Indicates a VDD POR. Setting the POR bit (RCON<0>) indicates a VCORE POR.  
3: This bit is set when the device is originally powered up, even if power is present on VBAT. It is recom-  
mended that the user clear this flag, and the next time, this bit will only set when the VBAT voltage goes  
below 0.4-0.6V with VDD = 0.  
DS39996F-page 164  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
10.6 Clock Frequency and Clock  
Switching  
10.8 Selective Peripheral Module  
Control  
In Run and Idle modes, all PIC24FJ devices allow for a  
wide range of clock frequencies to be selected under  
application control. If the system clock configuration is  
not locked, users can choose low-power or  
high-precision oscillators by simply changing the NOSC  
bits. The process of changing a system clock during  
operation, as well as limitations to the process, are  
discussed in more detail in 9.0 “Oscillator Configura-  
tion”.  
Idle and Doze modes allow users to substantially  
reduce power consumption by slowing or stopping the  
CPU clock. Even so, peripheral modules still remain  
clocked, and thus, consume power. There may be  
cases where the application needs what these modes  
do not provide: the allocation of power resources to  
CPU processing with minimal power consumption from  
the peripherals.  
PIC24F devices address this requirement by allowing  
peripheral modules to be selectively disabled, reducing  
or eliminating their power consumption. This can be  
done with two control bits:  
10.7 Doze Mode  
Generally, changing clock speed and invoking one of  
the power-saving modes are the preferred strategies  
for reducing power consumption. There may be  
circumstances, however, where this is not practical. For  
example, it may be necessary for an application to  
maintain uninterrupted synchronous communication,  
even while it is doing nothing else. Reducing system  
clock speed may introduce communication errors,  
• The Peripheral Enable bit, generically named,  
“XXXEN”, located in the module’s main control  
SFR.  
• The Peripheral Module Disable (PMD) bit,  
generically named, “XXXMD”, located in one of  
the PMD Control registers (XXXMD bits are in  
PMD1, PMD2, PMD3, PMD4, PMD6, PMD7  
registers).  
while using  
a
power-saving mode may stop  
communications completely.  
Both bits have similar functions in enabling or disabling  
its associated module. Setting the PMD bit for a module  
disables all clock sources to that module, reducing its  
power consumption to an absolute minimum. In this  
state, the control and status registers associated with  
the peripheral will also be disabled, so writes to those  
registers will have no effect and read values will be  
invalid. Many peripheral modules have a corresponding  
PMD bit.  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
In contrast, disabling a module by clearing its XXXEN  
bit disables its functionality, but leaves its registers  
available to be read and written to. Power consumption  
is reduced, but not by as much as the PMD bits are  
used. Most peripheral modules have an enable bit;  
exceptions include capture, compare and RTCC.  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default.  
To achieve more selective power savings, peripheral  
modules can also be selectively disabled when the  
device enters Idle mode. This is done through the control  
bit of the generic name format, “XXXIDL”. By default, all  
modules that can operate during Idle mode will do so.  
Using the disable on Idle feature disables the module  
while in Idle mode, allowing further reduction of power  
consumption during Idle mode, enhancing power  
savings for extremely critical power applications.  
It is also possible to use Doze mode to selectively reduce  
power consumption in event driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU Idles, waiting for something to invoke an  
interrupt routine. Enabling the automatic return to  
full-speed CPU operation on interrupts is enabled by set-  
ting the ROI bit (CLKDIV<15>). By default, interrupt  
events have no effect on Doze mode operation.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 165  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 166  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
11.0 I/O PORTS  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
a general purpose output pin is disabled. The I/O pin  
may be read, but the output driver for the parallel port  
bit will be disabled. If a peripheral is enabled, but the  
peripheral is not actively driving a pin, that pin may be  
driven by a port.  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 12. “I/O Ports with Peripheral  
Pin Select (PPS)” (DS39711). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
All port pins have three registers directly associated  
with their operation as digital I/O and one register asso-  
ciated with their operation as analog input. The Data  
Direction register (TRISx) determines whether the pin  
is an input or an output. If the data direction bit is a ‘1’,  
then the pin is an input. All port pins are defined as  
inputs after a Reset. Reads from the Output Latch reg-  
ister (LATx), read the latch; writes to the latch, write the  
latch. Reads from the port (PORTx), read the port pins;  
writes to the port pins, write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSCI/CLKI) are shared between the peripherals and  
the parallel I/O ports. All I/O input ports feature Schmitt  
Trigger (ST) inputs for improved noise immunity.  
11.1 Parallel I/O (PIO) Ports  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers, and the port pin will read as zeros.  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The periph-  
eral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 11-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is regarded as a  
dedicated port because there is no other competing  
source of inputs. RC13 and RC14 can be input ports  
only; they cannot be configured as outputs.  
FIGURE 11-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O  
1
0
Output Enable  
Output Data  
1
0
PIO Module  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
2010-2011 Microchip Technology Inc.  
DS39996F-page 167  
PIC24FJ128GA310 FAMILY  
11.1.1  
I/O PORT WRITE/READ TIMING  
11.2 Configuring Analog Port Pins  
(ANSx)  
One instruction cycle is required between a port direction  
change or port write operation and a read operation of  
the same port. Typically, this instruction would be a NOP.  
The ANSx and TRISx registers control the operation of  
the pins with analog function. Each port pin with analog  
function is associated with one of the ANS bits (see  
Register 11-1 through Register 11-6), which decides if  
the pin function should be analog or digital. Refer to  
Table 11-1 for detailed behavior of the pin for different  
ANSx and TRISx bit settings.  
11.1.2  
OPEN-DRAIN CONFIGURATION  
In addition to the PORT, LAT and TRIS registers for data  
control, each port pin can also be individually configured  
for either a digital or open-drain output. This is controlled  
by the Open-Drain Control register, ODCx, associated  
with each port. Setting any of the bits configures the  
corresponding pin to act as an open-drain output.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired  
digital only pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
11.2.1  
ANALOG INPUT PINS AND  
VOLTAGE CONSIDERATIONS  
The voltage tolerance of pins used as device inputs is  
dependent on the pin’s input function. Most input pins are  
able to handle DC voltages of up to 5.5V, a level typical  
for digital logic circuits. However, several pins can only  
tolerate voltages up to VDD. Voltage excursions beyond  
VDD on these pins should always be avoided.  
Table 11-2 summarizes the different voltage tolerances.  
Refer to Section 32.0 “Electrical Characteristics” for  
more details.  
TABLE 11-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN  
Pin Function  
ANSx Setting  
TRISx Setting  
Comments  
Analog Input  
Analog Output  
Digital Input  
1
1
0
1
1
1
It is recommended to keep ANSx = 1.  
It is recommended to keep ANSx = 1.  
Firmware must wait at least one instruction cycle  
after configuring a pin as a digital input before a valid  
input value can be read.  
Digital Output  
0
0
Make sure to disable the analog output function on  
the pin if any is present.  
TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT  
Port or Pin  
Tolerated Input  
Description  
PORTA<15:14, 7:0>(1)  
PORTB<15:7, 5:2>  
PORTC<3:1>(1)  
PORTD<15:8, 5:0>(1)  
PORTE<9:8, 4:0>(1)  
PORTF<13:12, 8:0>(1)  
PORTG<15:12, 9, 6:0>(1)  
PORTA<10:9>(1)  
Tolerates input levels above VDD; useful  
for most standard logic.  
5.5V  
PORTB<6, 1:0>  
PORTC<15:12, 4>(1)  
VDD  
Only VDD input levels are tolerated.  
PORTD<7:6>  
PORTE<7:5>(1)  
PORTG<8:7>  
Note 1: Not all of these pins are implemented in 64-pin or 80-pin devices. Refer to Section 1.0 “Device Overview”  
for a complete description of port pin implementation.  
DS39996F-page 168  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
R/W-1  
ANSA7(1)  
R/W-1  
ANSA6(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
ANSA<7:6>: Analog Function Selection bits(1)  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 5-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are not available in 64-pin and 80-pin devices.  
REGISTER 11-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSB15  
ANSB14  
ANSB13  
ANSB12  
ANSB11  
ANSB10  
ANSB9  
ANSB8  
bit 15  
bit 8  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSB7  
ANSB6  
ANSB5  
ANSB4  
ANSB3  
ANSB2  
ANSB1  
ANSB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
ANSB<15:0>: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 169  
PIC24FJ128GA310 FAMILY  
REGISTER 11-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
ANSC4(1)  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
ANSC4: Analog Function Selection bit(1)  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not available in 64-pin and 80-pin devices.  
REGISTER 11-4: ANSD: PORTD ANALOG FUNCTION SELECTION REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
U-0  
ANSD11  
ANSD10  
bit 15  
bit 8  
bit 0  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ANSD7  
ANSD6  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
ANSD<11:10>: Analog Function Selection bit  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 9-8  
bit 7-6  
Unimplemented: Read as ‘0’  
ANSD<7:6>: Analog Function Selection bit  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 5-0  
Unimplemented: Read as ‘0’  
DS39996F-page 170  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-5: ANSE: PORTE ANALOG FUNCTION SELECTION REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
ANSE9(2)  
U-0  
bit 15  
bit 8  
bit 0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
ANSE7  
ANSE6  
ANSE5  
ANSE4  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
ANSE9: Analog Function Selection bits(2)  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 8  
Unimplemented: Read as ‘0’  
bit 7-4  
ANSE<7:4>: Analog Function Selection bits(1)  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: This register is not available in 64-pin and 80-pin devices.  
2: This bit is unimplemented on 64-pin devices. In 80-pin devices, this bit needs to be cleared to get digital  
functionality on RE9.  
REGISTER 11-6: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
ANSG9  
ANSG8  
bit 15  
bit 8  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ANSG7  
ANSG6  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
bit 9-6  
Unimplemented: Read as ‘0’  
ANSG<9:6>: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 5-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 171  
PIC24FJ128GA310 FAMILY  
Each CN pin has both a weak pull-up and a weak  
11.3 Input Change Notification  
pull-down connected to it. The pull-ups act as a current  
source that is connected to the pin, while the  
pull-downs act as a current sink that is connected to the  
pin. These eliminate the need for external resistors  
when push button or keypad devices are connected.  
The pull-ups and pull-downs are separately enabled  
using the CNPU1 through CNPU6 registers (for  
pull-ups) and the CNPD1 through CNPD6 registers (for  
pull-downs). Each CN pin has individual control bits for  
its pull-up and pull-down. Setting a control bit enables  
the weak pull-up or pull-down for the corresponding  
pin.  
The input change notification function of the I/O ports  
allows the PIC24FJ128GA310 family of devices to gen-  
erate interrupt requests to the processor in response to  
a Change-of-State (COS) on selected input pins. This  
feature is capable of detecting input Change-of-States,  
even in Sleep mode when the clocks are disabled.  
Depending on the device pin count, there are up to  
82 external inputs that may be selected (enabled) for  
generating an interrupt request on a Change-of-State.  
Registers, CNEN1 through CNEN6, contain the inter-  
rupt enable control bits for each of the CN input pins.  
Setting any of these bits enables a CN interrupt for the  
corresponding pins.  
When the internal pull-up is selected, the pin pulls up to  
VDD – 1.1V (typical). When the internal pull-down is  
selected, the pin pulls down to VSS.  
Note:  
Pull-ups on change notification pins  
should always be disabled whenever the  
port pin is configured as a digital output.  
EXAMPLE 11-1:  
PORT WRITE/READ IN ASSEMBLY  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
BTSS PORTB, #13  
; Next Instruction  
EXAMPLE 11-2:  
PORT WRITE/READ IN ‘C’  
TRISB = 0xFF00;  
Nop();  
// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs  
// Delay 1 cycle  
If (PORTBbits.RB13){ };  
// Next Instruction  
DS39996F-page 172  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
PPS is not available for these peripherals:  
• I2C™ (input and output)  
11.4 Peripheral Pin Select (PPS)  
A major challenge in general purpose devices is provid-  
ing the largest possible set of peripheral features while  
minimizing the conflict of features on I/O pins. In an  
application that needs to use more than one peripheral  
multiplexed on a single pin, inconvenient work arounds  
in application code, or a complete redesign, may be the  
only option.  
• Change notification inputs  
• RTCC alarm output(s)  
• EPMP signals (input and output)  
• LCD signals  
• Analog inputs  
• INT0  
The Peripheral Pin Select (PPS) feature provides an  
alternative to these choices by enabling the user’s  
peripheral set selection and its placement on a wide  
range of I/O pins. By increasing the pinout options  
available on a particular device, users can better tailor  
the microcontroller to their entire application, rather  
than trimming the application to fit the device.  
A key difference between pin select and non-pin select  
peripherals is that pin select peripherals are not asso-  
ciated with a default I/O pin. The peripheral must  
always be assigned to a specific I/O pin before it can be  
used. In contrast, non-pin select peripherals are always  
available on a default pin, assuming that the peripheral  
is active and not conflicting with another peripheral.  
The Peripheral Pin Select feature operates over a fixed  
subset of digital I/O pins. Users may independently  
map the input and/or output of any one of many digital  
peripherals to any one of these I/O pins. PPS is per-  
formed in software and generally does not require the  
device to be reprogrammed. Hardware safeguards are  
included that prevent accidental or spurious changes to  
the peripheral mapping once it has been established.  
11.4.2.1  
Peripheral Pin Select Function  
Priority  
Pin-selectable peripheral outputs (e.g., OC, UART  
transmit) will take priority over general purpose digital  
functions on a pin, such as EPMP and port I/O. Special-  
ized digital outputs (e.g., USB on USB-enabled  
devices) will take priority over PPS outputs on the same  
pin. The pin diagrams list peripheral outputs in the  
order of priority. Refer to them for priority concerns on  
a particular pin.  
11.4.1  
AVAILABLE PINS  
The PPS feature is used with a range of up to 44 pins,  
depending on the particular device and its pin count.  
Pins that support the Peripheral Pin Select feature  
include the designation, “RPn” or “RPIn”, in their full pin  
designation, where “n” is the remappable pin number.  
“RP” is used to designate pins that support both remap-  
pable input and output functions, while “RPI” indicates  
pins that support remappable input functions only.  
Unlike PIC24F devices with fixed peripherals,  
pin-selectable peripheral inputs will never take owner-  
ship of a pin. The pin’s output buffer will be controlled  
by the TRISx setting or by a fixed peripheral on the pin.  
If the pin is configured in Digital mode then the PPS  
input will operate correctly. If an analog function is  
enabled on the pin, the PPS input will be disabled.  
PIC24FJ128GA310 family devices support a larger  
number of remappable input only pins than remappable  
input/output pins. In this device family, there are up to  
32 remappable input/output pins, depending on the pin  
count of the particular device selected. These pins are  
numbered, RP0 through RP31. Remappable input only  
pins are numbered above this range, from RPI32 to  
RPI43 (or the upper limit for that particular device).  
11.4.3  
CONTROLLING PERIPHERAL PIN  
SELECT  
PPS features are controlled through two sets of Special  
Function Registers (SFRs): one to map peripheral  
inputs and one to map outputs. Because they are  
separately controlled, a particular peripheral’s input  
and output (if the peripheral has both) can be placed on  
any selectable function pin without constraint.  
See Table 1-4 for a summary of pinout options in each  
package offering.  
The association of a peripheral to a peripheral-selectable  
pin is handled in two different ways, depending on if an  
input or an output is being mapped.  
11.4.2  
AVAILABLE PERIPHERALS  
The peripherals managed by the PPS are all digital  
only peripherals. These include general serial commu-  
nications (UART and SPI), general purpose timer clock  
inputs, timer related peripherals (input capture and out-  
put compare) and external interrupt inputs. Also  
included are the outputs of the comparator module,  
since these are discrete digital signals.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 173  
PIC24FJ128GA310 FAMILY  
Each register contains two sets of 6-bit fields, with each  
set associated with one of the pin-selectable peripher-  
als. Programming a given peripheral’s bit field, with an  
appropriate 6-bit value, maps the RPn/RPIn pin with  
that value to that peripheral. For any given device, the  
valid range of values for any of the bit fields corre-  
sponds to the maximum number of Peripheral Pin  
Selections supported by the device.  
11.4.3.1  
Input Mapping  
The inputs of the Peripheral Pin Select options are  
mapped on the basis of the peripheral; that is, a control  
register associated with a peripheral dictates the pin it  
will be mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 11-7  
through Register 11-26).  
TABLE 11-3: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)  
Function Mapping  
Bits  
Input Name  
Function Name  
Register  
DSM Modulation Input  
DSM Carrier 1 Input  
DSM Carrier 2 Input  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
Input Capture 1  
MDMIN  
MDCIN1  
MDCIN2  
INT1  
RPINR30  
RPINR31  
RPINR31  
RPINR0  
RPINR1  
RPINR1  
RPINR2  
RPINR7  
RPINR7  
RPINR8  
RPINR8  
RPINR9  
RPINR9  
RPINR10  
RPINR11  
RPINR11  
RPINR20  
RPINR20  
RPINR21  
RPINR22  
RPINR22  
RPINR23  
RPINR23  
RPINR3  
RPINR3  
RPINR4  
RPINR4  
RPINR18  
RPINR18  
RPINR19  
RPINR19  
RPINR21  
RPINR17  
RPINR27  
RPINR27  
MDMIR<5:0>  
MDC1R<5:0>  
MDC2R<5:0>  
INT1R<5:0>  
INT2R<5:0>  
INT3R<5:0>  
INT4R<5:0>  
IC1R<5:0>  
INT2  
INT3  
INT4  
IC1  
Input Capture 2  
IC2  
IC2R<5:0>  
Input Capture 3  
IC3  
IC3R<5:0>  
Input Capture 4  
IC4  
IC4R<5:0>  
Input Capture 5  
IC5  
IC5R<5:0>  
Input Capture 6  
IC6  
IC6R<5:0>  
Input Capture 7  
IC7  
IC7R<5:0>  
Output Compare Fault A  
Output Compare Fault B  
SPI1 Clock Input  
OCFA  
OCFB  
SCK1IN  
SDI1  
OCFAR<5:0>  
OCFBR<5:0>  
SCK1R<5:0>  
SDI1R<5:0>  
SS1R<5:0>  
SCK2R<5:0>  
SDI2R<5:0>  
SS2R<5:0>  
T1CKR<5:0>  
T2CKR<5:0>  
T3CKR<5:0>  
T4CKR<5:0>  
T5CKR<5:0>  
U1CTSR<5:0>  
U1RXR<5:0>  
U2CTSR<5:0>  
U2RXR<5:0>  
U3CTSR<5:0>  
U3RXR<5:0>  
U4CTSR<5:0>  
U4RXR<5:0>  
SPI1 Data Input  
SPI1 Slave Select Input  
SPI2 Clock Input  
SS1IN  
SCK2IN  
SDI2  
SPI2 Data Input  
SPI2 Slave Select Input  
Timer1 External Clock  
Timer2 External Clock  
Timer3 External Clock  
Timer4 External Clock  
Timer5 External Clock  
UART1 Clear To Send  
UART1 Receive  
SS2IN  
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
U1CTS  
U1RX  
U2CTS  
U2RX  
U3CTS  
U3RX  
U4CTS  
U4RX  
UART2 Clear To Send  
UART2 Receive  
UART3 Clear To Send  
UART3 Receive  
UART4 Clear To Send  
UART4 Receive  
Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.  
DS39996F-page 174  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
corresponds to one of the peripherals and that  
peripheral’s output is mapped to the pin (see  
Table 11-4).  
11.4.3.2  
Output Mapping  
In contrast to inputs, the outputs of the Peripheral Pin  
Select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Each register contains two 6-bit fields, with each field  
being associated with one RPn pin (see Register 11-27  
through Register 11-42). The value of the bit field  
Because of the mapping technique, the list of peripher-  
als for output mapping also includes a null value of  
000000’. This permits any given pin to remain discon-  
nected from the output of any of the pin-selectable  
peripherals.  
TABLE 11-4: SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)  
Output Function Number(1)  
Function  
Output Name  
0
1
NULL(2)  
C1OUT  
C2OUT  
U1TX  
Null  
Comparator 1 Output  
Comparator 2 Output  
UART1 Transmit  
2
3
4
U1RTS(3)  
UART1 Request To Send  
UART2 Transmit  
5
U2TX  
6
U2RTS(3)  
SDO1  
UART2 Request To Send  
SPI1 Data Output  
7
8
SCK1OUT  
SS1OUT  
SDO2  
SPI1 Clock Output  
SPI1 Slave Select Output  
SPI2 Data Output  
9
10  
11  
12  
18  
19  
20  
21  
22  
23  
24  
28  
29  
30  
31  
36  
37  
38-63  
SCK2OUT  
SS2OUT  
OC1  
SPI2 Clock Output  
SPI2 Slave Select Output  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
Output Compare 6  
Output Compare 7  
UART3 Transmit  
OC2  
OC3  
OC4  
OC5  
OC6  
OC7  
U3TX  
U3RTS(3)  
UART3 Request To Send  
UART4 Transmit  
U4TX  
U4RTS(3)  
C3OUT  
MDOUT  
(unused)  
UART4 Request To Send  
Comparator 3 Output  
DSM Modulator Output  
NC  
Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.  
2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.  
3: IrDA® BCLK functionality uses this output.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 175  
PIC24FJ128GA310 FAMILY  
11.4.3.3  
Mapping Limitations  
11.4.4.1  
Control Register Lock  
The control schema of the Peripheral Pin Select is  
extremely flexible. Other than systematic blocks that  
prevent signal contention, caused by two physical pins  
being configured as the same functional input or two  
functional outputs configured as the same pin, there  
are no hardware enforced lock outs. The flexibility  
extends to the point of allowing a single input to drive  
multiple peripherals or a single functional output to  
drive multiple output pins.  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes will  
appear to execute normally, but the contents of the  
registers will remain unchanged. To change these reg-  
isters, they must be unlocked in hardware. The register  
lock is controlled by the IOLOCK bit (OSCCON<6>).  
Setting IOLOCK prevents writes to the control  
registers; clearing IOLOCK allows writes.  
To set or clear IOLOCK, a specific command sequence  
must be executed:  
11.4.3.4  
Mapping Exceptions for  
1. Write 46h to OSCCON<7:0>.  
PIC24FJ128GA310 Family Devices  
2. Write 57h to OSCCON<7:0>.  
Although the PPS registers theoretically allow for up to  
64 remappable I/O pins, not all of these are imple-  
mented in all devices. For PIC24FJ128GA310 family  
devices, the maximum number of remappable pins  
available is 44, which includes 12 input only pins. In  
addition, some pins in the RP and RPI sequences are  
unimplemented in lower pin count devices. The  
differences in available remappable pins are  
summarized in Table 11-5.  
3. Clear (or set) IOLOCK as a single operation.  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the Peripheral Pin Selects to be configured  
with a single unlock sequence, followed by an update  
to all control registers, then locked with a second lock  
sequence.  
11.4.4.2  
Continuous State Monitoring  
When developing applications that use remappable  
pins, users should also keep these things in mind:  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a Configuration Mismatch Reset will  
be triggered.  
• For the RPINRx registers, bit combinations corre-  
sponding to an unimplemented pin for a particular  
device are treated as invalid; the corresponding  
module will not have an input mapped to it. For all  
PIC24FJ128GA310 family devices, this includes  
all values greater than 43 (‘101011’).  
• For RPORx registers, the bit fields corresponding  
to an unimplemented pin will also be  
unimplemented. Writing to these fields will have  
no effect.  
11.4.4.3  
Configuration Bit Pin Select Lock  
As an additional level of safety, the device can be con-  
figured to prevent more than one write session to the  
RPINRx and RPORx registers. The IOL1WAY  
(CW2<4>) Configuration bit blocks the IOLOCK bit  
from being cleared after it has been set once. If  
IOLOCK remains set, the register unlock procedure will  
not execute and the Peripheral Pin Select Control reg-  
isters cannot be written to. The only way to clear the bit  
and re-enable peripheral remapping is to perform a  
device Reset.  
11.4.4  
CONTROLLING CONFIGURATION  
CHANGES  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. PIC24F devices include three features to  
prevent alterations to the peripheral map:  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows users unlimited access (with the  
proper use of the unlock sequence) to the Peripheral  
Pin Select registers.  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit remapping lock  
TABLE 11-5: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ128GA310 FAMILY DEVICES  
RP Pins (I/O)  
Unimplemented  
RPI Pins  
Unimplemented  
Device  
Total  
Total  
PIC24FJXXXGA306  
PIC24FJXXXGA308  
PIC24FJXXXGA310  
29  
31  
32  
RP5, RP15, RP31  
1
9
RPI32-36, RPI38-43  
RPI32, RPI39, RPI41  
RP15  
12  
DS39996F-page 176  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Along these lines, configuring a remappable pin for a  
specific peripheral does not automatically turn that  
feature on. The peripheral must be specifically config-  
ured for operation, and enabled as if it were tied to a  
fixed pin. Where this happens in the application code  
(immediately following device Reset and peripheral con-  
figuration, or inside the main application routine)  
depends on the peripheral and its use in the application.  
11.4.5  
CONSIDERATIONS FOR  
PERIPHERAL PIN SELECTION  
The ability to control Peripheral Pin Selection intro-  
duces several considerations into application design  
that could be overlooked. This is particularly true for  
several common peripherals that are available only as  
remappable peripherals.  
The main consideration is that the Peripheral Pin  
Selects are not available on default pins in the device’s  
default (Reset) state. Since all RPINRx registers reset  
to ‘111111’ and all RPORx registers reset to ‘000000’,  
all Peripheral Pin Select inputs are tied to VSS and all  
Peripheral Pin Select outputs are disconnected.  
A final consideration is that Peripheral Pin Select func-  
tions neither override analog inputs nor reconfigure  
pins with analog functions for digital I/O. If a pin is  
configured as an analog input on device Reset, it must  
be explicitly reconfigured as digital I/O when used with  
a Peripheral Pin Select.  
Note:  
In tying Peripheral Pin Select inputs to  
RP63, RP63 need not exist on a device for  
the registers to be reset to it.  
Example 11-3 shows a configuration for bidirectional  
communication with flow control using UART1. The  
following input and output functions are used:  
This situation requires the user to initialize the device  
with the proper peripheral configuration before any  
other application code is executed. Since the IOLOCK  
bit resets in the unlocked state, it is not necessary to  
execute the unlock sequence after the device has  
come out of Reset. For application safety, however, it is  
best to set IOLOCK and lock the configuration after  
writing to the control registers.  
• Input Functions: U1RX, U1CTS  
• Output Functions: U1TX, U1RTS  
EXAMPLE 11-3:  
CONFIGURING UART1  
INPUT AND OUTPUT  
FUNCTIONS  
// Unlock Registers  
asm volatile( "MOV  
#OSCCON,  
#0x46,  
#0x57,  
w1  
w2  
w3  
[w1] \n"  
[w1] \n"  
\n"  
\n"  
\n"  
Because the unlock sequence is timing-critical, it must  
be executed as an assembly language routine in the  
same manner as changes to the oscillator configura-  
tion. If the bulk of the application is written in ‘C’, or  
another high-level language, the unlock sequence  
should be performed by writing in-line assembly.  
"MOV  
"MOV  
"MOV.b w2,  
"MOV.b w3,  
"BCLR OSCCON,#6") ;  
// or use C30 built-in macro:  
Choosing the configuration requires the review of all  
Peripheral Pin Selects and their pin assignments,  
especially those that will not be used in the application.  
In all cases, unused pin-selectable peripherals should  
be disabled completely. Unused peripherals should  
have their inputs assigned to an unused RPn/RPIn pin  
function. I/O pins with unused RPn functions should be  
configured with the null peripheral output.  
// __builtin_write_OSCCONL(OSCCON & 0xbf);  
// Configure Input Functions (Table 11-2))  
// Assign U1RX To Pin RP0  
RPINR18bits.U1RXR = 0;  
// Assign U1CTS To Pin RP1  
RPINR18bits.U1CTSR = 1;  
The assignment of a peripheral to a particular pin does  
not automatically perform any other configuration of the  
pin’s I/O circuitry. In theory, this means adding a  
pin-selectable output to a pin may mean inadvertently  
driving an existing peripheral input when the output is  
driven. Users must be familiar with the behavior of  
other fixed peripherals that share a remappable pin and  
know when to enable or disable them. To be safe, fixed  
digital peripherals that share the same pin should be  
disabled when not in use.  
// Configure Output Functions (Table 11-4)  
// Assign U1TX To Pin RP2  
RPOR1bits.RP2R = 3;  
// Assign U1RTS To Pin RP3  
RPOR1bits.RP3R = 4;  
// Lock Registers  
asm volatile  
("MOV  
"MOV  
"MOV  
"MOV.b w2,  
"MOV.b w3,  
#OSCCON,  
#0x46,  
#0x57,  
w1 \n"  
w2 \n"  
w3 \n"  
[w1]\n"  
[w1]\n"  
#6" ;  
"BSET  
OSCCON,  
// or use C30 built-in macro:  
// __builtin_write_OSCCONL(OSCCON | 0x40);  
2010-2011 Microchip Technology Inc.  
DS39996F-page 177  
PIC24FJ128GA310 FAMILY  
11.4.6  
PERIPHERAL PIN SELECT  
REGISTERS  
Note:  
Input and output register values can only  
be changed if IOLOCK (OSCCON<6>) = 0.  
See Section 11.4.4.1 “Control Register  
Lock” for a specific command sequence.  
The PIC24FJ128GA310 family of devices implements  
a total of 35 registers for remappable peripheral  
configuration:  
• Input Remappable Peripheral Registers (19)  
• Output Remappable Peripheral Registers (16)  
REGISTER 11-7: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT1R5  
INT1R4  
INT1R3  
INT1R2  
INT1R1  
INT1R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-0  
Unimplemented: Read as ‘0’  
INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
REGISTER 11-8: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT3R5  
INT3R4  
INT3R3  
INT3R2  
INT3R1  
INT3R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R5  
INT2R4  
INT2R3  
INT2R2  
INT2R1  
INT2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits  
DS39996F-page 178  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-9: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT4R5  
INT4R4  
INT4R3  
INT4R2  
INT4R1  
INT4R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
INT4R<5:0>: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits  
REGISTER 11-10: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T3CKR5  
T3CKR4  
T3CKR3  
T3CKR2  
T3CKR1  
T3CKR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T2CKR5  
T2CKR4  
T2CKR3  
T2CKR2  
T2CKR1  
T2CKR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
T3CKR<5:0>: Assign Timer3 External Clock (T3CK) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
T2CKR<5:0>: Assign Timer2 External Clock (T2CK) to Corresponding RPn or RPIn Pin bits  
2010-2011 Microchip Technology Inc.  
DS39996F-page 179  
PIC24FJ128GA310 FAMILY  
REGISTER 11-11: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T5CKR5  
T5CKR4  
T5CKR3  
T5CKR2  
T5CKR1  
T5CKR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T4CKR5  
T4CKR4  
T4CKR3  
T4CKR2  
T4CKR1  
T4CKR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
T5CKR<5:0>: Assign Timer5 External Clock (T5CK) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
T4CKR<5:0>: Assign Timer4 External Clock (T4CK) to Corresponding RPn or RPIn Pin bits  
REGISTER 11-12: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
R/W-1  
IC2R5  
R/W-1  
IC2R4  
R/W-1  
IC2R3  
R/W-1  
IC2R2  
R/W-1  
IC2R1  
R/W-1  
IC2R0  
bit 8  
bit 15  
U-0  
U-0  
R/W-1  
IC1R5  
R/W-1  
IC1R4  
R/W-1  
IC1R3  
R/W-1  
IC1R2  
R/W-1  
IC1R1  
R/W-1  
IC1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits  
DS39996F-page 180  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-13: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8  
U-0  
U-0  
R/W-1  
IC4R5  
R/W-1  
IC4R4  
R/W-1  
IC4R3  
R/W-1  
IC4R2  
R/W-1  
IC4R1  
R/W-1  
IC4R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
IC3R5  
R/W-1  
IC3R4  
R/W-1  
IC3R3  
R/W-1  
IC3R2  
R/W-1  
IC3R1  
R/W-1  
IC3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
IC4R<5:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits  
REGISTER 11-14: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9  
U-0  
U-0  
R/W-1  
IC6R5  
R/W-1  
IC6R4  
R/W-1  
IC6R3  
R/W-1  
IC6R2  
R/W-1  
IC6R1  
R/W-1  
IC6R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
IC5R5  
R/W-1  
IC5R4  
R/W-1  
IC5R3  
R/W-1  
IC5R2  
R/W-1  
IC5R1  
R/W-1  
IC5R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
IC6R<5:0>: Assign Input Capture 6 (IC6) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
IC5R<5:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits  
2010-2011 Microchip Technology Inc.  
DS39996F-page 181  
PIC24FJ128GA310 FAMILY  
REGISTER 11-15: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
IC7R5  
R/W-1  
IC7R4  
R/W-1  
IC7R3  
R/W-1  
IC7R2  
R/W-1  
IC7R1  
R/W-1  
IC7R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IC7R<5:0>: Assign Input Capture 7 (IC7) to Corresponding RPn or RPIn Pin bits  
REGISTER 11-16: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFBR5  
OCFBR4  
OCFBR3  
OCFBR2  
OCFBR1  
OCFBR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFAR5  
OCFAR4  
OCFAR3  
OCFAR2  
OCFAR1  
OCFAR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits  
DS39996F-page 182  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-17: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U3RXR5  
U3RXR4  
U3RXR3  
U3RXR2  
U3RXR1  
U3RXR0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-0  
Unimplemented: Read as ‘0’  
U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
REGISTER 11-18: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1CTSR5  
U1CTSR4  
U1CTSR3  
U1CTSR2  
U1CTSR1  
U1CTSR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1RXR5  
U1RXR4  
U1RXR3  
U1RXR2  
U1RXR1  
U1RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
U1CTSR<5:0>: Assign UART1 Clear to Send (U1CTS) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits  
2010-2011 Microchip Technology Inc.  
DS39996F-page 183  
PIC24FJ128GA310 FAMILY  
REGISTER 11-19: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U2CTSR5  
U2CTSR4  
U2CTSR3  
U2CTSR2  
U2CTSR1  
U2CTSR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U2RXR5  
U2RXR4  
U2RXR3  
U2RXR2  
U2RXR1  
U2RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
U2CTSR<5:0>: Assign UART2 Clear to Send (U2CTS) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits  
REGISTER 11-20: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SCK1R0  
bit 8  
SCK1R5  
SCK1R4  
SCK1R3  
SCK1R2  
SCK1R1  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI1R5  
SDI1R4  
SDI1R3  
SDI1R2  
SDI1R1  
SDI1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SCK1R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
SDI1R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits  
DS39996F-page 184  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-21: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U3CTSR5  
U3CTSR4  
U3CTSR3  
U3CTSR2  
U3CTSR1  
U3CTSR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS1R5  
SS1R4  
SS1R3  
SS1R2  
SS1R1  
SS1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
U3CTSR<5:0>: Assign UART3 Clear to Send (U3CTS) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits  
REGISTER 11-22: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T1CKR0  
bit 8  
T1CKR5  
T1CKR4  
T1CKR3  
T1CKR2  
T1CKR1  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI2R5  
SDI2R4  
SDI2R3  
SDI2R2  
SDI2R1  
SDI2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
T1CKR<5:0>: Assign Timer1External Clock (T1CK) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits  
2010-2011 Microchip Technology Inc.  
DS39996F-page 185  
PIC24FJ128GA310 FAMILY  
REGISTER 11-23: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T1CKR5  
T1CKR4  
T1CKR3  
T1CKR2  
T1CKR1  
T1CKR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS2R5  
SS2R4  
SS2R3  
SS2R2  
SS2R1  
SS2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
T1CKR<5:0>:  
Unimplemented: Read as ‘0’  
bit 5-0  
SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits  
REGISTER 11-24: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U4CTSR0  
bit 8  
U4CTSR5  
U4CTSR4  
U4CTSR3  
U4CTSR2  
U4CTSR1  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U4RXR5  
U4RXR4  
U4RXR3  
U4RXR2  
U4RXR1  
U4RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
U4CTSR<5:0>: Assign UART4 Clear-to-send Input (U4CTS) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
U4RXR<5:0>: Assign UART4 Receive Input (U4RX) to Corresponding RPn or RPIn Pin bits  
DS39996F-page 186  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-25: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
MDMIR5  
MDMIR4  
MDMIR3  
MDMIR2  
MDMIR1  
MDMIR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
MDMIR<5:0>: Assign TX Modulation Input (MDMI) to Corresponding RPn or RPIn Pin bits  
REGISTER 11-26: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
MDC2R5  
MDC2R4  
MDC2R3  
MDC2R2  
MDC2R1  
MDC2R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
MDC1R5  
MDC1R4  
MDC1R3  
MDC1R2  
MDC21R1  
MDC1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
MDC2R<5:0>: Assign TX Carrier 2 Input (MDCIN2) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
MDC1R<5:0>: Assign SPI3 Data Input (MDCIN1) to Corresponding RPn or RPIn Pin bits  
2010-2011 Microchip Technology Inc.  
DS39996F-page 187  
PIC24FJ128GA310 FAMILY  
REGISTER 11-27: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP1R5  
RP1R4  
RP1R3  
RP1R2  
RP1R1  
RP1R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP0R5  
RP0R4  
RP0R3  
RP0R2  
RP0R1  
RP0R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP1R<5:0>: RP1 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP1 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP0R<5:0>: RP0 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).  
REGISTER 11-28: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP3R5  
RP3R4  
RP3R3  
RP3R2  
RP3R1  
RP3R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP2R5  
RP2R4  
RP2R3  
RP2R2  
RP2R1  
RP2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP3R<5:0>: RP3 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP3 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP2R<5:0>: RP2 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP2 (see Table 11-4 for peripheral function numbers).  
DS39996F-page 188  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-29: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
R/W-0  
RP5R5(1)  
R/W-0  
RP5R4(1)  
R/W-0  
RP5R3(1)  
R/W-0  
RP5R2(1)  
R/W-0  
RP5R1(1)  
R/W-0  
RP5R0(1)  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP4R5  
RP4R4  
RP4R3  
RP4R2  
RP4R1  
RP4R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP5R<5:0>: RP5 Output Pin Mapping bits(1)  
Peripheral output number n is assigned to pin, RP5 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP4R<5:0>: RP4 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP4 (see Table 11-4 for peripheral function numbers).  
Note 1: These bits are unimplemented in 64-pin devices; read as ‘0’.  
REGISTER 11-30: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP7R5  
RP7R4  
RP7R3  
RP7R2  
RP7R1  
RP7R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP6R5  
RP6R4  
RP6R3  
RP6R2  
RP6R1  
RP6R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP7R<5:0>: RP7 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP7 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP6R<5:0>: RP6 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP6 (see Table 11-4 for peripheral function numbers).  
2010-2011 Microchip Technology Inc.  
DS39996F-page 189  
PIC24FJ128GA310 FAMILY  
REGISTER 11-31: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP9R5  
RP9R4  
RP9R3  
RP9R2  
RP9R1  
RP9R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP8R5  
RP8R4  
RP8R3  
RP8R2  
RP8R1  
RP8R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP9R<5:0>: RP9 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP9 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP8R<5:0>: RP8 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP8 (see Table 11-4 for peripheral function numbers).  
REGISTER 11-32: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP11R5  
RP11R4  
RP11R3  
RP11R2  
RP11R1  
RP11R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP10R5  
RP10R4  
RP10R3  
RP10R2  
RP10R1  
RP10R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP11R<5:0>: RP11 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP11 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP10R<5:0>: RP10 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP10 (see Table 11-4 for peripheral function numbers).  
DS39996F-page 190  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-33: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP13R5  
RP13R4  
RP13R3  
RP13R2  
RP13R1  
RP13R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP12R5  
RP12R4  
RP12R3  
RP12R2  
RP12R1  
RP12R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP13R<5:0>: RP13 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP13 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP12R<5:0>: RP12 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP12 (see Table 11-4 for peripheral function numbers).  
REGISTER 11-34: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
R/W-0  
RP15R5(1)  
R/W-0  
RP15R4(1)  
R/W-0  
RP15R3(1)  
R/W-0  
RP15R2(1)  
R/W-0  
RP15R1(1)  
R/W-0  
RP15R0(1)  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP14R5  
RP14R4  
RP14R3  
RP14R2  
RP14R1  
RP14R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP15R<5:0>: RP15 Output Pin Mapping bits(1)  
Peripheral output number n is assigned to pin, RP0 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP14R<5:0>: RP14 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP14 (see Table 11-4 for peripheral function numbers).  
Note 1: These bits are unimplemented in 64-pin devices; read as ‘0’.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 191  
PIC24FJ128GA310 FAMILY  
REGISTER 11-35: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP17R5  
RP17R4  
RP17R3  
RP17R2  
RP17R1  
RP17R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP16R5  
RP16R4  
RP16R3  
RP16R2  
RP16R1  
RP16R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP17R<5:0>: RP17 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP16R<5:0>: RP16 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).  
REGISTER 11-36: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP19R5  
RP19R4  
RP19R3  
RP19R2  
RP19R1  
RP19R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP18R5  
RP18R4  
RP18R3  
RP18R2  
RP18R1  
RP18R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP19R<5:0>: RP19 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP18R<5:0>: RP18 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers).  
DS39996F-page 192  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-37: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP21R5  
RP21R4  
RP21R3  
RP21R2  
RP21R1  
RP21R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP20R5  
RP20R4  
RP20R3  
RP20R2  
RP20R1  
RP20R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP21R<5:0>: RP21 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP21 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP20R<5:0>: RP20 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP20 (see Table 11-4 for peripheral function numbers).  
REGISTER 11-38: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP23R5  
RP23R4  
RP23R3  
RP23R2  
RP23R1  
RP23R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP22R5  
RP22R4  
RP22R3  
RP22R2  
RP22R1  
RP22R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP23R<5:0>: RP23 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP23 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP22R<5:0>: RP22 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP22 (see Table 11-4 for peripheral function numbers).  
2010-2011 Microchip Technology Inc.  
DS39996F-page 193  
PIC24FJ128GA310 FAMILY  
REGISTER 11-39: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP25R5  
RP25R4  
RP25R3  
RP25R2  
RP25R1  
RP25R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP24R5  
RP24R4  
RP24R3  
RP24R2  
RP24R1  
RP24R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP25R<5:0>: RP25 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP25 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP24R<5:0>: RP24 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP24 (see Table 11-4 for peripheral function numbers).  
REGISTER 11-40: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP27R5  
RP27R4  
RP27R3  
RP27R2  
RP27R1  
RP27R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP26R5  
RP26R4  
RP26R3  
RP26R2  
RP26R1  
RP26R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP27R<5:0>: RP27 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP27 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP26R<5:0>: RP26 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP26 (see Table 11-4 for peripheral function numbers).  
DS39996F-page 194  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 11-41: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP29R5  
RP29R4  
RP29R3  
RP29R2  
RP29R1  
RP29R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP28R5  
RP28R4  
RP28R3  
RP28R2  
RP28R1  
RP28R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP29R<5:0>: RP29 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP29 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP28R<5:0>: RP28 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP28 (see Table 11-4 for peripheral function numbers).  
REGISTER 11-42: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15  
U-0  
U-0  
R/W-0  
RP31R5(1)  
R/W-0  
RP31R4(1)  
R/W-0  
RP31R3(1)  
R/W-0  
RP31R2(1)  
R/W-0  
RP31R1(1)  
R/W-0  
RP31R0(1)  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP30R5  
RP30R4  
RP30R3  
RP30R2  
RP30R1  
RP30R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP31R<5:0>: RP31 Output Pin Mapping bits(1)  
Peripheral output number n is assigned to pin, RP31 (see Table 11-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP30R<5:0>: RP30 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP30 (see Table 11-4 for peripheral function numbers).  
Note 1: These bits are unimplemented in 64-pin and 80-pin devices; read as ‘0’.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 195  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 196  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Figure 12-1 presents a block diagram of the 16-bit  
timer module.  
12.0 TIMER1  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
To configure Timer1 for operation:  
1. Set the TON bit (= 1).  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 14. “Timers” (DS39704). The  
information in this data sheet supersedes  
the information in the FRM.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS,  
TECS and TGATE bits.  
4. Set or clear the TSYNC bit to configure  
synchronous or asynchronous operation.  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the Real-Time Clock (RTC) or  
operate as a free-running, interval timer/counter.  
Timer1 can operate in three modes:  
5. Load the timer period value into the PR1  
register.  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP<2:0>, to set  
the interrupt priority.  
• 16-Bit Timer  
• 16-Bit Synchronous Counter  
• 16-Bit Asynchronous Counter  
Timer1 also supports these features:  
• Timer Gate Operation  
• Selectable Prescaler Settings  
• Timer Operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-Bit Period Register Match or  
Falling Edge of External Gate Signal  
FIGURE 12-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TGATE  
LPRC  
Clock  
Input Select  
1
0
D
Q
Q
SOSCO  
Set T1IF  
CK  
Reset  
Equal  
TMR1  
SOSCI  
Comparator  
PR1  
SOSCSEL<1:0>  
SOSCEN  
Clock Input Select Detail  
T1ECS<1:0>  
2
Gate  
Output  
TCKPS<1:0>  
2
SOSC  
Input  
TON  
T1CK Input  
LPRC Input  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
0
1
Clock  
Output  
to TMR1  
Sync  
TCY  
TSYNC  
TGATE  
TCS  
2010-2011 Microchip Technology Inc.  
DS39996F-page 197  
PIC24FJ128GA310 FAMILY  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER(1)  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
TIECS1  
TIECS0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-10  
bit 9-8  
Unimplemented: Read as ‘0’  
TIECS<1:0>: Timer1 Extended Clock Source Select bits (selected when TCS = 1)  
11= Unimplemented, do not use  
10= LPRC Oscillator  
01= T1CK external clock input  
00= SOSC  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= Extended clock selected by the timer  
0= Internal clock (FOSC/2)  
Unimplemented: Read as ‘0’  
Note 1: Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to  
reset and is not recommended.  
DS39996F-page 198  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
To configure Timer2/3 or Timer4/5 for 32-bit operation:  
1. Set the T32 or T45 bit (T2CON<3> or  
13.0 TIMER2/3 AND TIMER4/5  
Note:  
This data sheet summarizes the features of  
T4CON<3> = 1).  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 14. “Timers” (DS39704). The  
information in this data sheet supersedes  
the information in the FRM.  
2. Select the prescaler ratio for Timer2 or Timer4  
using the TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits. If TCS is set to an external  
clock, RPINRx (TxCK) must be configured to  
an available RPn/RPIn pin. For more informa-  
tion, see Section 11.4 “Peripheral Pin Select  
(PPS)”.  
The Timer2/3 and Timer4/5 modules are 32-bit timers,  
which can also be configured as four independent, 16-bit  
timers with selectable operating modes.  
