PIC24FJ256DA206T-I/MR [MICROCHIP]

64/100-Pin, 16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG);
PIC24FJ256DA206T-I/MR
型号: PIC24FJ256DA206T-I/MR
厂家: MICROCHIP    MICROCHIP
描述:

64/100-Pin, 16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG)

微控制器
文件: 总408页 (文件大小:3296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC24FJ256DA210 Family  
Data Sheet  
64/100-Pin,  
16-Bit Flash Microcontrollers  
with Graphics Controller and  
USB On-The-Go (OTG)  
2010 Microchip Technology Inc.  
DS39969B  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-235-9  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39969B-page 2  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
64/100-Pin, 16-Bit Flash Microcontrollers  
with Graphics Controller and USB On-The-Go (OTG)  
Graphics Controller Features:  
Peripheral Features:  
• Three Graphics Hardware Accelerators to Facilitate  
Rendering of Block Copying, Text and Unpacking of  
Compressed Data  
• Color Look-up Table (CLUT) with Maximum of 256 Entries  
• 1/2/4/8/16 bits-per-pixel (bpp) Color Depth Set at  
Run Time  
• Display Resolution Programmable According to  
Frame Buffer:  
- Supports direct access to external memory on  
devices with EPMP  
• Enhanced Parallel Master Port/Parallel Slave Port  
(EPMP/PSP), 100-pin devices only:  
- Direct access from CPU with an Extended Data  
Space (EDS) interface  
- 4, 8 and 16-bit wide data bus  
- Up to 23 programmable address lines  
- Up to 2 chip select lines  
- Up to 2 Acknowledgement lines (one per chip  
select)  
- Programmable address/data multiplexing  
- Programmable address and data Wait states  
- Programmable polarity on control signals  
• Peripheral Pin Select:  
- Resolution supported is up to 480x272 @ 60 Hz,  
16 bpp; 640x480 @ 30 Hz, 16 bpp or  
640x480 @ 60 Hz, 8 bpp  
- Up to 44 available pins (100-pin devices)  
• Three 3-Wire/4-Wire SPI modules (supports 4 Frame  
modes)  
• Three I C™ modules Supporting Multi-Master/Slave  
modes and 7-Bit/10-Bit Addressing  
• Four UART modules:  
• Supports Various Display Interfaces:  
- 4/8/16-bit Monochrome STN  
- 4/8/16-bit Color STN  
- 9/12/18/24-bit Color TFT (18 and 24-bit displays  
are connected as 16-bit, 5-6-5 RGB color format)  
2
Universal Serial Bus Features:  
- Supports RS-485, RS-232, LIN/J2602 protocols  
®
• USB v2.0 On-The-Go (OTG) Compliant  
• Dual Role Capable – Can act as either Host or Peripheral  
• Low-Speed (1.5 Mbps) and Full-Speed (12 Mbps)  
USB Operation in Host mode  
• Full-Speed USB Operation in Device mode  
• High-Precision PLL for USB  
• Supports up to 32 Endpoints (16 bidirectional):  
- USB module can use the internal RAM location  
from 0x800 to 0xFFFF as USB endpoint buffers  
• On-Chip USB Transceiver with Interface for Off-Chip  
Transceiver  
and IrDA  
• Five 16-Bit Timers/Counters with Programmable  
Prescaler  
• Nine 16-Bit Capture Inputs, each with a Dedicated Time  
Base  
• Nine 16-Bit Compare/PWM Outputs, each with a Dedi-  
cated Time Base  
• Hardware Real-Time Clock and Calendar (RTCC)  
• Enhanced Programmable Cyclic Redundancy Check  
(CRC) Generator  
• Up to 5 External Interrupt Sources  
• Supports Control, Interrupt, Isochronous and Bulk  
Transfers  
• On-Chip Pull-up and Pull-Down Resistors  
Remappable Peripherals  
PIC24FJ Device  
PIC24FJ128DA106  
PIC24FJ256DA106  
PIC24FJ128DA110  
PIC24FJ256DA110  
PIC24FJ128DA206  
PIC24FJ256DA206  
PIC24FJ128DA210  
PIC24FJ256DA210  
64  
64  
128K  
256K  
24K  
24K  
24K  
24K  
96K  
96K  
96K  
96K  
29  
29  
44  
44  
29  
29  
44  
44  
5
5
5
5
5
5
5
5
9/9  
9/9  
9/9  
9/9  
9/9  
9/9  
9/9  
9/9  
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
16  
16  
24  
24  
16  
16  
24  
24  
3
3
3
3
3
3
3
3
Y
Y
Y
Y
Y
Y
Y
Y
N
N
Y
Y
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
100/121 128K  
100/121 256K  
64  
64  
128K  
256K  
100/121 128K  
100/121 256K  
2010 Microchip Technology Inc.  
DS39969B-page 3  
PIC24FJ256DA210 FAMILY  
High-Performance CPU  
Analog Features:  
• Modified Harvard Architecture  
• Up to 16 MIPS Operation at 32 MHz  
• 8 MHz Internal Oscillator  
• 17-Bit x 17-Bit Single-Cycle Hardware Multiplier  
• 32-Bit by 16-Bit Hardware Divider  
• 16 x 16-Bit Working Register Array  
• C Compiler Optimized Instruction Set Architecture  
with Flexible Addressing modes  
• Linear Program Memory Addressing, up to  
12 Mbytes  
• Data Memory Addressing, up to 16 Mbytes:  
- 2K SFR space  
• 10-Bit, up to 24-Channel Analog-to-Digital (A/D)  
Converter at 500 ksps:  
- Operation is possible in Sleep mode  
- Band gap reference input feature  
• Three Analog Comparators with Programmable  
Input/Output Configuration  
• Charge Time Measurement Unit (CTMU):  
- Supports capacitive touch sensing for touch  
screens and capacitive switches  
- Minimum time measurement setting at 100 ps  
• Available LVD Interrupt VLVD Level  
- 30K linear data memory  
- 66K extended data memory  
Special Microcontroller Features:  
• Operating Voltage Range of 2.2V to 3.6V  
• 5.5V Tolerant Input (digital pins only)  
• Configurable Open-Drain Outputs on Digital I/O  
Ports  
- Remaining (from 16 Mbytes) memory (external)  
can be accessed using extended data Memory  
(EDS) and EPMP (EDS is divided into 32-Kbyte  
pages)  
• High-Current Sink/Source (18 mA/18 mA) on all  
I/O Ports  
• Two Address Generation Units for Separate Read  
and Write Addressing of Data Memory  
• Selectable Power Management modes:  
- Sleep, Idle and Doze modes with fast wake-up  
• Fail-Safe Clock Monitor (FSCM) Operation:  
- Detects clock failure and switches to on-chip,  
FRC oscillator  
Power Management:  
• On-Chip Voltage Regulator of 1.8V  
• Switch between Clock Sources in Real Time  
• Idle, Sleep and Doze modes with Fast Wake-up and  
Two-Speed Start-up  
• On-Chip LDO Regulator  
• Power-on Reset (POR) and  
• Run Mode: 800 A/MIPS, 3.3V Typical  
• Sleep mode Current Down to 20 A, 3.3V Typical  
• Standby Current with 32 kHz Oscillator: 22 A,  
3.3V Typical  
Oscillator Start-up Timer (OST)  
• Brown-out Reset (BOR)  
• Flexible Watchdog Timer (WDT) with On-Chip  
Low-Power RC Oscillator for Reliable Operation  
• In-Circuit Serial Programming™ (ICSP™) and  
In-Circuit Debug (ICD) via 2 Pins  
• JTAG Boundary Scan Support  
• Flash Program Memory:  
- 10,000 erase/write cycle endurance (minimum)  
- 20-year data retention minimum  
- Selectable write protection boundary  
- Self-reprogrammable under software control  
- Write protection option for Configuration Words  
DS39969B-page 4  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Pin Diagram (64-Pin TQFP/QFN)  
SOSCO/SCLKI/T1CK/C3INC/RPI37/CN0/  
RC14  
48  
1
VSYNC/CN63/RE5  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCI/C3IND/CN1/RC13  
DMH/RP11/INT0/CN49/RD0  
RP12/GD7/CN56/RD11  
GD12/SCL3/CN64/RE6  
GD13/SDA3/CN65/RE7  
C1IND/RP21/CN8/RG6  
C1INC/RP26/CN9/RG7  
C2IND/RP19/GD14/CN10/RG8  
MCLR  
2
3
4
SCL1/RP3/GD6/CN55/RD10  
5
DPLN/SDA1/RP4/GD8/CN54/RD9  
RTCC/DMLN/RP2/CN53/RD8  
6
7
PIC24FJXXXDAX06  
(1)  
VSS  
C2INC/RP27/GD15/CN11/RG9  
8
(1)  
OSCO/CLKO/CN22/RC15  
OSCI/CLKI/CN23/RC12  
VDD  
VSS  
9
VDD  
10  
11  
12  
PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5  
D+/CN83/RG2  
D-/CN84/RG3  
VUSB  
PGED3/AN4/C1INB/USBOEN/RP28/CN6/RB4  
AN3/C2INA/VPIO/CN5/RB3  
13  
14  
15  
16  
AN2/C2INB/VMIO/RP13/CN4/RB2  
PGEC1/AN1/VREF-/RP1/CN3/RB1  
PGED1/AN0/VREF+/RP0/CN2/RB0  
VBUS/RF7  
RP16/USBID/CN71/RF3  
Note 1:  
Legend:  
The back pad on QFN devices should be connected to VSS.  
RPn and RPIn represents remappable peripheral pins.  
Shaded pins indicate pins that are tolerant to up to +5.5V.  
2010 Microchip Technology Inc.  
DS39969B-page 5  
PIC24FJ256DA210 FAMILY  
TABLE 1:  
COMPLETE PIN FUNCTION DESCRIPTIONS FOR 64-PIN DEVICES  
Pin  
Function  
Pin  
Function  
1
2
3
4
5
6
VSYNC/CN63/RE5  
33  
34  
35  
36  
37  
38  
RP16/USBID/CN71/RF3  
VBUS/RF7  
GD12/SCL3/CN64/RE6  
GD13/SDA3/CN65/RE7  
C1IND/RP21/CN8/RG6  
C1INC/RP26/CN9/RG7  
VUSB  
D-/CN84/RG3  
D+/CN83/RG2  
VDD  
C2IND/RP19/GD14/CN10/RG8  
7
8
MCLR  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
OSCI/CLKI/CN23/RC12  
OSCO/CLKO/CN22/RC15  
VSS  
C2INC/RP27/GD15/CN11/RG9  
VSS  
9
10  
11  
VDD  
RTCC/DMLN/RP2/CN53/RD8  
DPLN/SDA1/RP4/GD8/CN54/RD9  
SCL1/RP3/GD6/CN55/RD10  
RP12/GD7/CN56/RD11  
DMH/RP11/INT0/CN49/RD0  
SOSCI/C3IND/CN1/RC13  
SOSCO/SCLKI/T1CK/C3INC/RPI37/CN0/RC14  
VCPCON/RP24/GD9/VBUSCHG/CN50/RD1  
DPH/RP23/CN51/RD2  
PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5  
PGED3/AN4/C1INB/USBOEN/RP28/CN6/RB4  
AN3/C2INA/VPIO/CN5/RB3  
AN2/C2INB/VMIO/RP13/CN4/RB2  
PGEC1/AN1/VREF-/RP1/CN3/RB1  
PGED1/AN0/VREF+/RP0/CN2/RB0  
PGEC2/AN6/RP6/CN24/RB6  
PGED2/AN7/RP7/RCV/CN25/RB7  
AVDD  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Legend:  
RP22/GEN/CN52/RD3  
AVSS  
RP25/GCLK/CN13/RD4  
RP20/GPWR/CN14/RD5  
C3INB/CN15/RD6  
AN8/RP8/CN26/RB8  
AN9/RP9/CN27/RB9  
TMS/CVREF/AN10/CN28/RB10  
TDO/AN11/CN29/RB11  
VSS  
C3INA/SESSEND/CN16/RD7  
VCAP  
ENVREG  
VDD  
GD10/VBUSST/VCMPST1/VBUSVLD/CN68/RF0  
GD11/VCMPST2/SESSVLD/CN69/RF1  
GD0/CN58/RE0  
TCK/AN12/CTEDG2/CN30/RB12  
TDI/AN13/CTEDG1/CN31/RB13  
AN14/CTPLS/RP14/CN32/RB14  
AN15/RP29/REFO/CN12/RB15  
SDA2/RP10/GD4/CN17/RF4  
SCL2/RP17/GD5/CN18/RF5  
GD1/CN59/RE1  
GD2/CN60/RE2  
GD3/CN61/RE3  
HSYNC/CN62/RE4  
RPn and RPIn represent remappable pins for Peripheral Pin Select functions.  
DS39969B-page 6  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Pin Diagram (100-Pin TQFP)  
V
SS  
75  
74  
1
GCLK/CN82/RG15  
DD  
SOSCO/SCLKI/TICK/C3INC/  
RPI37/CN0/RC14  
SOSCI/C3IND/CN1/RC13  
V
2
3
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PMD5/CN63/RE5  
SCL3/PMD6/CN64/RE6  
SDA3/PMD7/CN65/RE7  
RPI38/GD0/CN45/RC1  
RPI39/GD8/CN46/RC2  
RPI40/GD1/CN47/RC3  
DMH/RP11/INT0/CN49/RD0  
4
RP12/PMA14/PMCS1  
/CN56/RD11  
5
RP3/PMA15/PMCS2 CN55/  
/
6
RD10  
DPLN/RP4/GD10/PMACK2/CN54/  
7
RD9  
DMLN/RTCC/RP2/CN53/RD8  
8
AN16/RPI41/PMCS2/PMA22/CN48/RC4  
SDA1/RPI35/PMBE1/CN44/ RA15  
9
SCL1/RPI36/PMA22/PMCS2  
CN43/RA14  
SS  
/
AN17/C1IND/RP21/PMA5/PMA18  
/
CN8/  
10  
11  
12  
RG6  
/CN9/RG7  
AN18/C1INC/RP26/PMA4/PMA20  
V
/
OSCO/CLKO/CN22/RC15  
OSCI/CLKI/CN23/RC12  
AN19/C2IND/RP19/PMA3/PMA21 CN10/RG8  
MCLR  
PIC24FJXXXDAX10  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD  
AN20/C2INC/RP27/PMA2/CN11/RG9  
VSS  
TDO/CN38/RA5  
TDI/PMA21/PMA3/CN37/RA4  
VDD  
TMS/CN33/RA0  
SDA2/PMA20/PMA4/CN36/RA3  
SCL2/CN35/RA2  
D+/CN83/RG2  
D-/CN84/RG3  
RPI33/PMCS1/CN66/RE8  
AN21/RPI34/PMA19/CN67/RE9  
PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5  
PGED3/AN4/C1INB/USBOEN/RP28/GD4/CN6/RB4  
AN3/C2INA/GD5/VPIO/CN5/RB3  
VUSB  
VBUS/CN73/RF7  
AN2/C2INB/VMIO/RP13/GD6/CN4/RB2  
PGEC1/AN1/VREF-/RP1/CN3/RB1  
RP15/GD9/CN74/RF8  
RP30/GD3/CN70/RF2  
RP16/USBID/CN71/RF3  
PGED1/AN0/VREF+/RP0/CN2/RB0  
Legend:  
RPn and RPIn represent remappable peripheral pins.  
Shaded pins indicate pins that are tolerant to up to +5.5V.  
2010 Microchip Technology Inc.  
DS39969B-page 7  
PIC24FJ256DA210 FAMILY  
TABLE 2:  
COMPLETE PIN FUNCTION DESCRIPTIONS FOR 100-PIN DEVICES  
Pin  
Function  
Pin  
Function  
1
2
GCLK/CN82/RG15  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
AN12/PMA11/CTEDG2/CN30/RB12  
AN13/PMA10/CTEDG1/CN31/RB13  
AN14/CTPLS/RP14/PMA1/CN32/RB14  
AN15/REFO/RP29/PMA0/CN12/RB15  
VSS  
VDD  
3
PMD5/CN63/RE5  
4
SCL3/PMD6/CN64/RE6  
SDA3/PMD7/CN65/RE7  
RPI38/GD0/CN45/RC1  
RPI39/GD8/CN46/RC2  
RPI40/GD1/CN47/RC3  
AN16/RPI41/PMCS2/PMA22(2)/CN48/RC4  
AN17/C1IND/RP21/PMA5/PMA18(2)/CN8/RG6  
AN18/C1INC/RP26/PMA4/PMA20(2)/CN9/RG7  
AN19/C2IND/RP19/PMA3/PMA21(2)/CN10/RG8  
MCLR  
5
6
VDD  
7
RPI43/GD14/CN20/RD14  
RP5/GD15/CN21/RD15  
RP10/PMA9/CN17/RF4  
RP17/PMA8/CN18/RF5  
RP16/USBID/CN71/RF3  
RP30/GD3/CN70/RF2  
RP15/GD9/CN74/RF8  
VBUS/CN73/RF7  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
AN20/C2INC/RP27/PMA2/CN11/RG9  
VSS  
VUSB  
VDD  
D-/CN84/RG3  
TMS/CN33/RA0  
D+/CN83/RG2  
RPI33/PMCS1/CN66/RE8  
SCL2/CN35/RA2  
AN21/RPI34/PMA19/CN67/RE9  
PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5  
PGED3/AN4/C1INB/USBOEN/RP28/GD4/CN6/RB4  
AN3/C2INA/GD5/VPIO/CN5/RB3  
AN2/C2INB/VMIO/RP13/GD6/CN4/RB2  
SDA2/PMA20/PMA4(2)/CN36/RA3  
TDI/PMA21/PMA3(2)/CN37/RA4  
TDO/CN38/RA5  
VDD  
OSCI/CLKI/CN23/RC12  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
PGEC1/AN1/VREF-(1)/RP1/CN3/RB1  
PGED1/AN0/VREF+(1)/RP0/CN2/RB0  
PGEC2/AN6/RP6/CN24/RB6  
PGED2/AN7/RP7/RCV/GPWR/CN25/RB7  
VREF-/PMA7/CN41/RA9  
VREF+/PMA6/CN42/RA10  
AVDD  
OSCO/CLKO/CN22/RC15  
VSS  
SCL1/RPI36/PMA22/PMCS2(2)/CN43/RA14  
SDA1/RPI35/PMBE1/CN44/RA15  
DMLN/RTCC/RP2/CN53/RD8  
DPLN/RP4/GD10/PMACK2/CN54/RD9  
RP3/PMA15/PMCS2(3)/CN55/RD10  
RP12/PMA14/PMCS1(3)/CN56/RD11  
DMH/RP11/INT0/CN49/RD0  
SOSCI/C3IND/CN1/RC13  
AVSS  
AN8/RP8/GD12/CN26/RB8  
AN9/RP9/GD13/CN27/RB9  
AN10/CVREF/PMA13/CN28/RB10  
AN11/PMA12/CN29/RB11  
VSS  
SOSCO/SCLKI/T1CK/C3INC/RPI37/CN0/RC14  
VSS  
VCPCON/RP24/GD7/VBUSCHG/CN50/RD1  
DPH/RP23/GD11/PMACK1/CN51/RD2  
RP22/PMBE0/CN52/RD3  
VDD  
TCK/CN34/RA1  
RP31/GD2/CN76/RF13  
RPI32/PMA18/PMA5(2)/CN75/RF12  
RPI42/PMD12/CN57/RD12  
PMD13/CN19/RD13  
Legend:  
Note 1:  
RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.  
Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed.  
Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed.  
Pin assignment for PMCSx when CSF<1:0> is not equal to ‘00’.  
2:  
3:  
DS39969B-page 8  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 2:  
COMPLETE PIN FUNCTION DESCRIPTIONS FOR 100-PIN DEVICES  
Pin  
Function  
Pin  
Function  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
RP25/PMWR/CN13/RD4  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
AN23/GEN/CN39/RA6  
AN22/PMA17/CN40/RA7  
PMD0/CN58/RE0  
RP20/PMRD/CN14/RD5  
C3INB/PMD14/CN15/RD6  
C3INA/SESSEND/PMD15/CN16/RD7  
VCAP  
PMD1/CN59/RE1  
PMA16/CN81/RG14  
VSYNC/CN79/RG12  
HSYNC/CN80/RG13  
PMD2/CN60/RE2  
ENVREG  
VBUSST/VCMPST1/VBUSVLD/PMD11/CN68/RF0  
VCMPST2/SESSVLD/PMD10/CN69/RF1  
PMD9/CN78/RG1  
PMD3/CN61/RE3  
PMD8/CN77/RG0  
PMD4/CN62/RE4  
Legend:  
RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.  
Note 1:  
Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed.  
Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed.  
Pin assignment for PMCSx when CSF<1:0> is not equal to ‘00’.  
2:  
3:  
2010 Microchip Technology Inc.  
DS39969B-page 9  
PIC24FJ256DA210 FAMILY  
(1)  
Pin Diagram – Top View (121-Pin BGA)  
1
2
3
4
5
6
7
8
9
10  
11  
A
HSYNC/  
RG13  
GD7/  
RD1  
RE4  
RE3  
RE0  
RG0  
RF1 ENVREG  
N/C  
RD12  
GD11/  
RD2  
B
C
N/C  
GCLK/  
RG15  
RE2  
RE1  
RG14  
VSS  
RA7  
RF0  
N/C  
N/C  
VCAP  
RD7  
RD6  
N/C  
RD5  
RD4  
RD3  
VDD  
VSS  
RC13  
n/c  
RC14  
RD11  
VSYNC/  
RG12  
GEN/  
RA6  
RE6  
VDD  
RE7  
GD0/  
RC1  
RD13  
RA15  
VDD  
D
E
F
RE5  
RG6  
RG9  
VSS  
RD0  
RD8  
RD10  
RA14  
GD1/  
RC3  
VDD  
VSS  
RG1  
n/c  
GD10/  
RD9  
RC4  
GD8/  
RC2  
RG8  
RE9  
RG7  
N/C  
N/C  
VSS  
RA3  
OSCI/  
RC12  
OSCO/  
RC15  
MCLR  
RE8  
G
H
RA0  
VSS  
VDD  
N/C  
VSS  
VDD  
VSS  
n/c  
N/C  
RA5  
VUSB  
N/C  
RA4  
RA2  
PGEC3/ PGED3/  
RB5  
VDD  
VBUS/  
RF7  
D+/RG2  
GD4/RB4  
GD5/  
RB3  
GD6/  
RB2  
AVDD  
PGED2/RB7  
GPWR  
N/C  
VDD  
RB11  
N/C  
RA1  
RB12  
RB14  
GD9/RF8 D-/RG3  
J
PGEC1/ PGED1/  
RB1  
GD12/  
RB8  
GD15/  
RD15  
USBID/  
RF3  
GD3/  
RF2  
RA10  
AVSS  
RF12  
K
RB0  
PGEC2/  
RB6  
RA9  
GD13/  
RB9  
RB10  
GD2/  
RF13  
RB13  
RB15  
GD14/  
RD14  
RF4  
RF5  
L
Note 1:  
Legend:  
See Table 3 for complete functional pinout descriptions.  
RPn and RPIn represent remappable pins for Peripheral Pin Select functions.  
Shaded pins indicate pins tolerant to up to +5.5V.  
DS39969B-page 10  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 3:  
COMPLETE PIN FUNCTION DESCRIPTIONS FOR 121-PIN (BGA) DEVICES  
Pin  
Function  
Pin  
Function  
A1  
A2  
PMD4/CN62/RE4  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
F1  
VDD  
PMD3/CN61/RE3  
HSYNC/CN80/RG13  
PMD0/CN58/RE0  
PMD8/CN77/RG0  
PMD9/CN78/RG1  
N/C  
A3  
A4  
SDA1/RPI35/PMBE1/CN44/RA15  
A5  
DMLN/RTCC/RP2/CN53/RD8  
A6  
VCMPST2/SESSVLD/PMD10/CN69/RF1  
ENVREG  
DPLN/RP4/GD10/PMACK2/CN54/RD9  
SCL1/RPI36/PMA22/PMCS2(2)/CN43/RA14  
A7  
A8  
N/C  
MCLR  
A9  
RPI42/PMD12/CN57/RD12  
DPH/RP23/GD11/PMACK1/CN51/RD2  
VCPCON/RP24/GD7/VBUSCHG/CN50/RD1  
N/C  
F2  
AN19/C2IND/RP19/PMA3/PMA21(2)/CN10/RG8  
A10  
A11  
B1  
F3  
AN20/C2INC/RP27/PMA2/CN11/RG9  
AN18/C1INC/RP26/PMA4/PMA20(2)/CN9/RG7  
F4  
F5  
VSS  
B2  
GCLK/CN82/RG15  
F6  
N/C  
B3  
PMD2/CN60/RE2  
F7  
N/C  
B4  
PMD1/CN59/RE1  
F8  
VDD  
B5  
AN22/PMA17/CN40/RA7  
VBUSST/VCMPST1/VBUSVLD/PMD11/CN68/RF0  
VCAP  
F9  
OSCI/CLKI/CN23/RC12  
B6  
F10  
F11  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
J1  
VSS  
B7  
OSCO/CLKO/CN22/RC15  
B8  
RP20/PMRD/CN14/RD5  
RP22/PMBE0/CN52/RD3  
VSS  
RPI33/PMCS1/CN66/RE8  
B9  
AN21/RPI34/PMA19/CN67/RE9  
B10  
B11  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
E1  
TMS/CN33/RA0  
SOSCO/SCLKI/T1CK/C3INC/RPI37/CN0/RC14  
SCL3/PMD6/CN64/RE6  
VDD  
N/C  
VDD  
VSS  
VSYNC/CN79/RG12  
VSS  
PMA16/CN81/RG14  
AN23/GEN/CN39/RA6  
N/C  
N/C  
TDO/CN38/RA5  
SDA2/PMA20/PMA4(2)/CN36/RA3  
TDI/PMA21/PMA3(2)/CN37/RA4  
C3INA/SESSEND/PMD15/CN16/RD7  
RP25/PMWR/CN13/RD4  
VDD  
PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5  
PGED3/AN4/C1INB/USBOEN/RP28/GD4/CN6/RB4  
SOSCI/C3IND/CN1/RC13  
RP12/PMA14/PMCS1(3)/CN56/RD11  
RPI38/GD0/CN45/RC1  
SDA3/PMD7/CN65/RE7  
PMD5/CN63/RE5  
VSS  
VDD  
N/C  
VDD  
N/C  
VSS  
VBUS/CN73/RF7  
VSS  
VUSB  
N/C  
D+/CN83/RG2  
C3INB/PMD14/CN15/RD6  
PMD13/CN19/RD13  
DMH/RP11/INT0/CN49/RD0  
N/C  
RP3/PMA15/PMCS2(3)/CN55/RD10  
AN16/RPI41/PMCS2/PMA22(2)/CN48/RC4  
RPI40/GD1/CN47/RC3  
AN17/C1IND/RP21/PMA5/PMA18(2)/CN8/RG6  
RPI39/GD8/CN46/RC2  
SCL2/CN35/RA2  
AN3/C2INA/GD5/VPIO/CN5/RB3  
AN2/C2INB/VMIO/RP13/GD6/CN4/RB2  
PGED2/AN7/RP7/RCV/GPWR/CN25/RB7  
AVDD  
J2  
J3  
J4  
J5  
AN11/PMA12/CN29/RB11  
TCK/CN34/RA1  
E2  
J6  
E3  
J7  
AN12/PMA11/CTEDG2/CN30/RB12  
N/C  
E4  
J8  
Legend:  
RPn and RPIn represent remappable pins for Peripheral Pin Select functions.  
Note 1:  
Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed.  
2:  
3:  
Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed.  
Pin assignment for PMCSx when CSF<1:0> is not equal to ‘00’.  
2010 Microchip Technology Inc.  
DS39969B-page 11  
PIC24FJ256DA210 FAMILY  
TABLE 3:  
COMPLETE PIN FUNCTION DESCRIPTIONS FOR 121-PIN (BGA) DEVICES  
Pin  
Function  
Pin  
Function  
J9  
J10  
J11  
K1  
N/C  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
PGEC2/AN6/RP6/CN24/RB6  
RP15/GD9/CN74/RF8  
VREF-(1)/PMA7/CN41/RA9  
AVSS  
D-/CN84/RG3  
PGEC1/AN1/VREF-(1)/RP1/CN3/RB1  
PGED1/AN0/VREF+(1)/RP0/CN2/RB0  
VREF+(1)/PMA6/CN42/RA10  
AN8/RP8/GD12/CN26/RB8  
N/C  
RPI32/PMA18/PMA5(2)/CN75/RF12  
AN14/CTPLS/RP14/PMA1/CN32/RB14  
VDD  
AN9/RP9/GD13/CN27/RB9  
AN10/CVREF/PMA13/CN28/RB10  
RP31/GD2/CN76/RF13  
AN13/PMA10/CTEDG1/CN31/RB13  
AN15/REFO/RP29/PMA0/CN12/RB15  
RPI43/GD14/CN20/RD14  
RP10/PMA9/CN17/RF4  
RP17/GD5/PMA8/SCL2/CN18/RF5  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
RP5/GD15/CN21/RD15  
RP16/USBID/CN71/RF3  
RP30/GD3/CN70/RF2  
K10  
K11  
Legend:  
RPn and RPIn represent remappable pins for Peripheral Pin Select functions.  
Note 1:  
Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed.  
2:  
3:  
Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed.  
Pin assignment for PMCSx when CSF<1:0> is not equal to ‘00’.  
DS39969B-page 12  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 15  
2.0 Guidelines for Getting Started with 16-bit Microcontrollers ........................................................................................................ 33  
3.0 CPU ........................................................................................................................................................................................... 39  
4.0 Memory Organization................................................................................................................................................................. 45  
5.0 Flash Program Memory.............................................................................................................................................................. 81  
6.0 Resets ........................................................................................................................................................................................ 87  
7.0 Interrupt Controller ..................................................................................................................................................................... 93  
8.0 Oscillator Configuration............................................................................................................................................................ 141  
9.0 Power-Saving Features............................................................................................................................................................ 155  
10.0 I/O Ports ................................................................................................................................................................................... 157  
11.0 Timer1 ...................................................................................................................................................................................... 189  
12.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 191  
13.0 Input Capture with Dedicated Timers....................................................................................................................................... 197  
14.0 Output Compare with Dedicated Timers .................................................................................................................................. 201  
15.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 211  
2
16.0 Inter-Integrated Circuit™ (I C™).............................................................................................................................................. 223  
17.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 231  
18.0 Universal Serial Bus with On-The-Go Support (USB OTG) ..................................................................................................... 239  
19.0 Enhanced Parallel Master Port (EPMP)................................................................................................................................... 273  
20.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 285  
21.0 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator........................................................................................ 297  
22.0 Graphics Controller Module (GFX)........................................................................................................................................... 305  
23.0 10-Bit High-Speed A/D Converter ............................................................................................................................................ 325  
24.0 Triple Comparator Module........................................................................................................................................................ 335  
25.0 Comparator Voltage Reference................................................................................................................................................ 341  
26.0 Charge Time Measurement Unit (CTMU) ................................................................................................................................ 343  
27.0 Special Features ...................................................................................................................................................................... 347  
28.0 Development Support............................................................................................................................................................... 359  
29.0 Instruction Set Summary.......................................................................................................................................................... 363  
30.0 Electrical Characteristics.......................................................................................................................................................... 371  
31.0 Packaging Information.............................................................................................................................................................. 387  
Appendix A: Revision History............................................................................................................................................................. 397  
Index ................................................................................................................................................................................................. 399  
The Microchip Web Site..................................................................................................................................................................... 405  
Customer Change Notification Service .............................................................................................................................................. 405  
Customer Support.............................................................................................................................................................................. 405  
Reader Response.............................................................................................................................................................................. 406  
Product Identification System ............................................................................................................................................................ 407  
2010 Microchip Technology Inc.  
DS39969B-page 13  
PIC24FJ256DA210 FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39969B-page 14  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Doze Mode Operation: When timing-sensitive  
applications, such as serial communications,  
require the uninterrupted operation of peripherals,  
the CPU clock speed can be selectively reduced,  
allowing incremental power savings without  
missing a beat.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the following devices:  
• PIC24FJ128DA106  
• PIC24FJ256DA106  
• PIC24FJ128DA110  
• PIC24FJ256DA110  
• PIC24FJ128DA206  
• PIC24FJ256DA206  
• PIC24FJ128DA210  
• PIC24FJ256DA210  
Instruction-Based Power-Saving Modes: The  
microcontroller can suspend all operations, or  
selectively shut down its core while leaving its  
peripherals active with a single instruction in  
software.  
The PIC24FJ256DA210 family enhances on the exist-  
ing line of Microchip‘s 16-bit microcontrollers, adding a  
new Graphics Controller (GFX) module to interface  
with a graphical LCD display and also adds large data  
RAM, up to 96 Kbytes. The PIC24FJ256DA210 family  
allows the CPU to fetch data directly from an external  
memory device using the EPMP module.  
1.1.3  
OSCILLATOR OPTIONS AND  
FEATURES  
All of the devices in the PIC24FJ256DA210 family offer  
five different oscillator options, allowing users a range  
of choices in developing application hardware. These  
include:  
1.1  
Core Features  
• Two Crystal modes using crystals or ceramic  
resonators.  
1.1.1  
16-BIT ARCHITECTURE  
• Two External Clock modes offering the option of a  
divide-by-2 clock output.  
Central to all PIC24F devices is the 16-bit modified  
Harvard architecture, first introduced with Microchip’s  
dsPIC® Digital Signal Controllers (DSCs). The PIC24F  
CPU core offers a wide range of enhancements, such  
as:  
• A Fast Internal Oscillator (FRC) with a nominal  
8 MHz output, which can also be divided under  
software control to provide clock speeds as low as  
31 kHz.  
• 16-bit data and 24-bit address paths with the  
ability to move information between data and  
memory spaces  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to the external oscillator modes and the  
FRC oscillator, which allows clock speeds of up to  
32 MHz.  
• Linear addressing of up to 12 Mbytes (program  
space) and 32 Kbytes (data)  
• A separate Low-Power Internal RC Oscillator  
(LPRC) with a fixed 31 kHz output, which provides  
a low-power option for timing-insensitive  
applications.  
• A 16-element working register array with built-in  
software stack support  
• A 17 x 17 hardware multiplier with support for  
integer math  
The internal oscillator block also provides a stable  
reference source for the Fail-Safe Clock Monitor  
(FSCM). This option constantly monitors the main clock  
source against a reference signal provided by the inter-  
nal oscillator and enables the controller to switch to the  
internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
• Hardware support for 32 by 16-bit division  
• An instruction set that supports multiple  
addressing modes and is optimized for high-level  
languages, such as ‘C’  
• Operational performance up to 16 MIPS  
1.1.2  
POWER-SAVING TECHNOLOGY  
1.1.4  
EASY MIGRATION  
All of the devices in the PIC24FJ256DA210 family  
incorporate a range of features that can significantly  
reduce power consumption during operation. Key  
items include:  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve. The  
consistent pinout scheme used throughout the entire  
family also aids in migrating from one device to the next  
larger, or even in jumping from 64-pin to 100-pin  
devices.  
On-the-Fly Clock Switching: The device clock  
can be changed under software control to the  
Timer1 source or the internal, low-power RC  
oscillator during operation, allowing the user to  
incorporate power-saving ideas into their software  
designs.  
The PIC24F family is pin compatible with devices in the  
dsPIC33 family, and shares some compatibility with the  
pinout schema for PIC18 and dsPIC30. This extends  
the ability of applications to grow from the relatively  
simple, to the powerful and complex, yet still selecting  
a Microchip device.  
2010 Microchip Technology Inc.  
DS39969B-page 15  
PIC24FJ256DA210 FAMILY  
1.2  
Graphics Controller  
1.4  
Other Special Features  
With the PIC24FJ256DA210 family of devices,  
Microchip introduces the Graphics Controller module,  
which acts as an interface between the CPU (mainly  
through SFRs) and a display. On-board RAM is pro-  
vided for display buffer, scratch areas, images and  
fonts. In some cases, the RAM requirements for the  
display used exceeds the on-board RAM; external  
memory connected through EPMP can be used.  
Peripheral Pin Select: The Peripheral Pin Select  
(PPS) feature allows most digital peripherals to be  
mapped over a fixed set of digital I/O pins. Users  
may independently map the input and/or output of  
any one of the many digital peripherals to any one  
of the I/O pins.  
Communications: The PIC24FJ256DA210 family  
incorporates a range of serial communication  
peripherals to handle a range of application  
requirements. There are three independent I2C™  
modules that support both Master and Slave  
modes of operation. Devices also have, through  
the PPS feature, four independent UARTs with  
built-in IrDA® encoders/decoders and three SPI  
modules.  
This module provides acceleration for drawing points,  
vertical and horizontal lines, rectangles, copying rect-  
angles between different locations on screen, drawing  
text and decompressing compressed data.  
1.3  
USB On-The-Go  
The USB On-The-Go (USB OTG) module provides  
on-chip functionality as a target device compatible with  
the USB 2.0 standard, as well as limited stand-alone  
functionality as a USB embedded host. By implement-  
ing USB Host Negotiation Protocol (HNP), the module  
can also dynamically switch between device and host  
operation, allowing for a much wider range of versatile  
Analog Features: All members of the  
PIC24FJ256DA210 family include a 10-bit A/D  
Converter (ADC) module and a triple comparator  
module. The ADC module incorporates program-  
mable acquisition time, allowing for a channel to  
be selected and a conversion to be initiated  
without waiting for a sampling period, and faster  
sampling speeds. The comparator module  
includes three analog comparators that are  
configurable for a wide range of operations.  
USB enabled applications on  
a
microcontroller  
platform.  
In  
addition  
to  
USB  
host functionality,  
PIC24FJ256DA210 family devices provide a true  
single chip USB solution, including an on-chip  
transceiver and voltage regulator, and a voltage boost  
generator for sourcing bus power during host  
operations.  
CTMU Interface: In addition to their other analog  
features, members of the PIC24FJ256DA210  
family include the CTMU interface module. This  
provides a convenient method for precision time  
measurement and pulse generation, and can  
serve as an interface for capacitive sensors.  
Enhanced Parallel Master/Parallel Slave Port:  
There are general purpose I/O ports, which can  
be configured for parallel data communications. In  
this mode, the device can be master or slave on  
the communication bus. 4-bit, 8-bit and 16-bit data  
transfers, with up to 23 external address lines are  
supported in Master modes.  
Real-Time Clock and Calendar: (RTCC) This  
module implements a full-featured clock and  
calendar with alarm functions in hardware, freeing  
up timer resources and program memory space  
for use of the core application.  
DS39969B-page 16  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
5. Available remappable pins (29 pins on  
PIC24FJXXXDAX06 devices and 44 pins on  
PIC24FJXXXDAX10 devices).  
1.5  
Details on Individual Family  
Members  
Devices in the PIC24FJ256DA210 family are available  
in 64-pin and 100-pin packages. The general block  
diagram for all devices is shown in Figure 1-1.  
6. Analog channels for ADC (16 channels for  
PIC24FJXXXDAX06 devices and 24 channels  
for PIC24FJxxxDAx10 devices).  
The devices are differentiated from each other in seven  
ways:  
7. EPMP module (available in PIC24FJXXXDAX10  
devices and not in PIC24FJXXXDAX06 devices).  
1. Flash program memory (128 Kbytes for  
PIC24FJ128DAXXX devices and 256 Kbytes  
for PIC24FJ256DAXXX devices).  
All other features for devices in this family are identical.  
These are summarized in Table 1-1 and Table 1-2.  
A
list of the pin features available on the  
2. Data memory (24 Kbytes for PIC24FJXXXDA1XX  
devices, and 96 Kbytes for PIC24FJXXXDA2XX  
devices).  
PIC24FJ256DA210 family devices, sorted by function,  
is shown in Table 1-1. Note that this table shows the pin  
location of individual peripheral features and not how  
they are multiplexed on the same pin. This information  
is provided in the pinout diagrams in the beginning of  
the data sheet. Multiplexed features are sorted by the  
priority given to a feature, with the highest priority  
peripheral being listed first.  
3. Available I/O pins and ports (52 pins on 6 ports  
for PIC24FJXXXDAX06 devices and 84 pins on  
7 ports for PIC24FJXXXDAX10 devices).  
4. Available Interrupt-on-Change Notification (ICN)  
inputs (52 on PIC24FJXXXDAx06 devices and  
84 on PIC24FJXXXDAX10 devices).  
2010 Microchip Technology Inc.  
DS39969B-page 17  
PIC24FJ256DA210 FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC24FJ256DA210 FAMILY: 64-PIN  
Features  
PIC24FJ128DA106 PIC24FJ256DA106 PIC24FJ128DA206 PIC24FJ256DA206  
Operating Frequency  
DC – 32 MHz  
Program Memory (bytes)  
Program Memory (instructions)  
Data Memory (bytes)  
128K  
256K  
128K  
256K  
44,032  
87,552  
44,032  
87,552  
24K  
96K  
Interrupt Sources (soft vectors/  
NMI traps)  
65 (61/4)  
I/O Ports  
Ports B, C, D, E, F, G  
52  
Total I/O Pins  
Remappable Pins  
29 (28 I/O, 1 Input only)  
Timers:  
(1)  
Total Number (16-bit)  
32-Bit (from paired 16-bit timers)  
Input Capture Channels  
Output Compare/PWM Channels  
Input Change Notification Interrupt  
Serial Communications:  
UART  
5
2
(1)  
9
(1)  
9
52  
(1)  
4
(1)  
SPI (3-wire/4-wire)  
3
2
I C™  
3
Parallel Communications  
(EPMP/PSP)  
No  
JTAG Boundary Scan  
Yes  
16  
10-Bit Analog-to-Digital Converter  
(ADC) Module (input channels)  
Analog Comparators  
CTMU Interface  
USB OTG  
3
Yes  
Yes  
Yes  
Graphics Controller  
Resets (and Delays)  
POR, BOR, RESETInstruction, MCLR, WDT; Illegal Opcode,  
REPEATInstruction, Hardware Traps, Configuration Word Mismatch  
(OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
64-Pin TQFP and QFN  
Note 1: Peripherals are accessible through remappable pins.  
DS39969B-page 18  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 1-2:  
DEVICE FEATURES FOR THE PIC24FJ256DA210 FAMILY: 100-PIN DEVICES  
Features  
PIC24FJ128DA110 PIC24FJ256DA110 PIC24FJ128DA210 PIC24FJ256DA210  
Operating Frequency  
DC – 32 MHz  
Program Memory (bytes)  
Program Memory (instructions)  
Data Memory (bytes)  
128K  
256K  
128K  
256K  
44,032  
87,552  
44,032  
87,552  
24K  
96K  
Interrupt Sources (soft vectors/NMI  
traps)  
66 (62/4)  
I/O Ports  
Ports A, B, C, D, E, F, G  
84  
Total I/O Pins  
Remappable Pins  
44 (32 I/O, 12 input only)  
Timers:  
(1)  
Total Number (16-bit)  
32-Bit (from paired 16-bit timers)  
Input Capture Channels  
Output Compare/PWM Channels  
Input Change Notification Interrupt  
Serial Communications:  
UART  
5
2
(1)  
9
(1)  
9
84  
(1)  
4
(1)  
SPI (3-wire/4-wire)  
3
2
I C™  
3
Parallel Communications (EPMP/PSP)  
JTAG Boundary Scan  
Yes  
Yes  
24  
10-Bit Analog-to-Digital Converter  
(ADC) Module (input channels)  
Analog Comparators  
CTMU Interface  
USB OTG  
3
Yes  
Yes  
Yes  
Graphics Controller  
Resets (and delays)  
POR, BOR, RESETInstruction, MCLR, WDT; Illegal Opcode,  
REPEATInstruction, Hardware Traps, Configuration Word Mismatch  
(OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
100-Pin TQFP and 121-Pin BGA  
Note 1: Peripherals are accessible through remappable pins.  
2010 Microchip Technology Inc.  
DS39969B-page 19  
PIC24FJ256DA210 FAMILY  
FIGURE 1-1:  
PIC24FJ256DA210 FAMILY GENERAL BLOCK DIAGRAM  
Data Bus  
Interrupt  
Controller  
PORTA(1)  
(12 I/O)  
16  
16  
16  
8
Data Latch  
EDS and Table  
Data Access  
Control Block  
Data RAM  
Up to 0x7FFF  
PCH  
PCL  
23  
Program Counter  
Address  
Latch  
PORTB  
(16 I/O)  
Repeat  
Control  
Logic  
Stack  
Control  
Logic  
16  
23  
16  
Read AGU  
Write AGU  
Address Latch  
PORTC(1)  
(8 I/O)  
Program Memory/  
Extended Data  
Space  
Data Latch  
16  
EA MUX  
Address Bus  
24  
16  
16  
PORTD(1)  
(16 I/O)  
Inst Latch  
Inst Register  
Instruction  
Decode and  
PORTE(1)  
(10 I/O)  
Control  
Divide  
Support  
Control Signals  
16 x 16  
OSCO/CLKO  
OSCI/CLKI  
W Reg Array  
17x17  
Multiplier  
Power-up  
Timer  
Timing  
Generation  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
PORTF(1)  
(10 I/O)  
REFO  
16-Bit ALU  
Power-on  
Reset  
16  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
ENVREG  
LVD & BOR  
Voltage  
Regulator  
PORTG(1)  
(12 I/O)  
VCAP  
VDD,VSS  
MCLR  
10-Bit  
Timer2/3(2)  
Comparators(2)  
USB OTG  
Timer4/5(2)  
RTCC  
Timer1  
ADC  
EPMP/PSP(3)  
I2C™  
1/2/3  
OC/PWM  
1-9(2)  
SPI  
1/2/3(2)  
IC  
1-9(2)  
UART  
1/2/3/4(2)  
ICNs(1)  
CTMU(2)  
Graphics  
Controller  
Note 1: Not all I/O pins or features are implemented on all device pinout configurations. See Table 1-1 for specific implementations by pin count  
.
2: These peripheral I/Os are only accessible through remappable pins.  
3: Not available on 64-pin devices (PIC24FJxxxDAx06).  
DS39969B-page 20  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
AN0  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
19  
20  
11  
12  
5
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
9
K2  
K1  
J2  
I
I
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
AN1  
AN2  
I
AN3  
J1  
I
AN4  
H2  
H1  
L1  
I
AN5  
I
AN6  
I
AN7  
J3  
I
AN8  
K4  
L4  
I
AN9  
I
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AVDD  
AVSS  
C1INA  
C1INB  
C1INC  
C1IND  
C2INA  
C2INB  
C2INC  
C2IND  
C3INA  
C3INB  
C3INC  
C3IND  
CLKI  
L5  
I
J5  
I
A/D Analog Inputs.  
J7  
I
L7  
I
K7  
L8  
I
I
E1  
E3  
F4  
F2  
F3  
G2  
B5  
C5  
J4  
I
10  
11  
12  
14  
19  
92  
91  
30  
31  
20  
21  
11  
10  
22  
23  
14  
12  
84  
83  
74  
73  
63  
64  
I
I
I
I
I
I
I
P
P
I
Positive Supply for Analog modules.  
Ground Reference for Analog modules.  
L3  
H1  
H2  
F4  
E3  
J1  
ANA Comparator 1 Input A.  
ANA Comparator 1 Input B.  
ANA Comparator 1 Input C.  
ANA Comparator 1 Input D.  
ANA Comparator 2 Input A.  
ANA Comparator 2 Input B.  
ANA Comparator 2 Input C.  
ANA Comparator 2 Input D.  
ANA Comparator 3 Input A.  
ANA Comparator 3 Input B.  
ANA Comparator 3 Input C.  
ANA Comparator 3 Input D.  
I
I
4
I
13  
14  
8
I
J2  
I
F3  
F2  
C7  
D7  
B11  
C10  
F9  
F11  
I
6
I
55  
54  
48  
47  
39  
40  
I
I
I
I
I
ST  
Main Clock Input Connection.  
System Clock Output.  
CLKO  
O
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 21  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
CN0  
48  
47  
16  
15  
14  
13  
12  
11  
4
74  
73  
25  
24  
23  
22  
21  
20  
10  
11  
12  
14  
44  
81  
82  
83  
84  
49  
50  
80  
47  
48  
64  
63  
26  
27  
32  
33  
34  
35  
41  
42  
43  
17  
38  
58  
59  
60  
61  
91  
B11  
C10  
K2  
K1  
J2  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
CN1  
CN2  
CN3  
CN4  
CN5  
J1  
CN6  
H2  
H1  
E3  
F4  
CN7  
CN8  
CN9  
5
CN10  
CN11  
CN12  
CN13  
CN14  
CN15  
CN16  
CN17  
CN18  
CN19  
CN20  
CN21  
CN22  
CN23  
CN24  
CN25  
CN26  
CN27  
CN28  
CN29  
CN30  
CN31  
CN32  
CN33  
CN34  
CN35  
CN36  
CN37  
CN38  
CN39  
6
F2  
8
F3  
30  
52  
53  
54  
55  
31  
32  
40  
39  
17  
18  
21  
22  
23  
24  
27  
28  
29  
L8  
C8  
B8  
D7  
C7  
L10  
L11  
D8  
L9  
Interrupt-on-Change Inputs.  
K9  
F11  
F9  
L1  
J3  
K4  
L4  
L5  
J5  
J7  
L7  
K7  
G3  
J6  
H11  
G10  
G11  
G9  
C5  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
DS39969B-page 22  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
CN40  
CN41  
CN42  
CN43  
CN44  
CN45  
CN46  
CN47  
CN48  
CN49  
CN50  
CN51  
CN52  
CN53  
CN54  
CN55  
CN56  
CN57  
CN58  
CN59  
CN60  
CN61  
CN62  
CN63  
CN64  
CN65  
CN66  
CN67  
CN68  
CN69  
CN70  
CN71  
CN73  
CN74  
CN75  
CN76  
CN77  
CN78  
CN79  
CN80  
46  
49  
50  
51  
42  
43  
44  
45  
60  
61  
62  
63  
64  
1
92  
28  
29  
66  
67  
6
B5  
L2  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
K3  
E11  
E8  
D1  
E4  
7
8
E2  
9
E1  
72  
76  
77  
78  
68  
69  
70  
71  
79  
93  
94  
98  
99  
100  
3
D9  
A11  
A10  
B9  
E9  
E10  
D11  
C11  
A9  
A4  
B4  
Interrupt-on-Change Inputs.  
B3  
A2  
A1  
D3  
C1  
D2  
G1  
G2  
B6  
2
4
3
5
58  
59  
33  
18  
19  
87  
88  
52  
51  
54  
53  
40  
39  
90  
89  
96  
97  
A6  
K11  
K10  
H8  
J10  
K6  
L6  
A5  
E6  
C3  
A3  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 23  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
CN81  
CN82  
CN83  
CN84  
CTEDG1  
CTEDG2  
CTPLS  
CVREF  
D+  
37  
36  
28  
27  
29  
23  
37  
36  
46  
42  
50  
43  
57  
52  
60  
61  
62  
63  
31  
32  
44  
45  
43  
49  
58  
59  
2
95  
1
C4  
B2  
H10  
J11  
L7  
I
I
ST  
ST  
ST  
ST  
Interrupt-on-Change Inputs.  
57  
56  
42  
41  
43  
34  
57  
56  
72  
68  
77  
69  
86  
1
I
I
I
ANA CTMU External Edge Input 1.  
ANA CTMU External Edge Input 2.  
J7  
I
K7  
L5  
O
O
I/O  
I/O  
O
O
O
O
I
ST  
ST  
ST  
CTMU Pulse Output.  
Comparator Voltage Reference Output.  
USB Differential Plus Line (internal transceiver).  
USB Differential Minus Line (internal transceiver).  
D- External Pull-up Control Output.  
D- External Pull-down Control Output.  
D+ External Pull-up Control Output.  
D+ External Pull-down Control Output.  
Voltage Regulator Enable.  
H10  
J11  
D9  
E9  
A10  
E10  
J7  
D-  
DMH  
DMLN  
DPH  
DPLN  
ENVREG  
GCLK  
GD0  
B2  
D1  
E2  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Graphics Display Pixel Clock.  
6
GD1  
8
GD2  
39  
52  
21  
22  
23  
76  
7
L6  
GD3  
K11  
H2  
J1  
GD4  
GD5  
GD6  
J2  
GD7  
A11  
E4  
Graphics Controller Data Output.  
GD8  
GD9  
53  
69  
77  
32  
33  
47  
48  
91  
27  
97  
72  
13  
J10  
E10  
A10  
K4  
L4  
GD10  
GD11  
GD12  
GD13  
GD14  
GD15  
GEN  
3
6
L9  
8
K9  
C5  
J3  
51  
53  
64  
46  
7
Graphics Display Enable Output.  
Graphics Display Power System Enable.  
Graphics Display Horizontal Sync Pulse.  
External Interrupt Input.  
GPWR  
HSYNC  
INT0  
A3  
D9  
F1  
MCLR  
I
Master Clear (device Reset) Input. This line is brought low  
to cause a Reset.  
OSCI  
39  
40  
63  
64  
F9  
I
ANA Main Oscillator Input Connection.  
ANA Main Oscillator Output Connection.  
ST = Schmitt Trigger input buffer  
OSCO  
F11  
O
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
2
2
I C™ = I C/SMBus input buffer  
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
DS39969B-page 24  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
PGEC1  
PGED1  
PGEC2  
PGED2  
PGEC3  
PGED3  
PMA0  
15  
16  
17  
18  
11  
12  
24  
25  
26  
27  
20  
21  
44  
K1  
K2  
L1  
J3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
In-Circuit Debugger/Emulator/ICSP™ Programming Clock 1.  
In-Circuit Debugger/Emulator/ICSP Programming Data 1.  
In-Circuit Debugger/Emulator/ICSP Programming Clock 2.  
In-Circuit Debugger/Emulator/ICSP Programming Data 2.  
In-Circuit Debugger/Emulator/ICSP Programming Clock 3.  
In-Circuit Debugger/Emulator/ICSP Programming Data 3.  
H1  
H2  
L8  
Parallel Master Port Address bit 0 Input (Buffered Slave  
modes) and Output (Master modes).  
PMA1  
43  
14  
K7  
F3  
I/O  
ST  
Parallel Master Port Address Bit 1 Input (Buffered Slave  
modes) and Output (Master modes).  
PMA2  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
(1)  
(1)  
PMA3  
12, 60  
F2, G11  
(1)  
(1)  
PMA4  
11,59  
F4,G10  
(1)  
(1)  
PMA5  
10,40  
E3,K6  
K3  
PMA6  
29  
28  
50  
49  
42  
41  
35  
34  
71  
70  
95  
92  
PMA7  
L2  
PMA8  
L11  
L10  
L7  
PMA9  
PMA10  
PMA11  
PMA12  
PMA13  
PMA14  
PMA15  
PMA16  
PMA17  
PMA18  
PMA19  
PMA20  
PMA21  
PMA22  
PMACK1  
PMACK2  
PMALL  
PMALH  
PMALU  
PMBE0  
PMBE1  
PMCS1  
PMCS2  
J7  
J5  
Parallel Master Port Address bits<22:2>.  
L5  
C11  
D11  
C4  
B5  
(1)  
(1)  
40,10  
K6,E3  
G2  
19  
(1)  
(1)  
59, 11  
G10, F4  
(1)  
(1)  
60,12  
G11,F2  
E11,E1  
A10  
E10  
L8  
(1)  
(1)  
66,9  
77  
69  
44  
43  
14  
78  
67  
ST/TTL Parallel Master Port Acknowledge Input 1.  
ST/TTL Parallel Master Port Acknowledge Input 2.  
I
O
O
O
O
O
Parallel Master Port Lower Address Latch Strobe.  
Parallel Master Port Higher Address Latch Strobe.  
Parallel Master Port Upper Address Latch Strobe.  
Parallel Master Port Byte Enable Strobe 0.  
K7  
F3  
B9  
E8  
(3)  
Parallel Master Port Byte Enable Strobe 1.  
(3)  
71 ,18  
C11 ,G1  
I/O ST/TTL Parallel Master Port Chip Select Strobe 1.  
(2)  
(2)  
70 ,9,  
D11 ,E1,  
O
Parallel Master Port Chip Select Strobe 2.  
(1)  
(1)  
66  
E11  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 25  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
PMD0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
PMD7  
PMD8  
PMD9  
PMD10  
PMD11  
PMD12  
PMD13  
PMD14  
PMD15  
PMRD  
PMWR  
RA0  
93  
94  
98  
99  
100  
3
A4  
B4  
B3  
A2  
A1  
D3  
C1  
D2  
A5  
E6  
A6  
B6  
A9  
D8  
D7  
C7  
B8  
C8  
G3  
J6  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
I/O ST/TTL  
4
5
Parallel Master Port Data bits<15:0>.  
90  
89  
88  
87  
79  
80  
83  
84  
82  
81  
17  
38  
58  
59  
60  
61  
91  
92  
28  
29  
66  
67  
I/O ST/TTL Parallel Master Port Read Strobe.  
I/O ST/TTL Parallel Master Port Write Strobe.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RA1  
RA2  
H11  
G10  
G11  
G9  
C5  
B5  
L2  
RA3  
RA4  
RA5  
PORTA Digital I/O.  
RA6  
RA7  
RA9  
RA10  
RA14  
RA15  
K3  
E11  
E8  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
DS39969B-page 26  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
RB0  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
39  
47  
48  
40  
18  
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
6
K2  
K1  
J2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RB1  
RB2  
RB3  
J1  
RB4  
H2  
H1  
L1  
RB5  
RB6  
RB7  
J3  
PORTB Digital I/O.  
RB8  
K4  
L4  
RB9  
RB10  
RB11  
RB12  
RB13  
RB14  
RB15  
RC1  
RC2  
RC3  
RC4  
RC12  
RC13  
RC14  
RC15  
RCV  
L5  
J5  
J7  
L7  
K7  
L8  
D1  
E4  
E2  
E1  
F9  
C10  
B11  
F11  
J3  
7
8
9
PORTC Digital I/O.  
63  
73  
74  
64  
27  
USB Receive Input (from external transceiver).  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 27  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD8  
RD9  
RD10  
RD11  
RD12  
RD13  
RD14  
RD15  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
RE8  
RE9  
REFO  
RF0  
46  
49  
50  
51  
52  
53  
54  
55  
42  
43  
44  
45  
60  
61  
62  
63  
64  
1
72  
76  
77  
78  
81  
82  
83  
84  
68  
69  
70  
71  
79  
80  
47  
48  
93  
94  
98  
99  
100  
3
D9  
A11  
A10  
B9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
C8  
B8  
D7  
C7  
E9  
PORTD Digital I/O.  
E10  
D11  
C11  
A9  
D8  
L9  
K9  
A4  
B4  
B3  
A2  
A1  
PORTE Digital I/O.  
D3  
C1  
D2  
G1  
G2  
L8  
2
4
3
5
30  
58  
59  
33  
31  
32  
34  
18  
19  
44  
87  
88  
52  
51  
49  
50  
54  
53  
40  
39  
Reference Clock Output.  
B6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RF1  
A6  
RF2  
K11  
K10  
L10  
L11  
H8  
J10  
K6  
RF3  
RF4  
PORTF Digital I/O.  
RF5  
RF7  
RF8  
RF12  
RF13  
L6  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
DS39969B-page 28  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
RG0  
RG1  
RG2  
RG3  
RG6  
RG7  
RG8  
RG9  
RG12  
RG13  
RG14  
RG15  
RP0  
37  
36  
4
90  
89  
57  
56  
10  
11  
12  
14  
96  
97  
95  
1
A5  
E6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
H10  
J11  
E3  
5
F4  
PORTG Digital I/O.  
6
F2  
8
F3  
16  
15  
42  
44  
43  
17  
18  
21  
22  
31  
46  
45  
14  
29  
33  
32  
11  
6
C3  
A3  
C4  
B2  
25  
24  
68  
70  
69  
48  
26  
27  
32  
33  
49  
72  
71  
23  
43  
53  
51  
50  
20  
12  
K2  
RP1  
K1  
RP2  
E9  
RP3  
D11  
E10  
K9  
RP4  
RP5  
RP6  
L1  
RP7  
J3  
RP8  
K4  
RP9  
L4  
Remappable Peripheral (input or output).  
RP10  
RP11  
RP12  
RP13  
RP14  
RP15  
RP16  
RP17  
RP18  
RP19  
L10  
D9  
C11  
J2  
K7  
J10  
K10  
L11  
H1  
F2  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 29  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
RP20  
53  
4
82  
10  
78  
77  
76  
81  
11  
14  
21  
44  
52  
39  
40  
18  
19  
67  
66  
74  
6
B8  
E3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RP21  
RP22  
51  
50  
49  
52  
5
B9  
RP23  
A10  
A11  
C8  
F4  
RP24  
RP25  
Remappable Peripheral (input or output).  
RP26  
RP27  
8
F3  
RP28  
12  
30  
48  
42  
44  
32  
2
H2  
L8  
RP29  
RP30  
K11  
L6  
RP31  
RPI32  
RPI33  
RPI34  
RPI35  
RPI36  
RPI37  
RPI38  
RPI39  
RPI40  
RPI41  
RPI42  
RPI43  
RTCC  
SCL1  
K6  
G1  
G2  
E8  
I
I
I
E11  
B11  
D1  
E4  
I
I
Remappable Peripheral (input only).  
I
7
I
8
E2  
I
9
E1  
I
79  
47  
68  
66  
58  
4
A9  
I
L9  
I
E9  
O
I/O  
I/O  
I/O  
O
I/O  
I/O  
I/O  
I
2
Real-Time Clock Alarm/Seconds Pulse Output.  
E11  
H11  
C1  
B11  
E8  
I C™ I2C1 Synchronous Serial Clock Input/Output.  
2
SCL2  
I C  
I2C2 Synchronous Serial Clock Input/Output.  
I2C3 Synchronous Serial Clock Input/Output.  
2
SCL3  
I C  
SCLKI  
SDA1  
SDA2  
SDA3  
SESSEND  
SESSVLD  
SOSCI  
SOSCO  
T1CK  
48  
43  
31  
3
74  
67  
59  
5
ANA Secondary Clock Input.  
2
I C  
I2C1 Data Input/Output.  
2
G10  
D2  
C7  
A6  
I C  
I2C2 Data Input/Output.  
2
I C  
I2C3 Data Input/Output.  
55  
59  
47  
48  
48  
84  
88  
73  
74  
74  
ST  
ST  
USB VBUS Boost Generator, Comparator Input 3.  
USB VBUS Boost Generator, Comparator Input 2.  
I
C10  
B11  
B11  
I
ANA Secondary Oscillator/Timer1 Clock Input.  
ANA Secondary Oscillator/Timer1 Clock Output.  
O
I
ST  
Timer1 Clock.  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
DS39969B-page 30  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 1-3:  
PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
TQFP  
121-Pin  
BGA  
TQFP/QFN  
TCK  
27  
28  
38  
60  
61  
17  
51  
21  
54  
76  
20  
87  
87  
85  
87  
88  
76  
J6  
G11  
G9  
G3  
K10  
H2  
H8  
A11  
H1  
B6  
I
I
ST  
ST  
JTAG Test Clock Input.  
JTAG Test Data Input.  
JTAG Test Data Output.  
TDI  
TDO  
24  
O
I
TMS  
23  
ST  
ST  
JTAG Test Mode Select Input.  
USBID  
USBOEN  
VBUS  
33  
I
USB OTG ID (OTG mode only).  
12  
O
I
USB Output Enable Control (for external transceiver).  
34  
ANA USB Voltage, Host mode (5V).  
VBUSCHG  
VBUSON  
VBUSST  
VBUSVLD  
VCAP  
49  
O
O
I
External USB VBUS Charge Output.  
11  
USB OTG External Charge Pump Control.  
58  
ANA USB OTG Internal Charge Pump Feedback Control.  
58  
B6  
I
ST  
USB VBUS Boost Generator, Comparator Input 1.  
External Filter Capacitor Connection (regulator enabled).  
USB VBUS Boost Generator, Comparator Input 1.  
USB VBUS Boost Generator, Comparator Input 2.  
USB OTG VBUS PWM/Charge Output.  
56  
B7  
P
I
VCMPST1  
VCMPST2  
VCPCON  
VDD  
58  
B6  
ST  
ST  
59  
A6  
I
49  
A11  
O
P
10, 26, 38  
2, 16, 37,  
46, 62  
C2, C9, F8,  
G5, H6, K8,  
H4, E5  
Positive Supply for Peripheral Digital Logic and I/O Pins.  
VMIO  
VPIO  
VREF-  
VREF+  
VSS  
14  
13  
23  
22  
J2  
J1  
I
I
ST  
ST  
USB Differential Minus Input/Output (external transceiver).  
USB Differential Plus Input/Output (external transceiver).  
(4)  
(4)  
15  
28, 24  
L2, K1  
I
ANA A/D and Comparator Reference Voltage (low) Input.  
ANA A/D and Comparator Reference Voltage (high) Input.  