4. Load the timer period value. PR3 (or PR5) will  
contain the most significant word (msw) of the  
value, while PR2 (or PR4) contains the least  
significant word (lsw).  
As 32-bit timers, Timer2/3 and Timer4/5 can each  
operate in three modes:  
5. If interrupts are required, set the interrupt enable  
bit, T3IE or T5IE. Use the priority bits, T3IP<2:0>  
or T5IP<2:0>, to set the interrupt priority. Note  
that while Timer2 or Timer4 controls the timer, the  
interrupt appears as a Timer3 or Timer5 interrupt.  
• Two independent 16-bit timers with all 16-bit  
operating modes (except Asynchronous Counter  
mode)  
• Single 32-bit timer  
• Single 32-bit synchronous counter  
6. Set the TON bit (= 1).  
They also support these features:  
The timer value, at any point, is stored in the register  
pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always  
contains the most significant word of the count, while  
TMR2 (TMR4) contains the least significant word.  
• Timer Gate Operation  
• Selectable Prescaler Settings  
• Timer Operation during Idle and Sleep modes  
• Interrupt on a 32-Bit Period Register Match  
To configure any of the timers for individual 16-bit  
operation:  
• A/D Event Trigger (only on Timer2/3 in 32-bit  
mode and Timer3 in 16-bit mode)  
1. Clear the T32 bit corresponding to that timer  
(T2CON<3> for Timer2 and Timer3 or  
T4CON<3> for Timer4 and Timer5).  
Individually, all four of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the A/D Event Trigger.  
This trigger is implemented only on Timer2/3 in 32-bit  
mode and Timer3 in 16-bit mode. The operating modes  
and enabled features are determined by setting the  
appropriate bit(s) in the T2CON, T3CON, T4CON and  
T5CON registers. T2CON and T4CON are shown in  
generic form in Register 13-1; T3CON and T5CON are  
shown in Register 13-2.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits. See Section 11.4 “Peripheral  
Pin Select (PPS)” for more information.  
4. Load the timer period value into the PRx register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
For 32-bit timer/counter operation, Timer2 and Timer4  
are the least significant word; Timer3 and Timer4 are  
the most significant word of the 32-bit timers.  
6. Set the TON (TxCON<15> = 1) bit.  
Note:  
For 32-bit operation, T3CON and T5CON  
control bits are ignored. Only T2CON and  
T4CON control bits are used for setup and  
control. Timer2 and Timer4 clock and gate  
inputs are utilized for the 32-bit timer  
modules, but an interrupt is generated  
with the Timer3 or Timer5 interrupt flags.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 199  
PIC24FJ128GA310 FAMILY  
FIGURE 13-1:  
TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T2CK  
(T4CK)  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TCY  
(2)  
TGATE  
TGATE  
(2)  
TCS  
1
0
Q
D
Set T3IF (T5IF)  
Q
CK  
PR3  
PR2  
(PR5)  
(PR4)  
(3)  
A/D Event Trigger  
Equal  
MSB  
Comparator  
LSB  
TMR2  
(TMR4)  
TMR3  
(TMR5)  
Sync  
Reset  
16  
(1)  
(1)  
Read TMR2 (TMR4)  
Write TMR2 (TMR4)  
16  
16  
TMR3HLD  
(TMR5HLD)  
Data Bus<15:0>  
Note 1: The 32-Bit Timer Configuration bit, T32, must be set for 32-bit timer/counter operation. All control bits are  
respective to the T2CON and T4CON registers.  
2: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 11.4 “Peripheral  
Pin Select (PPS)” for more information.  
3: The A/D event trigger is available only on Timer 2/3 in 32-bit mode and Timer 3 in 16-bit mode.  
DS39996F-page 200  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 13-2:  
TIMER2 AND TIMER4 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
T2CK  
(T4CK)  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TGATE  
(1)  
TCS  
TGATE  
TCY  
(1)  
Q
D
1
0
Set T2IF (T4IF)  
Q
CK  
Reset  
Equal  
TMR2 (TMR4)  
Sync  
Comparator  
PR2 (PR4)  
Note 1: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 11.4 “Peripheral  
Pin Select (PPS)” for more information.  
FIGURE 13-3:  
TIMER3 AND TIMER5 (16-BIT ASYNCHRONOUS) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T3CK  
(T5CK)  
1x  
01  
00  
Sync  
Prescaler  
1, 8, 64, 256  
TGATE  
(1)  
TCS  
TGATE  
TCY  
(1)  
Q
Q
D
1
0
Set T3IF (T5IF)  
CK  
Reset  
Equal  
TMR3 (TMR5)  
(2)  
A/D Event Trigger  
Comparator  
PR3 (PR5)  
Note 1: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 11.4 “Peripheral  
Pin Select (PPS)” for more information.  
2: The A/D event trigger is available only on Timer3.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 201  
PIC24FJ128GA310 FAMILY  
REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER(3)  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(1)  
U-0  
R/W-0  
TCS(2)  
U-0  
TGATE  
TCKPS1  
TCKPS0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timerx On bit  
When TxCON<3> = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When TxCON<3> = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-Bit Timer Mode Select bit(1)  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit(2)  
1= External clock is from pin, TxCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: In T4CON, the T45 bit is implemented instead of T32 to select 32-bit mode. In 32-bit mode, the T3CON or  
T5CON control bits do not affect 32-bit timer operation.  
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see  
Section 11.4 “Peripheral Pin Select (PPS)”.  
3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to  
reset and is not recommended.  
DS39996F-page 202  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER(3)  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS1(1)  
R/W-0  
TCKPS0(1)  
U-0  
U-0  
R/W-0  
TCS(1,2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timery Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1,2)  
1= External clock from pin, TyCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery  
operation; all timer functions are set through T2CON and T4CON.  
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. See Section 11.4 “Peripheral  
Pin Select (PPS)” for more information.  
3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to  
reset and is not recommended.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 203  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 204  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
14.1 General Operating Modes  
14.0 INPUT CAPTURE WITH  
DEDICATED TIMERS  
14.1.1  
SYNCHRONOUS AND TRIGGER  
MODES  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 34. “Input Capture with  
Dedicated Timer” (DS39722). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
When the input capture module operates in a  
Free-Running mode, the internal 16-bit counter,  
ICxTMR, counts up continuously, wrapping around  
from FFFFh to 0000h on each overflow. Its period is  
synchronized to the selected external clock source.  
When a capture event occurs, the current 16-bit value  
of the internal counter is written to the FIFO buffer.  
In Synchronous mode, the module begins capturing  
events on the ICx pin as soon as its selected clock  
source is enabled. Whenever an event occurs on the  
selected sync source, the internal counter is reset. In  
Trigger mode, the module waits for a Sync event from  
another internal module to occur before allowing the  
internal counter to run.  
Devices in the PIC24FJ128GA310 family contain  
seven independent input capture modules. Each of the  
modules offers a wide range of configuration and  
operating options for capturing external pulse events  
and generating interrupts.  
Key features of the input capture module include:  
Standard, free-running operation is selected by setting  
the SYNCSEL bits (ICxCON2<4:0>) to ‘00000’ and  
clearing the ICTRIG bit (ICxCON2<7>). Synchronous  
and Trigger modes are selected any time the  
SYNCSEL bits are set to any value except ‘00000’.  
The ICTRIG bit selects either Synchronous or Trigger  
mode; setting the bit selects Trigger mode operation. In  
both modes, the SYNCSEL bits determine the  
sync/trigger source.  
• Hardware configurable for 32-bit operation in all  
modes by cascading two adjacent modules  
• Synchronous and Trigger modes of output  
compare operation, with up to 30 user-selectable  
sync/trigger sources available  
• A 4-level FIFO buffer for capturing and holding  
timer values for several events  
• Configurable interrupt generation  
• Up to 6 clock sources available for each module,  
driving a separate internal 16-bit counter  
When the SYNCSEL bits are set to ‘00000’ and  
ICTRIG is set, the module operates in Software Trigger  
mode. In this case, capture operations are started by  
manually setting the TRIGSTAT bit (ICxCON2<6>).  
The module is controlled through two registers:  
ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2).  
A general block diagram of the module is shown in  
Figure 14-1.  
FIGURE 14-1:  
INPUT CAPTURE BLOCK DIAGRAM  
ICM<2:0>  
ICI1<:0>  
Event and  
Interrupt  
Logic  
Set ICXIF  
Prescaler  
Counter  
1:1/4/16  
Edge Detect Logic  
and  
Clock Synchronizer  
(1)  
ICX Pin  
ICTSEL<2:0>  
Increment  
16  
IC Clock  
Sources  
Clock  
Select  
ICXTMR  
4-Level FIFO Buffer  
16  
16  
Reset  
Sync and  
Trigger  
Logic  
ICXBUF  
Sync and  
Trigger Sources  
SYNCSEL<4:0>  
Trigger  
System Bus  
ICOV, ICBNE  
Note 1: The ICx inputs must be assigned to an available RPn/RPIn pin before use. See Section 11.4 “Peripheral Pin Select  
(PPS)” for more information.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 205  
PIC24FJ128GA310 FAMILY  
For 32-bit cascaded operations, the setup procedure is  
slightly different:  
14.1.2  
CASCADED (32-BIT) MODE  
By default, each module operates independently with  
its own 16-bit timer. To increase resolution, adjacent  
even and odd modules can be configured to function as  
a single 32-bit module. (For example, Modules 1 and 2  
are paired, as are Modules 3 and 4, and so on.) The  
odd numbered module (ICx) provides the Least Signif-  
icant 16 bits of the 32-bit register pairs and the even  
module (ICy) provides the Most Significant 16 bits.  
Wrap-arounds of the ICx registers cause an increment  
of their corresponding ICy registers.  
1. Set the IC32 bits for both modules  
(ICyCON2<8>) and (ICxCON2<8>), enabling  
the even numbered module first. This ensures  
the modules will start functioning in unison.  
2. Set the ICTSEL and SYNCSEL bits for both  
modules to select the same sync/trigger and  
time base source. Set the even module first,  
then the odd module. Both modules must use  
the same ICTSEL and SYNCSEL bits settings.  
3. Clear the ICTRIG bit of the even module  
(ICyCON2<7>). This forces the module to run in  
Synchronous mode with the odd module,  
regardless of its trigger setting.  
Cascaded operation is configured in hardware by  
setting the IC32 bits (ICxCON2<8>) for both modules.  
14.2 Capture Operations  
4. Use the odd module’s ICI bits (ICxCON1<6:5>)  
to set the desired interrupt frequency.  
The input capture module can be configured to capture  
timer values and generate interrupts on rising edges on  
ICx or all transitions on ICx. Captures can be config-  
ured to occur on all rising edges or just some (every 4th  
or 16th). Interrupts can be independently configured to  
generate on each event or a subset of events.  
5. Use the ICTRIG bit of the odd module  
(ICxCON2<7>) to configure Trigger or  
Synchronous mode operation.  
Note:  
For Synchronous mode operation, enable  
the sync source as the last step. Both  
input capture modules are held in Reset  
until the sync source is enabled.  
To set up the module for capture operations:  
1. Configure the ICx input for one of the available  
Peripheral Pin Select pins.  
6. Use the ICM bits of the odd module  
(ICxCON1<2:0>) to set the desired Capture  
mode.  
2. If Synchronous mode is to be used, disable the  
sync source before proceeding.  
3. Make sure that any previous data has been  
removed from the FIFO by reading ICxBUF until  
the ICBNE bit (ICxCON1<3>) is cleared.  
The module is ready to capture events when the time  
base and the sync/trigger source are enabled. When  
the ICBNE bit (ICxCON1<3>) becomes set, at least  
one capture value is available in the FIFO. Read input  
capture values from the FIFO until the ICBNE clears  
to ‘0’.  
4. Set the SYNCSEL bits (ICxCON2<4:0>) to the  
desired sync/trigger source.  
5. Set the ICTSEL bits (ICxCON1<12:10>) for the  
desired clock source.  
For 32-bit operation, read both the ICxBUF and  
ICyBUF for the full 32-bit timer value (ICxBUF for the  
lsw, ICyBUF for the msw). At least one capture value is  
available in the FIFO buffer when the odd module’s  
ICBNE bit (ICxCON1<3>) becomes set. Continue to  
read the buffer registers until ICBNE is cleared  
(performed automatically by hardware).  
6. Set the ICI bits (ICxCON1<6:5>) to the desired  
interrupt frequency  
7. Select Synchronous or Trigger mode operation:  
a) Check that the SYNCSEL bits are not set to  
00000’.  
b) For Synchronous mode, clear the ICTRIG  
bit (ICxCON2<7>).  
c) For Trigger mode, set ICTRIG, and clear the  
TRIGSTAT bit (ICxCON2<6>).  
8. Set the ICM bits (ICxCON1<2:0>) to the desired  
operational mode.  
9. Enable the selected sync/trigger source.  
DS39996F-page 206  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ICSIDL  
ICTSEL2  
ICTSEL1  
ICTSEL0  
bit 15  
bit 8  
U-0  
R/W-0  
ICI1  
R/W-0  
ICI0  
R-0, HSC  
ICOV  
R-0, HSC  
ICBNE  
R/W-0  
ICM2(1)  
R/W-0  
ICM1(1)  
R/W-0  
ICM0(1)  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture x Module Stop in Idle Control bit  
1= Input capture module Halts in CPU Idle mode  
0= Input capture module continues to operate in CPU Idle mode  
bit 12-10  
ICTSEL<2:0>: Input Capture Timer Select bits  
111= System clock (FOSC/2)  
110= Reserved  
101= Reserved  
100= Timer1  
011= Timer5  
010= Timer4  
001= Timer2  
000= Timer3  
bit 9-7  
bit 6-5  
Unimplemented: Read as ‘0’  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture x Overflow Status Flag bit (read-only)  
1= Input capture overflow has occurred  
0= No input capture overflow has occurred  
bit 3  
ICBNE: Input Capture x Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits(1)  
111= Interrupt mode: input capture functions as an interrupt pin only when the device is in Sleep or  
Idle mode (rising edge detect only, all other control bits are not applicable)  
110= Unused (module is disabled)  
101= Prescaler Capture mode: capture on every 16th rising edge  
100= Prescaler Capture mode: capture on every 4th rising edge  
011= Simple Capture mode: capture on every rising edge  
010= Simple Capture mode: capture on every falling edge  
001= Edge Detect Capture mode: capture on every edge (rising and falling); ICI<1:0> bits do not  
control interrupt generation for this mode  
000= Input capture module is turned off  
Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see  
Section 11.4 “Peripheral Pin Select (PPS)”.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 207  
PIC24FJ128GA310 FAMILY  
REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IC32  
bit 15  
bit 8  
R/W-0  
R/W-0 HS  
TRIGSTAT  
U-0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-1  
ICTRIG  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0  
bit 0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
IC32: Cascade Two IC Modules Enable bit (32-bit operation)  
1= ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules)  
0= ICx functions independently as a 16-bit module  
bit 7  
bit 6  
bit 5  
ICTRIG: ICx Sync/Trigger Select bit  
1= Trigger ICx from the source designated by the SYNCSELx bits  
0= Synchronize ICx with the source designated by the SYNCSELx bits  
TRIGSTAT: Timer Trigger Status bit  
1= Timer source has been triggered and is running (set in hardware, can be set in software)  
0= Timer source has not been triggered and is being held clear  
Unimplemented: Read as ‘0’  
Note 1: Use these inputs as trigger sources only and never as sync sources.  
2: Never use an IC module as its own trigger source, by selecting this mode.  
DS39996F-page 208  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)  
bit 4-0  
SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits  
11111= Reserved  
11110= Reserved(2)  
11101= Reserved(2)  
11100= CTMU(1)  
11011= A/D(1)  
11010= Comparator 3(1)  
11001= Comparator 2(1)  
11000= Comparator 1(1)  
10111= Reserved(2)  
10110= Input Capture 7(2)  
10101= Input Capture 6(2)  
10100= Input Capture 5(2)  
10011= Input Capture 4(2)  
10010= Input Capture 3(2)  
10001= Input Capture 2(2)  
10000= Input Capture 1(2)  
01111= Timer5  
01110= Timer4  
01101= Timer3  
01100= Timer2  
01011= Timer1  
01010= Reserved  
01001= Reserved  
01000= Reserved  
00111= Output Compare 7  
00010= Output Compare 2  
00001= Output Compare 1  
00000= Not synchronized to any other module  
Note 1: Use these inputs as trigger sources only and never as sync sources.  
2: Never use an IC module as its own trigger source, by selecting this mode.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 209  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 210  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
In Synchronous mode, the module begins performing  
its compare or PWM operation as soon as its selected  
clock source is enabled. Whenever an event occurs on  
the selected sync source, the module’s internal counter  
is reset. In Trigger mode, the module waits for a sync  
event from another internal module to occur before  
allowing the counter to run.  
15.0 OUTPUT COMPARE WITH  
DEDICATED TIMERS  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 35. “Output Compare with  
Dedicated Timer” (DS39723). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
Free-Running mode is selected by default or any time  
that the SYNCSEL bits (OCxCON2<4:0>) are set to  
00000’. Synchronous or Trigger modes are selected  
any time the SYNCSEL bits are set to any value except  
00000’. The OCTRIG bit (OCxCON2<7>) selects  
either Synchronous or Trigger mode; setting the bit  
selects Trigger mode operation. In both modes, the  
SYNCSEL bits determine the sync/trigger source.  
Devices in the PIC24FJ128GA310 family all feature  
seven independent output compare modules. Each of  
these modules offers a wide range of configuration and  
operating options for generating pulse trains on internal  
device events, and can produce pulse-width modulated  
waveforms for driving power applications.  
15.1.2  
CASCADED (32-BIT) MODE  
By default, each module operates independently with  
its own set of 16-Bit Timer and Duty Cycle registers. To  
increase resolution, adjacent even and odd modules  
can be configured to function as a single 32-bit module.  
(For example, Modules 1 and 2 are paired, as are  
Modules 3 and 4, and so on.) The odd numbered  
module (OCx) provides the Least Significant 16 bits of  
the 32-bit register pairs and the even module (OCy)  
provides the Most Significant 16 bits. Wrap-arounds of  
the OCx registers cause an increment of their  
corresponding OCy registers.  
Key features of the output compare module include:  
• Hardware configurable for 32-bit operation in all  
modes by cascading two adjacent modules  
• Synchronous and Trigger modes of output  
compare operation, with up to 31 user-selectable  
trigger/sync sources available  
• Two separate Period registers (a main register,  
OCxR, and a secondary register, OCxRS) for  
greater flexibility in generating pulses of varying  
widths  
Cascaded operation is configured in hardware by set-  
ting the OC32 bit (OCxCON2<8>) for both modules.  
For more details on cascading, refer to the “PIC24F  
Family Reference Manual”, Section 35. “Output  
Compare with Dedicated Timer” (DS39723).  
• Configurable for single pulse or continuous pulse  
generation on an output event, or continuous  
PWM waveform generation  
• Up to 6 clock sources available for each module,  
driving a separate internal 16-bit counter  
15.1 General Operating Modes  
15.1.1  
SYNCHRONOUS AND TRIGGER  
MODES  
When the output compare module operates in a  
Free-Running mode, the internal 16-bit counter,  
OCxTMR, runs counts up continuously, wrapping  
around from 0xFFFF to 0x0000 on each overflow. Its  
period is synchronized to the selected external clock  
source. Compare or PWM events are generated each  
time a match between the internal counter and one of  
the Period registers occurs.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 211  
PIC24FJ128GA310 FAMILY  
FIGURE 15-1:  
OUTPUT COMPARE BLOCK DIAGRAM (16-BIT MODE)  
OCMx  
OCINV  
OCxCON1  
OCxCON2  
OCTRIS  
FLTOUT  
FLTTRIEN  
FLTMD  
ENFLT<2:0>  
OCFLT<2:0>  
DCB<1:0>  
OCTSELx  
SYNCSELx  
TRIGSTAT  
TRIGMODE  
OCTRIG  
OCxR and  
DCB<1:0>  
OCx Pin(1)  
Match Event  
Match Event  
Comparator  
Increment  
Clock  
Select  
OC Clock  
Sources  
OC Output and  
OCxTMR  
Comparator  
OCxRS  
Fault Logic  
Reset  
OCFA/OCFB(2)  
Match Event  
Trigger and  
Sync Sources  
Trigger and  
Sync Logic  
Reset  
OCx Interrupt  
Note 1: The OCx outputs must be assigned to an available RPn pin before use. See Section 11.4 “Peripheral Pin Select  
(PPS)” for more information.  
2: The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 11.4  
“Peripheral Pin Select (PPS)” for more information.  
3. Write the rising edge value to OCxR and the  
15.2 Compare Operations  
falling edge value to OCxRS.  
In Compare mode (Figure 15-1), the output compare  
4. Set the Timer Period register, PRy, to a value  
module can be configured for single-shot or continuous  
equal to or greater than the value in OCxRS.  
pulse generation. It can also repeatedly toggle an  
5. Set the OCM<2:0> bits for the appropriate  
output pin on each timer event.  
compare operation (= 0xx).  
To set up the module for compare operations:  
6. For Trigger mode operations, set OCTRIG to  
1. Configure the OCx output for one of the  
available Peripheral Pin Select pins.  
enable Trigger mode. Set or clear TRIGMODE  
to configure trigger operation and TRIGSTAT to  
select a hardware or software trigger. For  
Synchronous mode, clear OCTRIG.  
2. Calculate the required values for the OCxR and  
(for Double Compare modes) OCxRS Duty  
Cycle registers:  
7. Set the SYNCSEL<4:0> bits to configure the  
trigger or synchronization source. If free-running  
timer operation is required, set the SYNCSEL  
bits to ‘00000’ (no sync/trigger source).  
a) Determine the instruction clock cycle time.  
Take into account the frequency of the  
external clock to the timer source (if one is  
used) and the timer prescaler settings.  
8. Select the time base source with the  
OCTSEL<2:0> bits. If necessary, set the TON  
bits for the selected timer, which enables the  
compare time base to count. Synchronous  
mode operation starts as soon as the time base  
is enabled; Trigger mode operation starts after a  
trigger source event occurs.  
b) Calculate time to the rising edge of the  
output pulse relative to the timer start value  
(0000h).  
c) Calculate the time to the falling edge of the  
pulse based on the desired pulse width and  
the time to the rising edge of the pulse.  
DS39996F-page 212  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
For 32-bit cascaded operation, these steps are also  
necessary:  
15.3 Pulse-Width Modulation (PWM)  
Mode  
1. Set the OC32 bits for both registers  
(OCyCON2<8>) and (OCxCON2<8>). Enable  
the even numbered module first to ensure the  
modules will start functioning in unison.  
In PWM mode, the output compare module can be  
configured for edge-aligned or center-aligned pulse  
waveform generation. All PWM operations are  
double-buffered (buffer registers are internal to the  
module and are not mapped into SFR space).  
2. Clear the OCTRIG bit of the even module  
(OCyCON2<7>), so the module will run in  
Synchronous mode.  
To configure the output compare module for PWM  
operation:  
3. Configure the desired output and Fault settings  
for OCy.  
1. Configure the OCx output for one of the  
available Peripheral Pin Select pins.  
4. Force the output pin for OCx to the output state  
by clearing the OCTRIS bit.  
2. Calculate the desired duty cycles and load them  
into the OCxR register.  
5. If Trigger mode operation is required, configure  
the trigger options in OCx by using the OCTRIG  
(OCxCON2<7>), TRIGMODE (OCxCON1<3>)  
and SYNCSEL (OCxCON2<4:0>) bits.  
3. Calculate the desired period and load it into the  
OCxRS register.  
4. Select the current OCx as the synchronization  
source by writing 0x1F to the SYNCSEL<4:0>  
bits (OCxCON2<4:0>) and ‘0’ to the OCTRIG bit  
(OCxCON2<7>).  
6. Configure the desired Compare or PWM mode  
of operation (OCM<2:0>) for OCy first, then for  
OCx.  
5. Select  
a clock source by writing to the  
Depending on the output mode selected, the module  
holds the OCx pin in its default state and forces a tran-  
sition to the opposite state when OCxR matches the  
timer. In Double Compare modes, OCx is forced back  
to its default state when a match with OCxRS occurs.  
The OCxIF interrupt flag is set after an OCxR match in  
Single Compare modes and after each OCxRS match  
in Double Compare modes.  
OCTSEL<2:0> bits (OCxCON<12:10>).  
6. Enable interrupts, if required, for the timer and  
output compare modules. The output compare  
interrupt is required for PWM Fault pin  
utilization.  
7. Select the desired PWM mode in the OCM<2:0>  
bits (OCxCON1<2:0>).  
Single-shot pulse events only occur once, but may be  
repeated by simply rewriting the value of the  
OCxCON1 register. Continuous pulse events continue  
indefinitely until terminated.  
8. Appropriate Fault inputs may be enabled by  
using the ENFLT<2:0> bits as described in  
Register 15-1.  
9. If a timer is selected as a clock source, set the  
selected timer prescale value. The selected  
timer’s prescaler output is used as the clock  
input for the OCx timer, and not the selected  
timer output.  
Note:  
This peripheral contains input and output  
functions that may need to be configured  
by the Peripheral Pin Select. See  
Section 11.4 “Peripheral Pin Select  
(PPS)” for more information.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 213  
PIC24FJ128GA310 FAMILY  
FIGURE 15-2:  
OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)  
OCxCON1  
OCxCON2  
OCMx  
OCINV  
OCTSELx  
OCTRIS  
FLTOUT  
OCxR and  
DCB<1:0>  
SYNCSELx  
TRIGSTAT  
TRIGMODE  
OCTRIG  
FLTTRIEN  
FLTMD  
ENFLT<2:0>  
OCFLT<2:0>  
DCB<1:0>  
Rollover/Reset  
OCxR and  
DCB<1:0> Buffers  
OCx Pin(1)  
Comparator  
Match  
Event  
Increment  
Clock  
Select  
OC Clock  
Sources  
OC Output and  
Fault Logic  
OCxTMR  
Comparator  
OCxRS Buffer  
Rollover  
Reset  
OCFA/OCFB(2)  
Match  
Event  
Match Event  
Trigger and  
Sync Logic  
Trigger and  
Sync Sources  
Rollover/Reset  
OCxRS  
OCx Interrupt  
Reset  
Note 1: The OCx outputs must be assigned to an available RPn pin before use. See Section 11.4 “Peripheral Pin Select  
(PPS)” for more information.  
2: The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 11.4  
“Peripheral Pin Select (PPS)” for more information.  
15.3.1  
PWM PERIOD  
The PWM period is specified by writing to PRy, the  
Timer Period register. The PWM period can be  
calculated using Equation 15-1.  
EQUATION 15-1: CALCULATING THE PWM PERIOD(1)  
PWM Period = [(PRy) + 1 • TCY • (Timer Prescale Value)  
where:  
PWM Frequency = 1/[PWM Period]  
Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.  
Note:  
A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of  
7, written into the PRy register, will yield a period consisting of 8 time base cycles.  
DS39996F-page 214  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
• If OCxR, OCxRS, and PRy are all loaded with  
0000h, the OCx pin will remain low (0% duty  
cycle).  
15.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
OCxRS and OCxR registers. The OCxRS and OCxR  
registers can be written to at any time, but the duty  
cycle value is not latched until a match between PRy  
and TMRy occurs (i.e., the period is complete). This  
provides a double buffer for the PWM duty cycle and is  
essential for glitchless PWM operation.  
• If OCxRS is greater than PRy, the pin will remain  
high (100% duty cycle).  
See Example 15-1 for PWM mode timing details.  
Table 15-1 and Table 15-2 show example PWM  
frequencies and resolutions for a device operating at  
4 MIPS and 10 MIPS, respectively.  
Some important boundary parameters of the PWM duty  
cycle include:  
EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION(1)  
FCY  
log10  
FPWM • (Timer Prescale Value)  
(
)
Maximum PWM Resolution (bits) =  
bits  
(2)  
log10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
EXAMPLE 15-1:  
PWM PERIOD AND DUTY CYCLE CALCULATIONS(1)  
1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL  
(32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.  
TCY = 2 * TOSC = 62.5 ns  
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms  
PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value)  
19.2 ms = PR2 + 1) • 62.5 ns • 1  
PR2 = 306  
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz  
device clock rate:  
PWM Resolution = log10(FCY/FPWM)/log102) bits  
= (log10(16 MHz/52.08 kHz)/log102) bits  
= 8.3 bits  
Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.  
TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)(1)  
PWM Frequency  
7.6 Hz  
61 Hz  
122 Hz  
977 Hz  
3.9 kHz  
31.3 kHz  
125 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)(1)  
PWM Frequency  
30.5 Hz  
244 Hz  
488 Hz  
3.9 kHz  
15.6 kHz  
125 kHz  
500 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 215  
PIC24FJ128GA310 FAMILY  
REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ENFLT2(2)  
R/W-0  
ENFLT1(2)  
OCSIDL  
OCTSEL2  
OCTSEL1  
OCTSEL0  
bit 15  
bit 8  
R/W-0  
R/W-0, HSC R/W-0, HSC R/W-0, HSC  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ENFLT0(2) OCFLT2(2,3) OCFLT1(2,4) OCFLT0(2,4) TRIGMODE  
OCM2(1)  
OCM1(1)  
OCM0(1)  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare x in Idle Mode Control bit  
1= Output Compare x Halts in CPU Idle mode  
0= Output Compare x continues to operate in CPU Idle mode  
bit 12-10  
OCTSEL<2:0>: Output Compare x Timer Select bits  
111= Peripheral clock (FCY)  
110= Reserved  
101= Reserved  
100= Timer1 clock (only synchronous clock is supported)  
011= Timer5 clock  
010= Timer4 clock  
001= Timer3 clock  
000= Timer2 clock  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
ENFLT2: Fault Input 2 Enable bit(2)  
1= Fault 2 (Comparator 1/2/3 out) is enabled(3)  
0= Fault 2 is disabled  
ENFLT1: Fault Input 1 Enable bit(2)  
1= Fault 1 (OCFB pin) is enabled(4)  
0= Fault 1 is disabled  
ENFLT0: Fault Input 0 Enable bit(2)  
1= Fault 0 (OCFA pin) is enabled(4)  
0= Fault 0 is disabled  
OCFLT2: PWM Fault 2 (Comparator 1/2/3) Condition Status bit(2,3)  
1= PWM Fault 2 has occurred  
0= No PWM Fault 2 has occurred  
OCFLT1: PWM Fault 1 (OCFB pin) Condition Status bit(2,4)  
1= PWM Fault 1 has occurred  
0= No PWM Fault 1 has occurred  
Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4  
“Peripheral Pin Select (PPS)”.  
2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111or 110.  
3: The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6  
channels; Comparator 3 output controls the OC7-OC9 channels.  
4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information,  
see Section 11.4 “Peripheral Pin Select (PPS)”.  
DS39996F-page 216  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)  
bit 4  
OCFLT0: PWM Fault 0 (OCFA pin) Condition Status bit(2,4)  
1= PWM Fault 0 has occurred  
0= No PWM Fault 0 has occurred  
bit 3  
TRIGMODE: Trigger Status Mode Select bit  
1= TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software  
0= TRIGSTAT is only cleared by software  
bit 2-0  
OCM<2:0>: Output Compare x Mode Select bits(1)  
111= Center-Aligned PWM mode on OCx(2)  
110= Edge-Aligned PWM mode on OCx(2)  
101= Double Compare Continuous Pulse mode: Initialize the OCx pin low; toggle the OCx state  
continuously on alternate matches of OCxR and OCxRS  
100= Double Compare Single-Shot mode: Initialize the OCx pin low; toggle the OCx state on matches  
of OCxR and OCxRS for one cycle  
011= Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin  
010= Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low  
001= Single Compare Single-Shot mode: Initialize OCx pin low; compare event forces the OCx pin high  
000= Output compare channel is disabled  
Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4  
“Peripheral Pin Select (PPS)”.  
2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111or 110.  
3: The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6  
channels; Comparator 3 output controls the OC7-OC9 channels.  
4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information,  
see Section 11.4 “Peripheral Pin Select (PPS)”.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 217  
PIC24FJ128GA310 FAMILY  
REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
DCB1(3)  
R/W-0  
DCB0(3)  
R/W-0  
OC32  
FLTMD  
FLTOUT  
FLTTRIEN  
OCINV  
bit 15  
bit 8  
R/W-0  
R/W-0 HS  
TRIGSTAT  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
OCTRIG  
OCTRIS  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0  
bit 0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
FLTMD: Fault Mode Select bit  
1= Fault mode is maintained until the Fault source is removed and the corresponding OCFLT0 bit is  
cleared in software  
0= Fault mode is maintained until the Fault source is removed and a new PWM period starts  
bit 14  
bit 13  
bit 12  
FLTOUT: Fault Out bit  
1= PWM output is driven high on a Fault  
0= PWM output is driven low on a Fault  
FLTTRIEN: Fault Output State Select bit  
1= Pin is forced to an output on a Fault condition  
0= Pin I/O condition is unaffected by a Fault  
OCINV: OCMP Invert bit  
1= OCx output is inverted  
0= OCx output is not inverted  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-9  
DCB<11:0>: PWM Duty Cycle Least Significant bits(3)  
11= Delay OCx falling edge by ¾ of the instruction cycle  
10= Delay OCx falling edge by ½ of the instruction cycle  
01= Delay OCx falling edge by ¼ of the instruction cycle  
00= OCx falling edge occurs at the start of the instruction cycle  
bit 8  
bit 7  
bit 6  
bit 5  
OC32: Cascade Two OC Modules Enable bit (32-bit operation)  
1= Cascade module operation is enabled  
0= Cascade module operation is disabled  
OCTRIG: OCx Trigger/Sync Select bit  
1= Trigger OCx from the source designated by the SYNCSELx bits  
0= Synchronize OCx with the source designated by the SYNCSELx bits  
TRIGSTAT: Timer Trigger Status bit  
1= Timer source has been triggered and is running  
0= Timer source has not been triggered and is being held clear  
OCTRIS: OCx Output Pin Direction Select bit  
1= OCx pin is tri-stated  
0= Output compare peripheral x is connected to an OCx pin  
Note 1: Never use an OC module as its own trigger source, either by selecting this mode or another equivalent  
SYNCSELx setting.  
2: Use these inputs as trigger sources only and never as sync sources.  
3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).  
DS39996F-page 218  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)  
bit 4-0  
SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits  
11111= This OC module(1)  
11110= Input Capture 9(2)  
11101= Input Capture 6(2)  
11100= CTMU(2)  
11011= A/D(2)  
11010= Comparator 3(2)  
11001= Comparator 2(2)  
11000= Comparator 1(2)  
10111= Input Capture 4(2)  
10110= Input Capture 3(2)  
10101= Input Capture 2(2)  
10100= Input Capture 1(2)  
10011= Input Capture 8(2)  
10010= Input Capture 7(2)  
1000x= Reserved  
01111= Timer5  
01110= Timer4  
01101= Timer3  
01100= Timer2  
01011= Timer1  
01010= Input Capture 5(2)  
01001= Output Compare 9(1)  
01000= Output Compare 8(1)  
00111= Output Compare 7(1)  
00110= Output Compare 6(1)  
00101= Output Compare 5(1)  
00100= Output Compare 4(1)  
00011= Output Compare 3(1)  
00010= Output Compare 2(1)  
00001= Output Compare 1(1)  
00000= Not synchronized to any other module  
Note 1: Never use an OC module as its own trigger source, either by selecting this mode or another equivalent  
SYNCSELx setting.  
2: Use these inputs as trigger sources only and never as sync sources.  
3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).  
2010-2011 Microchip Technology Inc.  
DS39996F-page 219  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 220  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The module also supports a basic framed SPI protocol  
while operating in either Master or Slave mode. A total  
of four framed SPI configurations are supported.  
16.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
The SPI serial interface consists of four pins:  
• SDIx: Serial Data Input  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 23. “Serial Peripheral Interface  
(SPI)” (DS39699). The information in this  
data sheet supersedes the information in  
the FRM.  
• SDOx: Serial Data Output  
• SCKx: Shift Clock Input or Output  
• SSx: Active-Low Slave Select or Frame  
Synchronization I/O Pulse  
The SPI module can be configured to operate using 2,  
3 or 4 pins. In the 3-pin mode, SSx is not used. In the  
2-pin mode, both SDOx and SSx are not used.  
The Serial Peripheral Interface (SPI) module is a  
synchronous serial interface useful for communicating  
with other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift  
registers, display drivers, A/D Converters, etc. The SPI  
module is compatible with the SPI and SIOP Motorola®  
interfaces. All devices of the PIC24FJ128GA310 family  
include two SPI modules.  
Block diagrams of the module in Standard and  
Enhanced modes are shown in Figure 16-1 and  
Figure 16-2.  
Note:  
In this section, the SPI modules are  
referred to together as SPIx or separately  
as SPI1, SPI2 or SPI3. Special Function  
Registers will follow a similar notation. For  
example, SPIxCON1 and SPIxCON2  
refer to the control registers for any of the  
3 SPI modules.  
The module supports operation in two buffer modes. In  
Standard mode, data is shifted through a single serial  
buffer. In Enhanced Buffer mode, data is shifted  
through an 8-level FIFO buffer.  
Note:  
Do not perform read-modify-write opera-  
tions (such as bit-oriented instructions) on  
the SPIxBUF register in either Standard or  
Enhanced Buffer mode.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 221  
PIC24FJ128GA310 FAMILY  
To set up the SPI module for the Standard Master mode  
of operation:  
To set up the SPI module for the Standard Slave mode  
of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFS  
register.  
a) Clear the SPIxIF bit in the respective IFS  
register.  
b) Set the SPIxIE bit in the respective IEC  
register.  
b) Set the SPIxIE bit in the respective IEC  
register.  
c) Write the SPIxIP bits in the respective IPC  
register to set the interrupt priority.  
c) Write the SPIxIP bits in the respective IPC  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 1.  
3. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 0.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
4. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
4. Clear the SMP bit.  
5. If the CKE bit (SPIxCON1<8>) is set, then the  
SSEN bit (SPIxCON1<7>) must be set to enable  
the SSx pin.  
5. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
7. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
FIGURE 16-1:  
SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)  
SCKx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SSx/FSYNCx  
Sync  
Control  
Clock  
Select  
Edge  
Control  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
DS39996F-page 222  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
To set up the SPI module for the Enhanced Buffer  
Master mode of operation:  
To set up the SPI module for the Enhanced Buffer  
Slave mode of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFS  
register.  
a) Clear the SPIxIF bit in the respective IFS  
register.  
b) Set the SPIxIE bit in the respective IEC  
register.  
b) Set the SPIxIE bit in the respective IEC  
register.  
c) Write the SPIxIP bits in the respective IPC  
register.  
c) Write the SPIxIP bits in the respective IPC  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 1.  
3. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 0.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
4. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit must be  
set, thus enabling the SSx pin.  
5. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
6. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
7. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
8. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
FIGURE 16-2:  
SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)  
SCKx  
1:1/4/16/64  
Primary  
1:1 to 1:8  
Secondary  
Prescaler  
FCY  
Prescaler  
SSx/FSYNCx  
Sync  
Select  
Edge  
Control  
Clock  
Control  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
8-Level FIFO  
Receive Buffer  
8-Level FIFO  
Transmit Buffer  
SPIXBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
2010-2011 Microchip Technology Inc.  
DS39996F-page 223  
PIC24FJ128GA310 FAMILY  
REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN(1)  
U-0  
R/W-0  
U-0  
U-0  
R-0, HSC  
SPIBEC2  
R-0, HSC  
SPIBEC1  
R-0, HSC  
SPIBEC0  
SPISIDL  
bit 15  
bit 8  
R-0, HSC  
SRMPT  
R/C-0, HS  
SPIROV  
R-0, HSC  
SRXMPT  
R/W-0  
R/W-0  
R/W-0  
R-0, HSC  
SPITBF  
R-0, HSC  
SPIRBF  
SISEL2  
SISEL1  
SISEL0  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
HSC = Hardware Settable/Clearable bit  
bit 15  
SPIEN: SPIx Enable bit(1)  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)  
Master mode:  
Number of SPI transfers pending.  
Slave mode:  
Number of SPI transfers unread.  
bit 7  
bit 6  
SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)  
1= SPIx Shift register is empty and ready to send or receive  
0= SPIx Shift register is not empty  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded  
The user software has not read the previous data in the SPIxBUF register.  
0= No overflow has occurred  
bit 5  
SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode)  
1= Receive FIFO is empty  
0= Receive FIFO is not empty  
bit 4-2  
SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)  
111= Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)  
110= Interrupt when the last bit is shifted into SPIxSR; as a result, the TX FIFO is empty  
101= Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete  
100= Interrupt when one data is shifted into the SPIxSR; as a result, the TX FIFO has one open spot  
011= Interrupt when the SPIx receive buffer is full (SPIRBF bit is set)  
010= Interrupt when the SPIx receive buffer is 3/4 or more full  
001= Interrupt when data is available in the receive buffer (SRMPT bit is set)  
000= Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT  
bit is set)  
Note 1: If SPIEN = 1, these functions must be assigned to available RPn/RPIn pins before use. See Section 11.4  
“Peripheral Pin Select (PPS)” for more information.  
DS39996F-page 224  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 1  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit has not yet started, SPIxTXB is full  
0= Transmit has started, SPIxTXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the SPIxTXB.  
Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.  
In Enhanced Buffer mode:  
Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available  
buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive is complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically  
cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.  
In Enhanced Buffer mode:  
Automatically set in hardware when SPIx transfers data from the SPIxSR to the buffer, filling the last  
unread buffer location. Automatically cleared in hardware when a buffer location is available for a trans-  
fer from SPIxSR.  
Note 1: If SPIEN = 1, these functions must be assigned to available RPn/RPIn pins before use. See Section 11.4  
“Peripheral Pin Select (PPS)” for more information.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 225  
PIC24FJ128GA310 FAMILY  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
DISSCK(1)  
R/W-0  
DISSDO(2)  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(3)  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(4)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
PPRE1  
PPRE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx Pin bit (SPI Master modes only)(1)  
1= Internal SPI clock is disabled; pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx Pin bit(2)  
1= SDOx pin is not used by the module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data is sampled at the end of data output time  
0= Input data is sampled at the middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(3)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable (Slave mode) bit(4)  
1= SSx pin is used for Slave mode  
0= SSx pin is not used by the module; pin is controlled by the port function  
CKP: Clock Polarity Select bit  
1= Idle state for the clock is a high level; active state is a low level  
0= Idle state for the clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 11.4 “Peripheral Pin  
Select (PPS)” for more information.  
2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 11.4 “Peripheral Pin  
Select (PPS)” for more information.  
3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
4: If SSEN = 1, SSx must be configured to an available RPn/PRIn pin. See Section 11.4 “Peripheral Pin  
Select (PPS)” for more information.  
DS39996F-page 226  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
.
.
.
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 11.4 “Peripheral Pin  
Select (PPS)” for more information.  
2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 11.4 “Peripheral Pin  
Select (PPS)” for more information.  
3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
4: If SSEN = 1, SSx must be configured to an available RPn/PRIn pin. See Section 11.4 “Peripheral Pin  
Select (PPS)” for more information.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 227  
PIC24FJ128GA310 FAMILY  
REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
SPIFPOL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SPIFE  
R/W-0  
SPIBEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support is enabled  
0= Framed SPIx support is disabled  
SPIFSD: Frame Sync Pulse Direction Control on SSx Pin bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only)  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SPIFE: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with the first bit clock  
0= Frame sync pulse precedes the first bit clock  
bit 0  
SPIBEN: Enhanced Buffer Enable bit  
1= Enhanced buffer is enabled  
0= Enhanced buffer is disabled (Legacy mode)  
DS39996F-page 228  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 16-3:  
SPI MASTER/SLAVE CONNECTION (STANDARD MODE)  
Processor 1 (SPI Master)  
Processor 2 (SPI Slave)  
SDOx  
SDIx  
Serial Receive Buffer  
(SPIxRXB)  
Serial Receive Buffer  
(2)  
(SPIxRXB)  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
(2)  
LSb  
MSb  
MSb  
LSb  
Serial Transmit Buffer  
(SPIxTXB)  
Serial Transmit Buffer  
(2)  
(SPIxTXB)  
Serial Clock  
SCKx  
SCKx  
SPIx Buffer  
(SPIxBUF)  
SPIx Buffer  
(SPIxBUF)  
(2)  
(2)  
(1)  
SSx  
SSEN (SPIxCON1<7>) = 1and MSTEN (SPIxCON1<5>) = 0  
MSTEN (SPIxCON1<5>) = 1)  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers  
are memory mapped to SPIxBUF.  
FIGURE 16-4:  
SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)  
Processor 1 (SPI Enhanced Buffer Master)  
Processor 2 (SPI Enhanced Buffer Slave)  
SDIx  
SDOx  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
8-Level FIFO Buffer  
8-Level FIFO Buffer  
Serial Clock  
SPIx Buffer  
SPIx Buffer  
(SPIxBUF)  
(2)  
SCKx  
SSx  
SCKx  
(2)  
(SPIxBUF)  
(1)  
SSx  
MSTEN (SPIxCON1<5>) = 1and  
SPIBEN (SPIxCON2<0>) = 1  
SSEN (SPIxCON1<7>) = 1,  
MSTEN (SPIxCON1<5>) = 0and  
SPIBEN (SPIxCON2<0>) = 1  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are  
memory mapped to SPIxBUF.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 229  
PIC24FJ128GA310 FAMILY  
FIGURE 16-5:  
FIGURE 16-6:  
FIGURE 16-7:  
FIGURE 16-8:  
SPI MASTER, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
Processor 2  
(SPI Master, Frame Master)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
Processor 2  
SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
(SPI Slave, Frame Master)  
Processor 2  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync.  
Pulse  
SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
(SPI Slave, Frame Slave)  
Processor 2  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
DS39996F-page 230  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED(1)  
FCY  
FSCK =  
Primary Prescaler x Secondary Prescaler  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
TABLE 16-1: SAMPLE SCKx FREQUENCIES(1,2)  
Secondary Prescaler Settings  
FCY = 16 MHz  
1:1  
2:1  
4:1  
6:1  
8:1  
1:1  
4:1  
Invalid  
4000  
1000  
250  
8000  
2000  
500  
4000  
1000  
250  
63  
2667  
667  
167  
42  
2000  
500  
125  
31  
Primary Prescaler Settings  
FCY = 5 MHz  
16:1  
64:1  
125  
1:1  
4:1  
5000  
1250  
313  
78  
2500  
625  
156  
39  
1250  
313  
78  
833  
208  
52  
625  
156  
39  
Primary Prescaler Settings  
16:1  
64:1  
20  
13  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2: SCKx frequencies are shown in kHz.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 231  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 232  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
17.1 Communicating as a Master in a  
Single Master Environment  
17.0 INTER-INTEGRATED  
2
CIRCUIT™ (I C™)  
The details of sending a message in Master mode  
depends on the communications protocol for the device  
being communicated with. Typically, the sequence of  
events is as follows:  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 24. “Inter-Integrated Circuit™  
(I2C™)” (DS39702). The information in this  
data sheet supersedes the information in  
the FRM.  
1. Assert a Start condition on SDAx and SCLx.  
2. Send the I2C device address byte to the slave  
with a write indication.  
3. Wait for and verify an Acknowledge from the  
slave.  
The Inter-Integrated Circuit™ (I2C™) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, display drivers, A/D  
Converters, etc.  
4. Send the first data byte (sometimes known as  
the command) to the slave.  
5. Wait for and verify an Acknowledge from the  
slave.  
6. Send the serial memory address low byte to the  
slave.  
The I2C module supports these features:  
7. Repeat Steps 4 and 5 until all data bytes are  
sent.  
• Independent master and slave logic  
• 7-bit and 10-bit device addresses  
• General call address as defined in the I2C protocol  
8. Assert a Repeated Start condition on SDAx and  
SCLx.  
• Clock stretching to provide delays for the  
processor to respond to a slave data request  
9. Send the device address byte to the slave with  
a read indication.  
• Both 100 kHz and 400 kHz bus specifications  
• Configurable address masking  
10. Wait for and verify an Acknowledge from the  
slave.  
• Multi-Master modes to prevent loss of messages  
in arbitration  
11. Enable master reception to receive serial  
memory data.  
• Bus Repeater mode, allowing the acceptance of  
all messages as a slave regardless of the address  
12. Generate an ACK or NACK condition at the end  
of a received byte of data.  
• Automatic SCL  
13. Generate a Stop condition on SDAx and SCLx.  
A block diagram of the module is shown in Figure 17-1.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 233  
PIC24FJ128GA310 FAMILY  
FIGURE 17-1:  
I2C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS39996F-page 234  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
17.2 Setting Baud Rate When  
Operating as a Bus Master  
17.3 Slave Address Masking  
The I2CxMSK register (Register 17-3) designates  
address bit positions as “don’t care” for both 7-Bit and  
10-Bit Addressing modes. Setting a particular bit loca-  
tion (= 1) in the I2CxMSK register causes the slave  
module to respond whether the corresponding address  
bit value is a ‘0’ or a ‘1’. For example, when I2CxMSK  
is set to ‘00100000’, the slave module will detect both  
addresses, ‘0000000’ and ‘0100000’.  
To compute the Baud Rate Generator reload value, use  
Equation 17-1.  
EQUATION 17-1: COMPUTING BAUD RATE  
RELOAD VALUE(1,2)  
FCY  
FSCL =  
FCY  
10,000,000  
I2CxBRG + 1 +  
To enable address masking, the Intelligent Peripheral  
Management Interface (IPMI) must be disabled by  
clearing the IPMIEN bit (I2CxCON<11>).  
or:  
FCY  
FSCL  
FCY  
10,000,000  
– 1  
I2CxBRG =  
(
)
Note:  
As a result of changes in the I2C™ proto-  
col, the addresses in Table 17-2 are  
reserved and will not be Acknowledged in  
Slave mode. This includes any address  
mask settings that include any of these  
addresses.  
Note 1: Based on FCY = FOSC/2; Doze mode and  
PLL are disabled.  
2: These clock rate values are for guidance  
only. The actual clock rate can be affected  
by various system level parameters. The  
actual clock rate should be measured in  
its intended application.  
TABLE 17-1: I2C™ CLOCK RATES(1,2)  
I2CxBRG Value  
Required System FSCL  
FCY  
Actual FSCL  
(Decimal)  
(Hexadecimal)  
9D  
100 kHz  
100 kHz  
100 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
1 MHz  
16 MHz  
8 MHz  
4 MHz  
16 MHz  
8 MHz  
4 MHz  
2 MHz  
16 MHz  
8 MHz  
4 MHz  
157  
78  
39  
37  
18  
9
100 kHz  
100 kHz  
99 kHz  
4E  
27  
25  
12  
9
404 kHz  
404 kHz  
385 kHz  
385 kHz  
1.026 MHz  
1.026 MHz  
0.909 MHz  
4
4
13  
6
D
1 MHz  
6
1 MHz  
3
3
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2: These clock rate values are for guidance only. The actual clock rate can be affected by various system  
level parameters. The actual clock rate should be measured in its intended application.  
TABLE 17-2: I2C™ RESERVED ADDRESSES(1)  
Slave Address R/W Bit  
Description  
0000 000  
0000 000  
0000 001  
0000 01x  
0000 1xx  
1111 0xx  
1111 1xx  
0
1
x
x
x
x
x
General Call Address(2)  
Start Byte  
CBus Address  
Reserved  
HS Mode Master Code  
10-Bit Slave Upper Byte(3)  
Reserved  
Note 1: The address bits listed here will never cause an address match, independent of address mask settings.  
2: The address will be Acknowledged only if GCEN = 1.  
3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 235  
PIC24FJ128GA310 FAMILY  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1, HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC  
ACKEN  
R/W-0, HC  
RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module; all I2C™ pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters an Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Releases SCLx clock  
0= Holds SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware is clear  
at the beginning of slave transmission. Hardware is clear at the end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware is clear at the beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Platform Management Interface (IPMI) Enable bit  
1= IPMI Support mode is enabled; all addresses are Acknowledged  
0= IPMI mode is disabled  
A10M: 10-Bit Slave Addressing bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control is disabled  
0= Slew rate control is enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with SMBus specifications  
0= Disables the SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for  
reception)  
0= General call address is disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with the SCLREL bit.  
1= Enables software or receive clock stretching  
0= Disables software or receive clock stretching  
DS39996F-page 236  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (when operating as I2C master; applicable during master receive)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master; applicable during master receive)  
1= Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit.  
Hardware is clear at the end of the master Acknowledge sequence.  
0= Acknowledge sequence is not in progress  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware is clear at the end of the eighth bit of the master receive  
data byte.  
0= Receive sequence is not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiates Stop condition on the SDAx and SCLx pins. Hardware is clear at the end of the master  
Stop sequence.  
0= Stop condition is not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiates Repeated Start condition on the SDAx and SCLx pins. Hardware is clear at the end of the  
master Repeated Start sequence.  
0= Repeated Start condition is not in progress  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start  
sequence.  
0= Start condition is not in progress  
2010-2011 Microchip Technology Inc.  
DS39996F-page 237  
PIC24FJ128GA310 FAMILY  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0, HSC  
ACKSTAT  
bit 15  
R-0, HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0, HS  
BCL  
R-0, HSC  
GCSTAT  
R-0, HSC  
ADD10  
bit 8  
R/C-0, HS R/C-0, HS R-0, HSC R/C-0, HSC R/C-0, HSC  
R-0, HSC  
R/W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
IWCOL  
bit 7  
I2COV  
D/A  
P
S
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
HSC = Hardware Settable/Clearable bit  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
1= NACK was detected last  
0= ACK was detected last  
Hardware is set or cleared at the end of Acknowledge.  
TRSTAT: Transmit Status bit  
(when operating as I2C™ master; applicable to master transmit operation.)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware is set at the beginning of master transmission; hardware is clear at the end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware is set at the detection of a bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware is set when the address matches the general call address; hardware is clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware is set at the match of the 2nd byte of the matched 10-bit address; hardware is clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write to the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware is set at an occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D/A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was a device address  
Hardware is clear at the device address match. Hardware is set after a transmission finishes or by  
reception of a slave byte.  
DS39996F-page 238  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 4  
bit 3  
bit 2  
bit 1  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
R/W: Read/Write Information bit (when operating as I2C slave)  
1= Read: Indicates the data transfer is output from the slave  
0= Write: Indicates the data transfer is input to the slave  
Hardware is set or clear after the reception of an I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive is complete, I2CxRCV is full  
0= Receive is not complete, I2CxRCV is empty  
Hardware is set when I2CxRCV is written with the received byte; hardware is clear when the software  
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit is in progress, I2CxTRN is full  
0= Transmit is complete, I2CxTRN is empty  
Hardware is set when software writes to I2CxTRN; hardware is clear at the completion of data transmission.  
REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK<9:0>: Mask for Address Bit x Select bits  
1= Enables masking for bit x of the incoming message address; bit match is not required in this position  
0= Disables masking for bit x; bit match is required in this position  
2010-2011 Microchip Technology Inc.  
DS39996F-page 239  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 240  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
• Fully Integrated Baud Rate Generator with 16-Bit  
Prescaler  
18.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Baud Rates Ranging from 15 bps to 1 Mbps at  
16 MIPS  
• 4-Deep, First-In-First-Out (FIFO) Transmit Data  
Buffer  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 21. “UART” (DS39708). The  
information in this data sheet supersedes  
the information in the FRM.  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA® Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA Support  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules available  
in the PIC24F device family. The UART is a full-duplex,  
asynchronous system that can communicate with  
peripheral devices, such as personal computers,  
LIN/J2602, RS-232 and RS-485 interfaces. The module  
also supports a hardware flow control option with the  
UxCTS and UxRTS pins, and includes an IrDA® encoder  
and decoder.  
A simplified block diagram of the UART is shown in  
Figure 18-1. The UART module consists of these key  
important hardware elements:  
• Baud Rate Generator  
The primary features of the UART module are:  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Full-Duplex, 8 or 9-Bit Data Transmission through  
the UxTX and UxRX Pins  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
• Hardware Flow Control Option with the UxCTS  
and UxRTS Pins  
FIGURE 18-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
®
IrDA  
UxRTS/BCLKx  
UxCTS  
Hardware Flow Control  
UARTx Receiver  
UxRX  
UxTX  
UARTx Transmitter  
Note:  
The UART inputs and outputs must all be assigned to available RPn/RPIn pins before use. See Section 11.4  
“Peripheral Pin Select (PPS)” for more information.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 241  
PIC24FJ128GA310 FAMILY  
The maximum baud rate (BRGH = 0) possible is  
FCY/16 (for UxBRG = 0) and the minimum baud rate  
18.1 UART Baud Rate Generator (BRG)  
The UART module includes a dedicated, 16-bit Baud  
Rate Generator. The UxBRG register controls the  
period of a free-running, 16-bit timer. Equation 18-1  
shows the formula for computation of the baud rate with  
BRGH = 0.  
possible is FCY/(16 * 65536).  
Equation 18-2 shows the formula for computation of  
the baud rate with BRGH = 1.  
EQUATION 18-2: UART BAUD RATE WITH  
BRGH = 1(1,2)  
EQUATION 18-1: UART BAUD RATE WITH  
BRGH = 0(1,2)  
FCY  
Baud Rate =  
FCY  
Baud Rate =  
4 • (UxBRG + 1)  
16 • (UxBRG + 1)  
FCY  
– 1  
UxBRG =  
FCY  
4 • Baud Rate  
– 1  
UxBRG =  
16 • Baud Rate  
Note 1: FCY denotes the instruction cycle clock  
frequency.  
Note 1: FCY denotes the instruction cycle clock  
frequency (FOSC/2).  
2: Based on FCY = FOSC/2; Doze mode  
2: Based on FCY = FOSC/2; Doze mode  
and PLL are disabled.  
and PLL are disabled.  
The maximum baud rate (BRGH = 1) possible is FCY/4  
(for UxBRG = 0) and the minimum baud rate possible  
is FCY/(4 * 65536).  
Example 18-1 shows the calculation of the baud rate  
error for the following conditions:  
• FCY = 4 MHz  
Writing a new value to the UxBRG register causes the  
BRG timer to be reset (cleared). This ensures the BRG  
does not wait for a timer overflow before generating the  
new baud rate.  
• Desired Baud Rate = 9600  
EXAMPLE 18-1:  
BAUD RATE ERROR CALCULATION (BRGH = 0)(1)  
Desired Baud Rate = FCY/(16 (BRGx + 1))  
Solving for BRGx Value:  
BRGx  
BRGx  
BRGx  
= ((FCY/Desired Baud Rate)/16) – 1  
= ((4000000/9600)/16) – 1  
= 25  
Calculated Baud Rate = 4000000/(16 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
= (9615 – 9600)/9600  
= 0.16%  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
DS39996F-page 242  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
18.2 Transmitting in 8-Bit Data Mode  
18.5 Receiving in 8-Bit or 9-Bit Data  
Mode  
1. Set up the UART:  
a) Write appropriate values for data, parity and  
Stop bits.  
1. Set up the UART (as described in Section 18.2  
“Transmitting in 8-Bit Data Mode”).  
b) Write appropriate baud rate value to the  
UxBRG register.  
2. Enable the UART.  
3. A receive interrupt will be generated when one  
or more data characters have been received as  
per interrupt control bit, URXISELx.  
c) Set up transmit and receive interrupt enable  
and priority bits.  
2. Enable the UART.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
3. Set the UTXEN bit (causes a transmit interrupt,  
two cycles after being set).  
5. Read UxRXREG.  
4. Write a data byte to the lower byte of the  
UxTXREG word. The value will be immediately  
transferred to the Transmit Shift Register (TSR)  
and the serial bit stream will start shifting out  
with the next rising edge of the baud clock.  
The act of reading the UxRXREG character will move  
the next character to the top of the receive FIFO,  
including a new set of PERR and FERR values.  
5. Alternatively, the data byte may be transferred  
while UTXEN = 0 and then the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
18.6 Operation of UxCTS and UxRTS  
Control Pins  
UARTx Clear to Send (UxCTS) and Request to Send  
(UxRTS) are the two hardware controlled pins that are  
associated with the UART module. These two pins  
allow the UART to operate in Simplex and Flow Control  
mode. They are implemented to control the transmis-  
sion and reception between the Data Terminal  
Equipment (DTE). The UEN<1:0> bits in the UxMODE  
register configure these pins.  
6. A transmit interrupt will be generated as per  
interrupt control bit, UTXISELx.  
18.3 Transmitting in 9-Bit Data Mode  
1. Set up the UART (as described in Section 18.2  
“Transmitting in 8-Bit Data Mode”).  
2. Enable the UART.  
18.7 Infrared Support  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write UxTXREG as a 16-bit value only.  
The UART module provides two types of infrared UART  
support: one is the IrDA clock output to support an  
external IrDA encoder and decoder device (legacy  
module support), and the other is the full implementa-  
tion of the IrDA encoder and decoder. Note that  
because the IrDA modes require a 16x baud clock, they  
will only work when the BRGH bit (UxMODE<3>) is ‘0’.  
5. A word write to UxTXREG triggers the transfer  
of the 9-bit data to the TSR. The serial bit stream  
will start shifting out with the first rising edge of  
the baud clock.  
6. A transmit interrupt will be generated as per the  
setting of control bit, UTXISELx.  
18.7.1  
IrDA CLOCK OUTPUT FOR  
EXTERNAL IrDA SUPPORT  
18.4 Break and Sync Transmit  
Sequence  
To support external IrDA encoder and decoder devices,  
the BCLKx pin (same as the UxRTS pin) can be  
configured to generate the 16x baud clock. With  
UEN<1:0> = 11, the BCLKx pin will output the 16x  
baud clock if the UART module is enabled. It can be  
used to support the IrDA codec chip.  
The following sequence will send a message frame  
header, made up of a Break, followed by an auto-baud  
Sync byte.  
1. Configure the UART for the desired mode.  
2. Set UTXEN and UTXBRK to set up the Break  
character.  
18.7.2  
BUILT-IN IrDA ENCODER AND  
DECODER  
3. Load the UxTXREG with a dummy character to  
initiate transmission (value is ignored).  
The UART has full implementation of the IrDA encoder  
and decoder as part of the UART module. The built-in  
IrDA encoder and decoder functionality is enabled  
using the IREN bit (UxMODE<12>). When enabled  
(IREN = 1), the receive pin (UxRX) acts as the input  
from the infrared receiver. The transmit pin (UxTX) acts  
as the output to the infrared transmitter.  
4. Write ‘55h’ to UxTXREG; this loads the Sync  
character into the transmit FIFO.  
5. After the Break has been sent, the UTXBRK bit  
is reset by hardware. The Sync character now  
transmits.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 243  
PIC24FJ128GA310 FAMILY  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
bit 15  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
UEN1  
R/W-0  
UEN0  
RTSMD  
bit 8  
R/W-0, HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
RXINV  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
PDSEL1  
PDSEL0  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA encoder and decoder are enabled  
0= IrDA encoder and decoder are disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin is in Simplex mode  
0= UxRTS pin is in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11= UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by port  
latches  
bit 7  
WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt is generated on the falling edge, bit is cleared  
in hardware on the following rising edge  
0= No wake-up is enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h);  
cleared in hardware upon completion  
0= Baud rate measurement is disabled or completed  
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 11.4 “Peripheral Pin Select (PPS)” for more information.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS39996F-page 244  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 4  
RXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= High-Speed mode (4 BRG clock cycles per bit)  
0= Standard Speed mode (16 BRG clock cycles per bit)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 11.4 “Peripheral Pin Select (PPS)” for more information.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
2010-2011 Microchip Technology Inc.  
DS39996F-page 245  
PIC24FJ128GA310 FAMILY  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
UTXISEL1  
bit 15  
R/W-0  
UTXINV(1)  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
UTXEN(2)  
R-0, HSC  
UTXBF  
R-1, HSC  
TRMT(3)  
UTXISEL0  
bit 8  
R/W-0  
URXISEL1  
bit 7  
R/W-0  
R/W-0  
R-1, HSC  
RIDLE  
R-0, HSC  
PERR  
R-0, HSC  
FERR  
R/C-0, HS  
OERR  
R-0, HSC  
URXDA  
URXISEL0  
ADDEN  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
HS = Hardware Settable bit HC = Hardware Clearable bit  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least  
one character open in the transmit buffer)  
bit 14  
UTXINV: IrDA® Encoder Transmit Polarity Inversion bit(1)  
IREN = 0:  
1= UxTX is Idle ‘0’  
0= UxTX is Idle ‘1’  
IREN = 1:  
1= UxTX is Idle ‘1’  
0= UxTX is Idle ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission is disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(2)  
1= Transmit is enabled, UxTX pin is controlled by UARTx  
0= Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is  
controlled by the port.  
bit 9  
bit 8  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
TRMT: Transmit Shift Register Empty bit (read-only)(3)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
Note 1: The value of the bit only affects the transmit properties of the module when the IrDA® encoder is enabled  
(IREN = 1).  
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 11.4 “Peripheral Pin Select (PPS)” for more information.  
3: The TRMT bit will be active only after two instruction, cycles once the UTXREG is loaded.  
DS39996F-page 246  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the RSR to the receive buffer;  
receive buffer has one or more characters  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)  
0= Address Detect mode is disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed (clearing a previously set OERR bit (10transition); will reset  
the receiver buffer and the RSR to the empty state  
bit 0  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: The value of the bit only affects the transmit properties of the module when the IrDA® encoder is enabled  
(IREN = 1).  
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 11.4 “Peripheral Pin Select (PPS)” for more information.  
3: The TRMT bit will be active only after two instruction, cycles once the UTXREG is loaded.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 247  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 248  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The modulated output signal is generated by perform-  
19.0 DATA SIGNAL MODULATOR  
ing a logical AND operation of both the carrier and  
modulator signals and then it is provided to the MDOUT  
pin. Using this method, the DSM can generate the  
following types of key modulation schemes:  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 55. “Data Signal Modulator  
(DSM)” (DS39744). The information in this  
data sheet supersedes the information in  
the FRM.  
• Frequency Shift Keying (FSK)  
• Phase Shift Keying (PSK)  
• On-Off Keying (OOK)  
Figure 19-1 shows a simplified block diagram of the  
Data Signal Modulator peripheral.  
The Data Signal Modulator (DSM) allows the user to  
mix a digital data stream (the “modulator signal”) with a  
carrier signal to produce a modulated output. Both the  
carrier and the modulator signals are supplied to the  
DSM module, either internally from the output of a  
peripheral, or externally through an input pin.  
FIGURE 19-1:  
SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR  
MDCH<3:0>  
MDEN  
EN  
VSS  
MDCIN1  
Data Signal  
Modulator  
MDCIN2  
REFO Clock  
OC/PWM1  
OC/PWM2  
OC/PWM3  
OC/PWM4  
OC/PWM5  
OC/PWM6  
OC/PWM7  
CARH  
CHPOL  
D
SYNC  
Q
MDMS<3:0>  
1
0
MDBIT  
MDMIN  
SSP1 (SDO)  
SSP2 (SDO)  
UART1 (TX)  
UART2 (TX)  
UART3 (TX)  
UART4 (TX)  
OC/PWM1  
OC/PWM2  
OC/PWM3  
OC/PWM4  
OC/PWM5  
OC/PWM6  
OC/PWM7  
CHSYNC  
MOD  
MDOUT  
MDOE  
MDOPOL  
D
SYNC  
MDCL<3:0>  
Q
1
VSS  
MDCIN1  
MDCIN2  
REFO Clock  
OC/PWM1  
OC/PWM2  
OC/PWM3  
OC/PWM4  
OC/PWM5  
OC/PWM6  
OC/PWM7  
0
CARL  
CLSYNC  
CLPOL  
2010-2011 Microchip Technology Inc.  
DS39996F-page 249  
PIC24FJ128GA310 FAMILY  
REGISTER 19-1: MDCON: MODULATOR CONTROL REGISTER  
R/W-0  
MDEN  
U-0  
R/W-0  
MSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0  
MDOE  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
MDBIT(1)  
MDSLR  
MDOPOL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
MDEN: Modulator Module Enable bit  
1= Modulator module is enabled and mixing input signals  
0= Modulator module is disabled and has no output  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
MSIDL: Modulator Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
MDOE: Modulator Module Pin Output Enable bit  
1= Modulator pin output is enabled  
0= Modulator pin output is disabled  
bit 5  
bit 4  
MDSLR: MDOUT Pin Slew Rate Limiting bit  
1= MDOUT pin slew rate limiting is enabled  
0= MDOUT pin slew rate limiting is disabled  
MDOPOL: Modulator Output Polarity Select bit  
1= Modulator output signal is inverted  
0= Modulator output signal is not inverted  
bit 3-1  
bit 0  
Unimplemented: Read as ‘0’  
MDBIT: Manual Modulation Input bit(1)  
1= Carrier is modulated  
0= Carrier is not modulated  
Note 1: The MDBIT must be selected as the modulation source (MDSRC<3:0> = 0000).  
DS39996F-page 250  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 19-2: MDSRC: MODULATOR SOURCE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-x  
SODIS(1)  
U-0  
U-0  
U-0  
R/W-x  
MS3(2)  
R/W-x  
MS2(2)  
R/W-x  
MS1(2)  
R/W-x  
MS0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
SODIS: Modulation Source Output Disable bit(1)  
1= Output signal driving the peripheral output pin (selected by MDMS<3:0>) is disabled  
0= Output signal driving the peripheral output pin (selected by MDMS<3:0>) is enabled  
bit 6-4  
bit 3-0  
Unimplemented: Read as ‘0’  
MS<3:0> Modulation Source Selection bits(2)  
1111= Unimplemented  
1110= Output Compare/PWM Module 7 output  
1101= Output Compare/PWM Module 6 output  
1100= Output Compare/PWM Module 5 output  
1011= Output Compare/PWM Module 4 output  
1010= Output Compare/PWM Module 3 output  
1001= Output Compare/PWM Module 2 output  
1000= Output Compare/PWM Module 1 output  
0111= UART4 TX output  
0110= UART3 TX output  
0101= UART2 TX output  
0100= UART1 TX output  
0011= SPI2 module output (SDO2)  
0010= SPI1 module output (SDO1)  
0001= Input on MDMIN pin  
0000= Manual modulation using MDBIT (MDCON<0>)  
Note 1: This bit is only affected by a POR.  
2: These bits are not affected by a POR.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 251  
PIC24FJ128GA310 FAMILY  
REGISTER 19-3: MDCAR: MODULATOR CARRIER CONTROL REGISTER  
R/W-x  
R/W-x  
R/W-x  
U-0  
R/W-x  
CH3(1)  
R/W-x  
CH2(1)  
R/W-x  
CH1(1)  
R/W-x  
CH0(1)  
CHODIS  
CHPOL  
CHSYNC  
bit 15  
bit 8  
R/W-0  
R/W-x  
R/W-x  
U-0  
R/W-x  
CL3(1)  
R/W-x  
CL2(1)  
R/W-x  
CL1(1)  
R/W-x  
CL0(1)  
CLODIS  
CLPOL  
CLSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
CHODIS: Modulator High Carrier Output Disable bit  
1= Output signal driving the peripheral output pin (selected by CH<3:0>) is disabled  
0= Output signal driving the peripheral output pin is enabled  
CHPOL: Modulator High Carrier Polarity Select bit  
1= Selected high carrier signal is inverted  
0= Selected high carrier signal is not inverted  
CHSYNC: Modulator High Carrier Synchronization Enable bit  
1= Modulator waits for a falling edge on the high carrier before allowing a switch to the low carrier  
0= Modulator output is not synchronized to the high time carrier signal(1)  
bit 12  
Unimplemented: Read as ‘0’  
bit 11-8  
CH<3:0> Modulator Data High Carrier Selection bits(1)  
1111  
. . . = Reserved  
1011  
1010= Output Compare/PWM Module 7 output  
1001= Output Compare/PWM Module 6 output  
1000= Output Compare/PWM Module 5 output  
0111= Output Compare/PWM Module 4 output  
0110= Output Compare/PWM Module 3 output  
0101= Output Compare/PWM Module 2 output  
0100= Output Compare/PWM Module 1 output  
0011= Reference clock (REFO) output  
0010= Input on MDCIN2 pin  
0001= Input on MDCIN1 pin  
0000= VSS  
bit 7  
bit 6  
bit 5  
CLODIS: Modulator Low Carrier Output Disable bit  
1= Output signal driving the peripheral output pin (selected by CL<3:0>) is disabled  
0= Output signal driving the peripheral output pin is enabled  
CLPOL: Modulator Low Carrier Polarity Select bit  
1= Selected low carrier signal is inverted  
0= Selected low carrier signal is not inverted  
CLSYNC: Modulator Low Carrier Synchronization Enable bit  
1= Modulator waits for a falling edge on the low carrier before allowing a switch to the high carrier  
0= Modulator output is not synchronized to the low time carrier signal(1)  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
CL<3:0> Modulator Data Low Carrier Selection bits(1)  
Bit settings are identical to those for CH<3:0>.  
Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.  
DS39996F-page 252  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
• Programmable Address Wait States  
20.0 ENHANCED PARALLEL  
MASTER PORT (EPMP)  
• Programmable Data Wait States (per chip select)  
• Programmable Polarity on Control Signals  
Note:  
This data sheet summarizes the features of  
(per chip select)  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 42. “Enhanced Parallel Master  
Port (EPMP)” (DS39730). The informa-  
tion in this data sheet supersedes the  
information in the FRM.  
• Legacy Parallel Slave Port Support  
• Enhanced Parallel Slave Support  
- Address Support  
- 4-Byte Deep Auto-Incrementing Buffer  
20.1 Specific Package Variations  
While all PIC24FJ128GA310 family devices implement  
the EPMP, I/O pin constraints place some limits on  
16-Bit Master mode operations in some package types.  
This is reflected in the number of dedicated Chip Select  
pins implemented and the number of dedicated  
address lines that are available. The differences are  
summarized in Table 20-1. All available EPMP pin  
functions are summarized in Table 20-2.  
The Enhanced Parallel Master Port (EPMP) module  
provides a parallel, 4-bit (Master mode only), 8-bit  
(Master and Slave modes) or 16-bit (Master mode only)  
data bus interface to communicate with off-chip mod-  
ules, such as memories, FIFOs, LCD controllers and  
other microcontrollers. This module can serve as either  
the master or the slave on the communication bus.  
For 64-pin devices, the dedicated Chip Select pins  
(PMCS1 and PMCS2) are not implemented. In addi-  
tion, only 16 address lines (PMA<15:0>) are available.  
If required, PMA14 and PMA15 can be remapped to  
function as PMCS1 and PMCS2, respectively.  
For EPMP Master modes, all external addresses are  
mapped into the internal Extended Data Space (EDS).  
This is done by allocating a region of the EDS for each  
chip select, and then assigning each chip select to a  
particular external resource, such as a memory or  
external controller. This region should not be assigned  
to another device resource, such as RAM or SFRs. To  
perform a write or read on an external resource, the  
CPU simply performs a write or read within the address  
range assigned for the EPMP.  
For 80-pin devices, the dedicated PMCS2 pin is not  
implemented. It also only implements 16 address lines  
(PMA<15:0>). If required, PMA15 can be remapped to  
function as PMCS2.  
The memory space addressable by the device  
depends on the number of address lines available, as  
well as the number of Chip Select signals required for  
the application. Devices with lower pin counts are more  
affected by Chip Select requirements, as these take  
away address lines. Table 20-1 shows the maximum  
addressable range for each pin count.  
Key features of the EPMP module are:  
• Extended Data Space (EDS) interface allows  
direct access from the CPU  
• Up to 23 Programmable Address Lines  
• Up to 2 Chip Select lines  
• Up to 2 Acknowledgement Lines  
(one per chip select)  
• 4-bit, 8-bit or 16-bit wide Data Bus  
• Programmable Strobe Options (per chip select)  
- Individual Read and Write Strobes or;  
- Read/Write Strobe with Enable Strobe  
• Programmable Address/Data Multiplexing  
TABLE 20-1: EPMP FEATURE DIFFERENCES BY DEVICE PIN COUNT  
Dedicated Chip Select  
Address  
Address Range (bytes)  
Device  
Lines  
CS1  
CS2  
No CS  
64K  
1 CS  
2 CS  
PIC24FJXXXGA306 (64-pin)  
PIC24FJXXXGA308 (80-pin)  
PIC24FJXXXGA310 (100-pin)  
X
X
16  
16  
23  
32K  
16K  
32K  
64K  
X
16M  
2010-2011 Microchip Technology Inc.  
DS39996F-page 253  
PIC24FJ128GA310 FAMILY  
TABLE 20-2: ENHANCED PARALLEL MASTER PORT PIN DESCRIPTIONS  
Pin Name  
Type  
Description  
(Alternate Function)  
PMA<22:16>  
O
O
Address Bus bits<22:16>  
Address Bus bit 15  
PMA<15>  
(PMCS2)  
PMA<14>  
(PMCS1)  
PMA<13:8>  
PMA<7:3>  
I/O  
O
Data Bus bit 15 (16-bit port with multiplexed addressing)  
Chip Select 2 (alternate location)  
Address Bus bit 14  
O
I/O  
O
Data Bus bit 14 (16-bit port with multiplexed addressing)  
Chip Select 1 (alternate location)  
Address Bus bits<13:8>  
O
I/O  
O
Data Bus bits<13:8> (16-bit port with multiplexed addressing)  
Address Bus bits<7:3>  
PMA<2>  
(PMALU)  
O
Address Bus bit 2  
O
Address Latch Upper Strobe for Multiplexed Address  
Address Bus bit 1  
I/O  
O
PMA<1>  
(PMALH)  
Address Latch High Strobe for Multiplexed Address  
Address Bus bit 0  
I/O  
O
PMA<0>  
(PMALL)  
Address Latch Low Strobe for Multiplexed Address  
Data Bus bits<15:8> (demultiplexed addressing)  
Data Bus bits<7:4>  
PMD<15:8>  
I/O  
I/O  
O
PMD<7:4>  
Address Bus bits<7:4> (4-bit port with 1-phase multiplexed addressing)  
Data Bus bits<3:0>  
PMD<3:0>  
PMCS1(1)  
PMCS2(2)  
PMWR  
I/O  
I/O  
O
Chip Select 1  
Chip Select 2  
Write Strobe(3)  
Enable Signal(3)  
Read Strobe(3)  
I/O  
I/O  
I/O  
I/O  
O
(PMENB)  
PMRD  
(PMRD/PMWR)  
PMBE1  
Read/Write Signal(3)  
Byte Indicator  
PMBE0  
O
Nibble or Byte Indicator  
PMACK1  
PMACK2  
I
Acknowledgment Signal 1  
I
Acknowledgment Signal 2  
Note 1: These pins are implemented in 80-pin and 100-pin devices only.  
2: These pins are implemented in 100-pin devices only.  
3: Signal function depends on the setting of the MODE<1:0> and SM bits (PMCON1<9:8> and PMCSxCF<8>).  
DS39996F-page 254  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 20-1: PMCON1: EPMP CONTROL REGISTER 1  
R/W-0  
U-0  
R/W-0  
PSIDL  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
PMPEN  
ADRMUX1  
ADRMUX0  
MODE1  
MODE0  
bit 15  
bit 8  
R/W-0  
CSF1  
R/W-0  
CSF0  
R/W-0  
ALP  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ALMODE  
BUSKEEP  
IRQM1  
IRQM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PMPEN: Parallel Master Port Enable bit  
1= EPMP is enabled  
0= EPMP is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11  
ADRMUX<1:0>: Address/Data Multiplexing Selection bits  
11= Lower address bits are multiplexed with data bits using 3 address phases  
10= Lower address bits are multiplexed with data bits using 2 address phases  
01= Lower address bits are multiplexed with data bits using 1 address phase  
00= Address and data appear on separate pins  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
MODE<1:0>: Parallel Port Mode Select bits  
11= Master mode  
10= Enhanced PSP; pins used are PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>  
01= Buffered PSP; pins used are PMRD, PMWR, PMCS and PMD<7:0>  
00= Legacy Parallel Slave Port; PMRD, PMWR, PMCS and PMD<7:0> pins are used  
bit 7-6  
CSF<1:0>: Chip Select Function bits  
11= Reserved  
10= PMA<15> is used for Chip Select 2, PMA<14> is used for Chip Select 1  
01= PMA<15> is used for Chip Select 2, PMCS1 is used for Chip Select 1  
00= PMCS2 is used for Chip Select 2, PMCS1 is used for Chip Select 1  
bit 5  
bit 4  
ALP: Address Latch Polarity bit  
1= Active-high (PMALL, PMALH and PMALU)  
0= Active-low (PMALL, PMALH and PMALU)  
ALMODE: Address Latch Strobe Mode bit  
1= Enable “smart” address strobes (each address phase is only present if the current access would  
cause a different address in the latch than the previous address)  
0= Disable “smart” address strobes  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BUSKEEP: Bus Keeper bit  
1= Data bus keeps its last value when not actively being driven  
0= Data bus is in a high-impedance state when not actively being driven  
bit 1-0  
IRQM<1:0>: Interrupt Request Mode bits  
11= Interrupt is generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode),  
or on a read or write operation when PMA<1:0> = 11(Addressable PSP mode only)  
10= Reserved  
01= Interrupt is generated at the end of a read/write cycle  
00= No interrupt is generated  
2010-2011 Microchip Technology Inc.  
DS39996F-page 255  
PIC24FJ128GA310 FAMILY  
REGISTER 20-2: PMCON2: EPMP CONTROL REGISTER 2  
R-0, HSC  
BUSY  
U-0  
R/C-0, HS  
ERROR  
R/C-0, HS  
TIMEOUT  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RADDR23(1) RADDR22(1) RADDR21(1) RADDR20(1) RADDR19(1) RADDR18(1) RADDR17(1) RADDR16(1)  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
BUSY: Busy bit (Master mode only)  
1= Port is busy  
0= Port is not busy  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ERROR: Error bit  
1= Transaction error (illegal transaction was requested)  
0= Transaction completed successfully  
bit 12  
TIMEOUT: Time-out bit  
1= Transaction timed out  
0= Transaction completed successfully  
bit 11-8  
bit 7-0  
Unimplemented: Read as ‘0’  
RADDR<23:16>: Parallel Master Port Reserved Address Space bits(1)  
Note 1: If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be FFFFFFh.  
DS39996F-page 256  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 20-3: PMCON3: EPMP CONTROL REGISTER 3  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PTWREN  
PTRDEN  
PTBE1EN  
PTBE0EN  
AWAITM1  
AWAITM0  
AWAITE  
bit 15  
bit 8  
U-0  
R/W-0  
PTEN22(1)  
R/W-0  
PTEN21(1)  
R/W-0  
PTEN20(1)  
R/W-0  
PTEN19(1)  
R/W-0  
PTEN18(1)  
R/W-0  
PTEN17(1)  
R/W-0  
PTEN16(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
PTWREN: Write/Enable Strobe Port Enable bit  
1= PMWR/PMENB port is enabled  
0= PMWR/PMENB port is disabled  
PTRDEN: Read/Write Strobe Port Enable bit  
1= PMRD/PMWR port is enabled  
0= PMRD/PMWR port is disabled  
PTBE1EN: High Nibble/Byte Enable Port Enable bit  
1= PMBE1 port is enabled  
0= PMBE1 port is disabled  
PTBE0EN: Low Nibble/Byte Enable Port Enable bit  
1= PMBE0 port is enabled  
0= PMBE0 port is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-9  
AWAITM<1:0>: Address Latch Strobe Wait States bits  
11= Wait of 3½ TCY  
10= Wait of 2½ TCY  
01= Wait of 1½ TCY  
00= Wait of ½ TCY  
bit bit 8  
AWAITE: Address Hold After Address Latch Strobe Wait States bits  
1= Wait of 1¼ TCY  
0= Wait of ¼ TCY  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
PTEN<22:16>: EPMP Address Port Enable bits(1)  
1= PMA<22:16> function as EPMP address lines  
0= PMA<22:16> function as port I/Os  
Note 1: These bits are not available in 80 and 64-pin devices (PIC24FJXXXGA306, PIC24FJXXXGA308).  
2010-2011 Microchip Technology Inc.  
DS39996F-page 257  
PIC24FJ128GA310 FAMILY  
REGISTER 20-4: PMCON4: EPMP CONTROL REGISTER 4  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN15  
PTEN14  
PTEN13  
PTEN12  
PTEN11  
PTEN10  
PTEN9  
PTEN8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN7  
PTEN6  
PTEN5  
PTEN4  
PTEN3  
PTEN2  
PTEN1  
PTEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
PTEN15: PMA15 Port Enable bit  
1= PMA15 functions as either Address Line 15 or Chip Select 2  
0= PMA15 functions as port I/O  
bit 14  
PTEN14: PMA14 Port Enable bit  
1= PMA14 functions as either Address Line 14 or Chip Select 1  
0= PMA14 functions as port I/O  
bit 13-3  
bit 2-0  
PTEN<13:3>: EPMP Address Port Enable bits  
1= PMA<13:3> function as EPMP address lines  
0= PMA<13:3> function as port I/Os  
PTEN<2:0>: PMALU/PMALH/PMALL Strobe Enable bits  
1= PMA<2:0> function as either address lines or address latch strobes  
0= PMA<2:0> function as port I/Os  
DS39996F-page 258  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 20-5: PMCSxCF: CHIP SELECT x CONFIGURATION REGISTER  
R/W-0  
CSDIS  
R/W-0  
CSP  
R/W-0  
R/W-0  
BEP  
U-0  
R/W-0  
WRSP  
R/W-0  
RDSP  
R/W-0  
SM  
CSPTEN  
bit 15  
bit 8  
R/W-0  
ACKP  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PTSZ1  
PTSZ0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
CSDIS: Chip Select x Disable bit  
1= Disable the Chip Select x functionality  
0= Enable the Chip Select x functionality  
CSP: Chip Select x Polarity bit  
1= Active-high (PMCSx)  
0= Active-low (PMCSx)  
CSPTEN: PMCSx Port Enable bit  
1= PMCSx port is enabled  
0= PMCSx port is disabled  
BEP: Chip Select x Nibble/Byte Enable Polarity bit  
1= Nibble/Byte enable is active-high (PMBE0, PMBE1)  
0= Nibble/Byte enable is active-low (PMBE0, PMBE1)  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
WRSP: Chip Select x Write Strobe Polarity bit  
For Slave modes and Master mode when SM = 0:  
1= Write strobe is active-high (PMWR)  
0= Write strobe is active-low (PMWR)  
For Master mode when SM = 1:  
1= Enable strobe is active-high (PMENB)  
0= Enable strobe is active-low (PMENB)  
bit 9  
RDSP: Chip Select x Read Strobe Polarity bit  
For Slave modes and Master mode when SM = 0:  
1= Read strobe is active-high (PMRD)  
0= Read strobe is active-low (PMRD)  
For Master mode when SM = 1:  
1= Read/write strobe is active-high (PMRD/PMWR)  
0= Read/Write strobe is active-low (PMRD/PMWR)  
bit 8  
SM: Chip Select x Strobe Mode bit  
1= Read/write and enable strobes (PMRD/PMWR and PMENB)  
0= Read and write strobes (PMRD and PMWR)  
bit 7  
ACKP: Chip Select x Acknowledge Polarity bit  
1= ACK is active-high (PMACK1)  
0= ACK is active-low (PMACK1)  
bit 6-5  
PTSZ<1:0>: Chip Select x Port Size bits  
11= Reserved  
10= 16-bit port size (PMD<15:0>)  
01= 4-bit port size (PMD<3:0>)  
00= 8-bit port size (PMD<7:0>)  
bit 4-0  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 259  
PIC24FJ128GA310 FAMILY  
REGISTER 20-6: PMCSxBS: CHIP SELECT x BASE ADDRESS REGISTER(2)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
BASE23  
BASE22  
BASE21  
BASE20  
BASE19  
BASE18  
BASE17  
BASE16  
bit 15  
bit 8  
R/W(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
BASE15  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 6-0  
BASE<23:15>: Chip Select x Base Address bits(1)  
Unimplemented: Read as ‘0’  
Note 1: The value at POR is 0080h for PMCS1BS and 0880h for PMCS2BS.  
2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for the Chip  
Select 1 will be FFFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.  
DS39996F-page 260  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 20-7: PMCSxMD: CHIP SELECT x MODE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
ACKM1  
ACKM0  
AMWAIT2  
AMWAIT1  
AMWAIT0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DWAITB1  
DWAITB0  
DWAITM3  
DWAITM2  
DWAITM1  
DWAITM0  
DWAITE1  
DWAITE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
ACKM<1:0>: Chip Select x Acknowledge Mode bits  
11= Reserved  
10= PMACKx is used to determine when a read/write operation is complete  
01= PMACKx is used to determine when a read/write operation is complete with time-out  
(If DWAITM<3:0> = 0000, the maximum time-out is 255 TCY or else it is DWAITM<3:0> cycles.)  
00= PMACKx is not used  
bit 13-11  
AMWAIT<2:0>: Chip Select x Alternate Master Wait States bits  
111= Wait of 10 alternate master cycles  
. . .  
001= Wait of 4 alternate master cycles  
000= Wait of 3 alternate master cycles  
bit 10-8  
bit 7-6  
Unimplemented: Read as ‘0’  
DWAITB<1:0>: Chip Select x Data Setup Before Read/Write Strobe Wait States bits  
11= Wait of 3¼ TCY  
10= Wait of 2¼ TCY  
01= Wait of 1¼ TCY  
00= Wait of ¼ TCY  
bit 5-2  
DWAITM<3:0>: Chip Select x Data Read/Write Strobe Wait States bits  
For Write Operations:  
1111= Wait of 15½ TCY  
. . .  
0001= Wait of 1½ TCY  
0000= Wait of ½ TCY  
For Read Operations:  
1111= Wait of 15¾ TCY  
. . .  
0001= Wait of 1¾ TCY  
0000= Wait of ¾ TCY  
bit 1-0  
DWAITE<1:0>: Chip Select x Data Hold After Read/Write Strobe Wait States bits  
For Write Operations:  
11= Wait of 3¼ TCY  
10= Wait of 2¼ TCY  
01= Wait of 1¼ TCY  
00= Wait of ¼ TCY  
For Read Operations:  
11= Wait of 3 TCY  
10= Wait of 2 TCY  
01= Wait of 1 TCY  
00= Wait of 0 TCY  
2010-2011 Microchip Technology Inc.  
DS39996F-page 261  
PIC24FJ128GA310 FAMILY  
REGISTER 20-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)  
R-0, HSC  
IBF  
R/W-0 HS  
IBOV  
U-0  
U-0  
R-0, HSC  
IB3F(1)  
R-0, HSC  
IB2F(1)  
R-0, HSC  
IB1F(1)  
R-0, HSC  
IB0F(1)  
bit 15  
bit 8  
R-1, HSC  
OBE  
R/W-0 HS  
OBUF  
U-0  
U-0  
R-1, HSC  
OB3E  
R-1, HSC  
OB2E  
R-1, HSC  
OB1E  
R-1, HSC  
OB0E  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
bit 14  
IBF: Input Buffer Full Status bit  
1= All writable Input Buffer registers are full  
0= Some or all of the writable Input Buffer registers are empty  
IBOV: Input Buffer Overflow Status bit  
1= A write attempt to a full Input register occurred (must be cleared in software)  
0= No overflow occurred  
bit 13-12  
bit 11-8  
Unimplemented: Read as ‘0’  
IB3F:IB0F: Input Buffer x Status Full bits(1)  
1= Input buffer contains unread data (reading the buffer will clear this bit)  
0= Input buffer does not contain unread data  
bit 7  
bit 6  
OBE: Output Buffer Empty Status bit  
1= All readable Output Buffer registers are empty  
0= Some or all of the readable Output Buffer registers are full  
OBUF: Output Buffer Underflow Status bit  
1= A read occurred from an empty output register (must be cleared in software)  
0= No underflow occurred  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
OB3E:OB0E: Output Buffer x Status Empty bit  
1= Output buffer is empty (writing data to the buffer will clear this bit)  
0= Output buffer contains untransmitted data  
Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0  
and 1, or Byte 2 and 3) get cleared, even on byte reading.  
DS39996F-page 262  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 20-9: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PMPTTL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
bit 0  
Unimplemented: Read as ‘0’  
PMPTTL: EPMP Module TTL Input Buffer Select bit  
1= EPMP module inputs (PMDx, PMCS1) use TTL input buffers  
0= EPMP module inputs use Schmitt Trigger input buffers  
2010-2011 Microchip Technology Inc.  
DS39996F-page 263  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 264  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The module has these features:  
21.0 LIQUID CRYSTAL DISPLAY  
(LCD) CONTROLLER  
• Direct driving of LCD panel  
• Three LCD clock sources with selectable prescaler  
Note:  
This data sheet summarizes the features of  
• Up to eight commons:  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 52. “Liquid Crystal Display  
(LCD)” (DS39740). The information in this  
data sheet supersedes the information in  
the FRM.  
- Static (One common)  
- 1/2 multiplex (two commons)  
- 1/3 multiplex (three commons)  
- 1/8 multiplex (eight commons)  
• Ability to drive from 30 (in 64-pin devices) to  
64 (100-pin) segments, depending on the  
Multiplexing mode selected  
• Static, 1/2 or 1/3 LCD bias  
The Liquid Crystal Display (LCD) Controller generates  
the data and timing control required to directly drive a  
static or multiplexed LCD panel. In 100-pin devices  
(PIC24FJXXXGA310), the module can drive panels of  
up to eight commons and up to 60 segments when 5 to  
8 commons are used, or up to 64 segments when 1 to  
4 commons are used.  
• On-chip bias generator with dedicated charge  
pump to support a range of fixed and variable bias  
options  
• Internal resistors for bias voltage generation  
• Software contrast control for LCD using internal  
biasing  
A simplified block diagram of the module is shown in  
Figure 21-1.  
FIGURE 21-1:  
LCD CONTROLLER MODULE BLOCK DIAGRAM  
Data Bus  
LCD DATA  
32 x 16 (= 8 x 64)  
LCDDATA31  
LCDDATA30  
512  
to  
64  
.
.
.
64  
SEG<63:0>  
MUX  
LCDDATA1  
LCDDATA0  
16  
Bias  
Voltage  
To I/O Pins  
Timing Control  
8
LCDCON  
LCDPS  
LCDSEx  
COM<7:0>  
LCD Bias Generation  
LCDREG  
LCDREF  
Resistor Ladder  
FRC Oscillator  
LPRC Oscillator  
SOSC  
LCD Clock  
LCD  
Charge Pump  
Source Select  
(Secondary Oscillator)  
2010-2011 Microchip Technology Inc.  
DS39996F-page 265  
PIC24FJ128GA310 FAMILY  
21.1 Registers  
The LCD controller has up to 40 registers:  
• LCD Control Register (LCDCON)  
• LCD Charge Pump Control Register (LCDREG)  
• LCD Phase Register (LCDPS)  
• LCD Voltage Ladder Control Register (LCDREF)  
• Four LCD Segment Enable Registers  
(LCDSE3:LCDSE0)  
• Up to 32 LCD Data Registers  
(LCDDATA31:LCDDATA0)  
REGISTER 21-1: LCDCON: LCD CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
LCDEN  
LCDSIDL  
bit 15  
bit 8  
U-0  
R/W-0  
R/C-0  
R/W-0  
CS1  
R/W-0  
CS0  
R/W-0  
R/W-0  
R/W-0  
SLPEN  
WERR  
LMUX2  
LMUX1  
LMUX0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
LCDEN: LCD Driver Enable bit  
1= LCD driver module is enabled  
0= LCD driver module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
LCDSIDL: Stop LCD Drive in CPU Idle Mode Control bit  
1= LCD driver Halts in CPU Idle mode  
0= LCD driver continues to operate in CPU Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SLPEN: LCD Driver Enable in Sleep mode bit  
1= LCD driver module is disabled in Sleep mode  
0= LCD driver module is enabled in Sleep mode  
bit 5  
WERR: LCD Write Failed Error bit  
1= LCDDATAx register is written while WA (LCDPS<4>) = 0(must be cleared in software)  
0= No LCD write error  
bit 4-3  
CS<1:0>: Clock Source Select bits  
00= FRC  
01= LPRC  
1x= SOSC  
DS39996F-page 266  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 21-1: LCDCON: LCD CONTROL REGISTER (CONTINUED)  
bit 2-0 LMUX<2:0>: Commons Select bits  
LMUX<2:0>  
Multiplex  
Bias  
111  
110  
101  
100  
011  
010  
001  
000  
1/8 MUX (COM<7:0>)  
1/7 MUX (COM<6:0>)  
1/6 MUX (COM<5:0>)  
1/5 MUX (COM<4:0>)  
1/4 MUX (COM<3:0>)  
1/3 MUX (COM<2:0>)  
1/2 MUX (COM<1:0>)  
Static (COM0)  
1/3  
1/3  
1/3  
1/3  
1/3  
1/2 or 1/3  
1/2 or 1/3  
Static  
Note:  
For multiplex above 4 commons, COM4, COM5, COM6 and COM7 also have segment  
functionality. Therefore, if the COM is enabled in multiplexing, the segment will not be  
available on that pin.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 267  
PIC24FJ128GA310 FAMILY  
REGISTER 21-2: LCDREG: LCD CHARGE PUMP CONTROL REGISTER  
RW-0  
CPEN(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
RW-1  
RW-1  
RW-1  
RW-1  
RW-0  
RW-0  
BIAS2  
BIAS1  
BIAS0  
MODE13  
CKSEL1  
CKSEL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CPEN: 3.6V Charge Pump Enable bit(1)  
1= The regulator generates the highest (3.6V) voltage  
0= Highest voltage in the system is supplied externally (AVDD)  
bit 14-6  
bit 5-3  
Unimplemented: Read as ‘0’  
BIAS<2:0>: Regulator Voltage Output Control bits  
111= 3.60V peak (offset on LCDBIAS0 of 0V)  
110= 3.47V peak (offset on LCDBIAS0 of 0.13V)  
101= 3.34V peak (offset on LCDBIAS0 of 0.26V)  
100= 3.21V peak (offset on LCDBIAS0 of 0.39V)  
011= 3.08V peak (offset on LCDBIAS0 of 0.52V)  
010= 2.95V peak (offset on LCDBIAS0 of 0.65V)  
001= 2.82V peak (offset on LCDBIAS0 of 0.78V)  
000= 2.69V peak (offset on LCDBIAS0 of 0.91V)  
bit 2  
MODE13: 1/3 LCD Bias Enable bit  
1= Regulator output supports 1/3 LCD Bias mode  
0= Regulator output supports Static LCD Bias mode  
bit 1-0  
CLKSEL<1:0>: Regulator Clock Select Control bits  
11= LPRC 31 kHz  
10= 8 MHz FRC  
01= SOSC  
00= Disable regulator and float regulator voltage output  
Note 1: When using the charge pump, the LCDBIASx pins and the VLCAP1/VLACAP2 pins should be made analog,  
and the respective TRIS bits should be set as inputs.  
DS39996F-page 268  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 21-3: LCDPS: LCD PHASE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
WFT  
R/W-0  
R-0  
R-0  
WA  
R/W-0  
LP3  
R/W-0  
LP2  
R/W-0  
LP1  
R/W-0  
LP0  
BIASMD  
LCDA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
WFT: Waveform Type Select bit  
1= Type-B waveform (phase changes on each frame boundary)  
0= Type-A waveform (phase changes within each common type)  
bit 6  
BIASMD: Bias Mode Select bit  
When LMUX<2:0> = 000 or 011 through 111:  
0= Static Bias mode (do not set this bit to ‘1’)  
When LMUX<2:0> = 001 or 010:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
bit 5  
LCDA: LCD Active Status bit  
1= LCD driver module is active  
0= LCD driver module is inactive  
bit 4  
WA: LCD Write Allow Status bit  
1= Write into the LCDDATAx registers is allowed  
0= Write into the LCDDATAx registers is not allowed  
bit 3-0  
LP<3:0>: LCD Prescaler Select bits  
1111 = 1:16  
1110= 1:15  
1101= 1:14  
1100= 1:13  
1011= 1:12  
1010= 1:11  
1001= 1:10  
1000= 1:9  
0111= 1:8  
0110= 1:7  
0101= 1:6  
0100= 1:5  
0011= 1:4  
0010= 1:3  
0001= 1:2  
0000= 1:1  
2010-2011 Microchip Technology Inc.  
DS39996F-page 269  
PIC24FJ128GA310 FAMILY  
REGISTER 21-4: LCDSEx: LCD SEGMENT x ENABLE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SE(n+15)  
SE(n+14)  
SE(n+13)  
SE(n+12)  
SE(n+11)  
SE(n+10)  
SE(n+9)  
SE(n+8)  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SE(n)  
SE(n+7)  
SE(n+6)  
SE(n+5)  
SE(n+4)  
SE(n+3)  
SE(n+2)  
SE(n+1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
SE(n + 15):SE(n): Segment Enable bits  
For LCDSE0: n = 0  
For LCDSE1: n = 16  
For LCDSE2: n = 32  
For LCDSE3: n = 48(1)  
1= Segment function of the pin is enabled, digital I/O is disabled  
0= Segment function of the pin is disabled, digital I/O is enabled  
Note 1: For the SEG49 to work correctly, the JTAG needs to be disabled.  
REGISTER 21-5: LCDDATAx: LCD DATA x REGISTER  
R/W-0  
S(n+15)Cy  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
S(n+14)Cy  
S(n+13)Cy  
S(n+12)Cy  
S(n+11)Cy  
S(n+10)Cy  
S(n+9)Cy  
S(n+8)Cy  
bit 8  
R/W-0  
S(n+7)Cy  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
S(n+6)Cy  
S(n+5)Cy  
S(n+4)Cy  
S(n+3)Cy  
S(n+2)Cy  
S(n+1)Cy  
S(n)Cy  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
S(n + 15)Cy:S(n)Cy: Pixel On bits  
For registers, LCDDATA0 through LCDDATA3: n = (16x), y = 0  
For registers, LCDDATA4 through LCDDATA7: n = (16(x - 4)), y = 1  
For registers, LCDDATA8 through LCDDATA11: n = (16(x - 8)), y = 2  
For registers, LCDDATA12 through LCDDATA15: n = (16(x - 12)), y = 3  
For registers, LCDDATA16 through LCDDATA19: n = (16(x-16)), y = 4  
For registers, LCDDATA20 through LCDDATA23: n = (16(x - 20)), y = 5  
For registers, LCDDATA24 through LCDDATA27: n = (16(x - 24)), y = 6  
For registers, LCDDATA28 through LCDDATA31: n = (16(x - 28)), y = 7  
1= Pixel is on  
0= Pixel is off  
DS39996F-page 270  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 21-1: LCDDATA REGISTERS AND BITS FOR SEGMENT AND COM COMBINATIONS  