(4)  
(4)  
16  
29, 25  
K3, K2  
I
9, 25, 41  
15, 36, 45,  
65, 75  
B10, F5,  
F10, G6,  
G7, H3, D4,  
D5  
P
Ground Reference for Logic and I/O Pins.  
VSYNC  
VUSB  
1
96  
55  
C3  
H9  
O
P
Graphics Display Vertical Sync Pulse.  
USB Voltage (3.3V).  
35  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to ‘0’.  
2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01or 10.  
3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.  
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 31  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 32  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTIONS  
2.0  
2.1  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
MICROCONTROLLERS  
(2)  
C2  
VDD  
Basic Connection Requirements  
Getting started with the PIC24FJ256DA210 family of  
16-bit microcontrollers requires attention to a minimal  
set of device pin connections before proceeding with  
development.  
(1)  
(1)  
R1  
R2  
(EN/DIS)VREG  
VCAP/VDDCORE  
MCLR  
C1  
The following pins must always be connected:  
C7  
PIC24FXXXX  
• All VDD and VSS pins  
(see Section 2.2 “Power Supply Pins”)  
VDD  
VSS  
VSS  
VDD  
(2)  
(2)  
C3  
C6  
• All AVDD and AVSS pins, regardless of whether or  
not the analog device features are used  
(see Section 2.2 “Power Supply Pins”)  
• MCLR pin  
(see Section 2.3 “Master Clear (MCLR) Pin”)  
(2)  
(2)  
C4  
C5  
• ENVREG/DISVREG and VCAP/VDDCORE pins  
(PIC24FJ devices only)  
(see Section 2.4 “Voltage Regulator Pins  
(ENVREG/DISVREG and VCAP/VDDCORE)”)  
Key (all values are recommendations):  
C1 through C6: 0.1 F, 20V ceramic  
These pins must also be connected if they are being  
used in the end application:  
C7: 10 F, 6.3V or greater, tantalum or ceramic  
R1: 10 k  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
R2: 100to 470Ω  
Note 1: See Section 2.4 “Voltage Regulator Pins  
(ENVREG/DISVREG and VCAP/VDDCORE)”  
for explanation of ENVREG/DISVREG pin  
connections.  
• OSCI and OSCO pins when an external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
2: The example shown is for a PIC24F device  
with five VDD/VSS and AVDD/AVSS pairs.  
Other devices may have more or less pairs;  
adjust the number of decoupling capacitors  
appropriately.  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for analog modules is implemented  
Note:  
The AVDD and AVSS pins must always be  
connected, regardless of whether any of  
the analog modules are being used.  
The minimum mandatory connections are shown in  
Figure 2-1.  
2010 Microchip Technology Inc.  
DS39969B-page 33  
PIC24FJ256DA210 FAMILY  
2.2  
Power Supply Pins  
2.3  
Master Clear (MCLR) Pin  
The MCLR pin provides two specific device  
functions: device Reset, and device programming  
and debugging. If programming and debugging are  
2.2.1  
DECOUPLING CAPACITORS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
not required in the end application,  
a
direct  
connection to VDD may be all that is required. The  
addition of other components, to help increase the  
application’s resistance to spurious Resets from  
Consider the following criteria when using decoupling  
capacitors:  
voltage sags, may be beneficial.  
A
typical  
Value and type of capacitor: A 0.1 F (100 nF),  
10-20V capacitor is recommended. The capacitor  
should be a low-ESR device with a resonance  
frequency in the range of 200 MHz and higher.  
Ceramic capacitors are recommended.  
configuration is shown in Figure 2-1. Other circuit  
designs may be implemented, depending on the  
application’s requirements.  
During programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R1 and C1 will need to be adjusted based on the  
application and PCB requirements. For example, it is  
recommended that the capacitor, C1, be isolated  
from the MCLR pin during programming and  
debugging operations by using a jumper (Figure 2-2).  
The jumper is replaced for normal run-time  
operations.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is no greater  
than 0.25 inch (6 mm).  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise (upward of  
tens of MHz), add a second ceramic type capaci-  
tor in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 F to 0.001 F. Place this  
second capacitor next to each primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible  
(e.g., 0.1 F in parallel with 0.001 F).  
Any components associated with the MCLR pin  
should be placed within 0.25 inch (6 mm) of the pin.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB trace  
R1  
R2  
MCLR  
PIC24FXXXX  
JP  
C1  
inductance.  
Note 1: R1 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2.2.2  
TANK CAPACITORS  
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including microcontrollers to  
supply a local power source. The value of the tank  
capacitor should be determined based on the trace  
resistance that connects the power supply source to  
the device, and the maximum current drawn by the  
device in the application. In other words, select the tank  
capacitor so that it meets the acceptable voltage sag at  
the device. Typical values range from 4.7 F to 47 F.  
2: R2 470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
DS39969B-page 34  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 2-3:  
FREQUENCY vs. ESR  
PERFORMANCE FOR  
SUGGESTED VCAP  
2.4  
Voltage Regulator Pins  
(ENVREG/DISVREG and  
VCAP/VDDCORE)  
10  
1
Note:  
This section applies only to PIC24FJ  
devices with an on-chip voltage regulator.  
The on-chip voltage regulator enable/disable pin  
(ENVREG or DISVREG, depending on the device  
family) must always be connected directly to either a  
supply voltage or to ground. The particular connection  
is determined by whether or not the regulator is to be  
used:  
0.1  
0.01  
• For ENVREG, tie to VDD to enable the regulator,  
or to ground to disable the regulator  
0.001  
0.01  
0.1  
1
10  
100  
1000 10,000  
Frequency (MHz)  
• For DISVREG, tie to ground to enable the  
regulator or to VDD to disable the regulator  
Note:  
Data for Murata GRM21BF50J106ZE01 shown.  
Measurements at 25°C, 0V DC bias.  
Refer to Section 27.2 “On-Chip Voltage Regulator”  
for details on connecting and using the on-chip  
regulator.  
2.5  
ICSP Pins  
When the regulator is enabled, a low-ESR (<5)  
capacitor is required on the VCAP/VDDCORE pin to  
stabilize the voltage regulator output voltage. The  
VCAP/VDDCORE pin must not be connected to VDD, and  
must use a capacitor of 10 F connected to ground. The  
type can be ceramic or tantalum. A suitable example is  
the Murata GRM21BF50J106ZE01 (10 F, 6.3V) or  
equivalent. Designers may use Figure 2-3 to evaluate  
ESR equivalence of candidate devices.  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming (ICSP) and debugging purposes.  
It is recommended to keep the trace length between  
the ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is recom-  
mended, with the value in the range of a few tens of  
ohms, not to exceed 100.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
The placement of this capacitor should be close to  
VCAP/VDDCORE. It is recommended that the trace  
length not exceed 0.25 inch (6 mm). Refer to  
Section 30.0 “Electrical Characteristics” for  
additional information.  
When the regulator is disabled, the VCAP/VDDCORE pin  
must be tied to a voltage supply at the VDDCORE level.  
Refer to Section 30.0 “Electrical Characteristics” for  
information on VDD and VDDCORE.  
For device emulation, ensure that the “Communication  
Channel Select” (i.e., PGECx/PGEDx pins) programmed  
into the device matches the physical connections for the  
ICSP to the Microchip debugger/emulator tool.  
For more information on available Microchip  
development tools connection requirements, refer to  
Section 28.0 “Development Support”.  
2010 Microchip Technology Inc.  
DS39969B-page 35  
PIC24FJ256DA210 FAMILY  
FIGURE 2-4:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
2.6  
External Oscillator Pins  
Many microcontrollers have options for at least two  
oscillators: a high-frequency primary oscillator and a  
low-frequency  
secondary  
oscillator  
(refer to  
Single-Sided and In-line Layouts:  
Section 8.0 “Oscillator Configuration” for details).  
Copper Pour  
(tied to ground)  
Primary Oscillator  
Crystal  
The oscillator circuit should be placed on the same  
side of the board as the device. Place the oscillator  
circuit close to the respective oscillator pins with no  
more than 0.5 inch (12 mm) between the circuit  
components and the pins. The load capacitors should  
be placed next to the oscillator itself, on the same side  
of the board.  
DEVICE PINS  
Primary  
OSCI  
OSCO  
GND  
Oscillator  
C1  
C2  
`
`
Use a grounded copper pour around the oscillator cir-  
cuit to isolate it from surrounding circuits. The  
grounded copper pour should be routed directly to the  
MCU ground. Do not run any signal traces or power  
traces inside the ground pour. Also, if using a two-sided  
board, avoid any traces on the other side of the board  
where the crystal is placed.  
SOSCO  
SOSC I  
Secondary  
Oscillator  
Crystal  
`
Layout suggestions are shown in Figure 2-4. In-line  
packages may be handled with a single-sided layout  
that completely encompasses the oscillator pins. With  
fine-pitch packages, it is not always possible to com-  
pletely surround the pins and components. A suitable  
solution is to tie the broken guard sections to a mirrored  
ground layer. In all cases, the guard trace(s) must be  
returned to ground.  
Sec Oscillator: C2  
Sec Oscillator: C1  
Fine-Pitch (Dual-Sided) Layouts:  
Top Layer Copper Pour  
(tied to ground)  
In planning the application’s routing and I/O assign-  
ments, ensure that adjacent port pins and other signals  
in close proximity to the oscillator are benign (i.e., free  
of high frequencies, short rise and fall times and other  
similar noise).  
Bottom Layer  
Copper Pour  
(tied to ground)  
OSCO  
For additional information and design guidance on  
oscillator circuits, please refer to these Microchip  
Application Notes, available at the corporate web site  
(www.microchip.com):  
C2  
Oscillator  
Crystal  
GND  
• AN826, “Crystal Oscillator Basics and Crystal  
Selection for rfPIC™ and PICmicro® Devices”  
C1  
• AN849, “Basic PICmicro® Oscillator Design”  
OSCI  
• AN943, “Practical PICmicro® Oscillator Analysis  
and Design”  
AN949, “Making Your Oscillator Work”  
DEVICE PINS  
DS39969B-page 36  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must modify the appropriate bits during  
initialization of the ADC module, as follows:  
2.7  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If an ICSP compliant emulator is selected as a debug-  
ger, it automatically initializes all of the A/D input pins  
(ANx) as “digital” pins. Depending on the particular  
device, this is done by setting all bits in the ADnPCFG  
register(s), or clearing all bit in the ANSx registers.  
• For devices with an ADnPCFG register, clear the  
bits corresponding to the pin(s) to be configured  
as analog. Do not change any other bits, particu-  
larly those corresponding to the PGECx/PGEDx  
pair, at any time.  
All PIC24F devices will have either one or more  
ADnPCFG registers or several ANSx registers (one for  
each port); no device will have both. Refer to  
(Section 23.0 “10-Bit High-Speed A/D Converter”)  
for more specific information.  
• For devices with ANSx registers, set the bits  
corresponding to the pin(s) to be configured as  
analog. Do not change any other bits, particularly  
those corresponding to the PGECx/PGEDx pair,  
at any time.  
The bits in these registers that correspond to the A/D  
pins that initialized the emulator must not be changed  
by the user application firmware; otherwise,  
communication errors will result between the debugger  
and the device.  
When a Microchip debugger/emulator is used as a  
programmer, the user application firmware must  
correctly configure the ADnPCFG or ANSx registers.  
Automatic initialization of this register is only done  
during debugger operation. Failure to correctly  
configure the register(s) will result in all A/D pins being  
recognized as analog input pins, resulting in the port  
value being read as a logic '0', which may affect user  
application functionality.  
2.8  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state. Alternatively, connect a 1 kΩ  
to 10 kresistor to VSS on unused pins and drive the  
output to logic low.  
2010 Microchip Technology Inc.  
DS39969B-page 37  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 38  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct Addressing modes along with  
3.0  
CPU  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
three groups of addressing modes. All modes support  
Register Direct and various Register Indirect modes.  
Each group offers up to seven addressing modes.  
Instructions are associated with predefined addressing  
modes depending upon their functional requirements.  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 44. “CPU with Extended Data  
Space (EDS)” (DS39732). The informa-  
tion in this data sheet supersedes the  
information in the FRM.  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working reg-  
ister (data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, three parameter instructions can be supported,  
allowing trinary operations (that is, A + B = C) to be  
executed in a single cycle.  
The PIC24F CPU has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set and a  
24-bit instruction word with a variable length opcode  
field. The Program Counter (PC) is 23 bits wide and  
addresses up to 4M instructions of user program  
memory space. A single-cycle instruction prefetch  
mechanism is used to help maintain throughput and  
provides predictable execution. All instructions execute  
in a single cycle, with the exception of instructions that  
change the program flow, the double-word move  
(MOV.D) instruction and the table instructions.  
Overhead-free program loop constructs are supported  
using the REPEATinstructions, which are interruptible  
at any point.  
A high-speed, 17-bit x 17-bit multiplier has been  
included to significantly enhance the core arithmetic  
capability and throughput. The multiplier supports  
Signed, Unsigned and Mixed mode, 16-bit x 16-bit or  
8-bit  
x 8-bit, integer multiplication. All multiply  
instructions execute in a single cycle.  
The 16-bit ALU has been enhanced with integer divide  
assist hardware that supports an iterative non-restoring  
divide algorithm. It operates in conjunction with the  
REPEATinstruction looping mechanism and a selection  
of iterative divide instructions to support 32-bit (or  
16-bit), divided by 16-bit, integer signed and unsigned  
division. All divide operations require 19 cycles to  
complete but are interruptible at any cycle boundary.  
PIC24F devices have sixteen, 16-bit working registers  
in the programmer’s model. Each of the working  
registers can act as a data, address or address offset  
register. The 16th working register (W15) operates as a  
Software Stack Pointer for interrupts and calls.  
The PIC24F has a vectored exception scheme with up  
to 8 sources of non-maskable traps and up to 118 inter-  
rupt sources. Each interrupt source can be assigned to  
one of seven priority levels.  
The lower 32 Kbytes of the data space can be  
accessed linearly. The upper 32 Kbytes of the data  
space are referred to as extended data space to which  
the extended data RAM, EPMP memory space or  
program memory can be mapped.  
A block diagram of the CPU is shown in Figure 3-1.  
3.1  
Programmer’s Model  
The Instruction Set Architecture (ISA) has been  
significantly enhanced beyond that of the PIC18, but  
maintains an acceptable level of backward compatibil-  
ity. All PIC18 instructions and addressing modes are  
supported, either directly, or through simple macros.  
Many of the ISA enhancements have been driven by  
compiler efficiency needs.  
The programmer’s model for the PIC24F is shown in  
Figure 3-2. All registers in the programmer’s model are  
memory mapped and can be manipulated directly by  
instructions. A description of each register is provided  
in Table 3-1. All registers associated with the  
programmer’s model are memory mapped.  
2010 Microchip Technology Inc.  
DS39969B-page 39  
PIC24FJ256DA210 FAMILY  
FIGURE 3-1:  
PIC24F CPU CORE BLOCK DIAGRAM  
EDS and Table  
Data Access  
Control Block  
Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
23  
Data RAM  
Up to 0x7FFF  
16  
PCH  
Program Counter  
PCL  
23  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
RAGU  
WAGU  
Address Latch  
Program Memory/  
Extended Data  
Space  
EA MUX  
Address Bus  
24  
Data Latch  
ROM Latch  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
Hardware  
Multiplier  
16 x 16  
W Register Array  
Divide  
Support  
16  
16-Bit ALU  
16  
To Peripheral Modules  
TABLE 3-1:  
CPU CORE REGISTERS  
Register(s) Name  
Description  
W0 through W15  
PC  
Working Register Array  
23-Bit Program Counter  
ALU STATUS Register  
SR  
SPLIM  
Stack Pointer Limit Value Register  
Table Memory Page Address Register  
Repeat Loop Counter Register  
CPU Control Register  
TBLPAG  
RCOUNT  
CORCON  
DISICNT  
DSRPAG  
DSWPAG  
Disable Interrupt Count Register  
Data Space Read Page Register  
Data Space Write Page Register  
DS39969B-page 40  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 3-2:  
PROGRAMMER’S MODEL  
15  
0
W0 (WREG)  
W1  
Divider Working Registers  
W2  
Multiplier Registers  
W3  
W4  
W5  
W6  
W7  
Working/Address  
Registers  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
Frame Pointer  
Stack Pointer  
0
Stack Pointer Limit  
Value Register  
0
SPLIM  
22  
0
0
PC  
Program Counter  
7
0
0
Table Memory Page  
Address Register  
TBLPAG  
9
Data Space Read Page Register  
Data Space Write Page Register  
DSRPAG  
DSWPAG  
8
0
0
15  
15  
Repeat Loop Counter  
Register  
RCOUNT  
SRH  
SRL  
0
IPL  
— — — — — — —  
ALU STATUS Register (SR)  
DC  
RA N OV Z C  
2
1 0  
15  
0
— — — — — — — — — — — — IPL3  
CPU Control Register (CORCON)  
Disable Interrupt Count Register  
———  
13  
0
DISICNT  
Registers or bits are shadowed for PUSH.Sand POP.Sinstructions.  
2010 Microchip Technology Inc.  
DS39969B-page 41  
PIC24FJ256DA210 FAMILY  
3.2  
CPU Control Registers  
REGISTER 3-1:  
SR: ALU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0, HSC  
DC  
bit 15  
bit 8  
R/W-0, HSC(1) R/W-0, HSC(1) R/W-0, HSC(1) R-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
IPL2(2) IPL1(2) IPL0(2)  
RA OV  
bit 7  
N
Z
C
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DC: ALU Half Carry/Borrow bit  
1= A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry out from the 4th or 8th low-order bit of the result has occurred  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2)  
111= CPU interrupt priority level is 7 (15); user interrupts are disabled  
110= CPU interrupt priority level is 6 (14)  
101= CPU interrupt priority level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: ALU Negative bit  
1= Result was negative  
0= Result was not negative (zero or positive)  
OV: ALU Overflow bit  
1= Overflow occurred for signed (2’s complement) arithmetic in this arithmetic operation  
0= No overflow has occurred  
Z: ALU Zero bit  
1= An operation, which affects the Z bit, has set it at some time in the past  
0= The most recent operation, which affects the Z bit, has cleared it (i.e., a non-zero result)  
C: ALU Carry/Borrow bit  
1= A carry out from the Most Significant bit of the result occurred  
0= No carry out from the Most Significant bit of the result occurred  
Note 1: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
2: The IPL Status bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.  
DS39969B-page 42  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 3-2:  
CORCON: CPU CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/C-0, HSC  
IPL3(1)  
R-1  
r
U-0  
U-0  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
r = Reserved bit  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit(1)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 2  
Reserved: Read as ‘1’  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level; see  
Register 3-1 for bit description.  
The PIC24F CPU incorporates hardware support for  
3.3  
Arithmetic Logic Unit (ALU)  
both multiplication and division. This includes a  
dedicated hardware multiplier and support hardware  
for 16-bit divisor division.  
The PIC24F ALU is 16 bits wide and is capable of addi-  
tion, subtraction, bit shifts and logic operations. Unless  
otherwise mentioned, arithmetic operations are 2’s  
complement in nature. Depending on the operation, the  
ALU may affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC)  
Status bits in the SR register. The C and DC Status bits  
operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
3.3.1  
MULTIPLIER  
The ALU contains a high-speed, 17-bit x 17-bit  
multiplier. It supports unsigned, signed or mixed sign  
operation in several multiplication modes:  
1. 16-bit x 16-bit signed  
2. 16-bit x 16-bit unsigned  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array, or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
3. 16-bit signed x 5-bit (literal) unsigned  
4. 16-bit unsigned x 16-bit unsigned  
5. 16-bit unsigned x 5-bit (literal) unsigned  
6. 16-bit unsigned x 16-bit signed  
7. 8-bit unsigned x 8-bit unsigned  
2010 Microchip Technology Inc.  
DS39969B-page 43  
PIC24FJ256DA210 FAMILY  
3.3.2  
DIVIDER  
3.3.3  
MULTI-BIT SHIFT SUPPORT  
The divide block supports signed and unsigned integer  
divide operations with the following data sizes:  
The PIC24F ALU supports both single bit and  
single-cycle, multi-bit arithmetic and logic shifts.  
Multi-bit shifts are implemented using a shifter block,  
capable of performing up to a 15-bit arithmetic right  
shift, or up to a 15-bit left shift, in a single cycle. All  
multi-bit shift instructions only support Register Direct  
Addressing for both the operand source and result  
destination.  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. 16-bit signed and unsigned  
DIVinstructions can specify any W register for both the  
16-bit divisor (Wn), and any W register (aligned) pair  
(W(m + 1):Wm) for the 32-bit dividend. The divide algo-  
rithm takes one cycle per bit of divisor, so both  
32-bit/16-bit and 16-bit/16-bit instructions take the  
same number of cycles to execute.  
A full summary of instructions that use the shift  
operation is provided in Table 3-2.  
TABLE 3-2:  
Instruction  
INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION  
Description  
ASR  
SL  
Arithmetic shift right source register by one or more bits.  
Shift left source register by one or more bits.  
LSR  
Logical shift right source register by one or more bits.  
DS39969B-page 44  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
from either the 23-bit Program Counter (PC) during pro-  
gram execution, or from table operation or data space  
remapping, as described in Section 4.3 “Interfacing  
Program and Data Memory Spaces”.  
4.0  
MEMORY ORGANIZATION  
As Harvard architecture devices, PIC24F micro-  
controllers feature separate program and data memory  
spaces and busses. This architecture also allows direct  
access of program memory from the data space during  
code execution.  
User access to the program memory space is restricted  
to the lower half of the address range (000000h to  
7FFFFFh). The exception is the use of TBLRD/TBLWT  
operations, which use TBLPAG<7> to permit access to  
the Configuration bits and Device ID sections of the  
configuration memory space.  
4.1  
Program Memory Space  
The program address memory space of the  
PIC24FJ256DA210 family devices is 4M instructions.  
The space is addressable by a 24-bit value derived  
Memory maps for the PIC24FJ256DA210 family of  
devices are shown in Figure 4-1.  
FIGURE 4-1:  
PROGRAM SPACE MEMORY MAP FOR PIC24FJ256DA210 FAMILY DEVICES  
PIC24FJ128DAXXX  
PIC24FJ256DAXXX  
000000h  
000002h  
000004h  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Interrupt Vector Table  
Reserved  
0000FEh  
000100h  
000104h  
0001FEh  
000200h  
Reserved  
Alternate Vector Table  
Alternate Vector Table  
User Flash  
Program Memory  
(44K instructions)  
User Flash  
Program Memory  
(87K instructions)  
Flash Config Words  
0157FEh  
015800h  
Flash Config Words  
02ABFEh  
02AC00h  
Unimplemented  
Read ‘0’  
Unimplemented  
Read ‘0’  
7FFFFEh  
800000h  
Reserved  
Reserved  
F7FFFEh  
F80000h  
Device Config Registers  
Reserved  
Device Config Registers  
Reserved  
F8000Eh  
F80010h  
FEFFFEh  
FF0000h  
DEVID (2)  
DEVID (2)  
FFFFFEh  
Note:  
Memory areas are not shown to scale.  
2010 Microchip Technology Inc.  
DS39969B-page 45  
PIC24FJ256DA210 FAMILY  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.3  
FLASH CONFIGURATION WORDS  
In PIC24FJ256DA210 family devices, the top four  
words of on-chip program memory are reserved for  
configuration information. On device Reset, the config-  
uration information is copied into the appropriate  
Configuration register. The addresses of the Flash  
The program memory space is organized in  
word-addressable blocks. Although it is treated as  
24 bits wide, it is more appropriate to think of each  
address of the program memory as a lower and upper  
word, with the upper byte of the upper word being  
unimplemented. The lower word always has an even  
address, while the upper word has an odd address  
(Figure 4-2).  
Configuration  
Word  
for  
devices  
in  
the  
PIC24FJ256DA210 family are shown in Table 4-1.  
Their location in the memory map is shown with the  
other memory vectors in Figure 4-1.  
The Configuration Words in program memory are a  
compact format. The actual Configuration bits are  
mapped in several different registers in the configuration  
memory space. Their order in the Flash Configuration  
Words does not reflect a corresponding arrangement in  
the configuration space. Additional details on the device  
Configuration Words are provided in Section 27.1  
“Configuration Bits”.  
Program memory addresses are always word-aligned  
on the lower word and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
4.1.2  
HARD MEMORY VECTORS  
All PIC24F devices reserve the addresses between  
0x00000 and 0x000200 for hard coded program execu-  
tion vectors. A hardware Reset vector is provided to  
redirect code execution from the default value of the  
PC on device Reset to the actual start of code. A GOTO  
instruction is programmed by the user at 0x000000 with  
the actual address for the start of code at 0x000002.  
TABLE 4-1:  
FLASH CONFIGURATION  
WORDS FOR  
PIC24FJ256DA210 FAMILY  
DEVICES  
Program  
Configuration  
Memory  
Device  
Word Addresses  
(Words)  
PIC24F devices also have two interrupt vector tables,  
located from 0x000004 to 0x0000FF and 0x000100 to  
0x0001FF. These vector tables allow each of the many  
device interrupt sources to be handled by separate  
ISRs. A more detailed discussion of the interrupt vector  
tables is provided in Section 7.1 “Interrupt Vector  
Table”.  
0x0157F8:0x0157FE  
PIC24FJ128DAXXX  
PIC24FJ256DAXXX  
44,032  
87,552 0x02ABF8:0x02ABFE  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
8
msw  
Address  
PC Address  
(lsw Address)  
most significant word  
23  
16  
0
0x000000  
0x000002  
00000000  
0x000001  
0x000003  
0x000005  
0x000007  
00000000  
00000000  
0x000004  
0x000006  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS39969B-page 46  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The EDS includes any additional internal data memory  
not accessible by the lower 32-Kbyte data address  
4.2  
Data Memory Space  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 45. “Data Memory with  
Extended Data Space” (DS39733). The  
information in this data sheet supersedes  
the information in the FRM.  
space and any external memory through EPMP. For  
more details on accessing internal extended data  
memory, refer to the “PIC24F Family Reference  
Manual”, Section 45. “Data Memory with Extended  
Data Space (EDS)(DS39733). For more details on  
accessing external memory using EPMP, refer to the  
PIC24F Family Reference Manual”, Section 42.  
“Enhanced Parallel Master Port (EPMP)”  
(DS39730). In PIC24F microcontrollers with EDS, the  
program memory can also be read from EDS. This is  
called Program Space Visibility (PSV). Table 4-2 lists the  
total memory accessible by each of the devices in this  
family.  
The PIC24F core has a 16-bit wide data memory space,  
addressable as a single linear range.  
The data space is accessed using two Address Genera-  
tion Units (AGUs), one each for read and write opera-  
tions. The data space memory map is shown in  
Figure 4-3.  
The EDS is organized as pages, with a single page called  
an EDS page that equals the EDS window (32 Kbytes).  
A particular EDS page is selected through the Data  
Space Read register (DSRPAG) or Data Space Write  
register (DSWPAG). For PSV, only the DSRPAG register  
is used. The combination of the DSRPAG register value  
and the 16-bit wide data address forms a 24-bit Effective  
Address (EA). For more information on EDS, refer to  
Section 4.3.3 “Reading Data from Program Memory  
Using EDS”.  
The 16-bit wide data addresses in the data memory  
space point to bytes within the Data Space (DS). This  
gives a DS address range of 64 Kbytes or 32K words.  
The lower 32 Kbytes (0x0000 to 0x7FFF) of DS is com-  
patible with the PIC24F microcontrollers without EDS.  
The upper 32 Kbytes of data memory address space  
(0x8000 - 0xFFFF) are used as an EDS window.  
The EDS window is used to access all memory region  
implemented in EDS, as shown in Figure 4-4.  
TABLE 4-2:  
Devices  
TOTAL MEMORY ACCESSIBLE BY THE DEVICE  
External RAM Access  
Using EPMP  
Program Memory Access  
Using EDS  
Internal RAM  
PIC24FJXXXDA210  
PIC24FJXXXDA206  
PIC24FJXXXDA110  
PIC24FJXXXDA106  
96 Kbytes (30K + 66K(1)  
96 Kbytes (30K + 66K(1)  
24 Kbytes  
)
)
Yes (up to 16 MB)  
Yes  
Yes  
Yes  
Yes  
No  
Yes (up to 16 MB)  
No  
24 Kbytes  
Note 1: The internal RAM above 30 Kbytes can be accessed through EDS window.  
2010 Microchip Technology Inc.  
DS39969B-page 47  
PIC24FJ256DA210 FAMILY  
4.2.1  
DATA SPACE WIDTH  
The data memory space is organized in  
byte-addressable, 16-bit wide blocks. Data is aligned  
in data memory and registers as 16-bit words, but all  
data space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
FIGURE 4-3:  
DATA SPACE MEMORY MAP FOR PIC24FJ256DA210 FAMILY DEVICES(4)  
MSB  
LSB  
MSB  
LSB  
Address  
Address  
0000h  
0001h  
SFR  
Space  
SFR Space  
07FFh  
0801h  
07FEh  
0800h  
Near  
Data Space  
1FFFh  
2001h  
1FFEh  
2000h  
Lower 32 Kbytes  
Data Space  
30 Kbytes Data RAM  
(1)  
(1)  
67FEh  
67FFh  
7FFFh  
8001h  
7FFEh  
8000h  
EDS Page 0x1  
(32 KB)  
Internal Extended  
Data RAM(66 Kbytes)  
(2)  
EDS Page 0x2  
(32 KB)  
EDS Page 0x3 (2 KB)  
Upper 32 Kbytes  
Data Space  
EDS Window  
(3)  
EDS Page 0x4  
EPMP Memory Space  
EDS Page 0x1FF  
EDS Page 0x200  
Program Space Visibility  
Area to Access Lower  
Word of Program Memory  
EDS Page 0x2FF  
EDS Page 0x300  
FFFFh  
Program Space Visibility  
Area to Access Upper  
Word of Program Memory  
FFFEh  
EDS Page 0x3FF  
Note 1: 24-Kbyte RAM variants (PIC24FJXXXDA1XX devices have implemented RAM only up to 0x67FF).  
2: Valid only for 96-Kbyte RAM variants (PIC24FJXXXDA2XX).  
3: Valid only for variants with the EPMP module (PIC24FJXXXDAX10).  
4: Data memory areas are not shown to scale.  
DS39969B-page 48  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
can clear the MSB of any W register by executing a  
zero-extend (ZE) instruction on the appropriate  
address.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCUs and  
improve data space memory usage efficiency, the  
PIC24F instruction set supports both word and byte  
operations. As a consequence of byte accessibility, all  
EA calculations are internally scaled to step through  
word-aligned memory. For example, the core recognizes  
that Post-Modified Register Indirect Addressing mode  
[Ws++] will result in a value of Ws + 1 for byte operations  
and Ws + 2 for word operations.  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions operate only on words.  
4.2.3  
NEAR DATA SPACE  
The 8-Kbyte area between 0000h and 1FFFh is  
referred to as the near data space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions. The  
remainder of the data space is addressable indirectly.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing with a 16-bit address field.  
Data byte reads will read the complete word, which  
contains the byte, using the LSB of any EA to deter-  
mine which byte to select. The selected byte is placed  
onto the LSB of the data path. That is, data memory  
and registers are organized as two parallel, byte-wide  
entities with shared (word) address decode but  
separate write lines. Data byte writes only write to the  
corresponding side of the array or register which  
matches the byte address.  
4.2.4  
SPECIAL FUNCTION REGISTER  
(SFR) SPACE  
The first 2 Kbytes of the near data space, from 0000h  
to 07FFh, are primarily occupied with Special Function  
Registers (SFRs). These are used by the PIC24F core  
and peripheral modules for controlling the operation of  
the device.  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap will be generated. If the error occurred on a read,  
the instruction underway is completed; if it occurred on  
a write, the instruction will be executed but the write will  
not occur. In either case, a trap is then executed, allow-  
ing the system and/or user to examine the machine  
state prior to execution of the address Fault.  
SFRs are distributed among the modules that they con-  
trol and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’. A diagram of the SFR space,  
showing where the SFRs are actually implemented, is  
shown in Table 4-3. Each implemented area indicates  
a 32-byte region where at least one address is imple-  
mented as an SFR. A complete list of implemented  
SFRs, including their addresses, is shown in Tables 4-4  
throughTable 4-34.  
All byte loads into any W register are loaded into the  
LSB. The Most Significant Byte (MSB) is not modified.  
A sign-extend instruction (SE) is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
TABLE 4-3:  
IMPLEMENTED REGIONS OF SFR DATA SPACE  
SFR Space Address  
xx00  
xx20  
xx40  
xx60  
xx80  
xxA0  
xxC0  
xxE0  
000h  
100h  
200h  
300h  
400h  
500h  
600h  
700h  
Core  
ICN  
Interrupts  
Timers  
Capture  
Compare  
I2C™  
UART  
SPI/UART  
SPI/I2C  
SPI  
UART  
I/O  
ADC/CTMU  
ANSEL  
USB  
EPMP  
RTC/Comp  
CRC  
System  
PPS  
GFX Controller  
NVM/PMD  
Legend: — = No implemented SFRs in this block  
2010 Microchip Technology Inc.  
DS39969B-page 49  
TABLE 4-4:  
CPU CORE REGISTERS MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0042  
0044  
0052  
0054  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0001  
0001  
xxxx  
0000  
0004  
xxxx  
0000  
Stack Pointer Limit Value Register  
Program Counter Low Word Register  
PCL  
PCH  
Program Counter Register High Byte  
Extended Data Space Read Page Address Register  
Extended Data Space Write Page Address Register  
DSRPAG  
DSWPAG(1)  
RCOUNT  
SR  
Repeat Loop Counter Register  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
r
Z
C
CORCON  
DISICNT  
TBLPAG  
IPL3  
Disable Interrupts Counter Register  
Table Memory Page Address Register  
Legend:  
— = unimplemented, read as ‘0’; r = Reserved bit. Reset values are shown in hexadecimal.  
Note 1:  
Reserved in PIC24FJXXXDA106 devices; do not use.  
TABLE 4-5:  
ICN REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNPD1 0056 CN15PDE  
CNPD2 0058 CN31PDE  
CN14PDE  
CN30PDE  
CN13PDE  
CN29PDE  
CN12PDE  
CN28PDE  
CN11PDE  
CN27PDE  
CN10PDE  
CN26PDE  
CN9PDE  
CN8PDE  
CN7PDE  
CN6PDE  
CN5PDE  
CN4PDE  
CN3PDE  
CN2PDE  
CN1PDE  
CN0PDE  
0000  
0000  
0000  
CN25PDE  
CN24PDE  
CN23PDE  
CN22PDE CN21PDE(1) CN20PDE(1) CN19PDE(1) CN18PDE  
CN17PDE  
CN16PDE  
CNPD3 005A CN47PDE(1) CN46PDE(1) CN45PDE(1) CN44PDE(1) CN43PDE(1) CN42PDE(1) CN41PDE(1) CN40PDE(1) CN39PDE(1) CN38PDE(1) CN37PDE(1) CN36PDE(1) CN35PDE(1) CN34PDE(1) CN33PDE(1) CN32PDE  
CNPD4 005C CN63PDE CN62PDE CN61PDE CN60PDE CN59PDE CN55PDE CN54PDE CN53PDE CN52PDE CN51PDE CN50PDE  
CN58PDE CN57PDE(1) CN56PDE  
CNPD5 005E CN79PDE(1) CN78PDE(1) CN77PDE(1) CN76PDE(1) CN75PDE(1) CN74PDE(1) CN73PDE(1) CN71PDE CN70PDE(1) CN69PDE CN68PDE CN67PDE(1) CN66PDE(1) CN65PDE  
CN49PDE CN48PDE(1) 0000  
CN64PDE 0000  
CN83PDE CN82PDE(1) CN81PDE(1) CN80PDE(1) 0000  
CNPD6 0060  
CNEN1 0062  
CNEN2 0064  
CN84PDE  
CN15IE  
CN14IE  
CN30IE  
CN46IE(1)  
CN62IE  
CN78IE(1)  
CN13IE  
CN29IE  
CN45IE(1)  
CN61IE  
CN77IE(1)  
CN12IE  
CN28IE  
CN44IE(1)  
CN60IE  
CN76IE(1)  
CN11IE  
CN27IE  
CN43IE(1)  
CN59IE  
CN75IE(1)  
CN10IE  
CN26IE  
CN42IE(1)  
CN58IE  
CN74IE(1)  
CN9IE  
CN8IE  
CN24IE  
CN40IE(1)  
CN56IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN19IE(1)  
CN35IE(1)  
CN51IE  
CN2IE  
CN1IE  
CN0IE  
CN16IE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
CN31IE  
CN25IE  
CN41IE(1)  
CN57IE(1)  
CN73IE(1)  
CN23IE  
CN39IE(1)  
CN55IE  
CN71IE  
CN22IE  
CN38IE(1)  
CN54IE  
CN70IE(1)  
CN21IE(1)  
CN37IE(1)  
CN53IE  
CN69IE  
CN20IE(1)  
CN36IE(1)  
CN52IE  
CN18IE  
CN17IE  
CNEN3 0066 CN47IE(1)  
CNEN4 0068 CN63IE  
CNEN5 006A CN79IE(1)  
CNEN6 006C  
CN34IE(1)  
CN50IE  
CN33IE(1)  
CN49IE  
CN32IE  
CN48IE(1)  
CN68IE  
CN67IE(1)  
CN66IE(1)  
CN82IE(1)  
CN2PUE  
CN65IE  
CN64IE  
CN84IE  
CN83IE  
CN81IE(1)  
CN1PUE  
CN17PUE  
CN80IE(1)  
CN0PUE  
CN16PUE  
CNPU1 006E CN15PUE  
CNPU2 0070 CN31PUE  
CN14PUE  
CN13PUE  
CN12PUE  
CN11PUE  
CN10PUE  
CN9PUE  
CN8PUE  
CN24PUE  
CN7PUE  
CN6PUE  
CN5PUE  
CN4PUE  
CN3PUE  
CN30PUE  
CN29PUE  
CN28PUE  
CN27PUE  
CN26PUE  
CN25PUE  
CN23PUE  
CN22PUE CN21PUE(1) CN20PUE(1) CN19PUE(1) CN18PUE  
CNPU3 0072 CN47PUE(1) CN46PUE(1) CN45PUE(1) CN44PUE(1) CN43PUE(1) CN42PUE(1) CN41PUE(1) CN40PUE(1) CN39PUE(1) CN38PUE(1) CN37PUE(1) CN36PUE(1) CN35PUE(1) CN34PUE(1) CN33PUE(1) CN32PUE  
CNPU4 0074 CN63PUE CN62PUE CN61PUE CN60PUE CN59PUE CN55PUE CN54PUE CN53PUE CN52PUE CN51PUE CN50PUE  
CN58PUE CN57PUE(1) CN56PUE  
CNPU5 0076 CN79PUE(1) CN78PUE(1) CN77PUE(1) CN76PUE(1) CN75PUE(1) CN74PUE(1) CN73PUE(1) CN71PUE CN70PUE(1) CN69PUE CN68PUE CN67PUE(1) CN66PUE(1) CN65PUE  
CN84PUE  
CN83PUE CN82PUE(1) CN81PUE(1) CN80PUE(1) 0000  
CN49PUE CN48PUE(1) 0000  
CN64PUE 0000  
CNPU6 0078  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Unimplemented in 64-pin devices; read as ‘0’.  
Note  
1:  
TABLE 4-6:  
INTERRUPT CONTROLLER REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1  
INTCON2  
IFS0  
0080  
0082  
0084  
0086  
0088  
008A  
008C  
008E  
0090  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00B8  
00BA  
00BC  
00BE  
00C2  
NSTDIS  
ALTIVT  
DISI  
MATHERR  
INT4EP  
ADDRERR  
INT3EP  
T1IF  
CNIF  
STKERR  
INT2EP  
OC1IF  
CMIF  
OSCFAIL  
INT1EP  
IC1IF  
INT0EP  
INT0IF  
SI2C1IF  
SPF2IF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4444  
4440  
4444  
0044  
4444  
4404  
4440  
4444  
0044  
4440  
4444  
AD1IF  
INT2IF  
PMPIF(1)  
U1TXIF  
T5IF  
OC8IF  
U1RXIF  
T4IF  
OC7IF  
SPI1IF  
OC4IF  
OC6IF  
SPF1IF  
OC3IF  
OC5IF  
T3IF  
T2IF  
IC8IF  
IC5IF  
OC2IF  
IC7IF  
IC2IF  
IFS1  
U2TXIF  
U2RXIF  
INT1IF  
MI2C1IF  
SPI2IF  
SI2C2IF  
U1ERIF  
U3ERIF  
IFS2  
IC6IF  
IC4IF  
IC3IF  
IFS3  
RTCIF  
INT4IF  
INT3IF  
MI2C2IF  
U2ERIF  
U3RXIF  
IFS4  
CTMUIF  
IC9IF  
LVDIF  
U4RXIF  
CRCIF  
U3TXIF  
IFS5  
OC9IF  
SPI3IF  
SPF3IF  
U4TXIF  
U4ERIF  
USB1IF  
MI2C3IF  
SI2C3IF  
GFX1IF  
IFS6  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
IPC12  
IPC13  
IPC15  
AD1IE  
INT2IE  
PMPIE(1)  
U1TXIE  
T5IE  
OC8IE  
U1RXIE  
T4IE  
OC7IE  
SPI1IE  
OC4IE  
OC6IE  
SPF1IE  
OC3IE  
OC5IE  
T3IE  
T2IE  
IC8IE  
IC5IE  
OC2IE  
IC7IE  
IC2IE  
T1IE  
CNIE  
OC1IE  
CMIE  
IC1IE  
INT0IE  
SI2C1IE  
SPF2IE  
U2TXIE  
U2RXIE  
INT1IE  
MI2C1IE  
SPI2IE  
SI2C2IE  
U1ERIE  
U3ERIE  
IC6IE  
IC4IE  
IC3IE  
INT3IE  
RTCIE  
INT4IE  
MI2C2IE  
U2ERIE  
U3RXIE  
CTMUIE  
IC9IE  
LVDIE  
U4RXIE  
CRCIE  
U3TXIE  
OC9IE  
SPI3IE  
SPF3IE  
U4TXIE  
U4ERIE  
USB1IE  
MI2C3IE  
SI2C3IE  
GFX1IE  
IC1IP0  
IC2IP0  
SPF1IP0  
AD1IP0  
MI2C1IP0  
T1IP2  
T2IP2  
U1RXIP2  
T1IP1  
T2IP1  
U1RXIP1  
T1IP0  
T2IP0  
U1RXIP0  
OC1IP2  
OC2IP2  
SPI1IP2  
OC1IP1  
OC2IP1  
SPI1IP1  
OC1IP0  
OC2IP0  
SPI1IP0  
IC1IP2  
IC2IP2  
SPF1IP2  
AD1IP2  
MI2C1IP2  
IC1IP1  
IC2IP1  
SPF1IP1  
AD1IP1  
MI2C1IP1  
INT0IP2  
INT0IP1  
INT0IP0  
T3IP2  
U1TXIP2  
SI2C1IP2  
INT1IP2  
T3IP1  
U1TXIP1  
SI2C1IP1  
INT1IP1  
T3IP0  
U1TXIP0  
SI2C1IP0  
INT1IP0  
CNIP2  
IC8IP2  
T4IP2  
U2TXIP2  
CNIP1  
IC8IP1  
T4IP1  
U2TXIP1  
CNIP0  
IC8IP0  
T4IP0  
U2TXIP0  
CMIP2  
IC7IP2  
OC4IP2  
U2RXIP2  
CMIP1  
IC7IP1  
OC4IP1  
U2RXIP1  
CMIP0  
IC7IP0  
OC4IP0  
U2RXIP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC5IP2  
PMPIP2(1)  
SI2C2IP2  
INT3IP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC5IP1  
PMPIP1(1)  
SI2C2IP1  
INT3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
OC5IP0  
PMPIP0(1)  
SI2C2IP0  
INT3IP0  
T5IP2  
SPF2IP2  
T5IP1  
SPF2IP1  
T5IP0  
SPF2IP0  
IC5IP2  
OC7IP2  
IC5IP1  
OC7IP1  
IC5IP0  
OC7IP0  
IC4IP2  
OC6IP2  
IC4IP1  
OC6IP1  
IC4IP0  
OC6IP0  
IC6IP2  
OC8IP2  
IC6IP1  
OC8IP1  
IC6IP0  
OC8IP0  
(2)  
0044  
MI2C2IP2  
INT4IP2  
RTCIP2  
MI2C2IP1  
INT4IP1  
RTCIP1  
MI2C2IP0  
INT4IP0  
RTCIP0  
0440  
0440  
0400  
Legend:  
Note  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Unimplemented in 64-pin devices, read as ‘0’.  
The Reset value in 64-pin devices are ‘0004’.  
1:  
2:  
TABLE 4-6:  
INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IPC16  
IPC18  
IPC19  
IPC20  
IPC21  
IPC22  
IPC23  
IPC25  
INTTREG  
00C4  
00C8  
00CA  
00CC  
00CE  
00D0  
00D2  
00D6  
00E0  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2  
U2ERIP1  
U2ERIP0  
U1ERIP2  
U1ERIP1  
U1ERIP0  
4440  
0004  
0040  
4440  
4444  
4444  
0044  
0004  
0000  
LVDIP2  
LVDIP1  
LVDIP0  
CTMUIP2  
U3ERIP2  
MI2C3IP2  
U4TXIP2  
IC9IP2  
CTMUIP1  
U3ERIP1  
MI2C3IP1  
U4TXIP1  
IC9IP1  
CTMUIP0  
U3ERIP0  
MI2C3IP0  
U4TXIP0  
IC9IP0  
U3TXIP2  
U4ERIP2  
SPI3IP2  
U3TXIP1  
U4ERIP1  
SPI3IP1  
U3TXIP0  
U4ERIP0  
SPI3IP0  
U3RXIP2  
USB1IP2  
SPF3IP2  
U3RXIP1  
USB1IP1  
SPF3IP1  
U3RXIP0  
USB1IP0  
SPF3IP0  
SI2C3IP2  
U4RXIP2  
OC9IP2  
GFX1IP2  
SI2C3IP1  
U4RXIP1  
OC9IP1  
GFX1IP1  
SI2C3IP0  
U4RXIP0  
OC9IP0  
GFX1IP0  
CPUIRQ  
VHOLD  
ILR3  
ILR2  
ILR1  
ILR0  
VECNUM6  
VECNUM5  
VECNUM4  
VECNUM3 VECNUM2 VECNUM1 VECNUM0  
Legend:  
Note  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Unimplemented in 64-pin devices, read as ‘0’.  
The Reset value in 64-pin devices are ‘0004’.  
1:  
2:  
TABLE 4-7:  
TIMER REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
0100  
0102  
0104  
0106  
0108  
010A  
010C  
010E  
0110  
0112  
0114  
0116  
0118  
011A  
011C  
011E  
0120  
Timer1 Register  
Timer1 Period Register  
0000  
FFFF  
0000  
0000  
0000  
0000  
FFFF  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
FFFF  
0000  
0000  
PR1  
T1CON  
TMR2  
TON  
TSIDL  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD  
TMR3  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
PR2  
Timer2 Period Register  
PR3  
Timer3 Period Register  
T2CON  
T3CON  
TMR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS1  
TCKPS1  
TCKPS0  
TCKPS0  
T32  
TCS  
TCS  
Timer4 Register  
TMR5HLD  
TMR5  
Timer5 Holding Register (for 32-bit operations only)  
Timer5 Register  
PR4  
Timer4 Period Register  
PR5  
Timer5 Period Register  
T4CON  
T5CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS1  
TCKPS1  
TCKPS0  
TCKPS0  
T45  
TCS  
TCS  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
INPUT CAPTURE REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1CON1  
IC1CON2  
IC1BUF  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
0154  
0156  
0158  
015A  
015C  
015E  
0160  
0162  
0164  
0166  
0168  
016A  
016C  
016E  
0170  
0172  
0174  
0176  
0178  
017A  
017C  
017E  
0180  
0182  
0184  
0186  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 1 Buffer Register  
0000  
xxxx  
IC1TMR  
IC2CON1  
IC2CON2  
IC2BUF  
Input Capture 1 Timer Value Register  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 2 Buffer Register  
0000  
xxxx  
IC2TMR  
IC3CON1  
IC3CON2  
IC3BUF  
Input Capture 2 Timer Value Register  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 3 Buffer Register  
0000  
xxxx  
IC3TMR  
IC4CON1  
IC4CON2  
IC4BUF  
Input Capture 3 Timer Value Register  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 4 Buffer Register  
0000  
xxxx  
IC4TMR  
IC5CON1  
IC5CON2  
IC5BUF  
Input Capture 4 Timer Value Register  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 5 Buffer Register  
0000  
xxxx  
IC5TMR  
IC6CON1  
IC6CON2  
IC6BUF  
Input Capture 5 Timer Value Register  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 6 Buffer Register  
0000  
xxxx  
IC6TMR  
IC7CON1  
IC7CON2  
IC7BUF  
Input Capture 6 Timer Value Register  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 7 Buffer Register  
0000  
xxxx  
IC7TMR  
IC8CON1  
IC8CON2  
IC8BUF  
Input Capture 7 Timer Value Register  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 8 Buffer Register  
0000  
xxxx  
IC8TMR  
IC9CON1  
IC9CON2  
IC9BUF  
Input Capture 8 Timer Value Register  
ICSIDL  
ICTSEL2 ICTSEL1 ICTSEL0  
ICI1  
ICI0  
ICOV  
ICBNE  
ICM2  
ICM1  
ICM0  
0000  
IC32  
ICTRIG TRIGSTAT  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D  
Input Capture 9 Buffer Register  
0000  
xxxx  
IC9TMR  
Legend:  
Input Capture 9 Timer Value Register  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
OUTPUT COMPARE REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1CON1  
OC1CON2  
OC1RS  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
019E  
01A0  
01A2  
01A4  
01A6  
01A8  
01AA  
01AC  
01AE  
01B0  
01B2  
01B4  
01B6  
01B8  
01BA  
01BC  
01BE  
01C0  
01C2  
01C4  
01C6  
01C8  
01CA  
01CC  
01CE  
01D0  
01D2  
01D4  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT2  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
0000  
000C  
0000  
0000  
xxxx  
0000  
000C  
0000  
0000  
xxxx  
0000  
000C  
0000  
0000  
xxxx  
0000  
000C  
0000  
0000  
xxxx  
0000  
000C  
0000  
0000  
xxxx  
0000  
000C  
0000  
0000  
xxxx  
0000  
000C  
0000  
0000  
xxxx  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
OC1R  
OC1TMR  
OC2CON1  
OC2CON2  
OC2RS  
Output Compare 1 Timer Value Register  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT2  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2R  
OC2TMR  
OC3CON1  
OC3CON2  
OC3RS  
Output Compare 2 Timer Value Register  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT2  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3R  
OC3TMR  
OC4CON1  
OC4CON2  
OC4RS  
Output Compare 3 Timer Value Register  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT2  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4R  
OC4TMR  
OC5CON1  
OC5CON2  
OC5RS  
Output Compare 4 Timer Value Register  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT1  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 5 Secondary Register  
Output Compare 5 Register  
OC5R  
OC5TMR  
OC6CON1  
OC6CON2  
OC6RS  
Output Compare 5 Timer Value Register  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT2  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 6 Secondary Register  
Output Compare 6 Register  
OC6R  
OC6TMR  
OC7CON1  
OC7CON2  
OC7RS  
Output Compare 6 Timer Value Register  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT2  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 7 Secondary Register  
Output Compare 7 Register  
OC7R  
OC7TMR  
Legend:  
Output Compare 7 Timer Value Register  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
OUTPUT COMPARE REGISTER MAP (CONTINUED)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC8CON1  
OC8CON2  
OC8RS  
01D6  
01D8  
01DA  
01DC  
01DE  
01E0  
01E2  
01E4  
01E6  
01E8  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT2  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
0000  
000C  
0000  
0000  
xxxx  
0000  
000C  
0000  
0000  
xxxx  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 8 Secondary Register  
Output Compare 8 Register  
OC8R  
OC8TMR  
OC9CON1  
OC9CON2  
OC9RS  
Output Compare 8 Timer Value Register  
OCSIDL  
OCTSEL2  
OCINV  
OCTSEL1  
OCTSEL0  
DCB1  
ENFLT2  
DCB0  
ENFLT1  
OC32  
ENFLT0  
OCTRIG  
OCFLT2  
OCFLT1  
OCTRIS  
OCFLT0  
TRIGMODE  
SYNCSEL3  
OCM2  
OCM1  
OCM0  
FLTMD  
FLTOUT  
FLTTRIEN  
TRIGSTAT  
SYNCSEL4  
SYNCSEL2 SYNCSEL1  
SYNCSEL0  
Output Compare 9 Secondary Register  
Output Compare 9 Register  
OC9R  
OC9TMR  
Legend:  
Output Compare 9 Timer Value Register  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-10: I2C™ REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
0200  
0202  
0204  
0206  
I2C1 Receive Register  
I2C1 Transmit Register  
0000  
00FF  
0000  
1000  
I2C1 Baud Rate Generator Register  
I2CEN  
I2CSIDL  
SCLREL  
IPMIEN  
A10M  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
S
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
I2C1STAT  
I2C1ADD  
I2C1MSK  
I2C2RCV  
I2C2TRN  
I2C2BRG  
I2C2CON  
0208  
020A  
020C  
0210  
0212  
0214  
0216  
ACKSTAT TRSTAT  
BCL  
ADD10  
IWCOL  
0000  
0000  
0000  
0000  
00FF  
0000  
1000  
I2C1 Address Register  
I2C1 Address Mask Register  
I2C2 Receive Register  
I2C2 Transmit Register  
I2C2 Baud Rate Generator Register  
I2CEN  
I2CSIDL  
SCLREL  
IPMIEN  
A10M  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
S
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
I2C2STAT  
I2C2ADD  
I2C2MSK  
I2C3RCV  
I2C3TRN  
I2C3BRG  
I2C3CON  
0218  
021A  
021C  
0270  
0272  
0274  
0276  
ACKSTAT TRSTAT  
BCL  
ADD10  
IWCOL  
0000  
0000  
0000  
0000  
00FF  
0000  
1000  
I2C2 Address Register  
I2C2 Address Mask Register  
I2C3 Receive Register  
I2C3 Transmit Register  
I2C3 Baud Rate Generator Register  
I2CEN  
I2CSIDL  
SCLREL  
IPMIEN  
A10M  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
S
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
I2C3STAT  
I2C3ADD  
I2C3MSK  
Legend:  
0278  
027A  
027C  
ACKSTAT TRSTAT  
BCL  
GCSTAT  
ADD10  
IWCOL  
0000  
0000  
0000  
I2C3 Address Register  
I2C3 Address Mask Register  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: UART REGISTER MAPS  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
0230  
0232  
0234  
0236  
0238  
0250  
0252  
0254  
0256  
0258  
02B0  
02B2  
02B4  
02B6  
02B8  
UARTEN  
UTXISEL1  
UTXINV  
USIDL  
UTXISEL0  
IREN  
RTSMD  
UTXBRK  
UTXEN  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
ADDEN  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1  
FERR  
PDSEL0  
OERR  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0000  
0110  
xxxx  
0000  
0000  
0000  
0110  
xxxx  
0000  
0000  
0000  
0110  
xxxx  
0000  
0000  
URXISEL1 URXISEL0  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART1 Transmit Register  
UART1 Receive Register  
UART1 Baud Rate Generator Prescaler Register  
U2MODE  
U2STA  
UARTEN  
UTXISEL1  
UTXINV  
USIDL  
UTXISEL0  
IREN  
RTSMD  
UTXBRK  
UTXEN  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
ADDEN  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1  
FERR  
PDSEL0  
OERR  
STSEL  
URXISEL1 URXISEL0  
URXDA  
U2TXREG  
U2RXREG  
U2BRG  
UART2 Transmit Register  
UART2 Receive Register  
UART2 Baud Rate Generator Prescaler Register  
U3MODE  
U3STA  
UARTEN  
UTXISEL1  
UTXINV  
USIDL  
UTXISEL0  
IREN  
RTSMD  
UTXBRK  
UTXEN  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
ADDEN  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1  
FERR  
PDSEL0  
OERR  
STSEL  
URXISEL1 URXISEL0  
URXDA  
U3TXREG  
U3RXREG  
U3BRG  
UART3 Transmit Register  
UART3 Receive Register  
UART3 Baud Rate Generator Prescaler Register  
U4MODE  
U4STA  
UARTEN  
UTXISEL1  
UTXINV  
USIDL  
UTXISEL0  
IREN  
RTSMD  
UTXBRK  
UTXEN  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
ADDEN  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1  
FERR  
PDSEL0  
OERR  
STSEL  
URXISEL1 URXISEL0  
URXDA  
U4TXREG  
U4RXREG  
U4BRG  
UART4 Transmit Register  
UART4 Receive Register  
UART4 Baud Rate Generator Prescaler Register  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: SPI REGISTER MAPS  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
0240  
0242  
0244  
0248  
0260  
0262  
0264  
0268  
0280  
0282  
0284  
0288  
SPIEN  
SPISIDL  
DISSCK  
SPIBEC2 SPIBEC1 SPIBEC0  
SRMPT  
SSEN  
SPIROV SRXMPT  
SISEL2  
SPRE2  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DISSDO MODE16  
SMP  
CKE  
CKP  
MSTEN  
FRMEN  
SPIFSD SPIFPOL  
SPI1 Transmit and Receive Buffer  
SPI2STAT  
SPI2CON1  
SPI2CON2  
SPI2BUF  
SPI3STAT  
SPI3CON1  
SPI3CON2  
SPI3BUF  
SPIEN  
SPISIDL  
DISSCK  
SPIBEC2 SPIBEC1 SPIBEC0  
SRMPT  
SSEN  
SPIROV SRXMPT  
SISEL2  
SPRE2  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
DISSDO MODE16  
SMP  
CKE  
CKP  
MSTEN  
FRMEN  
SPIFSD SPIFPOL  
SPI2 Transmit and Receive Buffer  
SPIEN  
SPISIDL  
DISSCK  
SPIBEC2 SPIBEC1 SPIBEC0  
SRMPT  
SSEN  
SPIROV SRXMPT  
SISEL2  
SPRE2  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
DISSDO MODE16  
SMP  
CKE  
CKP  
MSTEN  
FRMEN  
SPIFSD SPIFPOL  
SPI3 Transmit and Receive Buffer  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-13: PORTA REGISTER MAP(1)  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit2  
Bit 1  
Bit 0  
TRISA  
02C0  
02C2  
02C4  
02C6  
TRISA15 TRISA14  
TRISA10  
RA10  
TRISA9  
RA9  
TRISA7  
RA7  
TRISA6  
RA6  
TRISA5  
RA5  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
C6FF  
xxxx  
xxxx  
0000  
PORTA  
LATA  
RA15  
LATA15  
ODA15  
RA14  
LATA14  
ODA14  
LATA10  
ODA10  
LATA9  
ODA9  
LATA7  
ODA7  
LATA6  
ODA6  
LATA5  
ODA5  
LATA4  
ODA4  
LATA3  
ODA3  
LATA2  
ODA2  
LATA1  
ODA1  
LATA0  
ODA0  
ODCA  
Legend:  
Note  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
PORTA and all associated bits are unimplemented on 64-pin devices and read as ‘0’. Bits are available on 100-pin devices only, unless otherwise noted.  
1:  
TABLE 4-14: PORTB REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
02C8  
02CA  
02CC  
02CE  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10  
TRISB9  
RB9  
TRISB8  
RB8  
TRISB7  
RB7  
TRISB6  
RB6  
TRISB5  
RB5  
TRISB4  
RB4  
TRISB3  
RB3  
TRISB2  
RB2  
TRISB1  
RB1  
TRISB0  
RB0  
FFFF  
xxxx  
xxxx  
0000  
PORTB  
LATB  
RB15  
LATB15  
ODB15  
RB14  
LATB14  
ODB14  
RB13  
LATB13  
ODB13  
RB12  
LATB12  
ODB12  
RB11  
LATB11  
ODB11  
RB10  
LATB10  
ODB10  
LATB9  
ODB9  
LATB8  
ODB8  
LATB7  
ODB7  
LATB6  
ODB6  
LATB5  
ODB5  
LATB4  
ODB4  
LATB3  
ODB3  
LATB2  
ODB2  
LATB1  
ODB1  
LATB0  
ODB0  
ODCB  
Legend:  
Reset values are shown in hexadecimal.  
TABLE 4-15: PORTC REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4(1)  
Bit 3(1)  
Bit 2(1)  
Bit 1(1)  
Bit 0  
TRISC  
PORTC  
LATC  
02D0  
02D2  
02D4  
02D6  
TRISC15 TRISC14 TRISC13 TRISC12  
TRISC4  
RC4  
TRISC3  
RC3  
TRISC2  
RC2  
TRISC1  
RC1  
F01E  
xxxx  
xxxx  
0000  
RC15(2,3)  
LATC15  
ODC15  
RC14  
LATC14  
ODC14  
RC13  
LATC13  
ODC13  
RC12(2)  
LATC12  
ODC12  
LATC4  
ODC4  
LATC3  
ODC3  
LATC2  
ODC2  
LATC1  
ODC1  
ODCC  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Bits are unimplemented in 64-pin devices; read as ‘0’.  
RC12 and RC15 are only available when the primary oscillator is disabled or when EC mode is selected (POSCMD<1:0> Configuration bits = 11 or 00); otherwise read as ‘0’.  
RC15 is only available when the POSCMD<1:0> Configuration bits = 11 or 00and the OSCIOFN Configuration bit = 1.  
Note  
1:  
2:  
3:  
TABLE 4-16: PORTD REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15(1)  
Bit 14(1)  
Bit 13(1)  
Bit 12(1)  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
PORTD  
LATD  
02D8  
02DA  
02DC  
02DE  
TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10  
TRISD9  
RD9  
TRISD8  
RD8  
TRISD7  
RD7  
TRISD6  
RD6  
TRISD5  
RD5  
TRISD4  
RD4  
TRISD3  
RD3  
TRISD2  
RD2  
TRISD1  
RD1  
TRISD0  
RD0  
FFFF  
xxxx  
xxxx  
0000  
RD15  
LATD15  
ODD15  
RD14  
LATD14  
ODD14  
RD13  
LATD13  
ODD13  
RD12  
LATD12  
ODD12  
RD11  
LATD11  
ODD11  
RD10  
LATD10  
ODD10  
LATD9  
ODD9  
LATD8  
ODD8  
LATD7  
ODD7  
LATD6  
ODD6  
LATD5  
ODD5  
LATD4  
ODD4  
LATD3  
ODD3  
LATD2  
ODD2  
LATD1  
ODD1  
LATD0  
ODD0  
ODCD  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Bits are unimplemented in 64-pin devices; read as ‘0’.  
TABLE 4-17: PORTE REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9(1)  
Bit 8(1)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISE  
02E0  
02E2  
02E4  
02E6  
TRISE9  
RE9  
TRISE8  
RE8  
TRISE7  
RE7  
TRISE6  
RE6  
TRISE5  
RE5  
TRISE4  
RE4  
TRISE3  
RE3  
TRISE2  
RE2  
TRISE1  
RE1  
TRISE0  
RE0  
03FF  
xxxx  
xxxx  
0000  
PORTE  
LATE  
LATE9  
ODE9  
LATE8  
ODE8  
LATE7  
ODE7  
LATE6  
ODE6  
LATE5  
ODE5  
LATE4  
ODE4  
LATE3  
ODE3  
LATE2  
ODE2  
LATE1  
ODE1  
LATE0  
ODE0  
ODCE  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Bits are unimplemented in 64-pin devices; read as ‘0’.  
TABLE 4-18: PORTF REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13(1)  
Bit 12(1)  
Bit 11  
Bit 10  
Bit 9  
Bit 8(1)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2(1)  
Bit 1  
Bit 0  
TRISF  
02E8  
02EA  
02EC  
02EE  
TRISF13  
RF13  
TRISF12  
RF12  
TRISF8  
RF8  
TRISF7  
RF7  
TRISF5  
RF5  
TRISF4  
RF4  
TRISF3  
RF3  
TRISF2  
RF2  
TRISF1  
RF1  
TRISF0  
RF0  
31BF  
xxxx  
xxxx  
0000  
PORTF  
LATF  
LATF13  
ODF13  
LATF12  
ODF12  
LATF8  
ODF8  
LATF7  
ODF7  
LATF5  
ODF5  
LATF4  
ODF4  
LATF3  
ODF3  
LATF2  
ODF2  
LATF1  
ODF1  
LATF0  
ODF0  
ODCF  
Legend:  
Note  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Bits are unimplemented in 64-pin devices; read as ‘0’.  
1:  
TABLE 4-19: PORTG REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15(1)  
Bit 14(1)  
Bit 13(1)  
Bit 12(1)  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1(1)  
Bit 0(1)  
TRISG  
PORTG  
LATG  
02F0  
02F2  
02F4  
02F6  
TRISG15 TRISG14 TRISG13 TRISG12  
TRISG9  
RG9  
TRISG8  
RG8  
TRISG7  
RG7  
TRISG6  
RG6  
TRISG3  
RG3  
TRISG2  
RG2  
TRISG1  
RG1  
TRISG0  
RG0  
F3CF  
xxxx  
xxxx  
0000  
RG15  
LATG15  
ODG15  
RG14  
LATG14  
ODG14  
RG13  
LATG13  
ODG13  
RG12  
LATG12  
ODG12  
LATG9  
ODG9  
LATG8  
ODG8  
LATG7  
ODG7  
LATG6  
ODG6  
LATG1  
ODG1  
LATG0  
ODG0  
LATG3  
ODG3  
LATG2  
ODG2  
ODCG  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.  
Bits are unimplemented in 64-pin devices; read as ‘0’.  
TABLE 4-20: PAD CONFIGURATION REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PADCFG1  
02FC  
RTSECSEL  
PMPTTL(1)  
0000  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Bits are unimplemented in 64-pin devices; read as ‘0’.  
Note  
1:  
TABLE 4-21: ADC REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
ADC1BUFB  
ADC1BUFC  
ADC1BUFD  
ADC1BUFE  
ADC1BUFF  
ADC1BUF10  
ADC1BUF11  
ADC1BUF12  
ADC1BUF13  
ADC1BUF14  
ADC1BUF15  
ADC1BUF16  
ADC1BUF17  
ADC1BUF18  
ADC1BUF19  
ADC1BUF1A  
ADC1BUF1B  
ADC1BUF1C  
ADC1BUF1D  
ADC1BUF1E  
ADC1BUF1F  
Legend:  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
0314  
0316  
0318  
031A  
031C  
031E  
0340  
0342  
0344  
0346  
0348  
034A  
034C  
034E  
0350  
0352  
0354  
0356  
0358  
035A  
035C  
035E  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
ADC Data Buffer 16  
ADC Data Buffer 17  
ADC Data Buffer 18  
ADC Data Buffer 19  
ADC Data Buffer 20  
ADC Data Buffer21  
ADC Data Buffer 22  
ADC Data Buffer 23  
ADC Data Buffer 24  
ADC Data Buffer 25  
ADC Data Buffer 26  
ADC Data Buffer 27  
ADC Data Buffer 28  
ADC Data Buffer 29  
ADC Data Buffer 30  
ADC Data Buffer 31  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
— = unimplemented, read as ‘0’, r = reserved, maintain as ‘0’. Reset values are shown in hexadecimal.  
Unimplemented in 64-pin devices, read as ‘0’  
Note  
1:  
TABLE 4-21: ADC REGISTER MAP (CONTINUED)  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
0320  
0322  
0324  
0328  
032E  
0330  
ADON  
VCFG2  
ADRC  
CH0NB  
VCFG1  
r
ADSIDL  
r
FORM1  
FORM0  
SSRC2  
BUFS  
SSRC1  
SMPI4  
ADCS6  
SSRC0  
SMPI3  
ADCS5  
ASAM  
SMPI0  
ADCS2  
SAMP  
BUFM  
ADCS1  
DONE  
ALTS  
0000  
0000  
0000  
0000  
VCFG0  
CSCNA  
SAMC2  
SMPI2  
ADCS4  
SMPI1  
ADCS3  
r
SAMC4  
SAMC3  
SAMC1  
SAMC0  
ADCS7  
ADCS0  
CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0  
CH0NA  
CH0SA4 CH0SA3 CH0SA2 CH0SA1 CH0SA0  
AD1CSSH  
AD1CSSL  
Legend:  
CSSL27  
CSSL11  
CSSL26  
CSSL10  
CSSL25  
CSSL9  
CSSL24 CSSL23(1) CSSL22(1) CSSL21(1) CSSL20(1) CSSL19(1) CSSL18(1) CSSL17(1) CSSL16(1) 0000  
CSSL15  
CSSL14  
CSSL13  
CSSL12  
CSSL8  
CSSL7  
CSSL6  
CSSL5  
CSSL4  
CSSL3  
CSSL2  
CSSL1  
CSSL0  
0000  
— = unimplemented, read as ‘0’, r = reserved, maintain as ‘0’. Reset values are shown in hexadecimal.  
Unimplemented in 64-pin devices, read as ‘0’  
Note  
1:  
TABLE 4-22: CTMU REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CTMUCON 033C CTMUEN  
CTMUICON 033E  
Legend: — = unimplemented, read as ‘  
CTMUSIDL TGEN EDGEN EDGSEQEN IDISSEN CTTRIG EDG2POL EDG2SEL1 EDG2SEL0 EDG1POL EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT 0000  
ITRIM3 ITRIM2 ITRIM1 ITRIM0 IRNG1 IRNG0 0000  
’. Reset values are shown in hexadecimal.  
ITRIM5 ITRIM4  
0
TABLE 4-23: USB OTG REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1OTGIR(2)  
U1OTGIE(2)  
U1OTGSTAT2)  
U1OTGCON(2)  
U1PWRC  
0480  
0482  
IDIF  
IDIE  
T1MSECIF  
T1MSECIE  
LSTATEIF  
LSTATEIE  
LSTATE  
ACTVIF  
ACTVIE  
SESVDIF  
SESVDIE  
SESVD  
SESENDIF  
SESENDIE  
SESEND  
OTGEN  
VBUSVDIF  
VBUSVDIE  
VBUSVD  
VBUSDIS  
USBPWR  
URSTIF  
DETACHIF(1)  
URSTIE  
DETACHIE(1)  
PIDEF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0484  
ID  
0486  
DPPULUP  
UACTPND  
STALLIF  
STALLIF  
STALLIE  
STALLIE  
BTSEF  
BTSEF  
BTSEE  
BTSEE  
ENDPT3  
DMPULUP DPPULDWN DMPULDWN VBUSON  
VBUSCHG  
USUSPND  
UERRIF  
UERRIF  
UERRIE  
UERRIE  
CRC5EF  
EOFEF(1)  
CRC5EE  
EOFEE(1)  
0488  
USLPGRD  
IDLEIF  
IDLEIF  
IDLEIE  
IDLEIE  
BTOEF  
BTOEF  
BTOEE  
BTOEE  
ENDPT0  
U1IR  
048A(1)  
RESUMEIF  
TRNIF  
SOFIF  
ATTACHIF(1) RESUMEIF  
RESUMEIE  
ATTACHIE(1) RESUMEIE  
TRNIF  
SOFIF  
U1IE  
048C(1)  
048E(1)  
0490(1)  
TRNIE  
SOFIE  
TRNIE  
SOFIE  
U1EIR  
U1EIE  
DMAEF  
DMAEF  
DFN8EF  
DFN8EF  
DFN8EE  
DFN8EE  
DIR  
CRC16EF  
CRC16EF  
CRC16EE  
CRC16EE  
PPBI  
PIDEF  
DMAEE  
DMAEE  
ENDPT1  
PKTDIS  
TOKBUSY  
PIDEE  
PIDEE  
U1STAT  
U1CON  
0492  
ENDPT2  
SE0  
SE0  
0494(1)  
HOSTEN  
HOSTEN  
RESUME  
RESUME  
PPBRST  
PPBRST  
USBEN  
JSTATE(1)  
LSPDEN(1)  
USBRST  
SOFEN(1)  
U1ADDR  
U1BDTP1  
U1FRML  
U1FRMH  
U1TOK(2)  
U1SOF(2)  
U1CNFG1  
U1CNFG2  
U1EP0  
0496  
0498  
049A  
049C  
049E  
04A0  
04A6  
04A8  
04AA  
04AC  
04AE  
04B0  
04B2  
04B4  
04B6  
04B8  
04BA  
04BC  
USB Device Address (DEVADDR) Register  
Buffer Descriptor Table Base Address Register  
Frame Count Register Low Byte  
Frame Count Register High Byte  
PID3  
PID2  
PID1  
PID0  
EP3  
EP2  
EP1  
EP0  
Start-Of-Frame Count Register  
UTEYE  
UOEMON  
USBSIDL  
PUVBUS  
PPB1  
PPB0  
UVCMPSEL  
EXTI2CEN UVBUSDIS UVCMPDIS  
UTRDIS  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
LSPD(1)  
RETRYDIS(1)  
EPCONDIS  
EPCONDIS  
EPCONDIS  
EPCONDIS  
EPCONDIS  
EPCONDIS  
EPCONDIS  
EPCONDIS  
EPCONDIS  
EPCONDIS  
EPRXEN  
EPRXEN  
EPRXEN  
EPRXEN  
EPRXEN  
EPRXEN  
EPRXEN  
EPRXEN  
EPRXEN  
EPRXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
U1EP1  
U1EP2  
U1EP3  
U1EP4  
U1EP5  
U1EP6  
U1EP7  
U1EP8  
U1EP9  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note  
1:  
2:  
Alternate register or bit definitions when the module is operating in Host mode.  
This register is available in Host mode only.  
TABLE 4-23: USB OTG REGISTER MAP (CONTINUED)  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1EP10  
04BE  
04C0  
04C2  
04C4  
04C6  
04C8  
04CC  
EPCONDIS EPRXEN  
EPCONDIS EPRXEN  
EPCONDIS EPRXEN  
EPCONDIS EPRXEN  
EPCONDIS EPRXEN  
EPCONDIS EPRXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPTXEN  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPSTALL  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
EPHSHK  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
U1EP11  
U1EP12  
U1EP13  
U1EP14  
U1EP15  
U1PWMRRS  
U1PWMCON  
Legend:  
USB Power Supply PWM Duty Cycle Register  
USB Power Supply PWM Period Register  
04CE PWMEN  
PWMPOL CNTEN  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note  
1:  
2:  
Alternate register or bit definitions when the module is operating in Host mode.  
This register is available in Host mode only.  
TABLE 4-24: ANCFG REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANCFG  
04DE  
VBG6EN  
VBG2EN  
VBGEN  
0000  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-25: ANSEL REGISTER MAP  
File  
Name  
All  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Resets(2)  
ANSA(1)  
ANSB  
04E0  
04E2  
04E4  
04E6  
04E8  
04EA  
04EC  
ANSB15  
ANSB14  
ANSC14  
ANSB13  
ANSC13  
ANSB12  
ANSB11  
ANSA10(1) ANSA9(1)  
ANSB8  
ANSA7(1) ANSA6(1)  
ANSB5  
ANSB1  
ANSB0  
06C0  
FFFF  
6010  
00C0  
0200  
0001  
03C0  
ANSB10  
ANSB9  
ANSB7  
ANSB6  
ANSB4  
ANSB3 ANSB2  
ANSC  
ANSC4(1)  
ANSD  
ANSD7  
ANSD6  
ANSE(1)  
ANSE9(1)  
ANSF  
ANSF0  
ANSG  
ANSG9  
ANSG8  
ANSG7  
ANSG6  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Unimplemented in 64-pin devices, read as ‘0’.  
Reset values are valid for 100-pin devices only.  
Note  
1:  
2:  
TABLE 4-26: ENHANCED PARALLEL MASTER/SLAVE PORT REGISTER MAP(1)  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON1  
PMCON2  
PMCON3  
PMCON4  
0600 PMPEN  
0602 BUSY  
PSIDL  
ADRMUX1 ADRMUX0  
MODE1  
MODE0  
CSF1  
CSF0  
ALP  
ALMODE  
BUSKEEP  
IRQM1  
IRQM0  
0000  
0000  
0000  
0000  
0000  
0200  
0000  
0000  
0600  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
008F  
ERROR  
TIMEOUT  
PTBE0EN  
PTEN12  
BEP  
AMREQ  
CURMST MSTSEL1 MSTSEL0 RADDR23 RADDR22 RADDR21 RADDR20 RADDR19 RADDR18 RADDR17 RADDR16  
0604 PTWREN PTRDEN PTBE1EN  
AWAITM1 AWAITM0 AWAITE  
PTEN22  
PTEN6  
PTSZ1  
PTEN21  
PTEN5  
PTSZ0  
PTEN20  
PTEN4  
PTEN19  
PTEN3  
PTEN18  
PTEN2  
PTEN17  
PTEN1  
PTEN16  
PTEN0  
0606 PTEN15 PTEN14  
CSDIS CSP  
PMCS1BS 060A BASE23 BASE22  
PTEN13  
CSPTEN  
BASE21  
AMWAIT2  
CSPTEN  
BASE21  
AMWAIT2  
PTEN11  
PTEN10  
WRSP  
BASE18  
PTEN9  
RDSP  
BASE17  
PTEN8  
SM  
PTEN7  
ACKP  
PMCS1CF 0608  
BASE20  
AMWAIT1  
BEP  
BASE19  
AMWAIT0  
BASE16  
BASE15  
BASE11  
PMCS1MD 060C ACKM1  
PMCS2CF 060E CSDIS  
ACKM0  
CSP  
DWAITB1 DWAITB0 DWAITM3 DWAITM2 DWAITM1 DWAITM0 DWAITE1 DWAITE0  
WRSP  
BASE18  
RDSP  
BASE17  
SM  
ACKP  
PTSZ1  
PTSZ0  
PMCS2BS 0610 BASE23 BASE22  
BASE20  
AMWAIT1  
BASE19  
AMWAIT0  
BASE16  
BASE15  
BASE11  
PMCS2MD 0612 ACKM1  
PMDOUT1 0614  
ACKM0  
DWAITB1 DWAITB0 DWAITM3 DWAITM2 DWAITM1 DWAITM0 DWAITE1 DWAITE0  
EPMP Data Out Register 1<7:0>  
EPMP Data Out Register 1<15:8>  
EPMP Data Out Register 2<15:8>  
EPMP Data In Register 1<15:8>  
EPMP Data In Register 2<15:8>  
PMDOUT2 0616  
EPMP Data Out Register 2<7:0>  
PMDIN1  
PMDIN2  
PMSTAT  
0618  
061A  
061C  
EPMP Data In Register 1<7:0>  
EPMP Data In Register 2<7:0>  
IBF  
IBOV  
IB3F  
IB2F  
IB1F  
IB0F  
OBE  
OBUF  
OB3E  
OB2E  
OB1E  
OB0E  
Legend:  
Note  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Unimplemented in 64-pin devices, read as ‘0’.  
1:  
TABLE 4-27: REAL-TIME CLOCK AND CALENDAR REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALRMVAL  
ALCFGRPT  
RTCVAL  
0620  
Alarm Value Register Window Based on ALRMPTR<1:0>  
AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6  
RTCC Value Register Window Based on RTCPTR<1:0>  
RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
xxxx  
0000  
0622 ALRMEN CHIME  
0624  
AMASK3  
AMASK2  
ARPT5  
CAL5  
ARPT4  
CAL4  
ARPT3  
CAL3  
ARPT2  
CAL2  
ARPT1  
CAL1  
ARPT0  
CAL0  
xxxx  
RCFGCAL  
Legend:  
0626  
RTCEN  
(Note 1)  
Note  
1:  
The status of the RCFGCAL register on POR is ‘0000’ and on other Resets is unchanged.  
TABLE 4-28: COMPARATORS REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMSTAT  
CVRCON  
CM1CON  
CM2CON  
CM3CON  
Legend:  
0630  
0632  
0634  
0636  
0638  
CMIDL  
C3EVT  
C2EVT  
C1EVT  
CVRR  
CVR3  
C3OUT  
CVR2  
C2OUT  
CVR1  
CCH1  
CCH1  
CCH1  
C1OUT  
CVR0  
CCH0  
CCH0  
CCH0  
0000  
0000  
0000  
0000  
0000  
CVREFP CVREFM1 CVREFM0  
CVREN  
EVPOL1  
EVPOL1  
EVPOL1  
CVROE  
EVPOL0  
EVPOL0  
EVPOL0  
CVRSS  
CREF  
CREF  
CREF  
CON  
CON  
CON  
COE  
COE  
COE  
CPOL  
CPOL  
CPOL  
CEVT  
CEVT  
CEVT  
COUT  
COUT  
COUT  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-29: CRC REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CRCCON1  
CRCCON2  
CRCXORL  
CRCXORH  
CRCDATL  
CRCDATH  
CRCWDATL  
CRCWDATH  
Legend:  
0640 CRCEN  
CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN  
PLEN2  
X2  
PLEN1  
X1  
PLEN0  
0040  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0642  
0644  
0646  
0648  
064A  
064C  
064E  
DWIDTH4 DWIDTH3 DWIDTH2 DWIDTH1 DWIDTH0  
X7  
X6  
X5  
PLEN4  
X4  
PLEN3  
X3  
X15  
X31  
X14  
X30  
X13  
X29  
X12  
X28  
X11  
X27  
X10  
X26  
X9  
X8  
X25  
X24  
X23  
X22  
X21  
X20  
X19  
X18  
X17  
X16  
CRC Data Input Register Low  
CRC Data Input Register High  
CRC Result Register Low  
CRC Result Register High  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
RPINR1  
RPINR2  
RPINR3  
RPINR4  
RPINR7  
RPINR8  
RPINR9  
RPINR10  
RPINR11  
RPINR15  
RPINR17  
RPINR18  
RPINR19  
RPINR20  
RPINR21  
RPINR22  
RPINR23  
RPINR27  
RPINR28  
RPINR29  
Legend:  
0680  
0682  
0684  
0686  
0688  
068E  
0690  
0692  
0694  
0696  
069E  
06A2  
06A4  
06A6  
06A8  
06AA  
06AC  
06AE  
06B6  
06B8  
06BA  
INT1R5  
INT3R5  
INT1R4  
INT3R4  
INT1R3  
INT3R3  
INT1R2  
INT3R2  
INT1R1  
INT3R1  
INT1R0  
INT3R0  
3F00  
3F3F  
003F  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
3F00  
3F00  
3F3F  
3F3F  
3F3F  
3F3F  
3F3F  
003F  
3F3F  
3F3F  
003F  
INT2R5  
INT4R5  
T2CKR5  
T4CKR5  
IC1R5  
INT2R4  
INT4R4  
T2CKR4  
T4CKR4  
IC1R4  
INT2R3  
INT4R3  
T2CKR3  
T4CKR3  
IC1R3  
INT2R2  
INT4R2  
T2CKR2  
T4CKR2  
IC1R2  
INT2R1  
INT4R1  
T2CKR1  
T4CKR1  
IC1R1  
INT2R0  
INT4R0  
T2CKR0  
T4CKR0  
IC1R0  
T3CKR5  
T5CKR5  
IC2R5  
T3CKR4  
T5CKR4  
IC2R4  
T3CKR3  
T5CKR3  
IC2R3  
T3CKR2  
T5CKR2  
IC2R2  
T3CKR1  
T5CKR1  
IC2R1  
T3CKR0  
T5CKR0  
IC2R0  
IC4R5  
IC4R4  
IC4R3  
IC4R2  
IC4R1  
IC4R0  
IC3R5  
IC3R4  
IC3R3  
IC3R2  
IC3R1  
IC3R0  
IC6R5  
IC6R4  
IC6R3  
IC6R2  
IC6R1  
IC6R0  
IC5R5  
IC5R4  
IC5R3  
IC5R2  
IC5R1  
IC5R0  
IC8R5  
IC8R4  
IC8R3  
IC8R2  
IC8R1  
IC8R0  
IC7R5  
IC7R4  
IC7R3  
IC7R2  
IC7R1  
IC7R0  
OCFBR5  
IC9R5  
OCFBR4  
IC9R4  
OCFBR3  
IC9R3  
OCFBR2  
IC9R2  
OCFBR1  
IC9R1  
OCFBR0  
IC9R0  
OCFAR5 OCFAR4 OCFAR3 OCFAR2 OCFAR1 OCFAR0  
U3RXR5  
U3RXR4  
U3RXR3  
U3RXR2  
U3RXR1  
U3RXR0  
U1CTSR5 U1CTSR4 U1CTSR3 U1CTSR2 U1CTSR1 U1CTSR0  
U2CTSR5 U2CTSR4 U2CTSR3 U2CTSR2 U2CTSR1 U2CTSR0  
U1RXR5  
U2RXR5  
SDI1R5  
SS1R5  
SDI2R5  
SS2R5  
U4RXR5  
SDI3R5  
SS3R5  
U1RXR4  
U2RXR4  
SDI1R4  
SS1R4  
SDI2R4  
SS2R4  
U4RXR4  
SDI3R4  
SS3R4  
U1RXR3  
U2RXR3  
SDI1R3  
SS1R3  
SDI2R3  
SS2R3  
U4RXR3  
SDI3R3  
SS3R3  
U1RXR2  
U2RXR2  
SDI1R2  
SS1R2  
SDI2R2  
SS2R2  
U4RXR2  
SDI3R2  
SS3R2  
U1RXR1  
U2RXR1  
SDI1R1  
SS1R1  
SDI2R1  
SS2R1  
U4RXR1  
SDI3R1  
SS3R1  
U1RXR0  
U2RXR0  
SDI1R0  
SS1R0  
SDI2R0  
SS2R0  
U4RXR0  
SDI3R0  
SS3R0  
SCK1R5  
SCK1R4  
SCK1R3  
SCK1R2  
SCK1R1  
SCK1R0  
U3CTSR5 U3CTSR4 U3CTSR3 U3CTSR2 U3CTSR1 U3CTSR0  
SCK2R5  
SCK2R4  
SCK2R3  
SCK2R2  
SCK2R1  
SCK2R0  
U4CTSR5 U4CTSR4 U4CTSR3 U4CTSR2 U4CTSR1 U4CTSR0  
SCK3R5  
SCK3R4  
SCK3R3  
SCK3R2  
SCK3R1  
SCK3R0  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Bits are unimplemented in 64-pin devices; read as ‘0’.  
Note  
1:  
TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
RPOR7  
RPOR8  
RPOR9  
RPOR10  
RPOR11  
RPOR12  
RPOR13  
RPOR14  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
06D0  
06D2  
06D4  
06D6  
06D8  
06DA  
06DC  
RP1R5  
RP3R5  
RP1R4  
RP3R4  
RP1R3  
RP3R3  
RP1R2  
RP3R2  
RP1R1  
RP3R1  
RP1R0  
RP3R0  
RP0R5  
RP2R5  
RP0R4  
RP2R4  
RP0R3  
RP2R3  
RP0R2  
RP2R2  
RP0R1  
RP2R1  
RP0R0  
RP2R0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
RP5R5(1)  
RP5R4(1)  
RP5R3(1)  
RP5R2(1)  
RP5R1(1)  
RP5R0(1)  
RP4R5  
RP4R4  
RP4R3  
RP4R2  
RP4R1  
RP4R0  
RP7R5  
RP7R4  
RP7R3  
RP7R2  
RP7R1  
RP7R0  
RP6R5  
RP6R4  
RP6R3  
RP6R2  
RP6R1  
RP6R0  
RP9R5  
RP9R4  
RP9R3  
RP9R2  
RP9R1  
RP9R0  
RP8R5  
RP8R4  
RP8R3  
RP8R2  
RP8R1  
RP8R0  
RP11R5  
RP11R4  
RP11R3  
RP11R2  
RP11R1  
RP11R0  
RP10R5  
RP12R5  
RP14R5  
RP16R5  
RP18R5  
RP20R5  
RP22R5  
RP24R5  
RP26R5  
RP28R5  
RP10R4  
RP12R4  
RP14R4  
RP16R4  
RP18R4  
RP20R4  
RP22R4  
RP24R4  
RP26R4  
RP28R4  
RP10R3  
RP12R3  
RP14R3  
RP16R3  
RP18R3  
RP20R3  
RP22R3  
RP24R3  
RP26R3  
RP28R3  
RP10R2  
RP12R2  
RP14R2  
RP16R2  
RP18R2  
RP20R2  
RP22R2  
RP24R2  
RP26R2  
RP28R2  
RP10R1  
RP12R1  
RP14R1  
RP16R1  
RP18R1  
RP20R1  
RP22R1  
RP24R1  
RP26R1  
RP28R1  
RP10R0  
RP12R0  
RP14R0  
RP16R0  
RP18R0  
RP20R0  
RP22R0  
RP24R0  
RP26R0  
RP28R0  
RP13R5  
RP13R4  
RP13R3  
RP13R2  
RP13R1  
RP13R0  
RP15R5(1) RP15R4(1) RP15R3(1) RP15R2(1) RP15R1(1) RP15R0(1)  
RP17R5  
RP19R5  
RP21R5  
RP23R5  
RP25R5  
RP27R5  
RP29R5  
RP17R4  
RP19R4  
RP21R4  
RP23R4  
RP25R4  
RP27R4  
RP29R4  
RP17R3  
RP19R3  
RP21R3  
RP23R3  
RP25R3  
RP27R3  
RP29R3  
RP17R2  
RP19R2  
RP21R2  
RP23R2  
RP25R2  
RP27R2  
RP29R2  
RP17R1  
RP19R1  
RP21R1  
RP23R1  
RP25R1  
RP27R1  
RP29R1  
RP17R0  
RP19R0  
RP21R0  
RP23R0  
RP25R0  
RP27R0  
RP29R0  
RPOR15(1) 06DE  
RP31R5(1) RP31R4(1) RP31R3(1) RP31R2(1) RP31R1(1) RP31R0(1)  
RP30R5(1) RP30R4(1) RP30R3(1) RP30R2(1) RP30R1(1) RP30R0(1)  
Legend:  
Note  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Bits are unimplemented in 64-pin devices; read as ‘0’.  
1:  
TABLE 4-31: GRAPHICS REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
G1CMDL  
G1CMDH  
G1CON1  
G1STAT  
G1IE  
0700  
0702  
0704  
0706  
0708  
070A  
Graphics Command Register<15:0>  
Graphics Command Register<31:16>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
G1EN  
PUBUSY  
PUIE  
G1SIDL  
GCMDWMK4 GCMDWMK3 GCMDWMK2 GCMDWMK1 GCMDWMK0  
PUBPP2  
PUBPP1  
PUBPP0 GCMDCNT4 GCMDCNT3 GCMDCNT2 GCMDCNT1 GCMDCNT0  
IPUBUSY RCCBUSY CHRBUSY VMRGN  
HMRGN  
CMDLV  
CMDLVIE  
CMDLVIF  
CMDFUL  
CMDMPT  
IPUIE  
IPUIF  
RCCIE  
RCCIF  
CHRIE  
CHRIF  
VMRGNIE HMRGNIE  
VMRGNIF HMRGNIF  
CMDFULIE CMDMPTIE  
CMDFULIF CMDMPTIF  
G1IR  
PUIF  
G1W1ADRL 070C  
G1W1ADRH 070E  
G1W2ADRL 0710  
G1W2ADRH 0712  
GPU Work Area 1 Start Address Register<15:0>  
GPU Work Area 1 Start Address Register<23:16>  
GPU Work Area 2 Start Address Register<15:0>  
GPU Work Area 2 Start Address Register<23:16>  
G1PUW  
0714  
0716  
0718  
GPU Work Area Width Register  
GPU Work Area Height Register  
Display Buffer Start Address Register<15:0>  
G1PUH  
G1DPADRL  
G1DPADRH 071A  
Display Buffer Start Address Register<23:16>  
G1DPW  
071C  
071E  
0720  
0722  
Display Frame Width Register  
Display Frame Height Register  
Display Total Width Register  
Display Total Height Register  
G1DPH  
G1DPWT  
G1DPHT  
G1CON2  
G1CON3  
G1ACTDA  
G1HSYNC  
G1VSYNC  
0724 DPGWDTH1 DPGWDTH0 DPSTGER1 DPSTGER0  
DPTEST1  
DPPINOE  
DPTEST0  
DPBPP2  
DPBPP1  
DPBPP0  
DPMODE2 DPMODE1 DPMODE0  
0726  
0728  
072A  
072C  
DPPOWER DPCLKPOL DPENPOL DPVSPOL DPHSPOL DPPWROE  
DPENOE  
DPVSOE  
DPHSOE  
Number of Lines Before the First Active Line Register  
HSYNC Pulse-Width Configuration Register  
VSYNC Pulse-Width Configuration Register  
Number of Pixels Before the First Active PIxel Register  
HSYNC Start Delay Configuration Register  
VSYNC Start Delay Configuration Register  
G1DBLCON 072E  
G1CLUT 0730  
G1CLUTWR 0732  
Vertical Blanking Start to First Displayed Line Configuration Regsiter  
Horizontal Blanking Start to First Displayed Line Configuration Regsiter  
Color Look-Up Table Memory Address Register  
CLUTEN  
CLUTBUSY  
CLUTTRD CLUTRWEN  
Color Look-up Table Memory Write Data Register  
Color Look-up Table Memory Read Data Register  
G1CLUTRD  
G1MRGN  
G1CHRX  
0734  
0736  
0738  
Vertical Blanking Advance Register  
Horizontal Blanking Advance Register  
Current Character X-Coordinate Position Register  
Current Character Y-Coordinate Position Register  
0000  
0000  
G1CHRY  
G1IPU  
073A  
073C  
073E  
HUFFERR BLCKERR  
LENERR  
GDBEN3  
WRAPERR  
GDBEN2  
IPUDONE  
GDBEN1  
BFINAL  
0000  
0000  
G1DBEN  
GDBEN15  
GDBEN14  
GDBEN13  
GDBEN12  
GDBEN11  
GDBEN10  
GDBEN9  
GDBEN8  
GDBEN7  
GDBEN6 GDBEN5 GDBEN4  
GDBEN0  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-32: SYSTEM REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740  
0742  
0744  
0746  
0748  
074E  
TRAPR  
IOPUWR  
COSC2  
DOZE2  
CM  
VREGS  
NOSC0  
RCDIV0  
EXTR  
CLKLOCK  
CPDIV1  
SWR  
IOLOCK  
CPDIV0  
SWDTEN  
LOCK  
PLLEN  
WDTO  
SLEEP  
CF  
IDLE  
POSCEN  
BOR  
SOSCEN  
POR  
OSWEN  
Note 1  
Note 2  
0100  
0000  
0000  
0000  
OSCCON  
CLKDIV  
COSC1  
DOZE1  
COSC0  
DOZE0  
NOSC2  
RCDIV2  
NOSC1  
RCDIV1  
G1CLKSEL  
ROI  
DOZEN  
CLKDIV2  
OSCTUN  
REFOCON  
GCLKDIV6 GCLKDIV5 GCLKDIV4 GCLKDIV3 GCLKDIV2 GCLKDIV1 GCLKDIV0  
TUN5  
TUN4  
TUN3  
TUN2  
TUN1  
TUN0  
ROEN  
ROSSLP  
ROSEL  
RODIV3  
RODIV2  
RODIV1  
RODIV0  
Legend:  
Note 1:  
2:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 “Resets” for more information.  
The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 “Oscillator Configuration” for more information.  
TABLE 4-33: NVM REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP3  
NVMOP2  
NVMOP1  
NVMOP0  
0000  
NVMKEY Register<7:0>  
0000  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-34: PMD REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
0770  
0772  
0774  
0776  
0778  
077A  
T5MD  
IC8MD  
T4MD  
IC7MD  
T3MD  
IC6MD  
T2MD  
IC5MD  
T1MD  
IC4MD  
I2C1MD  
OC8MD  
U2MD  
OC7MD  
U1MD  
OC6MD  
SPI2MD  
SPI1MD  
OC4MD  
U3MD  
ADC1MD  
OC1MD  
0000  
0000  
0000  
0000  
0000  
0000  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
IC3MD  
IC2MD  
IC1MD  
OC5MD  
OC3MD  
I2C3MD  
OC2MD  
I2C2MD  
CMPMD RTCCMD PMPMD(1) CRCMD  
IC9MD  
UPWMMD  
U4MD  
REFOMD CTMUMD LVDMD  
USB1MD  
OC9MD  
SPI3MD  
GFX1MD  
Legend:  
Note  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Unimplemented in 64-pin devices, read as ‘0’.  
1:  
PIC24FJ256DA210 FAMILY  
pages, each having 32 Kbytes of data. Mapping of the  
EDS page into the EDS window is done using the Data  
Space Read register (DSRPAG<9:0>) for read opera-  
tions and Data Space Write register (DSWPAG<8:0>)  
for write operations. Figure 4-4 displays the entire EDS  
space.  
4.2.5  
EXTENDED DATA SPACE (EDS)  
The enhancement of the data space in  
PIC24FJ256DA210 family devices has been  
accomplished by a new technique, called the Extended  
Data Space (EDS).  
The EDS includes any additional internal extended  
data memory not accessible by the lower 32 Kbytes  
data address space, any external memory through  
EPMP and the Program Space Visibility (PSV).  
Note:  
Accessing Page 0 in the EDS window will  
generate an address error trap as Page 0  
is the base data memory (data locations,  
0x0800 to 0x7FFF, in the lower data  
space).  
The extended data space is always accessed through  
the EDS window, the upper half of data space. The  
entire extended data space is organized into EDS  
FIGURE 4-4:  
EXTENDED DATA SPACE  
0x0000  
Special  
Function  
Registers  
0x0800  
30 KB Data  
Memory  
EDS Space  
0x8000  
0x000001  
0x018000  
Internal  
0x7F8000  
0x7F8001  
0x008000  
0x000000  
0xFF8000  
Extended  
Memory(1)  
0x0187FE  
0x018800  
Program  
Space  
Access  
Program  
Space  
Access  
Program  
Space  
Access  
External  
Memory  
Access  
using  
Program  
Space  
Access  
External  
Memory  
Access  
using  
Internal  
32 KB EDS  
Window  
Extended  
Memory(1)  
EPMP(2)  
EPMP(2)  
0x7FFFFE  
0x007FFF  
0x00FFFE  
0x01FFFE  
0xFFFFFE  
0x007FFE  
0x7FFFFF  
0xFFFE  
DSRPAG  
= 0x2FF  
DSRPAG  
= 0x300  
DSxPAG  
= 0x001  
DSxPAG  
= 0x003  
DSx PAG  
= 0x1FF  
DSRPAG  
= 0x3FF  
DSRPAG  
= 0x200  
Extended SRAM(1) (66 KB)  
EPMP Memory Space(2)  
Program Memory  
Note 1:  
2:  
Available only in PIC24FJXXXDA2XX devices. In the PIC24FJXXXDA110 devices, this space can be used to access external  
memory using EPMP.  
Available only in PIC24FJXXXDAX10 devices (100-pin).  
2010 Microchip Technology Inc.  
DS39969B-page 71  
PIC24FJ256DA210 FAMILY  
by setting bit 15 of the working register, assigned with  
the offset address; then, the contents of the pointed  
EDS location can be read.  
4.2.5.1  
Data Read from EDS Space  
In order to read the data from the EDS space, first, an  
Address Pointer is set up by loading the required EDS  
page number into the DSRPAG register and assigning  
the offset address to one of the W registers. Once the  
above assignment is done, the EDS window is enabled  
Figure 4-5 illustrates how the EDS space address is  
generated for read operations.  
FIGURE 4-5:  
EDS ADDRESS GENERATION FOR READ OPERATIONS  
Select  
Wn  
1
9
8
0
DSRPAG Reg  
9 Bits  
15 Bits  
24-Bit EA  
0= Extended SRAM and EPMP  
Wn<0> is Byte Select  
When the Most Significant bit (MSBs) of EA is ‘1’ and  
DSRPAG<9> = 0, the lower 9 bits of DSRPAG are con-  
catenated to the lower 15 bits of EA to form a 24-bit  
EDS space address for read operations.  
Note:  
All read operations from EDS space have  
an overhead of one instruction cycle.  
Therefore, a minimum of two instruction  
cycles is required to complete an EDS  
read. EDS reads under the REPEAT  
instruction; the first two accesses take  
three cycles and the subsequent  
accesses take one cycle.  
Example 4-1 shows how to read a byte, word and  
double-word from EDS.  
EXAMPLE 4-1:  
EDS READ CODE IN ASSEMBLY  
; Set the EDS page from where the data to be read  
mov  
mov  
mov  
#0x0002 , w0  
w0 , DSRPAG  
;page 2 is selected for read  
#0x0800 , w1 ;select the location (0x800) to be read  
w1 , #15 ;set the MSB of the base address, enable EDS mode  
bset  
;Read a byte from the selected location  
mov.b  
mov.b  
[w1++] ,  
[w1++] , w3  
w2 ;read Low byte  
;read High byte  
;Read a word from the selected location  
mov [w1] , w2  
;
;Read Double - word from the selected location  
mov.d  
[w1] , w2  
;two word read, stored in w2 and w3  
DS39969B-page 72  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
EDS window is enabled by setting bit 15 of the working  
register, assigned with the offset address, and the  
accessed location can be written.  
4.2.5.2  
Data Write into EDS Space  
In order to write data to EDS space, such as in EDS  
reads, an Address Pointer is set up by loading the  
required EDS page number into the DSWPAG register,  
and assigning the offset address to one of the W regis-  
ters. Once the above assignment is done, then the  
Figure 4-2 illustrates how the EDS space address is  
generated for write operations.  
FIGURE 4-6:  
EDS ADDRESS GENERATION FOR WRITE OPERATIONS  
Select  
Wn  
1
8
0
DSWPAG Reg  
9 Bits  
15 Bits  
24-Bit EA  
Wn<0> is Byte Select  
When the MSBs of EA is ‘1’, the lower 9 bits of  
DSWPAG are concatenated to the lower 15 bits of EA  
to form a 24-bit EDS address for write operations.  
Example 4-2 shows how to write a byte, word and dou-  
ble-word to EDS.  
EXAMPLE 4-2:  
EDS WRITE CODE IN ASSEMBLY  
; Set the EDS page where the data to be written  
mov  
mov  
mov  
bset  
#0x0002 , w0  
w0 , DSWPAG  
;page 2 is selected for write  
#0x0800 , w1 ;select the location (0x800) to be written  
w1 , #15 ;set the MSB of the base address, enable EDS mode  
;Write a byte to the selected location  
mov  
mov  
mov.b  
mov.b  
#0x00A5 , w2  
#0x003C , w3  
w2 , [w1++]  
w3 , [w1++]  
;write Low byte  
;write High byte  
;Write a word to the selected location  
mov  
mov  
#0x1234 , w2  
w2 , [w1]  
;
;
;Write a Double - word to the selected location  
mov  
mov  
mov.d  
#0x1122 , w2  
#0x4455 , w3  
w2 , [w1]  
;2 EDS writes  
2010 Microchip Technology Inc.  
DS39969B-page 73  
PIC24FJ256DA210 FAMILY  
The page registers (DSRPAG/DSWPAG) do not  
Note 1: All write operations to EDS are executed  
update automatically while crossing a page boundary,  
when the rollover happens from 0xFFFF to 0x8000.  
While developing code in assembly, care must be taken  
to update the page registers when an Address Pointer  
crosses the page boundary. The ‘C’ compiler keeps  
track of the addressing, and increments or decrements  
the page registers accordingly while accessing  
contiguous data memory locations.  
in a single cycle.  
2: Use of Read/Modify/Write operation on  
any EDS location under  
a REPEAT  
instruction is not supported. For example,  
BCLR, BSW, BTG, RLC f, RLNC f,  
RRC f, RRNC f, ADD f, SUB f,  
SUBR f, AND f, IOR f, XOR f,  
ASR f, ASL f.  
3: Use the DSRPAG register while  
performing Read/Modify/Write operation.  
TABLE 4-35: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES  
DSWPAG  
(Data Space Write  
Register)  
Source/Destination  
Address while  
Indirect Addressing  
24-Bit EA  
Pointing to  
EDS  
DSRPAG  
(Data Space Read Register)  
Comment  
x(1)  
x(1)  
0x0000 to 0x1FFF  
0x000000 to Near data  
0x001FFF  
space(2)  
0x2000 to 0x7FFF  
0x002000 to  
0x007FFF  
0x001  
0x002  
0x003  
0x001  
0x002  
0x003  
0x008000 to  
0x00FFFE  
32 Kbytes on  
each page  
0x010000 to  
0x017FFE  
0x018000 to Only 2 Kbytes  
0x0187FE  
0x8000 to 0xFFFF  
of extended  
SRAM on this  
page  
0x004  
0x004  
0x018800 to  
0x027FFE  
EPMP  
memory  
space(4)  
0x1FF  
0x1FF  
0xFF8000 to  
0xFFFFFE  
0x000  
0x000  
Invalid Address Address error  
trap(3)  
Note 1: If the source/destination address is below 0x8000, the DSRPAG and DSWPAG registers are not considered.  
2: This data space can also be accessed by Direct Addressing.  
3: When the source/destination address is above 0x8000 and DSRPAG/DSWPAG is ‘0’, an address error  
trap will occur.  
4: EPMP memory space can start from location, 0x008000, in the parts with 24 Kbytes of data memory  
(PIC24FJXXXDA1XX)  
DS39969B-page 74  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
4.2.6  
SOFTWARE STACK  
4.3  
Interfacing Program and Data  
Memory Spaces  
Apart from its use as a working register, the W15  
register in PIC24F devices is also used as a Software  
Stack Pointer (SSP). The pointer always points to the  
first available free word and grows from lower to higher  
addresses. It pre-decrements for stack pops and  
post-increments for stack pushes, as shown in  
Figure 4-7. Note that for a PC push during any CALL  
instruction, the MSB of the PC is zero-extended before  
the push, ensuring that the MSB is always clear.  
The PIC24F architecture uses a 24-bit wide program  
space and 16-bit wide data space. The architecture is  
also a modified Harvard scheme, meaning that data  
can also be present in the program space. To use this  
data successfully, it must be accessed in a way that  
preserves the alignment of information in both spaces.  
Aside from normal execution, the PIC24F architecture  
provides two methods by which program space can be  
accessed during operation:  
Note:  
A PC push during exception processing  
will concatenate the SRL register to the  
MSB of the PC prior to the push.  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
The Stack Pointer Limit Value register (SPLIM), associ-  
ated with the Stack Pointer, sets an upper address  
boundary for the stack. SPLIM is uninitialized at Reset.  
As is the case for the Stack Pointer, SPLIM<0> is  
forced to ‘0’ as all stack operations must be  
word-aligned. Whenever an EA is generated using  
W15 as a source or destination pointer, the resulting  
address is compared with the value in SPLIM. If the  
contents of the Stack Pointer (W15) and the SPLIM reg-  
ister are equal, and a push operation is performed, a  
stack error trap will not occur. The stack error trap will  
occur on a subsequent push operation. Thus, for  
example, if it is desirable to cause a stack error trap  
when the stack grows beyond address 2000h in RAM,  
initialize the SPLIM with the value, 1FFEh.  
• Remapping a portion of the program space into  
the data space (program space visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This makes the  
method ideal for accessing data tables that need to be  
updated from time to time. It also allows access to all  
bytes of the program word. The remapping method  
allows an application to access a large block of data on  
a read-only basis, which is ideal for look ups from a  
large table of static data. It can only access the least  
significant word of the program word.  
4.3.1  
ADDRESSING PROGRAM SPACE  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0800h. This prevents the stack from  
interfering with the SFR space.  
For table operations, the 8-bit Table Memory Page  
Address register (TBLPAG) is used to define a 32K word  
region within the program space. This is concatenated  
with a 16-bit EA to arrive at a full 24-bit program space  
address. In this format, the MSBs of TBLPAG is used to  
determine if the operation occurs in the user memory  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 4-7:  
CALLSTACK FRAME  
0000h  
15  
0
(TBLPAG<7>  
= 0) or the configuration memory  
(TBLPAG<7> = 1).  
For remapping operations, the 10-bit Extended Data  
Space Read register (DSRPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit (MSb) of the EA is ‘1’, and the MSb (bit 9)  
of DSRPAG is ‘1’, the lower 8 bits of DSRPAG are con-  
catenated with the lower 15 bits of the EA to form a  
23-bit program space address. The DSRPAG<8> bit  
decides whether the lower word (when bit is ‘0’) or the  
higher word (when bit is ‘1’) of program memory is  
mapped. Unlike table operations, this strictly limits  
remapping operations to the user memory area.  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
Table 4-36 and Figure 4-8 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, whereas D<15:0> refers to a data space  
word.  
2010 Microchip Technology Inc.  
DS39969B-page 75  
PIC24FJ256DA210 FAMILY  
TABLE 4-36: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLPAG<7:0> Data EA<15:0>  
0xxx xxxx  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Data EA<14:0>(1)  
Program Space Visibility User  
(Block Remap/Read)  
0
0
DSRPAG<7:0>(2)  
xxxx xxxx  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is DSRPAG<0>.  
2: DSRPAG<9> is always ‘1’ in this case. DSRPAG<8> decides whether the lower word or higher word of  
program memory is read. When DSRPAG<8> is ‘0’, the lower word is read and when it is ‘1’, the higher  
word is read.  
FIGURE 4-8:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter  
Program Counter  
23 Bits  
0
0
1/0  
EA  
(2)  
1/0  
TBLPAG  
8 Bits  
Table Operations  
16 Bits  
24 Bits  
Select  
1/0  
1
EA  
(1)  
Program Space Visibility  
(Remapping)  
0
DSRPAG<7:0>  
8 Bits  
1-Bit  
15 Bits  
23 Bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: DSRPAG<8> acts as word select. DSRPAG<9> should always be ‘1’ to map program memory to data memory.  
2: The instructions, TBLRDH/TBLWTH/TBLRDL/TBLWTL, decide if the higher or lower word of program memory is  
accessed. TBLRDH/TBLWTHinstructions access the higher word and TBLRDL/TBLWTLinstructions access the  
lower word. Table read operations are permitted in the configuration memory space.  
DS39969B-page 76  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
2. TBLRDH (Table Read High): In Word mode, it  
4.3.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
maps the entire upper word of a program address  
(P<23:16>) to  
a data address. Note that  
D<15:8>, the ‘phantom’ byte, will always be ‘0’.  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going through  
data space. The TBLRDH and TBLWTH instructions are  
the only method to read or write the upper 8 bits of a  
program space word as data.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper ‘phantom’ byte is  
selected (byte select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are described in Section 5.0 “Flash  
Program Memory”.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two, 16-bit  
word-wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table  
Memory Page Address register (TBLPAG). TBLPAG  
covers the entire program memory space of the  
device, including user and configuration spaces. When  
TBLPAG<7> = 0, the table page is located in the user  
memory space. When TBLPAG<7> = 1, the page is  
located in configuration space.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
Note:  
Only table read operations will execute in  
the configuration memory space, where  
Device IDs are located. Table write  
operations are not allowed.  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when byte select is ‘1’; the lower byte  
is selected when it is ‘0’.  
FIGURE 4-9:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
Data EA<15:0>  
23  
15  
0
000000h  
23  
16  
8
0
00000000  
00000000  
00000000  
00000000  
020000h  
030000h  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
800000h  
2010 Microchip Technology Inc.  
DS39969B-page 77  
PIC24FJ256DA210 FAMILY  
Table 4-37 provides the corresponding 23-bit EDS  
address for program memory with EDS page and  
source addresses.  
4.3.3  
READING DATA FROM PROGRAM  
MEMORY USING EDS  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This provides transparent access of stored constant  
data from the data space without the need to use  
special instructions (i.e., TBLRDL/H).  
For operations that use PSV and are executed outside  
a REPEATloop, the MOV and MOV.Dinstructions will  
require one instruction cycle in addition to the specified  
execution time. All other instructions will require two  
instruction cycles in addition to the specified execution  
time.  
Program space access through the data space occurs  
when the MSb of EA is ‘1’ and the DSRPAG<9> is also  
1’. The lower 8 bits of DSRPAG are concatenated to the  
Wn<14:0> bits to form a 23-bit EA to access program  
memory. The DSRPAG<8> decides which word should  
be addressed; when the bit is ‘0’, the lower word and  
when ‘1’, the upper word of the program memory is  
accessed.  
For operations that use PSV, which are executed inside  
a REPEAT loop, there will be some instances that  
require two instruction cycles in addition to the  
specified execution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
The entire program memory is divided into 512 EDS  
pages, from 0x200 to 0x3FF, each consisting of 16K  
words of data. Pages, 0x200 to 0x2FF, correspond to  
the lower words of the program memory, while 0x300 to  
0x3FF correspond to the upper words of the program  
memory.  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data, using PSV, to execute in a  
single cycle.  
Using this EDS technique, the entire program memory  
can be accessed. Previously, the access to the upper  
word of the program memory was not supported.  
TABLE 4-37: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES  
Source Address  
DSRPAG  
(Data Space Read Register)  
while Indirect  
Addressing  
23-Bit EA Pointing to EDS  
Comment  
0x200  
0x000000 to 0x007FFE  
Lower words of 4M  
program instructions;  
(8 Mbytes) for read  
operations only.  
0x2FF  
0x7F8000 to 0x7FFFFE  
0x8000 to 0xFFFF  
0x300  
0x000001 to 0x007FFF  
Upper words of 4M  
program instructions  
(4 Mbytes remaining,  
4 Mbytes are phantom  
bytes) for read  
0x3FF  
0x7F8001 to 0x7FFFFF  
operations only.  
0x000  
Invalid Address  
Address error trap(1)  
Note 1: When the source/destination address is above 0x8000 and DSRPAG/DSWPAG is ‘0’, an address error  
trap will occur.  
DS39969B-page 78  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 4-10:  
PROGRAM SPACE VISIBILITY OPERATION TO ACCESS LOWER WORD  
When DSRPAG<9:8> = 10and EA<15> = 1  
Program Space  
Data Space  
DSRPAG  
202h  
23  
15  
0
000000h  
0000h  
Data EA<14:0>  
010000h  
017FFEh  
The data in the page  
designated by DSRPAG  
is mapped into the  
upper half of the data  
memory space....  
8000h  
EDS Window  
...while the lower  
15 bits of the EA  
specify an exact  
address within the  
EDS area. This corre-  
sponds exactly to the  
same lower 15 bits of  
the actual program  
space address.  
FFFFh  
7FFFFEh  
FIGURE 4-11:  
PROGRAM SPACE VISIBILITY OPERATION TO ACCESS HIGHER WORD  
When DSRPAG<9:8> = 11and EA<15> = 1  
Program Space  
Data Space  
DSRPAG  
302h  
23  
15  
0
000000h  
0000h  
Data EA<14:0>  
010001h  
017FFFh  
The data in the page  
designated by DSRPAG  
is mapped into the  
upper half of the data  
memory space....  
8000h  
EDS Window  
...while the lower  
15 bits of the EA  
specify an exact  
address within the  
EDS area. This corre-  
sponds exactly to the  
same lower 15 bits of  
the actual program  
space address.  
FFFFh  
7FFFFEh  
2010 Microchip Technology Inc.  
DS39969B-page 79  
PIC24FJ256DA210 FAMILY  
EXAMPLE 4-3:  
EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY  
; Set the EDS page from where the data to be read  
mov  
mov  
mov  
bset  
#0x0202 , w0  
w0 , DSRPAG  
#0x000A , w1  
w1 , #15  
;page 0x202, consisting lower words, is selected for read  
;select the location (0x0A) to be read  
;set the MSB of the base address, enable EDS mode  
;Read a byte from the selected location  
mov.b  
mov.b  
[w1++] , w2  
[w1++] , w3  
;read Low byte  
;read High byte  
;Read a word from the selected location  
mov  
[w1] , w2  
;
;Read Double - word from the selected location  
mov.d [w1] , w2 ;two word read, stored in w2 and w3  
DS39969B-page 80  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
5.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
may write program memory data in blocks of 64 instruc-  
tions (192 bytes) at a time and erase program memory  
in blocks of 512 instructions (1536 bytes) at a time.  
Section  
4.  
“Program  
Memory”  
(DS39715). The information in this data  
sheet supersedes the information in the  
FRM.  
5.1  
Table Instructions and Flash  
Programming  
The PIC24FJ256DA210 family of devices contains  
internal Flash program memory for storing and execut-  
ing application code. The program memory is readable,  
writable and erasable. The Flash can be programmed  
in four ways:  
Regardless of the method used, all programming of  
Flash memory is done with the table read and write  
instructions. These allow direct read and write access to  
the program memory space from the data memory while  
the device is in normal operating mode. The 24-bit target  
address in the program memory is formed using the  
TBLPAG<7:0> bits and the Effective Address (EA) from  
a W register, specified in the table instruction, as shown  
in Figure 5-1.  
• In-Circuit Serial Programming™ (ICSP™)  
• Run-Time Self-Programming (RTSP)  
• JTAG  
• Enhanced In-Circuit Serial Programming  
(Enhanced ICSP)  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
ICSP allows a PIC24FJ256DA210 family device to be  
serially programmed while in the end application circuit.  
This is simply done with two lines for the programming  
clock and programming data (named PGECx and  
PGEDx, respectively), and three other lines for power  
(VDD), ground (VSS) and Master Clear (MCLR). This  
allows customers to manufacture boards with  
unprogrammed devices and then program the  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 Bits  
Program Counter  
Using  
Program  
Counter  
0
0
Working Reg EA  
Using  
Table  
Instruction  
1
/
0
TBLPAG Reg  
8 Bits  
16 Bits  
User/Configuration  
Space Select  
Byte  
Select  
24-Bit EA  
2010 Microchip Technology Inc.  
DS39969B-page 81  
PIC24FJ256DA210 FAMILY  
5.2  
RTSP Operation  
5.3  
JTAG Operation  
The PIC24F Flash program memory array is organized  
into rows of 64 instructions or 192 bytes. RTSP allows  
the user to erase blocks of eight rows (512 instructions)  
at a time and to program one row at a time. It is also  
possible to program single words.  
The PIC24F family supports JTAG boundary scan.  
Boundary scan can improve the manufacturing  
process by verifying pin to PCB connectivity.  
5.4  
Enhanced In-Circuit Serial  
Programming  
The 8-row erase blocks and single row write blocks are  
edge-aligned, from the beginning of program memory, on  
boundaries of 1536 bytes and 192 bytes, respectively.  
Enhanced In-Circuit Serial Programming uses an  
on-board bootloader, known as the program executive,  
to manage the programming process. Using an SPI  
data frame format, the program executive can erase,  
program and verify program memory. For more  
information on Enhanced ICSP, see the device  
programming specification.  
When data is written to program memory using TBLWT  
instructions, the data is not written directly to memory.  
Instead, data written using table writes is stored in  
holding latches until the programming sequence is  
executed.  
Any number of TBLWT instructions can be executed  
and a write will be successfully performed. However,  
64 TBLWTinstructions are required to write the full row  
of memory.  
5.5  
Control Registers  
There are two SFRs used to read and write the  
program Flash memory: NVMCON and NVMKEY.  
To ensure that no data is corrupted during a write, any  
unused address should be programmed with  
FFFFFFh. This is because the holding latches reset to  
an unknown state, so if the addresses are left in the  
Reset state, they may overwrite the locations on rows  
which were not rewritten.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and when the programming cycle starts.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 55h and AAh to the  
NVMKEY register. Refer to Section 5.6 “Programming  
Operations” for further details.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register.  
5.6  
Programming Operations  
Data can be loaded in any order and the holding regis-  
ters can be written to multiple times before performing  
a write operation. Subsequent writes, however, will  
wipe out any previous writes.  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. During a programming or erase operation, the  
processor stalls (waits) until the operation is finished.  
Setting the WR bit (NVMCON<15>) starts the opera-  
tion and the WR bit is automatically cleared when the  
operation is finished.  
Note:  
Writing to a location multiple times without  
erasing is not recommended.  
All of the table write operations are single-word writes  
(2 instruction cycles), because only the buffers are writ-  
ten. A programming cycle is required for programming  
each row.  
DS39969B-page 82  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/S-0, HC(1)  
WR  
R/W-0(1)  
WREN  
R-0, HSC(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP3(2) NVMOP2(2) NVMOP1(2) NVMOP0(2)  
bit 7  
bit 0  
Legend:  
S = Settable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
HC = Hardware Clearable bit  
bit 15  
WR: Write Control bit(1)  
1= Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is  
cleared by hardware once the operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit(1)  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit(1)  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit(1)  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(1,2)  
1111= Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)(3)  
0011= Memory word program operation (ERASE = 0) or no operation (ERASE = 1)  
0010= Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)  
0001= Memory row program operation (ERASE = 0) or no operation (ERASE = 1)  
Note 1: These bits can only be reset on POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
3: Available in ICSP™ mode only; refer to the device programming specification.  
2010 Microchip Technology Inc.  
DS39969B-page 83  
PIC24FJ256DA210 FAMILY  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-3).  
5.6.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of Flash program memory  
at a time. To do this, it is necessary to erase the 8-row  
erase block containing the desired row. The general  
process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 55h to NVMKEY.  
c) Write AAh to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration  
of the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash  
memory.  
b) Write the starting address of the block to be  
erased into the TBLPAG and W registers.  
c) Write 55h to NVMKEY.  
d) Write AAh to NVMKEY.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as shown  
in Example 5-4.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)  
; Set up NVMCON for block erase operation  
MOV #0x4042, W0 ;  
MOV W0, NVMCON  
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV #tblpage(PROG_ADDR), W0  
MOV W0, TBLPAG  
;
; Initialize Program Memory (PM) Page Boundary SFR  
; Initialize in-page EA<15:0> pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV #tbloffset(PROG_ADDR), W0  
TBLWTL W0, [W0]  
DISI #5  
MOV.B #0x55, W0  
MOV W0, NVMKEY  
MOV.B #0xAA, W1 ;  
MOV W1, NVMKEY  
BSET NVMCON, #WR  
NOP  
; Write the 0x55 key  
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
NOP  
DS39969B-page 84  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
EXAMPLE 5-2:  
ERASING A PROGRAM MEMORY BLOCK (‘C’ LANGUAGE CODE)  
// C example using MPLAB C30  
unsigned long progAddr = 0xXXXXXX;  
unsigned int offset;  
// Address of row to write  
//Set up pointer to the first memory location to be written  
TBLPAG = progAddr>>16;  
// Initialize PM Page Boundary SFR  
offset = progAddr & 0xFFFF;  
__builtin_tblwtl(offset, 0x0000);  
// Initialize lower word of address  
// Set base address of erase block  
// with dummy latch write  
NVMCON = 0x4042;  
asm("DISI #5");  
// Initialize NVMCON  
// Block all interrupts with priority <7  
// for next 5 instructions  
__builtin_write_NVM();  
// check function to perform unlock  
// sequence and set WR  
EXAMPLE 5-3:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_63, W2  
#HIGH_BYTE_63, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-4:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV.B  
MOV  
MOV.B  
MOV  
BSET  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the programming sequence  
; Required delays  
NOP  
BTSC  
BRA  
NVMCON, #15  
$-2  
; and wait for it to be  
; completed  
2010 Microchip Technology Inc.  
DS39969B-page 85  
PIC24FJ256DA210 FAMILY  
write latches and specify the lower 16 bits of the pro-  
gram memory address to write to. To configure the  
NVMCON register for a word write, set the NVMOP bits  
(NVMCON<3:0>) to ‘0011’. The write is performed by  
executing the unlock sequence and setting the WR bit  
(see Example 5-5). An equivalent procedure in ‘C’  
compiler, using the MPLAB C30 compiler and built-in  
hardware functions is shown in Example 5-6.  
5.6.2  
PROGRAMMING A SINGLE WORD  
OF FLASH PROGRAM MEMORY  
If a Flash location has been erased, it can be pro-  
grammed using table write instructions to write an  
instruction word (24-bit) into the write latch. The  
TBLPAG register is loaded with the 8 Most Significant  
Bytes (MSB) of the Flash address. The TBLWTL and  
TBLWTH instructions write the desired data into the  
EXAMPLE 5-5:  
PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY  
; Setup a pointer to data Program Memory  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
;Initialize PM Page Boundary SFR  
;Initialize a register with program memory address  
MOV  
MOV  
#LOW_WORD_N, W2  
#HIGH_BYTE_N, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; Setup NVMCON for programming one word to data Program Memory  
MOV  
MOV  
#0x4003, W0  
W0, NVMCON  
;
; Set NVMOP bits to 0011  
DISI  
MOV.B  
MOV  
MOV.B  
MOV  
#5  
; Disable interrupts while the KEY sequence is written  
; Write the key sequence  
#0x55, W0  
W0, NVMKEY  
#0xAA, W0  
W0, NVMKEY  
NVMCON, #WR  
BSET  
NOP  
; Start the write cycle  
; Required delays  
NOP  
EXAMPLE 5-6:  
PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY  
(‘C’ LANGUAGE CODE)  
// C example using MPLAB C30  
unsigned int offset;  
unsigned long progAddr = 0xXXXXXX;  
unsigned int progDataL = 0xXXXX;  
unsigned char progDataH = 0xXX;  
// Address of word to program  
// Data to program lower word  
// Data to program upper byte  
//Set up NVMCON for word programming  
NVMCON = 0x4003;  
// Initialize NVMCON  
//Set up pointer to the first memory location to be written  
TBLPAG = progAddr>>16;  
// Initialize PM Page Boundary SFR  
offset = progAddr & 0xFFFF;  
// Initialize lower word of address  
//Perform TBLWT instructions to write latches  
__builtin_tblwtl(offset, progDataL);  
__builtin_tblwth(offset, progDataH);  
asm(“DISI #5”);  
// Write to address low word  
// Write to upper byte  
// Block interrupts with priority <7  
// for next 5 instructions  
// C30 function to perform unlock  
// sequence and set WR  
__builtin_write_NVM();  
DS39969B-page 86  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Any active source of Reset will make the SYSRST  
signal active. Many registers associated with the CPU  
6.0  
RESETS  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 7. “Reset” (DS39712). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
and peripherals are forced to a known Reset state.  
Most registers are unaffected by a Reset; their status is  
unknown on POR and unchanged by all other Resets.  
Note:  
Refer to the specific peripheral or CPU  
section of this manual for register Reset  
states.  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1). A POR will clear all bits, except for  
the BOR and POR (RCON<1:0>) bits, which are set.  
The user may set or clear any bit at any time during  
code execution. The RCON bits only serve as status  
bits. Setting a particular Reset status bit in software will  
not cause a device Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
• POR: Power-on Reset  
• MCLR: Pin Reset  
• SWR: RESETInstruction  
• WDT: Watchdog Timer Reset  
• BOR: Brown-out Reset  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this data sheet.  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Opcode Reset  
• UWR: Uninitialized W Register Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
POR  
BOR  
VDD Rise  
Detect  
SYSRST  
VDD  
Brown-out  
Reset  
Enable Voltage Regulator  
Trap Conflict  
Illegal Opcode  
Configuration Mismatch  
Uninitialized W Register  
2010 Microchip Technology Inc.  
DS39969B-page 87  
PIC24FJ256DA210 FAMILY  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0, HS  
TRAPR  
R/W-0, HS  
U-0  
U-0  
U-0  
U-0  
R/W-0, HS  
CM  
R/W-0  
VREGS(3)  
IOPUWR  
bit 15  
bit 8  
R/W-0, HS  
EXTR  
R/W-0, HS  
SWR  
R/W-0, HS  
SWDTEN(2)  
R/W-0, HS  
WDTO  
R/W-0, HS  
SLEEP  
R/W-0, HS  
IDLE  
R/W-1, HS  
BOR  
R/W-1, HS  
POR  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register is used as an  
Address Pointer and caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Word Mismatch Reset Flag bit  
1= A Configuration Word Mismatch Reset has occurred  
0= A Configuration Word Mismatch Reset has not occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
VREGS: Voltage Regulator Standby Enable bit(3)  
1= Program memory and regulator remain active during Sleep/Idle  
0= Program memory power is removed and regulator goes to standby during Seep/Idle  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake From Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
3: Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from  
Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from  
occurring.  
DS39969B-page 88  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1) (CONTINUED)  
bit 2  
IDLE: Wake-up From Idle Flag bit  
1= Device has been in Idle mode  
0= Device has not been in Idle mode  
bit 1  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
Note that BOR is also set after a Power-on Reset.  
0= A Brown-out Reset has not occurred  
bit 0  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
3: Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from  
Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from  
occurring.  
TABLE 6-1:  
RESET FLAG BIT OPERATION  
Setting Event  
Flag Bit  
Clearing Event  
TRAPR (RCON<15>)  
IOPUWR (RCON<14>)  
CM (RCON<9>)  
Trap Conflict Event  
POR  
POR  
POR  
POR  
POR  
Illegal Opcode or Uninitialized W Register Access  
Configuration Mismatch Reset  
MCLR Reset  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
RESETInstruction  
WDT Time-out  
CLRWDT, PWRSAV  
Instruction, POR  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #0Instruction  
PWRSAV #1Instruction  
POR, BOR  
POR  
POR  
POR  
Note:  
All Reset flag bits may be set or cleared by the user software.  
2010 Microchip Technology Inc.  
DS39969B-page 89  
PIC24FJ256DA210 FAMILY  
6.1  
Special Function Register Reset  
States  
6.3  
Clock Source Selection at Reset  
If clock switching is enabled, the system clock source  
at device Reset is chosen, as shown in Table 6-2. If  
clock switching is disabled, the system clock source is  
always selected according to the oscillator Configura-  
tion bits. Refer to the “PIC24F Family Reference  
Manual”, Section 8.0 “Oscillator Configuration” for  
further details.  
Most of the Special Function Registers (SFRs) associ-  
ated with the PIC24F CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function and their  
Reset values are specified in each section of this manual.  
The Reset value for each SFR does not depend on the  
type of Reset, with the exception of four registers. The  
Reset value for the Reset Control register, RCON, will  
depend on the type of device Reset. The Reset value  
for the Oscillator Control register, OSCCON, will  
depend on the type of Reset and the programmed  
values of the FNOSC bits in Flash Configuration  
Word 2 (CW2) (see Table 6-2). The RCFGCAL and  
NVMCON registers are only affected by a POR.  