Segments  
COM Lines  
0 to 15  
16 to 31  
32 to 47  
48 to 64  
LCDDATA0  
S00C0:S15C0  
LCDDATA1  
S16C0:S31C0  
LCDDATA2  
S32C0:S47C0  
LCDDATA3  
S48C0:S63C0  
0
1
2
3
4
5
6
7
LCDDATA4  
S00C1:S15C1  
LCDDATA5  
S16C1:S31C1  
LCDDATA6  
S32C1:S47C1  
LCDDATA7  
S48C1:S63C1  
LCDDATA8  
S00C2:S15C2  
LCDDATA9  
S16C2:S31C2  
LCDDATA10  
S32C2:S47C2  
LCDDATA11  
S48C2:S63C2  
LCDDATA12  
S00C3:S15C3  
LCDDATA13  
S16C3:S31C3  
LCDDATA14  
S32C3:S47C3  
LCDDATA15  
S48C3:S63C3  
LCDDATA16  
S00C4:S15C4  
LCDDATA17  
S16C4:S31C4  
LCDDATA18  
S32C4:S47C4  
LCDDATA19  
S48C4:S59C4  
LCDDATA20  
S00C5:S15C5  
LCDDATA21  
S16C5:S31C5  
LCDDATA22  
S32C5:S47C5  
LCDDATA23  
S48C5:S69C5  
LCDDATA24  
S00C6:S15C6  
LCDDATA25  
S16C6:S31C6  
LCDDATA26  
S32C6:S47C6  
LCDDATA27  
S48C6:S59C6  
LCDDATA28  
S00C7:S15C7  
LCDDATA29  
S16C7:S31C7  
LCDDATA30  
S32C7:S47C7  
LCDDATA31  
S48C7:S59C7  
2010-2011 Microchip Technology Inc.  
DS39996F-page 271  
PIC24FJ128GA310 FAMILY  
REGISTER 21-6: LCDREF: LCD REFERENCE LADDER CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VLCD1E(1)  
LCDIRE  
LCDCST2  
LCDCST1  
LCDCST0 VLCD3PE(1) VLCD2E(1)  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
LRLAP1  
LRLAP0  
LRLBP1  
LRLBP0  
LRLAT2  
LRLAT1  
LRLAT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
LCDIRE: LCD Internal Reference Enable bit  
1= Internal LCD reference is enabled and connected to the internal contrast control circuit  
0= Internal LCD reference is disabled  
bit 14  
Unimplemented: Read as ‘0’  
bit 13-11  
LCDCST<2:0>: LCD Contrast Control bits  
Selects the resistance of the LCD contrast control resistor ladder:  
111= Resistor ladder is at maximum resistance (minimum contrast)  
110= Resistor ladder is at 6/7th of maximum resistance  
101= Resistor ladder is at 5/7th of maximum resistance  
100= Resistor ladder is at 4/7th of maximum resistance  
011= Resistor ladder is at 3/7th of maximum resistance  
010= Resistor ladder is at 2/7th of maximum resistance  
001= Resistor ladder is at 1/7th of maximum resistance  
000= Minimum resistance (maximum contrast); resistor ladder is shorted  
bit 10  
bit 9  
VLCD3PE: Bias 3 Pin Enable bit(1)  
1= Bias 3 level is connected to the external pin, LCDBIAS3  
0= Bias 3 level is internal (internal resistor ladder)  
VLCD2PE: Bias 2 Pin Enable bit(1)  
1= Bias 2 level is connected to the external pin, LCDBIAS2  
0= Bias 2 level is internal (internal resistor ladder)  
bit 8  
VLCD1PE: Bias 1 Pin Enable bit(1)  
1= Bias 1 level is connected to the external pin, LCDBIAS1  
0= Bias 1 level is internal (internal resistor ladder)  
bit 7-6  
LRLAP<1:0>: LCD Reference Ladder A Time Power Control bits  
During Time Interval A:  
11= Internal LCD reference ladder is powered in High-Power mode  
10= Internal LCD reference ladder is powered in Medium Power mode  
01= Internal LCD reference ladder is powered in Low-Power mode  
00= Internal LCD reference ladder is powered down and unconnected  
bit 5-4  
LRLBP<1:0>: LCD Reference Ladder B Time Power Control bits  
During Time Interval B:  
11= Internal LCD reference ladder is powered in High-Power mode  
10= Internal LCD reference ladder is powered in Medium Power mode  
01= Internal LCD reference ladder is powered in Low-Power mode  
00= Internal LCD reference ladder is powered down and unconnected  
bit 3  
Unimplemented: Read as ‘0’  
Note 1: When using the external resistor ladder biasing, the LCDBIASx pins should be made analog and the  
respective TRIS bits should be set as inputs.  
DS39996F-page 272  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 21-6: LCDREF: LCD REFERENCE LADDER CONTROL REGISTER (CONTINUED)  
bit 2-0  
LRLAT<2:0>: LCD Reference Ladder A Time Interval Control bits  
Sets the number of 32 clock counts when the A Time Interval Power mode is active.  
For Type-A Waveforms (WFT = 0):  
111= Internal LCD reference ladder is in A Power mode for 7 clocks and B Power mode for 9 clocks  
110= Internal LCD reference ladder is in A Power mode for 6 clocks and B Power mode for 10 clocks  
101= Internal LCD reference ladder is in A Power mode for 5 clocks and B Power mode for 11 clocks  
100= Internal LCD reference ladder is in A Power mode for 4 clocks and B Power mode for 12 clocks  
011= Internal LCD reference ladder is in A Power mode for 3 clocks and B Power mode for 13 clocks  
010= Internal LCD reference ladder is in A Power mode for 2 clocks and B Power mode for 14 clocks  
001= Internal LCD reference ladder is in A Power mode for 1 clock and B Power mode for 15 clocks  
000= Internal LCD reference ladder is always in B Power mode  
For Type-B Waveforms (WFT = 1):  
111= Internal LCD reference ladder is in A Power mode for 7 clocks and B Power mode for 25 clocks  
110= Internal LCD reference ladder is in A Power mode for 6 clocks and B Power mode for 26 clocks  
101= Internal LCD reference ladder is in A Power mode for 5 clocks and B Power mode for 27 clocks  
100= Internal LCD reference ladder is in A Power mode for 4 clocks and B Power mode for 28 clocks  
011= Internal LCD reference ladder is in A Power mode for 3 clocks and B Power mode for 29 clocks  
010= Internal LCD reference ladder is in A Power mode for 2 clocks and B Power mode for 30 clocks  
001= Internal LCD reference ladder is in A Power mode for 1 clock and B Power mode for 31 clocks  
000= Internal LCD reference ladder is always in B Power mode  
Note 1: When using the external resistor ladder biasing, the LCDBIASx pins should be made analog and the  
respective TRIS bits should be set as inputs.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 273  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 274  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
• BCD format for smaller software overhead  
• Optimized for long-term battery operation  
• User calibration of the 32.768 kHz clock  
crystal/32K INTRC frequency with periodic  
auto-adjust  
22.0 REAL-TIME CLOCK AND  
CALENDAR (RTCC)  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information on the  
Real-Time Clock and Calendar, refer to the  
“PIC24F Family Reference Manual”,  
Section 29. “Real-Time Clock and  
Calendar (RTCC)” (DS39696).  
• Optimized for long term battery operation  
• Fractional second synchronization  
• Calibration to within ±2.64 seconds error per  
month  
• Calibrates up to 260 ppm of crystal error  
• Ability to periodically wake up external devices  
without CPU intervention (external power control)  
The RTCC provides the user with a Real-Time Clock  
and Calendar (RTCC) function that can be calibrated.  
• Power control output for external circuit control  
• Calibration takes effect every 15 seconds  
• Runs from any one of the following:  
- External Real-Time Clock (RTC) of 32.768 kHz  
- Internal 31.25 kHz LPRC clock  
Key features of the RTCC module are:  
• Operates in Deep Sleep mode  
• Selectable clock source  
• Provides hours, minutes and seconds using  
24-hour format  
- 50 Hz or 60 Hz external input  
• Visibility of one half second period  
• Provides calendar – weekday, date, month and  
year  
22.1 RTCC Source Clock  
The user can select between the SOSC crystal  
oscillator, LPRC internal oscillator or an external  
50 Hz/60 Hz power line input as the clock reference for  
the RTCC module. This gives the user an option to  
trade off system cost, accuracy and power  
consumption, based on the overall system needs.  
• Alarm-configurable for half a second, one second,  
10 seconds, one minute, 10 minutes, one hour,  
one day, one week, one month or one year  
• Alarm repeat with decrementing counter  
• Alarm with indefinite repeat chime  
Year 2000 to 2099 leap year correction  
FIGURE 22-1:  
RTCC BLOCK DIAGRAM  
Input from  
SOSC/LPRC  
Oscillator or  
External Source  
RTCC Clock Domain  
CPU Clock Domain  
RCFGCAL  
RTCC Prescalers  
0.5 Sec  
ALCFGRPT  
YEAR  
MTHDY  
WKDYHR  
MINSEC  
RTCC Timer  
RTCVAL  
Alarm  
Event  
Comparator  
Alarm Registers with Masks  
Repeat Counter  
ALMTHDY  
ALWDHR  
ALRMVAL  
ALMINSEC  
RTCOE  
RTCC  
RTCOUT<1:0>  
Interrupt  
RTCC Interrupt Logic  
Alarm  
Pulse  
00  
1s  
01  
10  
Clock Source  
RTCC  
Pin  
2010-2011 Microchip Technology Inc.  
DS39996F-page 275  
PIC24FJ128GA310 FAMILY  
TABLE 22-2: ALRMVAL REGISTER  
22.2 RTCC Module Registers  
MAPPING  
The RTCC module registers are organized into three  
categories:  
Alarm Value Register Window  
ALRMPTR  
<1:0>  
• RTCC Control Registers  
• RTCC Value Registers  
• Alarm Value Registers  
ALRMVAL<15:8> ALRMVAL<7:0>  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
22.2.1  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Time registers are accessed through  
corresponding register pointers. The RTCC Value  
register window (RTCVALH and RTCVALL) uses the  
RTCPTR bits (RCFGCAL<9:8>) to select the desired  
Timer register pair (see Table 22-1).  
Considering that the 16-bit core does not distinguish  
between 8-bit and 16-bit read operations, the user must  
be aware that when reading either the ALRMVALH or  
ALRMVALL bytes, the ALRMPTR<1:0> value will be  
decremented. The same applies to the RTCVALH or  
RTCVALL bytes with the RTCPTR<1:0> being  
decremented.  
By writing the RTCVALH byte, the RTCC Pointer value,  
the RTCPTR<1:0> bits decrement by one until they  
reach ‘00’. Once they reach ‘00’, the MINUTES and  
SECONDS value will be accessible through RTCVALH  
and RTCVALL until the pointer value is manually  
changed.  
Note:  
This only applies to read operations and  
not write operations.  
22.2.2  
WRITE LOCK  
TABLE 22-1: RTCVAL REGISTER MAPPING  
In order to perform a write to any of the RTCC Timer  
registers, the RTCWREN bit (RCFGCAL1<13>) must  
be set (see Example 22-1).  
RTCC Value Register Window  
RTCPTR<1:0>  
RTCVAL<15:8> RTCVAL<7:0>  
Note:  
To avoid accidental writes to the timer, it is  
recommended that the RTCWREN bit  
(RCFGCAL1<13>) is kept clear at any  
other time. For the RTCWREN bit to be  
set, there is only one instruction cycle time  
window allowed between the 55h/AA  
sequence and the setting of RTCWREN;  
therefore, it is recommended that code  
follow the procedure in Example 22-1.  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
YEAR  
The Alarm Value register window (ALRMVALH and  
ALRMVALL) uses the ALRMPTR bits  
(ALCFGRPT<9:8>) to select the desired Alarm register  
pair (see Table 22-2).  
22.2.3  
SELECTING RTCC CLOCK SOURCE  
By writing the ALRMVALH byte, the Alarm Pointer  
value, ALRMPTR<1:0> bits, decrement by one until  
they reach ‘00’. Once they reach ‘00’, the ALRMMIN  
and ALRMSEC value will be accessible through  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
The clock source for the RTCC module can be selected  
using the RTCLK<1:0> bits in the RTCPWC register.  
When the bits are set to ‘00’, the Secondary Oscillator  
(SOSC) is used as the reference clock and when the bits  
are ‘01’, LPRC is used as the reference clock. When  
RTCLK<1:0> = 10 and 11, the external power line  
(50 Hz and 60 Hz) is used as the clock source.  
EXAMPLE 22-1:  
SETTING THE RTCWREN BIT  
asm volatile(“push w7”);  
asm volatile(“push w8”);  
asm volatile(“disi #5”);  
asm volatile(“mov #0x55, w7”);  
asm volatile(“mov w7, _NVMKEY”);  
asm volatile(“mov #0xAA, w8”);  
asm volatile(“mov w8, _NVMKEY”);  
asm volatile(“bset _RCFGCAL1, #13”); //set the RTCWREN bit  
asm volatile(“pop w8”);  
asm volatile(“pop w7”);  
DS39996F-page 276  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
22.3 Registers  
22.3.1 RTCC CONTROL REGISTERS  
REGISTER 22-1: RCFGCAL: RTCC CALIBRATION/CONFIGURATION REGISTER(1)  
R/W-0  
RTCEN(2)  
U-0  
R/W-0  
R-0, HSC  
RTCSYNC HALFSEC(3)  
R-0, HSC  
R/W-0  
R/W-0  
R/W-0  
RTCWREN  
RTCOE  
RTCPTR1  
RTCPTR0  
bit 15  
bit 8  
R/W-0  
CAL7  
R/W-0  
CAL6  
R/W-0  
CAL5  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
RTCEN: RTCC Enable bit(2)  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 12  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple  
resulting in an invalid data read. If the register is read twice and results in the same data, the data  
can be assumed to be valid.  
0= RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple  
bit 11  
bit 10  
bit 9-8  
HALFSEC: Half Second Status bit(3)  
1= Second half period of a second  
0= First half period of a second  
RTCOE: RTCC Output Enable bit  
1= RTCC output is enabled  
0= RTCC output is disabled  
RTCPTR<1:0>: RTCC Value Register Window Pointer bits  
Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers.  
The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.  
RTCVAL<15:8>:  
11= Reserved  
10= MONTH  
01= WEEKDAY  
00= MINUTES  
RTCVAL<7:0>:  
11= YEAR  
10= DAY  
01= HOURS  
00= SECONDS  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 277  
PIC24FJ128GA310 FAMILY  
REGISTER 22-1: RCFGCAL: RTCC CALIBRATION/CONFIGURATION REGISTER(1) (CONTINUED)  
bit 7-0  
CAL<7:0>: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 127 RTC clock pulses every 15 seconds  
.
.
.
01111111= Minimum positive adjustment; adds 1 RTC clock pulse every 15 seconds  
00000000= No adjustment  
11111111= Minimum negative adjustment; subtracts 1 RTC clock pulse every 15 seconds  
.
.
.
10000000= Maximum negative adjustment; subtracts 128 RTC clock pulses every 15 seconds  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
DS39996F-page 278  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 22-2: RTCPWC: RTCC POWER CONTROL REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWCEN  
PWCPOL  
PWCPRE  
PWSPRE  
RTCLK1(2)  
RTCLK0(2)  
RTCOUT1  
RTCOUT0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
PWCEN: Power Control Enable bit  
1= Power control is enabled  
0= Power control is disabled  
bit 14  
PWCPOL: Power Control Enable bit  
1= Power control is enabled  
0= Power control is disabled  
bit 13  
PWCPRE: Power Control/Stability Prescaler bits  
1= PWC stability window clock is divide-by-2 of source RTCC clock  
0= PWC stability window clock is divide-by-1 of source RTCC clock  
bit 12  
PWSPRE: Power Control Sample Prescaler bits  
1= PWC sample window clock is divide-by-2 of source RTCC clock  
0= PWC sample window clock is divide-by-1 of source RTCC clock  
bit 11-10  
RTCLK<1:0>: RTCC Clock Source Select bits(2)  
11= External power line (60 Hz)  
10= External power line source (50 Hz)  
01= Internal LPRC Oscillator  
00= External Secondary Oscillator (SOSC)  
bit 9-8  
RTCOUT<1:0>: RTCC Output Source Select bits  
11= Power control  
10= RTCC clock  
01= RTCC seconds clock  
00= RTCC alarm pulse  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: The RTCPWC register is only affected by a POR.  
2: When a new value is written to these register bits, the lower half of the MINSEC register should also be  
written to properly reset the clock prescalers in the RTCC.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 279  
PIC24FJ128GA310 FAMILY  
REGISTER 22-3: ALCFGRPT: ALARM CONFIGURATION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALRMEN  
CHIME  
AMASK3  
AMASK2  
AMASK1  
AMASK0  
ALRMPTR1 ALRMPTR0  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ARPT7  
ARPT6  
ARPT5  
ARPT4  
ARPT3  
ARPT2  
ARPT1  
ARPT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and  
CHIME = 0)  
0= Alarm is disabled  
bit 14  
CHIME: Chime Enable bit  
1= Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh  
0= Chime is disabled; ARPT<7:0> bits stop once they reach 00h  
bit 13-10  
AMASK<3:0>: Alarm Mask Configuration bits  
0000= Every half second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29th, once every 4 years)  
101x= Reserved – do not use  
11xx= Reserved – do not use  
bit 9-8  
ALRMPTR<1:0>: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL registers.  
The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.  
ALRMVAL<15:8>:  
00= ALRMMIN  
01= ALRMWD  
10= ALRMMNTH  
11= PWCSTAB  
ALRMVAL<7:0>:  
00= ALRMSEC  
01= ALRMHR  
10= ALRMDAY  
11= PWCSAMP  
bit 7-0  
ARPT<7:0>: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
.
.
.
00000000= Alarm will not repeat  
The counter decrements on any alarm event; it is prevented from rolling over from 00h to FFh unless  
CHIME = 1.  
DS39996F-page 280  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
22.3.2  
RTCVAL REGISTER MAPPINGS  
REGISTER 22-4: YEAR: YEAR VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
YRTEN3  
YRTEN2  
YRTEN2  
YRTEN1  
YRONE3  
YRONE2  
YRONE1  
YRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-4  
Unimplemented: Read as ‘0’  
YRTEN<3:0>: Binary Coded Decimal Value of Year’s Tens Digit bits  
Contains a value from 0 to 9.  
bit 3-0  
YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.  
REGISTER 22-5: MTHDY: MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
MTHONE0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of ‘0’ or ‘1’.  
bit 11-8  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 281  
PIC24FJ128GA310 FAMILY  
REGISTER 22-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 22-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 15  
bit 8  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 11-8  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
DS39996F-page 282  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
22.3.3  
ALRMVAL REGISTER MAPPINGS  
REGISTER 22-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
MTHONE0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of ‘0’ or ‘1’.  
bit 11-8  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 22-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 283  
PIC24FJ128GA310 FAMILY  
REGISTER 22-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 15  
bit 8  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 11-8  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
DS39996F-page 284  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 22-11: RTCCSWT: POWER CONTROL AND SAMPLE WINDOW TIMER REGISTER(1)  
R/W-x  
PWCSTAB7  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
PWCSTAB6  
PWCSTAB5  
PWCSTAB4  
PWCSTAB3  
PWCSTAB2  
PWCSTAB1  
PWCSTAB0  
bit 8  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
PWCSAMP7  
bit 7  
PWCSAMP6  
PWCSAMP5  
PWCSAMP4  
PWCSAMP3  
PWCSAMP2  
PWCSAMP1  
PWCSAMP0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
PWCSTAB<7:0>: Power Control Stability Window Timer bits  
11111111= Stability Window is 255 TPWCCLK clock periods  
11111110= Stability Window is 254 TPWCCLK clock periods  
...  
00000001= Stability Window is 1 TPWCCLK clock period  
00000000= No Stability Window; Sample Window starts when the alarm event triggers  
(2)  
PWCSAMP<7:0>: Power Control Sample Window Timer bits  
11111111= Sample Window is always enabled, even when PWCEN = 0  
11111110= Sample Window is 254 TPWCCLK clock periods  
...  
00000001= Sample Window is 1 TPWCCLK clock period  
00000000= No Sample Window  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2: The Sample Window always starts when the Stability Window timer expires, except when its initial value is 00h.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 285  
PIC24FJ128GA310 FAMILY  
22.5.1  
CONFIGURING THE ALARM  
22.4 Calibration  
The alarm feature is enabled using the ALRMEN bit.  
This bit is cleared when an alarm is issued. Writes to  
ALRMVAL should only take place when ALRMEN = 0.  
The real-time crystal input can be calibrated using the  
periodic auto-adjust feature. When properly calibrated,  
the RTCC can provide an error of less than 3 seconds  
per month. This is accomplished by finding the number  
of error clock pulses and storing the value into the  
lower half of the RCFGCAL register. The 8-bit signed  
value loaded into the lower half of RCFGCAL is  
multiplied by four and will either be added or subtracted  
from the RTCC timer, once every minute. Refer to the  
steps below for RTCC calibration:  
As shown in Figure 22-2, the interval selection of the  
alarm is configured through the AMASK bits  
(ALCFGRPT<13:10>). These bits determine which and  
how many digits of the alarm must match the clock  
value for the alarm to occur.  
The alarm can also be configured to repeat based on a  
preconfigured interval. The amount of times this  
occurs, once the alarm is enabled, is stored in the  
ARPT<7:0> bits (ALCFGRPT<7:0>). When the value  
of the ARPT bits equals 00h and the CHIME bit  
(ALCFGRPT<14>) is cleared, the repeat function is  
disabled and only a single alarm will occur. The alarm  
can be repeated, up to 255 times, by loading  
ARPT<7:0> with FFh.  
1. Using another timer resource on the device, the  
user must find the error of the 32.768 kHz crystal.  
2. Once the error is known, it must be converted to  
the number of error clock pulses per minute.  
3. a) If the oscillator is faster than ideal (negative  
result form Step 2), the RCFGCAL register value  
must be negative. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter, once every minute.  
After each alarm is issued, the value of the ARPT bits  
is decremented by one. Once the value has reached  
00h, the alarm will be issued one last time, after which,  
the ALRMEN bit will be cleared automatically and the  
alarm will turn off.  
b) If the oscillator is slower than ideal (positive  
result from Step 2), the RCFGCAL register value  
must be positive. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter, once every minute.  
Indefinite repetition of the alarm can occur if the  
CHIME bit = 1. Instead of the alarm being disabled  
when the value of the ARPT bits reaches 00h, it rolls  
over to FFh and continues counting indefinitely while  
CHIME is set.  
EQUATION 22-1:  
(Ideal FrequencyMeasured Frequency) * 60 =  
Clocks per Minute  
22.5.2  
ALARM INTERRUPT  
Ideal Frequency = 32,768 Hz  
At every alarm event, an interrupt is generated. In  
addition, an alarm pulse output is provided that  
operates at half the frequency of the alarm. This output  
is completely synchronous to the RTCC clock and can  
be used as a trigger clock to other peripherals.  
Writes to the lower half of the RCFGCAL register  
should only occur when the timer is turned off, or  
immediately after the rising edge of the seconds pulse,  
except when SECONDS = 00, 15, 30 or 45. This is due  
to the auto-adjust of the RTCC at 15 second intervals.  
Note:  
Changing any of the registers, other than  
the RCFGCAL and ALCFGRPT registers,  
and the CHIME bit while the alarm is  
enabled (ALRMEN = 1), can result in a  
false alarm event leading to a false alarm  
interrupt. To avoid a false alarm event, the  
timer and alarm values should only be  
changed while the alarm is disabled  
(ALRMEN = 0). It is recommended that  
the ALCFGRPT register and CHIME bit be  
changed when RTCSYNC = 0.  
Note:  
It is up to the user to include, in the error  
value, the initial error of the crystal: drift  
due to temperature and drift due to crystal  
aging.  
22.5 Alarm  
• Configurable from half second to one year  
• Enabled using the ALRMEN bit  
(ALCFGRPT<15>)  
• One-time alarm and repeat alarm options  
available  
DS39996F-page 286  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 22-2:  
ALARM MASK SETTINGS  
Day of  
the  
Week  
Alarm Mask Setting  
(AMASK<3:0>)  
Month  
Day  
Hours  
Minutes  
Seconds  
0000- Every half second  
0001- Every second  
0010- Every 10 seconds  
0011- Every minute  
0100- Every 10 minutes  
0101- Every hour  
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
m
m
m
0110- Every day  
h
h
h
h
h
h
h
h
0111- Every week  
1000- Every month  
d
d
d
d
(1)  
1001- Every year  
m
m
d
Note 1: Annually, except when configured for February 29.  
22.6 POWER CONTROL  
22.7 RTCC VBAT OPERATION  
The RTCC includes a power control feature that allows  
the device to periodically wake-up an external device,  
wait for the device to be stable before sampling  
wake-up events from that device, and then shut down  
the external device. This can be done completely  
autonomously by the RTCC, without the need to wake  
from the current lower power mode (Sleep, Deep  
Sleep, etc.).  
The RTCC can operate in VBAT mode when there is a  
power loss on the VDD pin. The RTCC will continue to  
operate if the VBAT pin is powered on (it is usually  
connected to the battery).  
Note:  
It is recommended to connect the VBAT  
pin to VDD if the VBAT mode is not used  
(not connected to the battery).  
The VBAT BOR can be enabled/disabled using the  
VBTBOR bit in the CW3 Configuration register  
(CW3<7>). If the VBTBOR enable bit is cleared, the  
VBAT BOR is always disabled and there will be no indi-  
cation of a VBAT BOR. If the VBTBOR bit is set, the  
RTCC can receive a Reset and the RTCEN bit will get  
cleared; it can happen anywhere between 1.95-1.4V  
(typical).  
To use this feature:  
1. Enable the RTCC (RTCEN = 1).  
2. Set the PWCEN bit (RTCPWC<15>).  
3. Configure the RTCC pin to drive the PWC control  
signal (RTCOE = 1and RTCOUT<1:0> = 11).  
The polarity of the PWC control signal may be chosen  
using the PWCPOL bit (RTCPWC<14>). An active-low  
or active-high signal may be used with the appropriate  
external switch to turn on or off the power to one or  
more external devices. The active-low setting may also  
be used in conjunction with an open-drain setting on  
the RTCC pin, in order to drive the ground pin(s) of the  
external device directly (with the appropriate external  
VDD pull-up device), without the need for external  
switches. Finally, the CHIME bit should be set to enable  
the PWC periodicity.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 287  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 288  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The 32-bit programmable CRC generator provides a  
hardware implemented method of quickly generating  
checksums for various networking and security  
applications. It offers the following features:  
23.0 32-BIT PROGRAMMABLE  
CYCLIC REDUNDANCY CHECK  
(CRC) GENERATOR  
• User-programmable CRC polynomial equation,  
up to 32 bits  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 41. “32-Bit Programmable  
Cyclic Redundancy Check (CRC)”  
(DS39729). The information in this data  
sheet supersedes the information in the  
FRM.  
• Programmable shift direction (little or big-endian)  
• Independent data and polynomial lengths  
• Configurable interrupt output  
• Data FIFO  
Figure 23-1 displays a simplified block diagram of the  
CRC generator. A simple version of the CRC shift  
engine is displayed in Figure 23-2.  
FIGURE 23-1:  
CRC BLOCK DIAGRAM  
CRCDATH  
CRCDATL  
FIFO Empty  
Variable FIFO  
(4x32, 8x16 or 16x8)  
Event  
CRCISEL  
1
0
CRCWDATH  
CRCWDATL  
CRC  
Interrupt  
LENDIAN  
Shift Buffer  
1
0
CRC Shift Engine  
Shift  
Complete  
Event  
Shifter Clock  
2 * FCY  
FIGURE 23-2:  
CRC SHIFT ENGINE DETAIL  
CRC Shift Engine  
CRCWDATH  
CRCWDATL  
Read/Write Bus  
X1  
(1)  
X0  
Xn  
Shift Buffer  
Data  
(1)  
Bit 0  
Bit 1  
Bit n  
Note 1: n = PLEN<4:1> + 1.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 289  
PIC24FJ128GA310 FAMILY  
23.1.2  
DATA INTERFACE  
23.1 User Interface  
The module incorporates a FIFO that works with a  
variable data width. Input data width can be configured  
to any value between 1 and 32 bits using the  
DWIDTH<4:0> bits (CRCCON2<12:8>). When the  
data width is greater than 15, the FIFO is 4 words deep.  
When the DWITDH bits are between 15 and 8, the  
FIFO is 8 words deep. When the DWIDTH bits are less  
than 8, the FIFO is 16 words deep.  
23.1.1  
POLYNOMIAL INTERFACE  
The CRC module can be programmed for CRC  
polynomials of up to the 32nd order, using up to 32 bits.  
Polynomial length, which reflects the highest exponent  
in the equation, is selected by the PLEN<4:0> bits  
(CRCCON2<4:0>).  
The CRCXORL and CRCXORH registers control which  
exponent terms are included in the equation. Setting a  
particular bit includes that exponent term in the equa-  
tion. Functionally, this includes an XOR operation on  
the corresponding bit in the CRC engine. Clearing the  
bit disables the XOR.  
The data for which the CRC is to be calculated must  
first be written into the FIFO. Even if the data width is  
less than 8, the smallest data element that can be writ-  
ten into the FIFO is 1 byte. For example, if the DWIDTH  
bits are 5, then the size of the data is  
DWIDTH<4:0> + 1 or 6. The data is written as a whole  
byte; the two unused upper bits are ignored by the  
module.  
For example, consider two CRC polynomials, one a  
16-bit and the other a 32-bit equation.  
Once data is written into the MSb of the CRCDAT reg-  
isters (that is, the MSb as defined by the data width),  
the value of the VWORD<4:0> bits (CRCCON1<12:8>)  
increments by one. For example, if the DWIDTH bits  
are 24, the VWORD bits will increment when bit 7 of  
CRCDATH is written. Therefore, CRCDATL must  
always be written to before CRCDATH.  
EQUATION 23-1: 16-BIT, 32-BIT CRC  
POLYNOMIALS  
X16 + X12 + X5 + 1  
and  
X32+X26 + X23 + X22 + X16 + X12 + X11 + X10 +  
X8 + X7 + X5 + X4 + X2 + X + 1  
The CRC engine starts shifting data when the CRCGO  
bit is set and the value of the VWORD bits is greater  
than zero.  
Each word is copied out of the FIFO into a buffer regis-  
ter, which decrements the VWORD bits. The data is  
then shifted out of the buffer. The CRC engine contin-  
ues shifting at a rate of two bits per instruction cycle,  
until the VWORD bits reach zero. This means that for a  
given data width, it takes half that number of instruc-  
tions for each word to complete the calculation. For  
example, it takes 16 cycles to calculate the CRC for a  
single word of 32-bit data.  
To program these polynomial into the CRC generator,  
set the register bits, as shown in Table 23-1.  
Note that the appropriate positions are set to ‘1’ to indi-  
cate that they are used in the equation (for example,  
X26 and X23). The ‘0’ bit required by the equation is  
always XORed; thus, X0 is a don’t care. For a poly-  
nomial of length 32, it is assumed that the 32nd bit will  
be used. Therefore, the X<31:1> bits do not have the  
32nd bit.  
When the VWORD bits reach the maximum value for  
the configured value of the DWIDTH bits (4, 8 or 16),  
the CRCFUL bit becomes set. When the VWORD bits  
reach zero, the CRCMPT bit becomes set. The FIFO is  
emptied and the VWORD<4:0> bits are set to ‘00000’  
whenever CRCEN is ‘0’.  
At least one instruction cycle must pass after a write to  
CRCWDAT before a read of the VWORD bits is done.  
TABLE 23-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS  
Bit Values  
CRC Control Bits  
16-Bit Polynomial  
32-Bit Polynomial  
PLEN<4:0>  
X<31:16>  
X<15:0>  
01111  
11111  
0000 0000 0000 0001  
0001 0000 0010 000X  
0000 0100 1100 0001  
0001 1101 1011 011x  
DS39996F-page 290  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
3. Preload the FIFO by writing to the CRCDATL  
and CRCDATH registers until the CRCFUL bit is  
23.1.3  
DATA SHIFT DIRECTION  
The LENDIAN bit (CRCCON1<3>) is used to control  
the shift direction. By default, the CRC will shift data  
through the engine, MSb first. Setting LENDIAN (= 1)  
causes the CRC to shift data, LSb first. This setting  
allows better integration with various communication  
schemes and removes the overhead of reversing the  
bit order in software. Note that this only changes the  
direction the data is shifted into the engine. The result  
of the CRC calculation will still be a normal CRC result,  
not a reverse CRC result.  
set or no data is left.  
4. Clear old results by writing 00h to CRCWDATL  
and CRCWDATH. The CRCWDAT registers can  
also be left unchanged to resume a previously  
halted calculation.  
5. Set the CRCGO bit to start calculation.  
6. Write remaining data into the FIFO as space  
becomes available.  
7. When the calculation completes, CRCGO is  
automatically cleared. An interrupt will be  
generated if CRCISEL = 1.  
23.1.4  
INTERRUPT OPERATION  
The module generates an interrupt that is configurable  
by the user for either of two conditions.  
8. Read CRCWDATL and CRCWDATH for the  
result of the calculation.  
If CRCISEL is ‘0’, an interrupt is generated when the  
VWORD<4:0> bits make a transition from a value of ‘1’  
to ‘0’. If CRCISEL is ‘1’, an interrupt will be generated  
after the CRC operation finishes and the module sets  
the CRCGO bit to ‘0’. Manually setting CRCGO to ‘0’  
will not generate an interrupt. Note that when an  
interrupt occurs, the CRC calculation would not yet be  
complete. The module will still need (PLEN + 1)/2 clock  
cycles after the interrupt is generated until the CRC  
calculation is finished.  
There are eight registers used to control programmable  
CRC operation:  
• CRCCON1  
• CRCCON2  
• CRCXORL  
• CRCXORH  
• CRCDATL  
• CRCDATH  
• CRCWDATL  
• CRCWDATH  
23.1.5  
TYPICAL OPERATION  
The  
CRCCON1  
and  
CRCCON2  
registers  
To use the module for a typical CRC calculation:  
1. Set the CRCEN bit to enable the module.  
(Register 23-1 and Register 23-2) control the operation  
of the module and configure the various settings.  
2. Configure the module for desired operation:  
a) Program the desired polynomial using the  
CRCXORL and CRCXORH registers, and the  
PLEN<4:0> bits.  
The CRCXOR registers (Register 23-3 and  
Register 23-4) select the polynomial terms to be used  
in the CRC equation. The CRCDAT and CRCWDAT  
registers are each register pairs that serve as buffers  
for the double-word input data and CRC processed  
output, respectively.  
b) Configure the data width and shift direction  
using the DWIDTH and LENDIAN bits.  
c) Select the desired Interrupt mode using the  
CRCISEL bit.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 291  
PIC24FJ128GA310 FAMILY  
REGISTER 23-1: CRCCON1: CRC CONTROL 1 REGISTER  
R/W-0  
U-0  
R/W-0  
CSIDL  
R-0, HSC  
VWORD4  
R-0, HSC  
VWORD3  
R-0, HSC  
VWORD2  
R-0, HSC  
VWORD1  
R-0, HSC  
VWORD0  
CRCEN  
bit 15  
bit 8  
R-0, HSC  
CRCFUL  
R-1, HSC  
CRCMPT  
R/W-0  
R/W-0, HC  
CRCGO  
R/W-0  
U-0  
U-0  
U-0  
CRCISEL  
LENDIAN  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
CRCEN: CRC Enable bit  
1= Enables module  
0= Disables module; all state machines, pointers and CRCWDAT/CRCDATH registers reset; other  
SFRs are NOT reset  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: CRC Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-8  
bit 7  
VWORD<4:0>: Pointer Value bits  
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> 7 or 16  
when PLEN<4:0> 7.  
CRCFUL: FIFO Full bit  
1= FIFO is full  
0= FIFO is not full  
bit 6  
CRCMPT: FIFO Empty bit  
1= FIFO is empty  
0= FIFO is not empty  
bit 5  
CRCISEL: CRC Interrupt Selection bit  
1= Interrupt on FIFO is empty; the final word of data is still shifting through the CRC  
0= Interrupt on shift is complete and results are ready  
bit 4  
CRCGO: Start CRC bit  
1= Start CRC serial shifter  
0= CRC serial shifter is turned off  
bit 3  
LENDIAN: Data Shift Direction Select bit  
1= Data word is shifted into the CRC, starting with the LSb (little endian)  
0= Data word is shifted into the CRC, starting with the MSb (big endian)  
bit 2-0  
Unimplemented: Read as ‘0’  
DS39996F-page 292  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 23-2: CRCCON2: CRC CONTROL 2 REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DWIDTH4  
DWIDTH3  
DWIDTH2  
DWIDTH1  
DWIDTH0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLEN4  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
DWIDTH<4:0>: Data Word Width Configuration bits  
Configures the width of the data word (Data Word Width – 1).  
Unimplemented: Read as ‘0’  
bit 7-5  
bit 4-0  
PLEN<4:0>: Polynomial Length Configuration bits  
Configures the length of the polynomial (Polynomial Length – 1).  
REGISTER 23-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE  
R/W-0  
X15  
R/W-0  
X14  
R/W-0  
X13  
R/W-0  
X12  
R/W-0  
X11  
R/W-0  
X10  
R/W-0  
X9  
R/W-0  
X8  
bit 15  
bit 8  
R/W-0  
X7  
R/W-0  
X6  
R/W-0  
X5  
R/W-0  
X4  
R/W-0  
X3  
R/W-0  
X2  
R/W-0  
X1  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
bit 0  
X<15:1>: XOR of Polynomial Term xn Enable bits  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 293  
PIC24FJ128GA310 FAMILY  
REGISTER 23-4: CRCXORH: CRC XOR HIGH REGISTER  
R/W-0  
X31  
R/W-0  
X30  
R/W-0  
X29  
R/W-0  
X28  
R/W-0  
X27  
R/W-0  
X26  
R/W-0  
X25  
R/W-0  
X24  
bit 15  
bit 8  
R/W-0  
X23  
R/W-0  
X22  
R/W-0  
X21  
R/W-0  
X20  
R/W-0  
X19  
R/W-0  
X18  
R/W-0  
X17  
R/W-0  
X16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
X<31:16>: XOR of Polynomial Term xn Enable bits  
DS39996F-page 294  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
24.1 Basic Operation  
24.0 12-BIT A/D CONVERTER WITH  
THRESHOLD SCAN  
To perform a standard A/D conversion:  
1. Configure the module:  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. For more information on the  
12-Bit A/D Converter, refer to the “PIC24F  
Family Reference Manual”, Section 51.  
“12-Bit A/D Converter with Threshold  
Detect” (DS39739).  
a) Configure port pins as analog inputs by  
setting the appropriate bits in the ANSELn  
registers (see Section 11.2 “Configuring  
Analog Port Pins (ANSx)” for more  
information).  
b) Select the voltage reference source to  
match expected range on analog inputs  
(AD1CON2<15:13>).  
The 12-bit A/D Converter has the following key  
features:  
c) Select the positive and negative multiplexer  
inputs for each channel (AD1CHS<15:0>).  
• Successive Approximation Register (SAR)  
Conversion  
d) Select the analog conversion clock to match  
the desired data rate with the processor  
clock (AD1CON3<7:0>).  
• Conversion Speeds of up to 200 ksps  
• Up to 32 Analog Input Channels (internal and  
external)  
e) Select the appropriate sample/conversion  
sequence  
(AD1CON1<7:5>  
and  
• Selectable 10-Bit or 12-Bit (default) Conversion  
Resolution  
AD1CON3<12:8>).  
f) For Channel A scanning operations, select  
the positive channels to be included  
(AD1CSSH and AD1CSSL registers).  
• Multiple Internal Reference Input Channels  
• External Voltage Reference Input Pins  
g) Select how conversion results are  
presented in the buffer (AD1CON1<9:8>  
and AD1CON5 register).  
• Unipolar Differential Sample-and-Hold (S/H)  
Amplifier  
• Automated Threshold Scan and Compare  
Operation to Pre-Evaluate Conversion Results  
h) Select the interrupt rate (AD1CON2<5:2>).  
i) Turn on A/D module (AD1CON1<15>).  
2. Configure the A/D interrupt (if required):  
a) Clear the AD1IF bit (IFS0<13>).  
• Selectable Conversion Trigger Source  
• Fixed Length (one word per channel),  
Configurable Conversion Result Buffer  
• Four Options for Results Alignment  
• Configurable Interrupt Generation  
b) Enable the AD1IE interrupt (IEC0<13>).  
c) Select the A/D interrupt priority (IPC3<6:4>).  
• Enhanced DMA Operations with Indirect Address  
Generation  
3. If the module is configured for manual sampling,  
set the SAMP bit (AD1CON1<1>) to begin  
sampling.  
• Operation During CPU Sleep and Idle modes  
The 12-bit A/D Converter module is an enhanced ver-  
sion of the 10-bit module offered in earlier PIC24  
devices. It is a Successive Approximation Register  
(SAR) Converter, enhanced with 12-bit resolution, a  
wide range of automatic sampling options, tighter inte-  
gration with other analog modules and a configurable  
results buffer.  
It also includes a unique Threshold Detect feature that  
allows the module itself to make simple decisions  
based on the conversion results, and enhanced opera-  
tion with the DMA Controller through Peripheral Indirect  
Addressing (PIA).  
A simplified block diagram for the module is shown in  
Figure 24-1.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 295  
PIC24FJ128GA310 FAMILY  
FIGURE 24-1:  
12-BIT A/D CONVERTER BLOCK DIAGRAM (PIC24FJ128GA310 FAMILY)  
Internal Data Bus  
16  
AVDD  
AVSS  
VREF+  
VREF-  
VBG  
VR+  
VR-  
Comparator  
VINH  
VINL  
VR- VR+  
DAC  
S/H  
AN0  
AN1  
AN2  
12-Bit SAR  
Conversion Logic  
Data Formatting  
VINH  
Extended DMA data  
AN14  
AN15  
ADC1BUF0:  
ADC1BUF25  
(1)  
(2)  
AN16  
VINL  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CON4  
AD1CON5  
AD1CHS  
(1)  
AN21  
(1)  
AN22  
VINH  
AD1CHITL  
(1)  
AN23  
AD1CHITH  
AD1CSSL  
AD1CSSH  
VBG  
VINL  
VBG/2  
VBG/6  
VBAT/2  
AD1DMBUF  
Sample Control  
AVDD  
AVSS  
Control Logic  
Conversion Control  
16  
Input MUX Control  
CTMU  
DMA Data Bus  
Note 1: AN16 through AN23 are implemented on 100-pin devices only.  
2: A/D result buffers are numbered in hexadecimal; ADC1BUF0 through ADC1BUF19 represent Buffers 1 through 26.  
DS39996F-page 296  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The IA is created by combining the base address within  
a channel buffer with three to five bits (depending on  
24.2 Extended DMA Operations  
In addition to the standard features available on all  
12-bit A/D Converters, PIC24FJ128GA310 family  
devices implement a limited extension of DMA func-  
tionality. This extension adds features that work with  
the device’s DMA Controller to expand the A/D  
module’s data storage abilities beyond the module’s  
built-in buffer.  
the buffer size) to identify the channel. The base  
address ranges from zero to seven bits wide, depend-  
ing on the buffer size. The address is right-padded with  
a ‘0’ in order to maintain address alignment in the data  
space. The concatenated channel and base address  
bits are then left-padded with zeroes, as necessary, to  
complete the 11-bit IA.  
The Extended DMA functionality is controlled by the  
DMAEN bit (AD1CON1<10>); setting this bit enables  
the functionality. The DMABM bit (AD1CON1<11>)  
configures how the DMA feature operates.  
The IA is configured to auto-increment during write  
operations by using the SMPI bits (AD1CON2<6:2>).  
As with PIA operations for any DMA-enabled module,  
the base destination address in the DMADST register  
must be masked properly to accommodate the IA.  
Table 24-1 shows how complete addresses are  
formed. Note that the address masking varies for each  
buffer size option. Because of masking requirements,  
some address ranges may not be available for certain  
buffer sizes. Users should verify that the DMA base  
address is compatible with the buffer size selected.  
24.2.1  
EXTENDED BUFFER MODE  
Extended Buffer mode (DMABM = 1) is useful for stor-  
ing the results of conversions on the upper channels  
(i.e., 26 and above), which do not have their own  
memory mapped buffers inside the A/D module. It can  
also be used to store the conversion results on any A/D  
channel in any implemented address in data RAM.  
Figure 24-2 shows how the parts of the address define  
the buffer locations in data memory. In this case, the  
module “allocates” 256 bytes of data RAM (1000h to  
1100h) for 32 buffers of four words each. However, this  
is not a hard allocation and nothing prevents these  
locations from being used for other purposes. For  
example, in the current case, if Analog Channels 1, 3  
and 8 are being sampled and converted, conversion  
data will only be written to the channel buffers, starting  
at 1008h, 1018h and 1040h. The holes in PIA buffer  
space can be used for any other purpose. It is the  
user’s responsibility to keep track of buffer locations  
and preventing data overwrites.  
In Extended Buffer mode, all data from the A/D Buffer  
register, and channels above 26, is mapped into data  
RAM. Conversion data is written to a destination  
specified by the DMA Controller, specifically by the  
DMADST register. This allows users to read the con-  
version results of channels above 26, which do not  
have their own memory mapped A/D buffer locations,  
from data memory.  
When using Extended Buffer mode, always set the  
BUFREGEN bit to disable FIFO operation. In addition,  
disable the Split Buffer mode by clearing the BUFM bit.  
24.2.2  
PIA MODE  
24.3 A/D Operation with VBAT  
When DMABM = 0, the A/D module is configured to  
function with the DMA controller for Peripheral Indirect  
Addressing (PIA) mode operations. In this mode, the  
A/D module generates an 11-bit Indirect Address (IA).  
This is ORed with the destination address in the DMA  
Controller to define where the A/D conversion data will  
be stored.  
One of the A/D channels is connected to the VBAT pin  
to monitor the VBAT voltage. This allows monitoring the  
VBAT pin voltage (battery voltage) with no external con-  
nection. The voltage measured, using the A/D VBAT  
monitor, is VBAT/2. The voltage can be calculated by  
reading A/D = ((VBAT/2)/VDD) * 1024 for 10-bit A/D and  
((VBAT/2)/VDD) * 4096 for 12 bit A/D.  
In PIA mode, the buffer space is created as a series of  
contiguous smaller buffers, one per analog channel. The  
size of the channel buffer determines how many analog  
channels can be accommodated. The size of the buffer  
is selected by the DMABL bits (AD1CON4<2:0>). The  
size options range from a single word per buffer to  
128 words. Each channel is allocated a buffer of this  
size, regardless of whether or not the channel will  
actually have conversion data.  
When using the VBAT A/D monitor:  
• Connect the A/D channel to ground to discharge  
the sample capacitor.  
• Because of the high-impedance of VBAT, select  
higher sampling time to get an accurate reading.  
Since the VBAT pin is connected to the A/D during  
sampling, to prolong the VBAT battery life, the  
recommendation is to select the VBAT channel when  
needed.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 297  
PIC24FJ128GA310 FAMILY  
• AD1CSSH and AD1CSSL (Register 24-10 and  
Register 24-11)  
24.4 Registers  
The 12-bit A/D Converter is controlled through a total of  
13 registers:  
• AD1CTMENH and AD1CTMENL (Register 24-12  
and Register 24-13)  
• AD1CON1 through AD1CON5 (Register 24-1  
through Register 24-5)  
• AD1DMBUF (not shown) – The 16-bit conversion  
buffer for Extended Buffer mode  
• AD1CS (Register 24-6)  
• AD1CHITH and AD1CHITL (Register 24-8 and  
Register 24-9)  
TABLE 24-1: INDIRECT ADDRESS GENERATION IN PIA MODE  
Available  
Input  
Channels  
Buffer Size per  
Channel (words)  
Generated Offset  
Address (lower 11 bits)  
Allowable DMADST  
Addresses  
DMABL<2:0>  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
000 00cc ccc0  
000 0ccc ccn0  
000 cccc cnn0  
00c cccc nnn0  
0cc cccn nnn0  
ccc ccnn nnn0  
ccc cnnn nnn0  
ccc nnnn nnn0  
32  
32  
32  
32  
32  
32  
16  
8
xxxx xxxx xx00 0000  
xxxx xxxx x000 0000  
xxxx xxxx 0000 0000  
xxxx xxx0 0000 0000  
xxxx xx00 0000 0000  
xxxx x000 0000 0000  
xxxx x000 0000 0000  
xxxx x000 0000 0000  
4
8
16  
32  
64  
128  
Legend: ccc= Channel number (three to five bits), n= Base buffer address (zero to seven bits),  
x= User-definable range of DMADST for base address, 0= Masked bits of DMADST for IA.  
DS39996F-page 298  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 24-2:  
EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE  
(4-WORD BUFFERS PER CHANNEL)  
DMABL<2:0> = 010  
(16-Word Buffer Size)  
A/D Module  
(PIA Mode)  
Data RAM  
BBA Channel  
1000h  
1008h  
1010h  
1018h  
Ch 0 Buffer (4 Words)  
Ch 1 Buffer (4 Words)  
Ch 2 Buffer (4 Words)  
Ch 3 Buffer (4 Words)  
ccccc (0-31)  
000 cccc cnn0 (IA)  
nn (0-3)  
(Buffer Base Address)  
Destination  
Range  
1038h  
Ch 7 Buffer (4 Words)  
1000h (DMA Base Address)  
Ch 8 Buffer (4 Words) 1040h  
10F0h  
10F8h  
Ch 29 Buffer (4 Words)  
Ch 29 Buffer (4 Words)  
Ch 31 Buffer (4 Words)  
DMADST  
1100h  
DMA Channel  
Buffer Address  
Channel Address  
Address Mask  
DMA Base Address  
0001 0000 0000 0000  
0001 0000 0000 0010  
0001 0000 0000 0100  
0001 0000 0000 0110  
0001 0000 0000 1000  
0001 0000 0000 1010  
1000h  
Ch 0, Word 0  
Ch 0, Word 1  
Ch 0, Word 2  
Ch 0, Word 3  
Ch 1, Word 0  
Ch 1, Word 1  
Ch 1, Word 2  
Ch 1, Word 3  
1002h  
1004h  
1006h  
1008h  
100Ah  
100Ch 0001 0000 0000 1100  
100Eh 0001 0000 0000 1110  
2010-2011 Microchip Technology Inc.  
DS39996F-page 299  
PIC24FJ128GA310 FAMILY  
REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1  
R/W-0  
ADON  
U-0  
R/W-0  
R/W-0  
DMABM(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADSIDL  
DMAEN  
MODE12  
FORM1  
FORM0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
ASAM  
R/W-0, HCS R/C-0, HCS  
SAMP DONE  
bit 0  
SSRC3  
SSRC2  
SSRC1  
SSRC0  
bit 7  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ADON: A/D Operating Mode bit  
1= A/D Converter module is operating  
0= A/D Converter is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
bit 10  
bit 9-8  
DMABM: Extended DMA Buffer Mode Select bit(1)  
1= Extended Buffer mode: Buffer address is defined by the DMAnDST register  
0= PIA mode: Buffer addresses are defined by the DMA controller and AD1CON4<2:0>  
DMAEN: Extended DMA/Buffer Enable bit  
1= Extended DMA and buffer features are enabled  
0= Extended features are disabled  
MODE12: 12-Bit Operation Mode bit  
1= 12-bit A/D operation  
0= 10-bit A/D operation  
FORM<1:0>: Data Output Format bits (see formats following)  
11= Fractional result, signed, left-justified  
10= Absolute fractional result, unsigned, left-justified  
01= Decimal result, signed, right-justified  
00= Absolute decimal result, unsigned, right-justified  
bit 7-4  
SSRC<3:0>: Sample Clock Source Select bits  
1xxx= Unimplemented, do not use  
0111= Internal counter ends sampling and starts conversion (auto-convert). Do not use in  
Auto-Scan mode  
0110= Unimplemented  
0101= TMR1  
0100= CTMU  
0011= TMR5  
0010= TMR3  
0001= INT0  
0000= The SAMP bit must be cleared by software to start conversion  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
ASAM: A/D Sample Auto-Start bit  
1= Sampling begins immediately after last conversion; SAMP bit is auto-set  
0= Sampling begins when SAMP bit is manually set  
Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).  
DS39996F-page 300  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)  
bit 1  
SAMP: A/D Sample Enable bit  
1= A/D Sample-and-Hold amplifiers are sampling  
0= A/D Sample-and-Hold amplifiers are holding  
bit 0  
DONE: A/D Conversion Status bit  
1= A/D conversion cycle has completed  
0= A/D conversion has not started or is in progress  
Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).  
2010-2011 Microchip Technology Inc.  
DS39996F-page 301  
PIC24FJ128GA310 FAMILY  
REGISTER 24-2: AD1CON2: A/D CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
PVCFG1  
PVCFG0  
NVCFG0  
OFFCAL  
BUFREGEN  
CSCNA  
bit 15  
bit 8  
R/W-0  
BUFS(1)  
R/W-0  
SMPI4  
R/W-0  
SMPI3  
R/W-0  
SMPI2  
R/W-0  
SMPI1  
R/W-0  
SMPI0  
R/W-0  
BUFM(1)  
R/W-0  
ALTS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
PVCFG<1:0>: Converter Positive Voltage Reference Configuration bits  
1x= Unimplemented, do not use  
01= External VREF+  
00= AVDD  
bit 13  
bit 12  
bit 11  
bit 10  
NVCFG0: Converter Negative Voltage Reference Configuration bits  
1= External VREF-  
0= AVSS  
OFFCAL: Offset Calibration Mode Select bit  
1= Inverting and non-inverting inputs of channel Sample-and-Hold are connected to AVSS  
0= Inverting and non-inverting inputs of channel Sample-and-Hold are connected to normal inputs  
BUFREGEN: A/D Buffer Register Enable bit  
1= Conversion result is loaded into the buffer location determined by the converted channel  
0= A/D result buffer is treated as a FIFO  
CSCNA: Scan Input Selections for CH0+ During Sample A bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
BUFS: Buffer Fill Status bit(1)  
1= A/D is filling the upper half of the buffer; user should access data in the lower half  
0= A/D is filling the lower half of the buffer; user should access data in the upper half  
bit 6-2  
SMPI<4:0>: Interrupt Sample/DMA Increment Rate Select bits  
When DMAEN = 1:  
0001= For 2-channel DMA A/D operation  
0000= For 1-channel DMA A/D operation  
When DMAEN = 0:  
Selects the number of sample/conversions per each interrupt  
11111= Interrupt/address increment at the completion of conversion for each 32nd sample  
11110= Interrupt/address increment at the completion of conversion for each 31st sample  
  