TABLE 6-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
Reset Type  
Clock Source Determinant  
POR  
BOR  
FNOSC Configuration bits  
(CW2<10:8>)  
MCLR  
WDTO  
SWR  
6.2  
Device Reset Times  
COSC Control bits  
(OSCCON<14:12>)  
The Reset times for various types of device Reset are  
summarized in Table 6-3. Note that the system Reset  
signal, SYSRST, is released after the POR delay time  
expires.  
The time at which the device actually begins to execute  
code will also depend on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable SYSRST delay times.  
The Fail-Safe Clock Monitor (FSCM) delay determines  
the time at which the FSCM begins to monitor the  
system clock source after the SYSRST signal is  
released.  
DS39969B-page 90  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 6-3:  
Reset Type  
POR(7)  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
Clock Source  
SYSRST Delay  
Notes  
1, 2, 3  
EC  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TRST  
ECPLL  
TLOCK  
1, 2, 3, 5  
1, 2, 3, 4  
1, 2, 3, 4, 5  
1, 2, 3, 6, 7  
1, 2, 3, 5, 6  
1, 2, 3, 6  
2, 3  
XT, HS, SOSC  
XTPLL, HSPLL  
FRC, FRCDIV  
FRCPLL  
TOST  
TOST + TLOCK  
TFRC  
TFRC + TLOCK  
LPRC  
TLPRC  
BOR  
EC  
ECPLL  
TLOCK  
2, 3, 5  
2, 3, 4  
2, 3, 4, 5  
2, 3, 6, 7  
2, 3, 5, 6  
2, 3, 6  
3
XT, HS, SOSC  
XTPLL, HSPLL  
FRC, FRCDIV  
FRCPLL  
TOST  
TOST + TLOCK  
TFRC  
TFRC + TLOCK  
LPRC  
TLPRC  
MCLR  
WDT  
Any Clock  
Any Clock  
Any clock  
TRST  
3
Software  
TRST  
3
Illegal Opcode Any Clock  
Uninitialized W Any Clock  
TRST  
3
TRST  
3
Trap Conflict  
Any Clock  
TRST  
3
Note 1: TPOR = Power-on Reset delay (10 s nominal).  
2: TSTARTUP = TVREG (10 s nominal when VREGS = 1and when VREGS = 0;depends upon  
WUTSEL<1:0> bits setting).  
3: TRST = Internal State Reset time (32 s nominal).  
4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the  
oscillator clock to the system.  
5: TLOCK = PLL lock time.  
6: TFRC and TLPRC = RC Oscillator start-up times.  
7: If Two-speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC  
so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid. It switches to the  
primary oscillator after its respective clock delay.  
6.3.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
6.3.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) will have a relatively long  
start-up time. Therefore, one or more of the following  
conditions is possible after SYSRST is released:  
If the FSCM is enabled, it will begin to monitor the  
system clock source when SYSRST is released. If a  
valid clock source is not available at this time, the  
device will automatically switch to the FRC oscillator  
and the user can switch to the desired crystal oscillator  
in the Trap Service Routine (TSR).  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used).  
• The PLL has not achieved a lock (if PLL is used).  
The device will not begin to execute code until a valid  
clock source has been released to the system. There-  
fore, the oscillator and PLL start-up delays must be  
considered when the Reset delay time must be known.  
2010 Microchip Technology Inc.  
DS39969B-page 91  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 92  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
7.0  
INTERRUPT CONTROLLER  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”, Sec-  
tion 8. “Interrupts” (DS39707). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. The ALTIVT  
(INTCON2<15>) control bit provides access to the  
AIVT. If the ALTIVT bit is set, all interrupt and exception  
processes will use the alternate vectors instead of the  
default vectors. The alternate vectors are organized in  
the same manner as the default vectors.  
The AIVT supports emulation and debugging efforts by  
providing a means to switch between an application  
and a support environment without requiring the inter-  
rupt vectors to be reprogrammed. This feature also  
enables switching between applications for evaluation  
of different software algorithms at run time. If the AIVT  
is not needed, the AIVT should be programmed with  
the same addresses used in the IVT.  
The PIC24F interrupt controller reduces the numerous  
peripheral interrupt request signals to a single interrupt  
request signal to the PIC24F CPU. It has the following  
features:  
• Up to 8 processor exceptions and software traps  
• Seven user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• Unique vector for each interrupt or exception  
source  
7.2  
Reset Sequence  
• Fixed priority within a specified user priority level  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The PIC24F devices clear their registers in response to  
a Reset, which forces the PC to zero. The micro-  
controller then begins program execution at location,  
000000h. The user programs a GOTOinstruction at the  
Reset address, which redirects program execution to  
the appropriate start-up routine.  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors, consisting of  
8 non-maskable trap vectors, plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note:  
Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
Interrupt vectors are prioritized in terms of their natural  
priority; this is linked to their position in the vector table.  
All other things being equal, lower addresses have a  
higher natural priority. For example, the interrupt asso-  
ciated with Vector 0 will take priority over interrupts at  
any other vector address.  
PIC24FJ256DA210  
family  
devices  
implement  
non-maskable traps and unique interrupts. These are  
summarized in Table 7-1 and Table 7-2.  
2010 Microchip Technology Inc.  
DS39969B-page 93  
PIC24FJ256DA210 FAMILY  
FIGURE 7-1:  
PIC24F INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
000000h  
000002h  
000004h  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000014h  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00007Ch  
00007Eh  
000080h  
(1)  
Interrupt Vector Table (IVT)  
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0000FCh  
0000FEh  
000100h  
000102h  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000114h  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00017Ch  
00017Eh  
000180h  
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0001FEh  
000200h  
Note 1: See Table 7-2 for the interrupt vector list.  
TABLE 7-1:  
TRAP VECTOR DETAILS  
IVT Address  
Vector Number  
AIVT Address  
Trap Source  
0
1
2
3
4
5
6
7
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000104h  
000106h  
000108h  
00010Ah  
00010Ch  
00010Eh  
000110h  
000112h  
Reserved  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
DS39969B-page 94  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 7-2:  
IMPLEMENTED INTERRUPT VECTORS  
Interrupt Bit Locations  
Enable  
Vector  
Number  
IVT  
Address  
AIVT  
Address  
Interrupt Source  
Flag  
Priority  
ADC1 Conversion Done  
Comparator Event  
CRC Generator  
13  
18  
67  
77  
0
00002Eh  
000038h  
00009Ah  
0000AEh  
000014h  
00003Ch  
00004Eh  
00007Eh  
000080h  
0000DCh  
000036h  
000034h  
000078h  
000076h  
0000BEh  
0000BCh  
000016h  
00001Eh  
00005Eh  
000060h  
000062h  
000064h  
000040h  
000042h  
0000CEh  
00003Ah  
0000A4h  
000018h  
000020h  
000046h  
000048h  
000066h  
000068h  
00006Ah  
00006Ch  
0000CCh  
00006Eh  
000090h  
000026h  
000028h  
000054h  
000056h  
0000C8h  
0000CAh  
00012Eh  
000138h  
00019Ah  
0001AEh  
000114h  
00013Ch  
00014Eh  
00017Eh  
000180h  
0001DCh  
000136h  
000134h  
000178h  
000176h  
0001BEh  
0001BCh  
000116h  
00011Eh  
00015Eh  
000160h  
000162h  
000164h  
000140h  
000142h  
0001CEh  
00013Ah  
0001A4h  
000118h  
000120h  
000146h  
000148h  
000166h  
000168h  
00016Ah  
00016Ch  
0001CCh  
00016Eh  
000190h  
000126h  
000128h  
000154h  
000156h  
0001C8h  
0001CAh  
IFS0<13>  
IFS1<2>  
IFS4<3>  
IFS4<13>  
IFS0<0>  
IFS1<4>  
IFS1<13>  
IFS3<5>  
IFS3<6>  
IFS6<4>  
IFS1<1>  
IFS1<0>  
IFS3<2>  
IFS3<1>  
IFS5<5>  
IFS5<4>  
IFS0<1>  
IFS0<5>  
IFS2<5>  
IFS2<6>  
IFS2<7>  
IFS2<8>  
IFS1<6>  
IFS1<7>  
IFS5<13>  
IFS1<3>  
IFS4<8>  
IFS0<2>  
IFS0<6>  
IFS1<9>  
IFS1<10>  
IFS2<9>  
IFS2<10>  
IFS2<11>  
IFS2<12>  
IFS5<12>  
IFS2<13>  
IFS3<14>  
IFS0<9>  
IFS0<10>  
IFS2<0>  
IFS2<1>  
IFS5<10>  
IFS5<11>  
IEC0<13>  
IEC1<2>  
IEC4<3>  
IEC4<13>  
IEC0<0>  
IEC1<4>  
IEC1<13>  
IEC3<5>  
IEC3<6>  
IEC6<4>  
IEC1<1>  
IEC1<0>  
IEC3<2>  
IEC3<1>  
IEC5<5>  
IEC5<4>  
IEC0<1>  
IEC0<5>  
IEC2<5>  
IEC2<6>  
IEC2<7>  
IEC2<8>  
IEC1<6>  
IEC1<7>  
IEC5<13>  
IEC1<3>  
IEC4<8>  
IEC0<2>  
IEC0<6>  
IEC1<9>  
IEC1<10>  
IEC2<9>  
IEC2<10>  
IEC2<11>  
IEC2<12>  
IEC5<12>  
IEC2<13>  
IEC3<14>  
IEC0<9>  
IEC0<10>  
IEC2<0>  
IEC2<1>  
IEC5<10>  
IEC5<11>  
IPC3<6:4>  
IPC4<10:8>  
IPC16<14:12>  
IPC19<6:4>  
IPC0<2:0>  
CTMU Event  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
Graphics Controller  
I2C1 Master Event  
I2C1 Slave Event  
I2C2 Master Event  
I2C2 Slave Event  
I2C3 Master Event  
I2C3 Slave Event  
Input Capture 1  
20  
29  
53  
54  
100  
17  
16  
50  
49  
85  
84  
1
IPC5<2:0>  
IPC7<6:4>  
IPC13<6:4>  
IPC13<10:8>  
IPC25<2:0>  
IPC4<6:4>  
IPC4<2:0>  
IPC12<10:8>  
IPC12<6:4>  
IPC21<6:4>  
IPC21<2:0>  
IPC0<6:4>  
Input Capture 2  
5
IPC1<6:4>  
Input Capture 3  
37  
38  
39  
40  
22  
23  
93  
19  
72  
2
IPC9<6:4>  
Input Capture 4  
IPC9<10:8>  
IPC9<14:12>  
IPC10<2:0>  
IPC5<10:8>  
IPC5<14:12>  
IPC23<6:4>  
IPC4<14:12>  
IPC18<2:0>  
IPC0<10:8>  
IPC1<10:8>  
IPC6<6:4>  
Input Capture 5  
Input Capture 6  
Input Capture 7  
Input Capture 8  
Input Capture 9  
Input Change Notification (ICN)  
Low-Voltage Detect (LVD)  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
Output Compare 6  
Output Compare 7  
Output Compare 8  
Output Compare 9  
Enhanced Parallel Master Port (EPMP)  
Real-Time Clock and Calendar (RTCC)  
SPI1 Error  
6
25  
26  
41  
42  
43  
44  
92  
45  
62  
9
IPC6<10:8>  
IPC10<6:4>  
IPC10<10:8>  
IPC10<14:12>  
IPC11<2:0>  
IPC23<2:0>  
IPC11<6:4>  
IPC15<10:8>  
IPC2<6:4>  
(1)  
SPI1 Event  
10  
32  
33  
90  
91  
IPC2<10:8>  
IPC8<2:0>  
SPI2 Error  
SPI2 Event  
IPC8<6:4>  
SPI3 Error  
IPC22<10:8>  
IPC22<14:12>  
SPI3 Event  
Note 1: Not available in 64-pin devices (PIC24FJXXXDAX06).  
2010 Microchip Technology Inc.  
DS39969B-page 95  
PIC24FJ256DA210 FAMILY  
TABLE 7-2:  
IMPLEMENTED INTERRUPT VECTORS (CONTINUED)  
Interrupt Bit Locations  
Enable  
Vector  
Number  
IVT  
Address  
AIVT  
Address  
Interrupt Source  
Flag  
Priority  
Timer1  
3
00001Ah  
000022h  
000024h  
00004Ah  
00004Ch  
000096h  
00002Ah  
00002Ch  
000098h  
000050h  
000052h  
0000B6h  
0000B8h  
0000BAh  
0000C2h  
0000C4h  
0000C6h  
0000C0h  
00011Ah  
000122h  
000124h  
00014Ah  
00014Ch  
000196h  
00012Ah  
00012Ch  
000198h  
000150h  
000152h  
0001B6h  
0001B8h  
0001BAh  
0001C2h  
0001C4h  
0001C6h  
0001C0h  
IFS0<3>  
IFS0<7>  
IFS0<8>  
IFS1<11>  
IFS1<12>  
IFS4<1>  
IFS0<11>  
IFS0<12>  
IFS4<2>  
IFS1<14>  
IFS1<15>  
IFS5<1>  
IFS5<2>  
IFS5<3>  
IFS5<7>  
IFS5<8>  
IFS5<9>  
IFS5<6>  
IEC0<3>  
IEC0<7>  
IEC0<8>  
IEC1<11>  
IEC1<12>  
IEC4<1>  
IEC0<11>  
IEC0<12>  
IEC4<2>  
IEC1<14>  
IEC1<15>  
IEC5<1>  
IEC5<2>  
IEC5<3>  
IEC5<7>  
IEC5<8>  
IEC5<9>  
IEC5<6>  
IPC0<14:12>  
IPC1<14:12>  
IPC2<2:0>  
Timer2  
7
Timer3  
8
Timer4  
27  
28  
65  
11  
12  
66  
30  
31  
81  
82  
83  
87  
88  
89  
86  
IPC6<14:12>  
IPC7<2:0>  
Timer5  
UART1 Error  
UART1 Receiver  
UART1 Transmitter  
UART2 Error  
UART2 Receiver  
UART2 Transmitter  
UART3 Error  
UART3 Receiver  
UART3 Transmitter  
UART4 Error  
UART4 Receiver  
UART4 Transmitter  
USB Interrupt  
IPC16<6:4>  
IPC2<14:12>  
IPC3<2:0>  
IPC16<10:8>  
IPC7<10:8>  
IPC7<14:12>  
IPC20<6:4>  
IPC20<10:8>  
IPC20<14:12>  
IPC21<14:12>  
IPC22<2:0>  
IPC22<6:4>  
IPC21<10:8>  
Note 1: Not available in 64-pin devices (PIC24FJXXXDAX06).  
The IPCx registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
7.3  
Interrupt Control and Status  
Registers  
The PIC24FJ256DA210 family of devices implements  
a total of 40 registers for the interrupt controller:  
The INTTREG register contains the associated  
interrupt vector number and the new CPU interrupt  
priority level, which are latched into the Vector  
Number (VECNUM<6:0>) and the Interrupt Level  
(ILR<3:0>) bit fields in the INTTREG register. The  
new interrupt priority level is the priority of the  
pending interrupt.  
• INTCON1  
• INTCON2  
• IFS0 through IFS6  
• IEC0 through IEC6  
• IPC0 through IPC25 (except IPC14, IPC17 and  
IPC24)  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the order of their vector numbers,  
as shown in Table 7-2. For example, the INT0 (External  
Interrupt 0) is shown as having a vector number and a  
natural order priority of 0. Thus, the INT0IF status bit is  
found in IFS0<0>, the INT0IE enable bit in IEC0<0>  
and the INT0IP<2:0> priority bits in the first position of  
IPC0 (IPC0<2:0>).  
• INTTREG  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the Inter-  
rupt Nesting Disable (NSTDIS) bit, as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table (AIVT).  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers con-  
tain bits that control interrupt functionality. The ALU  
STATUS register (SR) contains the IPL<2:0> bits  
(SR<7:5>). These indicate the current CPU interrupt  
priority level. The user can change the current CPU  
priority level by writing to the IPL bits.  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or an external signal  
and is cleared via software.  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
DS39969B-page 96  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The CORCON register contains the IPL3 bit, which,  
a generic ISR is used for multiple vectors (such as  
when ISR remapping is used in bootloader applica-  
tions) or to check if another interrupt is pending while in  
an ISR.  
together with IPL<2:0>, indicates the current CPU  
priority level. IPL3 is a read-only bit so that trap events  
cannot be masked by the user software.  
The interrupt controller has the Interrupt Controller Test  
register, INTTREG, which displays the status of the  
interrupt controller. When an interrupt request occurs,  
it’s associated vector number and the new interrupt pri-  
ority level are latched into INTTREG. This information  
can be used to determine a specific interrupt source if  
All interrupt registers are described in Register 7-1  
through Register 7-40 in the succeeding pages.  
REGISTER 7-1:  
SR: ALU STATUS REGISTER (IN CPU)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
DC(1)  
bit 15  
bit 8  
R/W-0, HSC R/W-0, HSC R/W-0, HSC R-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
IPL2(2,3) IPL1(2,3) IPL0(2,3) RA(1) N(1) OV(1) Z(1) C(1)  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 7-5  
Unimplemented: Read as ‘0’  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU interrupt priority level is 7 (15); user interrupts are disabled  
110= CPU interrupt priority level is 6 (14)  
101= CPU interrupt priority level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
Note 1: See Register 3-1 for the description of the remaining bits (bit 8, 4, 3, 2, 1 and 0) that are not dedicated to  
interrupt control functions.  
2: The IPL bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU interrupt priority level.  
The value in parentheses indicates the interrupt priority level if IPL3 = 1.  
3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
2010 Microchip Technology Inc.  
DS39969B-page 97  
PIC24FJ256DA210 FAMILY  
REGISTER 7-2:  
CORCON: CPU CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0, HSC  
IPL3(1)  
r-1  
r
U-0  
U-0  
bit 7  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
C = Clearable bit  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit(1)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 2  
Reserved: Read as ‘1’  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level; see  
Register 3-2 for bit description.  
DS39969B-page 98  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0, HS  
MATHERR  
R/W-0, HS  
ADDRERR  
R/W-0, HS  
STKERR  
R/W-0, HS  
OSCFAIL  
U-0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
bit 14-5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Trap Status bit  
1= Overflow trap has occurred  
0= Overflow trap has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39969B-page 99  
PIC24FJ256DA210 FAMILY  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
R-0, HSC  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ALTIVT  
DISI  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use Alternate Interrupt Vector Table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 3  
bit 2  
bit 1  
bit 0  
INT3EP: External Interrupt 3 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS39969B-page 100  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0, HS  
AD1IF  
R/W-0, HS  
U1TXIF  
R/W-0, HS  
U1RXIF  
R/W-0, HS  
SPI1IF  
R/W-0, HS  
SPF1IF  
R/W-0, HS  
T3IF  
bit 15  
bit 8  
R/W-0, HS  
T2IF  
R/W-0, HS  
OC2IF  
R/W-0, HS  
IC2IF  
U-0  
R/W-0, HS  
T1IF  
R/W-0, HS  
OC1IF  
R/W-0, HS  
IC1IF  
R/W-0, HS  
INT0IF  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IF: A/D Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPF1IF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2010 Microchip Technology Inc.  
DS39969B-page 101  
PIC24FJ256DA210 FAMILY  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 1  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0, HS  
U2TXIF  
bit 15  
R/W-0, HS  
R/W-0, HS  
INT2IF  
R/W-0, HS  
T5IF  
R/W-0, HS  
T4IF  
R/W-0, HS  
OC4IF  
R/W-0, HS  
OC3IF  
U-0  
U2RXIF  
bit 8  
R/W-0, HS  
IC8IF  
R/W-0, HS  
IC7IF  
U-0  
R/W-0, HS  
INT1IF  
R/W-0, HS  
CNIF  
R/W-0, HS  
CMIF  
R/W-0, HS  
MI2C1IF  
R/W-0, HS  
SI2C1IF  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
IC8IF: Input Capture Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
IC7IF: Input Capture Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS39969B-page 102  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
CMIF: Comparator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: Master I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
U-0  
U-0  
R/W-0, HS  
PMPIF(1)  
R/W-0, HS  
OC8IF  
R/W-0, HS  
OC7IF  
R/W-0, HS  
OC6IF  
R/W-0, HS  
OC5IF  
R/W-0, HS  
IC6IF  
bit 15  
bit 8  
R/W-0, HS  
IC5IF  
R/W-0, HS  
IC4IF  
R/W-0, HS  
IC3IF  
U-0  
U-0  
U-0  
R/W-0, HS  
SPI2IF  
R/W-0, HS  
SPF2IF  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
PMPIF: Parallel Master Port Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
OC8IF: Output Compare Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC7IF: Output Compare Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC6IF: Output Compare Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC5IF: Output Compare Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: Not available in PIC24FJXXXDAX06 devices.  
2010 Microchip Technology Inc.  
DS39969B-page 103  
PIC24FJ256DA210 FAMILY  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)  
bit 8  
bit 7  
bit 6  
bit 5  
IC6IF: Input Capture Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC5IF: Input Capture Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SPF2IF: SPI2 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: Not available in PIC24FJXXXDAX06 devices.  
DS39969B-page 104  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
R/W-0, HS  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
RTCIF  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0, HS  
INT4IF  
R/W-0, HS  
INT3IF  
U-0  
U-0  
R/W-0, HS  
MI2C2IF  
R/W-0, HS  
SI2C2IF  
U-0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-7  
bit 6  
Unimplemented: Read as ‘0’  
INT4IF: External Interrupt 4 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
INT3IF: External Interrupt 3 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IF: Master I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39969B-page 105  
PIC24FJ256DA210 FAMILY  
REGISTER 7-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
R/W-0, HS  
CTMUIF  
U-0  
U-0  
U-0  
U-0  
R/W-0, HS  
LVDIF  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0, HS  
CRCIF  
R/W-0, HS  
U2ERIF  
R/W-0, HS  
U1ERIF  
U-0  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUIF: CTMU Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
LVDIF: Low-Voltage Detect Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIF: CRC Generator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
U2ERIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1ERIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
DS39969B-page 106  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5  
U-0  
U-0  
R/W-0, HS  
IC9IF  
R/W-0, HS  
OC9IF  
R/W-0, HS  
SPI3IF  
R/W-0, HS  
SPF3IF  
R/W-0, HS  
U4TXIF  
R/W-0, HS  
U4RXIF  
bit 15  
bit 8  
R/W-0, HS  
U4ERIF  
R/W-0, HS  
USB1IF  
R/W-0, HS  
MI2C3IF  
R/W-0, HS  
SI2C3IF  
R/W-0, HS  
U3TXIF  
R/W-0, HS  
U3RXIF  
R/W-0, HS  
U3ERIF  
U-0  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
IC9IF: Input Capture Channel 9 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
OC9IF: Output Compare Channel 9 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI3IF: SPI3 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPF3IF: SPI3 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U4TXIF: UART4 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U4RXIF: UART4 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U4ERIF: UART4 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
USB1IF: USB1 (USB OTG) Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C3IF: Master I2C3 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C3IF: Slave I2C3 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U3TXIF: UART3 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U3RXIF: UART3 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2010 Microchip Technology Inc.  
DS39969B-page 107  
PIC24FJ256DA210 FAMILY  
REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5 (CONTINUED)  
bit 1  
U3ERIF: UART3 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
Unimplemented: Read as ‘0’  
REGISTER 7-11: IFS6: INTERRUPT FLAG STATUS REGISTER 6  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0, HS  
GFX1IF  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
GFX1IF: Graphics 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39969B-page 108  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPF1IE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IE: A/D Conversion Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1IE: SPI1 Transfer Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPF1IE: SPI1 Fault Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2010 Microchip Technology Inc.  
DS39969B-page 109  
PIC24FJ256DA210 FAMILY  
REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 1  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
REGISTER 7-13: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
INT2IE(1)  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
U-0  
U2TXIE  
U2RXIE  
bit 15  
bit 8  
R/W-0  
IC8IE  
R/W-0  
IC7IE  
U-0  
R/W-0  
INT1IE(1)  
R/W-0  
CNIE  
R/W-0  
CMIE  
R/W-0  
R/W-0  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT2IE: External Interrupt 2 Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
IC8IE: Input Capture Channel 8 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx  
pin. See Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
DS39969B-page 110  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-13: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)  
bit 6  
IC7IE: Input Capture Channel 7 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3  
bit 2  
bit 1  
bit 0  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
CMIE: Comparator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
MI2C1IE: Master I2C1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SI2C1IE: Slave I2C1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx  
pin. See Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 111  
PIC24FJ256DA210 FAMILY  
REGISTER 7-14: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
U-0  
U-0  
R/W-0  
PMPIE(1)  
R/W-0  
OC8IE  
R/W-0  
OC7IE  
R/W-0  
OC6IE  
R/W-0  
OC5IE  
R/W-0  
IC6IE  
bit 15  
bit 8  
R/W-0  
IC5IE  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
SPI2IE  
SPF2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
PMPIE: Parallel Master Port Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
OC8IE: Output Compare Channel 8 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC7IE: Output Compare Channel 7 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC6IE: Output Compare Channel 6 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC5IE: Output Compare Channel 5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
IC6IE: Input Capture Channel 6 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7  
IC5IE: Input Capture Channel 5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
SPF2IE: SPI2 Fault Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: Not available in 64-pin devices (PIC24FJXXXDAX06).  
DS39969B-page 112  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-15: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
R/W-0  
RTCIE  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
INT4IE(1)  
R/W-0  
INT3IE(1)  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
MI2C2IE  
SI2C2IE  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIE: Real-Time Clock/Calendar Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-7  
bit 6  
Unimplemented: Read as ‘0’  
INT4IE: External Interrupt 4 Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
INT3IE: External Interrupt 3 Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IE: Master I2C2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
SI2C2IE: Slave I2C2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx  
pin. See Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 113  
PIC24FJ256DA210 FAMILY  
REGISTER 7-16: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LVDIE  
CTMUIE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
CRCIE  
U2ERIE  
U1ERIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUIE: CTMU Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIE: CRC Generator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
U2ERIE: UART2 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
bit 0  
U1ERIE: UART1 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
DS39969B-page 114  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5  
U-0  
U-0  
R/W-0  
IC9IE  
R/W-0  
OC9IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SPI3IE  
SPF3IE  
U4TXIE  
U4RXIE  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U4ERIE  
USB1IE  
MI2C3IE  
SI2C3IE  
U3TXIE  
U3RXIE  
U3ERIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
IC9IE: Input Capture Channel 9 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
OC9IE: Output Compare Channel 9 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI3IE: SPI3 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPF3IE: SPI3 Fault Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U4TXIE: UART4 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U4RXIE: UART4 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U4ERIE: UART4 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
USB1IE: USB1 (USB OTG) Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
MI2C3IE: Master I2C3 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SI2C3IE: Slave I2C3 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U3TXIE: UART3 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U3RXIE: UART3 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
2010 Microchip Technology Inc.  
DS39969B-page 115  
PIC24FJ256DA210 FAMILY  
REGISTER 7-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5 (CONTINUED)  
bit 1  
U3ERIE: UART3 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
Unimplemented: Read as ‘0’  
REGISTER 7-18: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
GFX1IE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
GFX1IE: Graphics 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39969B-page 116  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-19: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
T1IP2  
R/W-0  
T1IP1  
R/W-0  
T1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC1IP2  
OC1IP1  
OC1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC1IP2  
R/W-0  
IC1IP1  
R/W-0  
IC1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT0IP2  
INT0IP1  
INT0IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 117  
PIC24FJ256DA210 FAMILY  
REGISTER 7-20: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
T2IP2  
R/W-0  
T2IP1  
R/W-0  
T2IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC2IP2  
OC2IP1  
OC2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC2IP2  
R/W-0  
IC2IP1  
R/W-0  
IC2IP0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39969B-page 118  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-21: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U1RXIP2  
U1RXIP1  
U1RXIP0  
SPI1IP2  
SPI1IP1  
SPI1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T3IP2  
R/W-0  
T3IP1  
R/W-0  
T3IP0  
SPF1IP2  
SPF1IP1  
SPF1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPF1IP<2:0>: SPI1 Fault Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 119  
PIC24FJ256DA210 FAMILY  
REGISTER 7-22: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
AD1IP2  
AD1IP1  
AD1IP0  
U1TXIP2  
U1TXIP1  
U1TXIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39969B-page 120  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-23: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
CNIP2  
R/W-0  
CNIP1  
R/W-0  
CNIP0  
U-0  
R/W-1  
CMIP2  
R/W-0  
CMIP1  
R/W-0  
CMIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1IP2  
MI2C1IP1  
MI2C1IP0  
SI2C1IP2  
SI2C1IP1  
SI2C1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Input Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
CMIP<2:0>: Comparator Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1IP<2:0>: Master I2C1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: Slave I2C1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 121  
PIC24FJ256DA210 FAMILY  
REGISTER 7-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
R/W-1  
IC8IP2  
R/W-0  
IC8IP1  
R/W-0  
IC8IP0  
U-0  
R/W-1  
IC7IP2  
R/W-0  
IC7IP1  
R/W-0  
IC7IP0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT1IP2  
INT1IP1  
INT1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39969B-page 122  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-25: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
T4IP2  
R/W-0  
T4IP1  
R/W-0  
T4IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC4IP2  
OC4IP1  
OC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OC3IP2  
OC3IP1  
OC3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39969B-page 123  
PIC24FJ256DA210 FAMILY  
REGISTER 7-26: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U2TXIP2  
U2TXIP1  
U2TXIP0  
U2RXIP2  
U2RXIP1  
U2RXIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T5IP2  
R/W-0  
T5IP1  
R/W-0  
T5IP0  
INT2IP2  
INT2IP1  
INT2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39969B-page 124  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-27: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
SPI2IP2  
SPI2IP1  
SPI2IP0  
SPF2IP2  
SPF2IP1  
SPF2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
SPI2IP<2:0>: SPI2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 125  
PIC24FJ256DA210 FAMILY  
REGISTER 7-28: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
R/W-1  
IC5IP2  
R/W-0  
IC5IP1  
R/W-0  
IC5IP0  
U-0  
R/W-1  
IC4IP2  
R/W-0  
IC4IP1  
R/W-0  
IC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC3IP2  
R/W-0  
IC3IP1  
R/W-0  
IC3IP0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39969B-page 126  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-29: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC7IP2  
OC7IP1  
OC7IP0  
OC6IP2  
OC6IP1  
OC6IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
IC6IP2  
R/W-0  
IC6IP1  
R/W-0  
IC6IP0  
OC5IP2  
OC5IP1  
OC5IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 127  
PIC24FJ256DA210 FAMILY  
REGISTER 7-30: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
PMPIP2(1)  
R/W-0  
PMPIP1(1)  
R/W-0  
PMPIP0(1)  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC8IP2  
OC8IP1  
OC8IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PMPIP<2:0>: Parallel Master Port Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: Not available in 64-pin devices (PIC24FJXXXDAX06).  
DS39969B-page 128  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-31: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C2IP2  
MI2C2IP1  
MI2C2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
SI2C2IP2  
SI2C2IP1  
SI2C2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
MI2C2IP<2:0>: Master I2C2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2IP<2:0>: Slave I2C2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39969B-page 129  
PIC24FJ256DA210 FAMILY  
REGISTER 7-32: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT4IP2  
INT4IP1  
INT4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT3IP2  
INT3IP1  
INT3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
INT4IP<2:0>: External Interrupt 4 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT3IP<2:0>: External Interrupt 3 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39969B-page 130  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-33: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
RTCIP2  
RTCIP1  
RTCIP0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
RTCIP<2:0>: Real-Time Clock and Calendar Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39969B-page 131  
PIC24FJ256DA210 FAMILY  
REGISTER 7-34: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2  
U2ERIP1  
U2ERIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1ERIP2  
U1ERIP1  
U1ERIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CRCIP<2:0>: CRC Generator Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2ERIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1ERIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39969B-page 132  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-35: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
LVDIP2  
LVDIP1  
LVDIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
REGISTER 7-36: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CTMUIP2  
CTMUIP1  
CTMUIP0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
CTMUIP<2:0>: CTMU Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39969B-page 133  
PIC24FJ256DA210 FAMILY  
REGISTER 7-37: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U3TXIP2  
U3TXIP1  
U3TXIP0  
U3RXIP2  
U3RXIP1  
U3RXIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U3ERIP2  
U3ERIP1  
U3ERIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U3TXIP<2:0>: UART3 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U3RXIP<2:0>: UART3 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U3ERIP<2:0>: UART3 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39969B-page 134  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-38: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
U4ERIP2  
U4ERIP1  
U4ERIP0  
USB1IP2  
USB1IP1  
USB1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C3IP2  
MI2C3IP1  
MI2C3IP0  
SI2C3IP2  
SI2C3IP1  
SI2C3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U4ERIP<2:0>: UART4 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
USB1IP<2:0>: USB1 (USB OTG) Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C3IP<2:0>: Master I2C3 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C3IP<2:0>: Slave I2C3 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 135  
PIC24FJ256DA210 FAMILY  
REGISTER 7-39: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
SPI3IP2  
SPI3IP1  
SPI3IP0  
SPF3IP2  
SPF3IP1  
SPF3IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U4TXIP2  
U4TXIP1  
U4TXIP0  
U4RXIP2  
U4RXIP1  
U4RXIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
SPI3IP<2:0>: SPI3 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPF3IP<2:0>: SPI3 Fault Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U4TXIP<2:0>: UART4 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U4RXIP<2:0>: UART4 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39969B-page 136  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-40: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
IC9IP2  
R/W-0  
IC9IP1  
R/W-0  
IC9IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC9IP2  
OC9IP1  
OC9IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
IC9IP<2:0>: Input Capture Channel 9 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
OC9IP<2:0>: Output Compare Channel 9 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 137  
PIC24FJ256DA210 FAMILY  
REGISTER 7-41: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 25  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
GFX1IP2  
GFX1IP1  
GFX1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
GFX1IP<2:0>: Graphics 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39969B-page 138  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 7-42: INTTREG: INTERRUPT CONTROLLER TEST REGISTER  
R-0, HSC  
CPUIRQ  
U-0  
R/W-0  
U-0  
R-0, HSC  
ILR3  
R-0, HSC  
ILR2  
R-0, HSC  
ILR1  
R-0, HSC  
ILR0  
VHOLD  
bit 15  
bit 8  
U-0  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
VECNUM6  
VECNUM5  
VECNUM4  
VECNUM3  
VECNUM2  
VECNUM1  
VECNUM0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CPUIRQ: Interrupt Request from Interrupt Controller CPU bit  
1= An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens  
when the CPU priority is higher than the interrupt priority  
0= No interrupt request is unacknowledged  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
VHOLD: Vector Number Capture Configuration bit  
1= The VECNUM bits contain the value of the highest priority pending interrupt  
0= The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that  
has occurred with higher priority than the CPU, even if other interrupts are pending)  
bit 12  
Unimplemented: Read as ‘0’  
bit 11-8  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<5:0>: Vector Number of Pending Interrupt or Last Acknowledged Interrupt bits  
VHOLD = 1: The VECNUM bits indicate the vector number (from 0 to 118) of the last interrupt to occur  
VHOLD = 0: The VECNUM bits indicate the vector number (from 0 to 118) of the interrupt request  
currently being handled  
2010 Microchip Technology Inc.  
DS39969B-page 139  
PIC24FJ256DA210 FAMILY  
7.4.3  
TRAP SERVICE ROUTINE (TSR)  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
To configure an interrupt source:  
1. Set the NSTDIS (INTCON1<15>) control bit if  
nested interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources may be programmed  
to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value 0Eh with SRL.  
To enable user interrupts, the POPinstruction may be  
used to restore the previous SR value.  
Note:  
At a device Reset, the IPCx registers are  
initialized, such that all user interrupt  
sources are assigned to priority level 4.  
Note that only user interrupts with a priority level of 7 or  
less can be disabled. Trap sources (Level 8-15) cannot  
be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of priority levels, 1-6, for a fixed  
period of time. Level 7 interrupt sources are not  
disabled by the DISIinstruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
(ISR)  
The method that is used to declare an Interrupt Service  
Routine (ISR) and initialize the IVT with the correct vec-  
tor address will depend on the programming language  
(i.e., ‘C’ or assembler) and the language development  
toolsuite that is used to develop the application. In  
general, the user must clear the interrupt flag in the  
appropriate IFSx register for the source of the interrupt  
that the ISR handles. Otherwise, the ISR will be  
re-entered immediately after exiting the routine. If the  
ISR is coded in assembly language, it must be termi-  
nated using a RETFIEinstruction to unstack the saved  
PC value, SRL value and old CPU priority level.  
DS39969B-page 140  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
• An on-chip PLL block to boost internal operating  
frequency on select internal and external oscillator  
sources, and to provide a precise clock source for  
peripherals, such as USB and graphics  
8.0  
OSCILLATOR  
CONFIGURATION  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 6. “Oscillator” (DS39700). The  
information in this data sheet supersedes  
the information in the FRM.  
• Software controllable switching between various  
clock sources  
• Software controllable postscaler for selective  
clocking of CPU for system power savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and permits safe application recovery  
or shutdown  
• A separate and independently configurable system  
clock output for synchronizing external hardware  
The oscillator system for PIC24FJ256DA210 family  
devices has the following features:  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
• A total of four external and internal oscillator options  
as clock sources, providing 11 different clock modes  
FIGURE 8-1:  
PIC24FJ256DA210 FAMILY CLOCK DIAGRAM  
PIC24FJ256DA210 Family  
Clock for Display Interface  
48/96 MHz Clock for Graphics Controller Module  
48 MHz USB Clock  
Primary Oscillator  
XT, HS, EC  
OSCO  
OSCI  
REFOCON<15:8>  
96 MHz PLL(1)  
CPDIV<1:0>  
Reference Clock  
Generator  
XTPLL, HSPLL  
ECPLL,FRCPLL  
REFO  
PLL and  
DIV  
PLLDIV<2:0>  
GCLKDIV<6:0>  
Peripherals  
8 MHz/  
4 MHz  
FRC  
FRCDIV  
Oscillator  
8 MHz  
(nominal)  
CLKO  
CPU  
CLKDIV<10:8>  
FRC  
LPFRC  
1/16  
LPRC  
SOSC  
LPRC  
Oscillator  
CLKDIV<14:12>  
31 kHz (nominal)  
Secondary Oscillator  
Clock Control Logic  
Fail-Safe  
Clock  
Monitor  
SOSCO  
SOSCI  
SOSCEN  
Enable  
Oscillator  
WDT  
Clock Source Option  
for Other Modules  
Note 1: Refer to Figure 8-2 for more information on the 96 MHz PLL block.  
2010 Microchip Technology Inc.  
DS39969B-page 141  
PIC24FJ256DA210 FAMILY  
8.1  
CPU Clocking Scheme  
8.2  
Initial Configuration on POR  
The system clock source can be provided by one of  
four sources:  
The oscillator source (and operating mode) that is used  
at a device Power-on Reset (POR) event is selected  
using Configuration bit settings. The oscillator Configu-  
ration bit settings are located in the Configuration  
registers in the program memory (refer to Section 27.1  
“Configuration Bits” for further details). The Primary  
Oscillator Configuration bits, POSCMD<1:0> (Configu-  
ration Word 2<1:0>) and the Initial Oscillator Select  
Configuration bits, FNOSC<2:0> (Configuration  
Word 2<10:8>), select the oscillator source that is used  
at a POR. The FRC primary oscillator with postscaler  
(FRCDIV) is the default (unprogrammed) selection. The  
secondary oscillator, or one of the internal oscillators,  
may be chosen by programming these bit locations.  
• Primary Oscillator (POSC) on the OSCI and  
OSCO pins  
• Secondary Oscillator (SOSC) on the SOSCI and  
SOSCO pins  
• Fast Internal RC (FRC) Oscillator  
• Low-Power Internal RC (LPRC) Oscillator  
The primary oscillator and FRC sources have the  
option of using the internal 24x PLL block, which  
generates the USB module clock, the Graphics module  
clock and a separate system clock through the 96 MHZ  
PLL. Refer to Section 8.5 “96 MHz PLL Block” for  
additional information.  
The Configuration bits allow users to choose between  
the various clock modes, shown in Table 8-1.  
The internal FRC provides an 8 MHz clock source. It  
can optionally be reduced by the programmable clock  
divider to provide a range of system clock frequencies.  
8.2.1  
CLOCK SWITCHING MODE  
CONFIGURATION BITS  
The selected clock source generates the processor  
and peripheral clock sources. The processor clock  
source is divided by two to produce the internal instruc-  
tion cycle clock, FCY. In this document, the instruction  
cycle clock is also denoted by FOSC/2. The internal  
instruction cycle clock, FOSC/2, can be provided on the  
OSCO I/O pin for some operating modes of the primary  
oscillator.  
The FCKSM Configuration bits (Configuration  
Word 2<7:6>) are used to jointly configure device clock  
switching and the Fail-Safe Clock Monitor (FSCM).  
Clock switching is enabled only when FCKSM1 is  
programmed (‘0’). The FSCM is enabled only when  
FCKSM<1:0> are both programmed (‘00’).  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
Notes  
1, 2  
Fast RC Oscillator with Postscaler  
(FRCDIV)  
Internal  
11  
111  
FRC Oscillator/16 (500 KHz)  
Internal  
Internal  
11  
11  
11  
110  
101  
100  
1
1
1
Low-Power RC Oscillator (LPRC)  
Secondary (Timer1) Oscillator  
(SOSC)  
Secondary  
Primary Oscillator (XT) with PLL  
Module (XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
1
Primary Oscillator (EC) with PLL  
Module (ECPLL)  
Primary Oscillator (HS)  
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Primary  
Primary  
Primary  
Internal  
10  
01  
00  
11  
010  
010  
010  
001  
1
Fast RC Oscillator with PLL Module  
(FRCPLL)  
1
Fast RC Oscillator (FRC)  
Internal  
11  
000  
1
Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
DS39969B-page 142  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The OSCCON register (Register 8-1) is the main con-  
trol register for the oscillator. It controls clock source  
switching and allows the monitoring of clock sources.  
8.3  
Control Registers  
The following five Special Function Registers control  
the operation of the oscillator:  
The CLKDIV register (Register 8-2) controls the  
features associated with Doze mode, as well as the  
postscaler for the FRC oscillator.  
• OSCCON  
• CLKDIV  
• OSCTUN  
• CLKDIV2  
• REFOCON  
The OSCTUN register (Register 8-3) allows the user to  
fine tune the FRC oscillator over  
approximately ±1.5%.  
a range of  
The CLKDIV2 register (Register 8-4) controls the clock  
to the display glass, with the frequency ranging from  
750 kHz to 96 MHz.  
The REFOCON register (Register 8-5) controls the  
frequency of the reference clock out.  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-x, HSC(1) R-x, HSC(1) R-x, HSC(1)  
U-0  
R/W-x(1)  
NOSC2  
R/W-x(1)  
NOSC1  
R/W-x(1)  
NOSC0  
COSC2  
COSC1  
COSC0  
bit 15  
bit 8  
bit 0  
R/S-0  
R/W-0  
R-0, HSC(3)  
LOCK  
U-0  
R/C-0, HS  
CF  
R/W-0  
R/W-0  
R/W-0  
CLKLOCK IOLOCK(2)  
bit 7  
POSCEN  
SOSCEN  
OSWEN  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
S = Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
HS = Hardware Settable bit  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits(1)  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Fast RC/16 Oscillator  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In  
addition, if the IOL1WAY Configuration bit is ‘1’, once the IOLOCK bit is set, it cannot be cleared.  
3: Also resets to ‘0’ during any valid clock switch or whenever a non PLL Clock mode is selected.  
2010 Microchip Technology Inc.  
DS39969B-page 143  
PIC24FJ256DA210 FAMILY  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(1)  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Fast RC/16 Oscillator  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7  
CLKLOCK: Clock Selection Lock Enabled bit  
If FSCM is enabled (FCKSM1 = 1):  
1= Clock and PLL selections are locked  
0= Clock and PLL selections are not locked and may be modified by setting the OSWEN bit  
If FSCM is disabled (FCKSM1 = 0):  
Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.  
bit 6  
bit 5  
IOLOCK: I/O Lock Enable bit(2)  
1= I/O lock is active  
0= I/O lock is not active  
LOCK: PLL Lock Status bit(3)  
1= PLL module is in lock or PLL module start-up timer is satisfied  
0= PLL module is out of lock, PLL start-up timer is running or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit  
1= FSCM has detected a clock failure  
0= No clock failure has been detected  
bit 2  
bit 1  
bit 0  
POSCEN: Primary Oscillator Sleep Enable bit  
1= Primary Oscillator continues to operate during Sleep mode  
0= Primary Oscillator is disabled during Sleep mode  
SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit  
1= Enable the Secondary Oscillator  
0= Disable the Secondary Oscillator  
OSWEN: Oscillator Switch Enable bit  
1= Initiate an oscillator switch to the clock source specified by the NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In  
addition, if the IOL1WAY Configuration bit is ‘1’, once the IOLOCK bit is set, it cannot be cleared.  
3: Also resets to ‘0’ during any valid clock switch or whenever a non PLL Clock mode is selected.  
DS39969B-page 144  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 8-2:  
CLKDIV: CLOCK DIVIDER REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-1  
DOZE2  
DOZE1  
DOZE0  
RCDIV2  
RCDIV1  
RCDIV0  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CPDIV1  
bit 7  
R/W-0  
CPDIV0  
PLLEN  
G1CLKSEL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: CPU Peripheral Clock Ratio Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
bit 11  
DOZEN: DOZE Enable bit(1)  
1= DOZE<2:0> bits specify the CPU peripheral clock ratio  
0= CPU peripheral clock ratio is set to 1:1  
bit 10-8  
RCDIV<2:0>: FRC Postscaler Select bits  
111= 31.25 kHz (divide by 256)  
110= 125 kHz (divide by 64)  
101= 250 kHz (divide by 32)  
100= 500 kHz (divide by 16)  
011= 1 MHz (divide by 8)  
010= 2 MHz (divide by 4)  
001= 4 MHz (divide by 2)  
000= 8 MHz (divide by 1)  
bit 7-6  
CPDIV<1:0>: System Clock Select bits (postscaler select from 32 MHz clock branch)  
11= 4 MHz (divide by 8)(2)  
10= 8 MHz (divide by 4)(2)  
01= 16 MHz (divide by 2)  
00= 32 MHz (divide by 1)  
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.  
2: This setting is not allowed while the USB module is enabled.  
2010 Microchip Technology Inc.  
DS39969B-page 145  
PIC24FJ256DA210 FAMILY  
REGISTER 8-2:  
CLKDIV: CLOCK DIVIDER REGISTER (CONTINUED)  
bit 5  
PLLEN: 96 MHz PLL Enable bit  
The 96 MHz PLL must be enabled when the USB or graphics controller module is enabled. This control  
bit can be overridden by the PLL96MHZ (Configuration Word 2 <11>) Configuration bit.  
1= Enable the 96 MHz PLL for USB, graphics controller or HSPLL/ECPLL/FRCPLL operation  
0= Disable the 96 MHz PLL  
bit 4  
G1CLKSEL: Display Controller Module Clock Select bit  
1= Use the 96 MHz clock as a graphics controller module clock  
0= Use the 48 MHz clock as a graphics controller module clock  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.  
2: This setting is not allowed while the USB module is enabled.  
REGISTER 8-3:  
OSCTUN: FRC OSCILLATOR TUNE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
TUN5(1)  
R/W-0  
TUN4(1)  
R/W-0  
TUN3(1)  
R/W-0  
TUN2(1)  
R/W-0  
TUN1(1)  
R/W-0  
TUN0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Maximum frequency deviation  
011110=  
·
·
·
000001=  
000000= Center frequency, oscillator is running at factory calibrated frequency  
111111=  
·
·
·
100001=  
100000= Minimum frequency deviation  
Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC  
tuning range and may not be monotonic.  
DS39969B-page 146  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 8-4:  
CLKDIV2: CLOCK DIVIDER REGISTER 2  
R/W-0  
R/W-0 R/W-0 R/W-0 R/W-0  
R/W-0  
R/W-0  
U-0  
GCLKDIV6(1) GCLKDIV5(1) GCLKDIV4(1) GCLKDIV3(1) GCLKDIV2(1) GCLKDIV1(1) GCLKDIV0(1)  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at all Resets  
bit 15-9  
GCLKDIV<6:0>: Display Module Interface Clock Divider Selection bits(1)  
(Values are based on a 96 MHz clock source set by G1CLKSEL (CLKDIV<4>) = 1. When the 48 MHz  
clock source is selected, G1CLKSEL (CLKDIV<4>) = 0; all values are divided by 2.)(1)  
1111111= (127) 1.50 MHz (divide by 64)  
1111110= (126) 1.52 MHz (divide by 63)  
·
·
·
1100001= (97) 2.82 MHz (divide by 34)  
1100000= (96) 2.91 MHz (divide by 33); from here, increment the divisor by 1.00  
1011111= (95) 2.95 MHz (divide by 32.50)  
·
·
·
1000000= (65) 5.49 MHz (divide by 17.50)  
1000000= (64) 5.65 MHz (divide by 17.00); from here, increment the divisor by 0.50  
0111111= (63) 5.73 MHz (divide by 16.75)  
·
·
·
0000011= (3) 54.86 MHz (divide by 1.75)  
0000010= (2) 64.00 MHz (divide by 1.5)  
0000001= (1) 76.80 MHz (divide by 1.25); from here, increment the divisor by 0.25  
0000000= (0) 96.00 MHz (divide by 1)  
bit 8-0  
Unimplemented: Read as ‘0’  
Note 1: These bits take effect only when the 96 MHz PLL is enabled.  
2010 Microchip Technology Inc.  
DS39969B-page 147  
PIC24FJ256DA210 FAMILY  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
8.4  
Clock Switching Operation  
With few limitations, applications are free to switch  
between any of the four clock sources (POSC, SOSC,  
FRC and LPRC) under software control and at any  
time. To limit the possible side effects that could result  
from this flexibility, PIC24F devices have a safeguard  
lock built into the switching process.  
1. The clock switching hardware compares the  
COSCx bits with the new value of the NOSCx  
bits. If they are the same, then the clock switch  
is a redundant operation. In this case, the  
OSWEN bit is cleared automatically and the  
clock switch is aborted.  
Note:  
The Primary Oscillator mode has three  
different submodes (XT, HS and EC)  
which are determined by the POSCMDx  
Configuration bits. While an application  
can switch to and from Primary Oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
2. If a valid clock switch has been initiated, the  
LOCK (OSCCON<5>) and CF (OSCCON<3>)  
bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware will wait until  
the OST expires. If the new source is using the  
PLL, then the hardware waits until a PLL lock is  
detected (LOCK = 1).  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
8.4.1  
ENABLING CLOCK SWITCHING  
To enable clock switching, the FCKSM1 Configuration  
bit in CW2 must be programmed to ‘0’. (Refer to  
Section 27.1 “Configuration Bits” for further details.)  
If the FCKSM1 Configuration bit is unprogrammed (‘1’),  
the clock switching function and Fail-Safe Clock Monitor  
function are disabled. This is the default setting.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the  
NOSCx bit values are transferred to the COSCx  
bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or SOSC (if SOSCEN remains  
set).  
The NOSCx (OSCCON<10:8>) control bits do not  
control the clock selection when clock switching is  
disabled. However, the COSCx (OSCCON<14:12>)  
control bits will reflect the clock source selected by the  
FNOSCx Configuration bits.  
Note 1: The processor will continue to execute  
code throughout the clock switching  
sequence. Timing-sensitive code should  
not be executed during this time.  
The OSWEN (OSCCON<0>) control bit has no effect  
when clock switching is disabled; It is held at ‘0’ at all  
times.  
2: Direct clock switches between any  
Primary Oscillator mode with PLL and  
FRCPLL modes are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL  
modes.  
8.4.2  
OSCILLATOR SWITCHING  
SEQUENCE  
At a minimum, performing a clock switch requires this  
basic sequence:  
1. If desired, read the COSCx (OSCCON<14:12>)  
control bits to determine the current oscillator  
source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write the appropriate value to the NOSCx  
(OSCCON<10:8>) control bits for the new  
oscillator source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
DS39969B-page 148  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
A recommended code sequence for a clock switch  
includes the following:  
8.5  
96 MHz PLL Block  
The 96 MHz PLL block is implemented to generate the  
stable 48 MHz clock required for full-speed USB  
operation, a programmable clock output for the  
graphics controller module and the system clock from  
the same oscillator source. The 96 MHz PLL block is  
shown in Figure 8-2.  
1. Disable interrupts during the OSCCON register  
unlock and write sequence.  
2. Execute the unlock sequence for the OSCCON  
high byte by writing 78h and 9Ah to  
OSCCON<15:8>  
instructions.  
in  
two  
back-to-back  
The 96 MHz PLL block requires a 4 MHz input signal; it  
uses this to generate a 96 MHz signal from a fixed, 24x  
PLL. This is, in turn, divided into three branches. The first  
branch generates the USB clock, the second branch  
generates the system clock and the third branch gener-  
ates the graphics clock. The 96 MHz PLL block can be  
enabled and disabled using the PLL96MHZ Configura-  
tion bit (Configuration Word<11>) or through the PLLEN  
(CLKDIV<5>) control bit when the PLL96MHZ  
Configuration bit is not set. Note that the PLL96MHZ  
Configuration bit and PLLEN register bit are available  
only for PIC24F devices with USB and graphics  
controller modules.  
3. Write new oscillator source to the NOSCx bits in  
the instruction immediately following the unlock  
sequence.  
4. Execute the unlock sequence for the OSCCON  
low byte by writing 46h and 57h to  
OSCCON<7:0> in two back-to-back instructions.  
5. Set the OSWEN bit in the instruction immediately  
following the unlock sequence.  
6. Continue to execute code that is not  
clock-sensitive (optional).  
7. Invoke an appropriate amount of software delay  
(cycle counting) to allow the selected oscillator  
and/or PLL to start and stabilize.  
The 96 MHz PLL prescaler does not automatically  
sense the incoming oscillator frequency. The user must  
manually configure the PLL divider to generate the  
required 4 MHz output, using the PLLDIV<2:0> Config-  
uration bits (Configuration Word 2<14:12> in most  
devices).  
8. Check to see if OSWEN is ‘0’. If it is, the switch  
was successful. If OSWEN is still set, then  
check the LOCK bit to determine the cause of  
failure.  
The core sequence for unlocking the OSCCON register  
and initiating a clock switch is shown in Example 8-1.  
EXAMPLE 8-1:  
BASIC CODE SEQUENCE  
FOR CLOCK SWITCHING  
IN ASSEMBLY  
;Place the new oscillator selection in W0  
;OSCCONH (high byte) Unlock Sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONH, w1  
#0x78, w2  
#0x9A, w3  
w2, [w1]  
w3, [w1]  
;Set new oscillator selection  
MOV.b WREG, OSCCONH  
;OSCCONL (low byte) unlock sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONL, w1  
#0x46, w2  
#0x57, w3  
w2, [w1]  
w3, [w1]  
;Start oscillator switch operation  
BSET OSCCON,#0  
2010 Microchip Technology Inc.  
DS39969B-page 149  
PIC24FJ256DA210 FAMILY  
FIGURE 8-2:  
96 MHz PLL BLOCK  
USB Clock  
48 MHz Clock  
for USB Module  
÷ 2  
96 MHz PLL  
System Clock  
PLLDIV<2:0>  
FNOSC<2:0>  
÷ 8  
PLL Output for  
System Clock  
11  
10  
01  
00  
÷ 4  
÷ 2  
÷ 1  
÷ 3  
÷12  
÷ 8  
÷ 6  
÷ 5  
÷ 4  
÷ 3  
÷ 2  
÷ 1  
111  
110  
101  
100  
011  
010  
001  
000  
Input from  
POSC  
CPDIV<1:0>  
Input from  
FRC  
Graphics Clock  
4 MHz or  
8 MHz  
÷ 2  
Graphics Clock  
Option 2  
48 MHz Branch  
4 MHz Branch  
96 MHz Branch  
÷ 64  
127  
Clock Output for  
Display Interface  
(DISPCLK)  
÷ 63  
96 MHz  
PLL  
126  
...  
...  
÷ 17.50  
65  
G1CLKSEL  
÷ 17.00  
64  
...  
...  
÷ 1.25  
1
0
1
÷ 1  
0
Graphics Clock  
Option 1  
.
.
.
Clock Output  
for Graphics  
Controller  
GCLKDIV<6:0>  
Module (G1CLK)  
as the system clock. Figure 8-2 shows this logic in the  
system clock sub-block. Since the source is a 96 MHz  
signal, the possible system clock frequencies are listed  
in Table 8-2. The available system clock options are  
always the same, regardless of the setting of the  
PLLDIV Configuration bits.  
8.5.1  
SYSTEM CLOCK GENERATION  
The system clock is generated from the 96 MHz branch  
using a configurable postscaler/divider to generate a  
range of frequencies for the system clock multiplexer.  
The output of the multiplexer is further passed through  
a fixed divide-by-3 divider and the final output is used  
TABLE 8-2:  
SYSTEM CLOCK OPTIONS FOR 96 MHz PLL BLOCK  
MCU Clock Division  
(CPDIV<1:0>)  
System Clock Frequency  
(Instruction Rate in MIPS)  
None (00)  
2 (01)  
4 (10)  
8 (11)  
32 MHz (16)  
16 MHz (8)  
8 MHz (4)(1)  
4 MHz (2)(1)  
Note 1: These options are not compatible with USB operation. They may be used whenever the PLL branch is  
selected and the USB module is disabled.  
DS39969B-page 150  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
clock signal from 96 MHz PLL. Due to the requirement  
that a 4 MHz input must be provided to generate the  
8.5.2  
USB CLOCK GENERATION  
In the USB-On-The-Go module in PIC24FJ256DA210  
family of devices, the primary oscillator with the PLL  
block can be used as a valid clock source for USB oper-  
ation. The FRC oscillator (implemented with ±0.25%  
accuracy) can be combined with a PLL block, providing  
another option for a valid USB clock source. There is  
no provision to provide a separate external 48 MHz  
clock to the USB module. The USB module sources its  
96 MHz signal, the oscillator operation is limited to a  
range of possible values. Table 8-3 shows the valid  
oscillator configurations (i.e., ECPLL, HSPLL, XTPLL  
and FRCPLL) for USB operation. This sets the correct  
PLLDIV configuration for the specified oscillator  
frequency and the output frequency of the USB clock  
branch is always 48 MHz.  
TABLE 8-3:  
VALID OSCILLATOR CONFIGURATIONS FOR USB OPERATIONS  
PLL Division  
(PLLDIV<2:0>)  
Input Oscillator Frequency  
Clock Mode  
48 MHz  
32 MHz  
24 MHz  
20 MHz  
16 MHz  
12 MHz  
8 MHz  
ECPLL  
12 (111)  
HSPLL, ECPLL  
HSPLL, ECPLL  
8 (110)  
6 (101)  
5 (100)  
4 (011)  
3 (010)  
2 (001)  
1 (000)  
HSPLL, ECPLL  
HSPLL, ECPLL  
HSPLL, ECPLL  
ECPLL, HSPLL, XTPLL, FRCPLL  
ECPLL, HSPLL, XTPLL, FRCPLL  
4 MHz  
Note:  
For USB devices, the use of a primary oscillator or external clock source, with a frequency above 32 MHz,  
does not imply that the device’s system clock can be run at the same speed when the USB module is not  
used. The maximum system clock for all PIC24F devices is 32 MHz.  
8.5.3  
CONSIDERATIONS FOR USB  
OPERATION  
8.5.4  
GRAPHICS CLOCK GENERATION  
Two stable clock signals are generated for the graphics  
controller in the PIC24FJ256DA210 family of devices.  
The first clock is for the graphics controller module logic  
and the second clock is for the display module interface  
logic that generates the signals for the display glass.  
Figure 8-2 shows this logic in the graphics clock  
sub-block. Both clock signals are generated either from  
the Graphics Clock Option 1 (96 MHz branch) or the  
Graphics Clock Option 2 (48 MHz branch). Selection is  
set in the multiplexer using the G1CLKSEL  
(CLKDIV<4>) control bit. Graphics controller module  
logic directly uses the output of that multiplexer while  
the display module interface clock is further condi-  
tioned through a postscaler to generate 128 possible  
frequencies. The final clock output signal is selected  
When using the USB On-The-Go module in  
PIC24FJ256DA210 family devices, users must always  
observe these rules in configuring the system clock:  
• For USB operation, the selected clock source  
(EC, HS or XT) must meet the USB clock  
tolerance requirements.  
• The Primary Oscillator/PLL modes are the only  
oscillator configurations that permit USB opera-  
tion. There is no provision to provide a separate  
external clock source to the USB module.  
• While the FRCPLL Oscillator mode is used for  
USB applications, users must always ensure that  
the FRC source is configured to provide a  
frequency of 4 MHz or 8 MHz (RCDIV<2:0> = 001  
or 000) and that the USB PLL prescaler is  
configured appropriately.  
through  
a multiplexer using the GCLKDIV<6:0>  
(CLKDIV2<15:9>) control bits. The 128 selections vary  
in increments of 0.25, 0.5, and 1.0. Refer to Table 8-4  
for details. Note that for applications that use the  
graphics controller (GFX) module, the 96 MHz PLL  
must be enabled.  
All other oscillator modes are available; however, USB  
operation is not possible when these modes are  
selected. They may still be useful in cases where other  
power levels of operation are desirable and the USB  
module is not needed (e.g., the application is sleeping  
and waiting for a bus attachment).  
2010 Microchip Technology Inc.  
DS39969B-page 151  
PIC24FJ256DA210 FAMILY  
TABLE 8-4:  
GCLKDIV<6:0>  
0000000  
DISPLAY MODULE CLOCK FREQUENCY DIVISION  
Display Module Clock Frequency  
96 MHz Input (48 MHz Input)  
Frequency Divisor  
1
96 MHz (48 MHz)  
76.80 MHz (38.4 MHz)  
64 MHz (32 MHz)  
0000001  
0000010  
1.25 (start incrementing by 0.25)  
1.5  
0111111  
1000000  
1000001  
1000010  
16.75  
5.73 MHz (2.86 MHz)  
5.65 MHz (2.82 MHz)  
5.49 MHz (2.74 MHz)  
5.33 MHz (2.66 MHz)  
17  
17.5 (start incrementing by 0.5)  
18  
1011111  
1100000  
1100001  
1100010  
32.5  
2.95 MHz (1.47 MHz)  
2.91 MHz (1.45 MHz)  
2.82 MHz (1.41 MHz)  
2.74 MHz (1.37 MHz)  
33  
34 (start incrementing by 1)  
35  
63  
64  
1111110  
1111111  
1.52 MHz (762 kHz)  
1.50 MHz (750 kHz)  
The ROSSLP and ROSEL bits (REFOCON<13:12>)  
control the availability of the reference output during  
Sleep mode. The ROSEL bit determines if the oscillator  
on OSCI and OSCO, or the current system clock  
source, is used for the reference clock output. The  
ROSSLP bit determines if the reference source is  
available on REFO when the device is in Sleep mode.  
8.6  
Reference Clock Output  
In addition to the CLKO output (FOSC/2) available in  
certain oscillator modes, the device clock in the  
PIC24FJ256DA210 family devices can also be config-  
ured to provide a reference clock output signal to a port  
pin. This feature is available in all oscillator configura-  
tions and allows the user to select a greater range of  
clock submultiples to drive external devices in the  
application.  
To use the reference clock output in Sleep mode, both  
the ROSSLP and ROSEL bits must be set. The device  
clock must also be configured for one of the primary  
modes (EC, HS or XT); otherwise, if the POSCEN bit is  
not also set, the oscillator on OSCI and OSCO will be  
powered down when the device enters Sleep mode.  
Clearing the ROSEL bit allows the reference output  
frequency to change as the system clock changes  
during any clock switches.  
This reference clock output is controlled by the  
REFOCON register (Register 8-5). Setting the ROEN  
bit (REFOCON<15>) makes the clock signal available  
on the REFO pin. The RODIV bits (REFOCON<11:8>)  
enable the selection of 16 different clock divider  
options.  
DS39969B-page 152  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 8-5:  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER  
R/W-0  
ROEN  
U-0  
R/W-0  
R/W-0  
ROSEL(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ROSSLP  
RODIV3  
RODIV2  
RODIV1  
RODIV0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROEN: Reference Oscillator Output Enable bit  
1= Reference oscillator enabled on REFO pin  
0= Reference oscillator disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ROSSLP: Reference Oscillator Output Stop in Sleep bit  
1= Reference oscillator continues to run in Sleep  
0= Reference oscillator is disabled in Sleep  
bit 12  
ROSEL: Reference Oscillator Source Select bit(1)  
1= Primary oscillator used as the base clock  
0= System clock used as the base clock; base clock reflects any clock switching of the device  
RODIV<3:0>: Reference Oscillator Divisor Select bits  
bit 11-8  
1111= Base clock value divided by 32,768  
1110= Base clock value divided by 16,384  
1101= Base clock value divided by 8,192  
1100= Base clock value divided by 4,096  
1011= Base clock value divided by 2,048  
1010= Base clock value divided by 1,024  
1001= Base clock value divided by 512  
1000= Base clock value divided by 256  
0111= Base clock value divided by 128  
0110= Base clock value divided by 64  
0101= Base clock value divided by 32  
0100= Base clock value divided by 16  
0011= Base clock value divided by 8  
0010= Base clock value divided by 4  
0001= Base clock value divided by 2  
0000= Base clock value  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: Note that the crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the  
operation in Sleep mode.  
2010 Microchip Technology Inc.  
DS39969B-page 153  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 154  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
9.2.1  
SLEEP MODE  
9.0  
POWER-SAVING FEATURES  
Sleep mode has these features:  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 10. “Power-Saving Features”  
(DS39698). The information in this data  
sheet supersedes the information in the  
FRM.  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption will be reduced  
to a minimum, provided that no I/O pin is sourcing  
current.  
• The Fail-Safe Clock Monitor (FSCM) does not  
operate during Sleep mode since the system  
clock source is disabled.  
• The LPRC clock will continue to run in Sleep  
mode if the WDT is enabled.  
The PIC24FJ256DA210 family of devices provides the  
ability to manage power consumption by selectively  
managing clocking to the CPU and the peripherals. In  
general, a lower clock frequency and a reduction in the  
number of circuits being clocked constitutes lower  
consumed power. All PIC24F devices manage power  
consumption in four different ways:  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
• Some device features or peripherals may  
continue to operate in Sleep mode. This includes  
items such as the input change notification on the  
I/O ports or peripherals that use an external clock  
input. Any peripheral that requires the system  
clock source for its operation will be disabled in  
Sleep mode. Users can opt to make the voltage  
regulator enter standby mode on entering Sleep  
mode by clearing the VREGS bit (RCON<8>).  
This will decrease current consumption but will  
add a delay, TVREG, to the wake-up time. For this  
reason, applications that do not use the voltage  
regulator should set this bit.  
• Clock Frequency  
• Instruction-Based Sleep and Idle modes  
• Software Controlled Doze mode  
• Selective Peripheral Control in Software  
Combinations of these methods can be used to  
selectively tailor an application’s power consumption,  
while still maintaining critical application features, such  
as timing-sensitive communications.  
The device will wake-up from Sleep mode on any of the  
these events:  
9.1  
Clock Frequency and Clock  
Switching  
• On any interrupt source that is individually  
enabled  
PIC24F devices allow for a wide range of clock  
frequencies to be selected under application control. If  
the system clock configuration is not locked, users can  
choose low-power or high-precision oscillators by simply  
changing the NOSC bits. The process of changing a  
system clock during operation, as well as limitations to  
the process, are discussed in more detail in Section 8.0  
“Oscillator Configuration”.  
• On any form of device Reset  
• On a WDT time-out  
On wake-up from sleep, the processor will restart with  
the same clock source that was active when Sleep  
mode was entered.  
EXAMPLE 9-1:  
PWRSAVINSTRUCTION  
SYNTAX  
9.2  
Instruction-Based Power-Saving  
Modes  
PWRSAV  
PWRSAV  
#0  
#1  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
PIC24F devices have two special power-saving modes  
that are entered through the execution of a special  
PWRSAVinstruction. Sleep mode stops clock operation  
and halts all code execution; Idle mode halts the CPU  
and code execution, but allows peripheral modules to  
continue operation. The assembly syntax of the  
PWRSAVinstruction is shown in Example 9-1.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset.  
When the device exits these modes, it is said to  
“wake-up”.  
2010 Microchip Technology Inc.  
DS39969B-page 155  
PIC24FJ256DA210 FAMILY  
It is also possible to use Doze mode to selectively  
reduce power consumption in event driven applica-  
tions. This allows clock-sensitive functions, such as  
synchronous communications, to continue without  
interruption while the CPU idles, waiting for something  
to invoke an interrupt routine. Enabling the automatic  
return to full-speed CPU operation on interrupts is  
enabled by setting the ROI bit (CLKDIV<15>). By  
default, interrupt events have no effect on Doze mode  
operation.  
9.2.2  
IDLE MODE  
Idle mode has these features:  
• The CPU will stop executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Selective Peripheral Module Control”).  
• If the WDT or FSCM is enabled, the LPRC will  
also remain active.  
9.4  
Selective Peripheral Module  
Control  
The device will wake from Idle mode on any of these  
events:  
Idle and Doze modes allow users to substantially  
reduce power consumption by slowing or stopping the  
CPU clock. Even so, peripheral modules still remain  
clocked, and thus, consume power. There may be  
cases where the application needs what these modes  
do not provide: the allocation of power resources to  
CPU processing with minimal power consumption from  
the peripherals.  
• Any interrupt that is individually enabled.  
• Any device Reset.  
• A WDT time-out.  
On wake-up from Idle, the clock is reapplied to the CPU  
and instruction execution begins immediately, starting  
with the instruction following the PWRSAVinstruction or  
the first instruction in the ISR.  
PIC24F devices address this requirement by allowing  
peripheral modules to be selectively disabled, reducing  
or eliminating their power consumption. This can be  
done with two control bits:  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction will be held off until entry into Sleep  
or Idle mode has completed. The device will then  
wake-up from Sleep or Idle mode.  
• The Peripheral Enable bit, generically named,  
“XXXEN”, located in the module’s main control  
SFR.  
• The Peripheral Module Disable (PMD) bit,  
generically named, “XXXMD”, located in one of  
the PMD control registers.  
9.3  
Doze Mode  
Generally, changing clock speed and invoking one of  
the power-saving modes are the preferred strategies  
for reducing power consumption. There may be cir-  
cumstances, however, where this is not practical. For  
example, it may be necessary for an application to  
maintain uninterrupted synchronous communication,  
even while it is doing nothing else. Reducing system  
clock speed may introduce communication errors,  
Both bits have similar functions in enabling or disabling  
its associated module. Setting the PMD bit for a module  
disables all clock sources to that module, reducing its  
power consumption to an absolute minimum. In this  
state, the control and status registers associated with  
the peripheral will also be disabled, so writes to those  
registers will have no effect and read values will be  
invalid. Many peripheral modules have a corresponding  
PMD bit.  
while using  
a
power-saving mode may stop  
communications completely.  
In contrast, disabling a module by clearing its XXXEN  
bit disables its functionality, but leaves its registers  
available to be read and written to. This reduces power  
consumption, but not by as much as setting the PMD  
bit does. Most peripheral modules have an enable bit;  
exceptions include input capture, output compare and  
RTCC.  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock contin-  
ues to operate from the same source and at the same  
speed. Peripheral modules continue to be clocked at  
the same speed while the CPU clock speed is reduced.  
Synchronization between the two clock domains is  
maintained, allowing the peripherals to access the  
SFRs while the CPU executes code at a slower rate.  
To achieve more selective power savings, peripheral  
modules can also be selectively disabled when the  
device enters Idle mode. This is done through the  
control bit of the generic name format, “XXXIDL”. By  
default, all modules that can operate during Idle mode  
will do so. Using the disable on Idle feature allows  
further reduction of power consumption during Idle  
mode, enhancing power savings for extremely critical  
power applications.  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default.  
DS39969B-page 156  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
10.0 I/O PORTS  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
a general purpose output pin is disabled. The I/O pin  
may be read, but the output driver for the parallel port  
bit will be disabled. If a peripheral is enabled, but the  
peripheral is not actively driving a pin, that pin may be  
driven by a port.  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 12. “I/O Ports with Peripheral  
Pin Select (PPS)” (DS39711). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
All port pins have three registers directly associated  
with their operation as digital I/O and one register asso-  
ciated with their operation as analog input. The Data  
Direction register (TRISx) determines whether the pin  
is an input or an output. If the data direction bit is a ‘1’,  
then the pin is an input. All port pins are defined as  
inputs after a Reset. Reads from the Output Latch reg-  
ister (LATx), read the latch; writes to the latch, write the  
latch. Reads from the port (PORTx), read the port pins;  
writes to the port pins, write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSCI/CLKI) are shared between the peripherals and  
the parallel I/O ports. All I/O input ports feature Schmitt  
Trigger (ST) inputs for improved noise immunity.  
10.1 Parallel I/O (PIO) Ports  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers, and the port pin will read as zeros.  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The periph-  
eral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is regarded as a  
dedicated port because there is no other competing  
source of inputs.  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O  
1
0
Output Enable  
Output Data  
1
0
PIO Module  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
2010 Microchip Technology Inc.  
DS39969B-page 157  
PIC24FJ256DA210 FAMILY  
10.1.1  
I/O PORT WRITE/READ TIMING  
10.2 Configuring Analog Port Pins  
(ANSEL)  
One instruction cycle is required between a port direction  
change or port write operation and a read operation of  
the same port. Typically, this instruction would be a NOP.  
The ANSx and TRISx registers control the operation of  
the pins with analog function. Each port pin with analog  
function is associated with one of the ANS bits (see  
Register 10-1 through Register 10-7), which decides if  
the pin function should be analog or digital. Refer to  
Table 10-1 for detailed behavior of the pin for different  
ANSx and TRISx bit settings.  
10.1.2  
OPEN-DRAIN CONFIGURATION  
In addition to the PORT, LAT and TRIS registers for data  
control, each port pin can also be individually configured  
for either a digital or open-drain output. This is controlled  
by the Open-Drain Control register, ODCx, associated  
with each port. Setting any of the bits configures the  
corresponding pin to act as an open-drain output.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired  
digital only pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
10.2.1  
ANALOG INPUT PINS AND  
VOLTAGE CONSIDERATIONS  
The voltage tolerance of pins used as device inputs is  
dependent on the pin’s input function. Pins that are used  
as digital only inputs are able to handle DC voltages of up  
to 5.5V, a level typical for digital logic circuits. In contrast,  
pins that also have analog input functions of any kind can  
only tolerate voltages up to VDD. Voltage excursions  
beyond VDD on these pins should always be avoided.  
Table 10-2 summarizes the input capabilities. Refer to  
Section 30.1 “DC Characteristics” for more details.  
10.1.3  
CONFIGURING D+ AND D- PINS  
(RG2 AND RG3)  
The input buffers of the RG2 and RG3 pins are by  
default, tri-stated. To use these pins as input pins, the  
UTRDIS bit (U1CNFG2<0>) should be set which  
enables the input buffers on these pins.  
TABLE 10-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN  
Pin Function  
ANSx Setting  
TRISx Setting  
Comments  
Analog Input  
Analog Output  
Digital Input  
1
1
0
1
1
1
It is recommended to keep ANSx = 1.  
It is recommended to keep ANSx = 1.  
Firmware must wait at least one instruction cycle  
after configuring a pin as a digital input before a valid  
input value can be read.  
Digital Output  
0
0
Make sure to disable the analog output function on  
the pin if any is present.  
TABLE 10-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT  
Port or Pin  
Tolerated Input  
Description  
PORTA(1)<10:9, 7:6>  
PORTB<15:0>  
PORTC(1)<15:12, 4>  
PORTD<7:6>  
PORTE(1)<9>  
VDD  
Only VDD input levels are tolerated.  
PORTF<0>  
PORTG<9:6, 3:2>  
PORTA(1)<15:14, 5:0>  
PORTC(1)<3:1>  
PORTD(1)<15:8, 5:0>  
PORTE(1)<8:0>  
Tolerates input levels above VDD, useful  
for most standard logic.  
5.5V  
PORTF(1)<13:12, 8:7, 5:1>  
PORTG(1)<15:12, 1:0>  
Note 1: Not all of the pins of these PORTS are implemented in 64-pin devices (PIC24FJXXXDAX06); refer to the  
device pinout diagrams for the details.  
DS39969B-page 158  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
ANSA10  
ANSA9  
bit 15  
bit 8  
bit 0  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ANSA7  
ANSA6  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
ANSA<10:9>: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 8  
Unimplemented: Read as ‘0’  
bit 7-6  
ANSA<7:6>: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 5-0  
Unimplemented: Read as ‘0’  
Note 1: This register is not available on 64-pin devices (PIC24FJXXXDAX06).  
2010 Microchip Technology Inc.  
DS39969B-page 159  
PIC24FJ256DA210 FAMILY  
REGISTER 10-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSB15  
ANSB14  
ANSB13  
ANSB12  
ANSB11  
ANSB10  
ANSB9  
ANSB8  
bit 15  
bit 8  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSB7  
ANSB6  
ANSB5  
ANSB4  
ANSB3  
ANSB2  
ANSB1  
ANSB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
ANSB<15:0>: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
REGISTER 10-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER  
U-0  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
U-0  
ANSC14  
ANSC13  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
ANSC4(1)  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-13  
ANSC<14:13>: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
ANSC4: Analog Function Selection bit(1)  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not available on 64-pin devices (PIC24FJXXXDAX06).  
DS39969B-page 160  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-4: ANSD: PORTD ANALOG FUNCTION SELECTION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ANSD7  
ANSD6  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
ANSD<7:6>: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 5-0  
Unimplemented: Read as ‘0’  
REGISTER 10-5: ANSE: PORTE ANALOG FUNCTION SELECTION REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
U-0  
ANSE9  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
ANSE9: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 8-0  
Unimplemented: Read as ‘0’  
Note 1: This register is not available in 64-pin devices (PIC24FJXXXDAX06).  
2010 Microchip Technology Inc.  
DS39969B-page 161  
PIC24FJ256DA210 FAMILY  
REGISTER 10-6: ANSF: PORTF ANALOG FUNCTION SELECTION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
ANSF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
bit 0  
Unimplemented: Read as ‘0’  
ANSF0: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
REGISTER 10-7: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
ANSG9  
ANSG8  
bit 15  
bit 8  
R/W-1  
R/W-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ANSG7  
ANSG6  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
bit 9-6  
Unimplemented: Read as ‘0’  
ANSG<9:6>: Analog Function Selection bits  
1= Pin is configured in Analog mode; I/O port read is disabled  
0= Pin is configured in Digital mode; I/O port read is enabled  
bit 5-0  
Unimplemented: Read as ‘0’  
DS39969B-page 162  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
when push button or keypad devices are connected.  
The pull-ups and pull-downs are separately enabled  
10.3 Input Change Notification  
The input change notification function of the I/O ports  
allows the PIC24FJ256DA210 family of devices to gen-  
erate interrupt requests to the processor in response to  
a Change-Of-State (COS) on selected input pins. This  
feature is capable of detecting input Change-Of-States,  
even in Sleep mode, when the clocks are disabled.  
Depending on the device pin count, there are up to  
84 external inputs that may be selected (enabled) for  
generating an interrupt request on a Change-Of-State.  
using the CNPU1 through CNPU6 registers (for  
pull-ups), and the CNPD1 through CNPD6 registers  
(for pull-downs). Each CN pin has individual control bits  
for its pull-up and pull-down. Setting a control bit  
enables the weak pull-up or pull-down for the  
corresponding pin.  
When the internal pull-up is selected, the pin pulls up to  
VDD – 1.1V (typical). When the internal pull-down is  
selected, the pin pulls down to VSS.  
Registers, CNEN1 through CNEN6, contain the inter-  
rupt enable control bits for each of the CN input pins.  
Setting any of these bits enables a CN interrupt for the  
corresponding pins.  
Note:  
Note:  
Pull-ups on change notification pins  
should always be disabled whenever the  
port pin is configured as a digital output.  
Each CN pin has a both a weak pull-up and a weak  
pull-down connected to it. The pull-ups act as a current  
source that is connected to the pin, while the  
pull-downs act as a current sink that is connected to the  
pin. These eliminate the need for external resistors  
To use CN83 and CN84, which are on the  
D+ and D- pins, the UTRDIS bit  
(U1CNFG2<0>) should be set.  
EXAMPLE 10-1:  
PORT WRITE/READ IN ASSEMBLY  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
BTSS PORTB, #13  
; Next Instruction  
EXAMPLE 10-2:  
PORT WRITE/READ IN ‘C’  
TRISB = 0xFF00;  
Nop();  
// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs  
// Delay 1 cycle  
If (PORTBbits.RB13){ };  
// Next Instruction  
2010 Microchip Technology Inc.  
DS39969B-page 163  
PIC24FJ256DA210 FAMILY  
A key difference between pin select and non-pin select  
10.4 Peripheral Pin Select (PPS)  
peripherals is that pin select peripherals are not asso-  
ciated with a default I/O pin. The peripheral must  
always be assigned to a specific I/O pin before it can be  
used. In contrast, non pin select peripherals are always  
available on a default pin, assuming that the peripheral  
is active and not conflicting with another peripheral.  
A major challenge in general purpose devices is provid-  
ing the largest possible set of peripheral features while  
minimizing the conflict of features on I/O pins. In an  
application that needs to use more than one peripheral  
multiplexed on a single pin, inconvenient work arounds  
in application code or a complete redesign may be the  
only option.  
10.4.2.1  
Peripheral Pin Select Function  
Priority  
The Peripheral Pin Select (PPS) feature provides an  
alternative to these choices by enabling the user’s  
peripheral set selection and its placement on a wide  
range of I/O pins. By increasing the pinout options  
available on a particular device, users can better tailor  
the microcontroller to their entire application, rather  
than trimming the application to fit the device.  
Pin-selectable peripheral outputs (e.g., OC, UART  
transmit) will take priority over general purpose digital  
functions on a pin, such as EPMP and port I/O. Special-  
ized digital outputs, such as USB functionality, will take  
priority over PPS outputs on the same pin. The pin  
diagrams list peripheral outputs in the order of priority.  
Refer to them for priority concerns on a particular pin.  
The Peripheral Pin Select feature operates over a fixed  
subset of digital I/O pins. Users may independently  
map the input and/or output of any one of many digital  
peripherals to any one of these I/O pins. PPS is per-  
formed in software and generally does not require the  
device to be reprogrammed. Hardware safeguards are  
included that prevent accidental or spurious changes to  
the peripheral mapping once it has been established.  
Unlike PIC24F devices with fixed peripherals, pin  
selectable peripheral inputs will never take ownership  
of a pin. The pin’s output buffer will be controlled by the  
TRISx setting or by a fixed peripheral on the pin. If the  
pin is configured in digital mode then the PPS input will  
operate correctly. If an analog function is enabled on  
the pin the PPS input will be disabled.  
10.4.1  
AVAILABLE PINS  
10.4.3  
CONTROLLING PERIPHERAL PIN  
SELECT  
The PPS feature is used with a range of up to 44 pins,  
depending on the particular device and its pin count.  
Pins that support the Peripheral Pin Select feature  
include the designation, “RPn” or “RPIn”, in their full pin  
designation, where “n” is the remappable pin number.  
“RP” is used to designate pins that support both remap-  
pable input and output functions, while “RPI” indicates  
pins that support remappable input functions only.  
PPS features are controlled through two sets of Special  
Function Registers (SFRs): one to map peripheral  
inputs and one to map outputs. Because they are  
separately controlled, a particular peripheral’s input  
and output (if the peripheral has both) can be placed on  
any selectable function pin without constraint.  
The  
association  
of  
a
peripheral  
to  
a
PIC24FJ256DA210 family devices support a larger  
number of remappable input only pins than remappable  
input/output pins. In this device family, there are up to  
32 remappable input/output pins, depending on the pin  
count of the particular device selected; these are num-  
bered, RP0 through RP31. Remappable input only pins  
are numbered above this range, from RPI32 to RPI43  
(or the upper limit for that particular device).  
peripheral-selectable pin is handled in two different  
ways, depending on if an input or an output is being  
mapped.  
10.4.3.1  
Input Mapping  
The inputs of the Peripheral Pin Select options are  
mapped on the basis of the peripheral; that is, a control  
register associated with a peripheral dictates the pin it  
will be mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 10-8  
through Register 10-28). Each register contains two  
sets of 6-bit fields, with each set associated with one of  
the pin-selectable peripherals. Programming a given  
peripheral’s bit field with an appropriate 6-bit value  
maps the RPn/RPIn pin with that value to that  
peripheral. For any given device, the valid range of  
values for any of the bit fields corresponds to the max-  
imum number of Peripheral Pin Selections supported  
by the device.  
See Table 1-1 for a summary of pinout options in each  
package offering.  
10.4.2  
AVAILABLE PERIPHERALS  
The peripherals managed by the PPS are all digital  
only peripherals. These include general serial commu-  
nications (UART and SPI), general purpose timer clock  
inputs, timer related peripherals (input capture and out-  
put compare) and external interrupt inputs. Also  
included are the outputs of the comparator module,  
since these are discrete digital signals.  
PPS is not available for I2C™, change notification  
inputs, RTCC alarm outputs, EPMP signals, graphics  
controller signals or peripherals with analog inputs.  
DS39969B-page 164  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 10-3: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)  
Function Mapping  
Bits  
Input Name  
Function Name  
Register  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
Input Capture 1  
INT1  
INT2  
RPINR0  
RPINR1  
RPINR1  
RPINR2  
RPINR7  
RPINR7  
RPINR8  
RPINR8  
RPINR9  
RPINR9  
RPINR10  
RPINR10  
RPINR15  
RPINR11  
RPINR11  
RPINR20  
RPINR20  
RPINR21  
RPINR22  
RPINR22  
RPINR23  
RPINR28  
RPINR28  
RPINR29  
RPINR3  
RPINR3  
RPINR4  
RPINR4  
RPINR18  
RPINR18  
RPINR19  
RPINR19  
RPINR21  
RPINR17  
RPINR27  
RPINR27  
INT1R<5:0>  
INT2R<5:0>  
INT3R<5:0>  
INT4R<5:0>  
IC1R<5:0>  
INT3  
INT4  
IC1  
Input Capture 2  
IC2  
IC2R<5:0>  
Input Capture 3  
IC3  
IC3R<5:0>  
Input Capture 4  
IC4  
IC4R<5:0>  
Input Capture 5  
IC5  
IC5R<5:0>  
Input Capture 6  
IC6  
IC6R<5:0>  
Input Capture 7  
IC7  
IC7R<5:0>  
Input Capture 8  
IC8  
IC8R<5:0>  
Input Capture 9  
IC9  
IC9R<5:0>  
Output Compare Fault A  
Output Compare Fault B  
SPI1 Clock Input  
OCFA  
OCFB  
SCK1IN  
SDI1  
OCFAR<5:0>  
OCFBR<5:0>  
SCK1R<5:0>  
SDI1R<5:0>  
SS1R<5:0>  
SCK2R<5:0>  
SDI2R<5:0>  
SS2R<5:0>  
SCK3R<5:0>  
SDI3R<5:0>  
SS3R<5:0>  
T2CKR<5:0>  
T3CKR<5:0>  
T4CKR<5:0>  
T5CKR<5:0>  
U1CTSR<5:0>  
U1RXR<5:0>  
U2CTSR<5:0>  
U2RXR<5:0>  
U3CTSR<5:0>  
U3RXR<5:0>  
U4CTSR<5:0>  
U4RXR<5:0>  
SPI1 Data Input  
SPI1 Slave Select Input  
SPI2 Clock Input  
SS1IN  
SCK2IN  
SDI2  
SPI2 Data Input  
SPI2 Slave Select Input  
SPI3 Clock Input  
SS2IN  
SCK3IN  
SDI3  
SPI3 Data Input  
SPI3 Slave Select Input  
Timer2 External Clock  
Timer3 External Clock  
Timer4 External Clock  
Timer5 External Clock  
UART1 Clear To Send  
UART1 Receive  
SS3IN  
T2CK  
T3CK  
T4CK  
T5CK  
U1CTS  
U1RX  
U2CTS  
U2RX  
U3CTS  
U3RX  
U4CTS  
U4RX  
UART2 Clear To Send  
UART2 Receive  
UART3 Clear To Send  
UART3 Receive  
UART4 Clear To Send  
UART4 Receive  
Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.  
2010 Microchip Technology Inc.  
DS39969B-page 165  
PIC24FJ256DA210 FAMILY  
corresponds to one of the peripherals and that  
peripheral’s output is mapped to the pin (see  
Table 10-4).  
10.4.3.2  
Output Mapping  
In contrast to inputs, the outputs of the Peripheral Pin  
Select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Each register contains two 6-bit fields, with each field  
being associated with one RPn pin (see Register 10-29  
through Register 10-44). The value of the bit field  
Because of the mapping technique, the list of peripher-  
als for output mapping also includes a null value of  
000000’. This permits any given pin to remain discon-  
nected from the output of any of the pin-selectable  
peripherals.  
TABLE 10-4: SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)  
Output Function Number(1)  
Function  
Output Name  
0
1
NULL(2)  
C1OUT  
C2OUT  
U1TX  
Null  
Comparator 1 Output  
Comparator 2 Output  
UART1 Transmit  
2
3
4
U1RTS(3)  
UART1 Request To Send  
UART2 Transmit  
5
U2TX  
6
U2RTS(3)  
SDO1  
UART2 Request To Send  
SPI1 Data Output  
SPI1 Clock Output  
SPI1 Slave Select Output  
SPI2 Data Output  
SPI2 Clock Output  
SPI2 Slave Select Output  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
Output Compare 6  
Output Compare 7  
Output Compare 8  
UART3 Transmit  
7
8
SCK1OUT  
SS1OUT  
SDO2  
9
10  
11  
12  
18  
19  
20  
21  
22  
23  
24  
25  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37-63  
SCK2OUT  
SS2OUT  
OC1  
OC2  
OC3  
OC4  
OC5  
OC6  
OC7  
OC8  
U3TX  
U3RTS(3)  
UART3 Request To Send  
UART4 Transmit  
U4TX  
U4RTS(3)  
SDO3  
UART4 Request To Send  
SPI3 Data Output  
SPI3 Clock Output  
SPI3 Slave Select Output  
Output Compare 9  
Comparator 3 Output  
NC  
SCK3OUT  
SS3OUT  
OC9  
C3OUT  
(unused)  
Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.  
2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.  
3: IrDA® BCLK functionality uses this output.  
DS39969B-page 166  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
10.4.3.3  
Mapping Limitations  
10.4.4.1  
Control Register Lock  
The control schema of the Peripheral Pin Select is  
extremely flexible. Other than systematic blocks that  
prevent signal contention, caused by two physical pins  
being configured as the same functional input or two  
functional outputs configured as the same pin, there  
are no hardware enforced lock outs. The flexibility  
extends to the point of allowing a single input to drive  
multiple peripherals or a single functional output to  
drive multiple output pins.  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes will  
appear to execute normally, but the contents of the  
registers will remain unchanged. To change these reg-  
isters, they must be unlocked in hardware. The register  
lock is controlled by the IOLOCK bit (OSCCON<6>).  
Setting IOLOCK prevents writes to the control  
registers; clearing IOLOCK allows writes.  
To set or clear IOLOCK, a specific command sequence  
must be executed:  
10.4.3.4  
Mapping Exceptions for  
1. Write 46h to OSCCON<7:0>.  
PIC24FJ256DA210 Devices  
2. Write 57h to OSCCON<7:0>.  
Although the PPS registers theoretically allow for up to  
64 remappable I/O pins, not all of these are imple-  
mented in all devices. For PIC24FJ256DA210 family  
devices, the maximum number of remappable pins  
available are 44, which includes 12 input only pins. In  
addition, some pins in the RP and RPI sequences are  
unimplemented in lower pin count devices. The  
differences in available remappable pins are  
summarized in Table 10-5.  
3. Clear (or set) IOLOCK as a single operation.  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the Peripheral Pin Selects to be configured  
with a single unlock sequence, followed by an update  
to all control registers, then locked with a second lock  
sequence.  
10.4.4.2  
Continuous State Monitoring  
When developing applications that use remappable  
pins, users should also keep these things in mind:  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a Configuration Mismatch Reset will  
be triggered.  
• For the RPINRx registers, bit combinations corre-  
sponding to an unimplemented pin for a particular  
device are treated as invalid; the corresponding  
module will not have an input mapped to it. For all  
PIC24FJ256DA210 family devices, this includes  
all values greater than 43 (‘101011’).  
• For RPORx registers, the bit fields corresponding  
to an unimplemented pin will also be unimple-  
mented. Writing to these fields will have no effect.  
10.4.4.3  
Configuration Bit Pin Select Lock  
As an additional level of safety, the device can be con-  
figured to prevent more than one write session to the  
RPINRx and RPORx registers. The IOL1WAY  
(CW2<4>) Configuration bit blocks the IOLOCK bit  
from being cleared after it has been set once. If  
IOLOCK remains set, the register unlock procedure will  
not execute and the Peripheral Pin Select Control reg-  
isters cannot be written to. The only way to clear the bit  
and re-enable peripheral remapping is to perform a  
device Reset.  
10.4.4  
CONTROLLING CONFIGURATION  
CHANGES  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. PIC24F devices include three features to  
prevent alterations to the peripheral map:  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit remapping lock  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows users unlimited access (with the  
proper use of the unlock sequence) to the Peripheral  
Pin Select registers.  
TABLE 10-5: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ256DA210 FAMILY DEVICES  
RP Pins (I/O)  
Unimplemented  
RPI Pins  
Unimplemented  
Device Pin Count  
Total  
Total  
64-Pin  
28  
RP5, RP15, RP30, RP31  
1
RPI32-36, RPI38-43  
(PIC24FJXXXDAX06)  
100/121-Pin  
32  
12  
(PIC24FJXXXDAX10)  
2010 Microchip Technology Inc.  
DS39969B-page 167  
PIC24FJ256DA210 FAMILY  
Along these lines, configuring a remappable pin for a  
specific peripheral does not automatically turn that  
feature on. The peripheral must be specifically config-  
ured for operation, and enabled as if it were tied to a fixed  
pin. Where this happens in the application code (immedi-  
ately following device Reset and peripheral configuration  
or inside the main application routine) depends on the  
peripheral and its use in the application.  
10.4.5  
CONSIDERATIONS FOR  
PERIPHERAL PIN SELECTION  
The ability to control Peripheral Pin Selection intro-  
duces several considerations into application design  
that could be overlooked. This is particularly true for  
several common peripherals that are available only as  
remappable peripherals.  
The main consideration is that the Peripheral Pin  
Selects are not available on default pins in the device’s  
default (Reset) state. Since all RPINRx registers reset  
to ‘111111’ and all RPORx registers reset to ‘000000’,  
all Peripheral Pin Select inputs are tied to VSS and all  
Peripheral Pin Select outputs are disconnected.  
A final consideration is that Peripheral Pin Select func-  
tions neither override analog inputs nor reconfigure  
pins with analog functions for digital I/O. If a pin is  
configured as an analog input on device Reset, it must  
be explicitly reconfigured as digital I/O when used with  
a Peripheral Pin Select.  
Note:  
In tying Peripheral Pin Select inputs to  
RP63, RP63 need not exist on a device for  
the registers to be reset to it.  
Example 10-3 shows a configuration for bidirectional  
communication with flow control using UART1. The  
following input and output functions are used:  
This situation requires the user to initialize the device  
with the proper peripheral configuration before any  
other application code is executed. Since the IOLOCK  
bit resets in the unlocked state, it is not necessary to  
execute the unlock sequence after the device has  
come out of Reset. For application safety, however, it is  
best to set IOLOCK and lock the configuration after  
writing to the control registers.  
• Input Functions: U1RX, U1CTS  
• Output Functions: U1TX, U1RTS  
EXAMPLE 10-3:  
CONFIGURING UART1  
INPUT AND OUTPUT  
FUNCTIONS  
// Unlock Registers  
asm volatile( "MOV  
#OSCCON, w1  
#0x46, w2  
#0x57, w3  
\n"  
\n"  
\n"  
\n"  
\n"  
Because the unlock sequence is timing-critical, it must  
be executed as an assembly language routine in the  
same manner as changes to the oscillator configura-  
tion. If the bulk of the application is written in ‘C’, or  
another high-level language, the unlock sequence  
should be performed by writing in-line assembly.  
"MOV  
"MOV  
"MOV.b w2, [w1]  
"MOV.b w3, [w1]  
"BCLR OSCCON,#6");  
// or use C30 built-in macro:  
Choosing the configuration requires the review of all  
Peripheral Pin Selects and their pin assignments,  
especially those that will not be used in the application.  
In all cases, unused pin-selectable peripherals should  
be disabled completely. Unused peripherals should  
have their inputs assigned to an unused RPn/RPIn pin  
function. I/O pins with unused RPn functions should be  
configured with the null peripheral output.  
// __builtin_write_OSCCONL(OSCCON & 0xbf);  
// Configure Input Functions (Table 10-2))  
// Assign U1RX To Pin RP0  
RPINR18bits.U1RXR = 0;  
// Assign U1CTS To Pin RP1  
RPINR18bits.U1CTSR = 1;  
The assignment of a peripheral to a particular pin does  
not automatically perform any other configuration of the  
pin’s I/O circuitry. In theory, this means adding a  
pin-selectable output to a pin may mean inadvertently  
driving an existing peripheral input when the output is  
driven. Users must be familiar with the behavior of  
other fixed peripherals that share a remappable pin and  
know when to enable or disable them. To be safe, fixed  
digital peripherals that share the same pin should be  
disabled when not in use.  
// Configure Output Functions (Table 10-4)  
// Assign U1TX To Pin RP2  
RPOR1bits.RP2R = 3;  
// Assign U1RTS To Pin RP3  
RPOR1bits.RP3R = 4;  
// Lock Registers  
asm volatile  
("MOV  
"MOV  
"MOV  
"MOV.b w2, [w1]\  
"MOV.b w3, [w1]  
#OSCCON, w1  
#0x46, w2  
#0x57, w3  
\n"  
\n"  
\n"  
n"  
\n"  
;
"BSET  
OSCCON, #6")  
// or use C30 built-in macro:  
// __builtin_write_OSCCONL(OSCCON | 0x40);  
DS39969B-page 168  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
10.4.6  
PERIPHERAL PIN SELECT  
REGISTERS  
Note:  
Input and output register values can only be  
changed if IOLOCK (OSCCON<6>) = 0.  
See Section 10.4.4.1 “Control Register  
Lock” for a specific command sequence.  
The PIC24FJ256DA210 family of devices implements  
a total of 37 registers for remappable peripheral  
configuration:  
• Input Remappable Peripheral Registers (21)  
• Output Remappable Peripheral Registers (16)  
REGISTER 10-8: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT1R5  
INT1R4  
INT1R3  
INT1R2  
INT1R1  
INT1R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-0  
Unimplemented: Read as ‘0’  
INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
REGISTER 10-9: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT3R5  
INT3R4  
INT3R3  
INT3R2  
INT3R1  
INT3R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R5  
INT2R4  
INT2R3  
INT2R2  
INT2R1  
INT2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits  
2010 Microchip Technology Inc.  
DS39969B-page 169  
PIC24FJ256DA210 FAMILY  
REGISTER 10-10: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT4R5  
INT4R4  
INT4R3  
INT4R2  
INT4R1  
INT4R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
INT4R<5:0>: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits  
REGISTER 10-11: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T3CKR5  
T3CKR4  
T3CKR3  
T3CKR2  
T3CKR1  
T3CKR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T2CKR5  
T2CKR4  
T2CKR3  
T2CKR2  
T2CKR1  
T2CKR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
T3CKR<5:0>: Assign Timer3 External Clock (T3CK) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
T2CKR<5:0>: Assign Timer2 External Clock (T2CK) to Corresponding RPn or RPIn Pin bits  
DS39969B-page 170  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-12: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T5CKR5  
T5CKR4  
T5CKR3  
T5CKR2  
T5CKR1  
T5CKR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T4CKR5  
T4CKR4  
T4CKR3  
T4CKR2  
T4CKR1  
T4CKR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
T5CKR<5:0>: Assign Timer5 External Clock (T5CK) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
T4CKR<5:0>: Assign Timer4 External Clock (T4CK) to Corresponding RPn or RPIn Pin bits  
REGISTER 10-13: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
R/W-1  
IC2R5  
R/W-1  
IC2R4  
R/W-1  
IC2R3  
R/W-1  
IC2R2  
R/W-1  
IC2R1  
R/W-1  
IC2R0  
bit 8  
bit 15  
U-0  
U-0  
R/W-1  
IC1R5  
R/W-1  
IC1R4  
R/W-1  
IC1R3  
R/W-1  
IC1R2  
R/W-1  
IC1R1  
R/W-1  
IC1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits  
2010 Microchip Technology Inc.  
DS39969B-page 171  
PIC24FJ256DA210 FAMILY  
REGISTER 10-14: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8  
U-0  
U-0  
R/W-1  
IC4R5  
R/W-1  
IC4R4  
R/W-1  
IC4R3  
R/W-1  
IC4R2  
R/W-1  
IC4R1  
R/W-1  
IC4R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
IC3R5  
R/W-1  
IC3R4  
R/W-1  
IC3R3  
R/W-1  
IC3R2  
R/W-1  
IC3R1  
R/W-1  
IC3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
IC4R<5:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits  
REGISTER 10-15: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9  
U-0  
U-0  
R/W-1  
IC6R5  
R/W-1  
IC6R4  
R/W-1  
IC6R3  
R/W-1  
IC6R2  
R/W-1  
IC6R1  
R/W-1  
IC6R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
IC5R5  
R/W-1  
IC5R4  
R/W-1  
IC5R3  
R/W-1  
IC5R2  
R/W-1  
IC5R1  
R/W-1  
IC5R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
IC6R<5:0>: Assign Input Capture 6 (IC6) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
IC5R<5:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits  
DS39969B-page 172  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-16: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10  
U-0  
U-0  
R/W-1  
IC8R5  
R/W-1  
IC8R4  
R/W-1  
IC8R3  
R/W-1  
IC8R2  
R/W-1  
IC8R1  
R/W-1  
IC8R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
IC7R5  
R/W-1  
IC7R4  
R/W-1  
IC7R3  
R/W-1  
IC7R2  
R/W-1  
IC7R1  
R/W-1  
IC7R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
IC8R<5:0>: Assign Input Capture 8 (IC8) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
IC7R<5:0>: Assign Input Capture 7 (IC7) to Corresponding RPn or RPIn Pin bits  
REGISTER 10-17: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFBR5  
OCFBR4  
OCFBR3  
OCFBR2  
OCFBR1  
OCFBR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFAR5  
OCFAR4  
OCFAR3  
OCFAR2  
OCFAR1  
OCFAR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits  
2010 Microchip Technology Inc.  
DS39969B-page 173  
PIC24FJ256DA210 FAMILY  
REGISTER 10-18: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15  
U-0  
U-0  
R/W-1  
IC9R5  
R/W-1  
IC9R4  
R/W-1  
IC9R3  
R/W-1  
IC9R2  
R/W-1  
IC9R1  
R/W-1  
IC9R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-0  
Unimplemented: Read as ‘0’  
IC9R<5:0>: Assign Input Capture 9 (IC9) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
REGISTER 10-19: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U3RXR5  
U3RXR4  
U3RXR3  
U3RXR2  
U3RXR1  
U3RXR0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-0  
Unimplemented: Read as ‘0’  
U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
DS39969B-page 174  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-20: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1CTSR5  
U1CTSR4  
U1CTSR3  
U1CTSR2  
U1CTSR1  
U1CTSR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1RXR5  
U1RXR4  
U1RXR3  
U1RXR2  
U1RXR1  
U1RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
U1CTSR<5:0>: Assign UART1 Clear to Send (U1CTS) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits  
REGISTER 10-21: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U2CTSR0  
bit 8  
U2CTSR5  
U2CTSR4  
U2CTSR3  
U2CTSR2  
U2CTSR1  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U2RXR5  
U2RXR4  
U2RXR3  
U2RXR2  
U2RXR1  
U2RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
U2CTSR<5:0>: Assign UART2 Clear to Send (U2CTS) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits  
2010 Microchip Technology Inc.  
DS39969B-page 175  
PIC24FJ256DA210 FAMILY  
REGISTER 10-22: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SCK1R5  
SCK1R4  
SCK1R3  
SCK1R2  
SCK1R1  
SCK1R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI1R5  
SDI1R4  
SDI1R3  
SDI1R2  
SDI1R1  
SDI1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits  
REGISTER 10-23: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U3CTSR5  
U3CTSR4  
U3CTSR3  
U3CTSR2  
U3CTSR1  
U3CTSR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS1R5  
SS1R4  
SS1R3  
SS1R2  
SS1R1  
SS1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
U3CTSR<5:0>: Assign UART3 Clear to Send (U3CTS) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits  
DS39969B-page 176  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-24: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SCK2R5  
SCK2R4  
SCK2R3  
SCK2R2  
SCK2R1  
SCK2R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI2R5  
SDI2R4  
SDI2R3  
SDI2R2  
SDI2R1  
SDI2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits  
REGISTER 10-25: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS2R5  
SS2R4  
SS2R3  
SS2R2  
SS2R1  
SS2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits  
2010 Microchip Technology Inc.  
DS39969B-page 177  
PIC24FJ256DA210 FAMILY  
REGISTER 10-26: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U4CTSR5  
U4CTSR4  
U4CTSR3  
U4CTSR2  
U4CTSR1  
U4CTSR0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U4RXR5  
U4RXR4  
U4RXR3  
U4RXR2  
U4RXR1  
U4RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
U4CTSR<5:0>: Assign UART4 Clear to Send (U4CTS) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
U4RXR<5:0>: Assign UART4 Receive (U4RX) to Corresponding RPn or RPIn Pin bits  
REGISTER 10-27: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SCK3R0  
bit 8  
SCK3R5  
SCK3R4  
SCK3R3  
SCK3R2  
SCK3R1  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI3R5  
SDI3R4  
SDI3R3  
SDI3R2  
SDI3R1  
SDI3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits  
Unimplemented: Read as ‘0’  
bit 5-0  
SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits  
DS39969B-page 178  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-28: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS3R5  
SS3R4  
SS3R3  
SS3R2  
SS3R1  
SS3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SS3R<5:0>: Assign SPI3 Slave Select Input (SS31IN) to Corresponding RPn or RPIn Pin bits  
2010 Microchip Technology Inc.  
DS39969B-page 179  
PIC24FJ256DA210 FAMILY  
REGISTER 10-29: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP1R5  
RP1R4  
RP1R3  
RP1R2  
RP1R1  
RP1R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP0R5  
RP0R4  
RP0R3  
RP0R2  
RP0R1  
RP0R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP1R<5:0>: RP1 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP1 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP0R<5:0>: RP0 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP0 (see Table 10-4 for peripheral function numbers).  
REGISTER 10-30: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP3R5  
RP3R4  
RP3R3  
RP3R2  
RP3R1  
RP3R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP2R5  
RP2R4  
RP2R3  
RP2R2  
RP2R1  
RP2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP3R<5:0>: RP3 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP3 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP2R<5:0>: RP2 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP2 (see Table 10-4 for peripheral function numbers).  
DS39969B-page 180  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-31: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
R/W-0  
RP5R5(1)  
R/W-0  
RP5R4(1)  
R/W-0  
RP5R3(1)  
R/W-0  
RP5R2(1)  
R/W-0  
RP5R1(1)  
R/W-0  
RP5R0(1)  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP4R5  
RP4R4  
RP4R3  
RP4R2  
RP4R1  
RP4R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP5R<5:0>: RP5 Output Pin Mapping bits(1)  
Peripheral output number n is assigned to pin, RP5 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP4R<5:0>: RP4 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP4 (see Table 10-4 for peripheral function numbers).  
Note 1: Unimplemented in 64-pin devices; read as ‘0’.  
REGISTER 10-32: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP7R5  
RP7R4  
RP7R3  
RP7R2  
RP7R1  
RP7R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP6R5  
RP6R4  
RP6R3  
RP6R2  
RP6R1  
RP6R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP7R<5:0>: RP7 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP7 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP6R<5:0>: RP6 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP6 (see Table 10-4 for peripheral function numbers).  
2010 Microchip Technology Inc.  
DS39969B-page 181  
PIC24FJ256DA210 FAMILY  
REGISTER 10-33: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP9R5  
RP9R4  
RP9R3  
RP9R2  
RP9R1  
RP9R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP8R5  
RP8R4  
RP8R3  
RP8R2  
RP8R1  
RP8R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP9R<5:0>: RP9 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP9 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP8R<5:0>: RP8 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP8 (see Table 10-4 for peripheral function numbers).  
REGISTER 10-34: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP11R5  
RP11R4  
RP11R3  
RP11R2  
RP11R1  
RP11R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP10R5  
RP10R4  
RP10R3  
RP10R2  
RP10R1  
RP10R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP11R<5:0>: RP11 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP11 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP10R<5:0>: RP10 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP10 (see Table 10-4 for peripheral function numbers).  
DS39969B-page 182  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-35: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP13R5  
RP13R4  
RP13R3  
RP13R2  
RP13R1  
RP13R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP12R5  
RP12R4  
RP12R3  
RP12R2  
RP12R1  
RP12R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP13R<5:0>: RP13 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP13 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP12R<5:0>: RP12 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP12 (see Table 10-4 for peripheral function numbers).  
REGISTER 10-36: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
R/W-0  
RP15R5(1)  
R/W-0  
RP15R4(1)  
R/W-0  
RP15R3(1)  
R/W-0  
RP15R2(1)  
R/W-0  
RP15R1(1)  
R/W-0  
RP15R0(1)  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP14R5  
RP14R4  
RP14R3  
RP14R2  
RP14R1  
RP14R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP15R<5:0>: RP15 Output Pin Mapping bits(1)  
Peripheral output number n is assigned to pin, RP0 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP14R<5:0>: RP14 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP14 (see Table 10-4 for peripheral function numbers).  
Note 1: Unimplemented in 64-pin devices; read as ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 183  
PIC24FJ256DA210 FAMILY  
REGISTER 10-37: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP17R5  
RP17R4  
RP17R3  
RP17R2  
RP17R1  
RP17R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP16R5  
RP16R4  
RP16R3  
RP16R2  
RP16R1  
RP16R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP17R<5:0>: RP17 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP17 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP16R<5:0>: RP16 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP16 (see Table 10-4 for peripheral function numbers).  
REGISTER 10-38: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP19R5  
RP19R4  
RP19R3  
RP19R2  
RP19R1  
RP19R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP18R5  
RP18R4  
RP18R3  
RP18R2  
RP18R1  
RP18R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP19R<5:0>: RP19 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP19 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP18R<5:0>: RP18 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP18 (see Table 10-4 for peripheral function numbers).  
DS39969B-page 184  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-39: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP21R5  
RP21R4  
RP21R3  
RP21R2  
RP21R1  
RP21R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP20R5  
RP20R4  
RP20R3  
RP20R2  
RP20R1  
RP20R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP21R<5:0>: RP21 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP21 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP20R<5:0>: RP20 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP20 (see Table 10-4 for peripheral function numbers).  
REGISTER 10-40: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP23R5  
RP23R4  
RP23R3  
RP23R2  
RP23R1  
RP23R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP22R5  
RP22R4  
RP22R3  
RP22R2  
RP22R1  
RP22R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP23R<5:0>: RP23 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP23 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP22R<5:0>: RP22 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP22 (see Table 10-4 for peripheral function numbers).  
2010 Microchip Technology Inc.  
DS39969B-page 185  
PIC24FJ256DA210 FAMILY  
REGISTER 10-41: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP25R5  
RP25R4  
RP25R3  
RP25R2  
RP25R1  
RP25R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP24R5  
RP24R4  
RP24R3  
RP24R2  
RP24R1  
RP24R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP25R<5:0>: RP25 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP25 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP24R<5:0>: RP24 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP24 (see Table 10-4 for peripheral function numbers).  
REGISTER 10-42: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP27R5  
RP27R4  
RP27R3  
RP27R2  
RP27R1  
RP27R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP26R5  
RP26R4  
RP26R3  
RP26R2  
RP26R1  
RP26R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP27R<5:0>: RP27 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP27 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP26R<5:0>: RP26 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP26 (see Table 10-4 for peripheral function numbers).  
DS39969B-page 186  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 10-43: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP29R5  
RP29R4  
RP29R3  
RP29R2  
RP29R1  
RP29R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP28R5  
RP28R4  
RP28R3  
RP28R2  
RP28R1  
RP28R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP29R<5:0>: RP29 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP29 (see Table 10-4 for peripheral function numbers).  
Unimplemented: Read as ‘0’  
bit 7-6  
bit 5-0  
RP28R<5:0>: RP28 Output Pin Mapping bits  
Peripheral output number n is assigned to pin, RP28 (see Table 10-4 for peripheral function numbers).  
REGISTER 10-44: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15(1)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP31R5  
RP31R4  
RP31R3  
RP31R2  
RP31R1  
RP31R0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP30R5  
RP30R4  
RP30R3  
RP30R2  
RP30R1  
RP30R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP31R<5:0>: RP31 Output Pin Mapping bits(1)  
Peripheral output number n is assigned to pin, RP31 (see Table 10-4 for peripheral function numbers).  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP30R<5:0>: RP30 Output Pin Mapping bits(1)  
Peripheral output number n is assigned to pin, RP30 (see Table 10-4 for peripheral function numbers).  
Note 1: Unimplemented in 64-pin devices; read as ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 187  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 188  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Figure 11-1 presents a block diagram of the 16-bit timer  
module.  
11.0 TIMER1  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
To configure Timer1 for operation:  
1. Set the TON bit (= 1).  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 14. “Timers” (DS39704). The  
information in this data sheet supersedes  
the information in the FRM.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Set or clear the TSYNC bit to configure  
synchronous or asynchronous operation.  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the Real-Time Clock (RTC) or  
operate as a free-running, interval timer/counter.  
Timer1 can operate in three modes:  
5. Load the timer period value into the PR1  
register.  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP<2:0>, to set  
the interrupt priority.  
• 16-Bit Timer  
• 16-Bit Synchronous Counter  
• 16-Bit Asynchronous Counter  
Timer1 also supports these features:  
• Timer Gate Operation  
• Selectable Prescaler Settings  
• Timer Operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-Bit Period Register Match or  
Falling Edge of External Gate Signal  
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
Sync  
1
TSYNC  
Comparator  
PR1  
2010 Microchip Technology Inc.  
DS39969B-page 189  
PIC24FJ256DA210 FAMILY  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER(1)  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from T1CK pin (on the rising edge)  
0= Internal clock (FOSC/2)  
Unimplemented: Read as ‘0’  
Note 1: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to  
reset and is not recommended.  
DS39969B-page 190  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
To configure Timer2/3 or Timer4/5 for 32-bit operation:  
12.0 TIMER2/3 AND TIMER4/5  
1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).  
Note:  
This data sheet summarizes the features  
2. Select the prescaler ratio for Timer2 or Timer4  
using the TCKPS<1:0> bits.  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 14. “Timers” (DS39704). The  
information in this data sheet supersedes  
the information in the FRM.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits. If TCS is set to an external  
clock, RPINRx (TxCK) must be configured to  
an available RPn/RPIn pin. For more informa-  
tion, see Section 10.4 “Peripheral Pin Select  
(PPS)”.  
The Timer2/3 and Timer4/5 modules are 32-bit timers,  
which can also be configured as four independent, 16-bit  
timers with selectable operating modes.  
4. Load the timer period value. PR3 (or PR5) will  
contain the most significant word (msw) of the  
value while PR2 (or PR4) contains the least  
significant word (lsw).  
As 32-bit timers, Timer2/3 and Timer4/5 can each  
operate in three modes:  
5. If interrupts are required, set the interrupt enable  
bit, T3IE or T5IE; use the priority bits, T3IP<2:0>  
or T5IP<2:0>, to set the interrupt priority. Note  
that while Timer2 or Timer4 controls the timer,  
the interrupt appears as a Timer3 or Timer5  
interrupt.  
• Two independent 16-bit timers with all 16-bit  
operating modes (except Asynchronous Counter  
mode)  
• Single 32-bit timer  
• Single 32-bit synchronous counter  
6. Set the TON bit (= 1).  
They also support these features:  
The timer value, at any point, is stored in the register  
pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always  
contains the most significant word of the count, while  
TMR2 (TMR4) contains the least significant word.  
• Timer Gate Operation  
• Selectable Prescaler Settings  
• Timer Operation during Idle and Sleep modes  
• Interrupt on a 32-Bit Period Register Match  
To configure any of the timers for individual 16-bit  
operation:  
• ADC Event Trigger (only on Timer2/3 in 32-bit  
mode and Timer3 in 16-bit mode)  
1. Clear the T32 bit corresponding to that timer  
(T2CON<3> for Timer2 and Timer3 or  
T4CON<3> for Timer4 and Timer5).  
Individually, all four of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the ADC Event  
Trigger; this is implemented only on Timer2/3 in 32-bit  
mode and Timer3 in 16-bit mode. The operating modes  
and enabled features are determined by setting the  
appropriate bit(s) in the T2CON, T3CON, T4CON and  
T5CON registers. T2CON and T4CON are shown in  
generic form in Register 12-1; T3CON and T5CON are  
shown in Register 12-2.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits. See Section 10.4 “Peripheral  
Pin Select (PPS)” for more information.  
4. Load the timer period value into the PRx register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE; use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
For 32-bit timer/counter operation, Timer2 and Timer4  
are the least significant word; Timer3 and Timer4 are  
the most significant word of the 32-bit timers.  
6. Set the TON (TxCON<15> = 1) bit.  
Note:  
For 32-bit operation, T3CON and T5CON  
control bits are ignored. Only T2CON and  
T4CON control bits are used for setup and  
control. Timer2 and Timer4 clock and gate  
inputs are utilized for the 32-bit timer  
modules, but an interrupt is generated with  
the Timer3 or Timer5 interrupt flags.  
2010 Microchip Technology Inc.  
DS39969B-page 191  
PIC24FJ256DA210 FAMILY  
FIGURE 12-1:  
TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T2CK  
(T4CK)  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
01  
00  
Sync  
TCY  
(2)  
TGATE  
TGATE  
(2)  
TCS  
1
0
Q
D
Set T3IF (T5IF)  
Q
CK  
PR3  
PR2  
(PR5)  
(PR4)  
(3)  
ADC Event Trigger  
Equal  
MSB  
Comparator  
LSB  
TMR2  
(TMR4)  
TMR3  
(TMR5)  
Sync  
Reset  
16  
(1)  
(1)  
Read TMR2 (TMR4)  
Write TMR2 (TMR4)  
16  
16  
TMR3HLD  
(TMR5HLD)  
Data Bus<15:0>  
Note 1: The 32-Bit Timer Configuration bit, T32, must be set for 32-bit timer/counter operation. All control bits are  
respective to the T2CON and T4CON registers.  
2: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 10.4 “Peripheral  
Pin Select (PPS)” for more information.  
3: The ADC event trigger is available only on Timer 2/3 in 32-bit mode and Timer 3 in 16-bit mode.  
DS39969B-page 192  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 12-2:  
TIMER2 AND TIMER4 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T2CK  
(T4CK)  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TGATE  
(1)  
TCS  
TGATE  
TCY  
(1)  
Q
D
1
0
Set T2IF (T4IF)  
Q
CK  
Reset  
Equal  
TMR2 (TMR4)  
Sync  
Comparator  
PR2 (PR4)  
Note 1: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 10.4 “Peripheral  
Pin Select (PPS)” for more information.  
FIGURE 12-3:  
TIMER3 AND TIMER5 (16-BIT ASYNCHRONOUS) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T3CK  
(T5CK)  
1x  
01  
00  
Sync  
Prescaler  
1, 8, 64, 256  
TGATE  
(1)  
TCS  
TGATE  
TCY  
(1)  
Q
Q
D
1
0
Set T3IF (T5IF)  
CK  
Reset  
Equal  
TMR3 (TMR5)  
(2)  
ADC Event Trigger  
Comparator  
PR3 (PR5)  
Note 1: The timer clock input must be assigned to an available RPn/RPIn pin before use. See Section 10.4 “Peripheral  
Pin Select (PPS)” for more information.  
2: The ADC event trigger is available only on Timer3.  
2010 Microchip Technology Inc.  
DS39969B-page 193  
PIC24FJ256DA210 FAMILY  
REGISTER 12-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER(3)  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(1)  
U-0  
R/W-0  
TCS(2)  
U-0  
TGATE  
TCKPS1  
TCKPS0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timerx On bit  
When TxCON<3> = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When TxCON<3> = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-Bit Timer Mode Select bit(1)  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit(2)  
1= External clock from pin, TxCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: In T4CON, the T45 bit is implemented instead of T32 to select 32-bit mode. In 32-bit mode, the T3CON or  
T5CON control bits do not affect 32-bit timer operation.  
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see  
Section 10.4 “Peripheral Pin Select (PPS)”.  
3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to  
reset and is not recommended.  
DS39969B-page 194  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER(3)  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS1(1)  
R/W-0  
TCKPS0(1)  
U-0  
U-0  
R/W-0  
TCS(1,2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timery Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1,2)  
1= External clock from pin, TyCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery  
operation; all timer functions are set through T2CON and T4CON.  
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. See Section 10.4 “Peripheral  
Pin Select (PPS)” for more information.  
3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to  
reset and is not recommended.  
2010 Microchip Technology Inc.  
DS39969B-page 195  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 196  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
13.1 General Operating Modes  
13.0 INPUT CAPTURE WITH  
DEDICATED TIMERS  
13.1.1  
SYNCHRONOUS AND TRIGGER  
MODES  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 34. “Input Capture with  
Dedicated Timer” (DS39722). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
When the input capture module operates in  
a
free-running mode, the internal 16-bit counter,  
ICxTMR, counts up continuously, wrapping around  
from FFFFh to 0000h on each overflow, with its period  
synchronized to the selected external clock source.  
When a capture event occurs, the current 16-bit value  
of the internal counter is written to the FIFO buffer.  
In Synchronous mode, the module begins capturing  
events on the ICx pin as soon as its selected clock  
source is enabled. Whenever an event occurs on the  
selected sync source, the internal counter is reset. In  
Trigger mode, the module waits for a Sync event from  
another internal module to occur before allowing the  
internal counter to run.  
Devices in the PIC24FJ256DA210 family comprise  
nine independent input capture modules. Each of the  
modules offers a wide range of configuration and  
operating options for capturing external pulse events  
and generating interrupts.  
Key features of the input capture module include:  
Standard, free-running operation is selected by setting  
the SYNCSEL bits (ICxCON2<4:0>) to ‘00000’ and  
clearing the ICTRIG bit (ICxCON2<7>). Synchronous  
and Trigger modes are selected any time the  
SYNCSEL bits are set to any value except ‘00000’.  
The ICTRIG bit selects either Synchronous or Trigger  
mode; setting the bit selects Trigger mode operation. In  
both modes, the SYNCSEL bits determine the  
sync/trigger source.  
• Hardware configurable for 32-bit operation in all  
modes by cascading two adjacent modules  
• Synchronous and Trigger modes of output  
compare operation, with up to 30 user-selectable  
sync/trigger sources available  
• A 4-level FIFO buffer for capturing and holding  
timer values for several events  
• Configurable interrupt generation  
• Up to 6 clock sources available for each module,  
driving a separate internal 16-bit counter  
When the SYNCSEL bits are set to ‘00000’ and  
ICTRIG is set, the module operates in Software Trigger  
mode. In this case, capture operations are started by  
manually setting the TRIGSTAT bit (ICxCON2<6>).  
The module is controlled through two registers:  
ICxCON1 (Register 13-1) and ICxCON2 (Register 13-2).  
A general block diagram of the module is shown in  
Figure 13-1.  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
ICM<2:0>  
ICI1<:0>  
Set ICXIF  
Event and  
Interrupt  
Logic  
Edge Detect Logic  
Prescaler  
Counter  
1:1/4/16  
and  
Clock Synchronizer  
(1)  
ICX Pin  
ICTSEL<2:0>  
Increment  
16  
IC Clock  
Sources  
Clock  
Select  
ICXTMR  
4-Level FIFO Buffer  
16  
16  
Reset  
Sync and  
ICXBUF  
Sync and  
Trigger Sources  
Trigger  
Logic  
SYNCSEL<4:0>  
Trigger  
System Bus  
ICOV, ICBNE  
Note 1: The ICx inputs must be assigned to an available RPn/RPIn pin before use. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 197  
PIC24FJ256DA210 FAMILY  
For 32-bit cascaded operations, the setup procedure is  
slightly different:  
13.1.2  
CASCADED (32-BIT) MODE  
By default, each module operates independently with  
its own 16-bit timer. To increase resolution, adjacent  
even and odd modules can be configured to function as  
a single 32-bit module. (For example, Modules 1 and 2  
are paired, as are Modules 3 and 4, and so on.) The  
odd numbered module (ICx) provides the Least Signif-  
icant 16 bits of the 32-bit register pairs and the even  
module (ICy) provides the Most Significant 16 bits.  
Wrap-arounds of the ICx registers cause an increment  
of their corresponding ICy registers.  
1. Set the IC32 bits for both modules  
(ICyCON2<8>) and (ICxCON2<8>), enabling  
the even numbered module first. This ensures  
the modules will start functioning in unison.  
2. Set the ICTSEL and SYNCSEL bits for both  
modules to select the same sync/trigger and  
time base source. Set the even module first,  
then the odd module. Both modules must use  
the same ICTSEL and SYNCSEL settings.  
3. Clear the ICTRIG bit of the even module  
(ICyCON2<7>). This forces the module to run in  
Synchronous mode with the odd module,  
regardless of its trigger setting.  
Cascaded operation is configured in hardware by  
setting the IC32 bits (ICxCON2<8>) for both modules.  
13.2 Capture Operations  
4. Use the odd module’s ICI bits (ICxCON1<6:5>)  
to set the desired interrupt frequency.  
The input capture module can be configured to capture  
timer values and generate interrupts on rising edges on  
ICx or all transitions on ICx. Captures can be config-  
ured to occur on all rising edges or just some (every 4th  
or 16th). Interrupts can be independently configured to  
generate on each event or a subset of events.  
5. Use the ICTRIG bit of the odd module  
(ICxCON2<7>) to configure Trigger or  
Synchronous mode operation.  
Note:  
For Synchronous mode operation, enable  
the sync source as the last step. Both  
input capture modules are held in Reset  
until the sync source is enabled.  
To set up the module for capture operations:  
1. Configure the ICx input for one of the available  
Peripheral Pin Select pins.  
6. Use the ICM bits of the odd module  
(ICxCON1<2:0>) to set the desired capture  
mode.  
2. If Synchronous mode is to be used, disable the  
sync source before proceeding.  
3. Make sure that any previous data has been  
removed from the FIFO by reading ICxBUF until  
the ICBNE bit (ICxCON1<3>) is cleared.  
The module is ready to capture events when the time  
base and the sync/trigger source are enabled. When  
the ICBNE bit (ICxCON1<3>) becomes set, at least  
one capture value is available in the FIFO. Read input  
capture values from the FIFO until the ICBNE clears to  
0’.  
4. Set the SYNCSEL bits (ICxCON2<4:0>) to the  
desired sync/trigger source.  
5. Set the ICTSEL bits (ICxCON1<12:10>) for the  
desired clock source.  
For 32-bit operation, read both the ICxBUF and  
ICyBUF for the full 32-bit timer value (ICxBUF for the  
lsw, ICyBUF for the msw). At least one capture value is  
available in the FIFO buffer when the odd module’s  
ICBNE bit (ICxCON1<3>) becomes set. Continue to  
read the buffer registers until ICBNE is cleared  
(performed automatically by hardware).  
6. Set the ICI bits (ICxCON1<6:5>) to the desired  
interrupt frequency  
7. Select Synchronous or Trigger mode operation:  
a) Check that the SYNCSEL bits are not set to  
00000’.  
b) For Synchronous mode, clear the ICTRIG  
bit (ICxCON2<7>).  
c) For Trigger mode, set ICTRIG, and clear the  
TRIGSTAT bit (ICxCON2<6>).  
8. Set the ICM bits (ICxCON1<2:0>) to the desired  
operational mode.  
9. Enable the selected sync/trigger source.  
DS39969B-page 198  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ICSIDL  
ICTSEL2  
ICTSEL1  
ICTSEL0  
bit 15  
bit 8  
U-0  
R/W-0  
ICI1  
R/W-0  
ICI0  
R-0, HSC  
ICOV  
R-0, HSC  
ICBNE  
R/W-0  
ICM2(1)  
R/W-0  
ICM1(1)  
R/W-0  
ICM0(1)  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture x Module Stop in Idle Control bit  
1= Input capture module halts in CPU Idle mode  
0= Input capture module continues to operate in CPU Idle mode  
bit 12-10  
ICTSEL<2:0>: Input Capture Timer Select bits  
111= System clock (FOSC/2)  
110= Reserved  
101= Reserved  
100= Timer1  
011= Timer5  
010= Timer4  
001= Timer2  
000= Timer3  
bit 9-7  
bit 6-5  
Unimplemented: Read as ‘0’  
ICI<1:0>: Select Number of Captures Per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture x Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture x Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits(1)  
111= Interrupt mode: input capture functions as an interrupt pin only when the device is in Sleep or  
Idle mode (rising edge detect only, all other control bits are not applicable)  
110= Unused (module disabled)  
101= Prescaler Capture mode: capture on every 16th rising edge  
100= Prescaler Capture mode: capture on every 4th rising edge  
011= Simple Capture mode: capture on every rising edge  
010= Simple Capture mode: capture on every falling edge  
001= Edge Detect Capture mode: capture on every edge (rising and falling), ICI<1:0> bits do not  
control interrupt generation for this mode  
000= Input capture module turned off  
Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see  
Section 10.4 “Peripheral Pin Select (PPS)”.  