00001= Interrupt/address increment at the completion of conversion for every other sample  
00000= Interrupt/address increment at the completion of conversion for each sample  
Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS  
is only used when BUFM = 1.  
DS39996F-page 302  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 24-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)  
bit 1  
BUFM: Buffer Fill Mode Select bit(1)  
1= A/D buffer is two, 13-word buffers, starting at ADC1BUF0 and ADC1BUF12, and sequential  
conversions fill the buffers alternately (Split mode)  
0= A/D buffer is a single, 26-word buffer and fills sequentially from ADC1BUF0 (FIFO mode)  
bit 0  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses channel input selects for Sample A on first sample and Sample B on next sample  
0= Always uses channel input selects for Sample A  
Note 1: These bits are only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS  
is only used when BUFM = 1.  
REGISTER 24-3: AD1CON3: A/D CONTROL REGISTER 3  
R/W-0  
ADRC  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EXTSAM  
PUMPEN  
SAMC4  
SAMC3  
SAMC2  
SAMC1  
SAMC0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS7  
ADCS6  
ADCS5  
ADCS4  
ADCS3  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12-8  
ADRC: A/D Conversion Clock Source bit  
1= RC Clock  
0= Clock derived from system clock  
EXTSAM: Extended Sampling Time bit  
1= A/D is still sampling after SAMP = 0  
0= A/D is finished sampling  
PUMPEN: Charge Pump Enable bit  
1= Charge pump for switches is enabled  
0= Charge pump for switches is disabled  
SAMC<4:0>: Auto-Sample Time Select bits  
11111  
  
00001  
= 31 TAD  
= 1 TAD  
= 0 TAD  
00000  
bit 7-0  
ADCS<7:0>: A/D Conversion Clock Select bits  
11111111  
  
= Reserved  
01000000  
00111111 = 64·TCY = TAD  
  
00000001 = 2·TCY = TAD  
00000000 = TCY = TAD  
2010-2011 Microchip Technology Inc.  
DS39996F-page 303  
PIC24FJ128GA310 FAMILY  
REGISTER 24-4: AD1CON4: A/D CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DMABL2(1)  
R/W-0  
DMABL1(1)  
R/W-0  
DMABL0(1)  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
DMABL<2:0>: DMA Buffer Size Select bits(1)  
111= Allocates 128 words of buffer to each analog input  
110= Allocates 64 words of buffer to each analog input  
101= Allocates 32 words of buffer to each analog input  
100= Allocates 16 words of buffer to each analog input  
011= Allocates 8 words of buffer to each analog input  
010= Allocates 4 words of buffer to each analog input  
001= Allocates 2 words of buffer to each analog input  
000= Allocates 1 word of buffer to each analog input  
Note 1: The DMABL<2:0> bits are only used when AD1CON1<11> = 1and AD1CON<12> = 0; otherwise, their  
value is ignored.  
DS39996F-page 304  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 24-5: AD1CON5: A/D CONTROL REGISTER 5  
R/W-0  
ASEN  
R/W-0  
LPEN  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
CTMREQ  
BGREQ  
ASINT1  
ASINT0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
WM1  
R/W-0  
WM0  
R/W-0  
CM1  
R/W-0  
CM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
ASEN: Auto-Scan Enable bit  
1= Auto-scan is enabled  
0= Auto-scan is disabled  
LPEN: Low-Power Enable bit  
1= Low power is enabled after scan  
0= Full power is enabled after scan  
CTMREQ: CTMU Request bit  
1= CTMU is enabled when the A/D is enabled and active  
0= CTMU is not enabled by the A/D  
BGREQ: Band Gap Request bit  
1= Band gap is enabled when the A/D is enabled and active  
0= Band gap is not enabled by the A/D  
bit 11-10  
bit 9-8  
Unimplemented: Read as ‘0’  
ASINT<1:0>: Auto-Scan (Threshold Detect) Interrupt Mode bits  
11= Interrupt after Threshold Detect sequence completed and valid compare has occurred  
10= Interrupt after valid compare has occurred  
01= Interrupt after Threshold Detect sequence completed  
00= No interrupt  
bit 7-4  
bit 3-2  
Unimplemented: Read as ‘0’  
WM<1:0>: Write Mode bits  
11= Reserved  
10= Auto-compare only (conversion results are not saved, but interrupts are generated when a valid  
match occurs, as defined by the CM and ASINT bits)  
01= Convert and save (conversion results are saved to locations as determined by the register bits  
when a match occurs, as defined by the CM bits)  
00= Legacy operation (conversion data is saved to a location determined by the buffer register bits)  
bit 1-0  
CM<1:0>: Compare Mode bits  
11= Outside Window mode (valid match occurs if the conversion result is outside of the window defined by  
the corresponding buffer pair)  
10= Inside Window mode (valid match occurs if the conversion result is inside the window defined by the  
corresponding buffer pair)  
01= Greater Than mode (valid match occurs if the result is greater than the value in the corresponding  
buffer register)  
00= Less Than mode (valid match occurs if the result is less than the value in the corresponding buffer  
register)  
2010-2011 Microchip Technology Inc.  
DS39996F-page 305  
PIC24FJ128GA310 FAMILY  
REGISTER 24-6: AD1CHS: A/D SAMPLE SELECT REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NB2  
CH0NB1  
CH0NB0  
CH0SB4  
CH0SB3  
CH0SB2  
CH0SB1  
CH0SB0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA2  
CH0NA1  
CH0NA0  
CH0SA4  
CH0SA3  
CH0SA2  
CH0SA1  
CH0SA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-13  
bit 12-8  
CH0NB<2:0>: Sample B Channel 0 Negative Input Select bits  
1xx= Unimplemented  
011= Unimplemented  
010= AN1  
001= Unimplemented  
000= VREF-/AVSS  
CH0SB<4:0>: Sample B Channel 0 Positive Input Select bits  
11111= VBAT/2(1)  
(1)  
11110= AVDD  
11101= AVSS  
(1)  
11100= Band gap reference (VBG)(1)  
11011= VBG/2(1)  
11010= VBG/6(1)  
11001= CTMU  
11000= CTMU temperature sensor input (does not require AD1CTMENH<8> to be set)  
10111= AN23(2)  
10110= AN22(2)  
10101= AN21(2)  
10100= AN20(2)  
10011= AN19(2)  
10010= AN18(2)  
10001= AN17(2)  
10000= AN16(2)  
01111= AN15  
01110= AN14  
01101= AN13  
01100= AN12  
01011= AN11  
01010= AN10  
01001= AN9  
01000= AN8  
00111= AN7  
00110= AN6  
00101= AN5  
00100= AN4  
00011= AN3  
00010= AN2  
00001= AN1  
00000= AN0  
Note 1: These input channels do not have corresponding memory mapped result buffers.  
2: These channels are implemented in 100-pin devices only.  
DS39996F-page 306  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 24-6: AD1CHS: A/D SAMPLE SELECT REGISTER (CONTINUED)  
bit 7-5  
CH0NA<2:0>: Sample A Channel 0 Negative Input Select bits  
Same definitions as for CHONB<2:0>.  
bit 4-0  
CH0SA<4:0>: Sample A Channel 0 Positive Input Select bits  
Same definitions as for CHOSB<4:0>.  
Note 1: These input channels do not have corresponding memory mapped result buffers.  
2: These channels are implemented in 100-pin devices only.  
REGISTER 24-7: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VBG6EN  
VBG2EN  
VBGEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2  
Unimplemented: Read as ‘0’  
VBG6EN: A/D Input VBG/6 Enable bit  
1= Band gap voltage, divided by six reference (VBG/6), is enabled  
0= Band gap, divided by six reference (VBG/6), is disabled  
bit 1  
bit 0  
VBG2EN: A/D Input VBG/6 Enable bit  
1= Band gap voltage, divided by two reference (VBG/6), is enabled  
0= Band gap, divided by two reference (VBG/6), is disabled  
VBGEN: A/D Input VBG/6 Enable bit  
1= Band gap voltage reference (VBG/6) is enabled  
0= Band gap reference (VBG/6) is disabled  
2010-2011 Microchip Technology Inc.  
DS39996F-page 307  
PIC24FJ128GA310 FAMILY  
REGISTER 24-8: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CHH25  
CHH24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHH23  
CHH22  
CHH21  
CHH20  
CHH19  
CHH18  
CHH17  
CHH16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
CHH<25:16>: A/D Compare Hit bits  
If CM<1:0> = 11:  
1= A/D Result Buffer n has been written with data or a match has occurred  
0= A/D Result Buffer n has not been written with data  
For All Other Values of CM<1:0>:  
1= A match has occurred on A/D Result Channel n  
0= No match has occurred on A/D Result Channel n  
REGISTER 24-9: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHH9  
R/W-0  
CHH8  
CHH15  
CHH14  
CHH13  
CHH12  
CHH11  
CHH10  
bit 15  
bit 8  
R/W-0  
CHH7  
R/W-0  
CHH6  
R/W-0  
CHH5  
R/W-0  
CHH4  
R/W-0  
CHH3  
R/W-0  
CHH2  
R/W-0  
CHH1  
R/W-0  
CHH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
CHH<15:0>: A/D Compare Hit bits  
If CM<1:0> = 11:  
1= A/D Result Buffer n has been written with data or a match has occurred  
0= A/D Result Buffer n has not been written with data  
For all other values of CM<1:0>:  
1= A match has occurred on A/D Result Channel n  
0= No match has occurred on A/D Result Channel n  
DS39996F-page 308  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 24-10: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS30  
CSS29  
CSS28  
CSS27  
CSS26  
CSS25  
CSS24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS23  
CSS22  
CSS21  
CSS20  
CSS19  
CSS18  
CSS17  
CSS16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
CSS<30:16>: A/D Input Scan Selection bits  
bit 14-0  
1= Include corresponding channel for input scan  
0= Skip channel for input scan  
REGISTER 24-11: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS9  
R/W-0  
CSS8  
CSS15  
CSS14  
CSS13  
CSS12  
CSS11  
CSS10  
bit 15  
bit 8  
R/W-0  
CSS7  
R/W-0  
CSS6  
R/W-0  
CSS5  
R/W-0  
CSS4  
R/W-0  
CSS3  
R/W-0  
CSS2  
R/W-0  
CSS1  
R/W-0  
CSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
CSS<15:0>: A/D Input Scan Selection bits  
1= Include corresponding channel for input scan  
0= Skip channel for input scan  
2010-2011 Microchip Technology Inc.  
DS39996F-page 309  
PIC24FJ128GA310 FAMILY  
REGISTER 24-12: AD1CTMENH: CTMU ENABLE REGISTER (HIGH WORD)(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMEN30  
CTMEN29  
CTMEN28  
CTMEN27  
CTMEN26  
CTMEN25  
CTMEN24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMEN23  
CTMEN22  
CTMEN21  
CTMEN20  
CTMEN19  
CTMEN18  
CTMEN17  
CTMEN16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CTMEN<31:16>: CTMU Enabled During Conversion bits  
1= CTMU is enabled and connected to the selected channel during conversion  
0= CTMU is not connected to this channel  
Note 1: The actual number of channels available depends on which channels are implemented on a specific  
device; refer to the device data sheet for details. Unimplemented channels are read as ‘0’.  
REGISTER 24-13: AD1CTMENL: CTMU ENABLE REGISTER (LOW WORD)(1)  
R/W-0  
CTMEN15  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMEN8  
bit 8  
CTMEN14  
CTMEN13  
CTMEN12  
CTMUEN11  
CTMEN10  
CTMEN9  
R/W-0  
CTMEN7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMEN6  
CTMEN5  
CTMEN4  
CTMEN3  
CTMEN2  
CTMEN1  
CTMEN0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CTMEN<15:0>: CTMU Enabled During Conversion bits  
1= CTMU is enabled and connected to the selected channel during conversion  
0= CTMU is not connected to this channel  
Note 1: The actual number of channels available depends on which channels are implemented on a specific  
device; refer to the device data sheet for details. Unimplemented channels are read as ‘0’.  
DS39996F-page 310  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 24-3:  
10-BIT A/D CONVERTER ANALOG INPUT MODEL  
RIC 250  
Sampling  
Switch  
RSS 3 k  
ANx  
RSS  
Rs  
CHOLD  
= 4.4 pF  
CPIN  
VA  
ILEAKAGE  
500 nA  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
= Interconnect Resistance  
RIC  
RSS  
= Sampling Switch Resistance  
CHOLD  
= Sample/Hold Capacitance (from DAC)  
Note: The CPIN value depends on the device package and is not tested. The effect of CPIN is negligible if Rs 5 k.  
EQUATION 24-1: A/D CONVERSION CLOCK PERIOD  
TAD = TCY (ADCS + 1)  
TAD  
TCY  
– 1  
ADCS =  
Note: Based on TCY = 2/FOSC; Doze mode and PLL are disabled.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 311  
PIC24FJ128GA310 FAMILY  
FIGURE 24-4:  
12-BIT A/D TRANSFER FUNCTION  
Output Code  
(Binary (Decimal))  
1111 1111 1111(4095)  
1111 1111 1110(4094)  
0010 0000 0011(2051)  
0010 0000 0010(2050)  
0010 0000 0001(2049)  
0010 0000 0000(2048)  
0001 1111 1111(2047)  
0001 1111 1110(2046)  
0001 1111 1101(2045)  
0000 0000 0001(1)  
0000 0000 0000(0)  
Voltage Level  
DS39996F-page 312  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 24-5:  
10-BIT A/D TRANSFER FUNCTION  
Output Code  
(Binary (Decimal))  
11 1111 1111(1023)  
11 1111 1110(1022)  
10 0000 0011(515)  
10 0000 0010(514)  
10 0000 0001(513)  
10 0000 0000(512)  
01 1111 1111(511)  
01 1111 1110(510)  
01 1111 1101(509)  
00 0000 0001(1)  
00 0000 0000(0)  
Voltage Level  
2010-2011 Microchip Technology Inc.  
DS39996F-page 313  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 314  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
voltage reference input from one of the internal band  
gap references or the comparator voltage reference  
generator (VBG, VBG/2, VBG/6 and CVREF).  
25.0 TRIPLE COMPARATOR  
MODULE  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
The comparator outputs may be directly connected to  
the CxOUT pins. When the respective COE equals ‘1’,  
the I/O pad logic makes the unsynchronized output of  
the comparator available on the pin.  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 46. “Scalable Comparator  
Module” (DS39734). The information in  
this data sheet supersedes the information  
in the FRM.  
A simplified block diagram of the module in shown in  
Figure 25-1. Diagrams of the possible individual  
comparator configurations are shown in Figure 25-2.  
Each comparator has its own control register,  
CMxCON (Register 25-1), for enabling and configuring  
its operation. The output and event status of all three  
comparators is provided in the CMSTAT register  
(Register 25-2).  
The triple comparator module provides three dual input  
comparators. The inputs to the comparator can be  
configured to use any one of five external analog inputs  
(CxINA, CxINB, CxINC, CxIND and VREF+) and a  
FIGURE 25-1:  
TRIPLE COMPARATOR MODULE BLOCK DIAGRAM  
EVPOL<1:0>  
CCH<1:0>  
CEVT  
Trigger/Interrupt  
Logic  
Input  
Select  
Logic  
COE  
CPOL  
VIN-  
C1  
00  
01  
VIN+  
CXINB  
CXINC  
CXIND  
VBG  
C1OUT  
Pin  
COUT  
CEVT  
-
10  
11  
EVPOL<1:0>  
CPOL  
00  
01  
10  
VBG/2  
VBG/6  
Trigger/Interrupt  
Logic  
COE  
VIN-  
11  
VREF+  
C2  
VIN+  
C2OUT  
Pin  
(1)  
COUT  
CEVT  
CVREFM<1:0>  
EVPOL<1:0>  
CPOL  
0
1
CXINA  
+
0
1
Trigger/Interrupt  
Logic  
VREF+  
COE  
VIN-  
CVREF  
C3  
VIN+  
(1)  
CVREFP  
C3OUT  
Pin  
COUT  
CREF  
Note 1: Refer to the CVRCON register (Register 26-1) for bit details.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 315  
PIC24FJ128GA310 FAMILY  
FIGURE 25-2:  
INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 0  
Comparator Off  
CEN = 0, CREF = x, CCH<1:0> = xx  
COE  
VIN-  
Cx  
VIN+  
Off (Read as ‘0’)  
CxOUT  
Pin  
Comparator CxINB > CxINA Compare  
Comparator CxINC > CxINA Compare  
CEN = 1, CCH<1:0> = 00, CVREFM<1:0> = xx  
CEN = 1, CCH<1:0> = 01, CVREFM<1:0> = xx  
COE  
COE  
COE  
COE  
VIN-  
VIN-  
CXINB  
CXINC  
Cx  
Cx  
VIN+  
VIN+  
CXINA  
CXINA  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CxINA Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 00  
Comparator CxIND > CxINA Compare  
CEN = 1, CCH<1:0> = 10, CVREFM<1:0> = xx  
COE  
VIN-  
VIN-  
VBG  
CXIND  
Cx  
Cx  
VIN+  
VIN+  
CXINA  
CXINA  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CxINA Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 01  
Comparator VBG > CxINA Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 10  
COE  
VIN-  
VIN-  
VBG/2  
VBG/6  
Cx  
Cx  
VIN+  
VIN+  
CXINA  
CXINA  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator CxIND > CxINA Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 11  
COE  
VIN-  
VREF+  
Cx  
VIN+  
CXINA  
CxOUT  
Pin  
DS39996F-page 316  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 25-3:  
INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1AND CVREFP = 0  
Comparator CxINC > CVREF Compare  
Comparator CxINB > CVREF Compare  
CEN = 1, CCH<1:0> = 00, CVREFM<1:0> = xx  
CEN = 1, CCH<1:0> = 01, CVREFM<1:0> = xx  
COE  
COE  
VIN-  
VIN-  
CXINC  
CXINB  
Cx  
Cx  
VIN+  
VIN+  
CVREF  
CVREF  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CVREF Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 00  
Comparator CxIND > CVREF Compare  
CEN = 1, CCH<1:0> = 10, CVREFM<1:0> = xx  
COE  
COE  
VIN-  
VIN-  
VBG  
CXIND  
Cx  
Cx  
VIN+  
VIN+  
CVREF  
CVREF  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CVREF Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 10  
Comparator VBG > CVREF Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 01  
COE  
COE  
VIN-  
VIN-  
VBG/6  
VBG/2  
Cx  
Cx  
VIN+  
VIN+  
CVREF  
CVREF  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator CxIND > CVREF Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 11  
COE  
VIN-  
VREF+  
Cx  
VIN+  
CVREF  
CxOUT  
Pin  
FIGURE 25-4:  
INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1AND CVREFP = 1  
Comparator CxINC > CVREF Compare  
CEN = 1, CCH<1:0> = 01, CVREFM<1:0> = xx  
Comparator CxINB > CVREF Compare  
CEN = 1, CCH<1:0> = 00, CVREFM<1:0> = xx  
COE  
COE  
VIN-  
VIN-  
CXINC  
CXINB  
Cx  
Cx  
VIN+  
VIN+  
VREF+  
VREF+  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CVREF Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 00  
Comparator CxIND > CVREF Compare  
CEN = 1, CCH<1:> = 10, CVREFM<1:0> = xx  
COE  
COE  
VIN-  
VIN-  
VBG  
CXIND  
Cx  
Cx  
VIN+  
VIN+  
VREF+  
VREF+  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CVREF Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 10  
Comparator VBG > CVREF Compare  
CEN = 1, CCH<1:0> = 11, CVREFM<1:0> = 01  
COE  
COE  
VIN-  
VIN-  
VBG/6  
VBG/2  
Cx  
Cx  
VIN+  
VIN+  
VREF+  
VREF+  
CxOUT  
Pin  
CxOUT  
Pin  
2010-2011 Microchip Technology Inc.  
DS39996F-page 317  
PIC24FJ128GA310 FAMILY  
REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS  
(COMPARATORS 1 THROUGH 3)  
R/W-0  
CEN  
R/W-0  
COE  
R/W-0  
CPOL  
U-0  
U-0  
U-0  
R/W-0, HS  
CEVT  
R-0, HSC  
COUT  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
R/W-0  
CREF  
U-0  
U-0  
R/W-0  
CCH1  
R/W-0  
CCH0  
EVPOL1  
EVPOL0  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
CEN: Comparator Enable bit  
1= Comparator is enabled  
0= Comparator is disabled  
COE: Comparator Output Enable bit  
1= Comparator output is present on the CxOUT pin  
0= Comparator output is internal only  
CPOL: Comparator Output Polarity Select bit  
1= Comparator output is inverted  
0= Comparator output is not inverted  
bit 12-10  
bit 9  
Unimplemented: Read as ‘0’  
CEVT: Comparator Event bit  
1= Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts  
are disabled until the bit is cleared  
0= Comparator event has not occurred  
bit 8  
COUT: Comparator Output bit  
When CPOL = 0:  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CPOL = 1:  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
bit 7-6  
EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits  
11= Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)  
10= Trigger/event/interrupt is generated on transition of the comparator output:  
If CPOL = 0 (non-inverted polarity):  
High-to-low transition only.  
If CPOL = 1 (inverted polarity):  
Low-to-high transition only.  
01= Trigger/event/interrupt is generated on transition of comparator output:  
If CPOL = 0 (non-inverted polarity):  
Low-to-high transition only.  
If CPOL = 1 (inverted polarity):  
High-to-low transition only.  
00= Trigger/event/interrupt generation is disabled  
Unimplemented: Read as ‘0’  
bit 5  
DS39996F-page 318  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS  
(COMPARATORS 1 THROUGH 3) (CONTINUED)  
bit 4  
CREF: Comparator Reference Select bits (non-inverting input)  
1= Non-inverting input connects to the internal CVREF voltage  
0= Non-inverting input connects to the CXINA pin  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
CCH<1:0>: Comparator Channel Select bits  
11= Inverting input of the comparator connects to the internal selectable reference voltage specified  
by the CVREFM<1:0> bits in the CVRCON register  
10= Inverting input of the comparator connects to the CXIND pin  
01= Inverting input of the comparator connects to the CXINC pin  
00= Inverting input of the comparator connects to the CXINB pin  
REGISTER 25-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
C3EVT  
R-0, HSC  
C2EVT  
R-0, HSC  
C1EVT  
CMIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
C3OUT  
R-0, HSC  
C2OUT  
R-0, HSC  
C1OUT  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMIDL: Comparator Stop in Idle Mode bit  
1= Discontinue operation of all comparators when device enters Idle mode  
0= Continue operation of all enabled comparators in Idle mode  
bit 14-11  
bit 10  
Unimplemented: Read as ‘0’  
C3EVT: Comparator 3 Event Status bit (read-only)  
Shows the current event status of Comparator 3 (CM3CON<9>).  
C2EVT: Comparator 2 Event Status bit (read-only)  
Shows the current event status of Comparator 2 (CM2CON<9>).  
C1EVT: Comparator 1 Event Status bit (read-only)  
Shows the current event status of Comparator 1 (CM1CON<9>).  
Unimplemented: Read as ‘0’  
bit 9  
bit 8  
bit 7-3  
bit 2  
C3OUT: Comparator 3 Output Status bit (read-only)  
Shows the current output of Comparator 3 (CM3CON<8>).  
C2OUT: Comparator 2 Output Status bit (read-only)  
Shows the current output of Comparator 2 (CM2CON<8>).  
C1OUT: Comparator 1 Output Status bit (read-only)  
Shows the current output of Comparator 1 (CM1CON<8>).  
bit 1  
bit 0  
2010-2011 Microchip Technology Inc.  
DS39996F-page 319  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 320  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
26.1 Configuring the Comparator  
Voltage Reference  
26.0 COMPARATOR VOLTAGE  
REFERENCE  
The voltage reference module is controlled through the  
Note:  
This data sheet summarizes the features of  
CVRCON register (Register 26-1). The comparator  
voltage reference provides two ranges of output  
voltage, each with 16 distinct levels. The range to be  
used is selected by the CVRR bit (CVRCON<5>). The  
primary difference between the ranges is the size of the  
steps selected by the CVREF Selection bits  
(CVR<3:0>), with one range offering finer resolution.  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 19. “Dual Comparator Module”  
(DS39710). The information in this data  
sheet supersedes the information in the  
FRM.  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF-. The voltage source is selected by the CVRSS  
bit (CVRCON<4>).  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output.  
FIGURE 26-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
VREF+  
AVDD  
8R  
CVRSS = 0  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREF  
CVROE  
R
R
R
CVREF  
Pin  
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
AVSS  
2010-2011 Microchip Technology Inc.  
DS39996F-page 321  
PIC24FJ128GA310 FAMILY  
REGISTER 26-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CVREFP  
CVREFM1  
CVREFM0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CVREFP: Voltage Reference Select bit (valid only when CREF is ‘1’)  
1= VREF+ is used as a reference voltage to the comparators  
0= The CVR (4-bit DAC) within this module provides the the reference voltage to the comparators  
bit 9-8  
CVREFM<1:0>: Band Gap Reference Source Select bits (valid only when CCH<1:0> = 11)  
00= Band gap voltage is provided as an input to the comparators  
01= Band gap voltage, divided by two, is provided as an input to the comparators  
10= Band gap voltage, divided by six, is provided as an input to the comparators  
11= VREF+ pin is provided as an input to the comparators  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit is powered on  
0= CVREF circuit is powered down  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is output on the CVREF pin  
0= CVREF voltage level is disconnected from the CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size  
0= CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = VREF+ – VREF-  
0= Comparator reference source, CVRSRC = AVDD – AVSS  
CVR<3:0>: Comparator VREF Value Selection 0 CVR<3:0> 15 bits  
When CVRR = 1:  
CVREF = (CVR<3:0>/24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)  
DS39996F-page 322  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
27.1 Measuring Capacitance  
27.0 CHARGE TIME  
MEASUREMENT UNIT (CTMU)  
The CTMU module measures capacitance by  
generating an output pulse with a width equal to the  
time between edge events on two separate input  
channels. The pulse edge events to both input  
channels can be selected from four sources: two  
internal peripheral modules (OC1 and Timer1) and up  
to 13 external pins (CTEDG1 through CTEDG13). This  
pulse is used with the module’s precision current  
source to calculate capacitance according to the  
relationship:  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information on the  
Charge Measurement Unit, refer to the  
“PIC24F Family Reference Manual”,  
Section 11. “Charge Time Measurement  
Unit (CTMU)” (DS39724).  
The Charge Time Measurement Unit (CTMU) is a  
flexible analog module that provides charge  
measurement, accurate differential time measurement  
between pulse sources and asynchronous pulse  
generation. Its key features include:  
EQUATION 27-1:  
dV  
I = C ------  
dT  
For capacitance measurements, the A/D Converter  
samples an external capacitor (CAPP) on one of its  
input channels after the CTMU output’s pulse. A  
precision resistor (RPR) provides current source  
calibration on a second A/D channel. After the pulse  
ends, the converter determines the voltage on the  
capacitor. The actual calculation of capacitance is  
performed in software by the application.  
• Thirteen external edge input trigger sources  
• Polarity control for each edge source  
• Control of edge sequence  
• Control of response to edge levels or edge  
transitions  
• Time measurement resolution of one nanosecond  
• Accurate current source suitable for capacitive  
measurement  
Figure 27-1 illustrates the external connections used  
for capacitance measurements, and how the CTMU  
and A/D modules are related in this application. This  
example also shows the edge events coming from  
Timer1, but other configurations using external edge  
sources are possible. A detailed discussion on  
measuring capacitance and time with the CTMU  
module is provided in the “PIC24F Family Reference  
Manual”, Section 11. “Charge Time Measurement  
Unit (CTMU)”.  
Together with other on-chip analog modules, the CTMU  
can be used to precisely measure time, measure  
capacitance, measure relative changes in capacitance  
or generate output pulses that are independent of the  
system clock. The CTMU module is ideal for interfacing  
with capacitive-based touch sensors.  
The CTMU is controlled through three registers:  
CTMUCON1,  
CTMUCON2  
and  
CTMUICON.  
CTMUCON1 enables the module and controls the mode  
of operation of the CTMU, as well as controlling edge  
sequencing. CTMUCON2 controls edge source selec-  
tion and edge source polarity selection. The CTMUICON  
register selects the current range of current source and  
trims the current.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 323  
PIC24FJ128GA310 FAMILY  
FIGURE 27-1:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR  
CAPACITANCE MEASUREMENT  
PIC24F Device  
Timer1  
CTMU  
EDG1  
EDG2  
Current Source  
Output Pulse  
A/D Converter  
ANx  
ANY  
CAPP  
RPR  
When the module is configured for pulse generation  
delay by setting the TGEN bit (CTMUCON1<12>), the  
internal current source is connected to the B input of  
Comparator 2. A capacitor (CDELAY) is connected to  
the Comparator 2 pin, C2INB, and the comparator  
voltage reference, CVREF, is connected to C2INA.  
CVREF is then configured for a specific trip point. The  
module begins to charge CDELAY when an edge event  
is detected. When CDELAY charges above the CVREF  
trip point, a pulse is output on CTPLS. The length of the  
pulse delay is determined by the value of CDELAY and  
the CVREF trip point.  
27.2 Measuring Time  
Time measurements on the pulse width can be similarly  
performed using the A/D module’s internal capacitor  
(CAD) and a precision resistor for current calibration.  
Figure 27-2 displays the external connections used for  
time measurements, and how the CTMU and A/D  
modules are related in this application. This example  
also shows both edge events coming from the external  
CTEDG pins, but other configurations using internal  
edge sources are possible.  
27.3 Pulse Generation and Delay  
Figure 27-3 illustrates the external connections for  
pulse generation, as well as the relationship of the  
different analog modules required. While CTED1 is  
shown as the input pulse source, other options are  
available. A detailed discussion on pulse generation  
with the CTMU module is provided in the “PIC24F  
Family Reference Manual”.  
The CTMU module can also generate an output pulse  
with edges that are not synchronous with the device’s  
system clock. More specifically, it can generate a pulse  
with a programmable delay from an edge event input to  
the module.  
DS39996F-page 324  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
FIGURE 27-2:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME  
MEASUREMENT  
PIC24F Device  
CTMU  
CTEDX  
CTEDX  
EDG1  
EDG2  
Current Source  
Output Pulse  
A/D Converter  
CAD  
ANx  
RPR  
FIGURE 27-3:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE  
DELAY GENERATION  
PIC24F Device  
CTMU  
CTEDX  
EDG1  
CTPLS  
Current Source  
Comparator  
-
C2INB  
C2  
CDELAY  
CVREF  
2010-2011 Microchip Technology Inc.  
DS39996F-page 325  
PIC24FJ128GA310 FAMILY  
REGISTER 27-1: CTMUCON1: CTMU CONTROL REGISTER 1  
R/W-0  
U-0  
R/W-0  
R/W-0  
TGEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMUEN  
CTMUSIDL  
EDGEN  
EDGSEQEN  
IDISSEN  
CTTRIG  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CTMUEN: CTMU Enable bit  
1= Module is enabled  
0= Module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
bit 10  
bit 9  
TGEN: Time Generation Enable bit  
1= Enables edge delay generation  
0= Disables edge delay generation  
EDGEN: Edge Enable bit  
1= Edges are not blocked  
0= Edges are blocked  
EDGSEQEN: Edge Sequence Enable bit  
1= Edge 1 event must occur before Edge 2 event can occur  
0= No edge sequence is needed  
IDISSEN: Analog Current Source Control bit  
1= Analog current source output is grounded  
0= Analog current source output is not grounded  
bit 8  
CTTRIG: Trigger Control bit  
1= Trigger output is enabled  
0= Trigger output is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS39996F-page 326  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 27-2: CTMUCON2: CTMU CONTROL REGISTER 2  
R/W-0  
EDG1MOD  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EDG1POL  
EDG1SEL3 EDG1SEL2 EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT  
bit 8  
R/W-0  
EDG2MOD  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
EDG2POL  
EDG2SEL3 EDG2SEL2 EDG2SEL1 EDG2SEL0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
EDG1MOD: Edge 1 Edge-Sensitive Select bit  
1= Input is edge-sensitive  
0= Input is level-sensitive  
bit 14  
EDG1POL: Edge 1 Polarity Select bit  
1= Edge 1 is programmed for a positive edge response  
0= Edge 1 is programmed for a negative edge response  
bit 13-10  
EDG1SEL<3:0>: Edge 1 Source Select bits  
1111= Edge 1 source is Comparator 3 output  
1110= Edge 1 source is Comparator 2 output  
1101= Edge 1 source is Comparator 1 output  
1100= Edge 1 source is IC3  
1011= Edge 1 source is IC2  
1010= Edge 1 source is IC1  
1001= Edge 1 source is CTED8  
1000= Edge 1 source is CTED7(1)  
0111= Edge 1 source is CTED6  
0110= Edge 1 source is CTED5  
0101= Edge 1 source is CTED4  
0100= Edge 1 source is CTED3(1)  
0011= Edge 1 source is CTED1  
0010= Edge 1 source is CTED2  
0001= Edge 1 source is OC1  
0000= Edge 1 source is Timer1  
bit 9  
bit 8  
EDG2STAT: Edge 2 Status bit  
Indicates the status of Edge 2 and can be written to control current source.  
1= Edge 2 has occurred  
0= Edge 2 has not occurred  
EDG1STAT: Edge 1 Status bit  
Indicates the status of Edge 1 and can be written to control current source.  
1= Edge 1 has occurred  
0= Edge 1 has not occurred  
bit 7  
bit 6  
EDG2MOD: Edge 2 Edge-Sensitive Select bit  
1= Input is edge-sensitive  
0= Input is level-sensitive  
EDG2POL: Edge 2 Polarity Select bit  
1= Edge 2 is programmed for a positive edge  
0= Edge 2 is programmed for a positive edge  
Note 1: Edge sources, CTED3, CTED7, CTED10 and CTED11, are available in 100-pin devices only.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 327  
PIC24FJ128GA310 FAMILY  
REGISTER 27-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)  
bit 5-2  
EDG2SEL<3:0>: Edge 2 Source Select bits  
1111= Edge 2 source is Comparator 3 output  
1110= Edge 2 source is Comparator 2 output  
1101= Edge 2 source is Comparator 1 output  
1100= Unimplemented Do not use  
1011= Edge 2 source is IC3  
1010= Edge 2 source is IC2  
1001= Edge 2 source is IC1  
1000= Edge 2 source is CTED13  
0111= Edge 2 source is CTED12  
0110= Edge 2 source is CTED11(1)  
0101= Edge 2 source is CTED10(1)  
0100= Edge 2 source is CTED9  
0011= Edge 2 source is CTED1  
0010= Edge 2 source is CTED2  
0001= Edge 2 source is OC1  
0000= Edge 2 source is Timer1  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: Edge sources, CTED3, CTED7, CTED10 and CTED11, are available in 100-pin devices only.  
DS39996F-page 328  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 27-3: CTMUICON: CTMU CURRENT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRNG1  
R/W-0  
IRNG0  
ITRIM5  
ITRIM4  
ITRIM3  
ITRIM2  
ITRIM1  
ITRIM0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
ITRIM<5:0>: Current Source Trim bits  
011111= Maximum positive change from nominal current  
011110  
.
.
.
000001= Minimum positive change from nominal current  
000000= Nominal current output specified by IRNG<1:0>  
111111= Minimum negative change from nominal current  
.
.
.
100010  
100001= Maximum negative change from nominal current  
bit 9-8  
bit 7-0  
IRNG<1:0>: Current Source Range Select bits  
11= 100 × Base Current  
10= 10 × Base Current  
01= Base current level (0.55 A nominal)  
00= 1000 x Base Current  
Unimplemented: Read as ‘0’  
2010-2011 Microchip Technology Inc.  
DS39996F-page 329  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 330  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
An interrupt flag is set if the device experiences an  
28.0 HIGH/LOW-VOLTAGE DETECT  
(HLVD)  
excursion past the trip point in the direction of change.  
If the interrupt is enabled, the program execution will  
branch to the interrupt vector address and the software  
can then respond to the interrupt.  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be comprehensive  
a
The HLVD Control register (see Register 28-1)  
completely controls the operation of the HLVD module.  
This allows the circuitry to be “turned off” by the user  
under software control, which minimizes the current  
consumption for the device.  
reference source. For more information  
on the High/Low-Voltage Detect, refer to  
the “PIC24F Family Reference Manual”,  
Section 36. “High-Level Integration  
with Programmable High/Low-Voltage  
Detect (HLVD)” (DS39725).  
The High/Low-Voltage Detect (HLVD) module is a  
programmable circuit that allows the user to specify  
both the device voltage trip point and the direction of  
change.  
FIGURE 28-1:  
HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM  
Externally Generated  
Trip Point  
VDD  
VDD  
HLVDL<3:0>  
LVDIN  
HLVDEN  
VDIR  
Set  
HLVDIF  
Band Gap  
1.2V Typical  
HLVDEN  
2010-2011 Microchip Technology Inc.  
DS39996F-page 331  
PIC24FJ128GA310 FAMILY  
REGISTER 28-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
LSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
HLVDEN  
bit 15  
bit 8  
R/W-0  
VDIR  
R/W-0  
R/W-0  
IRVST  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BGVST  
HLVDL3  
HLVDL2  
HLVDL1  
HLVDL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
HLVDEN: High/Low-Voltage Detect Power Enable bit  
1= HLVD is enabled  
0= HLVD is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
LSIDL: HLVD Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
VDIR: Voltage Change Direction Select bit  
1= Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>)  
0= Event occurs when voltage equals or falls below trip point (HLVDL<3:0>)  
bit 6  
bit 5  
BGVST: Band Gap Voltage Stable Flag bit  
1= Indicates that the band gap voltage is stable  
0= Indicates that the band gap voltage is unstable  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Internal reference voltage is stable; the High-Voltage Detect logic generates the interrupt flag at the  
specified voltage range  
0= Internal reference voltage is unstable; the High-Voltage Detect logic will not generate the interrupt  
flag at the specified voltage range and the HLVD interrupt should not be enabled  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
HLVDL<3:0>: High/Low-Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= Trip point 1(1)  
1101= Trip point 2(1)  
1100= Trip point 3(1)  
.
.
.
0100= Trip point 11(1)  
00xx= Unused  
Note 1: For the actual trip point, see Section 32.0 “Electrical Characteristics”.  
DS39996F-page 332  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
29.1.1  
CONSIDERATIONS FOR  
CONFIGURING PIC24FJ128GA310  
FAMILY DEVICES  
29.0 SPECIAL FEATURES  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
following sections of the “PIC24F Family  
Reference Manual”. The information in this  
data sheet supersedes the information in  
the FRMs.  
In PIC24FJ128GA310 family devices, the configuration  
bytes are implemented as volatile memory. This means  
that configuration data must be programmed each time  
the device is powered up. Configuration data is stored  
in the three words at the top of the on-chip program  
memory space, known as the Flash Configuration  
Words. Their specific locations are shown in  
Table 29-1. These are packed representations of the  
actual device Configuration bits, whose actual  
locations are distributed among several locations in  
configuration space. The configuration data is automat-  
ically loaded from the Flash Configuration Words to the  
proper Configuration registers during device Resets.  
Section 9. “Watchdog Timer (WDT)”  
(DS39697)  
Section 32. “High-Level Device  
Integration” (DS39719)  
Section 33. “Programming and  
Diagnostics” (DS39716)  
Note:  
Configuration data is reloaded on all types  
of device Resets.  
PIC24FJ128GA310 family devices include several  
features intended to maximize application flexibility and  
reliability, and minimize cost through elimination of  
external components. These are:  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™  
• In-Circuit Emulation  
The upper byte of all Flash Configuration Words in pro-  
gram memory should always be ‘0000 0000’. This  
makes them appear to be NOP instructions in the  
remote event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘0’s to these  
locations has no effect on device operation.  
29.1 Configuration Bits  
The Configuration bits can be programmed (read as ‘0’),  
or left unprogrammed (read as ‘1’), to select various  
device configurations. These bits are mapped starting at  
program memory location, F80000h. A detailed explana-  
tion of the various bit functions is provided in  
Register 29-1 through Register 29-6.  
Note:  
Performing a page erase operation on the  
last page of program memory clears the  
Flash Configuration Words, enabling code  
protection as a result. Therefore, users  
should avoid performing page erase  
operations on the last page of program  
memory.  
Note that address, F80000h, is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (800000h-FFFFFFh) which can only be  
accessed using table reads and table writes.  
TABLE 29-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ128GA310 FAMILY  
DEVICES  
Configuration Word Addresses  
Device  
1
2
3
4
PIC24FJ64GA3XX  
PIC24FJ128GA3XX  
ABFEh  
ABFCh  
157FCh  
ABFAh  
ABF8h  
157FEh  
157FAh  
157F8h  
2010-2011 Microchip Technology Inc.  
DS39996F-page 333  
PIC24FJ128GA310 FAMILY  
REGISTER 29-1: CW1: FLASH CONFIGURATION WORD 1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
r-x  
r
R/PO-1  
R/PO-1  
GCP  
R/PO-1  
GWRP  
R/PO-1  
DEBUG  
R/PO-1  
LPCFG  
R/PO-1  
ICS1  
R/PO-1  
ICS0  
JTAGEN  
bit 15  
bit 8  
R/PO-1  
WINDIS  
R/PO-1  
R/PO-1  
R/PO-1  
FWPSA  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
FWDTEN1  
FWDTEN0  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
Reserved: The value is unknown; program as ‘0’  
JTAGEN: JTAG Port Enable bit  
bit 14  
1= JTAG port is enabled  
0= JTAG port is disabled  
bit 13  
bit 12  
GCP: General Segment Program Memory Code Protection bit  
1= Code protection is disabled  
0= Code protection is enabled for the entire program memory space  
GWRP: General Segment Code Flash Write Protection bit  
1= Writes to program memory are allowed  
0= Writes to program memory are not allowed  
DEBUG: Background Debugger Enable bit  
bit 11  
bit 10  
1= Device resets into Operational mode  
0= Device resets into Debug mode  
LPCFG: Low-Voltage/Retention Regulator Configuration bit  
1= Low-voltage/retention regulator is always disabled  
0= Low-power, low-voltage/retention regulator is enabled and controlled in firmware by the RETEN bit  
bit 9-8  
ICS<1:0>: Emulator Pin Placement Select bits  
11= Emulator functions are shared with PGEC1/PGED1  
10= Emulator functions are shared with PGEC2/PGED2  
01= Emulator functions are shared with PGEC3/PGED3  
00= Reserved; do not use  
bit 7  
WINDIS: Windowed Watchdog Timer Disable bit  
1= Standard Watchdog Timer is enabled  
0= Windowed Watchdog Timer is enabled; (FWDTEN<1:0> must not be ‘00’)  
bit 6-5  
FWDTEN<1:0>: Watchdog Timer Configuration bits  
11= WDT is always enabled; SWDTEN bit has no effect  
10= WDT is enabled and controlled in firmware by the SWDTEN bit  
01= WDT is enabled only in Run mode and disabled in Sleep modes; SWDTEN bit is disabled  
00= WDT is disabled; SWDTEN bit is disabled  
bit 4  
FWPSA: WDT Prescaler Ratio Select bit  
1= Prescaler ratio of 1:128  
0= Prescaler ratio of 1:32  
DS39996F-page 334  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 29-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)  
bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
2010-2011 Microchip Technology Inc.  
DS39996F-page 335  
PIC24FJ128GA310 FAMILY  
REGISTER 29-2: CW2: FLASH CONFIGURATION WORD 2  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
R/PO-1  
IESO  
r-1  
r
r-1  
r
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
ALTVRF1  
ALTVRF0  
FNOSC2  
FNOSC1  
FNOSC0  
bit 15  
bit 8  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
r-1  
r
r-1  
r
R/PO-1  
R/PO-1  
FCKSM1  
FCKSM0  
OSCIOFCN  
IOL1WAY  
POSCMD1  
POSCMD0  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
IESO: Internal External Switchover bit  
1= IESO mode (Two-Speed Start-up) is enabled  
0= IESO mode (Two-Speed Start-up) is disabled  
bit 14-13  
bit 12-11  
Reserved: Always maintain as ‘1’  
ALTVRF<1:0>: Alternate VREF/CVREF Pins Selection bits  
00= Voltage reference input, A/D = RB0/RB1, Comparator = RB0/RB1  
01= Voltage reference input, A/D = RB0/RB1, Comparator = RA9, RA10  
10= Voltage reference input, A/D = RA9/RA10, Comparator = RB0, RB1  
11= Voltage reference input, A/D = RA9/RA10, Comparator = RA9, RA10  
bit 10-8  
FNOSC<2:0>: Initial Oscillator Select bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7-6  
bit 5  
FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits  
1x= Clock switching and Fail-Safe Clock Monitor are disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFCN: OSCO Pin Configuration bit  
If POSCMD<1:0> = 11 or 00:  
1= OSCO/CLKO/RC15 functions as CLKO (FOSC/2)  
0= OSCO/CLKO/RC15 functions as port I/O (RC15)  
If POSCMD<1:0> = 10 or 01:  
OSCIOFCN has no effect on OSCO/CLKO/RC15.  
bit 4  
IOL1WAY: IOLOCK One-Way Set Enable bit  
1= The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been  
completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.  
0= The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been  
completed  
DS39996F-page 336  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 29-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)  
bit 3-2  
bit 1-0  
Reserved: Always maintain as ‘1’  
POSCMD<1:0>: Primary Oscillator Configuration bits  
11= Primary Oscillator mode is disabled  
10= HS Oscillator mode is selected  
01= XT Oscillator mode is selected  
00= EC Oscillator mode is selected  
2010-2011 Microchip Technology Inc.  
DS39996F-page 337  
PIC24FJ128GA310 FAMILY  
REGISTER 29-3: CW3: FLASH CONFIGURATION WORD 3  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
R/PO-1  
R/PO-1  
R/PO-1  
WPDIS  
R/PO-1  
BOREN  
R/PO-1  
R/PO-1  
r-1  
r
R/PO-1  
WPEND  
WPCFG  
WDTWIN1  
WDTWIN0  
SOSCSEL  
bit 15  
bit 8  
R/PO-1  
R/PO-1  
WPFP6(3)  
R/PO-1  
WPFP5  
R/PO-1  
WPFP4  
R/PO-1  
WPFP3  
R/PO-1  
WPFP2  
R/PO-1  
WPFP1  
R/PO-1  
WPFP0  
VBTBOR  
bit 7  
bit 0  
Legend:  
PO = Program Once bit  
W = Writable bit  
r = Reserved bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
WPEND: Segment Write Protection End Page Select bit  
1= Protected code segment upper boundary is at the last page of program memory; the lower  
boundary is the code page specified by WPFP<6:0>  
0= Protected code segment lower boundary is at the bottom of the program memory (000000h); upper  
boundary is the code page specified by WPFP<6:0>  
bit 14  
bit 13  
WPCFG: Configuration Word Code Page Write Protection Select bit  
1= Last page (at the top of program memory) and Flash Configuration Words are not write-protected(1)  
0= Last page and Flash Configuration Words are write-protected provided WPDIS = ‘0’  
WPDIS: Segment Write Protection Disable bit  
1= Segmented code protection is disabled  
0= Segmented code protection is enabled; protected segment is defined by the WPEND, WPCFG and  
WPFPx Configuration bits  
BOREN: Brown-out Reset Enable bit  
bit 12  
1= BOR is enabled (all modes except Deep Sleep)  
0= BOR is disabled  
bit 11-10  
WDTWIN<1:0>: Watchdog Timer Window Width Select bits  
11= 25%  
10= 37.5%  
01= 50%  
00= 75%  
bit 9  
bit 8  
Reserved: Always maintain as ‘1’  
SOSCSEL: SOSC Selection bit  
1= SOSC circuit is selected  
0= Digital (SCLKI) mode(2)  
bit 7  
VBTBOR: VBAT BOR Enable bit  
1= VBAT BOR is enabled  
0= VBAT BOR is disabled  
Note 1: Regardless of WPCFG status, if WPEND = 1or if WPFP corresponds to the Configuration Word page, the  
Configuration Word page is protected.  
2: Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).  
3: For the 62K devices: PIC24FJ64GA310, PIC24FJ64GA308 and PIC24FJ64GA306, bit 6 should be  
maintained as ‘0’.  
DS39996F-page 338  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 29-3: CW3: FLASH CONFIGURATION WORD 3 (CONTINUED)  
bit 6-0  
WPFP<6:0>: Write-Protected Code Segment Boundary Page bits(3)  
Designates the 256 instruction words page boundary of the protected code segment.  
If WPEND = 1:  
Specifies the lower page boundary of the code-protected segment; the last page being the last  
implemented page in the device.  
If WPEND = 0:  
Specifies the upper page boundary of the code-protected segment; Page 0 being the lower boundary.  
Note 1: Regardless of WPCFG status, if WPEND = 1or if WPFP corresponds to the Configuration Word page, the  
Configuration Word page is protected.  
2: Ensure that the SCLKI pin is made a digital input while using this configuration (see Table 11-1).  
3: For the 62K devices: PIC24FJ64GA310, PIC24FJ64GA308 and PIC24FJ64GA306, bit 6 should be  
maintained as ‘0’.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 339  
PIC24FJ128GA310 FAMILY  
REGISTER 29-4: CW4: FLASH CONFIGURATION WORD 4  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
r-1  
r
r-1  
r
r-1  
r
r-1  
r
r-1  
r
r-1  
r
r-1  
r
R/PO-1  
DSSWEN  
bit 15  
bit 8  
R/PO-1  
DSWDTEN  
bit 7  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
DSBOREN DSWDTOSC DSWDPS4  
DSWDPS3  
DSWDPS2  
DSWDPS1  
DSWDPS0  
bit 0  
Legend:  
r = Reserved bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 23-16  
bit 15-9  
bit 8  
Unimplemented: Read as ‘1’  
Reserved: Read as ‘1’  
DSSWEN: Deep Sleep Software Control Select bit  
1= Deep Sleep operation is enabled and controlled by the DSEN bit  
0= Deep Sleep operation is disabled  
bit 7  
bit 6  
bit 5  
DSWDTEN: Deep Sleep Watchdog Timer Enable bit  
1= Deep Sleep WDT is enabled  
0= Deep Sleep WDT is disabled  
DSBOREN: Deep Sleep Brown-out Reset Enable bit  
1= BOR is enabled in Deep Sleep mode  
0= BOR is disabled in Deep Sleep mode (remains active in other Sleep modes)  
DSWDTOSC: Deep Sleep Watchdog Timer Clock Select bit  
1= Clock source is LPRC  
0= Clock source is SOSC  
DS39996F-page 340  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
REGISTER 29-4: CW4: FLASH CONFIGURATION WORD 4 (CONTINUED)  
bit 4-0 DSWDPS<4:0>: Deep Sleep Watchdog Timer Postscaler Select bits  
11111= 1:68,719,476,736 (25.7 days)  
11110= 1:34,359,738,368(12.8 days)  
11101= 1:17,179,869,184 (6.4 days)  
11100= 1:8,589,934592 (77.0 hours)  
11011= 1:4,294,967,296 (38.5 hours)  
11010= 1:2,147,483,648 (19.2 hours)  
11001= 1:1,073,741,824 (9.6 hours)  
11000= 1:536,870,912 (4.8 hours)  
10111= 1:268,435,456 (2.4 hours)  
10110= 1:134,217,728 (72.2 minutes)  
10101= 1:67,108,864 (36.1 minutes)  
10100= 1:33,554,432 (18.0 minutes)  
10011= 1:16,777,216 (9.0 minutes)  
10010= 1:8,388,608 (4.5 minutes)  
10001= 1:4,194,304 (135.3 s)  
10000= 1:2,097,152 (67.7 s)  
01111= 1:1,048,576 (33.825 s)  
01110= 1:524,288 (16.912 s)  
01101= 1:262,114 (8.456 s)  
01100= 1:131,072 (4.228 s)  
01011= 1:65,536 (2.114 s)  
01010= 1:32,768 (1.057 s)  
01001= 1:16,384 (528.5 ms)  
01000= 1:8,192 (264.3 ms)  
00111= 1:4,096 (132.1 ms)  
00110= 1:2,048 (66.1 ms)  
00101= 1:1,024 (33 ms)  
00100= 1:512 (16.5 ms)  
00011= 1:256 (8.3 ms)  
00010= 1:128 (4.1 ms)  
00001= 1:64 (2.1 ms)  
00000= 1:32 (1 ms)  
2010-2011 Microchip Technology Inc.  
DS39996F-page 341  
PIC24FJ128GA310 FAMILY  
REGISTER 29-5: DEVID: DEVICE ID REGISTER  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
R
R
R
R
R
R
R
R
FAMID7  
FAMID6  
FAMID5  
FAMID4  
FAMID3  
FAMID2  
FAMID1  
FAMID0  
bit 15  
bit 8  
R
R
R
R
R
R
R
R
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
DEV2  
DEV1  
DEV0  
bit 7  
bit 0  
Legend: R = Readable bit  
U = Unimplemented bit  
bit 23-16  
bit 15-8  
Unimplemented: Read as ‘1’  
FAMID<7:0>: Device Family Identifier bits  
0100 0110= PIC24FJ128GA310 family  
DEV<7:0>: Individual Device Identifier bits  
bit 7-0  
1110 0000= PIC24FJ64GA306  
1110 0010= PIC24FJ128GA306  
1110 0100= PIC24FJ64GA308  
1110 0110= PIC24FJ128GA308  
1110 1000= PIC24FJ64GA310  
1110 1010= PIC24FJ128GA310  
REGISTER 29-6: DEVREV: DEVICE REVISION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R
R
R
R
REV3  
REV2  
REV1  
REV0  
bit 0  
bit 7  
Legend: R = Readable bit  
U = Unimplemented bit  
bit 23-4  
bit 3-0  
Unimplemented: Read as ‘0’  
REV<3:0>: Device revision identifier bits  
DS39996F-page 342  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
29.2.1  
ON-CHIP REGULATOR AND POR  
29.2 On-Chip Voltage Regulator  
The voltage regulator takes approximately 10 s for it  
to generate output. During this time, designated as  
TVREG, code execution is disabled. TVREG is applied  
every time the device resumes operation after any  
power-down, including Sleep mode. TVREG is deter-  
mined by the status of the VREGS bit (RCON<8>) and  
the WDTWIN Configuration bits (CW3<11:10>). Refer  
to Section 32.0 “Electrical Characteristics” for more  
information on TVREG.  
All PIC24FJ128GA310 family devices power their core  
digital logic at a nominal 1.8V. This may create an issue  
for designs that are required to operate at a higher  
typical voltage, such as 3.3V. To simplify system  
design, all devices in the PIC24FJ128GA310 family  
incorporate an on-chip regulator that allows the device  
to run its core logic from VDD.  
This regulator is always enabled. It provides a constant  
voltage (1.8V nominal) to the digital core logic, from a  
VDD of about 2.1V all the way up to the device’s VDD-  
MAX. It does not have the capability to boost VDD levels.  
In order to prevent “brown-out” conditions when the  
voltage drops too low for the regulator, the Brown-out  
Reset occurs. Then the regulator output follows VDD  
with a typical voltage drop of 300 mV.  
Note:  
For more information, see Section 32.0  
“Electrical Characteristics”. The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
29.2.2  
VOLTAGE REGULATOR STANDBY  
MODE  
A low-ESR capacitor (such as ceramic) must be  
connected to the VCAP pin (Figure 29-1). This helps to  
maintain the stability of the regulator. The recommended  
value for the filter capacitor (CEFC) is provided in  
The on-chip regulator always consumes a small incre-  
mental amount of current over IDD/IPD, including when  
the device is in Sleep mode, even though the core  
digital logic does not require power. To provide addi-  
tional savings in applications where power resources  
are critical, the regulator can be made to enter Standby  
mode on its own whenever the device goes into Sleep  
mode. This feature is controlled by the VREGS bit  
(RCON<8>). Clearing the VREGS bit enables the  
Standby mode. When waking up from Standby mode,  
the regulator needs to wait for TVREG to expire before  
wake-up.  
Section 32.1 “DC Characteristics”  
.
FIGURE 29-1:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
(1)  
3.3V  
PIC24FJXXXGA3XX  
VDD  
29.2.3  
LOW-VOLTAGE/RETENTION  
REGULATOR  
VCAP  
VSS  
CEFC  
(10 F typ)  
When power-saving modes, such as Sleep and Deep  
Sleep are used, PIC24FJ128GA310 family devices  
may use a separate low-power, low-voltage/retention  
regulator to power critical circuits. This regulator, which  
operates at 1.2V nominal, maintains power to data  
RAM and the RTCC while all other core digital logic is  
powered down. It operates only in Sleep, Deep Sleep  
and VBAT modes.  
Note 1: This is a typical operating voltage. Refer to  
Section 32.0 “Electrical Characteristics”  
for the full operating ranges of VDD.  
The low-voltage/retention regulator is described in more  
detail in Section 10.1.3 “Low-Voltage/Retention  
Regulator”  
.
2010-2011 Microchip Technology Inc.  
DS39996F-page 343  
PIC24FJ128GA310 FAMILY  
The WDT Flag bit, WDTO (RCON<4>), is not auto-  
29.3 Watchdog Timer (WDT)  
matically cleared following a WDT time-out. To detect  
subsequent WDT events, the flag must be cleared in  
software.  
For PIC24FJ128GA310 family devices, the WDT is  
driven by the LPRC oscillator. When the WDT is  
enabled, the clock source is also enabled.  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
The nominal WDT clock source from LPRC is 31 kHz.  
This feeds a prescaler that can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the FWPSA Configuration bit.  
With a 31 kHz input, the prescaler yields a nominal  
WDT Time-out period (TWDT) of 1 ms in 5-bit mode or  
4 ms in 7-bit mode.  
29.3.1  
WINDOWED OPERATION  
The Watchdog Timer has an optional Fixed Window  
mode of operation. In this Windowed mode, CLRWDT  
instructions can only reset the WDT during the last 1/4  
of the programmed WDT period. A CLRWDTinstruction  
executed before that window causes a WDT Reset,  
similar to a WDT time-out.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPS<3:0> Con-  
figuration bits (CW1<3:0>), which allows the selection  
of a total of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler time-out periods, ranging  
from 1 ms to 131 seconds, can be achieved.  
Windowed WDT mode is enabled by programming the  
WINDIS Configuration bit (CW1<7>) to ‘0’.  
29.3.2  
CONTROL REGISTER  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
The WDT is enabled or disabled by the FWDTEN<1:0>  
Configuration bits. When the Configuration bits,  
FWDTEN<1:0> = 11, the WDT is always enabled.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
The WDT can be optionally controlled in software when  
the Configuration bits, FWDTEN<1:0> = 10. When  
FWDTEN<1:0> = 00, the Watchdog Timer is always  
disabled. The WDT is enabled in software by setting  
the SWDTEN control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for  
critical code segments and disable the WDT during  
non-critical segments for maximum power savings.  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAV instruction was  
executed. The corresponding SLEEP or IDLE  
(RCON<3:2>) bits will need to be cleared in software  
after the device wakes up.  
FIGURE 29-2:  
WDT BLOCK DIAGRAM  
SWDTEN  
FWDTEN<1:0>  
LPRC Control  
Wake from Sleep  
FWPSA  
WDTPS<3:0>  
Prescaler  
(5-bit/7-bit)  
WDT  
Counter  
Postscaler  
WDT Overflow  
1:1 to 1:32.768  
LPRC Input  
Reset  
31 kHz  
1 ms/4 ms  
All Device Resets  
Transition to  
New Clock Source  
Exit Sleep or  
Idle Mode  
CLRWDTInstr.  
PWRSAVInstr.  
Sleep or Idle Mode  
DS39996F-page 344  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Code segment protection provides an added level of  
protection to a designated area of program memory by  
disabling the NVM safety interlock whenever a write or  
29.4 Program Verification and  
Code Protection  
PIC24FJ128GA310 family devices provide two compli-  
mentary methods to protect application code from  
overwrites and erasures. These also help to protect the  
device from inadvertent configuration changes during  
run time.  
erase address falls within a specified range. It does not  
override General Segment protection controlled by the  
GCP or GWRP bits. For example, if GCP and GWRP  
are enabled, enabling segmented code protection for  
the bottom half of program memory does not undo  
General Segment protection for the top half.  
29.4.1  
GENERAL SEGMENT PROTECTION  
The size and type of protection for the segmented code  
range are configured by the WPFPx, WPEND, WPCFG  
and WPDIS bits in Configuration Word 3. Code seg-  
ment protection is enabled by programming the WPDIS  
bit (= 0). The WPFP bits specify the size of the segment  
to be protected, by specifying the 512-word code page  
that is the start or end of the protected segment. The  
specified region is inclusive, therefore, this page will  
also be protected.  
For all devices in the PIC24FJ128GA310 family, the  
on-chip program memory space is treated as a single  
block, known as the General Segment (GS). Code pro-  
tection for this block is controlled by one Configuration  
bit, GCP. This bit inhibits external reads and writes to  
the program memory space. It has no direct effect in  
normal execution mode.  
Write protection is controlled by the GWRP bit in the  
Configuration Word. When GWRP is programmed to  
0’, internal write and erase operations to program  
memory are blocked.  
The WPEND bit determines if the protected segment  
uses the top or bottom of the program space as a  
boundary. Programming WPEND (= 0) sets the bottom  
of program memory (000000h) as the lower boundary  
of the protected segment. Leaving WPEND unpro-  
grammed (= 1) protects the specified page through the  
last page of implemented program memory, including  
the Configuration Word locations.  
29.4.2  
CODE SEGMENT PROTECTION  
In addition to global General Segment protection, a  
separate subrange of the program memory space can  
be individually protected against writes and erases.  
This area can be used for many purposes where a sep-  
arate block of write and erase-protected code is  
needed, such as bootloader applications. Unlike  
common boot block implementations, the specially  
protected segment in the PIC24FJ128GA310 family  
devices can be located by the user anywhere in the  
program space and configured in a wide range of sizes.  
A separate bit, WPCFG, is used to protect the last page  
of program space, including the Flash Configuration  
Words. Programming WPCFG (= 0) protects the last  
page in addition to the pages selected by the WPEND  
and WPFP<6:0> bits setting. This is useful in circum-  
stances where write protection is needed for both the  
code segment in the bottom of the memory and the  
Flash Configuration Words.  
The various options for segment code protection are  
shown in Table 29-2.  
TABLE 29-2: CODE SEGMENT PROTECTION CONFIGURATION OPTIONS  
Segment Configuration Bits  
Write/Erase Protection of Code Segment  
WPDIS  
WPEND  
WPCFG  
1
x
x
No additional protection is enabled; all program memory protection is configured  
by GCP and GWRP.  
0
1
x
Addresses from the first address of the code page are defined by WPFP<7:0>  
through the end of implemented program memory (inclusive); write/erase  
protected, including Flash Configuration Words.  
0
0
0
0
1
0
Address 000000h through the last address of the code page is defined by  
WPFP<7:0> (inclusive); write/erase protected.  
Address 000000h through the last address of code page is defined by  
WPFP<7:0> (inclusive); write/erase protected and the last page, including Flash  
Configuration Words, are write/erase protected.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 345  
PIC24FJ128GA310 FAMILY  
29.4.3  
CONFIGURATION REGISTER  
PROTECTION  
29.6  
In-Circuit Serial Programming  
PIC24FJ128GA310 family microcontrollers can be  
serially programmed while in the end application circuit.  
This is simply done with two lines for clock (PGECx)  
and data (PGEDx), and three other lines for power  
(VDD), ground (VSS) and MCLR. This allows customers  
to manufacture boards with unprogrammed devices  
and then program the microcontroller just before  
shipping the product. This also allows the most recent  
firmware or a custom firmware to be programmed.  
The Configuration registers are protected against  
inadvertent or unwanted changes or reads in two ways.  
The primary protection method is the same as that of  
the RP registers – shadow registers contain a compli-  
mentary value which is constantly compared with the  
actual value.  
To safeguard against unpredictable events, Configura-  
tion bit changes resulting from individual cell level  
disruptions (such as ESD events) will cause a parity  
error and trigger a device Reset.  
29.7 In-Circuit Debugger  
When MPLAB® ICD 3 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This func-  
tion allows simple debugging functions when used with  
MPLAB IDE. Debugging functionality is controlled  
through the PGECx (Emulation/Debug Clock) and  
PGEDx (Emulation/Debug Data) pins.  
The data for the Configuration registers is derived from  
the Flash Configuration Words in program memory.  
When the GCP bit is set, the source data for device  
configuration is also protected as a consequence. Even  
if General Segment protection is not enabled, the  
device configuration can be protected by using the  
appropriate code segment protection setting.  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS and the PGECx/PGEDx pin pair des-  
ignated by the ICS Configuration bits. In addition, when  
the feature is enabled, some of the resources are not  
available for general use. These resources include the  
first 80 bytes of data RAM and two I/O pins.  
29.5 JTAG Interface  
PIC24FJ128GA310 family devices implement a JTAG  
interface, which supports boundary scan device  
testing.  
DS39996F-page 346  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
30.1 MPLAB Integrated Development  
Environment Software  
30.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 347  
PIC24FJ128GA310 FAMILY  
30.2 MPLAB C Compilers for Various  
Device Families  
30.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
30.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
30.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
30.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS39996F-page 348  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
30.7 MPLAB SIM Software Simulator  
30.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
30.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
30.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 349  
PIC24FJ128GA310 FAMILY  
30.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
30.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
30.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39996F-page 350  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
The literal instructions that involve data movement may  
use some of the following operands:  
31.0 INSTRUCTION SET SUMMARY  
Note:  
This chapter is a brief summary of the  
PIC24F instruction set architecture and is  
not intended to be a comprehensive  
reference source.  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The PIC24F instruction set adds many enhancements  
to the previous PIC® MCU instruction sets, while main-  
taining an easy migration from previous PIC MCU  
instruction sets. Most instructions are a single program  
memory word. Only three instructions require two  
program memory locations.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
• The first source operand, which is a register, ‘Wb’,  
without any address modifier  
• The second source operand, which is a literal  
value  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction. The instruction set is  
highly orthogonal and is grouped into four basic  
categories:  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register, ‘Wd’, with or without an address modifier  
The control instructions may use some of the following  
operands:  
• A program memory address  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The mode of the table read and table write  
instructions  
All instructions are a single word, except for certain  
double-word instructions, which were made  
double-word instructions so that all the required infor-  
mation is available in these 48 bits. In the second word,  
the 8 MSbs are ‘0’s. If this second word is executed as  
an instruction (by itself), it will execute as a NOP.  
• Control operations  
Table 31-1 shows the general symbols used in  
describing the instructions. The PIC24F instruction set  
summary in Table 31-2 lists all the instructions, along  
with the status flags affected by each instruction.  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
reads and writes, and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles.  
• The first source operand, which is typically a  
register, ‘Wb’, without any address modifier  
• The second source operand, which is typically a  
register, ‘Ws’, with or without an address modifier  
• The destination of the result, which is typically a  
register, ‘Wd’, with or without an address modifier  
However, word or byte-oriented file register instructions  
have two operands:  
Certain instructions that involve skipping over the sub-  
sequent instruction require either two or three cycles if  
the skip is performed, depending on whether the  
instruction being skipped is a single-word or two-word  
instruction. Moreover, double-word moves require two  
cycles. The double-word instructions execute in two  
instruction cycles.  
• The file register specified by the value, ‘f’  
• The destination, which could either be the file  
register, ‘f’, or the W0 register, which is denoted  
as ‘WREG’  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register, ‘Wb’)  
2010-2011 Microchip Technology Inc.  
DS39996F-page 351  
PIC24FJ128GA310 FAMILY  
TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
<n:m>  
.b  
Register bit field  
Byte mode selection  
.d  
Double-Word mode selection  
.S  
Shadow register select  
.w  
Word mode selection (default)  
bit4  
4-bit Bit Selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0000h...1FFFh}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
lit14  
lit16  
lit23  
None  
PC  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16383}  
16-bit unsigned literal {0...65535}  
23-bit unsigned literal {0...8388607}; LSB must be ‘0’  
Field does not require an entry, may be blank  
Program Counter  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Wn  
Dividend, Divisor working register pair (direct addressing)  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
WREG  
Ws  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Source W register { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wso  
DS39996F-page 352  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 31-2: INSTRUCTION SET OVERVIEW  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
ADD  
ADDC  
AND  
ASR  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
BTSC  
f
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
f,WREG  
WREG = f + WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
f = f + WREG + (C)  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
1
N, Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N, Z  
1
N, Z  
Wd = Wb .AND. lit5  
1
N, Z  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N, Z  
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater than or Equal  
Branch if Unsigned Greater than or Equal  
Branch if Greater than  
Branch if Unsigned Greater than  
Branch if Less than or Equal  
Branch if Unsigned Less than or Equal  
Branch if Less than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OV,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Overflow  
None  
Branch Unconditionally  
Branch if Zero  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
1
None  
Bit Toggle Ws  
1
None  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
Ws,#bit4  
Bit Test Ws, Skip if Clear  
1
1
None  
(2 or 3)  
2010-2011 Microchip Technology Inc.  
DS39996F-page 353  
PIC24FJ128GA310 FAMILY  
TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
f,#bit4  
Description  
Bit Test f, Skip if Set  
Words Cycles  
BTSS  
BTSS  
BTSS  
1
1
1
None  
(2 or 3)  
Ws,#bit4  
Bit Test Ws, Skip if Set  
1
None  
(2 or 3)  
BTST  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Ws,Wb  
Z
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
C
Z
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
Wn  
None  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
Ws  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
None  
CLRWDT  
COM  
CLRWDT  
Clear Watchdog Timer  
WDTO, Sleep  
COM  
COM  
COM  
CP  
f
f = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N, Z  
f,WREG  
Ws,Wd  
f
WREG = f  
N, Z  
Wd = Ws  
N, Z  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
DAW  
DEC  
DAW.B  
DEC  
Wn  
Wn = Decimal Adjust Wn  
f = f –1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f –1  
1
DEC  
Wd = Ws – 1  
1
DEC2  
DEC2  
f = f – 2  
1
DEC2  
f,WREG  
Ws,Wd  
#lit14  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
WREG = f – 2  
1
DEC2  
Wd = Ws – 2  
1
DISI  
DIV  
DISI  
Disable Interrupts for k Instruction Cycles  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Swap Wns with Wnd  
1
DIV.SW  
DIV.SD  
DIV.UW  
DIV.UD  
EXCH  
18  
18  
18  
18  
1
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
None  
EXCH  
FF1L  
FF1R  
FF1L  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
1
C
FF1R  
1
C
DS39996F-page 354  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
GOTO  
GOTO  
GOTO  
INC  
Expr  
Go to Address  
Go to Indirect  
f = f + 1  
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
None  
Wn  
None  
INC  
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
INC  
f,WREG  
WREG = f + 1  
Wd = Ws + 1  
f = f + 2  
INC  
Ws,Wd  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f,WREG  
WREG = f + 2  
Wd = Ws + 2  
f = f .IOR. WREG  
Ws,Wd  
f
IOR  
f,WREG  
WREG = f .IOR. WREG  