2010 Microchip Technology Inc.  
DS39969B-page 199  
PIC24FJ256DA210 FAMILY  
REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IC32  
bit 15  
bit 8  
R/W-0  
R/W-0 HS  
TRIGSTAT  
U-0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-1  
ICTRIG  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0  
bit 0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
IC32: Cascade Two IC Modules Enable bit (32-bit operation)  
1= ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules)  
0= ICx functions independently as a 16-bit module  
bit 7  
bit 6  
ICTRIG: ICx Sync/Trigger Select bit  
1= Trigger ICx from the source designated by the SYNCSELx bits  
0= Synchronize ICx with the source designated by the SYNCSELx bits  
TRIGSTAT: Timer Trigger Status bit  
1= Timer source has been triggered and is running (set in hardware, can be set in software)  
0= Timer source has not been triggered and is being held clear  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits  
11111= Reserved  
11110= Input Capture 9(2)  
11101= Input Capture 6(2)  
11100= CTMU(1)  
11011= A/D(1)  
11010= Comparator 3(1)  
11001= Comparator 2(1)  
11000= Comparator 1(1)  
10111= Input Capture 4(2)  
10110= Input Capture 3(2)  
10101= Input Capture 2(2)  
10100= Input Capture 1(2)  
10011= Input Capture 8(2)  
10010= Input Capture 7(2)  
1000x= Reserved  
01111= Timer5  
01110= Timer4  
01101= Timer3  
01100= Timer2  
01011= Timer1  
01010= Input Capture 5(2)  
01001= Output Compare 9  
.
.
.
00010= Output Compare 2  
00001= Output Compare 1  
00000= Not synchronized to any other module  
Note 1: Use these inputs as trigger sources only and never as sync sources.  
2: Never use an IC module as its own trigger source, by selecting this mode.  
DS39969B-page 200  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
In Synchronous mode, the module begins performing  
its compare or PWM operation as soon as its selected  
clock source is enabled. Whenever an event occurs on  
the selected sync source, the module’s internal counter  
is reset. In Trigger mode, the module waits for a sync  
event from another internal module to occur before  
allowing the counter to run.  
14.0 OUTPUT COMPARE WITH  
DEDICATED TIMERS  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 35. “Output Compare with  
Dedicated Timer” (DS39723). The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
Free-running mode is selected by default or any time  
that the SYNCSEL bits (OCxCON2<4:0>) are set to  
00000’. Synchronous or Trigger modes are selected  
any time the SYNCSEL bits are set to any value except  
00000’. The OCTRIG bit (OCxCON2<7>) selects  
either Synchronous or Trigger mode; setting the bit  
selects Trigger mode operation. In both modes, the  
SYNCSEL bits determine the sync/trigger source.  
Devices in the PIC24FJ256DA210 family feature all of  
the 9 independent output compare modules. Each of  
these modules offers a wide range of configuration and  
operating options for generating pulse trains on internal  
device events, and can produce pulse-width modulated  
waveforms for driving power applications.  
14.1.2  
CASCADED (32-BIT) MODE  
By default, each module operates independently with  
its own set of 16-bit timer and duty cycle registers. To  
increase resolution, adjacent even and odd modules  
can be configured to function as a single 32-bit module.  
(For example, Modules 1 and 2 are paired, as are  
Modules 3 and 4, and so on.) The odd numbered  
module (OCx) provides the Least Significant 16 bits of  
the 32-bit register pairs and the even module (OCy)  
provides the Most Significant 16 bits. Wrap-arounds of  
the OCx registers cause an increment of their  
corresponding OCy registers.  
Key features of the output compare module include:  
• Hardware configurable for 32-bit operation in all  
modes by cascading two adjacent modules  
• Synchronous and Trigger modes of output  
compare operation, with up to 31 user-selectable  
trigger/sync sources available  
• Two separate period registers (a main register,  
OCxR, and a secondary register, OCxRS) for  
greater flexibility in generating pulses of varying  
widths  
Cascaded operation is configured in hardware by set-  
ting the OC32 bit (OCxCON2<8>) for both modules.  
For more details on cascading, refer to the “PIC24F  
Family Reference Manual”, Section 35. “Output  
Compare with Dedicated Timer”.  
• Configurable for single pulse or continuous pulse  
generation on an output event, or continuous  
PWM waveform generation  
• Up to 6 clock sources available for each module,  
driving a separate internal 16-bit counter  
14.1 General Operating Modes  
14.1.1  
SYNCHRONOUS AND TRIGGER  
MODES  
When the output compare module operates in a  
free-running mode, the internal 16-bit counter,  
OCxTMR, runs counts up continuously, wrapping  
around from 0xFFFF to 0x0000 on each overflow, with  
its period synchronized to the selected external clock  
source. Compare or PWM events are generated each  
time a match between the internal counter and one of  
the period registers occurs.  
2010 Microchip Technology Inc.  
DS39969B-page 201  
PIC24FJ256DA210 FAMILY  
FIGURE 14-1:  
OUTPUT COMPARE BLOCK DIAGRAM (16-BIT MODE)  
OCMx  
OCINV  
OCxCON1  
OCxCON2  
OCTRIS  
FLTOUT  
FLTTRIEN  
FLTMD  
ENFLT<2:0>  
OCFLT<2:0>  
DCB<1:0>  
OCTSELx  
SYNCSELx  
TRIGSTAT  
TRIGMODE  
OCTRIG  
OCxR and  
DCB<1:0>  
OCx Pin(1)  
Match Event  
Match Event  
Comparator  
Increment  
Clock  
Select  
OC Clock  
Sources  
OC Output and  
OCxTMR  
Comparator  
OCxRS  
Fault Logic  
Reset  
OCFA/OCFB(2)  
Match Event  
Trigger and  
Sync Sources  
Trigger and  
Sync Logic  
Reset  
OCx Interrupt  
Note 1: The OCx outputs must be assigned to an available RPn pin before use. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
2: The OCFA/OCFB fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 10.4  
“Peripheral Pin Select (PPS)” for more information.  
3. Write the rising edge value to OCxR and the  
14.2 Compare Operations  
falling edge value to OCxRS.  
In Compare mode (Figure 14-1), the output compare  
4. Set the Timer Period register, PRy, to a value  
module can be configured for single-shot or continuous  
equal to or greater than the value in OCxRS.  
pulse generation. It can also repeatedly toggle an  
5. Set the OCM<2:0> bits for the appropriate  
output pin on each timer event.  
compare operation (= 0xx).  
To set up the module for compare operations:  
6. For Trigger mode operations, set OCTRIG to  
1. Configure the OCx output for one of the  
available Peripheral Pin Select pins.  
enable Trigger mode. Set or clear TRIGMODE to  
configure trigger operation and TRIGSTAT to  
select a hardware or software trigger. For  
Synchronous mode, clear OCTRIG.  
2. Calculate the required values for the OCxR and  
(for Double Compare modes) OCxRS Duty Cycle  
registers:  
7. Set the SYNCSEL<4:0> bits to configure the  
trigger or synchronization source. If free-running  
timer operation is required, set the SYNCSEL  
bits to ‘00000’ (no sync/trigger source).  
a) Determine the instruction clock cycle time.  
Take into account the frequency of the  
external clock to the timer source (if one is  
used) and the timer prescaler settings.  
8. Select the time base source with the  
OCTSEL<2:0> bits. If necessary, set the TON  
bits for the selected timer, which enables the  
compare time base to count. Synchronous  
mode operation starts as soon as the time base  
is enabled; Trigger mode operation starts after a  
trigger source event occurs.  
b) Calculate time to the rising edge of the  
output pulse relative to the timer start value  
(0000h).  
c) Calculate the time to the falling edge of the  
pulse based on the desired pulse width and  
the time to the rising edge of the pulse.  
DS39969B-page 202  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
For 32-bit cascaded operation, these steps are also  
necessary:  
14.3 Pulse-Width Modulation (PWM)  
Mode  
1. Set the OC32 bits for both registers  
(OCyCON2<8>) and (OCxCON2<8>). Enable  
the even numbered module first to ensure the  
modules will start functioning in unison.  
In PWM mode, the output compare module can be  
configured for edge-aligned or center-aligned pulse  
waveform generation. All PWM operations are  
double-buffered (buffer registers are internal to the  
module and are not mapped into SFR space).  
2. Clear the OCTRIG bit of the even module  
(OCyCON2), so the module will run in  
Synchronous mode.  
To configure the output compare module for PWM  
operation:  
3. Configure the desired output and Fault settings  
for OCy.  
1. Configure the OCx output for one of the  
available Peripheral Pin Select pins.  
4. Force the output pin for OCx to the output state  
by clearing the OCTRIS bit.  
2. Calculate the desired duty cycles and load them  
into the OCxR register.  
5. If Trigger mode operation is required, configure  
the trigger options in OCx by using the OCTRIG  
(OCxCON2<7>), TRIGMODE (OCxCON1<3>)  
and SYNCSEL (OCxCON2<4:0>) bits.  
3. Calculate the desired period and load it into the  
OCxRS register.  
4. Select the current OCx as the synchronization  
source by writing 0x1F to the SYNCSEL<4:0>  
bits (OCxCON2<4:0>) and ‘0’ to the OCTRIG bit  
(OCxCON2<7>).  
6. Configure the desired Compare or PWM mode  
of operation (OCM<2:0>) for OCy first, then for  
OCx.  
Depending on the output mode selected, the module  
holds the OCx pin in its default state and forces a tran-  
sition to the opposite state when OCxR matches the  
timer. In Double Compare modes, OCx is forced back  
to its default state when a match with OCxRS occurs.  
The OCxIF interrupt flag is set after an OCxR match in  
Single Compare modes and after each OCxRS match  
in Double Compare modes.  
5. Select  
a clock source by writing to the  
OCTSEL<2:0> bits (OCxCON<12:10>).  
6. Enable interrupts, if required, for the timer and  
output compare modules. The output compare  
interrupt is required for PWM Fault pin utilization.  
7. Select the desired PWM mode in the OCM<2:0>  
bits (OCxCON1<2:0>).  
8. Appropriate Fault inputs may be enabled by using  
the ENFLT<2:0> bits as described in  
Register 14-1.  
Single-shot pulse events only occur once, but may be  
repeated by simply rewriting the value of the  
OCxCON1 register. Continuous pulse events continue  
indefinitely until terminated.  
9. If a timer is selected as a clock source, set the  
selected timer prescale value. The selected  
timer’s prescaler output is used as the clock input  
for the OCx timer, and not the selected timer  
output.  
Note:  
This peripheral contains input and output  
functions that may need to be configured  
by the Peripheral Pin Select. See  
Section 10.4 “Peripheral Pin Select  
(PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 203  
PIC24FJ256DA210 FAMILY  
FIGURE 14-2:  
OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)  
OCxCON1  
OCxCON2  
OCMx  
OCINV  
OCTSELx  
SYNCSELx  
TRIGSTAT  
TRIGMODE  
OCTRIG  
OCTRIS  
OCxR and  
DCB<1:0>  
FLTOUT  
FLTTRIEN  
FLTMD  
ENFLT<2:0>  
OCFLT<2:0>  
DCB<1:0>  
Rollover/Reset  
OCxR and  
DCB<1:0> Buffers  
OCx Pin(1)  
Comparator  
Match  
Event  
Increment  
Clock  
Select  
OC Clock  
Sources  
OC Output and  
Fault Logic  
OCxTMR  
Comparator  
OCxRS Buffer  
Rollover  
Reset  
OCFA/OCFB(2)  
Match  
Event  
Match Event  
Trigger and  
Sync Logic  
Trigger and  
Sync Sources  
Rollover/Reset  
OCxRS  
OCx Interrupt  
Reset  
Note 1: The OCx outputs must be assigned to an available RPn pin before use. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
2: The OCFA/OCFB fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 10.4  
“Peripheral Pin Select (PPS)” for more information.  
14.3.1  
PWM PERIOD  
The PWM period is specified by writing to PRy, the  
Timer Period register. The PWM period can be  
calculated using Equation 14-1.  
EQUATION 14-1: CALCULATING THE PWM PERIOD(1)  
PWM Period = [(PRy) + 1 • TCY • (Timer Prescale Value)  
where:  
PWM Frequency = 1/[PWM Period]  
Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.  
Note:  
A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7  
written into the PRy register will yield a period consisting of 8 time base cycles.  
DS39969B-page 204  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
• If OCxR, OCxRS, and PRy are all loaded with  
0000h, the OCx pin will remain low (0% duty  
cycle).  
14.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
OCxRS and OCxR registers. The OCxRS and OCxR  
registers can be written to at any time, but the duty  
cycle value is not latched until a match between PRy  
and TMRy occurs (i.e., the period is complete). This  
provides a double buffer for the PWM duty cycle and is  
essential for glitchless PWM operation.  
• If OCxRS is greater than PRy, the pin will remain  
high (100% duty cycle).  
See Example 14-1 for PWM mode timing details.  
Table 14-1 and Table 14-2 show example PWM  
frequencies and resolutions for a device operating at  
4 MIPS and 10 MIPS, respectively.  
Some important boundary parameters of the PWM duty  
cycle include:  
EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION(1)  
FCY  
log10  
FPWM • (Timer Prescale Value)  
(
)
Maximum PWM Resolution (bits) =  
bits  
(2)  
log10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
EXAMPLE 14-1:  
PWM PERIOD AND DUTY CYCLE CALCULATIONS(1)  
1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL  
(32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.  
TCY = 2 * TOSC = 62.5 ns  
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms  
PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value)  
19.2 ms = PR2 + 1) • 62.5 ns • 1  
PR2 = 306  
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device  
clock rate:  
PWM Resolution = log10(FCY/FPWM)/log102) bits  
= (log10(16 MHz/52.08 kHz)/log102) bits  
= 8.3 bits  
Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.  
TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)(1)  
PWM Frequency  
7.6 Hz  
61 Hz  
122 Hz  
977 Hz  
3.9 kHz  
31.3 kHz  
125 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)(1)  
PWM Frequency  
30.5 Hz  
244 Hz  
488 Hz  
3.9 kHz  
15.6 kHz  
125 kHz  
500 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2010 Microchip Technology Inc.  
DS39969B-page 205  
PIC24FJ256DA210 FAMILY  
REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ENFLT2(2)  
R/W-0  
ENFLT1(2)  
OCSIDL  
OCTSEL2  
OCTSEL1  
OCTSEL0  
bit 15  
bit 8  
R/W-0  
ENFLT0(2)  
R/W-0, HSC R/W-0, HSC R/W-0, HSC  
OCFLT2(2) OCFLT1(2)  
R/W-0  
R/W-0  
OCM2(1)  
R/W-0  
OCM1(1)  
R/W-0  
OCM0(1)  
OCFLT0(2) TRIGMODE  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare x in Idle Mode Control bit  
1= Output Compare x halts in CPU Idle mode  
0= Output Compare x continues to operate in CPU Idle mode  
bit 12-10  
OCTSEL<2:0>: Output Compare x Timer Select bits  
111= Peripheral clock (FCY)  
110= Reserved  
101= Reserved  
100= Timer1 clock (only synchronous clock is supported)  
011= Timer5 clock  
010= Timer4 clock  
001= Timer3 clock  
000= Timer2 clock  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
ENFLT2: Fault Input 2 Enable bit(2)  
1= Fault 2 (Comparator 1/2/3 out) is enabled(3)  
0= Fault 2 is disabled  
ENFLT1: Fault Input 1 Enable bit(2)  
1= Fault 1 (OCFB pin) is enabled(4)  
0= Fault 1 is disabled  
ENFLT0: Fault Input 0 Enable bit(2)  
1= Fault 0 (OCFA pin) is enabled(4)  
0= Fault 0 is disabled  
OCFLT2: PWM Fault 2 (Comparator 1/2/3) Condition Status bit(2,3)  
1= PWM Fault 2 has occurred  
0= No PWM Fault 2 has occurred  
OCFLT1: PWM Fault 1 (OCFB pin) Condition Status bit(2,4)  
1= PWM Fault 1 has occurred  
0= No PWM Fault 1 has occurred  
OCFLT0: PWM Fault 0 (OCFA pin) Condition Status bit(2,4)  
1= PWM Fault 0 has occurred  
0= No PWM Fault 0 has occurred  
Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4  
“Peripheral Pin Select (PPS)”.  
2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111or 110.  
3: The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6  
channels; Comparator 3 output controls the OC7-OC9 channels.  
4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information,  
see Section 10.4 “Peripheral Pin Select (PPS)”.  
DS39969B-page 206  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)  
bit 3  
TRIGMODE: Trigger Status Mode Select bit  
1= TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software  
0= TRIGSTAT is only cleared by software  
bit 2-0  
OCM<2:0>: Output Compare x Mode Select bits(1)  
111= Center-Aligned PWM mode on OCx(2)  
110= Edge-Aligned PWM Mode on OCx(2)  
101= Double Compare Continuous Pulse mode: Initialize the OCx pin low, the toggle OCx state  
continuously on alternate matches of OCxR and OCxRS  
100= Double Compare Single-Shot mode: Initialize the OCx pin low, toggle the OCx state on matches  
of OCxR and OCxRS for one cycle  
011= Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin  
010= Single Compare Single-Shot mode: Initialize OCx pin high, compare event forces the OCx pin low  
001= Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high  
000= Output compare channel is disabled  
Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4  
“Peripheral Pin Select (PPS)”.  
2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111or 110.  
3: The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6  
channels; Comparator 3 output controls the OC7-OC9 channels.  
4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information,  
see Section 10.4 “Peripheral Pin Select (PPS)”.  
2010 Microchip Technology Inc.  
DS39969B-page 207  
PIC24FJ256DA210 FAMILY  
REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
DCB1(3)  
R/W-0  
DCB0(3)  
R/W-0  
OC32  
FLTMD  
FLTOUT  
FLTTRIEN  
OCINV  
bit 15  
bit 8  
R/W-0  
R/W-0 HS  
TRIGSTAT  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
OCTRIG  
OCTRIS  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0  
bit 0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
FLTMD: Fault Mode Select bit  
1= Fault mode is maintained until the Fault source is removed and the corresponding OCFLT0 bit is  
cleared in software  
0= Fault mode is maintained until the Fault source is removed and a new PWM period starts  
bit 14  
bit 13  
bit 12  
FLTOUT: Fault Out bit  
1= PWM output is driven high on a Fault  
0= PWM output is driven low on a Fault  
FLTTRIEN: Fault Output State Select bit  
1= Pin is forced to an output on a Fault condition  
0= Pin I/O condition is unaffected by a Fault  
OCINV: OCMP Invert bit  
1= OCx output is inverted  
0= OCx output is not inverted  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-9  
DCB<11:0>: PWM Duty Cycle Least Significant bits(3)  
11= Delay OCx falling edge by ¾ of the instruction cycle  
10= Delay OCx falling edge by ½ of the instruction cycle  
01= Delay OCx falling edge by ¼ of the instruction cycle  
00= OCx falling edge occurs at the start of the instruction cycle  
bit 8  
bit 7  
bit 6  
bit 5  
OC32: Cascade Two OC Modules Enable bit (32-bit operation)  
1= Cascade module operation enabled  
0= Cascade module operation disabled  
OCTRIG: OCx Trigger/Sync Select bit  
1= Trigger OCx from the source designated by the SYNCSELx bits  
0= Synchronize OCx with the source designated by the SYNCSELx bits  
TRIGSTAT: Timer Trigger Status bit  
1= Timer source has been triggered and is running  
0= Timer source has not been triggered and is being held clear  
OCTRIS: OCx Output Pin Direction Select bit  
1= OCx pin is tri-stated  
0= Output compare peripheral x is connected to an OCx pin  
Note 1: Never use an OC module as its own trigger source, either by selecting this mode or another equivalent  
SYNCSEL setting.  
2: Use these inputs as trigger sources only and never as sync sources.  
3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).  
DS39969B-page 208  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)  
bit 4-0  
SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits  
11111= This OC module(1)  
11110= Input Capture 9(2)  
11101= Input Capture 6(2)  
11100= CTMU(2)  
11011= A/D(2)  
11010= Comparator 3(2)  
11001= Comparator 2(2)  
11000= Comparator 1(2)  
10111= Input Capture 4(2)  
10110= Input Capture 3(2)  
10101= Input Capture 2(2)  
10100= Input Capture 1(2)  
10011= Input Capture 8(2)  
10010= Input Capture 7(2)  
1000x= Reserved  
01111= Timer5  
01110= Timer4  
01101= Timer3  
01100= Timer2  
01011= Timer1  
01010= Input Capture 5(2)  
01001= Output Compare 9(1)  
01000= Output Compare 8(1)  
00111= Output Compare 7(1)  
00110= Output Compare 6(1)  
00101= Output Compare 5(1)  
00100= Output Compare 4(1)  
00011= Output Compare 3(1)  
00010= Output Compare 2(1)  
00001= Output Compare 1(1)  
00000= Not synchronized to any other module  
Note 1: Never use an OC module as its own trigger source, either by selecting this mode or another equivalent  
SYNCSEL setting.  
2: Use these inputs as trigger sources only and never as sync sources.  
3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).  
2010 Microchip Technology Inc.  
DS39969B-page 209  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 210  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The module also supports a basic framed SPI protocol  
while operating in either Master or Slave mode. A total  
of four framed SPI configurations are supported.  
15.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
The SPI serial interface consists of four pins:  
• SDIx: Serial Data Input  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 23. “Serial Peripheral Interface  
(SPI)” (DS39699). The information in this  
data sheet supersedes the information in  
the FRM.  
• SDOx: Serial Data Output  
• SCKx: Shift Clock Input or Output  
• SSx: Active-Low Slave Select or Frame  
Synchronization I/O Pulse  
The SPI module can be configured to operate using 2,  
3 or 4 pins. In the 3-pin mode, SSx is not used. In the  
2-pin mode, both SDOx and SSx are not used.  
The Serial Peripheral Interface (SPI) module is a  
synchronous serial interface useful for communicating  
with other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift  
registers, display drivers, A/D Converters, etc. The SPI  
module is compatible with the SPI and SIOP Motorola®  
interfaces. All devices of the PIC24FJ256DA210 family  
include three SPI modules.  
Block diagrams of the module in Standard and  
Enhanced modes are shown in Figure 15-1 and  
Figure 15-2.  
Note:  
In this section, the SPI modules are  
referred to together as SPIx or separately  
as SPI1, SPI2 or SPI3. Special Function  
Registers will follow a similar notation. For  
example, SPIxCON1 and SPIxCON2 refer  
to the control registers for any of the 3 SPI  
modules.  
The module supports operation in two buffer modes. In  
Standard mode, data is shifted through a single serial  
buffer. In Enhanced Buffer mode, data is shifted  
through an 8-level FIFO buffer.  
Note:  
Do not perform read-modify-write opera-  
tions (such as bit-oriented instructions) on  
the SPIxBUF register in either Standard or  
Enhanced Buffer mode.  
2010 Microchip Technology Inc.  
DS39969B-page 211  
PIC24FJ256DA210 FAMILY  
To set up the SPI module for the Standard Master mode  
of operation:  
To set up the SPI module for the Standard Slave mode  
of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFS  
register.  
a) Clear the SPIxIF bit in the respective IFS  
register.  
b) Set the SPIxIE bit in the respective IEC  
register.  
b) Set the SPIxIE bit in the respective IEC  
register.  
c) Write the SPIxIP bits in the respective IPC  
register to set the interrupt priority.  
c) Write the SPIxIP bits in the respective IPC  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 1.  
3. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 0.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
4. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
4. Clear the SMP bit.  
5. If the CKE bit (SPIxCON1<8>) is set, then the  
SSEN bit (SPIxCON1<7>) must be set to enable  
the SSx pin.  
5. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
7. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
FIGURE 15-1:  
SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)  
SCKx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SSx/FSYNCx  
Sync  
Select  
Edge  
Control  
Clock  
Control  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
DS39969B-page 212  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
To set up the SPI module for the Enhanced Buffer  
Master mode of operation:  
To set up the SPI module for the Enhanced Buffer  
Slave mode of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFS  
register.  
a) Clear the SPIxIF bit in the respective IFS  
register.  
b) Set the SPIxIE bit in the respective IEC  
register.  
b) Set the SPIxIE bit in the respective IEC  
register.  
c) Write the SPIxIP bits in the respective IPC  
register.  
c) Write the SPIxIP bits in the respective IPC  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 1.  
3. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 0.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
4. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit must be  
set, thus enabling the SSx pin.  
5. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
6. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
7. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
8. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
FIGURE 15-2:  
SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)  
SCKx  
1:1/4/16/64  
Primary  
Prescaler  
1:1 to 1:8  
Secondary  
Prescaler  
FCY  
SSx/FSYNCx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
8-Level FIFO  
8-Level FIFO  
Receive Buffer  
Transmit Buffer  
SPIXBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
2010 Microchip Technology Inc.  
DS39969B-page 213  
PIC24FJ256DA210 FAMILY  
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN(1)  
U-0  
R/W-0  
U-0  
U-0  
R-0, HSC  
SPIBEC2  
R-0, HSC  
SPIBEC1  
R-0, HSC  
SPIBEC0  
SPISIDL  
bit 15  
bit 8  
R-0, HSC  
SRMPT  
R/C-0, HS  
SPIROV  
R-0, HSC  
SRXMPT  
R/W-0  
R/W-0  
R/W-0  
R-0, HSC  
SPITBF  
R-0, HSC  
SPIRBF  
SISEL2  
SISEL1  
SISEL0  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
HSC = Hardware Settable/Clearable bit  
bit 15  
SPIEN: SPIx Enable bit(1)  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)  
Master mode:  
Number of SPI transfers pending.  
Slave mode:  
Number of SPI transfers unread.  
bit 7  
bit 6  
SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)  
1= SPIx Shift register is empty and ready to send or receive  
0= SPIx Shift register is not empty  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded  
(The user software has not read the previous data in the SPIxBUF register.)  
0= No overflow has occurred  
bit 5  
SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode)  
1= Receive FIFO is empty  
0= Receive FIFO is not empty  
bit 4-2  
SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)  
111= Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)  
110= Interrupt when the last bit is shifted into SPIxSR; as a result, the TX FIFO is empty  
101= Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete  
100= Interrupt when one data is shifted into the SPIxSR; as a result, the TX FIFO has one open spot  
011= Interrupt when the SPIx receive buffer is full (SPIRBF bit set)  
010= Interrupt when the SPIx receive buffer is 3/4 or more full  
001= Interrupt when data is available in the receive buffer (SRMPT bit is set)  
000= Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT  
bit set)  
Note 1: If SPIEN = 1, these functions must be assigned to available RPn/RPIn pins before use. See Section 10.4  
“Peripheral Pin Select (PPS)” for more information.  
DS39969B-page 214  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 1  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when the CPU writes to the SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.  
In Enhanced Buffer mode:  
Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available  
buffer location.  
Automatically cleared in hardware when a buffer location is available for a CPU write.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.  
In Enhanced Buffer mode:  
Automatically set in hardware when SPIx transfers data from the SPIxSR to the buffer, filling the last  
unread buffer location.  
Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.  
Note 1: If SPIEN = 1, these functions must be assigned to available RPn/RPIn pins before use. See Section 10.4  
“Peripheral Pin Select (PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 215  
PIC24FJ256DA210 FAMILY  
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
DISSCK(1)  
R/W-0  
DISSDO(2)  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(3)  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(4)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
PPRE1  
PPRE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx Pin bit (SPI Master modes only)(1)  
1= Internal SPI clock is disabled; pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx Pin bit(2)  
1= SDOx pin is not used by the module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at the end of data output time  
0= Input data sampled at the middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(3)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable (Slave mode) bit(4)  
1= SSx pin is used for Slave mode  
0= SSx pin is not used by the module; pin is controlled by the port function  
CKP: Clock Polarity Select bit  
1= Idle state for the clock is a high level; active state is a low level  
0= Idle state for the clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
4: If SSEN = 1, SSx must be configured to an available RPn/PRIn pin. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
DS39969B-page 216  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
.
.
.
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
4: If SSEN = 1, SSx must be configured to an available RPn/PRIn pin. See Section 10.4 “Peripheral Pin  
Select (PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 217  
PIC24FJ256DA210 FAMILY  
REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
SPIFPOL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SPIFE  
R/W-0  
SPIBEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support is enabled  
0= Framed SPIx support is disabled  
SPIFSD: Frame Sync Pulse Direction Control on SSx Pin bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only)  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SPIFE: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with the first bit clock  
0= Frame sync pulse precedes the first bit clock  
bit 0  
SPIBEN: Enhanced Buffer Enable bit  
1= Enhanced buffer is enabled  
0= Enhanced buffer is disabled (Legacy mode)  
DS39969B-page 218  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 15-3:  
SPI MASTER/SLAVE CONNECTION (STANDARD MODE)  
Processor 1 (SPI Master)  
Processor 2 (SPI Slave)  
SDOx  
SDIx  
Serial Receive Buffer  
(SPIxRXB)  
Serial Receive Buffer  
(2)  
(SPIxRXB)  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
(2)  
LSb  
MSb  
MSb  
LSb  
Serial Transmit Buffer  
(SPIxTXB)  
Serial Transmit Buffer  
(2)  
(SPIxTXB)  
Serial Clock  
SCKx  
SCKx  
SPIx Buffer  
(SPIxBUF)  
SPIx Buffer  
(SPIxBUF)  
(2)  
(2)  
(1)  
SSx  
SSEN (SPIxCON1<7>) = 1and MSTEN (SPIxCON1<5>) = 0  
MSTEN (SPIxCON1<5>) = 1)  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are  
memory mapped to SPIxBUF.  
FIGURE 15-4:  
SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)  
Processor 1 (SPI Enhanced Buffer Master)  
Processor 2 (SPI Enhanced Buffer Slave)  
SDIx  
SDOx  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
8-Level FIFO Buffer  
8-Level FIFO Buffer  
Serial Clock  
SPIx Buffer  
SPIx Buffer  
(SPIxBUF)  
(2)  
SCKx  
SSx  
SCKx  
(2)  
(SPIxBUF)  
(1)  
SSx  
MSTEN (SPIxCON1<5>) = 1and  
SPIBEN (SPIxCON2<0>) = 1  
SSEN (SPIxCON1<7>) = 1,  
MSTEN (SPIxCON1<5>) = 0and  
SPIBEN (SPIxCON2<0>) = 1  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are  
memory mapped to SPIxBUF.  
2010 Microchip Technology Inc.  
DS39969B-page 219  
PIC24FJ256DA210 FAMILY  
FIGURE 15-5:  
FIGURE 15-6:  
FIGURE 15-7:  
FIGURE 15-8:  
SPI MASTER, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
Processor 2  
(SPI Master, Frame Master)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
Processor 2  
SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
(SPI Slave, Frame Master)  
Processor 2  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync.  
Pulse  
SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
(SPI Slave, Frame Slave)  
Processor 2  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
DS39969B-page 220  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED(1)  
FCY  
FSCK =  
Primary Prescaler x Secondary Prescaler  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
TABLE 15-1: SAMPLE SCKx FREQUENCIES(1,2)  
Secondary Prescaler Settings  
FCY = 16 MHz  
1:1  
2:1  
4:1  
6:1  
8:1  
1:1  
4:1  
Invalid  
4000  
1000  
250  
8000  
2000  
500  
4000  
1000  
250  
63  
2667  
667  
167  
42  
2000  
500  
125  
31  
Primary Prescaler Settings  
FCY = 5 MHz  
16:1  
64:1  
125  
1:1  
4:1  
5000  
1250  
313  
78  
2500  
625  
156  
39  
1250  
313  
78  
833  
208  
52  
625  
156  
39  
Primary Prescaler Settings  
16:1  
64:1  
20  
13  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2: SCKx frequencies shown in kHz.  
2010 Microchip Technology Inc.  
DS39969B-page 221  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 222  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
16.1 Communicating as a Master in a  
Single Master Environment  
16.0 INTER-INTEGRATED  
2
CIRCUIT™ (I C™)  
The details of sending a message in Master mode  
depends on the communications protocol for the device  
being communicated with. Typically, the sequence of  
events is as follows:  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 24. “Inter-Integrated Circuit™  
(I2C™)” (DS39702). The information in  
this data sheet supersedes the information  
in the FRM.  
1. Assert a Start condition on SDAx and SCLx.  
2. Send the I2C device address byte to the slave  
with a write indication.  
3. Wait for and verify an Acknowledge from the  
slave.  
The Inter-Integrated Circuit™ (I2C™) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, display drivers, A/D  
Converters, etc.  
4. Send the first data byte (sometimes known as  
the command) to the slave.  
5. Wait for and verify an Acknowledge from the  
slave.  
6. Send the serial memory address low byte to the  
slave.  
The I2C module supports these features:  
7. Repeat steps 4 and 5 until all data bytes are  
sent.  
• Independent master and slave logic  
• 7-bit and 10-bit device addresses  
• General call address, as defined in the I2C protocol  
8. Assert a Repeated Start condition on SDAx and  
SCLx.  
• Clock stretching to provide delays for the  
processor to respond to a slave data request  
9. Send the device address byte to the slave with  
a read indication.  
• Both 100 kHz and 400 kHz bus specifications  
• Configurable address masking  
10. Wait for and verify an Acknowledge from the  
slave.  
• Multi-Master modes to prevent loss of messages  
in arbitration  
11. Enable master reception to receive serial  
memory data.  
• Bus Repeater mode, allowing the acceptance of  
all messages as a slave regardless of the address  
12. Generate an ACK or NACK condition at the end  
of a received byte of data.  
• Automatic SCL  
13. Generate a Stop condition on SDAx and SCLx.  
A block diagram of the module is shown in Figure 16-1.  
2010 Microchip Technology Inc.  
DS39969B-page 223  
PIC24FJ256DA210 FAMILY  
FIGURE 16-1:  
I2C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS39969B-page 224  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
16.2 Setting Baud Rate When  
Operating as a Bus Master  
16.3 Slave Address Masking  
The I2CxMSK register (Register 16-3) designates  
address bit positions as “don’t care” for both 7-Bit and  
10-Bit Addressing modes. Setting a particular bit loca-  
tion (= 1) in the I2CxMSK register causes the slave  
module to respond whether the corresponding address  
bit value is a ‘0’ or a ‘1’. For example, when I2CxMSK  
is set to ‘00100000’, the slave module will detect both  
addresses, ‘0000000’ and ‘0100000’.  
To compute the Baud Rate Generator reload value, use  
Equation 16-1.  
EQUATION 16-1: COMPUTING BAUD RATE  
RELOAD VALUE(1,2)  
FCY  
FSCL =  
FCY  
10,000,000  
I2CxBRG + 1 +  
To enable address masking, the Intelligent Peripheral  
Management Interface (IPMI) must be disabled by  
clearing the IPMIEN bit (I2CxCON<11>).  
or:  
FCY  
FSCL  
FCY  
10,000,000  
– 1  
I2CxBRG =  
(
)
Note:  
As a result of changes in the I2C™ proto-  
col, the addresses in Table 16-2 are  
reserved and will not be Acknowledged in  
Slave mode. This includes any address  
mask settings that include any of these  
addresses.  
Note 1: Based on FCY = FOSC/2; Doze mode and  
PLL are disabled.  
2: These clock rate values are for guidance  
only. The actual clock rate can be affected  
by various system level parameters. The  
actual clock rate should be measured in  
its intended application.  
TABLE 16-1: I2C™ CLOCK RATES(1,2)  
I2CxBRG Value  
Required System FSCL  
FCY  
Actual FSCL  
(Decimal)  
(Hexadecimal)  
9D  
100 kHz  
100 kHz  
100 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
1 MHz  
16 MHz  
8 MHz  
4 MHz  
16 MHz  
8 MHz  
4 MHz  
2 MHz  
16 MHz  
8 MHz  
4 MHz  
157  
78  
39  
37  
18  
9
100 kHz  
100 kHz  
99 kHz  
4E  
27  
25  
12  
9
404 kHz  
404 kHz  
385 kHz  
385 kHz  
1.026 MHz  
1.026 MHz  
0.909 MHz  
4
4
13  
6
D
1 MHz  
6
1 MHz  
3
3
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2: These clock rate values are for guidance only. The actual clock rate can be affected by various system  
level parameters. The actual clock rate should be measured in its intended application.  
TABLE 16-2: I2C™ RESERVED ADDRESSES(1)  
Slave Address R/W Bit  
Description  
0000 000  
0000 000  
0000 001  
0000 01x  
0000 1xx  
1111 0xx  
1111 1xx  
0
1
x
x
x
x
x
General Call Address(2)  
Start Byte  
CBus Address  
Reserved  
HS Mode Master Code  
10-Bit Slave Upper Byte(3)  
Reserved  
Note 1: The address bits listed here will never cause an address match, independent of address mask settings.  
2: The address will be Acknowledged only if GCEN = 1.  
3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.  
2010 Microchip Technology Inc.  
DS39969B-page 225  
PIC24FJ256DA210 FAMILY  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1, HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC  
ACKEN  
R/W-0, HC  
RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module. All I2C™ pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters an Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Releases SCLx clock  
0= Holds SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware is clear  
at the beginning of slave transmission. Hardware is clear at the end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Platform Management Interface (IPMI) Enable bit  
1= IPMI Support mode is enabled; all addresses are Acknowledged  
0= IPMI mode is disabled  
A10M: 10-Bit Slave Addressing bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with SMBus specifications  
0= Disables the SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for  
reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with the SCLREL bit.  
1= Enables software or receive clock stretching  
0= Disables software or receive clock stretching  
DS39969B-page 226  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (when operating as I2C master. Applicable during master receive.)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (when operating as I2C master. Applicable during master  
receive.)  
1= Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit.  
Hardware is clear at the end of the master Acknowledge sequence.  
0= Acknowledge sequence is not in progress  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware is clear at the end of the eighth bit of the master receive  
data byte.  
0= Receive sequence is not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiates Stop condition on the SDAx and SCLx pins. Hardware is clear at the end of the master  
Stop sequence.  
0= Stop condition is not in progress  
RSEN: Repeated Start Condition Enabled bit (when operating as I2C master)  
1= Initiates Repeated Start condition on the SDAx and SCLx pins. Hardware is clear at the end of the  
master Repeated Start sequence  
0= Repeated Start condition is not in progress  
SEN: Start Condition Enabled bit (when operating as I2C master)  
1= Initiates Start condition on SDAx and SCLx pins. Hardware is clear at end of the master Start  
sequence.  
0= Start condition is not in progress  
2010 Microchip Technology Inc.  
DS39969B-page 227  
PIC24FJ256DA210 FAMILY  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0, HSC  
ACKSTAT  
bit 15  
R-0, HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0, HS  
BCL  
R-0, HSC  
GCSTAT  
R-0, HSC  
ADD10  
bit 8  
R/C-0, HS R/C-0, HS R-0, HSC R/C-0, HSC R/C-0, HSC  
R-0, HSC  
R/W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
IWCOL  
bit 7  
I2COV  
D/A  
P
S
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
HSC = Hardware Settable/Clearable bit  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
1= NACK was detected last  
0= ACK was detected last  
Hardware is set or clear at the end of Acknowledge.  
TRSTAT: Transmit Status bit  
(When operating as I2C™ master. Applicable to master transmit operation.)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware is set at the beginning of master transmission; hardware is clear at the end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware is set at the detection of a bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware is set when the address matches the general call address; hardware is clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware is set at the match of the 2nd byte of the matched 10-bit address; hardware is clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write to the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware is set at an occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D/A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was a device address  
Hardware is clear at the device address match. Hardware is set after a transmission finishes or by  
reception of a slave byte.  
DS39969B-page 228  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 4  
bit 3  
bit 2  
bit 1  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
R/W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware is set or clear after the reception of an I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive is complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware is set when I2CxRCV is written with the received byte; hardware is clear when the software  
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit is in progress, I2CxTRN is full  
0= Transmit is complete, I2CxTRN is empty  
Hardware is set when software writes to I2CxTRN; hardware is clear at the completion of data transmission.  
2010 Microchip Technology Inc.  
DS39969B-page 229  
PIC24FJ256DA210 FAMILY  
REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK<9:0>: Mask for Address Bit x Select bits  
1= Enable masking for bit x of the incoming message address; bit match is not required in this position  
0= Disable masking for bit x; bit match is required in this position  
DS39969B-page 230  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
• Fully Integrated Baud Rate Generator with 16-Bit  
Prescaler  
17.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Baud Rates Ranging from 15 bps to 1 Mbps at  
16 MIPS  
• 4-Deep, First-In-First-Out (FIFO) Transmit Data  
Buffer  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 21. “UART” (DS39708). The  
information in this data sheet supersedes  
the information in the FRM.  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA® Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA Support  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules available  
in the PIC24F device family. The UART is a full-duplex,  
asynchronous system that can communicate with  
peripheral devices, such as personal computers,  
LIN/J2602, RS-232 and RS-485 interfaces. The module  
also supports a hardware flow control option with the  
UxCTS and UxRTS pins, and also includes an IrDA®  
encoder and decoder.  
A simplified block diagram of the UART is shown in  
Figure 17-1. The UART module consists of these key  
important hardware elements:  
• Baud Rate Generator  
The primary features of the UART module are:  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Full-Duplex, 8 or 9-Bit data transmission through  
the UxTX and UxRX pins  
• Even, Odd or No Parity options (for 8-bit data)  
• One or two Stop bits  
• Hardware Flow Control option with the UxCTS  
and UxRTS pins  
FIGURE 17-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
®
IrDA  
UxRTS/BCLKx  
UxCTS  
Hardware Flow Control  
UARTx Receiver  
UxRX  
UxTX  
UARTx Transmitter  
Note:  
The UART inputs and outputs must all be assigned to available RPn/RPIn pins before use. See Section 10.4  
“Peripheral Pin Select (PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 231  
PIC24FJ256DA210 FAMILY  
The maximum baud rate (BRGH = 0) possible is  
FCY/16 (for UxBRG = 0) and the minimum baud rate  
17.1 UART Baud Rate Generator (BRG)  
The UART module includes a dedicated, 16-bit Baud  
Rate Generator. The UxBRG register controls the  
period of a free-running, 16-bit timer. Equation 17-1  
shows the formula for computation of the baud rate with  
BRGH = 0.  
possible is FCY/(16 * 65536).  
Equation 17-2 shows the formula for computation of  
the baud rate with BRGH = 1.  
EQUATION 17-2: UART BAUD RATE WITH  
BRGH = 1(1,2)  
EQUATION 17-1: UART BAUD RATE WITH  
BRGH = 0(1,2)  
FCY  
Baud Rate =  
FCY  
Baud Rate =  
4 • (UxBRG + 1)  
16 • (UxBRG + 1)  
FCY  
– 1  
UxBRG =  
FCY  
4 • Baud Rate  
– 1  
UxBRG =  
16 • Baud Rate  
Note 1: FCY denotes the instruction cycle clock  
frequency.  
Note 1: FCY denotes the instruction cycle clock  
frequency (FOSC/2).  
2: Based on FCY = FOSC/2; Doze mode  
2: Based on FCY = FOSC/2; Doze mode  
and PLL are disabled.  
and PLL are disabled.  
The maximum baud rate (BRGH = 1) possible is FCY/4  
(for UxBRG = 0) and the minimum baud rate possible  
is FCY/(4 * 65536).  
Example 17-1 shows the calculation of the baud rate  
error for the following conditions:  
• FCY = 4 MHz  
Writing a new value to the UxBRG register causes the  
BRG timer to be reset (cleared). This ensures the BRG  
does not wait for a timer overflow before generating the  
new baud rate.  
• Desired Baud Rate = 9600  
EXAMPLE 17-1:  
BAUD RATE ERROR CALCULATION (BRGH = 0)(1)  
Desired Baud Rate = FCY/(16 (BRGx + 1))  
Solving for BRGx Value:  
BRGx  
BRGx  
BRGx  
= ((FCY/Desired Baud Rate)/16) – 1  
= ((4000000/9600)/16) – 1  
= 25  
Calculated Baud Rate = 4000000/(16 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
= (9615 – 9600)/9600  
Note:  
Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
DS39969B-page 232  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
17.2 Transmitting in 8-Bit Data Mode  
17.5 Receiving in 8-Bit or 9-Bit Data  
Mode  
1. Set up the UART:  
a) Write appropriate values for data, parity and  
Stop bits.  
1. Set up the UART (as described in Section 17.2  
“Transmitting in 8-Bit Data Mode”).  
b) Write appropriate baud rate value to the  
UxBRG register.  
2. Enable the UART.  
3. A receive interrupt will be generated when one  
or more data characters have been received as  
per interrupt control bit, URXISELx.  
c) Set up transmit and receive interrupt enable  
and priority bits.  
2. Enable the UART.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
3. Set the UTXEN bit (causes a transmit interrupt  
two cycles after being set).  
5. Read UxRXREG.  
4. Write a data byte to the lower byte of UxTXREG  
word. The value will be immediately transferred  
to the Transmit Shift Register (TSR) and the  
serial bit stream will start shifting out with the  
next rising edge of the baud clock.  
The act of reading the UxRXREG character will move  
the next character to the top of the receive FIFO,  
including a new set of PERR and FERR values.  
5. Alternately, the data byte may be transferred  
while UTXEN = 0 and then the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
17.6 Operation of UxCTS and UxRTS  
Control Pins  
UARTx Clear to Send (UxCTS) and Request to Send  
(UxRTS) are the two hardware controlled pins that are  
associated with the UART module. These two pins  
allow the UART to operate in Simplex and Flow Control  
mode. They are implemented to control the transmis-  
sion and reception between the Data Terminal  
Equipment (DTE). The UEN<1:0> bits in the UxMODE  
register configure these pins.  
6. A transmit interrupt will be generated as per  
interrupt control bit, UTXISELx.  
17.3 Transmitting in 9-Bit Data Mode  
1. Set up the UART (as described in Section 17.2  
“Transmitting in 8-Bit Data Mode”).  
2. Enable the UART.  
17.7 Infrared Support  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write UxTXREG as a 16-bit value only.  
The UART module provides two types of infrared UART  
support: one is the IrDA clock output to support an  
external IrDA encoder and decoder device (legacy  
module support), and the other is the full implementa-  
tion of the IrDA encoder and decoder. Note that  
because the IrDA modes require a 16x baud clock, they  
will only work when the BRGH bit (UxMODE<3>) is ‘0’.  
5. A word write to UxTXREG triggers the transfer  
of the 9-bit data to the TSR. The serial bit stream  
will start shifting out with the first rising edge of  
the baud clock.  
6. A transmit interrupt will be generated as per the  
setting of control bit, UTXISELx.  
17.7.1  
IrDA CLOCK OUTPUT FOR  
EXTERNAL IrDA SUPPORT  
17.4 Break and Sync Transmit  
Sequence  
To support external IrDA encoder and decoder devices,  
the BCLKx pin (same as the UxRTS pin) can be  
configured to generate the 16x baud clock. With  
UEN<1:0> = 11, the BCLKx pin will output the 16x  
baud clock if the UART module is enabled. It can be  
used to support the IrDA codec chip.  
The following sequence will send a message frame  
header, made up of a Break, followed by an auto-baud  
Sync byte.  
1. Configure the UART for the desired mode.  
2. Set UTXEN and UTXBRK to set up the Break  
character.  
17.7.2  
BUILT-IN IrDA ENCODER AND  
DECODER  
3. Load the UxTXREG with a dummy character to  
initiate transmission (value is ignored).  
The UART has full implementation of the IrDA encoder  
and decoder as part of the UART module. The built-in  
IrDA encoder and decoder functionality is enabled  
using the IREN bit (UxMODE<12>). When enabled  
(IREN = 1), the receive pin (UxRX) acts as the input  
from the infrared receiver. The transmit pin (UxTX) acts  
as the output to the infrared transmitter.  
4. Write ‘55h’ to UxTXREG; this loads the Sync  
character into the transmit FIFO.  
5. After the Break has been sent, the UTXBRK bit  
is reset by hardware. The Sync character now  
transmits.  
2010 Microchip Technology Inc.  
DS39969B-page 233  
PIC24FJ256DA210 FAMILY  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
bit 15  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
UEN1  
R/W-0  
UEN0  
RTSMD  
bit 8  
R/W-0, HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
RXINV  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
PDSEL1  
PDSEL0  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA encoder and decoder are enabled  
0= IrDA encoder and decoder are disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin is in Simplex mode  
0= UxRTS pin is in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11= UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by port  
latches  
bit 7  
WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt is generated on the falling edge, bit is cleared  
in hardware on the following rising edge  
0= No wake-up is enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h);  
cleared in hardware upon completion  
0= Baud rate measurement is disabled or completed  
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS39969B-page 234  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 4  
RXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= High-Speed mode (4 BRG clock cycles per bit)  
0= Standard-Speed mode (16 BRG clock cycles per bit)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
2010 Microchip Technology Inc.  
DS39969B-page 235  
PIC24FJ256DA210 FAMILY  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
UTXISEL1  
bit 15  
R/W-0  
UTXINV(1)  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
UTXEN(2)  
R-0, HSC  
UTXBF  
R-1, HSC  
TRMT  
UTXISEL0  
bit 8  
R/W-0  
URXISEL1  
bit 7  
R/W-0  
R/W-0  
R-1, HSC  
RIDLE  
R-0, HSC  
PERR  
R-0, HSC  
FERR  
R/C-0, HS  
OERR  
R-0, HSC  
URXDA  
URXISEL0  
ADDEN  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
HS = Hardware Settable bit HC = Hardware Clearable bit  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at  
least one character open in the transmit buffer)  
bit 14  
UTXINV: IrDA® Encoder Transmit Polarity Inversion bit(1)  
IREN = 0:  
1= UxTX is Idle ‘0’  
0= UxTX is Idle ‘1’  
IREN = 1:  
1= UxTX is Idle ‘1’  
0= UxTX is Idle ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission is disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(2)  
1= Transmit is enabled, UxTX pin controlled by UARTx  
0= Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is  
controlled by port.  
bit 9  
bit 8  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
Note 1: Value of bit only affects the transmit properties of the module when the IrDA® encoder is enabled  
(IREN = 1).  
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
DS39969B-page 236  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the RSR to the receive buffer;  
receive buffer has one or more characters  
bit 5  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode is enabled  
If 9-bit mode is not selected, this does not take effect.  
0 = Address Detect mode is disabled  
bit 4  
bit 3  
bit 2  
bit 1  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed (clearing a previously set OERR bit (10transition); will reset  
the receiver buffer and the RSR to the empty state  
bit 0  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Value of bit only affects the transmit properties of the module when the IrDA® encoder is enabled  
(IREN = 1).  
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 237  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 238  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The USB OTG module can function as a USB peripheral  
18.0 UNIVERSAL SERIAL BUS WITH  
device or as a USB host, and may dynamically switch  
between Device and Host modes under software  
control. In either mode, the same data paths and Buffer  
Descriptors (BDs) are used for the transmission and  
reception of data.  
ON-THE-GO SUPPORT (USB  
OTG)  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
Section 27. “USB On-The-Go (OTG)”  
(DS39721). The information in this data  
sheet supersedes the information in the  
FRM.  
In discussing USB operation, this section will use a  
controller-centric nomenclature for describing the direc-  
tion of the data transfer between the microcontroller and  
the USB. RX (Receive) will be used to describe transfers  
that move data from the USB to the microcontroller and  
TX (Transmit) will be used to describe transfers that  
move data from the microcontroller to the USB.  
Table 18-1 shows the relationship between data  
direction in this nomenclature and the USB tokens  
exchanged.  
PIC24FJ256DA210 family devices contain a full-speed  
and low-speed compatible, On-The-Go (OTG) USB  
Serial Interface Engine (SIE). The OTG capability  
allows the device to act either as a USB peripheral  
device or as a USB embedded host with limited host  
capabilities. The OTG capability allows the device to  
dynamically switch from device to host operation using  
OTG’s Host Negotiation Protocol (HNP).  
TABLE 18-1: CONTROLLER-CENTRIC  
DATA DIRECTION FOR USB  
HOST OR TARGET  
Direction  
USB Mode  
For more details on OTG operation, refer to the  
On-The-Go Supplement to the USB 2.0 Specification”,  
published by the USB-IF. For more details on USB oper-  
ation, refer to the “Universal Serial Bus Specification”,  
v2.0.  
RX  
TX  
Device  
Host  
OUT or SETUP  
IN  
IN  
OUT or SETUP  
This chapter presents the most basic operations  
needed to implement USB OTG functionality in an  
application. A complete and detailed discussion of the  
USB protocol and its OTG supplement are beyond the  
scope of this data sheet. It is assumed that the user  
already has a basic understanding of USB architecture  
and the latest version of the protocol.  
The USB OTG module offers these features:  
• USB functionality in Device and Host modes, and  
OTG capabilities for application-controlled mode  
switching  
• Software-selectable module speeds of full speed  
(12 Mbps) or low speed (1.5 Mbps, available in  
Host mode only)  
Not all steps for proper USB operation (such as device  
enumeration) are presented here. It is recommended  
that application developers use an appropriate device  
driver to implement all of the necessary features.  
Microchip provides a number of application-specific  
resources, such as USB firmware and driver support.  
Refer to www.microchip.com/usb for the latest  
firmware and driver support.  
• Support for all four USB transfer types: control,  
interrupt, bulk and isochronous  
• 16 bidirectional endpoints for a total of 32 unique  
endpoints  
• DMA interface for data RAM access  
• Queues up to sixteen unique endpoint transfers  
without servicing  
• Integrated, on-chip USB transceiver with support  
for off-chip transceivers via a digital interface  
• Integrated VBUS generation with on-chip  
comparators and boost generation, and support of  
external VBUS comparators and regulators  
through a digital interface  
• Configurations for on-chip bus pull-up and  
pull-down resistors  
A simplified block diagram of the USB OTG module is  
shown in Figure 18-1.  
2010 Microchip Technology Inc.  
DS39969B-page 239  
PIC24FJ256DA210 FAMILY  
FIGURE 18-1:  
USB OTG MODULE BLOCK DIAGRAM  
Full-Speed Pull-up  
Host Pull-Down  
48 MHz USB Clock  
(1)  
D+  
Registers  
and  
Transceiver  
Control  
Interface  
Transceiver Power 3.3V  
VUSB  
(1)  
D-  
Host Pull-Down  
(1)  
USBID  
USB  
SIE  
(1)  
(1)  
VMIO  
VPIO  
DMH  
(1)  
(1)  
DPH  
External Transceiver Interface  
(1)  
(1)  
DMLN  
DPLN  
(1)  
(1)  
RCV  
System  
RAM  
USBOEN  
(1)  
VBUSON  
SRP Charge  
USB  
(1)  
VBUS  
Voltage  
Comparators  
SRP Discharge  
(1)  
VCMPST1/VBUSVLD  
(1)  
VCMPST2/SESSVLD  
(1)  
(1)  
SESSEND  
VBUS  
Boost  
Assist  
VBUSST  
(1)  
VCPCON  
Note 1:  
Pins are multiplexed with digital I/O and other device features.  
DS39969B-page 240  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
To meet compliance specifications, the USB module  
(and the D+ or D- pull-up resistor) should not be enabled  
until the host actively drives VBUS high. One of the 5.5V  
tolerant I/O pins may be used for this purpose.  
18.1 Hardware Configuration  
18.1.1  
DEVICE MODE  
18.1.1.1  
D+ Pull-up Resistor  
The application should never source any current onto  
PIC24FJ256DA210 family devices have a built-in  
1.5 kresistor on the D+ line that is available when the  
microcontroller is operating in Device mode. This is  
used to signal an external Host that the device is  
operating in Full-Speed Device mode. It is engaged by  
setting the USBEN bit (U1CON<0>). If the OTGEN bit  
(U1OTGCON<2>) is set, then the D+ pull-up is enabled  
through the DPPULUP bit (U1OTGCON<7>).  
the 5V VBUS pin of the USB cable.  
The Dual Power mode with Self-Power Dominance  
(Figure 18-5) allows the application to use internal  
power primarily, but switch to power from the USB  
when no internal power is available. Dual power  
devices must also meet all of the special requirements  
for inrush current and Suspend mode current previ-  
ously described, and must not enable the USB module  
until VBUS is driven high.  
Alternatively, an external resistor may be used on D+,  
as shown in Figure 18-2.  
FIGURE 18-3:  
BUS POWER ONLY  
FIGURE 18-2:  
EXTERNAL PULL-UP FOR  
FULL-SPEED DEVICE  
MODE  
100  
3.3V  
Low IQ Regulator  
Attach Sense  
VBUS  
VBUS  
~5V  
VDD  
Host  
Controller/HUB  
PIC®MCU  
VUSB  
VSS  
VUSB  
1.5 k  
D+  
D-  
FIGURE 18-4:  
SELF-POWER ONLY  
100  
Attach Sense  
VBUS  
~5V  
VBUS  
VDD  
VSELF  
~3.3V  
18.1.1.2  
Power Modes  
Many USB applications will likely have several different  
sets of power requirements and configuration. The  
most common power modes encountered are:  
VUSB  
VSS  
100 k  
• Bus Power Only mode  
• Self-Power Only mode  
• Dual Power with Self-Power Dominance  
Bus Power Only mode (Figure 18-3) is effectively the  
simplest method. All power for the application is drawn  
from the USB.  
FIGURE 18-5:  
DUAL POWER EXAMPLE  
100  
3.3V  
Attach Sense  
To meet the inrush current requirements of the USB 2.0  
Specification, the total effective capacitance appearing  
across VBUS and ground must be no more than 10 F.  
VBUS  
VDD  
VBUS  
~5V  
Low IQ  
In the USB Suspend mode, devices must consume no  
more than 2.5 mA from the 5V VBUS line of the USB  
cable. During the USB Suspend mode, the D+ or D-  
pull-up resistor must remain active, which will consume  
some of the allowed suspend current.  
Regulator  
VUSB  
VSS  
100 k  
VSELF  
~3.3V  
In Self-Power Only mode (Figure 18-4), the USB  
application provides its own power, with very little  
power being pulled from the USB. Note that an attach  
indication is added to indicate when the USB has been  
connected and the host is actively powering VBUS.  
2010 Microchip Technology Inc.  
DS39969B-page 241  
PIC24FJ256DA210 FAMILY  
the microcontroller is running below VBUS, and is not  
able to source sufficient current, a separate power  
supply must be provided.  
18.1.2  
HOST AND OTG MODES  
18.1.2.1  
D+ and D- Pull-Down Resistors  
PIC24FJ256DA210 family devices have a built-in  
15 kpull-down resistor on the D+ and D- lines. These  
are used in tandem to signal to the bus that the micro-  
controller is operating in Host mode. They are engaged  
by setting the HOSTEN bit (U1CON<3>). If the OTGEN  
bit (U1OTGCON<2>) is set, then these pull-downs are  
enabled by setting the DPPULDWN and DMPULDWN  
bits (U1OTGCON<5:4>).  
When the application is always operating in Host mode,  
a simple circuit can be used to supply VBUS and regu-  
late current on the bus (Figure 18-6). For OTG opera-  
tion, it is necessary to be able to turn VBUS on or off as  
needed, as the microcontroller switches between  
Device and Host modes. A typical example using an  
external charge pump is shown in Figure 18-7.  
18.1.2.2  
Power Configurations  
In Host mode, as well as Host mode in On-The-Go  
operation, the USB 2.0 Specification requires that the  
host application should supply power on VBUS. Since  
FIGURE 18-6:  
HOST INTERFACE EXAMPLE  
+3.3V  
+3.3V  
+5V  
®
PIC MCU  
Thermal Fuse  
Polymer PTC  
VDD  
VUSB  
0.1 µF,  
3.3V  
2 k  
150 µF  
A/D Pin  
2 k  
Micro A/B  
Connector  
VBUS  
D+  
VBUS  
D+  
D-  
D-  
ID  
ID  
VSS  
GND  
FIGURE 18-7:  
OTG INTERFACE EXAMPLE  
VDD  
®
PIC MCU  
MCP1253  
VIN  
GND  
C+  
SELECT  
10 µF  
1 µF  
C-  
I/O  
SHND  
VOUT  
PGOOD  
I/O  
Micro A/B  
Connector  
40 k  
4.7 µF  
VBUS  
D+  
VBUS  
D+  
D-  
D-  
ID  
ID  
VSS  
GND  
DS39969B-page 242  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
18.1.2.3  
VBUS Voltage Generation with  
External Devices  
18.1.3  
Some applications may require the USB interface to be  
isolated from the rest of the system.  
PIC24FJ256DA210 family devices include a complete  
interface to communicate with and control an external  
USB transceiver, including the control of data line  
pull-ups and pull-downs. The VBUS voltage generation  
control circuit can also be configured for different VBUS  
generation topologies.  
USING AN EXTERNAL INTERFACE  
When operating as a USB host, either as an A-device  
in an OTG configuration or as an embedded host, VBUS  
must be supplied to the attached device.  
PIC24FJ256DA210 family devices have an internal  
VBUS boost assist to help generate the required 5V  
VBUS from the available voltages on the board. This is  
comprised of a simple PWM output to control a Switch  
mode power supply, and built-in comparators to  
monitor output voltage and limit current.  
Refer to the “PIC24F Family Reference Manual”,  
Section 27. “USB On-The-Go (OTG)” for information  
on using the external interface.  
To enable voltage generation:  
1. Verify that the USB module is powered  
(U1PWRC<0> = 1) and that the VBUS discharge  
is disabled (U1OTGCON<0> = 0).  
18.1.4  
CALCULATING TRANSCEIVER  
POWER REQUIREMENTS  
The USB transceiver consumes a variable amount of  
current depending on the characteristic impedance of  
the USB cable, the length of the cable, the VUSB supply  
voltage and the actual data patterns moving across the  
USB cable. Longer cables have larger capacitances  
and consume more total energy when switching output  
states. The total transceiver current consumption will  
be application-specific. Equation 18-1 can help  
estimate how much current actually may be required in  
full-speed applications.  
2. Set the PWM period (U1PWMRRS<7:0>) and  
duty cycle (U1PWMRRS<15:8>) as required.  
3. Select the required polarity of the output signal  
based on the configuration of the external circuit  
with the PWMPOL bit (U1PWMCON<9>).  
4. Select the desired target voltage using the  
VBUSCHG bit (U1OTGCON<1>).  
5. Enable the PWM counter by setting the CNTEN  
bit to ‘1’ (U1PWMCON<8>).  
6. Enable the PWM module by setting the PWMEN  
Refer to the “PIC24F Family Reference Manual”,  
Section 27. “USB On-The-Go (OTG)” for a complete  
discussion on transceiver power consumption.  
bit (U1PWMCON<15>) to ‘1’.  
7. Enable  
the  
VBUS  
generation  
circuit  
(U1OTGCON<3> = 1).  
Note:  
This section describes the general  
process for VBUS voltage generation and  
control. Please refer to the “PIC24F  
Family Reference Manual” for additional  
examples.  
EQUATION 18-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION  
40 mA • VUSB • PZERO • PIN • LCABLE  
+ IPULLUP  
IXCVR =  
3.3V • 5m  
Legend: VUSB – Voltage applied to the VUSB pin in volts (3.0V to 3.6V).  
PZERO – Percentage (in decimal) of the IN traffic bits sent by the PIC® microcontroller that are a value  
of ‘0’.  
PIN – Percentage (in decimal) of total bus bandwidth that is used for IN traffic.  
LCABLE – Length (in meters) of the USB cable. The USB 2.0 Specification requires that full-speed  
applications use cables no longer than 5m.  
IPULLUP – Current which the nominal, 1.5 kpull-up resistor (when enabled) must supply to the USB  
cable.  
2010 Microchip Technology Inc.  
DS39969B-page 243  
PIC24FJ256DA210 FAMILY  
Depending on the endpoint buffering configuration  
18.2 USB Buffer Descriptors and  
the BDT  
used, there are up to 64 sets of Buffer Descriptors, for  
a total of 256 bytes. At a minimum, the BDT must be at  
least 8 bytes long. This is because the USB Specifica-  
tion mandates that every device must have Endpoint 0  
with both input and output for initial setup.  
Endpoint buffer control is handled through a structure  
called the Buffer Descriptor Table (BDT). This provides  
a flexible method for users to construct and control  
endpoint buffers of various lengths and configurations.  
Endpoint mapping in the BDT is dependent on three  
variables:  
The BDT can be located in any available, 512-byte  
aligned block of data RAM. The BDT Pointer  
(U1BDTP1) contains the upper address byte of the  
BDT and sets the location of the BDT in RAM. The user  
must set this pointer to indicate the table’s location.  
• Endpoint number (0 to 15)  
• Endpoint direction (RX or TX)  
• Ping-pong settings (U1CNFG1<1:0>)  
Figure 18-8 illustrates how these variables are used to  
map endpoints in the BDT.  
The BDT is composed of Buffer Descriptors (BDs)  
which are used to define and control the actual buffers  
in the USB RAM space. Each BD consists of two, 16-bit  
“soft” (non-fixed-address) registers, BDnSTAT and  
BDnADR, where n represents one of the 64 possible  
BDs (range of 0 to 63). BDnSTAT is the status register  
for BDn, while BDnADR specifies the starting address  
for the buffer associated with BDn.  