N, Z  
IOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
#lit14  
Wd = lit10 .IOR. Wd  
N, Z  
IOR  
Wd = Wb .IOR. Ws  
N, Z  
IOR  
Wd = Wb .IOR. lit5  
N, Z  
LNK  
LSR  
LNK  
Link Frame Pointer  
None  
LSR  
f
f = Logical Right Shift f  
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
LSR  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Move f to Wn  
LSR  
Ws,Wd  
LSR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,Wn  
LSR  
N, Z  
MOV  
MOV  
None  
MOV  
[Wns+Slit10],Wnd  
f
Move [Wns+Slit10] to Wnd  
Move f to f  
None  
MOV  
N, Z  
MOV  
f,WREG  
Move f to WREG  
N, Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit Literal to Wn  
None  
MOV.b  
MOV  
Move 8-bit Literal to Wn  
None  
Move Wn to f  
None  
MOV  
Wns,[Wns+Slit10]  
Wso,Wdo  
WREG,f  
Move Wns to [Wns+Slit10]  
Move Ws to Wd  
MOV  
None  
N, Z  
MOV  
Move WREG to f  
MOV.D  
MOV.D  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
MUL.SU  
MUL.UU  
MUL  
Wns,Wd  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)  
W3:W2 = f * WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Ws,Wnd  
MUL  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
f
NEG  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)  
Pop Shadow Registers  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
POP.S  
None  
All  
PUSH  
PUSH  
f
Push f to Top-of-Stack (TOS)  
1
1
1
1
1
1
2
1
None  
None  
None  
None  
PUSH  
Wso  
Wns  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns+1) to Top-of-Stack (TOS)  
Push Shadow Registers  
PUSH.D  
PUSH.S  
2010-2011 Microchip Technology Inc.  
DS39996F-page 355  
PIC24FJ128GA310 FAMILY  
TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
PWRSAV  
RCALL  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
WDTO, Sleep  
None  
Computed Call  
2
None  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
Return from Interrupt  
1
None  
1
None  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
None  
3 (2)  
3 (2)  
3 (2)  
1
None  
#lit10,Wn  
Return with Literal in Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Wnd = Sign-Extended Ws  
f = FFFFh  
None  
None  
f
C, N, Z  
RLC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RLC  
1
C, N, Z  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
1
N, Z  
f,WREG  
Ws,Wd  
f
1
N, Z  
1
N, Z  
1
C, N, Z  
RRC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RRC  
1
C, N, Z  
RRNC  
RRNC  
RRNC  
RRNC  
SE  
1
N, Z  
f,WREG  
Ws,Wd  
Ws,Wnd  
f
1
N, Z  
1
N, Z  
SE  
1
C, N, Z  
SETM  
SETM  
SETM  
SETM  
SL  
1
None  
WREG  
WREG = FFFFh  
1
None  
Ws  
Ws = FFFFh  
1
None  
SL  
f
f = Left Shift f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
SL  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f
WREG = Left Shift f  
1
SL  
Wd = Left Shift Ws  
1
SL  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
f = f – WREG  
1
SL  
1
N, Z  
SUB  
SUB  
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
1
SUB  
Wn = Wn – lit10  
1
SUB  
Wd = Wb – Ws  
1
SUB  
Wd = Wb – lit5  
1
SUBB  
SUBB  
SUBB  
f = f – WREG – (C)  
1
f,WREG  
WREG = f – WREG – (C)  
1
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUBR  
f,WREG  
WREG = WREG – f  
Wd = Ws – Wb  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wd = lit5 – Wb  
SUBBR  
SUBBR  
SUBBR  
f
f = WREG – f – (C)  
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
f,WREG  
WREG = WREG – f – (C)  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
Wd = Ws – Wb – (C)  
1
1
1
1
1
1
1
1
1
2
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
Wd = lit5 – Wb – (C)  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
None  
TBLRDH  
TBLRDH  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
None  
DS39996F-page 356  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<15:0> to Wd  
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
None  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
None  
None  
None  
N, Z  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N, Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N, Z  
XOR  
N, Z  
XOR  
Wd = Wb .XOR. lit5  
N, Z  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C, Z, N  
2010-2011 Microchip Technology Inc.  
DS39996F-page 357  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 358  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
32.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the PIC24FJ128GA310 family electrical characteristics. Additional information will  
be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC24FJ128GA310 family are listed below. Exposure to these maximum rating  
conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other  
conditions above the parameters indicated in the operation listings of this specification, is not implied.  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +100°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)  
Voltage on any digital only pin with respect to VSS when VDD < 3.0V............................................ -0.3V to (VDD + 0.3V)  
Voltage on any digital only pin with respect to VSS when VDD > 3.0V..................................................... -0.3V to (+5.5V)  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 1)................................................................................................................250 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 1)....................................................................................................200 mA  
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 32-1).  
†NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 359  
PIC24FJ128GA310 FAMILY  
32.1 DC Characteristics  
FIGURE 32-1:  
PIC24FJ128GA310 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
3.6V  
3.6V  
PIC24FJXXXDA1  
2.2V  
2.0V  
2.2V  
2.0V  
32 MHz  
Frequency  
VCAP (nominal On-Chip Regulator output voltage) = 1.8V.  
Note:  
TABLE 32-1: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
PIC24FJ128GA310 family:  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation: PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
PI/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJMAX TA)/JA  
TABLE 32-2: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Note  
Package Thermal Resistance, 14x14x1 mm 100-pin TQFP  
Package Thermal Resistance, 12x12x1 mm 100-pin TQFP  
Package Thermal Resistance, 12x12x1 mm 80-pin TQFP  
Package Thermal Resistance, 10x10x1 mm 64-pin TQFP  
Package Thermal Resistance, 9x9x0.9 mm 64-pin QFN  
Package Thermal Resistance, 10x10x1.1 mm 121-pin BGA  
JA  
JA  
JA  
JA  
JA  
JA  
43.0  
45.0  
48.0  
48.3  
28.0  
40.2  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
DS39996F-page 360  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Operating Voltage  
DC10 VDD  
Supply Voltage  
2
3.6  
V
V
With BOR disabled  
DC12 VDR  
RAM Data Retention  
Voltage(1)  
1.9  
DC16 VPOR  
DC17 SVDD  
VBOR  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
VSS  
0.05  
2
V
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
V/ms 0-3.3V in 66 ms  
0-2.5V in 50 ms  
Brown-out Reset Voltage  
on VDD Transition,  
High-to-Low  
2.2  
V
Note 1: This is the limit to which the RAM data can be retained while the on-chip regulator output voltage starts  
following the VDD.  
TABLE 32-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
No.  
Operating  
Temperature  
Typical(1)  
Max  
Units  
VDD  
Conditions  
Operating Current (IDD)  
DC19  
DC20A  
DC20  
0.15  
0.15  
0.31  
0.32  
1.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
2.0V  
3.3V  
2.0V  
3.3V  
2.0V  
3.3V  
2.0V  
3.3V  
0.5 MIPS,  
FOSC = 1 MHz  
1 MIPS,  
FOSC = 2 MHz  
DC23  
DC24  
DC31  
4 MIPS,  
FOSC = 8 MHz  
1.25  
4.8  
6.8  
6.9  
78  
80  
16 MIPS,  
FOSC = 32 MHz  
4.9  
26  
LPRC (15.5 KIPS)  
FOSC = 31 kHz  
26  
A  
Note 1: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Typical parameters are for design  
guidance only and are not tested.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 361  
PIC24FJ128GA310 FAMILY  
TABLE 32-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Operating  
Temperature  
Max  
Units  
VDD  
Conditions  
Idle Current (IIDLE)  
DC40  
DC43  
DC47  
DC50  
DC51  
81  
86  
A  
A  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
2.0V  
3.3V  
2.0V  
3.3V  
2.0V  
3.3V  
2.0V  
3.3V  
1 MIPS,  
FOSC = 2 MHz  
0.27  
0.28  
1
mA  
mA  
mA  
mA  
mA  
mA  
A  
4 MIPS,  
FOSC = 8 MHz  
1.35  
1.4  
16 MIPS,  
FOSC = 32 MHz  
1.07  
0.47  
0.48  
21  
4 MIPS (FRC),  
FOSC = 8 MHz  
76  
78  
LPRC (15.5 KIPS),  
FOSC = 31 kHz  
21  
A  
Note 1: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
DS39996F-page 362  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 32-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Operating  
Temperature  
Max  
Units  
VDD  
Conditions  
Power-Down Current (IPD)  
DC60  
DC61  
DC70  
3.7  
6.2  
13.6  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+60°C  
+85°C  
-40°  
2.0V  
3.3V  
2.0V  
3.3V  
27.5  
3.8  
6.3  
13.7  
+25°C  
+60°C  
+85°C  
-40°  
Sleep(2)  
28  
0.33  
2
+25°C  
+60°C  
+85°C  
-40°  
7.7  
14.5  
Low-Voltage Sleep(3)  
0.34  
2
+25°C  
+60°C  
+85°C  
-40°  
7.9  
15  
0.01  
+25°C  
+60°C  
+85°C  
-40°  
2.0V  
3.3V  
1.1  
Deep Sleep  
0.04  
+25°C  
+60°C  
+85°C  
-40°C to +85°C  
1.4  
2.0  
0.4  
0V  
RTCC with VBAT mode (LPRC/SOSC)(4)  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: The retention low-voltage regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (CW1<10>) = 1.  
3: The retention low-voltage regulator is enabled; RETEN (RCON<12>) = 1, LPCFG (CW1<10>) = 0.  
4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 363  
PIC24FJ128GA310 FAMILY  
TABLE 32-7: DC CHARACTERISTICS: CURRENT (BOR, WDT, DSBOR, DSWDT, LCD)  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
No.  
Operating  
Temperature  
Typical(1)  
Max  
Units  
VDD  
Conditions  
Incremental Current Brown-out Reset (BOR)(2)  
DC20  
3.1  
5
A  
A  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
BOR(2)  
WDT(2)  
4.3  
6
Incremental Current Brown-out Reset (WDT)(2)  
DC71  
0.8  
1.5  
A  
A  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
0.8  
1.5  
Incremental Current HLVD (HLVD)(2)  
DC75  
5.7  
15  
A  
A  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
HLVD(2)  
RTCC(2)  
5.7  
15  
Incremental Current Real-Time Clock and Calendar (RTCC)(2)  
DC77  
0.4  
0.4  
1
1
A  
A  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
RTCC with SOSC  
Incremental Current Real-Time Clock and Calendar (RTCC)(2)  
RTCC(2)  
RTCC with LPRC  
DC77a  
0.4  
0.4  
1
1
A  
A  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
Incremental Current Deep Sleep BOR (DSBOR)(2)  
DC81  
0.07  
0.3  
A  
-40°C to +85°C  
2.0V  
3.3V  
Deep Sleep BOR(2)  
Deep Sleep WDT(2)  
0.07  
0.3  
A  
-40°C to +85°C  
Incremental Current Deep Sleep Watchdog Timer Reset (DSWDT)(2)  
DC80  
0.27  
0.4  
A  
A  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
0.27  
0.4  
Incremental Current LCD (LCD)(2)  
0.8  
3
A  
-40°C to +85°C  
LCD External/Internal(2,3)  
1/8 MUX 1/3 Bias  
3.3V  
LCD Charge Pump(2,4)  
1/8 MUX 1/3 Bias  
DC90  
20  
24  
30  
40  
A  
A  
-40°C to +85°C  
-40°C to +85°C  
2.0V  
3.3V  
VBAT A/D Monitor(5)  
DC91 1.5  
A  
A  
-40°C to +85°C  
-40°C to +85°C  
3.3V  
3.3V  
VBAT = 2V  
4
VBAT = 3.3V  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Incremental current while the module is enabled and running.  
3: LCD is enabled and running; no glass is connected; the resistor ladder current is not included.  
4: LCD is enabled and running; no glass is connected.  
5: The A/D channel is connected to the VBAT pin internally, this is the current during A/D VBAT operation.  
DS39996F-page 364  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage(3)  
I/O Pins with ST Buffer  
I/O Pins with TTL Buffer  
MCLR  
DI10  
DI11  
DI15  
DI16  
DI17  
DI18  
DI19  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
V
V
OSCI (XT mode)  
OSCI (HS mode)  
I/O Pins with I2C™ Buffer  
I/O Pins with SMBus Buffer  
Input High Voltage(3)  
SMBus enabled  
VIH  
DI20  
DI21  
I/O Pins with ST Buffer:  
with Analog Functions,  
Digital Only  
0.8 VDD  
0.8 VDD  
VDD  
5.5  
V
V
I/O Pins with TTL Buffer:  
with Analog Functions,  
Digital Only  
0.25 VDD + 0.8  
0.25 VDD + 0.8  
VDD  
5.5  
V
V
DI25  
DI26  
DI27  
DI28  
MCLR  
0.8 VDD  
0.7 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
V
V
V
OSCI (XT mode)  
OSCI (HS mode)  
I/O Pins with I2C™ Buffer:  
with Analog Functions,  
Digital Only  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
DI29  
DI30  
I/O Pins with SMBus Buffer:  
with Analog Functions,  
Digital Only  
2.5V VPIN VDD  
2.1  
2.1  
VDD  
5.5  
V
V
ICNPU  
CNxx Pull-up Current  
CNxx Pull-down Current  
Input Leakage Current(2)  
I/O Ports  
150  
150  
250  
250  
550  
550  
A  
A  
VDD = 3.3V, VPIN = VSS  
VDD = 3.3V, VPIN = VDD  
DI30A ICNPD  
IIL  
DI50  
+1  
+1  
+1  
A  
A  
A  
VSS VPIN VDD,  
pin at high-impedance  
VSS VPIN 5.5,  
pin at high-impedance  
DI51  
Analog Input Pins  
VSS VPIN VDD,  
pin at high-impedance  
DI55  
DI56  
MCLR  
+1  
+1  
A  
A  
VSS VPIN VDD  
OSCI/CLKI  
VSS VPIN VDD,  
EC, XT and HS modes  
Note 1: Data in the “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Negative current is defined as current sourced by the pin.  
3: Refer to Table 1-4 for I/O pins buffer types.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 365  
PIC24FJ128GA310 FAMILY  
TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
DO10  
DO16  
I/O Ports  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 6.6 mA, VDD = 3.6V  
IOL = 5.0 mA, VDD = 2V  
IOL = 6.6 mA, VDD = 3.6V  
IOL = 5.0 mA, VDD = 2V  
OSCO/CLKO  
VOH  
Output High Voltage  
DO20  
I/O Ports  
3.0  
2.4  
1.65  
1.4  
2.4  
1.4  
V
V
V
V
V
V
IOH = -3.0 mA, VDD = 3.6V  
IOH = -6.0 mA, VDD = 3.6V  
IOH = -1.0 mA, VDD = 2V  
IOH = -3.0 mA, VDD = 2V  
IOH = -6.0 mA, VDD = 3.6V  
IOH = -1.0 mA, VDD = 2V  
DO26  
OSCO/CLKO  
Note 1: Data in the “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 32-10: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1) Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
D132B  
EP  
10000  
VMIN  
VMIN  
20  
3.6  
3.6  
E/W -40C to +85C  
VPR  
VDD for Read  
V
V
VMIN = Minimum operating voltage  
VMIN = Minimum operating voltage  
VDD for Self-Timed Write  
D133A TIW  
Self-Timed Word Write  
Cycle Time  
s  
Self-Timed Row Write  
Cycle Time  
1.5  
ms  
ms  
D133B TIE  
Self-Timed Page Erase  
Time  
20  
40  
D134  
D135  
TRETD  
IDDP  
Characteristic Retention  
20  
Year If no other specifications are violated  
mA  
Supply Current during  
Programming  
16  
Note 1: Data in the “Typ” column is at 3.3V, 25°C unless otherwise stated.  
DS39996F-page 366  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 32-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ Max Units  
Comments  
VRGOUT Regulator Output Voltage  
1.14  
4.7  
1.8  
V
V
VBG  
Internal Band Gap Reference  
External Filter Capacitor Value  
1.2 1.26  
CEFC  
10  
F Series resistance < 3 Ohm  
recommended; < 5 Ohm  
required.  
TVREG  
TBG  
10  
1
s  
VREGS = 1with any POR or BOR  
Band Gap Reference Start-up  
Time  
ms  
VLVR  
Low-Voltage Regulator Output  
Voltage  
1.2  
V
RETEN = 1, LPCFG = 0  
TABLE 32-12: VBAT OPERATING VOLTAGE SPECIFICATIONS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
No.  
VBT  
Operating Voltage  
1.8  
1.6  
3.6  
3.6  
V
V
Battery connected to the VBAT pin  
VBTADC  
VBAT A/D Monitoring  
A/D monitoring the VBAT pin using  
the internal A/D channel  
Voltage Specification(1)  
Note 1: Measuring the A/D value, using the A/D, is represented by the equation:  
Measured Voltage = ((VBAT/2)/VDD) * 1024) for 10-bit A/D and  
Measured Voltage = ((VBAT/2)VDD) * 4096) for 12-bit A/D.  
TABLE 32-13: CTMU CURRENT SOURCE SPECIFICATIONS  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min Typ(1) Max Units  
Comments  
Conditions  
IOUT1 CTMU Current  
550  
5.5  
55  
nA CTMUICON<1:0> = 00  
A CTMUICON<1:0> = 01  
A CTMUICON<1:0> = 10  
A CTMUICON<1:0> = 11(2)  
Source, Base Range  
IOUT2 CTMU Current  
Source, 10x Range  
2.5V < VDD < VDDMAX  
IOUT3 CTMU Current  
Source, 100x Range  
IOUT4 CTMU Current  
Source, 1000x Range  
550  
3
V  
Voltage Change per  
Degree Celsius  
mV/°C  
Note 1: Nominal value at center point of current trim range (CTMUICON<7:2> = 000000).  
2: Do not use this current range with temperature sensing diode.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 367  
PIC24FJ128GA310 FAMILY  
TABLE 32-14: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
DC18 VHLVD  
HLVD Voltage on VDD HLVDL<3:0> = 0100(1)  
3.45  
3.30  
3.00  
2.80  
2.70  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
3.75  
3.6  
V
V
V
V
V
V
V
V
V
V
V
Transition  
HLVDL<3:0> = 0101  
HLVDL<3:0> = 0110  
HLVDL<3:0> = 0111  
HLVDL<3:0> = 1000  
HLVDL<3:0> = 1001  
HLVDL<3:0> = 1010  
HLVDL<3:0> = 1011  
HLVDL<3:0> = 1100  
HLVDL<3:0> = 1101  
HLVDL<3:0> = 1110  
3.3  
3.1  
2.95  
2.75  
2.60  
2.5  
2.4  
2.3  
2.2  
Note 1: Trip points for values of HLVD<3:0>, from ‘0000’ to ‘0011’, are not implemented.  
TABLE 32-15: COMPARATOR DC SPECIFICATIONS  
Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
D300  
D301  
D302  
VIOFF  
VICM  
Input Offset Voltage*  
0
20  
40  
VDD  
mV  
V
Input Common-Mode Voltage*  
CMRR  
Common-Mode Rejection  
Ratio*  
55  
dB  
* Parameters are characterized but not tested.  
TABLE 32-16: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS  
Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
VRD310 CVRES  
VRD311 CVRAA  
VRD312 CVRUR  
Resolution  
VDD/24  
VDD/32  
AVDD – 1.5  
LSb  
LSb  
Absolute Accuracy  
Unit Resistor Value (R)  
2K  
DS39996F-page 368  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
32.2 AC Characteristics and Timing Parameters  
The information contained in this section defines the PIC24FJ128GA310 family AC characteristics and timing parameters.  
TABLE 32-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Operating voltage VDD range as described in Section 32.1 “DC Characteristics”.  
FIGURE 32-2:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSCO  
VDD/2  
Load Condition 2 – for OSCO  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSCO  
15 pF for OSCO output  
VSS  
TABLE 32-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
No.  
DO50 COSCO  
OSCO/CLKO Pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSCI  
DO56 CIO  
DO58 CB  
All I/O Pins and OSCO  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
Note 1: Data in the “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 369  
PIC24FJ128GA310 FAMILY  
FIGURE 32-3:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q3  
Q2  
OSCI  
OS20  
OS25  
OS30 OS30  
OS31 OS31  
CLKO  
OS40  
OS41  
TABLE 32-19: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10 FOSC  
External CLKI Frequency  
(External clocks allowed  
only in EC mode)  
DC  
4
32  
8
MHz EC  
MHz ECPLL  
Oscillator Frequency  
3.5  
4
10  
10  
31  
10  
8
32  
8
MHz XT  
MHz XTPLL  
MHz HS  
MHz HSPLL  
33  
kHz  
SOSC  
OS20 TOSC  
OS25 TCY  
TOSC = 1/FOSC  
See Parameter OS10 for  
FOSC value  
Instruction Cycle Time(2)  
62.5  
DC  
ns  
ns  
OS30 TosL,  
TosH  
External Clock in (OSCI) 0.45 x TOSC  
High or Low Time  
EC  
EC  
OS31 TosR, External Clock in (OSCI)  
20  
ns  
TosF  
OS40 TckR  
OS41 TckF  
Rise or Fall Time  
CLKO Rise Time(3)  
CLKO Fall Time(3)  
6
6
10  
10  
ns  
ns  
Note 1: Data in the “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type, under standard operating conditions, with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at “Min.” values with an  
external clock applied to the OSCI/CLKI pin. When an external clock input is used, the “Max.” cycle time  
limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the  
Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
DS39996F-page 370  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 32-20: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.2V TO 3.6V)  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50 FPLLI  
PLL Input Frequency  
Range(2)  
4
4
8
8
MHz ECPLL mode  
MHz HSPLL mode  
MHz XTPLL mode  
s  
4
8
OS52 TLOCK  
OS53 DCLK  
PLL Start-up Time  
(Lock Time)  
128  
CLKO Stability (Jitter)  
-0.25  
0.25  
%
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in the “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
TABLE 32-21: INTERNAL RC ACCURACY  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
F20  
FRC Accuracy @  
8 MHz(1,2)  
-1  
1
%
%
%
-10°C TA +85°C 2V VDD 3.6V  
-40°C TA -10°C 2V VDD 3.6V  
-1.5  
-20  
1.5  
20  
F21  
LPRC @ 31 kHz  
-40°C TA +85°C VCAP (on-chip regulator  
output voltage) = 1.8V  
Note 1: Frequency is calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.  
2: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB)  
must be kept to a minimum.  
TABLE 32-22: RC OSCILLATOR START-UP TIME  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TFRC  
TLPRC  
15  
50  
s  
s  
2010-2011 Microchip Technology Inc.  
DS39996F-page 371  
PIC24FJ128GA310 FAMILY  
FIGURE 32-4:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note:  
Refer to Figure 32-2 for load conditions.  
TABLE 32-23: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31 TIOR  
DO32 TIOF  
Port Output Rise Time  
Port Output Fall Time  
20  
10  
10  
25  
25  
ns  
ns  
ns  
DI35  
TINP  
INTx Pin High or Low  
Time (input)  
DI40  
TRBP  
CNx High or Low Time  
(input)  
2
TCY  
Note 1: Data in the “Typ” column is at 3.3V, 25°C unless otherwise stated.  
DS39996F-page 372  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 32-24: RESET AND BROWN-OUT RESET REQUIREMENTS  
Standard Operating Conditions: 2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
SY10 TMCL  
SY12 TPOR  
SY13 TIOZ  
MCLR Pulse width (Low)  
Power-on Reset Delay  
2
2
s  
s  
ns  
I/O High-Impedance from  
MCLR Low or Watchdog  
Timer Reset  
100  
SY25 TBOR  
Brown-out Reset Pulse  
Width  
1
s  
VDD VBOR  
TRST  
Internal State Reset Time  
50  
20  
s  
s  
SY71 TPM  
Program Memory Wake-up  
Time  
Sleep wake-up with  
VREGS = 0  
1
s  
s  
s  
s  
Sleep wake-up with  
VREGS = 1  
SY72 TLVR  
Low-Voltage Regulator  
Wake-up Time  
90  
Sleep wake-up with  
VREGS = 0  
70  
Sleep wake-up with  
VREGS = 1  
TDSWU Deep Sleep Wake-up Time  
200  
VCAP fully discharged before  
wake-up  
2010-2011 Microchip Technology Inc.  
DS39996F-page 373  
PIC24FJ128GA310 FAMILY  
TABLE 32-25: A/D MODULE SPECIFICATIONS  
Standard Operating Conditions: 2V to 3.6V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 2.2  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05 VREFH  
AD06 VREFL  
AD07 VREF  
Reference Voltage High  
Reference Voltage Low  
AVSS + 1.7  
AVSS  
AVDD  
V
V
V
AVDD – 1.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS – 0.3  
Analog Input  
AD10 VINH-VINL Full-Scale Input Span  
VREFL  
VREFH  
AVDD + 0.3  
AVDD/3  
V
V
V
(Note 2)  
AD11 VIN  
AD12 VINL  
Absolute Input Voltage  
AVSS – 0.3  
AVSS – 0.3  
Absolute VINL Input  
Voltage  
AD13  
Leakage Current  
±1.0  
±610  
2.5K  
nA  
VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V,  
Source Impedance = 2.5 k  
AD17 RIN  
RecommendedImpedance  
of Analog Voltage Source  
10-bit  
A/D Accuracy  
AD20B Nr  
Resolution  
12  
±1  
bits  
AD21B INL  
Integral Nonlinearity  
<±2  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
AD22B DNL  
AD23B GERR  
AD24B EOFF  
AD25B  
Differential Nonlinearity  
Gain Error  
±1  
±1  
<±1  
±3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Offset Error  
±2  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Monotonicity(1)  
Guaranteed  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
2: Measurements are taken with the external VREF+ and VREF- used as the A/D voltage reference.  
DS39996F-page 374  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
TABLE 32-26: A/D CONVERSION TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 2V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
A/D Clock Period  
A/D Internal RC Oscillator Period  
75  
ns  
ns  
TCY = 75 ns, AD1CON3  
in default state  
250  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
tSAMP  
Conversion Time  
Throughput Rate  
Sample Time  
14  
1
200  
TAD  
ksps AVDD > 2.7V  
TAD  
Clock Parameters  
AD61  
tPSS  
Sample Start Delay from Setting  
Sample bit (SAMP)  
2
3
TAD  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 375  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 376  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
33.0 PACKAGING INFORMATION  
33.1 Package Marking Information  
64-Lead QFN (9x9x0.9 mm)  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
PIC24FJ128  
GA306-I/MR  
e
3
1150017  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC24FJ128  
GA306-I/  
PT  
e
3
1120017  
80-Lead TQFP (12x12x1mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24F128GA  
308-I/PT  
e
3
1150017  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 377  
PIC24FJ128GA310 FAMILY  
33.2 Package Marking Information  
100-Lead TQFP (12x12x1 mm)  
Example  
310-I/PT  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ128GA  
e
3
1110017  
100-Lead TQFP (14x14x1mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ128GA  
310-I/PF  
e
3
1150017  
121-BGA (10x10x1.1 mm)  
Example  
PIC24FJ128  
GA310-I/BG  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
e
3
1120017  
DS39996F-page 378  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
33.3 Package Details  
The following sections give the technical details of the packages.  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS39996F-page 379  
PIC24FJ128GA310 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39996F-page 380  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS39996F-page 381  
PIC24FJ128GA310 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
c
NOTE 2  
α
A
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
DS39996F-page 382  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
2010-2011 Microchip Technology Inc.  
DS39996F-page 383  
PIC24FJ128GA310 FAMILY  
)ꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
NOTE 1  
123  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
M
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
89ꢒ  
@ꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓꢛꢎ1  
DS39996F-page 384  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS39996F-page 385  
PIC24FJ128GA310 FAMILY  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
e
E
E1  
N
b
123  
NOTE 2  
NOTE 1  
c
α
A
φ
L
A1  
β
A2  
L1  
6ꢄꢃ&!  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
89ꢒ  
ꢒꢚ8  
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
8
ꢀꢓꢓ  
ꢓꢁꢔꢓꢅ1ꢗ+  
M
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
ꢖꢎ  
ꢖꢀ  
7
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢀꢁꢓꢓ  
M
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢐ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢐ  
ꢀꢐꢝ  
)
ꢓꢁꢀ@  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢀꢓꢓ1  
DS39996F-page 386  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
2010-2011 Microchip Technology Inc.  
DS39996F-page 387  
PIC24FJ128GA310 FAMILY  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢓꢗꢇMꢇꢘꢁꢚꢘꢁꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
e
E1  
E
b
N
α
NOTE 1  
1 23  
NOTE 2  
A
φ
c
A2  
A1  
β
L1  
L
6ꢄꢃ&!  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
89ꢒ  
ꢒꢚ8  
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
8
ꢀꢓꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
ꢖꢎ  
ꢖꢀ  
7
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢀꢁꢓꢓ  
M
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀ;ꢁꢓꢓꢅ1ꢗ+  
ꢀ;ꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢀꢀꢓ1  
DS39996F-page 388  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS39996F-page 389  
PIC24FJ128GA310 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39996F-page 390  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2011 Microchip Technology Inc.  
DS39996F-page 391  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 392  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
APPENDIX A: REVISION HISTORY  
Revision A (March 2010)  
Original data sheet for the PIC24FJ128GA310 family of  
devices.  
Revision B (May 2011)  
Changes in Reset values for TRISA in Table 4-12. Edits  
to the “Special Microcontroller Features:”  
Revision C (July 2011)  
Updated the values in Section 32.0 “Electrical  
Characteristics”.  
Special  
Function  
Register  
addresses have been changed. The OCTRIG1 and  
OCTRIG2 pins have been removed. Minor text edits  
throughout the document.  
Revision D (August 2011)  
Updated VBAT specification; updated maximum values  
for Section 32.0 “Electrical Characteristics”.  
Revision E (October 2011)  
• Removed the RTCBAT bit from the CW4<9>  
register.  
• Added the IDD/IPD numbers in the Section 32.0  
“Electrical Characteristics”.  
• Added details on the VBAT pin capacitor.  
• Added Section 24.3 “A/D Operation with Vbat”.  
Revision F (November 2011)  
Updated the values in Section 32.0 “Electrical  
Characteristics”. Minor text edits throughout the  
document.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 393  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 394  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
INDEX  
Shared I/O Port Structure......................................... 167  
SPI Master, Frame Master Connection .................... 230  
SPI Master, Frame Slave Connection ...................... 230  
A
A/D  
Extended DMA Operations ....................................... 297  
Operation .................................................................. 295  
Registers................................................................... 298  
AC Characteristics  
SPI Master/Slave Connection (Enhanced  
Buffer Modes)................................................... 229  
SPI Master/Slave Connection (Standard Mode)....... 229  
SPI Slave, Frame Master Connection ...................... 230  
SPI Slave, Frame Slave Connection ........................ 230  
SPIx Module (Enhanced Mode)................................ 223  
SPIx Module (Standard Mode) ................................. 222  
System Clock............................................................ 145  
Triple Comparator Module........................................ 315  
UART (Simplified)..................................................... 241  
Watchdog Timer (WDT)............................................ 344  
A/D Conversion Timing............................................. 375  
Internal RC Accuracy................................................ 371  
Load Conditions and Requirements for  
Specifications.................................................... 369  
Alternate Interrupt Vector Table (AIVT) .............................. 95  
Assembler  
MPASM Assembler................................................... 348  
B
C
Block Diagrams  
C Compilers  
MPLAB C18.............................................................. 348  
Charge Time Measurement Unit. See CTMU.  
10-Bit A/D Converter Analog Input Model................. 311  
12-Bit A/D Converter................................................. 296  
16-Bit Asynchronous Timer3 and Timer5 ................. 201  
16-Bit Synchronous Timer2 and Timer4 ................... 201  
16-Bit Timer1 Module................................................ 197  
32-Bit Timer2/3 and Timer4/5 ................................... 200  
Accessing Program Space Using  
Table Operations ................................................ 71  
Addressing for Table Registers................................... 83  
Buffer Address Generation in PIA Mode................... 299  
CALL Stack Frame...................................................... 68  
Comparator Voltage Reference ................................ 321  
CPU Programmer’s Model.......................................... 37  
CRC .......................................................................... 289  
CRC Shift Engine Detail............................................ 289  
CTMU Connections and Internal Configuration  
Code Examples  
Basic Sequence for Clock Switching........................ 151  
Configuring UART1 Input/Output  
Functions (PPS) ............................................... 177  
EDS Read From Program Memory in Assembly........ 72  
EDS Read in Assembly .............................................. 66  
EDS Write in Assembly .............................................. 67  
Erasing a Program Memory Block (Assembly)........... 86  
Erasing a Program Memory Block (C Language)....... 87  
Initiating a Programming Sequence ........................... 87  
Loading the Write Buffers........................................... 87  
Port Read/Write in Assembly.................................... 172  
Port Read/Write in C................................................. 172  
PWRSAV Instruction Syntax .................................... 156  
Setting the RTCWREN Bit........................................ 276  
Single-Word Flash Programming ............................... 88  
Single-Word Flash Programming (C Language) ........ 88  
Code Protection................................................................ 345  
Code Segment Protection ........................................ 345  
Configuration Options....................................... 345  
Configuration Protection........................................... 346  
General Segment Protection .................................... 345  
Comparator Voltage Reference........................................ 321  
Configuring ............................................................... 321  
Configuration Bits ............................................................. 333  
Core Features..................................................................... 11  
CPU  
Arithmetic Logic Unit (ALU) ........................................ 40  
Control Registers........................................................ 38  
Core Registers............................................................ 36  
Programmer’s Model .................................................. 35  
CRC  
Polynomials .............................................................. 290  
Setup Examples for 16 and 32-Bit Polynomials ....... 290  
User Interface........................................................... 290  
CTMU  
Measuring Capacitance............................................ 323  
Measuring Time........................................................ 324  
Pulse Delay and Generation..................................... 324  
Customer Change Notification Service............................. 400  
Customer Notification Service .......................................... 400  
Customer Support............................................................. 400  
for Capacitance Measurement.......................... 324  
CTMU Typical Connections and Internal  
Configuration for Pulse Delay Generation ........ 325  
CTMU Typical Connections and Internal  
Configuration for Time Measurement ............... 325  
Data Access From Program Space Address  
Generation .......................................................... 70  
Data Signal Modulator .............................................. 249  
DMA............................................................................ 75  
EDS Address Generation for Read............................. 66  
EDS Address Generation for Write............................. 67  
High/Low-Voltage Detect (HLVD) ............................. 331  
2
I C Module................................................................ 234  
Individual Comparator Configurations,  
CREF = 0.......................................................... 316  
Individual Comparator Configurations,  
CREF = 1 and CVREFP = 0 ............................. 317  
Individual Comparator Configurations,  
CREF = 1 and CVREFP = 1 ............................. 317  
Input Capture ............................................................ 205  
LCD Controller .......................................................... 265  
On-Chip Regulator Connections............................... 343  
Output Compare (16-Bit Mode)................................. 212  
Output Compare (Double-Buffered,  
16-Bit PWM Mode) ........................................... 214  
PCI24FJ256GA310 Family (General)......................... 16  
PIC24F CPU Core ...................................................... 36  
PSV Operation (Lower Word) ..................................... 73  
PSV Operation (Upper Word) ..................................... 73  
Reset System.............................................................. 89  
RTCC........................................................................ 275  
2010-2011 Microchip Technology Inc.  
DS39996F-page 395  
PIC24FJ128GA310 FAMILY  
Equations  
D
16-Bit, 32-Bit CRC Polynomials................................ 290  
Data Memory  
Address Space............................................................43  
A/D Conversion Clock Period ................................... 311  
Baud Rate Reload Calculation.................................. 235  
Calculating the PWM Period..................................... 214  
Calculation for Maximum PWM Resolution .............. 215  
Relationship Between Device and  
Extended Data Space (EDS) ......................................65  
Memory Map ...............................................................43  
Near Data Space ........................................................44  
SFR Space..................................................................44  
Software Stack............................................................68  
Space Organization, Alignment ..................................44  
Data Signal Modulator.......................................................249  
Data Signal Modulator (DSM) ...........................................249  
DC Characteristics  
SPI Clock Speed .............................................. 231  
UART Baud Rate with BRGH = 0............................. 242  
UART Baud Rate with BRGH = 1............................. 242  
Errata.................................................................................. 10  
Extended Data Space (EDS)............................................ 253  
Comparator ...............................................................368  
Comparator Voltage Reference ................................368  
CTMU Current Source ..............................................367  
I/O Pin Input Specifications.......................................365  
I/O Pin Output Specifications....................................366  
Idle Current ...............................................................362  
Operating Current .....................................................361  
Power-Down Current ................................................363  
Program Memory ......................................................366  
Resets.......................................................................364  
Temperature and Voltage Specifications..................361  
Vbat Operating Voltage Specifications .....................367  
Development Support .......................................................347  
Device Features  
100-Pin........................................................................15  
64-Pin..........................................................................13  
80-Pin..........................................................................14  
Direct Memory Access Controller. See DMA.  
DMA ....................................................................................75  
Channel Trigger Sources............................................82  
Peripheral Module Disable (PMD) ..............................78  
Summary of Operations..............................................76  
Types of Transfers......................................................77  
Typical Setup ..............................................................78  
DMA Controller....................................................................12  
F
Flash Configuration Word Locations................................. 333  
Flash Configuration Words ................................................. 42  
Flash Program Memory ...................................................... 83  
and Table Instructions ................................................ 83  
Enhanced ICSP Operation ......................................... 84  
JTAG Operation.......................................................... 84  
Programming Algorithm.............................................. 86  
Programming Operations............................................ 84  
RTSP Operation ......................................................... 84  
Single-Word Programming ......................................... 88  
H
High/Low-Voltage Detect (HLVD)..................................... 331  
I
I/O Ports  
Analog Port Pins Configuration (ANSx).................... 168  
Analog/Digital Function of an I/O Pin........................ 168  
Input Change Notification ......................................... 172  
Open-Drain Configuration......................................... 168  
Parallel (PIO) ............................................................ 167  
Peripheral Pin Select ................................................ 173  
Pull-ups and Pull-Downs........................................... 172  
Selectable Input Sources.......................................... 174  
2
I C  
E
Clock Rates .............................................................. 235  
Communicating as Master in Single  
Electrical Characteristics  
Absolute Maximum Ratings ......................................359  
Capacitive Loading on Output Pin ............................369  
CLKO and I/O Timing................................................372  
External Clock Timing ...............................................370  
High/Low-Voltage Detect ..........................................368  
Internal Voltage Regulator Specifications.................367  
PLL Clock Timing Specifications...............................371  
RC Oscillator Start-up Time ......................................371  
Reset and Brown-out Reset Requirements ..............373  
Thermal Conditions...................................................360  
V/F Graph .................................................................360  
Enhanced Parallel Master Port (EPMP)............................253  
Enhanced Parallel Master Port. See EPMP......................253  
EPMP  
Master Environment ......................................... 233  
Reserved Addresses ................................................ 235  
Setting Baud Rate as Bus Master............................. 235  
Slave Address Masking ............................................ 235  
Input Capture  
32-Bit Cascaded Mode ............................................. 206  
Operations ................................................................ 206  
Synchronous and Trigger Modes.............................. 205  
Input Capture with Dedicated Timers ............................... 205  
Input Voltage Levels for Port or Pin Tolerated  
Description Input....................................................... 168  
Instruction Set  
Overview................................................................... 353  
Summary .................................................................. 351  
Symbols Used in Opcode Descriptions .................... 352  
Interfacing Program and Data Spaces................................ 69  
Key Features.............................................................253  
Package Variations...................................................253  
2
Inter-Integrated Circuit. See I C. ...................................... 233  
Internet Address ............................................................... 400  
Interrupt Vector Table (IVT)................................................ 95  
DS39996F-page 396  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
Interrupts  
Control and Status Registers...................................... 98  
Implemented Vectors.................................................. 97  
Power-Saving Features.................................................... 155  
Clock Frequency and Clock Switching ..................... 165  
Doze Mode ............................................................... 165  
Instruction-Based Modes.......................................... 156  
Deep Sleep....................................................... 158  
Idle.................................................................... 157  
Sleep ................................................................ 157  
Low-Voltage  
Reset Sequence ......................................................... 95  
Setup and Service Procedures ................................. 143  
Trap Vectors ............................................................... 96  
Vector Table................................................................ 96  
J
Retention Regulator.......................................... 157  
Vbat Mode ................................................................ 160  
Product Identification System ........................................... 402  
Program Memory  
JTAG Interface.................................................................. 346  
K
Key Features..................................................................... 333  
Access Using Table Instructions ................................ 71  
Address Construction ................................................. 69  
Address Space ........................................................... 41  
Flash Configuration Words......................................... 42  
Hard Memory Vectors................................................. 42  
Memory Maps............................................................. 41  
Organization ............................................................... 42  
Reading From Program Memory Using EDS ............. 72  
Program Verification ......................................................... 345  
Pulse-Width Modulation (PWM) Mode.............................. 213  
Pulse-Width Modulation. See PWM.  
L
LCD Controller .................................................................... 12  
Liquid Crystal Display (LCD) Controller ............................ 265  
M
Memory Organization.......................................................... 41  
Microchip Internet Web Site.............................................. 400  
Modulator. See Data Signal Modulator. ............................ 249  
MPLAB ASM30 Assembler, Linker, Librarian ................... 348  
MPLAB Integrated Development  
Environment Software............................................... 347  
MPLAB PM3 Device Programmer .................................... 350  
MPLAB REAL ICE In-Circuit Emulator System................. 349  
MPLINK Object Linker/MPLIB Object Librarian ................ 348  
PWM  
Duty Cycle and Period.............................................. 214  
R
Reader Response............................................................. 401  
Real-Time Clock and Calendar (RTCC) ........................... 275  
Register Maps  
N
Near Data Space ................................................................ 44  
A/D Converter............................................................. 56  
Analog Configuration.................................................. 57  
Comparators............................................................... 61  
CPU Core ................................................................... 45  
CRC............................................................................ 62  
CTMU ......................................................................... 57  
Data Signal Modulator (DSM)..................................... 61  
Deep Sleep................................................................. 64  
DMA............................................................................ 58  
O
On-Chip Voltage Regulator............................................... 343  
POR .......................................................................... 343  
Standby Mode........................................................... 343  
Oscillator Configuration  
Bit Values for Clock Selection................................... 146  
Clock Switching......................................................... 150  
Sequence.......................................................... 151  
Control Registers ...................................................... 147  
CPU Clocking Scheme ............................................. 146  
Initial Configuration on POR ..................................... 146  
Reference Clock Output............................................ 152  
Secondary Oscillator (SOSC) ................................... 152  
Output Compare  
2
I C .............................................................................. 51  
ICN ............................................................................. 46  
Input Capture.............................................................. 49  
Interrupt Controller...................................................... 47  
LCD Controller............................................................ 59  
NVM............................................................................ 64  
Output Compare......................................................... 50  
Pad Configuration....................................................... 55  
Parallel Master/Slave Port.......................................... 60  
Peripheral Pin Select.................................................. 62  
PMD............................................................................ 64  
PORTA ....................................................................... 53  
PORTB ....................................................................... 53  
PORTC....................................................................... 54  
PORTD....................................................................... 54  
PORTE ....................................................................... 54  
PORTF ....................................................................... 55  
PORTG....................................................................... 55  
RTCC.......................................................................... 61  
SPI.............................................................................. 53  
System Control........................................................... 63  
Timers......................................................................... 48  
UART.......................................................................... 52  
32-Bit Cascaded Mode ............................................. 211  
Synchronous and Trigger Modes.............................. 211  
Output Compare with Dedicated Timers........................... 211  
P
Packaging ......................................................................... 377  
Details....................................................................... 379  
Marking ..................................................................... 377  
Peripheral Pin Select (PPS).............................................. 173  
Available Peripherals and Pins ................................. 173  
Configuration Control................................................ 176  
Considerations for Use ............................................. 177  
Input Mapping ........................................................... 174  
Mapping Exceptions.................................................. 176  
Output Mapping ........................................................ 175  
Peripheral Priority ..................................................... 173  
Registers................................................................... 178  
Pin Descriptions  
121-Pin Devices (BGA)................................................. 7  
Pinout Descriptions ............................................................. 17  
2010-2011 Microchip Technology Inc.  
DS39996F-page 397  
PIC24FJ128GA310 FAMILY  
Registers  
AD1CHITH (A/D Scan Compare Hit, High Word) .....308  
IFS2 (Interrupt Flag Status 2)................................... 107  
IFS3 (Interrupt Flag Status 3)................................... 108  
IFS4 (Interrupt Flag Status 4)................................... 109  
IFS5 (Interrupt Flag Status 5)................................... 110  
IFS6 (Interrupt Flag Status 6)................................... 111  
IFS7 (Interrupt Flag Status 7)................................... 111  
INTCON1 (Interrupt Control 1).................................. 101  
INTCON2 (Interrupt Control 2).................................. 102  
INTTREG (Interrupt Controller Test)......................... 142  
IPC0 (Interrupt Priority Control 0)............................. 121  
IPC1 (Interrupt Priority Control 1)............................. 122  
IPC10 (Interrupt Priority Control 10) ......................... 131  
IPC11 (Interrupt Priority Control 11) ......................... 132  
IPC12 (Interrupt Priority Control 12) ......................... 133  
IPC13 (Interrupt Priority Control 13) ......................... 134  
IPC15 (Interrupt Priority Control 15) ......................... 135  
IPC16 (Interrupt Priority Control 16) ......................... 136  
IPC18 (Interrupt Priority Control 18) ......................... 137  
IPC19 (Interrupt Priority Control 19) ......................... 137  
IPC2 (Interrupt Priority Control 2)............................. 123  
IPC20 (Interrupt Priority Control 20) ......................... 138  
IPC21 (Interrupt Priority Control 21) ......................... 139  
IPC22 (Interrupt Priority Control 22) ......................... 140  
IPC25 (Interrupt Priority Control 25) ......................... 141  
IPC29 (Interrupt Priority Control 29) ......................... 141  
IPC3 (Interrupt Priority Control 3)............................. 124  
IPC4 (Interrupt Priority Control 4)............................. 125  
IPC5 (Interrupt Priority Control 5)............................. 126  
IPC6 (Interrupt Priority Control 6)............................. 127  
IPC7 (Interrupt Priority Control 7)............................. 128  
IPC8 (Interrupt Priority Control 8)............................. 129  
IPC9 (Interrupt Priority Control 9)............................. 130  
LCDCON (LCD Control) ........................................... 266  
LCDCREG (LCD Charge Pump Control).................. 268  
LCDDATAx (LCD Pixel Data x) ................................ 270  
LCDPS (LCD Phase)................................................ 269  
LCDREF (LCD Reference Ladder Control) .............. 272  
LCDSEx (LCD Segment x Enable)........................... 270  
MDCAR (Modulator Carrier Control)......................... 252  
MDCON (Modulator Control) .................................... 250  
MDSRC (Modulator Source Control) ........................ 251  
MINSEC (RTCC Minutes and Seconds Value)......... 282  
MTHDY (RTCC Month and Day Value).................... 281  
OCxCON1 (Output Compare x Control 1) ................ 216  
OCxCON2 (Output Compare x Control 2) ................ 218  
OSCCON (Oscillator Control)................................... 147  
OSCTUN (FRC Oscillator Tune)............................... 150  
PADCFG1 (Pad Configuration Control).................... 263  
PMCON1 (EPMP Control 1) ..................................... 255  
PMCON2 (EPMP Control 2) ..................................... 256  
PMCON3 (EPMP Control 3) ..................................... 257  
PMCON4 (EPMP Control 4) ..................................... 258  
PMCSxBS (Chip Select x Base Address)................. 260  
PMCSxCF (Chip Select x Configuration).................. 259  
PMCSxMD (Chip Select x Mode) ............................. 261  
PMSTAT (EPMP Status, Slave Mode) ..................... 262  
RCFGCAL (RTCC Calibration and Configuration).... 277  
RCON (Reset Control)................................................ 90  
RCON2 (Reset and System Control 2)..................... 164  
RCON2 (Reset Control 2)........................................... 92  
REFOCON (Reference Oscillator Control) ............... 153  
RPINR0 (PPS Input 0).............................................. 178  
RPINR1 (PPS Input 1).............................................. 178  
RPINR10 (PPS Input 10).......................................... 182  
RPINR11 (PPS Input 11).......................................... 182  
AD1CHITL (A/D Scan Compare Hit, Low Word).......308  
AD1CHS (A/D Sample Select)..................................306  
AD1CON1 (A/D Control 1)........................................300  
AD1CON2 (A/D Control 2)........................................302  
AD1CON3 (A/D Control 3)........................................303  
AD1CON4 (A/D Control 4)........................................304  
AD1CON5 (A/D Control 5)........................................305  
AD1CSSH (A/D Input Scan Select, High Word) .......309  
AD1CSSL (A/D Input Scan Select, Low Word).........309  
AD1CTMENH (CTMU Enable, High Word)...............310  
AD1CTMENL (CTMU Enable, Low Word) ................310  
ALCFGRPT (Alarm Configuration)............................280  
ALMINSEC (Alarm Minutes and Seconds Value) .....284  
ALMTHDY (Alarm Month and Day Value) ................283  
ALWDHR (Alarm Weekday and Hours Value)..........283  
ANCFG (A/D Band Gap Reference) .........................307  
ANSA (PORTA Analog Function Selection)..............169  
ANSB (PORTB Analog Function Selection)..............169  
ANSC (PORTC Analog Function Selection) .............170  
ANSD (PORTD Analog Function Selection) .............170  
ANSE (PORTE Analog Function Selection)..............171  
ANSG (PORTG Analog Function Selection).............171  
CLKDIV (Clock Divider) ............................................149  
CMSTAT (Comparator Status)..................................319  
CMxCON (Comparator x Control,  
Comparators 1-3)..............................................318  
CORCON (CPU Core Control)............................ 39, 100  
CRCCON1 (CRC Control 1) .....................................292  
CRCCON2 (CRC Control 2) .....................................293  
CRCXORH (CRC XOR High) ...................................294  
CRCXORL (CRC XOR Polynomial, Low Byte) .........293  
CTMUCON1 (CTMU Control 1) ................................326  
CTMUCON2 (CTMU Control 2) ................................327  
CTMUICON (CTMU Current Control) .......................329  
CVRCON (Comparator Voltage  
Reference Control)............................................322  
CW1 (Flash Configuration Word 1)...........................334  
CW2 (Flash Configuration Word 2)...........................336  
CW3 (Flash Configuration Word 3)...........................338  
CW4 (Flash Configuration Word 4)...........................340  
DEVID (Device ID)....................................................342  
DEVREV (Device Revision)......................................342  
DMACHn (DMA Channel n Control) ...........................80  
DMACON (DMA Engine Control)................................79  
DMAINTn (DMA Channel n Interrupt) .........................81  
DSCON (Deep Sleep Control) ..................................162  
DSWAKE (Deep Sleep Wake-up Source) ................163  
HLVDCON (High/Low-Voltage Detect Control).........332  
I2CxCON (I2Cx Control) ...........................................236  
I2CxMSK (I2Cx Slave Mode Address Mask) ............239  
I2CxSTAT (I2Cx Status) ...........................................238  
ICxCON1 (Input Capture x Control 1) .......................207  
ICxCON2 (Input Capture x Control 2) .......................208  
IEC0 (Interrupt Enable Control 0) .............................112  
IEC1 (Interrupt Enable Control 1) .............................114  
IEC2 (Interrupt Enable Control 2) .............................116  
IEC3 (Interrupt Enable Control 3) .............................117  
IEC4 (Interrupt Enable Control 4) .............................118  
IEC5 (Interrupt Enable Control 5) .............................119  
IEC6 (Interrupt Enable Control 6) .............................120  
IEC7 (Interrupt Enable Control 7) .............................120  
IFS0 (Interrupt Flag Status 0) ...................................103  
IFS1 (Interrupt Flag Status 1) ...................................105  
DS39996F-page 398  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
RPINR17 (PPS Input 17) .......................................... 183  
Revision History................................................................ 393  
RTCC  
RPINR18 (PPS Input 18) .......................................... 183  
RPINR19 (PPS Input 19) .......................................... 184  
RPINR2 (PPS Input 2) .............................................. 179  
RPINR20 (PPS Input 20) .......................................... 184  
RPINR21 (PPS Input 21) .......................................... 185  
RPINR22 (PPS Input 22) .......................................... 185  
RPINR23 (PPS Input 23) .......................................... 186  
RPINR27 (PPS Input 27) .......................................... 186  
RPINR3 (PPS Input 3) .............................................. 179  
RPINR30 (PPS Input 30) .......................................... 187  
RPINR31 (PPS Input 31) .......................................... 187  
RPINR4 (PPS Input 4) .............................................. 180  
RPINR7 (PPS Input 7) .............................................. 180  
RPINR8 (PPS Input 8) .............................................. 181  
RPINR9 (PPS Input 9) .............................................. 181  
RPOR0 (PPS Output 0) ............................................ 188  
RPOR1 (PPS Output 1) ............................................ 188  
RPOR10 (PPS Output 10) ........................................ 193  
RPOR11 (PPS Output 11) ........................................ 193  
RPOR12 (PPS Output 12) ........................................ 194  
RPOR13 (PPS Output 13) ........................................ 194  
RPOR14 (PPS Output 14) ........................................ 195  
RPOR15 (PPS Output 15) ........................................ 195  
RPOR2 (PPS Output 2) ............................................ 189  
RPOR3 (PPS Output 3) ............................................ 189  
RPOR4 (PPS Output 4) ............................................ 190  
RPOR5 (PPS Output 5) ............................................ 190  
RPOR6 (PPS Output 6) ............................................ 191  
RPOR7 (PPS Output 7) ............................................ 191  
RPOR8 (PPS Output 8) ............................................ 192  
RPOR9 (PPS Output 9) ............................................ 192  
RTCCSWT (Power Control and Sample  
Window Timer).................................................. 285  
RTCPWC (RTCC Power Control)............................. 279  
SPIxCON1 (SPIx Control 1)...................................... 226  
SPIxCON2 (SPIx Control 2)...................................... 228  
SPIxSTAT (SPIx Status and Control) ....................... 224  
SR (ALU STATUS) ............................................... 38, 99  
T1CON (Timer1 Control)........................................... 198  
TxCON (Timer2 and Timer4 Control)........................ 202  
TyCON (Timer3 and Timer5 Control)........................ 203  
UxMODE (UARTx Mode).......................................... 244  
UxSTA (UARTx Status and Control)......................... 246  
WKDYHR (RTCC Weekday and Hours Value)......... 282  
YEAR (RTCC Year Value)........................................ 281  
Alarm Configuration.................................................. 286  
Alarm Mask Settings (figure) .................................... 287  
Calibration ................................................................ 286  
Clock Source Selection ............................................ 276  
Power Control........................................................... 287  
Register Mapping ..................................................... 276  
Source Clock ............................................................ 275  
Write Lock................................................................. 276  
S
Selective Peripheral Power Control.................................. 165  
Serial Peripheral Interface (SPI)....................................... 221  
Serial Peripheral Interface. See SPI.  
SFR Space ......................................................................... 44  
Software Simulator (MPLAB SIM) .................................... 349  
Software Stack ................................................................... 68  
Special Features................................................................. 12  
SPI.................................................................................... 221  
T
Timer1 .............................................................................. 197  
Timer2/3 and Timer4/5 ..................................................... 199  
Timing Diagrams  
CLKO and I/O Timing ............................................... 372  
External Clock .......................................................... 370  
Triple Comparator............................................................. 315  
Triple Comparator Module................................................ 315  
U
UART................................................................................ 241  
Baud Rate Generator (BRG) .................................... 242  
Infrared Support........................................................ 243  
Operation of UxCTS and UxRTS Pins...................... 243  
Receiving  
8-Bit or 9-Bit Data Mode................................... 243  
Transmitting  
8-Bit Data Mode................................................ 243  
9-Bit Data Mode................................................ 243  
Break and Sync Sequence............................... 243  
Universal Asynchronous Receiver Transmitter. See UART.  
W
Watchdog Timer (WDT).................................................... 344  
Control Register........................................................ 344  
Windowed Operation................................................ 344  
WWW Address ................................................................. 400  
WWW, On-Line Support ..................................................... 10  
Resets  
BOR (Brown-out Reset).............................................. 89  
Brown-out Reset (BOR).............................................. 93  
Clock Source Selection............................................... 93  
CM (Configuration Mismatch Reset)........................... 89  
Delay Times................................................................ 94  
Device Times .............................................................. 93  
IOPUWR (Illegal Opcode Reset) ................................ 89  
MCLR (Pin Reset)....................................................... 89  
POR (Power-on Reset)............................................... 89  
RCON Flags, Operation.............................................. 93  
SFR States.................................................................. 93  
SWR (RESET Instruction)........................................... 89  
TRAPR (Trap Conflict Reset)...................................... 89  
UWR (Uninitialized W Register Reset) ....................... 89  
WDT (Watchdog Timer Reset).................................... 89  
2010-2011 Microchip Technology Inc.  
DS39996F-page 399  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 400  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 401  
PIC24FJ128GA310 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS39996E  
Application (optional):  
Would you like a reply?  
Y
N
Device: PIC24FJ128GA310 Family  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39996F-page 402  
2010-2011 Microchip Technology Inc.  
PIC24FJ128GA310 FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PIC 24 FJ 128 GA3 10 T - I / PT - XXX  
a)  
b)  
PIC24FJ64GA306-I/MR:  
PIC24F device with LCD Controller and nano-  
Watt XLP Technology, 64 KB program memory,  
64-pin, Industrial temp., QFN package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
PIC24FJ128GA308-I/PT:  
PIC24F device with LCD Controller and nano-  
Watt XLP Technology, 128 KB program  
memory, 80-pin, Industrial temp., TQFP  
package.  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
c)  
PIC24FJ128GA210-I/BG:  
PIC24F device with LCD Controller and nano-  
Watt XLP Technology, 128 KB program  
memory, 121-pin, Industrial temp., BGA  
package.  
Pattern  
Architecture  
24 = 16-bit modified Harvard without DSP  
Flash Memory Family FJ = Flash program memory  
Product Group  
Pin Count  
GA3 = General-purpose microcontrollers with  
LCD Controller and nanoWatt XLP Technology  
06 = 64-pin  
08 = 80-pin  
10 = 100-pin (TQFP) and 121-pin (BGA)  
Temperature Range  
Package  
I
= -40C to +85C (Industrial)  
BG = 121-pin (10x10x1.4 mm) BGA package  
PT = 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack)  
PF = 100-lead (14x14x1 mm) TQFP (Thin Quad Flatpack)  
PT = 80-pin (12x12x1 mm) TQFP (Thin Quad Flatpack)  
PT = 64-lead (10x10x1 mm) TQFP (Thin Quad Flatpack)  
MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack, No Lead)  
Pattern  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
ES = Engineering Sample  
2010-2011 Microchip Technology Inc.  
DS39996F-page 403  
PIC24FJ128GA310 FAMILY  
NOTES:  
DS39996F-page 404  
2010-2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010-2011, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-759-1  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2010-2011 Microchip Technology Inc.  
DS39996F-page 405  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/02/11  
DS39996F-page 406  
2010-2011 Microchip Technology Inc.  