In Host mode, only Endpoint 0 Buffer Descriptors are  
used. All transfers utilize the Endpoint 0 Buffer Descrip-  
tor and Endpoint Control register (U1EP0). For received  
packets, the attached device’s source endpoint is  
indicated by the value of ENDPT<3:0> in the USB status  
register (U1STAT<7:4>). For transmitted packet, the  
attached device’s destination endpoint is indicated by  
the value written to the Token register (U1TOK).  
Note:  
Since BDnADR is a 16-bit register, only  
the first 64 Kbytes of RAM can be  
accessed by the USB module.  
FIGURE 18-8:  
BDT MAPPING FOR ENDPOINT BUFFERING MODES  
PPB<1:0> = 01  
Ping-Pong Buffer  
on EP0 OUT  
PPB<1:0> = 11  
Ping-Pong Buffers  
on all other EPs  
except EP0  
PPB<1:0> = 00  
No Ping-Pong  
Buffers  
PPB<1:0> = 10  
Ping-Pong Buffers  
on all EPs  
Total BDT Space:  
128 Bytes  
Total BDT Space:  
132 Bytes  
Total BDT Space:  
256 Bytes  
Total BDT Space:  
248 Bytes  
EP0 RX Even  
Descriptor  
EP0 RX  
Descriptor  
EP0 RX  
Descriptor  
EP0 RX Even  
Descriptor  
EP0 RX Odd  
Descriptor  
EP0 TX  
Descriptor  
EP0 TX  
Descriptor  
EP0 RX Odd  
Descriptor  
EP0 TX Even  
Descriptor  
EP1 RX Even  
Descriptor  
EP1 RX  
Descriptor  
EP0 TX  
Descriptor  
EP1 RX Odd  
Descriptor  
EP1 TX  
EP0 TX Odd  
Descriptor  
EP1 RX  
Descriptor  
Descriptor  
EP1 TX Even  
Descriptor  
EP1 RX Even  
Descriptor  
EP1 TX  
Descriptor  
EP1 RX Odd  
Descriptor  
EP1 TX Odd  
Descriptor  
EP15 TX  
Descriptor  
EP1 TX Even  
Descriptor  
EP15 TX  
Descriptor  
EP1 TX Odd  
Descriptor  
EP15 TX Odd  
Descriptor  
EP15 TX Odd  
Descriptor  
Note:  
Memory area is not shown to scale.  
DS39969B-page 244  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
BDs have a fixed relationship to a particular endpoint,  
corresponding data buffer during this time. Note that  
the microcontroller core can still read BDnSTAT while  
the SIE owns the buffer and vice versa.  
depending on the buffering configuration. Table 18-2  
provides the mapping of BDs to endpoints. This rela-  
tionship also means that gaps may occur in the BDT if  
endpoints are not enabled contiguously. This, theoreti-  
cally, means that the BDs for disabled endpoints could  
be used as buffer space. In practice, users should  
avoid using such spaces in the BDT unless a method  
of validating BD addresses is implemented.  
The Buffer Descriptors have a different meaning based  
on the source of the register update. Register 18-1 and  
Register 18-2 show the differences in BDnSTAT  
depending on its current “ownership”.  
When UOWN is set, the user can no longer depend on  
the values that were written to the BDs. From this point,  
the USB module updates the BDs as necessary, over-  
writing the original BD values. The BDnSTAT register is  
updated by the SIE with the token PID and the transfer  
count is updated.  
18.2.1  
BUFFER OWNERSHIP  
Because the buffers and their BDs are shared between  
the CPU and the USB module, a simple semaphore  
mechanism is used to distinguish which is allowed to  
update the BD and associated buffers in memory. This  
is done by using the UOWN bit as a semaphore to  
distinguish which is allowed to update the BD and  
associated buffers in memory. UOWN is the only bit  
that is shared between the two configurations of  
BDnSTAT.  
18.2.2  
DMA INTERFACE  
The USB OTG module uses a dedicated DMA to  
access both the BDT and the endpoint data buffers.  
Since part of the address space of the DMA is dedi-  
cated to the Buffer Descriptors, a portion of the memory  
connected to the DMA must comprise a contiguous  
address space properly mapped for the access by the  
module.  
When UOWN is clear, the BD entry is “owned” by the  
microcontroller core. When the UOWN bit is set, the BD  
entry and the buffer memory are “owned” by the USB  
peripheral. The core should not modify the BD or its  
TABLE 18-2: ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT  
BUFFERING MODES  
BDs Assigned to Endpoint  
Mode 3  
(Ping-Pong on all other EPs,  
except EP0)  
Mode 0  
(No Ping-Pong)  
Mode 1  
(Ping-Pong on EP0 OUT)  
Mode 2  
(Ping-Pong on all EPs)  
Endpoint  
Out  
In  
Out  
In  
Out  
In  
Out  
In  
0
0
1
0 (E), 1 (O)  
2
0 (E), 1 (O)  
4 (E), 5 (O)  
8 (E), 9 (O)  
2 (E), 3 (O)  
6 (E), 7 (O)  
0
1
1
2
3
3
4
2 (E), 3 (O)  
6 (E), 7 (O)  
4 (E), 5 (O)  
8 (E), 9 (O)  
2
4
5
5
6
10 (E), 11 (O)  
3
6
7
7
8
12 (E), 13 (O) 14 (E), 15 (O) 10 (E), 11 (O) 12 (E), 13 (O)  
16 (E), 17 (O) 18 (E), 19 (O) 14 (E), 15 (O) 16 (E), 17 (O)  
20 (E), 21 (O) 22 (E), 23 (O) 18 (E), 19 (O) 20 (E), 21 (O)  
24 (E), 25 (O) 26 (E), 27 (O) 22 (E), 23 (O) 24 (E), 25 (O)  
4
8
9
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
5
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
6
7
28 (E), 29 (O)  
30 (E), 31 (O) 26 (E), 27 (O) 28 (E), 29 (O)  
8
32 (E), 33 (O) 34 (E), 35 (O) 30 (E), 31 (O) 32 (E), 33 (O)  
36 (E), 37 (O) 38 (E), 39 (O) 34 (E), 35 (O) 36 (E), 37 (O)  
40 (E), 41 (O) 42 (E), 43 (O) 38 (E), 39 (O) 40 (E), 41 (O)  
44 (E), 45 (O) 46 (E), 47 (O) 42 (E), 43 (O) 44 (E), 45 (O)  
48 (E), 49 (O) 50 (E), 51 (O) 46 (E), 47 (O) 48 (E), 49 (O)  
52 (E), 53 (O) 54 (E), 55 (O) 50 (E), 51 (O) 52 (E), 53 (O)  
56 (E), 57 (O) 58 (E), 59 (O) 54 (E), 55 (O) 56 (E), 57 (O)  
60 (E), 61 (O) 62 (E), 63 (O) 58 (E), 59 (O) 60 (E), 61 (O)  
9
10  
11  
12  
13  
14  
15  
Legend:  
(E) = Even transaction buffer, (O) = Odd transaction buffer  
2010 Microchip Technology Inc.  
DS39969B-page 245  
PIC24FJ256DA210 FAMILY  
REGISTER 18-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB  
MODE (BD0STAT THROUGH BD63STAT)  
R/W-x  
R/W-x  
DTS  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
PID3 PID2 PID1 PID0 BC9 BC8  
UOWN  
bit 15  
bit 8  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
UOWN: USB Own bit  
1= The USB module owns the BD and its corresponding buffer; the CPU must not modify the BD or  
the buffer  
bit 14  
DTS: Data Toggle Packet bit  
1= Data 1 packet  
0= Data 0 packet  
bit 13-10  
PID<3:0>: Packet Identifier bits (written by the USB module)  
In Device mode:  
Represents the PID of the received token during the last transfer.  
In Host mode:  
Represents the last returned PID or the transfer status indicator.  
bit 9-0  
BC<9:0>: Byte Count bits  
This represents the number of bytes to be transmitted or the maximum number of bytes to be received  
during a transfer. Upon completion, the byte count is updated by the USB module with the actual  
number of bytes transmitted or received.  
DS39969B-page 246  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 18-2: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, CPU  
MODE (BD0STAT THROUGH BD63STAT)  
R/W-x  
R/W-x  
DTS(1)  
r-0  
r-0  
R/W-x  
R/W-x  
R/W-x, HSC R/W-x, HSC  
BC9 BC8  
UOWN  
Reserved  
Reserved  
DTSEN  
BSTALL  
bit 15  
bit 8  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
BC7  
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
r = Reserved bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘r’ = Reserved bit x = Bit is unknown  
bit 15  
bit 14  
UOWN: USB Own bit  
0= The microcontroller core owns the BD and its corresponding buffer; the USB module ignores all  
other fields in the BD  
DTS: Data Toggle Packet bit(1)  
1= Data 1 packet  
0= Data 0 packet  
bit 13-12  
bit 11  
Reserved: Maintain as ‘0’  
DTSEN: Data Toggle Synchronization Enable bit  
1= Data toggle synchronization is enabled; data packets with incorrect sync value will be ignored  
0= No data toggle synchronization is performed  
bit 10  
BSTALL: Buffer Stall Enable bit  
1= Buffer STALL enabled; STALL handshake issued if a token is received that would use the BD in  
the given location (UOWN bit remains set, BD value is unchanged); corresponding EPSTALL bit  
will get set on any STALL handshake  
0= Buffer STALL disabled  
bit 9-0  
BC<9:0>: Byte Count bits  
This represents the number of bytes to be transmitted or the maximum number of bytes to be received  
during a transfer. Upon completion, the byte count is updated by the USB module with the actual  
number of bytes transmitted or received.  
Note 1: This bit is ignored unless DTSEN = 1.  
2010 Microchip Technology Inc.  
DS39969B-page 247  
PIC24FJ256DA210 FAMILY  
level consists of USB error conditions, which are  
18.3 USB Interrupts  
enabled and flagged in the U1EIR and U1EIE registers.  
An interrupt condition in any of these triggers a USB  
Error Interrupt Flag (UERRIF) in the top level.  
The USB OTG module has many conditions that can  
be configured to cause an interrupt. All interrupt  
sources use the same interrupt vector.  
Interrupts may be used to trap routine events in a USB  
transaction. Figure 18-10 provides some common  
events within a USB frame and their corresponding  
interrupts.  
Figure 18-9 shows the interrupt logic for the USB  
module. There are two layers of interrupt registers in  
the USB module. The top level consists of overall USB  
status interrupts; these are enabled and flagged in the  
U1IE and U1IR registers, respectively. The second  
FIGURE 18-9:  
USB OTG INTERRUPT FUNNEL  
Top Level (USB Status) Interrupts  
STALLIF  
STALLIE  
ATTACHIF  
ATTACHIE  
RESUMEIF  
RESUMEIE  
IDLEIF  
IDLEIE  
TRNIF  
TRNIE  
Second Level (USB Error) Interrupts  
SOFIF  
SOFIE  
BTSEF  
BTSEE  
Set USB1IF  
URSTIF (DETACHIF)  
DMAEF  
DMAEE  
URSTIE (DETACHIE)  
BTOEF  
BTOEE  
(UERRIF)  
UERRIE  
DFN8EF  
DFN8EE  
IDIF  
IDIE  
CRC16EF  
CRC16EE  
T1MSECIF  
TIMSECIE  
CRC5EF (EOFEF)  
CRC5EE (EOFEE)  
LSTATEIF  
LSTATEIE  
PIDEF  
PIDEE  
ACTVIF  
ACTVIE  
SESVDIF  
SESVDIE  
SESENDIF  
SESENDIE  
VBUSVDIF  
VBUSVDIE  
Top Level (USB OTG) Interrupts  
DS39969B-page 248  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
software by writing a ‘1’ to their locations (i.e., perform-  
ing a MOVtype instruction). Writing a ‘0’ to a flag bit (i.e.,  
a BCLRinstruction) has no effect.  
18.3.1  
CLEARING USB OTG INTERRUPTS  
Unlike device level interrupts, the USB OTG interrupt  
status flags are not freely writable in software. All USB  
OTG flag bits are implemented as hardware set only  
bits. Additionally, these bits can only be cleared in  
Note:  
Throughout this data sheet, a bit that can  
only be cleared by writing a ‘1’ to its loca-  
tion is referred to as “Write 1 to clear”. In  
register descriptions, this function is  
indicated by the descriptor, “K”.  
FIGURE 18-10:  
EXAMPLE OF A USB TRANSACTION AND INTERRUPT EVENTS  
From Host  
From Host  
To Host  
ACK  
Set TRNIF  
Set TRNIF  
Set TRNIF  
SETUPToken Data  
USB Reset  
URSTIF  
From Host To Host  
From Host  
ACK  
IN Token  
Data  
Start-Of-Frame (SOF)  
SOFIF  
From Host  
From Host  
To Host  
ACK  
OUT Token Empty Data  
Transaction  
Transaction  
Complete  
SOF  
RESET  
Differential Data  
SOF  
SETUP DATA STATUS  
(1)  
Control Transfer  
1 ms Frame  
Note 1: The control transfer shown here is only an example showing events that can occur for every transaction. Typical  
control transfers will spread across multiple frames.  
5. Enable the USB module by setting the USBEN  
18.4 Device Mode Operation  
bit (U1CON<0>).  
The following section describes how to perform a com-  
6. Set the OTGEN bit (U1OTGCON<2>) to enable  
mon Device mode task. In Device mode, USB transfers  
OTG operation.  
are performed at the transfer level. The USB module  
7. Enable the endpoint zero buffer to receive the  
automatically performs the status phase of the transfer.  
first setup packet by setting the EPRXEN and  
EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1).  
18.4.1  
ENABLING DEVICE MODE  
8. Power up the USB module by setting the  
USBPWR bit (U1PWRC<0>).  
1. Reset the Ping-Pong Buffer Pointers by setting,  
then clearing, the Ping-Pong Buffer Reset bit,  
PPBRST (U1CON<1>).  
9. Enable the D+ pull-up resistor to signal an attach  
by setting DPPULUP bit (U1OTGCON<7>).  
2. Disable all interrupts (U1IE and U1EIE = 00h).  
3. Clear any existing interrupt flags by writing FFh  
to U1IR and U1EIR.  
4. Verify that VBUS is present (non OTG devices  
only).  
2010 Microchip Technology Inc.  
DS39969B-page 249  
PIC24FJ256DA210 FAMILY  
18.4.2  
RECEIVING AN IN TOKEN IN  
DEVICE MODE  
18.5 Host Mode Operation  
The following sections describe how to perform common  
Host mode tasks. In Host mode, USB transfers are  
invoked explicitly by the host software. The host  
software is responsible for the Acknowledge portion of  
the transfer. Also, all transfers are performed using the  
1. Attach to a USB host and enumerate as described  
in “Chapter 9 of the USB 2.0 Specification”.  
2. Create a data buffer and populate it with the data  
to send to the host.  
Endpoint  
Descriptors.  
0
Control register (U1EP0) and Buffer  
3. In the appropriate (even or odd) TX BD for the  
desired endpoint:  
a) Set up the status register (BDnSTAT) with  
the correct data toggle (DATA0/1) value and  
the byte count of the data buffer.  
18.5.1  
ENABLE HOST MODE AND  
DISCOVER A CONNECTED DEVICE  
1. Enable Host mode by setting the HOSTEN bit  
(U1CON<3>). This causes the Host mode con-  
trol bits in other USB OTG registers to become  
available.  
b) Set up the address register (BDnADR) with  
the starting address of the data buffer.  
c) Set the UOWN bit of the status register to  
1’.  
2. Enable the D+ and D- pull-down resistors by set-  
ting the DPPULDWN and DMPULDWN bits  
(U1OTGCON<5:4>). Disable the D+ and D-  
pull-up resistors by clearing the DPPULUP and  
DMPULUP bits (U1OTGCON<7:6>).  
4. When the USB module receives an IN token, it  
automatically transmits the data in the buffer.  
Upon completion, the module updates the status  
register (BDnSTAT) and sets the Transfer  
Complete Interrupt Flag, TRNIF (U1IR<3>).  
3. At this point, SOF generation begins with the  
SOF counter loaded with 12,000. Eliminate  
noise on the USB by clearing the SOFEN bit  
(U1CON<0>) to disable Start-Of-Frame packet  
generation.  
18.4.3  
RECEIVING AN OUT TOKEN IN  
DEVICE MODE  
1. Attach to a USB host and enumerate as  
described in “Chapter 9 of the USB 2.0  
Specification”.  
4. Enable the device attached interrupt by setting  
the ATTACHIE bit (U1IE<6>).  
2. Create a data buffer with the amount of data you  
are expecting from the host.  
5. Wait for the device attached interrupt  
(U1IR<6> = 1). This is signaled by the USB  
device changing the state of D+ or D- from ‘0’  
to ‘1’ (SE0 to J state). After it occurs, wait  
100 ms for the device power to stabilize.  
3. In the appropriate (even or odd) TX BD for the  
desired endpoint:  
a) Set up the status register (BDnSTAT) with  
the correct data toggle (DATA0/1) value and  
the byte count of the data buffer.  
6. Check the state of the JSTATE and SE0 bits in  
U1CON. If the JSTATE bit (U1CON<7>) is ‘0’,  
the connecting device is low speed. If the con-  
necting device is low speed, set the low  
LSPDEN and LSPD bits (U1ADDR<7> and  
U1EP0<7>) to enable low-speed operation.  
b) Set up the address register (BDnADR) with  
the starting address of the data buffer.  
c) Set the UOWN bit of the status register to  
1’.  
4. When the USB module receives an OUT token,  
it automatically receives the data sent by the  
host to the buffer. Upon completion, the module  
updates the status register (BDnSTAT) and sets  
the Transfer Complete Interrupt Flag, TRNIF  
(U1IR<3>).  
7. Reset the USB device by setting the USBRST  
bit (U1CON<4>) for at least 50 ms, sending  
Reset signaling on the bus. After 50 ms,  
terminate the Reset by clearing USBRST.  
8. In order to keep the connected device from  
going into suspend, enable the SOF packet  
generation by setting the SOFEN bit.  
9. Wait 10 ms for the device to recover from Reset.  
10. Perform enumeration as described by “Chapter 9  
of the USB 2.0 Specification”.  
DS39969B-page 250  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
8. Initialize the current (even or odd) RX or TX (RX  
18.5.2  
COMPLETE A CONTROL  
TRANSACTION TO A CONNECTED  
DEVICE  
for IN, TX for OUT) EP0 BD to transfer the data.  
a) Write C040h to BD0STAT. This sets the  
UOWN, configures Data Toggle (DTS) to  
DATA1 and sets the byte count to the length  
of the data buffer (64 or 40h in this case).  
1. Follow  
the  
procedure  
described  
in  
Section 18.5.1 “Enable Host Mode and Dis-  
cover a Connected Device” to discover a  
device.  
b) Set BD0ADR to the starting address of the  
data buffer.  
2. Set up the Endpoint Control register for  
bidirectional control transfers by writing 0Dh to  
U1EP0 (this sets the EPCONDIS, EPTXEN and  
EPHSHK bits).  
9. Write the Token register with the appropriate IN  
or OUT token to Endpoint 0, the target device’s  
default control pipe (e.g., write 90h to U1TOK for  
an IN token for a GET DEVICE DESCRIPTOR  
command). This initiates an IN token on the bus  
followed by a data packet from the device to the  
host. When the data packet completes, the  
BD0STAT is written and a transfer done interrupt  
is asserted (the TRNIF flag is set). For control  
transfers with a single packet data phase, this  
completes the data phase of the setup transac-  
tion as referenced in “Chapter 9 of the USB  
Specification”. If more data needs to be  
transferred, return to step 8.  
3. Place a copy of the device framework setup  
command in a memory buffer. See “Chapter 9 of  
the USB 2.0 Specification” for information on the  
device framework command set.  
4. Initialize the Buffer Descriptor (BD) for the  
current (even or odd) TX EP0 to transfer the  
eight bytes of command data for a device  
framework command (i.e., GET  
DESCRIPTOR):  
DEVICE  
a) Set the BD data buffer address (BD0ADR)  
to the starting address of the 8-byte  
memory buffer containing the command.  
10. To initiate the status phase of the setup transac-  
tion, set up a buffer in memory to receive or send  
the zero length status phase data packet.  
b) Write 8008h to BD0STAT (this sets the  
UOWN bit and sets a byte count of 8).  
11. Initialize the current (even or odd) TX EP0 BD to  
transfer the status data:  
5. Set the USB device address of the target device  
in the address register (U1ADDR<6:0>). After a  
USB bus Reset, the device USB address will be  
zero. After enumeration, it will be set to another  
value between 1 and 127.  
a) Set the BDT buffer address field to the start  
address of the data buffer.  
b) Write 8000h to BD0STAT (set UOWN bit,  
configure DTS to DATA0 and set byte count  
to 0).  
6. Write D0h to U1TOK; this is a SETUP token to  
Endpoint 0, the target device’s default control  
pipe. This initiates a SETUP token on the bus,  
followed by a data packet. The device hand-  
shake is returned in the PID field of BD0STAT  
after the packets are complete. When the USB  
module updates BD0STAT, a transfer done  
interrupt is asserted (the TRNIF flag is set). This  
completes the setup phase of the setup transac-  
tion as referenced in “Chapter 9 of the USB  
Specification”.  
12. Write the Token register with the appropriate IN  
or OUT token to Endpoint 0, the target device’s  
default control pipe (e.g., write 01h to U1TOK for  
an OUT token for a GET DEVICEDESCRIPTOR  
command). This initiates an OUT token on the  
bus followed by a zero length data packet from  
the host to the device. When the data packet  
completes, the BD is updated with the  
handshake from the device and a transfer done  
interrupt is asserted (the TRNIF flag is set). This  
completes the status phase of the setup trans-  
action as described in “Chapter 9 of the USB  
Specification”.  
7. To initiate the data phase of the setup transac-  
tion (i.e., get the data for the GET DEVICE  
DESCRIPTOR command), set up a buffer in  
memory to store the received data.  
Note:  
Only one control transaction can be  
performed per frame.  
2010 Microchip Technology Inc.  
DS39969B-page 251  
PIC24FJ256DA210 FAMILY  
18.5.3  
SEND A FULL-SPEED BULK DATA  
TRANSFER TO A TARGET DEVICE  
18.6 OTG Operation  
18.6.1 SESSION REQUEST PROTOCOL  
1. Follow the procedure described in Section 18.5.1  
“Enable Host Mode and Discover a Connected  
Device” and Section 18.5.2 “Complete a Con-  
trol Transaction to a Connected Device” to  
discover and configure a device.  
(SRP)  
An OTG A-device may decide to power down the VBUS  
supply when it is not using the USB link through the Ses-  
sion Request Protocol (SRP). Software may do this by  
clearing VBUSON (U1OTGCON<3>). When the VBUS  
supply is powered down, the A-device is said to have  
ended a USB session.  
2. To enable transmit and receive transfers with  
handshaking enabled, write 1Dh to U1EP0. If  
the target device is a low-speed device, also set  
the LSPD (U1EP0<7>) bit. If you want the hard-  
ware to automatically retry indefinitely if the  
target device asserts a NAK on the transfer,  
clear the Retry Disable bit, RETRYDIS  
(U1EP0<6>).  
An OTG A-device or embedded host may repower the  
VBUS supply at any time (initiate a new session). An  
OTG B-device may also request that the OTG A-device  
repower the VBUS supply (initiate a new session). This  
is accomplished via Session Request Protocol (SRP).  
3. Set up the BD for the current (even or odd) TX  
EP0 to transfer up to 64 bytes.  
Prior to requesting a new session, the B-device must  
first check that the previous session has definitely  
ended. To do this, the B-device must check for two  
conditions:  
4. Set the USB device address of the target device  
in the address register (U1ADDR<6:0>).  
5. Write an OUT token to the desired endpoint to  
U1TOK. This triggers the module’s transmit  
state machines to begin transmitting the token  
and the data.  
1. VBUS supply is below the session valid voltage, and  
2. Both D+ and D- have been low for at least 2 ms.  
The B-device will be notified of Condition 1 by the  
SESENDIF (U1OTGIR<2>) interrupt. Software will  
have to manually check for Condition 2.  
6. Wait for the Transfer Done Interrupt Flag,  
TRNIF. This indicates that the BD has been  
released back to the microprocessor and the  
transfer has completed. If the retry disable bit is  
set, the handshake (ACK, NAK, STALL or  
ERROR (0Fh)) is returned in the BD PID field. If  
a STALL interrupt occurs, the pending packet  
must be dequeued and the error condition in the  
target device cleared. If a detach interrupt  
occurs (SE0 for more than 2.5 µs), then the  
target has detached (U1IR<0> is set).  
Note:  
When the A-device powers down the VBUS  
supply, the B-device must disconnect its  
pull-up resistor from power. If the device is  
self-powered, it can do this by clearing  
DPPULUP  
(U1OTGCON<7>)  
and  
DMPULUP (U1OTGCON<6>).  
The B-device may aid in achieving Condition 1 by dis-  
charging the VBUS supply through a resistor. Software  
may do this by setting VBUSDIS (U1OTGCON<0>).  
7. Once the transfer done interrupt occurs (TRNIF  
is set), the BD can be examined and the next  
data packet queued by returning to step 2.  
After these initial conditions are met, the B-device may  
begin requesting the new session. The B-device begins  
by pulsing the D+ data line. Software should do this by  
setting DPPULUP (U1OTGCON<7>). The data line  
should be held high for 5 to 10 ms.  
Note:  
USB speed, transceiver and pull-ups  
should only be configured during the mod-  
ule setup phase. It is not recommended to  
change these settings while the module is  
enabled.  
The B-device then proceeds by pulsing the VBUS  
supply. Software should do this by setting PUVBUS  
(U1CNFG2<4>). When an A-device detects SRP sig-  
naling (either via the ATTACHIF (U1IR<6>) interrupt or  
via the SESVDIF (U1OTGIR<3>) interrupt), the  
A-device must restore the VBUS supply by either setting  
VBUSON (U1OTGCON<3>) or by setting the I/O port  
controlling the external power source.  
The B-device should not monitor the state of the VBUS  
supply while performing VBUS supply pulsing. When the  
B-device does detect that the VBUS supply has been  
restored (via the SESVDIF (U1OTGIR<3>) interrupt),  
the B-device must reconnect to the USB link by pulling  
up D+ or D- (via the DPPULUP or DMPULUP).  
The A-device must complete the SRP by driving USB  
Reset signaling.  
DS39969B-page 252  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
When the B-device has finished in its role as host, it  
stops all bus activity and turns on its D+ pull-up resistor  
by setting DPPULUP. When the A-device detects a  
suspend condition (Idle for 3 ms), the A-device turns off  
its D+ pull-up. The A-device may also power-down the  
VBUS supply to end the session. When the A-device  
detects the connect condition (via ATTACHIF), the  
A-device resumes host operation and drives Reset  
signaling.  
18.6.2  
HOST NEGOTIATION PROTOCOL  
(HNP)  
In USB OTG applications, a Dual Role Device (DRD) is  
a device that is capable of being either a host or a  
peripheral. Any OTG DRD must support Host  
Negotiation Protocol (HNP).  
HNP allows an OTG B-device to temporarily become  
the USB host. The A-device must first enable the  
B-device to follow HNP. Refer to the “On-The-Go  
Supplement to the USB 2.0 Specification” for more  
information regarding HNP. HNP may only be initiated  
at full speed.  
18.6.3  
EXTERNAL VBUS COMPARATORS  
The external VBUS comparator option is enabled by set-  
ting the UVCMPDIS bit (U1CNFG2<1>). This disables  
the internal VBUS comparators, removing the need to  
attach VBUS to the microcontroller’s VBUS pin.  
After being enabled for HNP by the A-device, the  
B-device requests being the host any time that the USB  
link is in suspend state, by simply indicating a discon-  
nect. This can be done in software by clearing  
DPPULUP and DMPULUP. When the A-device detects  
the disconnect condition (via the URSTIF (U1IR<0>)  
interrupt), the A-device may allow the B-device to take  
over as host. The A-device does this by signaling con-  
nect as a full-speed function. Software may accomplish  
this by setting DPPULUP.  
The external comparator interface uses either the  
VCMPST1 and VCMPST2 pins, or the VBUSVLD,  
SESSVLD and SESSEND pins, based upon the setting  
of the UVCMPSEL bit (U1CNFG2<5>). These pins are  
digital inputs and should be set in the following patterns  
(see Table 18-3), based on the current level of the VBUS  
voltage.  
If the A-device responds instead with resume signaling,  
the A-device remains as host. When the B-device  
detects the connect condition (via ATTACHIF  
(U1IR<6>), the B-device becomes host. The B-device  
drives Reset signaling prior to using the bus.  
TABLE 18-3: EXTERNAL VBUS COMPARATOR STATES  
If UVCMPSEL = 0  
VCMPST1  
VCMPST2  
Bus Condition  
0
1
0
1
0
0
1
1
VBUS < VB_SESS_END  
VB_SESS_END < VBUS < VA_SESS_VLD  
VA_SESS_VLD < VBUS < VA_VBUS_VLD  
VBUS > VBUS_VLD  
If UVCMPSEL = 1  
VBUSVLD  
SESSVLD  
SESSEND  
Bus Condition  
0
0
0
1
0
0
1
1
1
0
0
0
VBUS < VB_SESS_END  
VB_SESS_END < VBUS < VA_SESS_VLD  
VA_SESS_VLD < VBUS < VA_VBUS_VLD  
VBUS > VBUS_VLD  
2010 Microchip Technology Inc.  
DS39969B-page 253  
PIC24FJ256DA210 FAMILY  
With the exception of U1PWMCON and U1PWMRRS,  
18.7 USB OTG Module Registers  
all USB OTG registers are implemented in the Least  
Significant Byte of the register. Bits in the upper byte  
are unimplemented and have no function. Note that  
some registers are instantiated only in Host mode,  
while other registers have different bit instantiations  
and functions in Device and Host modes.  
There are a total of 37 memory mapped registers asso-  
ciated with the USB OTG module. They can be divided  
into four general categories:  
• USB OTG Module Control (12)  
• USB Interrupt (7)  
The registers described in the following sections are  
those that have bits with specific control and configura-  
tion features. The following registers are used for data  
or address values only:  
• USB Endpoint Management (16)  
• USB VBUS Power Control (2)  
This total does not include the (up to) 128 BD registers  
in the BDT. Their prototypes, described in  
Register 18-1 and Register 18-2, are shown separately  
in Section 18.2 “USB Buffer Descriptors and the  
BDT”.  
• U1BDTP1: Specifies the 256-word page in data  
RAM used for the BDT; 8-bit value with bit 0 fixed  
as ‘0’ for boundary alignment.  
• U1FRML and U1FRMH: Contains the 11-bit byte  
counter for the current data frame.  
• U1PWMRRS: Contains the 8-bit value for PWM  
duty cycle bits<15:8> and PWM period  
bits<7:0> for the VBUS boost assist PWM module.  
DS39969B-page 254  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
18.7.1  
USB OTG MODULE CONTROL REGISTERS  
REGISTER 18-3: U1OTGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R-0, HSC  
ID  
U-0  
R-0, HSC  
LSTATE  
U-0  
R-0, HSC  
SESVD  
R-0, HSC  
SESEND  
U-0  
R-0, HSC  
VBUSVD  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
ID: ID Pin State Indicator bit  
1= No plug is attached, or a type B cable has been plugged into the USB receptacle  
0= A type A plug has been plugged into the USB receptacle  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LSTATE: Line State Stable Indicator bit  
1= The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms  
0= The USB line state has not been stable for the previous 1 ms  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SESVD: Session Valid Indicator bit  
1= The VBUS voltage is above VA_SESS_VLD (as defined in the USB OTG Specification) on the A or  
B-device  
0= The VBUS voltage is below VA_SESS_VLD on the A or B-device  
bit 2  
SESEND: B Session End Indicator bit  
1= The VBUS voltage is below VB_SESS_END (as defined in the USB OTG Specification) on the  
B-device  
0= The VBUS voltage is above VB_SESS_END on the B-device  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
VBUSVD: A VBUS Valid Indicator bit  
1= The VBUS voltage is above VA_VBUS_VLD (as defined in the USB OTG Specification) on the  
A-device  
0= The VBUS voltage is below VA_VBUS_VLD on the A-device  
2010 Microchip Technology Inc.  
DS39969B-page 255  
PIC24FJ256DA210 FAMILY  
REGISTER 18-4: U1OTGCON: USB ON-THE-GO CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DPPULUP DMPULUP DPPULDWN(1) DMPULDWN(1) VBUSON(1) OTGEN(1) VBUSCHG(1) VBUSDIS(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
DPPULUP: D+ Pull-up Enable bit  
1= D+ data line pull-up resistor is enabled  
0= D+ data line pull-up resistor is disabled  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
DMPULUP: D- Pull-up Enable bit  
1= D- data line pull-up resistor is enabled  
0= D- data line pull-up resistor is disabled  
(1)  
DPPULDWN: D+ Pull-Down Enable bit  
1= D+ data line pull-down resistor is enabled  
0= D+ data line pull-down resistor is disabled  
(1)  
DMPULDWN: D- Pull-Down Enable bit  
1= D- data line pull-down resistor is enabled  
0= D- data line pull-down resistor is disabled  
(1)  
VBUSON: VBUS Power-on bit  
1= VBUS line is powered  
0= VBUS line is not powered  
(1)  
OTGEN: OTG Features Enable bit  
1= USB OTG is enabled; all D+/D- pull-up and pull-down bits are enabled  
0= USB OTG is disabled; D+/D- pull-up and pull-down bits are controlled in hardware by the settings  
of the HOSTEN and USBEN (U1CON<3,0>) bits  
(1)  
bit 1  
bit 0  
VBUSCHG: VBUS Charge Select bit  
1= VBUS line is set to charge to 3.3V  
0= VBUS line is set to charge to 5V  
(1)  
VBUSDIS: VBUS Discharge Enable bit  
1= VBUS line is discharged through a resistor  
0= VBUS line is not discharged  
Note 1: These bits are only used in Host mode; do not use in Device mode.  
DS39969B-page 256  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 18-5: U1PWRC: USB POWER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0, HS  
UACTPND  
U-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0, HC  
R/W-0  
USLPGRD  
USUSPND USBPWR  
bit 0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
HC = Hardware Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
UACTPND: USB Activity Pending bit  
1= Module should not be suspended at the moment (requires the USLPGRD bit to be set)  
0= Module may be suspended or powered down  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
USLPGRD: Sleep/Suspend Guard bit  
1= Indicate to the USB module that it is about to be suspended or powered down  
0= No suspend  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
USUSPND: USB Suspend Mode Enable bit  
1= USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a  
low-power state  
0= Normal USB OTG operation  
bit 0  
USBPWR: USB Operation Enable bit  
1= USB OTG module is enabled  
0= USB OTG module is disabled(1)  
Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON<3,0> and U1OTGCON<2>)  
are all cleared.  
2010 Microchip Technology Inc.  
DS39969B-page 257  
PIC24FJ256DA210 FAMILY  
REGISTER 18-6: U1STAT: USB STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
R-0, HSC  
ENDPT3  
R-0, HSC  
ENDPT2  
R-0, HSC  
ENDPT1  
R-0, HSC  
ENDPT0  
R-0, HSC  
DIR  
R-0, HSC  
PPBI(1)  
U-0  
U-0  
bit 7  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-4  
Unimplemented: Read as ‘0’  
ENDPT<3:0>: Number of the Last Endpoint Activity bits  
(Represents the number of the BDT updated by the last USB transfer.)  
1111= Endpoint 15  
1110= Endpoint 14  
.
.
.
0001= Endpoint 1  
0000= Endpoint 0  
bit 3  
DIR: Last BD Direction Indicator bit  
1= The last transaction was a transmit transfer (TX)  
0= The last transaction was a receive transfer (RX)  
bit 2  
PPBI: Ping-Pong BD Pointer Indicator bit(1)  
1= The last transaction was to the odd BD bank  
0= The last transaction was to the even BD bank  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is only valid for endpoints with available even and odd BD registers.  
DS39969B-page 258  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 18-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R-x, HSC  
SE0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PKTDIS  
HOSTEN  
RESUME  
PPBRST  
USBEN  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6  
Unimplemented: Read as ‘0’  
SE0: Live Single-Ended Zero Flag bit  
1= Single-ended zero is active on the USB bus  
0= No single-ended zero is detected  
bit 5  
PKTDIS: Packet Transfer Disable bit  
1= SIE token and packet processing are disabled; automatically set when a SETUP token is received  
0= SIE token and packet processing are enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
HOSTEN: Host Mode Enable bit  
1= USB host capability is enabled; pull-downs on D+ and D- are activated in hardware  
0= USB host capability is disabled  
bit 2  
bit 1  
bit 0  
RESUME: Resume Signaling Enable bit  
1= Resume signaling is activated  
0= Resume signaling is disabled  
PPBRST: Ping-Pong Buffers Reset bit  
1 = Reset all Ping-Pong Buffer Pointers to the even BD banks  
0 = Ping-Pong Buffer Pointers are not reset  
USBEN: USB Module Enable bit  
1= USB module and supporting circuitry are enabled (device attached); D+ pull-up is activated in hardware  
0= USB module and supporting circuitry are disabled (device detached)  
2010 Microchip Technology Inc.  
DS39969B-page 259  
PIC24FJ256DA210 FAMILY  
REGISTER 18-8: U1CON: USB CONTROL REGISTER (HOST MODE ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R-x, HSC  
JSTATE  
R-x, HSC  
SE0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOKBUSY  
USBRST  
HOSTEN  
RESUME  
PPBRST  
SOFEN  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
JSTATE: Live Differential Receiver J State Flag bit  
1= J state (differential ‘0’ in low speed, differential ‘1’ in full speed) is detected on the USB  
0= No J state is detected  
bit 6  
bit 5  
bit 4  
SE0: Live Single-Ended Zero Flag bit  
1= Single-ended zero is active on the USB bus  
0= No single-ended zero is detected  
TOKBUSY: Token Busy Status bit  
1= Token is being executed by the USB module in On-The-Go state  
0= No token is being executed  
USBRST: Module Reset bit  
1= USB Reset has been generated; for software Reset, application must set this bit for 50 ms, then  
clear it  
0= USB Reset is terminated  
bit 3  
bit 2  
HOSTEN: Host Mode Enable bit  
1= USB host capability is enabled; pull-downs on D+ and D- are activated in hardware  
0= USB host capability is disabled  
RESUME: Resume Signaling Enable bit  
1= Resume signaling is activated; software must set bit for 10 ms and then clear to enable remote  
wake-up  
0= Resume signaling is disabled  
bit 1  
bit 0  
PPBRST: Ping-Pong Buffers Reset bit  
1 = Reset all Ping-Pong Buffer Pointers to the even BD banks  
0 = Ping-Pong Buffer Pointers are not reset  
SOFEN: Start-Of-Frame Enable bit  
1= Start-Of-Frame token is sent every one 1 ms  
0= Start-Of-Frame token is disabled  
DS39969B-page 260  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 18-9: U1ADDR: USB ADDRESS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LSPDEN(1)  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
LSPDEN: Low-Speed Enable Indicator bit(1)  
1= USB module operates at low speed  
0= USB module operates at full speed  
bit 6-0  
ADDR<6:0>: USB Device Address bits  
Note 1: Host mode only. In Device mode, this bit is unimplemented and read as ‘0’.  
REGISTER 18-10: U1TOK: USB TOKEN REGISTER (HOST MODE ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
PID3  
R/W-0  
PID2  
R/W-0  
PID1  
R/W-0  
PID0  
R/W-0  
EP3  
R/W-0  
EP2  
R/W-0  
EP1  
R/W-0  
EP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-4  
Unimplemented: Read as ‘0’  
PID<3:0>: Token Type Identifier bits  
1101= SETUP (TX) token type transaction(1)  
1001= IN (RX) token type transaction(1)  
0001= OUT (TX) token type transaction(1)  
bit 3-0  
EP<3:0>: Token Command Endpoint Address bits  
This value must specify a valid endpoint on the attached device.  
Note 1: All other combinations are reserved and are not to be used.  
2010 Microchip Technology Inc.  
DS39969B-page 261  
PIC24FJ256DA210 FAMILY  
REGISTER 18-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
CNT7  
R/W-0  
CNT6  
R/W-0  
CNT5  
R/W-0  
CNT4  
R/W-0  
CNT3  
R/W-0  
CNT2  
R/W-0  
CNT1  
R/W-0  
CNT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
CNT<7:0>: Start-Of-Frame Size bits  
Value represents 10 + (packet size of n bytes). For example:  
0100 1010= 64-byte packet  
0010 1010= 32-byte packet  
0001 0010= 8-byte packet  
REGISTER 18-12: U1CNFG1: USB CONFIGURATION REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
UOEMON(1)  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
PPB1  
R/W-0  
PPB0  
UTEYE  
USBSIDL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
UTEYE: USB Eye Pattern Test Enable bit  
1= Eye pattern test is enabled  
0= Eye pattern test is disabled  
bit 6  
UOEMON: USB OE Monitor Enable bit(1)  
1= OE signal is active; it indicates intervals during which the D+/D- lines are driving  
0= OE signal is inactive  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
USBSIDL: USB OTG Stop in Idle Mode bit  
1= Discontinue module operation when the device enters Idle mode  
0= Continue module operation in Idle mode  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
PPB<1:0>: Ping-Pong Buffers Configuration bits  
11= Even/Odd ping-pong buffers are enabled for Endpoints 1 to 15  
10= Even/Odd ping-pong buffers are enabled for all endpoints  
01= Even/Odd ping-pong buffers are enabled for OUT Endpoint 0  
00= Even/Odd ping-pong buffers are disabled  
Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.  
DS39969B-page 262  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 18-13: U1CNFG2: USB CONFIGURATION REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
UTRDIS(1)  
(1)  
(1)  
UVCMPSEL  
PUVBUS  
EXTI2CEN UVBUSDIS  
UVCMPDIS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
UVCMPSEL: VBUS Comparator External Interface Selection bit  
1= Use VBUSVLD, SESSVLD and SESSEND as comparator interface pins  
0= Use VCMPST1 and VCMPST2 as comparator interface pins  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PUVBUS: VBUS Pull-Up Enable bit  
1= Pull-up on VBUS pin is enabled  
0= Pull-up on VBUS pin is disabled  
EXTI2CEN: I2C™ Interface For External Module Control Enable bit  
1= External module(s) is controlled via the I2C™ interface  
0= External module(s) controlled via the dedicated pins  
UVBUSDIS: On-Chip 5V Boost Regulator Builder Disable bit(1)  
1= On-chip boost regulator builder is disabled; digital output control interface is enabled  
0= On-chip boost regulator builder is active  
UVCMPDIS: On-Chip VBUS Comparator Disable bit(1)  
1= On-chip charge VBUS comparator is disabled; digital input status interface is enabled  
0= On-chip charge VBUS comparator is active  
UTRDIS: On-Chip Transceiver Disable bit(1)  
1= On-chip transceiver is disabled; digital transceiver interface is enabled  
0= On-chip transceiver is active  
Note 1: Never change these bits while the USBPWR bit is set (U1PWRC<0> = 1).  
2010 Microchip Technology Inc.  
DS39969B-page 263  
PIC24FJ256DA210 FAMILY  
18.7.2  
USB INTERRUPT REGISTERS  
REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/K-0, HS  
IDIF  
R/K-0, HS  
T1MSECIF  
R/K-0, HS  
LSTATEIF  
R/K-0, HS  
ACTVIF  
R/K-0, HS  
SESVDIF  
R/K-0, HS  
U-0  
R/K-0, HS  
VBUSVDIF  
bit 0  
SESENDIF  
bit 7  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
K = Write ‘1’ to clear bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IDIF: ID State Change Indicator bit  
1= Change in ID state is detected  
0= No ID state change is detected  
bit 6  
bit 5  
T1MSECIF: 1 Millisecond Timer bit  
1= The 1 millisecond timer has expired  
0= The 1 millisecond timer has not expired  
LSTATEIF: Line State Stable Indicator bit  
1= USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from  
the last time  
0= USB line state has not been stable for 1 ms  
bit 4  
bit 3  
bit 2  
ACTVIF: Bus Activity Indicator bit  
1= Activity on the D+/D- lines or VBUS is detected  
0= No activity on the D+/D- lines or VBUS is detected  
SESVDIF: Session Valid Change Indicator bit  
1= VBUS has crossed VA_SESS_END (as defined in the USB OTG Specification)(1)  
0= VBUS has not crossed VA_SESS_END  
SESENDIF: B-Device VBUS Change Indicator bit  
1= VBUS change on B-device detected; VBUS has crossed VB_SESS_END (as defined in the USB  
OTG Specification)(1)  
0= VBUS has not crossed VA_SESS_END  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
VBUSVDIF: A-Device VBUS Change Indicator bit  
1= VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB  
OTG Specification)(1)  
0= No VBUS change on A-device is detected  
Note 1: VBUS threshold crossings may be either rising or falling.  
Note:  
Individual bits can only be cleared by writing a ‘1’ to the bit position as part of a word write operation on the  
entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause  
all set bits at the moment of the write to become cleared.  
DS39969B-page 264  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 18-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IDIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
VBUSVDIE  
bit 0  
T1MSECIE  
LSTATEIE  
ACTVIE  
SESVDIE  
SESENDIE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IDIE: ID Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
T1MSECIE: 1 Millisecond Timer Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
LSTATEIE: Line State Stable Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
ACTVIE: Bus Activity Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
SESVDIE: Session Valid Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
SESENDIE: B-Device Session End Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 265  
PIC24FJ256DA210 FAMILY  
REGISTER 18-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/K-0, HS  
STALLIF  
U-0  
R/K-0, HS  
R/K-0, HS  
IDLEIF  
R/K-0, HS  
TRNIF  
R/K-0, HS  
SOFIF  
R-0  
R/K-0, HS  
URSTIF  
RESUMEIF  
UERRIF  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
K = Write ‘1’ to clear bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
STALLIF: STALL Handshake Interrupt bit  
1= A STALL handshake was sent by the peripheral during the handshake phase of the transaction in  
Device mode  
0= A STALL handshake has not been sent  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
RESUMEIF: Resume Interrupt bit  
1= A K-state is observed on the D+ or D- pin for 2.5 s (differential ‘1’ for low speed, differential ‘0’ for  
full speed)  
0= No K-state is observed  
bit 4  
bit 3  
IDLEIF: Idle Detect Interrupt bit  
1= Idle condition is detected (constant Idle state of 3 ms or more)  
0= No Idle condition is detected  
TRNIF: Token Processing Complete Interrupt bit  
1= Processing of the current token is complete; read the U1STAT register for endpoint information  
0= Processing of the current token is not complete; clear the U1STAT register or load the next token  
from STAT (clearing this bit causes the STAT FIFO to advance)  
bit 2  
bit 1  
bit 0  
SOFIF: Start-Of-Frame Token Interrupt bit  
1= A Start-Of-Frame token is received by the peripheral or the Start-Of-Frame threshold is reached by  
the host  
0= No Start-Of-Frame token is received or threshold reached  
UERRIF: USB Error Condition Interrupt bit (read-only)  
1= An unmasked error condition has occurred; only error states enabled in the U1EIE register can set  
this bit  
0= No unmasked error condition has occurred  
URSTIF: USB Reset Interrupt bit  
1= Valid USB Reset has occurred for at least 2.5 s; Reset state must be cleared before this bit can  
be reasserted  
0= No USB Reset has occurred. Individual bits can only be cleared by writing a ‘1’ to the bit position  
as part of a word write operation on the entire register. Using Boolean instructions or bitwise oper-  
ations to write to a single bit position will cause all set bits at the moment of the write to become  
cleared.  
Note:  
Individual bits can only be cleared by writing a ‘1’ to the bit position as part of a word write operation on the  
entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause  
all set bits at the moment of the write to become cleared.  
DS39969B-page 266  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 18-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/K-0, HS  
STALLIF  
R/K-0, HS  
ATTACHIF  
R/K-0, HS  
R/K-0, HS  
IDLEIF  
R/K-0, HS  
TRNIF  
R/K-0, HS  
SOFIF  
R-0  
R/K-0, HS  
DETACHIF  
bit 0  
RESUMEIF  
UERRIF  
bit 7  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
K = Write ‘1’ to clear bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
STALLIF: STALL Handshake Interrupt bit  
1= A STALL handshake was sent by the peripheral device during the handshake phase of the  
transaction in Device mode  
0= A STALL handshake has not been sent  
bit 6  
bit 5  
ATTACHIF: Peripheral Attach Interrupt bit  
1= A peripheral attachment has been detected by the module; it is set if the bus state is not SE0 and  
there has been no bus activity for 2.5 s  
0= No peripheral attacement has been detected  
RESUMEIF: Resume Interrupt bit  
1= A K-state is observed on the D+ or D- pin for 2.5 s (differential ‘1’ for low speed, differential ‘0’ for  
full speed)  
0= No K-state is observed  
bit 4  
bit 3  
IDLEIF: Idle Detect Interrupt bit  
1= Idle condition is detected (constant Idle state of 3 ms or more)  
0= No Idle condition is detected  
TRNIF: Token Processing Complete Interrupt bit  
1= Processing of the current token is complete; read the U1STAT register for endpoint information  
0= Processing of the current token not complete; clear the U1STAT register or load the next token  
from U1STAT  
bit 2  
bit 1  
SOFIF: Start-Of-Frame Token Interrupt bit  
1= A Start-Of-Frame token received by the peripheral or the Start-Of-Frame threshold reached by the host  
0= No Start-Of-Frame token received or threshold reached  
UERRIF: USB Error Condition Interrupt bit  
1= An unmasked error condition has occurred; only error states enabled in the U1EIE register can set  
this bit  
0= No unmasked error condition has occurred  
bit 0  
DETACHIF: Detach Interrupt bit  
1= A peripheral detachment has been detected by the module; Reset state must be cleared before  
this bit can be reasserted  
0= No peripheral detachment is detected. Individual bits can only be cleared by writing a ‘1’ to the bit  
position as part of a word write operation on the entire register. Using Boolean instructions or bit-  
wise operations to write to a single bit position will cause all set bits at the moment of the write to  
become cleared.  
Note:  
Individual bits can only be cleared by writing a ‘1’ to the bit position as part of a word write operation on the  
entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause  
all set bits at the moment of the write to become cleared.  
2010 Microchip Technology Inc.  
DS39969B-page 267  
PIC24FJ256DA210 FAMILY  
REGISTER 18-18: U1IE: USB INTERRUPT ENABLE REGISTER (ALL USB MODES)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRNIE  
R/W-0  
SOFIE  
R/W-0  
R/W-0  
URSTIE  
DETACHIE  
bit 0  
STALLIE  
ATTACHIE(1) RESUMEIE  
IDLEIE  
UERRIE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
STALLIE: STALL Handshake Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
ATTACHIE: Peripheral Attach Interrupt bit (Host mode only)(1)  
1= Interrupt is enabled  
0= Interrupt is disabled  
RESUMEIE: Resume Interrupt bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
IDLEIE: Idle Detect Interrupt bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
TRNIE: Token Processing Complete Interrupt bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
SOFIE: Start-Of-Frame Token Interrupt bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
UERRIE: USB Error Condition Interrupt bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
URSTIE or DETACHIE: USB Reset Interrupt (Device mode) or USB Detach Interrupt (Host mode)  
Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
Note 1: Unimplemented in Device mode, read as ‘0’.  
DS39969B-page 268  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 18-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/K-0, HS  
BTSEF  
U-0  
R/K-0, HS  
DMAEF  
R/K-0, HS  
BTOEF  
R/K-0, HS  
DFN8EF  
R/K-0, HS  
CRC16EF  
R/K-0, HS  
CRC5EF  
EOFEF  
R/K-0, HS  
PIDEF  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
K = Write ‘1’ to clear bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
BTSEF: Bit Stuff Error Flag bit  
1= Bit stuff error has been detected  
0= No bit stuff error has been detected  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
DMAEF: DMA Error Flag bit  
1= A USB DMA error condition is detected; the data size indicated by the BD byte count field is less  
than the number of received bytes, the received data is truncated  
0= No DMA error  
bit 4  
bit 3  
bit 2  
bit 1  
BTOEF: Bus Turnaround Time-out Error Flag bit  
1= Bus turnaround time-out has occurred  
0= No bus turnaround time-out  
DFN8EF: Data Field Size Error Flag bit  
1= Data field was not an integral number of bytes  
0= Data field was an integral number of bytes  
CRC16EF: CRC16 Failure Flag bit  
1= CRC16 failed  
0= CRC16 passed  
For Device mode:  
CRC5EF: CRC5 Host Error Flag bit  
1= Token packet is rejected due to CRC5 error  
0= Token packet is accepted (no CRC5 error)  
For Host mode:  
EOFEF: End-Of-Frame Error Flag bit  
1= End-Of-Frame error has occurred  
0= End-Of-Frame interrupt is disabled  
bit 0  
PIDEF: PID Check Failure Flag bit  
1= PID check failed  
0= PID check passed  
Note:  
Individual bits can only be cleared by writing a ‘1’ to the bit position as part of a word write operation on the  
entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause  
all set bits at the moment of the write to become cleared.  
2010 Microchip Technology Inc.  
DS39969B-page 269  
PIC24FJ256DA210 FAMILY  
REGISTER 18-20: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CRC5EE  
EOFEE  
R/W-0  
PIDEE  
BTSEE  
DMAEE  
BTOEE  
DFN8EE  
CRC16EE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
BTSEE: Bit Stuff Error Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
DMAEE: DMA Error Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
bit 4  
bit 3  
bit 2  
bit 1  
BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
DFN8EE: Data Field Size Error Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
CRC16EE: CRC16 Failure Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
For Device mode:  
CRC5EE: CRC5 Host Error Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
For Host mode:  
EOFEE: End-of-Frame Error interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
bit 0  
PIDEE: PID Check Failure Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
DS39969B-page 270  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
18.7.3  
USB ENDPOINT MANAGEMENT REGISTERS  
REGISTER 18-21: U1EPn: USB ENDPOINT n CONTROL REGISTERS (n = 0 TO 15)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
LSPD(1)  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(1)  
RETRYDIS  
EPCONDIS  
EPRXEN  
EPTXEN  
EPSTALL  
EPHSHK  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
LSPD: Low-Speed Direct Connection Enable bit (U1EP0 only)(1)  
1= Direct connection to a low-speed device is enabled  
0= Direct connection to a low-speed device is disabled  
bit 6  
RETRYDIS: Retry Disable bit (U1EP0 only)(1)  
1= Retry NAK transactions is disabled  
0= Retry NAK transactions is enabled; retry is done in hardware  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EPCONDIS: Bidirectional Endpoint Control bit  
If EPTXEN and EPRXEN = 1:  
1= Disable Endpoint n from control transfers; only TX and RX transfers are allowed  
0= Enable Endpoint n for control (SETUP) transfers; TX and RX transfers are also allowed  
For all other combinations of EPTXEN and EPRXEN:  
This bit is ignored.  
bit 3  
bit 2  
bit 1  
bit 0  
EPRXEN: Endpoint Receive Enable bit  
1= Endpoint n receive is enabled  
0= Endpoint n receive is disabled  
EPTXEN: Endpoint Transmit Enable bit  
1= Endpoint n transmit is enabled  
0= Endpoint n transmit is disabled  
EPSTALL: Endpoint Stall Status bit  
1= Endpoint n was stalled  
0= Endpoint n was not stalled  
EPHSHK: Endpoint Handshake Enable bit  
1= Endpoint handshake is enabled  
0= Endpoint handshake is disabled (typically used for isochronous endpoints)  
Note 1: These bits are available only for U1EP0 and only in Host mode. For all other U1EPn registers, these bits  
are always unimplemented and read as ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 271  
PIC24FJ256DA210 FAMILY  
18.7.4  
USB VBUS POWER CONTROL REGISTER  
REGISTER 18-22: U1PWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PWMEN  
PWMPOL  
CNTEN  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PWMEN: PWM Enable bit  
1= PWM generator is enabled  
0= PWM generator is disabled; output is held in the Reset state specified by PWMPOL  
bit 14-10  
bit 9  
Unimplemented: Read as ‘0’  
PWMPOL: PWM Polarity bit  
1= PWM output is active-low and resets high  
0= PWM output is active-high and resets low  
bit 8  
CNTEN: PWM Counter Enable bit  
1= Counter is enabled  
0= Counter is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS39969B-page 272  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Key features of the EPMP module are:  
19.0 ENHANCED PARALLEL  
MASTER PORT (EPMP)  
• Extended Data Space (EDS) interface allows  
Direct Access from the CPU  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
• Up to 23 Programmable Address Lines  
• Up to 2 Chip Select Lines  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 42. “Enhanced Parallel Master  
Port (EPMP)” (DS39730). The informa-  
tion in this data sheet supersedes the  
information in the FRM.  
• Up to 2 Acknowledgement Lines (one per chip  
select)  
• 4-bit, 8-bit or 16-bit wide Data Bus  
• Programmable Strobe Options (per chip select)  
- Individual Read and Write Strobes or;  
- Read/Write Strobe with Enable Strobe  
• Programmable Address/Data Multiplexing  
• Programmable Address Wait States  
The Enhanced Parallel Master Port (EPMP) module is  
present in PIC24FJXXXDAX10 devices and not in  
PIC24FJXXXDAX06 devices. The EPMP provides a  
parallel 4-bit (Master mode only), 8-bit (Master and  
Slave modes) or 16-bit (Master mode only) data bus  
interface to communicate with off-chip modules, such  
as memories, FIFOs, LCD controllers and other micro-  
controllers. This module can serve as either the master  
or the slave on the communication bus. For EPMP  
Master modes, all external addresses are mapped into  
the internal Extended Data Space (EDS). This is done  
by allocating a region of the EDS for each chip select,  
and then assigning each chip select to a particular  
external resource, such as a memory or external con-  
troller. This region should not be assigned to another  
device resource, such as RAM or SFRs. To perform a  
write or read on an external resource, the CPU should  
simply perform a write or read within the address range  
assigned for EPMP.  
• Programmable Data Wait States (per chip select)  
• Programmable Polarity on Control Signals (per  
chip select)  
• Legacy Parallel Slave Port Support  
• Enhanced Parallel Slave Support  
- Address Support  
- 4-Byte Deep Auto-Incrementing Buffer  
• Alternate Master feature  
19.1 ALTPMP Setting  
Many of the lower order EPMP address pins are shared  
with ADC inputs. This is an untenable situation for  
users that need both the ADC channels and the EPMP  
bus. If the user does not need to use all the address  
bits, then by clearing the ALTPMP (CW3<12>) Config-  
uration bit, the lower order address bits can be mapped  
to higher address pins, which frees the ADC channels.  
Note:  
The EPMP module is not present in 64-pin  
devices (PIC24FJXXXDAX06).  
The EPMP has an alternative master feature. The  
graphics controller module can control the EPMP  
directly in Alternate Master mode to access an external  
graphics buffer.  
TABLE 19-1: ALTERNATE EPMP PINS  
Pin  
ALTPMP = 0  
ALTPMP = 1  
RA14  
RC4  
RF12  
RG6  
RG7  
RA3  
RG8  
RA4  
PMCS2  
PMA22  
PMA5  
PMA22  
PMCS2  
PMA18  
PMA5  
PMA18  
PMA20  
PMA4  
PMA4  
PMA20  
PMA3  
PMA21  
PMA3  
PMA21  
2010 Microchip Technology Inc.  
DS39969B-page 273  
PIC24FJ256DA210 FAMILY  
TABLE 19-2: PARALLEL MASTER PORT PIN DESCRIPTION  
Pin Name  
Type  
Description  
Address bus bits<22-16>  
PMA<22:16>  
O
O
Address bus bit<15>  
O
Chip Select 2 (alternate location)  
PMA<15>, PMCS2  
I/O  
Data bus bit<15> when port size is 16 bits and address is  
multiplexed  
O
O
Address bus bit<14>  
Chip Select 1 (alternate location)  
PMA<14>, PMCS1  
PMA<13:8>  
I/O  
Data bus bit 14 when port size is 16-bit and address is  
multiplexed  
O
Address bus bit< 13-8>  
I/O  
Data bus bits<13-8> when port size is 16 bits and address  
is multiplexed  
PMA<7:3>  
O
O
Address bus bit< 7-3>  
PMA<2>, PMALU  
Address bus bit<2>  
O
Address latch upper strobe for multiplexed address  
Address bus bit<1>  
I/O  
O
PMA<1>, PMALH  
Address latch high strobe for multiplexed address  
Address bus bit<0>  
I/O  
O
PMA<0>, PMALL  
PMD<15:8>  
Address latch low strobe for multiplexed address  
Data bus bits<15-8> when address is not multiplexed  
Data bus bits<7-4>  
I/O  
I/O  
O
PMD<7:4>  
Address bus bits<7-4> when port size is 4 bits and address  
is multiplexed with 1 address phase  
PMD<3:0>  
PMCS1  
I/O  
I/O  
O
Data bus bits<3-0>  
Chip Select 1  
PMCS2  
Chip Select 2  
PMWR, PMENB  
I/O  
I/O  
Write strobe or Enable signal depending on Strobe mode  
Read strobe or Read/Write signal depending on Strobe  
mode  
PMRD, PMRD/PMWR  
PMBE1  
PMBE0  
O
O
I
Byte indicator  
Nibble or byte indicator  
Acknowledgment 1  
Acknowledgment 2  
PMACK1  
PMACK2  
I
DS39969B-page 274  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 19-1: PMCON1: EPMP CONTROL REGISTER 1  
R/W-0  
U-0  
R/W-0  
PSIDL  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
PMPEN  
ADRMUX1  
ADRMUX0  
MODE1  
MODE0  
bit 15  
bit 8  
R/W-0  
CSF1  
R/W-0  
CSF0  
R/W-0  
ALP  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ALMODE  
BUSKEEP  
IRQM1  
IRQM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
PMPEN: Parallel Master Port Enable bit  
1= EPMP is enabled  
0= EPMP is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11  
ADRMUX<1:0>: Address/Data Multiplexing Selection bits  
11= Lower address bits are multiplexed with data bits using 3 address phases  
10= Lower address bits are multiplexed with data bits using 2 address phases  
01= Lower address bits are multiplexed with data bits using 1 address phase  
00= Address and data appear on separate pins  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
MODE<1:0>: Parallel Port Mode Select bits  
11= Master mode  
10= Enhanced PSP; pins used are PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>  
01= Buffered PSP; pins used are PMRD, PMWR, PMCS and PMD<7:0>  
00= Legacy Parallel Slave Port; PMRD, PMWR, PMCS and PMD<7:0> pins are used  
bit 7-6  
CSF<1:0>: Chip Select Function bits  
11= Reserved  
10= PMA<15> used for Chip Select 2, PMA<14> used for Chip Select 1  
01= PMA<15> used for Chip Select 2, PMCS1 used for Chip Select 1  
00= PMCS2 used for Chip Select 2, PMCS1 used for Chip Select 1  
bit 5  
bit 4  
ALP: Address Latch Polarity bit  
1= Active-high (PMALL, PMALH and PMALU)  
0= Active-low (PMALL, PMALH and PMALU)  
ALMODE: Address Latch Strobe Mode bit  
1= Enable “smart” address strobes (each address phase is only present if the current access would  
cause a different address in the latch than the previous address)  
0= Disable “smart” address strobes  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BUSKEEP: Bus Keeper bit  
1= Data bus keeps its last value when not actively being driven  
0= Data bus is in high-impedance state when not actively being driven  
bit 1-0  
IRQM<1:0>: Interrupt Request Mode bits  
11= Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode),  
or on a read or write operation when PMA<1:0> = 11(Addressable PSP mode only)  
10= Reserved  
01= Interrupt generated at the end of a read/write cycle  
00= No interrupt is generated  
2010 Microchip Technology Inc.  
DS39969B-page 275  
PIC24FJ256DA210 FAMILY  
REGISTER 19-2: PMCON2: EPMP CONTROL REGISTER 2  
R-0, HSC  
BUSY  
U-0  
R/C-0, HS  
ERROR  
R/C-0, HS  
TIMEOUT  
R-0, HSC  
AMREQ  
R-1, HSC  
CURMST  
R/W-0  
R/W-0  
MSTSEL1 MSTSEL0  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RADDR23 RADDR22  
bit 7  
RADDR21  
RADDR20  
RADDR19  
RADDR18  
RADDR17 RADDR16  
bit 0  
Legend:  
HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’ C = Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
BUSY: Busy bit (Master mode only)  
1= Port is busy  
0= Port is not busy  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ERROR: Error bit  
1= Transaction error (illegal transaction was requested)  
0= Transaction completed successfully  
bit 12  
bit 11  
bit 10  
bit 9-8  
TIMEOUT: Time-Out bit  
1= Transaction timed out  
0= Transaction completed successfully  
AMREQ: Alternate Master Request bit  
1= The Alternate Master is requesting use of EPMP  
0= The Alternate Master is not requesting use of EPMP  
CURMST: Current Master bit  
1= EPMP access is granted to CPU  
0= EPMP access is granted to alternate master  
MSTSEL<1:0>: Parallel Port Master Select bits  
11= Alternate master I/Os direct access (EPMP Bypass mode)  
10= Reserved  
01= Alternate master  
00= CPU  
bit 7-0  
RADDR<23:16>: Parallel Master Port Reserved Address Space bits(1)  
Note 1: If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be 0xFFFFFF.  