相关型号:

PIC24FJ128GA308-I/PT

PIC24FJ128GA308-I/PT
MICROCHIP

PIC24FJ128GA310

64/80/100-Pin, General Purpose, 16-Bit Flash Microcontrollers with LCD Controller and nanoWatt XLP Technology
MICROCHIP

PIC24FJ128GA406-I/MR

MICROCONTROLLER
MICROCHIP

PIC24FJ128GA406-I/PT

MICROCONTROLLER
MICROCHIP

PIC24FJ128GA406T-I/PT

MICROCONTROLLER
MICROCHIP

PIC24FJ128GA702-I/MV

IC MCU 16-BIT 128KB FLASH 28UQFN
MICROCHIP

PIC24FJ128GB

64/80/100-Pin, 16-Bit Flash Microcontrollers with USB On-The-Go (OTG)
MICROCHIP

PIC24FJ128GB106

64/80/100-Pin, 16-Bit Flash Microcontrollers with USB On-The-Go (OTG)
MICROCHIP

PIC24FJ128GB106-I/PT

16-BIT, FLASH, 32 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-64
MICROCHIP

PIC24FJ128GB108

64/80/100-Pin, 16-Bit Flash Microcontrollers with USB On-The-Go (OTG)
MICROCHIP

PIC24FJ128GB108-I

64/80/100-Pin, 16-Bit Flash Microcontrollers with USB On-The-Go (OTG)
MICROCHIP
MICROCHIP