DS39969B-page 276  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 19-3: PMCON3: EPMP CONTROL REGISTER 3  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PTWREN  
PTRDEN  
PTBE1EN  
PTBE0EN  
AWAITM1  
AWAITM0  
AWAITE  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN22  
PTEN21  
PTEN20  
PTEN19  
PTEN18  
PTEN17  
PTEN16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
PTWREN: Write/Enable Strobe Port Enable bit  
1= PMWR/PMENB port is enabled  
0= PMWR/PMENB port is disabled  
PTRDEN: Read/Write Strobe Port Enable bit  
1= PMRD/PMWR port is enabled  
0= PMRD/PMWR port is disabled  
PTBE1EN: High Nibble/Byte Enable Port Enable bit  
1= PMBE1 port is enabled  
0= PMBE1 port is disabled  
PTBE0EN: Low Nibble/Byte Enable Port Enable bit  
1= PMBE0 port is enabled  
0= PMBE0 port is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-9  
AWAITM<1:0>: Address Latch Strobe Wait States bits  
11= Wait of 3½ TCY  
10= Wait of 2½ TCY  
01= Wait of 1½ TCY  
00= Wait of ½ TCY  
bit bit 8  
AWAITE: Address Hold After Address Latch Strobe Wait States bits  
1= Wait of 1¼ TCY  
0= Wait of ¼ TCY  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
PTEN<22:16>: EPMP Address Port Enable bits  
1= PMA<22:16> function as EPMP address lines  
0= PMA<22:16> function as port I/Os  
2010 Microchip Technology Inc.  
DS39969B-page 277  
PIC24FJ256DA210 FAMILY  
REGISTER 19-4: PMCON4: EPMP CONTROL REGISTER 4  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN15  
PTEN14  
PTEN13  
PTEN12  
PTEN11  
PTEN10  
PTEN9  
PTEN8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN7  
PTEN6  
PTEN5  
PTEN4  
PTEN3  
PTEN2  
PTEN1  
PTEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
PTEN15: PMA15 Port Enable bit  
1= PMA15 functions as either Address Line 15 or Chip Select 2  
0= PMA15 functions as port I/O  
bit 14  
PTEN14: PMA14 Port Enable bit  
1= PMA14 functions as either Address Line 14 or Chip Select 1  
0= PMA14 functions as port I/O  
bit 13-3  
bit 2-0  
PTEN<13:3>: EPMP Address Port Enable bits  
1= PMA<13:3> function as EPMP address lines  
0= PMA<13:3> function as port I/Os  
PTEN<2:0>: PMALU/PMALH/PMALL Strobe Enable bits  
1= PMA<2:0> function as either address lines or address latch strobes  
0= PMA<2:0> function as port I/Os  
DS39969B-page 278  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 19-5: PMCSxCF: CHIP SELECT x CONFIGURATION REGISTER  
R/W-0  
CSDIS  
R/W-0  
CSP  
R/W-0  
R/W-0  
BEP  
U-0  
R/W-0  
WRSP  
R/W-0  
RDSP  
R/W-0  
SM  
CSPTEN  
bit 15  
bit 8  
R/W-0  
ACKP  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PTSZ1  
PTSZ0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
CSDIS: Chip Select x Disable bit  
1= Disable the Chip Select x functionality  
0= Enable the Chip Select x functionality  
CSP: Chip Select x Polarity bit  
1= Active-high (PMCSx)  
0= Active-low (PMCSx)  
CSPTEN: PMCSx Port Enable bit  
1= PMCSx port is enabled  
0= PMCSx port is disabled  
BEP: Chip Select x Nibble/Byte Enable Polarity bit  
1= Nibble/Byte enable active-high (PMBE0, PMBE1)  
0= Nibble/Byte enable active-low (PMBE0, PMBE1)  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
WRSP: Chip Select x Write Strobe Polarity bit  
For Slave modes and Master mode when SM = 0:  
1= Write strobe active-high (PMWR)  
0= Write strobe active-low (PMWR)  
For Master mode when SM = 1:  
1= Enable strobe active-high (PMENB)  
0= Enable strobe active-low (PMENB)  
bit 9  
RDSP: Chip Select x Read Strobe Polarity bit  
For Slave modes and Master mode when SM = 0:  
1= Read strobe active-high (PMRD)  
0= Read strobe active-low (PMRD)  
For Master mode when SM = 1:  
1= Read/write strobe active-high (PMRD/PMWR)  
0= Read/Write strobe active-low (PMRD/PMWR)  
bit 8  
SM: Chip Select x Strobe Mode bit  
1= Read/Write and enable strobes (PMRD/PMWR and PMENB)  
0= Read and write strobes (PMRD and PMWR)  
bit 7  
ACKP: Chip Select x Acknowledge Polarity bit  
1= ACK active-high (PMACK1)  
0= ACK active-low (PMACK1)  
bit 6-5  
PTSZ<1:0>: Chip Select x Port Size bits  
11= Reserved  
10= 16-bit port size (PMD<15:0>)  
01= 4-bit port size (PMD<3:0>)  
00= 8-bit port size (PMD<7:0>)  
bit 4-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39969B-page 279  
PIC24FJ256DA210 FAMILY  
REGISTER 19-6: PMCSxBS: CHIP SELECT x BASE ADDRESS REGISTER  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
R/W(1)  
BASE23  
BASE22  
BASE21  
BASE20  
BASE19  
BASE18  
BASE17  
BASE16  
bit 15  
bit 8  
R/W(1)  
U-0  
U-0  
U-0  
R/W(1)  
U-0  
U-0  
U-0  
BASE15  
BASE11  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
bit 3  
BASE<23:15>: Chip Select x Base Address bits(2)  
Unimplemented: Read as ‘0’  
BASE<11>: Chip Select x Base Address bits(2)  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: Value at POR is 0x0200 for PMCS1BS and 0x0600 for PMCS2BS.  
2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for the Chip  
Select 1 will be 0xFFFFFF. In this case, the Chip Select 2 should not be used. PMCS1BS has no such  
feature.  
DS39969B-page 280  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 19-7: PMCSxMD: CHIP SELECT x MODE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
ACKM1  
ACKM0  
AMWAIT2  
AMWAIT1  
AMWAIT0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DWAITB1  
DWAITB0  
DWAITM3  
DWAITM2  
DWAITM1  
DWAITM0  
DWAITE1  
DWAITE0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
ACKM<1:0>: Chip Select x Acknowledge Mode bits  
11= Reserved  
10= PMACKx is used to determine when a read/write operation is complete  
01= PMACKx is used to determine when a read/write operation is complete with time-out  
If DWAITM<3:0> = 0000, the maximum time-out is 255 TCY, else it is DWAITM<3:0> cycles.  
00= PMACKx is not used  
bit 13-11  
AMWAIT<2:0>: Chip Select x Alternate Master Wait States bits  
111= Wait of 10 alternate master cycles  
. . .  
001= Wait of 4 alternate master cycles  
000= Wait of 3 alternate master cycles  
bit 10-8  
bit 7-6  
Unimplemented: Read as ‘0’  
DWAITB<1:0>: Chip Select x Data Setup Before Read/Write Strobe Wait States bits  
11= Wait of 3¼ TCY  
10= Wait of 2¼ TCY  
01= Wait of 1¼ TCY  
00= Wait of ¼ TCY  
bit 5-2  
DWAITM<3:0>: Chip Select x Data Read/Write Strobe Wait States bits  
For Write operations:  
1111= Wait of 15½ TCY  
. . .  
0001= Wait of 1½ TCY  
0000= Wait of ½ TCY  
For Read operations:  
1111= Wait of 15¾ TCY  
. . .  
0001= Wait of 1¾ TCY  
0000= Wait of ¾ TCY  
bit 1-0  
DWAITE<1:0>: Chip Select x Data Hold After Read/Write Strobe Wait States bits  
For Write operations:  
11= Wait of 3¼ TCY  
10= Wait of 2¼ TCY  
01= Wait of 1¼ TCY  
00= Wait of ¼ TCY  
For Read operations:  
11= Wait of 3 TCY  
10= Wait of 2 TCY  
01= Wait of 1 TCY  
00= Wait of 0 TCY  
2010 Microchip Technology Inc.  
DS39969B-page 281  
PIC24FJ256DA210 FAMILY  
REGISTER 19-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)  
R-0, HSC R/W-0 HS  
IBF IBOV  
bit 15  
U-0  
U-0  
R-0, HSC  
IB3F  
R-0, HSC  
IB2F  
R-0, HSC  
IB1F  
R-0, HSC  
IB0F  
bit 8  
R-1, HSC R/W-0 HS  
OBE OBUF  
bit 7  
U-0  
U-0  
R-1, HSC  
OB3E  
R-1, HSC  
OB2E  
R-1, HSC  
OB1E  
R-1, HSC  
OB0E  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
bit 14  
IBF: Input Buffer Full Status bit  
1= All writable input buffer registers are full  
0= Some or all of the writable input buffer registers are empty  
IBOV: Input Buffer Overflow Status bit  
1= A write attempt to a full input register occurred (must be cleared in software)  
0= No overflow occurred  
bit 13-12  
bit 11-8  
Unimplemented: Read as ‘0’  
IBxF: Input Buffer x Status Full bit(1)  
1= Input buffer contains unread data (reading buffer will clear this bit)  
0= Input buffer does not contain unread data  
bit 7  
bit 6  
OBE: Output Buffer Empty Status bit  
1= All readable output buffer registers are empty  
0= Some or all of the readable output buffer registers are full  
OBUF: Output Buffer Underflow Status bit  
1= A read occurred from an empty output register (must be cleared in software)  
0= No underflow occurred  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
OBxE: Output Buffer x Status Empty bit  
1= Output buffer is empty (writing data to the buffer will clear this bit)  
0= Output buffer contains untransmitted data  
Note 1: Even though an individual bit represents the byte in the buffer, the bits corresponding to the Word (byte 0  
and 1, or byte 2 and 3) gets cleared even on byte reading.  
DS39969B-page 282  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 19-9: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PMPTTL(2)  
bit 0  
(1)  
RTSECSEL  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
PMPTTL: EPMP Module TTL Input Buffer Select bit(2)  
1= EPMP module inputs (PMDx, PMCS1) use TTL input buffers  
0= EPMP module inputs use Schmitt Trigger input buffers  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.  
2: Unimplemented in 64-pin devices (PIC24FJXXXDAX06); maintain as ‘0’.  
2010 Microchip Technology Inc.  
DS39969B-page 283  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 284  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
• Visibility of half of one second period  
20.0 REAL-TIME CLOCK AND  
CALENDAR (RTCC)  
• Provides calendar – weekday, date, month and  
year  
Note:  
This data sheet summarizes the features  
• Alarm configurable for half a second, one  
second,10 seconds, one minute, 10 minutes, one  
hour, one day, one week, one month or one year  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 29. “Real-Time Clock and  
Calendar (RTCC)” (DS39696). The  
• Alarm repeat with decrementing counter  
• Alarm with indefinite repeat chime  
Year, 2000 to 2099, leap year correction  
• BCD format for smaller software overhead  
• Optimized for long-term battery operation  
information  
in  
this  
data  
sheet  
supersedes the information in the FRM.  
• User calibration of the 32.768 kHz clock  
crystal/32K INTRC frequency with periodic  
auto-adjust  
The Real-Time Clock and Calendar (RTCC) provides a  
function that can be calibrated.  
Key features of the RTCC module are:  
• Operates in Sleep mode  
- Calibration to within ±2.64 seconds error per  
month  
• Provides hours, minutes and seconds using  
24-hour format  
- Calibrates up to 260 ppm of crystal error  
FIGURE 20-1:  
RTCC BLOCK DIAGRAM  
CPU Clock Domain  
RTCC Clock Domain  
32.768 kHz Input  
from SOSC  
RCFGCAL  
RTCC Prescalers  
0.5s  
ALCFGRPT  
YEAR  
MTHDY  
RTCVAL  
RTCC Timer  
Alarm  
WKDYHR  
MINSEC  
Event  
Comparator  
ALMTHDY  
Compare Registers  
with Masks  
ALRMVAL  
ALWDHR  
ALMINSEC  
Repeat Counter  
RTCC Interrupt  
RTCC Interrupt Logic  
Alarm Pulse  
RTCC Pin  
RTCOE  
2010 Microchip Technology Inc.  
DS39969B-page 285  
PIC24FJ256DA210 FAMILY  
TABLE 20-2: ALRMVAL REGISTER  
20.1 RTCC Module Registers  
MAPPING  
The RTCC module registers are organized into three  
categories:  
Alarm Value Register Window  
ALRMPTR  
<1:0>  
• RTCC Control Registers  
• RTCC Value Registers  
• Alarm Value Registers  
ALRMVAL<15:8> ALRMVAL<7:0>  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
20.1.1  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Time registers are accessed through the corre-  
sponding register pointers. The RTCC Value register  
window (RTCVALH and RTCVALL) uses the RTCPTR  
bits (RCFGCAL<9:8>) to select the desired Timer  
register pair (see Table 20-1).  
Considering that the 16-bit core does not distinguish  
between 8-bit and 16-bit read operations, the user must  
be aware that when reading either the ALRMVALH or  
ALRMVALL bytes, they will decrement the  
ALRMPTR<1:0> value. The same applies to the  
RTCVALH or RTCVALL bytes with the RTCPTR<1:0>  
being decremented.  
By writing the RTCVALH byte, the RTCC Pointer value,  
RTCPTR<1:0> bits, decrement by one until they reach  
00’. Once they reach ‘00’, the MINUTES and  
SECONDS value will be accessible through RTCVALH  
and RTCVALL until the pointer value is manually  
changed.  
Note:  
This only applies to read operations and  
not write operations.  
20.1.2  
WRITE LOCK  
In order to perform a write to any of the RTCC Timer  
registers, the RTCWREN (RCFGCAL<13>) bit must be  
set (refer to Example 20-1).  
TABLE 20-1: RTCVAL REGISTER MAPPING  
RTCC Value Register Window  
RTCPTR  
<1:0>  
Note:  
To avoid accidental writes to the timer, it is  
recommended that the RTCWREN bit  
(RCFGCAL<13>) is kept clear at any  
other time. For the RTCWREN bit to be  
set, there is only 1 instruction cycle time  
window allowed between the unlock  
sequence and the setting of RTCWREN;  
therefore, it is recommended that code  
follow the procedure in Example 20-1.  
RTCVAL<15:8> RTCVAL<7:0>  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
YEAR  
The Alarm Value register window (ALRMVALH and  
ALRMVALL) uses the ALRMPTR bits  
(ALCFGRPT<9:8>) to select the desired Alarm register  
pair (see Table 20-2).  
For applications written in C, the unlock  
sequence should be implemented using  
in-line assembly.  
By writing the ALRMVALH byte, the Alarm Pointer  
value bits, ALRMPTR<1:0>, decrement by one until  
they reach ‘00’. Once they reach ‘00’, the ALRMMIN  
and ALRMSEC value will be accessible through  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
EXAMPLE 20-1:  
SETTING THE RTCWREN BIT  
asm volatile("disi #5");  
asm volatile("mov #0x55, w7");  
asm volatile("mov w7, _NVMKEY");  
asm volatile("mov #0xAA, w8");  
asm volatile("mov w8, _NVMKEY");  
asm volatile("bset _RCFGCAL, #13");  
//set the RTCWREN bit  
DS39969B-page 286  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
20.1.3  
RTCC CONTROL REGISTERS  
REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)  
R/W-0  
RTCEN(2)  
U-0  
R/W-0  
R-0, HSC  
RTCSYNC HALFSEC(3)  
R-0, HSC  
R/W-0  
R/W-0, HSC R/W-0, HSC  
RTCWREN  
RTCOE  
RTCPTR1  
RTCPTR0  
bit 8  
bit 15  
R/W-0  
CAL7  
R/W-0  
CAL6  
R/W-0  
CAL5  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
RTCEN: RTCC Enable bit(2)  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 12  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple  
resulting in an invalid data read. If the register is read twice and results in the same data, the data  
can be assumed to be valid.  
0= RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple  
bit 11  
bit 10  
bit 9-8  
HALFSEC: Half-Second Status bit(3)  
1= Second half period of a second  
0= First half period of a second  
RTCOE: RTCC Output Enable bit  
1= RTCC output is enabled  
0= RTCC output is disabled  
RTCPTR<1:0>: RTCC Value Register Window Pointer bits  
Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers.  
The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.  
RTCVAL<15:8>:  
11= Reserved  
10= MONTH  
01= WEEKDAY  
00= MINUTES  
RTCVAL<7:0>:  
11= YEAR  
10= DAY  
01= HOURS  
00= SECONDS  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only. It is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
2010 Microchip Technology Inc.  
DS39969B-page 287  
PIC24FJ256DA210 FAMILY  
REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)  
bit 7-0  
CAL<7:0>: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 508 RTC clock pulses every one minute  
.
.
.
11111111= Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute  
00000001= Minimum positive adjustment; adds 4 RTC clock pulses every one minute  
00000000= No adjustment  
.
.
.
10000000= Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only. It is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
REGISTER 20-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
(1)  
RTSECSEL  
PMPTTL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
PMPTTL: EPMP Module TTL Input Buffer Select bit  
1= EPMP module inputs (PMDx, PMCS1) use TTL input buffers  
0= EPMP module inputs use Schmitt Trigger input buffers  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.  
DS39969B-page 288  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 20-3: ALCFGRPT: ALARM CONFIGURATION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0, HSC R/W-0, HSC  
ALRMPTR1 ALRMPTR0  
bit 8  
ALRMEN  
CHIME  
AMASK3  
AMASK2  
AMASK1  
AMASK0  
bit 15  
R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0  
bit 7 bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and  
CHIME = 0)  
0= Alarm is disabled  
bit 14  
CHIME: Chime Enable bit  
1= Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh  
0= Chime is disabled; ARPT<7:0> bits stop once they reach 00h  
bit 13-10  
AMASK<3:0>: Alarm Mask Configuration bits  
11xx= Reserved – do not use  
101x= Reserved – do not use  
1001= Once a year (except when configured for February 29th, once every 4 years)  
1000= Once a month  
0111= Once a week  
0110= Once a day  
0101= Every hour  
0100= Every 10 minutes  
0011= Every minute  
0010= Every 10 seconds  
0001= Every second  
0000= Every half second  
bit 9-8  
ALRMPTR<1:0>: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL registers.  
The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.  
ALRMVAL<15:8>:  
11= Unimplemented  
10= ALRMMNTH  
01= ALRMWD  
00= ALRMMIN  
ALRMVAL<7:0>:  
11= Unimplemented  
10= ALRMDAY  
01= ALRMHR  
00= ALRMSEC  
bit 7-0  
ARPT<7:0>: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
...  
00000000= Alarm will not repeat  
The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh  
unless CHIME = 1.  
2010 Microchip Technology Inc.  
DS39969B-page 289  
PIC24FJ256DA210 FAMILY  
20.1.4  
RTCVAL REGISTER MAPPINGS  
REGISTER 20-4: YEAR: YEAR VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
YRTEN3 YRTEN2 YRTEN1 YRTEN0 YRONE3 YRONE2 YRONE1 YRONE0  
bit 7 bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-4  
Unimplemented: Read as ‘0’  
YRTEN<3:0>: Binary Coded Decimal Value of Year’s Tens Digit bits  
Contains a value from 0 to 9.  
bit 3-0  
YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.  
REGISTER 20-5: MTHDY: MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
MTHTEN0 MTHONE3 MTHONE2 MTHONE1 MTHONE0  
bit 8  
bit 15  
U-0  
U-0  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
DAYTEN1 DAYTEN0 DAYONE3 DAYONE2 DAYONE1 DAYONE0  
bit 0  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of 0 or 1.  
bit 11-8  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS39969B-page 290  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 20-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x, HSC R/W-x, HSC R/W-x, HSC  
WDAY2 WDAY1 WDAY0  
bit 8  
bit 15  
U-0  
U-0  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
HRTEN1 HRTEN0 HRONE3 HRONE2 HRONE1 HRONE0  
bit 0  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 20-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
MINTEN2 MINTEN1 MINTEN0 MINONE3 MINONE2 MINONE1 MINONE0  
bit 8  
bit 15  
U-0  
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC  
SECTEN2 SECTEN1 SECTEN0 SECONE3 SECONE2 SECONE1 SECONE0  
bit 0  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 11-8  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
2010 Microchip Technology Inc.  
DS39969B-page 291  
PIC24FJ256DA210 FAMILY  
20.1.5  
ALRMVAL REGISTER MAPPINGS  
REGISTER 20-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
MTHONE0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit  
Contains a value of 0 or 1.  
bit 11-8  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits  
Contains a value from 0 to 3.  
bit 3-0  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS39969B-page 292  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 20-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits  
Contains a value from 0 to 6.  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits  
Contains a value from 0 to 2.  
bit 3-0  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits  
Contains a value from 0 to 9.  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 20-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 15  
bit 8  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 11-8  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits  
Contains a value from 0 to 9.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits  
Contains a value from 0 to 5.  
bit 3-0  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits  
Contains a value from 0 to 9.  
2010 Microchip Technology Inc.  
DS39969B-page 293  
PIC24FJ256DA210 FAMILY  
20.2 Calibration  
20.3 Alarm  
The real-time crystal input can be calibrated using the  
periodic auto-adjust feature. When properly calibrated,  
the RTCC can provide an error of less than 3 seconds  
per month. This is accomplished by finding the number  
of error clock pulses for one minute and storing the  
value into the lower half of the RCFGCAL register. The  
8-bit signed value loaded into the lower half of  
RCFGCAL is multiplied by four and will either be added  
or subtracted from the RTCC timer, once every minute.  
Refer to the following steps for RTCC calibration:  
• Configurable from half second to one year  
• Enabled using the ALRMEN bit  
(ALCFGRPT<15>, Register 20-3)  
• One-time alarm and repeat alarm options  
available  
20.3.1  
CONFIGURING THE ALARM  
The alarm feature is enabled using the ALRMEN bit.  
This bit is cleared when an alarm is issued. Writes to  
ALRMVAL should only take place when ALRMEN = 0.  
1. Using another timer resource on the device, the  
user must find the error of the 32.768 kHz  
crystal.  
As shown in Figure 20-2, the interval selection of the  
alarm is configured through the AMASK bits  
(ALCFGRPT<13:10>). These bits determine which and  
how many digits of the alarm must match the clock  
value for the alarm to occur.  
2. Once the error is known, it must be converted to  
the number of error clock pulses per minute and  
loaded into the RCFGCAL register.  
The alarm can also be configured to repeat based on a  
preconfigured interval. The amount of times this  
occurs, once the alarm is enabled, is stored in the  
ARPT bits, ARPT<7:0> (ALCFGRPT<7:0>). When the  
value of the ARPT bits equals 00h and the CHIME bit  
(ALCFGRPT<14>) is cleared, the repeat function is  
disabled and only a single alarm will occur. The alarm  
can be repeated up to 255 times by loading  
ARPT<7:0> with FFh.  
EQUATION 20-1: RTCC CALIBRATION  
Error (clocks per minute) = (Ideal Frequency† –  
Measured Frequency) x 60  
†Ideal Frequency = 32,768H  
3. a) If the oscillator is faster then ideal (negative  
result form Step 2), the RCFGCAL register value  
needs to be negative. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter, once every minute.  
After each alarm is issued, the value of the ARPT bits  
is decremented by one. Once the value has reached  
00h, the alarm will be issued one last time, after which  
the ALRMEN bit will be cleared automatically and the  
alarm will turn off.  
b) If the oscillator is slower then ideal (positive  
result from Step 2), the RCFGCAL register value  
needs to be positive. This causes the specified  
number of clock pulses to be added to the timer  
counter, once every minute.  
Indefinite repetition of the alarm can occur if the CHIME  
bit = 1. Instead of the alarm being disabled when the  
value of the ARPT bits reaches 00h, it rolls over to FFh  
and continues counting indefinitely while CHIME is set.  
4. Divide the number of error clocks per minute by  
4 to get the correct CAL value and load the  
RCFGCAL register with the correct value.  
20.3.2  
ALARM INTERRUPT  
At every alarm event, an interrupt is generated. In addi-  
tion, an alarm pulse output is provided that operates at  
half the frequency of the alarm. This output is  
completely synchronous to the RTCC clock and can be  
used as a trigger clock to other peripherals.  
(Each 1-bit increment in CAL adds or subtracts  
4 pulses).  
Writes to the lower half of the RCFGCAL register  
should only occur when the timer is turned off or  
immediately after the rising edge of the seconds pulse.  
Note:  
Changing any of the registers, other then  
the RCFGCAL and ALCFGRPT registers  
and the CHIME bit while the alarm is  
enabled (ALRMEN = 1), can result in a  
false alarm event leading to a false alarm  
interrupt. To avoid a false alarm event, the  
timer and alarm values should only be  
changed while the alarm is disabled  
(ALRMEN = 0). It is recommended that the  
ALCFGRPT register and CHIME bit be  
changed when RTCSYNC = 0.  
Note:  
It is up to the user to include in the error  
value the initial error of the crystal, drift  
due to temperature and drift due to crystal  
aging.  
DS39969B-page 294  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 20-2:  
ALARM MASK SETTINGS  
Day of  
the  
Week  
Alarm Mask Setting  
(AMASK<3:0>)  
Month  
Day  
Hours  
Minutes  
Seconds  
0000– Every half second  
0001– Every second  
0010– Every 10 seconds  
0011– Every minute  
0100– Every 10 minutes  
0101– Every hour  
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
m
m
m
0110– Every day  
h
h
h
h
h
h
h
h
0111– Every week  
1000– Every month  
d
d
d
d
(1)  
1001– Every year  
m
m
d
Note 1: Annually, except when configured for February 29.  
2010 Microchip Technology Inc.  
DS39969B-page 295  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 296  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The 32-bit programmable CRC generator provides a  
hardware implemented method of quickly generating  
checksums for various networking and security  
applications. It offers the following features:  
21.0 32-BIT PROGRAMMABLE  
CYCLIC REDUNDANCY CHECK  
(CRC) GENERATOR  
• User-programmable CRC polynomial equation,  
up to 32 bits  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 41. “32-Bit Programmable  
Cyclic Redundancy Check (CRC)”  
(DS39729). The information in this data  
sheet supersedes the information in the  
FRM.  
• Programmable shift direction (little or big-endian)  
• Independent data and polynomial lengths  
• Configurable interrupt output  
• Data FIFO  
Figure 21-1 displays a simplified block diagram of the  
CRC generator. A simple version of the CRC shift  
engine is displayed in Figure 21-2.  
FIGURE 21-1:  
CRC BLOCK DIAGRAM  
CRCDATH  
CRCDATL  
Variable FIFO  
(4x32, 8x16 or 16x8)  
FIFO Empty  
Event  
CRCISEL  
1
0
CRCWDATH  
CRCWDATL  
CRC  
Interrupt  
LENDIAN  
Shift Buffer  
1
0
CRC Shift Engine  
Shift  
Complete  
Event  
Shifter Clock  
2 * FCY  
FIGURE 21-2:  
CRC SHIFT ENGINE DETAIL  
CRC Shift Engine  
CRCWDATH  
CRCWDATL  
Read/Write Bus  
X1  
(1)  
X0  
Xn  
Shift Buffer  
Data  
(1)  
Bit 0  
Bit 1  
Bit n  
Note 1: n = PLEN<4:1> + 1.  
2010 Microchip Technology Inc.  
DS39969B-page 297  
PIC24FJ256DA210 FAMILY  
21.1.2  
DATA INTERFACE  
21.1 User Interface  
The module incorporates a FIFO that works with a vari-  
able data width. Input data width can be configured to  
any value between one and 32 bits using the  
DWIDTH<4:0> bits (CRCCON2<12:8>). When the  
data width is greater than 15, the FIFO is four words  
deep. When the DWITDH bits are between 15 and 8,  
the FIFO is 8 words deep. When the DWIDTH bits are  
less than 8, the FIFO is 16 words deep.  
21.1.1  
POLYNOMIAL INTERFACE  
The CRC module can be programmed for CRC  
polynomials of up of up the 32nd order, using up to 32 bits.  
Polynomial length, which reflects the highest exponent  
in the equation, is selected by the PLEN<4:0> bits  
(CRCCON2<4:0>).  
The CRCXORL and CRCXORH registers control which  
exponent terms are included in the equation. Setting a  
particular bit includes that exponent term in the equa-  
tion; functionally, this includes an XOR operation on the  
corresponding bit in the CRC engine. Clearing the bit  
disables the XOR.  
The data for which the CRC is to be calculated must  
first be written into the FIFO. Even if the data width is  
less than 8, the smallest data element that can be writ-  
ten into the FIFO is one byte. For example, if DWIDTH  
is five, then the size of the data is DWIDTH + 1 or six.  
The data is written as a whole byte; the two unused  
upper bits are ignored by the module.  
For example, consider two CRC polynomials, one a  
16-bit and the other a 32-bit equation.  
Once data is written into the MSb of the CRCDAT reg-  
isters (that is, MSb as defined by the data width), the  
value of the VWORD<4:0> bits (CRCCON1<12:8>)  
increments by one. For example, if DWIDTH is 24, the  
VWORD bits will increment when bit 7 of CRCDATH is  
written. Therefore, CRCDATL must always be written  
to before CRCDATH.  
EQUATION 21-1: 16-BIT, 32-BIT CRC  
POLYNOMIALS  
X16 + X12 + X5 + 1  
and  
The CRC engine starts shifting data when the CRCGO  
bit is set and the value of VWORD is greater than zero.  
X32+X26 + X23 + X22 + X16 + X12 + X11 + X10 +  
X8 + X7 + X5 + X4 + X2 + X + 1  
Each word is copied out of the FIFO into a buffer regis-  
ter, which decrements VWORD. The data is then  
shifted out of the buffer. The CRC engine continues  
shifting at a rate of two bits per instruction cycle, until  
VWORD reaches zero. This means that for a given  
data width, it takes half that number of instructions for  
each word to complete the calculation. For example, it  
takes 16 cycles to calculate the CRC for a single word  
of 32-bit data.  
To program these polynomial into the CRC generator,  
set the register bits as shown in Table 21-1.  
Note that the appropriate positions are set to ‘1’ to indi-  
cate they are used in the equation (for example, X26  
and X23). The ‘0’ bit required by the equation is always  
XORed; thus, X0 is a don’t care. For a polynomial of  
length 32, it is assumed that the 32nd bit will be used.  
Therefore, the X<31:1> bits do not have the 32nd bit.  
When VWORD reaches the maximum value for the  
configured value of DWIDTH (4, 8 or 16), the CRCFUL  
bit becomes set. When VWORD reaches zero, the  
CRCMPT bit becomes set. The FIFO is emptied and  
the VWORD<4:0> bits are set to ‘00000’ whenever  
CRCEN is ‘0’.  
At least one instruction cycle must pass after a write to  
CRCWDAT before a read of the VWORD bits is done.  
TABLE 21-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS  
Bit Values  
CRC Control Bits  
16-Bit Polynomial  
32-Bit Polynomial  
PLEN<4:0>  
X<31:16>  
X<15:0>  
01111  
11111  
0000 0000 0000 0001  
0001 0000 0010 000X  
0000 0100 1100 0001  
0001 1101 1011 011x  
DS39969B-page 298  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
3. Preload the FIFO by writing to the CRCDATL  
and CRCDATH registers until the CRCFUL bit is  
21.1.3  
DATA SHIFT DIRECTION  
The LENDIAN bit (CRCCON1<3>) is used to control  
the shift direction. By default, the CRC will shift data  
through the engine, MSb first. Setting LENDIAN (= 1)  
causes the CRC to shift data, LSb first. This setting  
allows better integration with various communication  
schemes and removes the overhead of reversing the  
bit order in software. Note that this only changes the  
direction the data is shifted into the engine. The result  
of the CRC calculation will still be a normal CRC result,  
not a reverse CRC result.  
set or no data is left.  
4. Clear old results by writing 00h to CRCWDATL  
and CRCWDATH. The CRCWDAT registers can  
also be left unchanged to resume a previously  
halted calculation.  
5. Set the CRCGO bit to start calculation.  
6. Write remaining data into the FIFO as space  
becomes available.  
7. When the calculation completes, CRCGO is  
automatically cleared. An interrupt will be  
generated if CRCISEL = 1.  
21.1.4  
INTERRUPT OPERATION  
The module generates an interrupt that is configurable  
by the user for either of two conditions.  
8. Read CRCWDATL and CRCWDATH for the  
result of the calculation.  
If CRCISEL is ‘0’, an interrupt is generated when the  
VWORD<4:0> bits make a transition from a value of ‘1’  
to ‘0’. If CRCISEL is ‘1’, an interrupt will be generated  
after the CRC operation finishes and the module sets  
the CRCGO bit to ‘0’. Manually setting CRCGO to ‘0’  
will not generate an interrupt. Note that when an  
interrupt occurs, the CRC calculation would not yet be  
complete. The module will still need (PLEN + 1)/2 clock  
cycles after the interrupt is generated until the CRC  
calculation is finished.  
There are eight registers used to control programmable  
CRC operation:  
• CRCCON1  
• CRCCON2  
• CRCXORL  
• CRCXORH  
• CRCDATL  
• CRCDATH  
• CRCWDATL  
• CRCWDATH  
21.1.5  
TYPICAL OPERATION  
The  
CRCCON1  
and  
CRCCON2  
registers  
To use the module for a typical CRC calculation:  
1. Set the CRCEN bit to enable the module.  
(Register 21-1 and Register 21-2) control the operation  
of the module and configure the various settings.  
2. Configure the module for desired operation:  
a) Program the desired polynomial using the  
CRCXORL and CRCXORH registers, and the  
PLEN<4:0> bits.  
The  
CRCXOR  
registers  
(Register 21-3  
and  
Register 21-4) select the polynomial terms to be used  
in the CRC equation. The CRCDAT and CRCWDAT  
registers are each register pairs that serve as buffers  
for the double-word input data, and CRC processed  
output, respectively.  
b) Configure the data width and shift direction  
using the DWIDTH and LENDIAN bits.  
c) Select the desired interrupt mode using the  
CRCISEL bit.  
2010 Microchip Technology Inc.  
DS39969B-page 299  
PIC24FJ256DA210 FAMILY  
REGISTER 21-1: CRCCON1: CRC CONTROL 1 REGISTER  
R/W-0  
U-0  
R/W-0  
CSIDL  
R-0, HSC  
VWORD4  
R-0, HSC  
VWORD3  
R-0, HSC  
VWORD2  
R-0, HSC  
VWORD1  
R-0, HSC  
VWORD0  
CRCEN  
bit 15  
bit 8  
R-0, HSC  
CRCFUL  
R-1, HSC  
CRCMPT  
R/W-0  
R/W-0, HC  
CRCGO  
R/W-0  
U-0  
U-0  
U-0  
CRCISEL  
LENDIAN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
HC = Hardware Cleared  
HSC = Hardware Settable/Clearable bit  
bit 15  
CRCEN: CRC Enable bit  
1= Enables module  
0= Disables module; all state machines, pointers and CRCWDAT/CRCDATH reset; other SFRs are  
NOT reset  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: CRC Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-8  
bit 7  
VWORD<4:0>: Pointer Value bits  
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> 7 or  
16 when PLEN<4:0> 7.  
CRCFUL: FIFO Full bit  
1= FIFO is full  
0= FIFO is not full  
bit 6  
CRCMPT: FIFO Empty bit  
1= FIFO is empty  
0= FIFO is not empty  
bit 5  
CRCISEL: CRC Interrupt Selection bit  
1= Interrupt on FIFO is empty; the final word of data is still shifting through the CRC  
0= Interrupt on shift is complete and results are ready  
CRCGO: Start CRC bit  
bit 4  
1= Start CRC serial shifter  
0= CRC serial shifter is turned off  
bit 3  
LENDIAN: Data Shift Direction Select bit  
1= Data word is shifted into the CRC, starting with the LSb (little endian)  
0= Data word is shifted into the CRC, starting with the MSb (big endian)  
bit 2-0  
Unimplemented: Read as ‘0’  
DS39969B-page 300  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 21-2: CRCCON2: CRC CONTROL 2 REGISTER  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DWIDTH4  
DWIDTH3  
DWIDTH2  
DWIDTH1  
DWIDTH0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLEN4  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
DWIDTH<4:0>: Data Word Width Configuration bits  
Configures the width of the data word (data word width – 1).  
Unimplemented: Read as ‘0’  
bit 7-5  
bit 4-0  
PLEN<4:0>: Polynomial Length Configuration bits  
Configures the length of the polynomial (polynomial length – 1).  
REGISTER 21-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE  
R/W-0  
X15  
R/W-0  
X14  
R/W-0  
X13  
R/W-0  
X12  
R/W-0  
X11  
R/W-0  
X10  
R/W-0  
X9  
R/W-0  
X8  
bit 15  
bit 8  
R/W-0  
X7  
R/W-0  
X6  
R/W-0  
X5  
R/W-0  
X4  
R/W-0  
X3  
R/W-0  
X2  
R/W-0  
X1  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
bit 0  
X<15:1>: XOR of Polynomial Term xn Enable bits  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39969B-page 301  
PIC24FJ256DA210 FAMILY  
REGISTER 21-4: CRCXORH: CRC XOR HIGH REGISTER  
R/W-0  
X31  
R/W-0  
X30  
R/W-0  
X29  
R/W-0  
X28  
R/W-0  
X27  
R/W-0  
X26  
R/W-0  
X25  
R/W-0  
X24  
bit 15  
bit 8  
R/W-0  
X23  
R/W-0  
X22  
R/W-0  
X21  
R/W-0  
X20  
R/W-0  
X19  
R/W-0  
X18  
R/W-0  
X17  
R/W-0  
X16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
X<31:16>: XOR of Polynomial Term xn Enable bits  
REGISTER 21-5: CRCDATL: CRC DATA LOW REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DATA9  
R/W-0  
DATA8  
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
bit 15  
bit 8  
R/W-0  
DATA7  
R/W-0  
DATA6  
R/W-0  
DATA5  
R/W-0  
DATA4  
R/W-0  
DATA3  
R/W-0  
DATA2  
R/W-0  
DATA1  
R/W-0  
DATA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
DATA<15:0>: CRC Input Data bits  
Writing to this register fills the FIFO; reading from this register returns ‘0’.  
REGISTER 21-6: CRCDATH: CRC DATA HIGH REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DATA9  
R/W-0  
DATA8  
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
bit 15  
bit 8  
R/W-0  
DATA7  
R/W-0  
DATA6  
R/W-0  
DATA5  
R/W-0  
DATA4  
R/W-0  
DATA3  
R/W-0  
DATA2  
R/W-0  
DATA1  
R/W-0  
DATA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
DATA<15:0>: CRC Input Data bits  
Writing to this register fills the FIFO; reading from this register returns ‘0’.  
DS39969B-page 302  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 21-7: CRCWDATL: CRC SHIFT LOW REGISTER  
R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
SDATA15 SDATA14 SDATA13 SDATA12 SDATA11 SDATA10 SDATA9 SDATA8  
bit 15 bit 8  
R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
SDATA7 SDATA6 SDATA5 SDATA4 SDATA3 SDATA2 SDATA1 SDATA0  
bit 7 bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
SDATA<15:0>: CRC Shift Register bits  
Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this  
register reads the CRC read bus.  
REGISTER 21-8: CRCWDATH: CRC SHIFT HIGH REGISTER  
R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
SDATA31  
bit 15  
SDATA30  
SDATA29  
SDATA28  
SDATA27  
SDATA26  
SDATA25  
SDATA24  
bit 8  
R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC R/W-0, HSC  
SDATA23 SDATA22 SDATA21 SDATA20 SDATA19 SDATA18 SDATA17 SDATA16  
bit 7 bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
SDATA<31:16>: CRC Input Data bits  
Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this  
register reads the CRC read bus.  
2010 Microchip Technology Inc.  
DS39969B-page 303  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 304  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Key features of the GFX module include:  
22.0 GRAPHICS CONTROLLER  
MODULE (GFX)  
• Direct interface to three categories of display  
glasses:  
Note:  
This data sheet summarizes the features  
- Monochrome STN  
- Color STN  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 43. “Graphics Controller Mod-  
ule (GFX)” (DS39731). The information in  
this data sheet supersedes the information  
in the FRM.  
- Color TFT  
• Programmable vertical and horizontal synchroni-  
zation signals’ timing and display clock frequency  
to meet display’s frame rates  
• Optional internal or external display buffer to  
accommodate different types of display resolution  
• Graphic hardware accelerators:  
The Graphics Controller (GFX) module is specifically  
designed to directly interface with the display glasses,  
with a built-in analog drive, to individually control pixels  
in the screen. The module also provides an accelerated  
rendering of vertical and horizontal lines, rectangles,  
copying of rectangular area between different locations  
on the screen, drawing texts and decompressing  
packed data. The use of the accelerated rendering is  
performed using command registers. Once initiated,  
the hardware will perform the rendering, and the  
software can either poll the status, or use the interrupts  
to continue rendering of the succeeding shapes.  
- Character Graphics Processing Unit  
(CHRGPU)  
- Rectangle Copy Graphics Processing Unit  
(RCCGPU)  
- Inflate Processing Unit (IPU)  
• 256 Entries Color Look-up Table (CLUT)  
• Supports 1/2/4/8/16 bits-per-pixel (bpp) color depth  
• Programmable display resolution  
• Supports multiple display interfaces:  
- 4/8/16-bit Monochrome STN  
- 4/8/16-bit Color STN  
- 9/12/18/24-bit color TFT (18 and 24-bit  
displays are connected as 16-bit 5-6-5 RGB  
color format)  
FIGURE 22-1:  
GRAPHICS MODULE OVERVIEW  
PIC24F Graphics  
Controller Module  
Display Interface  
Clock (DISPCLK)  
Display Module  
Interface  
Registers  
and Control  
Interface  
GD<15:0>  
System Clock  
HSYNC  
VSYNC  
Graphics  
Controller Clock  
(G1CLK)  
GPU Command  
Interface  
GEN  
RCCGPU  
CHRGPU  
IPU  
GPWR  
CLUT  
Memory Request Arbiter  
GCLK  
System  
RAM  
2010 Microchip Technology Inc.  
DS39969B-page 305  
PIC24FJ256DA210 FAMILY  
22.1 GFX Module Registers  
REGISTER 22-1: G1CMDL: GPU COMMAND LOW REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
GCMD15  
GCMD14  
GCMD13  
GCMD12  
GCMD11 GCMD10  
GCMD9  
GCMD8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
GCMD7  
GCMD6  
GCMD5  
GCMD4  
GCMD3  
GCMD2  
GCMD1  
GCMD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
GCMD<15:0>: Low GPU Command bits  
The full 32-bit command is defined by G1CMDH and G1CMDL (GCMD<31:0>). Writes to this register  
will not trigger the loading of GCMD <31:0> to the command FIFO. For command FIFO loading, see  
the G1CMDH register description.  
REGISTER 22-2: G1CMDH: GPU COMMAND HIGH REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
GCMD31  
GCMD30  
GCMD29  
GCMD28  
GCMD27 GCMD26  
GCMD25  
GCMD24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
GCMD23  
GCMD22  
GCMD21  
GCMD20  
GCMD19 GCMD18  
GCMD17  
GCMD16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
GCMD<31:16>: High GPU Command bits  
The full 32-bit command is defined by G1CMDH and G1CMDL (GCMD<31:0>). A word write to the  
G1CMDH register triggers the loading of GCMD<31:0> to the command FIFO. Byte writes to the  
G1CMDH are allowed but only a high byte write will trigger the command loading to the FIFO. Low  
byte write to this register will only update the G1CMDH<7:0> bits.  
DS39969B-page 306  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-3: G1CON1: DISPLAY CONTROL REGISTER 1  
R/W-0  
G1EN  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
G1SIDL  
GCMDWMK4 GCMDWMK3 GCMDWMK2 GCMDWMK1 GCMDWMK0  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
PUBPP2  
PUBPP1  
PUBPP0  
GCMDCNT4 GCMDCNT3 GCMDCNT2 GCMDCNT1 GCMDCNT0  
bit 0  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
G1EN: Module Enable bit  
1= Display module is enabled  
0= Display module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
G1SIDL: Stop in Idle bit  
1= Display module stops in Idle mode  
0= Display module does not stop in Idle mode  
bit 12-8  
GCMDWMK<4:0>: Command FIFO Watermark bits  
Sets the command watermark level that triggers the CMDLVIF interrupt and sets the CMDLV flag;  
GCMDWMK<4:0> (10000= Reserved)  
10000= If the number of commands present in the FIFO goes from 16 to 15 commands, the CMDLVIF  
interrupt will trigger and the CMDLV flag will be set  
01111= f the number of commands present in the FIFO goes from 15 to 14 commands, CMDLVIF  
interrupt will trigger and CMDLV flag will be set  
.
.
.
00001= If the number of commands present in the FIFO goes from 1 to 0 commands, the CMDLVIF  
interrupt will trigger and the CMDLV flag will be set  
00000= CMDLVIF interrupt will not trigger and the CMDLV flag will not be set  
bit 7-5  
PUBPP<2:0>: GPU bits-per-pixel (bpp) Setting bits  
Other = Reserved  
100= 16 bits-per-pixel  
011= 8 bits-per-pixel  
010= 4 bits-per-pixel  
001= 2 bits-per -pixel  
000= 1-bit -per-pixel  
bit 4-0  
GCMDCNT<4:0>: Command FIFO Occupancy Status bits  
When the FIFO is full, any additional commands written to the FIFO are discarded.  
10000= 16 commands are present in the FIFO  
01111= 15 commands are present in the FIFO  
.
.
.
0001= 1 command is present in the FIFO  
0000= 0 command is present in the FIFO  
2010 Microchip Technology Inc.  
DS39969B-page 307  
PIC24FJ256DA210 FAMILY  
REGISTER 22-4: G1CON2: DISPLAY CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
DPTEST0  
bit 8  
DPGWDTH1 DPGWDTH0 DPSTGER1 DPSTGER0  
bit 15  
DPTEST1  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
DPMODE0  
bit 0  
DPBPP2  
DPBPP1  
DPBPP0  
DPMODE2  
DPMODE1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-12  
DPGWDTH<1:0>: STN Display Glass Data Width bits  
11= Reserved  
10= 16 bits wide  
01= 8 bits wide  
00= 4 bits wide  
These bits have no effect on TFT mode. TFT display glass data width is always assumed to be 16 bits wide.  
DPSTGER<1:0>: Display Data Timing Stagger bits  
11= Delays of the display data are staggered in groups:  
Bit group 0: 0 4 8 12 – not delayed  
Bit group 1: 1 5 9 13 – delayed by ½ GPUCLK cycle  
Bit group 2: 2 6 10 14 – delayed by full GPUCLK cycle  
Bit group 3: 3 7 11 15 – delayed by 1 ½ GPUCLK cycle  
10= Even bits of the display data are delayed by 1 full GPUCLK cycle; odd bits are not delayed  
01= Odd bits of the display data are delayed by ½ GPUCLK cycle; even bits are not delayed  
00= Display data timing is all synchronized on one clock GPUCLK edge  
bit 11-10  
bit 9-8  
Unimplemented: Read as ‘0’  
DPTEST<1:0>: Display Test Pattern Generator bits  
11= Borders  
10= Bars  
01= Black screen  
00= Normal Display mode; test patterns are off  
bit 7-5  
DPBPP<2:0>: Display bits-per-pixel Setting bits  
This setting must match the GPU bits-per-pixel set in PUBPP<2:0> (G1CON1<7:5>).  
100= 16 bits-per-pixel  
011= 8 bits-per-pixel  
010= 4 bits-per-pixel  
001= 2 bits-per-pixel  
000= 1 bit-per-pixel  
Other = Reserved  
bit 4-3  
bit 2-0  
Unimplemented: Read as ‘0’  
DPMODE<2:0>: Display Glass Type bits  
011= Color STN type  
010= Mono STN type  
001= TFT type  
000= Display off  
Other = Reserved  
DS39969B-page 308  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-5: G1CON3: DISPLAY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
DPPINOE DPPOWER  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DPCLKPOL DPENPOL  
bit 7  
DPVSPOL  
DPHSPOL DPPWROE DPENOE  
DPVSOE  
DPHSOE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
DPPINOE: Display Pin Output Pad Enable bit  
DPPINOE is the master output enable and must be set to allow GDBEN<15:0>, DPENOE,  
DPPWROE, DPVSOE and DPHSOE to enable the associated pads  
1= Enable display output pads  
0= Disable display output signals as set by GDBEN<15:0>  
Pins used by the signals are assigned to the next enabled module that uses the same pins.  
For data signals, GDBEN<15:0> can be used to disable or enable specific data signals while  
DPPINOE is set.  
bit 8  
DPPOWER: Display Power-up Power-Down Sequencer Control bit  
Refer to the “PIC24F Family Reference Manual”, Section 43. “Graphics Controller Module (GFX)”  
for details.  
1= Set Display Power Sequencer Control port (GPWR) to ‘1’  
0= Set Power Control Sequencer signal (GPWR) ‘0’  
bit 7  
bit 6  
DPCLKPOL: Display Glass Clock (GCLK) Polarity bit  
1= Display latches data on the positive edge of GCLK  
0= Display latches data on the negative edge of GCLK  
DPENPOL: Display Enable Signal (GEN) Polarity bit  
For TFT mode (DPMODE (G1CON2<2:0>) = 001):  
1= Active-high (GEN)  
0= Active-low (GEN)  
For STN mode (DPMODE (G1CON2<2:0>) = 010or 011):  
1= GEN connects to the shift clock input of the display (Shift Clock mode)  
0= GEN connects to the MOD input of the display (Line/Frame Toggle mode)  
bit 5  
bit 4  
bit 3  
bit 2  
DPVSPOL: Display Vertical Synchronization (VSYNC) Polarity bit  
1= Active-high (VSYNC)  
0= Active-low (VSYNC)  
DPHSPOL: Display Horizontal Synchronization (HSYNC) Polarity bit  
1= Active-high (HSYNC)  
0= Active-low (HSYNC)  
DPPWROE: Display Power-up/Power-Down Sequencer Control port (GPWR) enable bit  
1= GPWR port is enabled (pin controlled by the DPPOWER bit (G1CON3<8>))  
0= GPWR port is disabled (pin can be used as an ordinary I/O)  
DPENOE: Display Enable Port Enable bit  
1= GEN port is enabled  
0= GEN port is disabled  
2010 Microchip Technology Inc.  
DS39969B-page 309  
PIC24FJ256DA210 FAMILY  
REGISTER 22-5: G1CON3: DISPLAY CONTROL REGISTER 3 (CONTINUED)  
bit 1  
DPVSOE: Display Vertical Synchronization Port Enable bit  
1= VSYNC port is enabled  
0= VSYNC port is disabled  
bit 0  
DPHSOE: Display Horizontal Synchronization Port Enable bit  
1= HSYNC port is enabled  
0= HSYNC port is disabled  
REGISTER 22-6: G1STAT: GFX STATUS REGISTER  
R-0, HSC  
PUBUSY  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R-0, HSC  
IPUBUSY  
R-0, HSC  
R-0, HSC  
R-0, HSC  
VMRGN  
R-0, HSC  
HMRGN  
R-0, HSC  
CMDLV  
R-0, HSC  
CMDFUL  
R-0, HSC  
CMDMPT  
bit 0  
RCCBUSY CHRBUSY  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PUBUSY: Processing Units are Busy Status bit  
This bit is logically equivalent to the ORed combination of IPUBUSY, RCCBUSY or CHRBUSY.  
1= At least one processing unit is busy  
0= None of the processing units are busy  
bit 14-8  
bit 7  
Unimplemented: Read as ‘0’  
IPUBUSY: Inflate Processing Unit Busy Status bit  
1= IPU is busy  
0= IPU is not busy  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
RCCBUSY: Rectangle Copy Graphics Processing Unit Busy Status bit  
1= RCCGPU is busy  
0= RCCGPU is not busy  
CHRBUSY: Character Graphics Processing Unit Busy Status bit  
1= CHRGPU is busy  
0= CHRGPU is not busy  
VMRGN: Vertical Blanking Status bit  
1= Display interface is in the vertical blanking period  
0= Display interface is not in the vertical blanking period  
HMRGN: Horizontal Blanking Status bit  
1= Display interface is in the horizontal blanking period  
0= Display interface is not in the horizontal blanking period  
CMDLV: Command Watermark Level Status bit  
The number of commands in the command FIFO changed from equal (=) to the command watermark  
value to less than (<) the Command Watermark value set in CMDWMK (G1CON1<12:8>) register bits.  
1= Command in FIFO is less than the set CMDWMK value  
0= Command in FIFO is equal to or greater than the set CMDWMK value  
bit 1  
bit 0  
CMDFUL: Command FIFO Full Status bit  
1= Command FIFO is full  
0= Command FIFO is not full  
CMDMPT: Command FIFO Empty Status bit  
1= Command FIFO is empty  
0= Command FIFO is not empty  
DS39969B-page 310  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-7: G1IE: GFX INTERRUPT ENABLE REGISTER  
R/W-0  
PUIE  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IPUIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCCIE  
CHRIE  
VMRGNIE  
HMRGNIE CMDLVIE CMDFULIE  
CMDMPTIE  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
PUIE: Processing Units Complete Interrupt Enable bit  
1= Enables the PU complete interrupt  
0= Disables the PU complete interrupt  
bit 14-8  
bit 7  
Unimplemented: Read as ‘0’  
IPUIE: Inflate Processing Unit Complete Interrupt Enable bit  
1= Enables the IPU complete interrupt  
0= Disables the IPU complete interrupt  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RCCIE: Rectangle Copy Graphics Processing Unit Complete Interrupt bit  
1= Enables the RCCGPU complete interrupt  
0= Disables the RCCGPU complete interrupt  
CHRIE: Character Graphics Processing Unit Busy Interrupt bit  
1= Enables the CHRGPU busy interrupt  
0= Disables the CHRGPU busy interrupt  
VMRGNIE: Vertical Blanking Interrupt Enable bit  
1= Enables the vertical blanking period interrupt  
0= Disables the vertical blanking period interrupt  
HMRGNIE: Horizontal Blanking Interrupt Enable bit  
1= Enables the horizontal blanking period interrupt  
0= Disables the horizontal blanking period interrupt  
CMDLVIE: Command Watermark Interrupt Enable bit  
1= Enables the command watermark interrupt bit  
0= Disables the command watermark interrupt bit  
CMDFULIE: Command FIFO Full Interrupt Enable bit  
1= Enables the command FIFO full interrupt  
0= Disables the command FIFO full interrupt  
CMDMPTIE: Command FIFO Empty Interrupt Enable bit  
1= Enables the command FIFO empty interrupt  
0= Disables the command FIFO empty interrupt  
2010 Microchip Technology Inc.  
DS39969B-page 311  
PIC24FJ256DA210 FAMILY  
REGISTER 22-8: G1IR: GFX INTERRUPT STATUS REGISTER  
R/W-0, HS  
PUIF  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0, HS R/W-0, HS R/W-0, HS  
IPUIF(1) RCCIF(1) CHRIF(1)  
bit 7  
R/W-0, HS  
VMRGNIF  
R/W-0, HS  
HMRGNIF  
R/W-0, HS  
CMDLVIF  
R/W-0, HS  
CMDFULIF  
R/W-0, HS  
CMDMPTIF  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
PUIF: Processing Units Complete Interrupt Flag bit  
PUIF is an ORed combination of IPUIF, RCCIF and CHRIF.  
1= One or more PUs completed command execution (must be cleared in software)  
0= All PUs are Idle or busy completing command execution  
bit 14-8  
bit 7  
Unimplemented: Read as ‘0’  
IPUIF: Inflate Processing Unit Complete Interrupt Flag bit(1)  
1= IPU completed command execution (must be cleared in software)  
0= IPU is Idle or busy completing command execution  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RCCIF: Rectangle Copy Graphics Processing Unit Complete Interrupt Flag bit(1)  
1= RCCGPU completed command execution (must be cleared in software)  
0= RCCGPU is Idle or busy completing command execution  
CHRIF: Character Graphics Processing Unit Complete Interrupt Flag bit(1)  
1= CHRGPU completed command execution (must be cleared in software)  
0= CHRGPU is Idle or busy completing command execution  
VMRGNIF: Vertical Blanking Interrupt Flag bit  
1= Display interface is in the vertical blanking period (must be cleared in software)  
0= Display interface is not in the vertical blanking period  
HMRGNIF: Horizontal Blanking Interrupt Flag bit  
1= Display interface is in the horizontal blanking period (must be cleared in software)  
0= Display interface is not in the horizontal blanking period  
CMDLVIF: Command Watermark Interrupt Flag bit  
1= Command watermark level is reached (must be cleared in software)  
0= Command watermark level is not yet reached  
CMDFULIF: Command FIFO Full Interrupt Flag bit  
1= Command FIFO is full (must be cleared in software)  
0= Command FIFO is not full  
CMDMPTIF: Command FIFO Empty Interrupt Flag bit  
1= Command FIFO is empty (must be cleared in software)  
0= Command FIFO is not empty  
Note 1: The logic of each Processing Unit Status bit is the reverse of the PUIF. This provides flexibility on software  
code utilizing the processing units.  
DS39969B-page 312  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-9: G1W1ADRL: GPU WORK AREA 1 START ADDRESS REGISTER LOW  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
W1ADR15 W1ADR14  
bit 15  
W1ADR13  
W1ADR12  
W1ADR11  
W1ADR10  
W1ADR9  
W1ADR8  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
W1ADR7  
W1ADR6  
W1ADR5  
W1ADR4  
W1ADR3  
W1ADR2  
W1ADR1  
W1ADR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
W1ADR<15:0>: GPU Work Area 1 Start Address Low bits  
Work area address must point to an even byte address in memory.  
REGISTER 22-10: G1W1ADRH: GPU WORK AREA 1 START ADDRESS REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
W1ADR23  
W1ADR22  
W1ADR21  
W1ADR20  
W1ADR19  
W1ADR18  
W1ADR17 W1ADR16  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
W1ADR<23:16>: GPU Work Area 1 Start Address High bits  
Work area address must point to an even byte address in memory.  
REGISTER 22-11: G1W2ADRL: GPU WORK AREA 2 START ADDRESS REGISTER LOW  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
W2ADR8  
bit 8  
W2ADR15  
W2ADR14  
W2ADR13  
W2ADR12  
W2ADR11  
W2ADR10  
W2ADR9  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
W2ADR0  
bit 0  
W2ADR7  
W2ADR6  
W2ADR5  
W2ADR4  
W2ADR3  
W2ADR2  
W2ADR1  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
W2ADR<15:0>: GPU Work Area 2 Start Address Low bits  
Work area address must point to an even byte address in memory.  
2010 Microchip Technology Inc.  
DS39969B-page 313  
PIC24FJ256DA210 FAMILY  
REGISTER 22-12: G1W2ADRH: GPU WORK AREA 2 START ADDRESS REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
W2ADR23  
W2ADR22  
W2ADR21  
W2ADR20  
W2ADR19  
W2ADR18  
W2ADR17 W2ADR16  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
W2ADR<23:16>: GPU Work Area 2 Start Address High bits  
Work area address must point to an even byte address in memory.  
REGISTER 22-13: G1PUW: GPU WORK AREA WIDTH REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PUW9  
R/W-0  
PUW8  
PUW10  
bit 15  
bit 8  
R/W-0  
PUW7  
R/W-0  
PUW6  
R/W-0  
PUW5  
R/W-0  
PUW4  
R/W-0  
PUW3  
R/W-0  
PUW2  
R/W-0  
PUW1  
R/W-0  
PUW0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-0  
Unimplemented: Read as ‘0’  
PUW<10:0>: GPU Work Area Width bits (in pixels)  
REGISTER 22-14: G1PUH: GPU WORK AREA HEIGHT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PUH9  
R/W-0  
PUH8  
PUH10  
bit 15  
bit 8  
R/W-0  
PUH7  
R/W-0  
PUH6  
R/W-0  
PUH5  
R/W-0  
PUH4  
R/W-0  
PUH3  
R/W-0  
PUH2  
R/W-0  
PUH1  
R/W-0  
PUH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-0  
Unimplemented: Read as ‘0’  
PUH<10:0>: GPU Work Area Height bits (in pixels)  
DS39969B-page 314  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-15: G1DPADRL: DISPLAY BUFFER START ADDRESS REGISTER LOW  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DPADR15  
DPADR14  
DPADR13  
DPADR12  
DPADR11  
DPADR10  
DPADR9  
DPADR8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DPADR7  
DPADR6  
DPADR5  
DPADR4  
DPADR3  
DPADR2  
DPADR1  
DPADR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
DPADR<15:0>: Display Buffer Start Address Low bits  
Display buffer start address must point to an even byte address in memory.  
REGISTER 22-16: G1DPADRH: DISPLAY BUFFER START ADDRESS REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
DPADR23  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DPADR22  
DPADR21  
DPADR20  
DPADR19  
DPADR18  
DPADR17  
DPADR16  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
DPADR<23:16>: Display Buffer Start Address High bits  
Display buffer start address must point to an even byte address in memory.  
REGISTER 22-17: G1DPW: DISPLAY BUFFER WIDTH REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
DPW9  
R/W-0  
DPW8  
DPW10  
bit 15  
bit 8  
R/W-0  
DPW7  
R/W-0  
DPW6  
R/W-0  
DPW5  
R/W-0  
DPW4  
R/W-0  
DPW3  
R/W-0  
DPW2  
R/W-0  
DPW1  
R/W-0  
DPW0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-0  
Unimplemented: Read as ‘0’  
DPW<10:0>: Display Frame Width bits (in pixels)  
2010 Microchip Technology Inc.  
DS39969B-page 315  
PIC24FJ256DA210 FAMILY  
REGISTER 22-18: G1DPH: DISPLAY BUFFER HEIGHT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
DPH9  
R/W-0  
DPH8  
DPH10  
bit 15  
bit 8  
R/W-0  
DPH7  
R/W-0  
DPH6  
R/W-0  
DPH5  
R/W-0  
DPH4  
R/W-0  
DPH3  
R/W-0  
DPH2  
R/W-0  
DPH1  
R/W-0  
DPH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-0  
Unimplemented: Read as ‘0’  
DPH<10:0>: Display Frame Height bits (in pixels)  
REGISTER 22-19: G1DPWT: DISPLAY TOTAL WIDTH REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
DPWT10  
DPWT9  
DPWT8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DPWT7  
DPWT6  
DPWT5  
DPWT4  
DPWT3  
DPWT2  
DPWT1  
DPWT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-0  
Unimplemented: Read as ‘0’  
DPWT<10:0>: Display Total Width bits (in pixels)  
REGISTER 22-20: G1DPHT: DISPLAY TOTAL HEIGHT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
DPHT10  
DPHT9  
DPHT8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DPHT7  
DPHT6  
DPHT5  
DPHT4  
DPHT3  
DPHT2  
DPHT1  
DPHT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-0  
Unimplemented: Read as ‘0’  
DPHT<10:0>: Display Total Height bits (in pixels)  
DS39969B-page 316  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-21: G1ACTDA: ACTIVE DISPLAY AREA REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACTLINE7  
ACTLINE6  
ACTLINE5  
ACTLINE4  
ACTLINE3  
ACTLINE2  
ACTLINE1 ACTLINE0  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACTPIX7  
ACTPIX6  
ACTPIX5  
ACTPIX4  
ACTPIX3  
ACTPIX2  
ACTPIX1  
ACTPIX0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
ACTLINE<7:0>: Number of Lines Before the First Active (Displayed) Line bits  
Typically, ACTLINEx = VENSTx (G1DBLCON<15:8>).  
This register is added for versatility in the timing of the active lines.  
For TFT mode, DPMODE bits (G1CON2<2:0>) = 001; the minimum value is 2.  
For STN mode, DPMODE bits (G1CON2<2:0>) = 010,011,100; the minimum value is 0.  
ACTPIX<7:0>: Number of Pixels Before the First Active (Displayed) Pixel bits (in DISPCLKs)  
Typically, ACTPIXx = HENSTx (G1DBLCON<7:0>).  
This register is added for versatility in the timing of the active pixels. Note that the programmed value  
is computed in DISPCLK cycles. This value is dependent on the DPGWDTH bit (G1CON2<15:14>).  
Refer to the “PIC24F Family Reference Manual”, Section 43. “Graphics Controller Module (GFX)”  
for details.  
REGISTER 22-22: G1HSYNC: HORIZONTAL SYNCHRONIZATION CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HSLEN7  
HSLEN6  
HSLEN5  
HSLEN4  
HSLEN3  
HSLEN2  
HSLEN1  
HSLEN0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HSST7  
HSST6  
HSST5  
HSST4  
HSST3  
HSST2  
HSST1  
HSST0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
HSLEN<7:0>: HSYNC Pulse-Width Configuration bits (in DISPCLKs)  
DPHSOE bit (G1CON3<0>) must be set for the HSYNC signal to toggle; minimum value is 1.  
HSST<7:0>: HSYNC Start Delay Configuration bits (in DISPCLKs)  
This is the number of DISPCLK cycles from the start of horizontal blanking to the start of HSYNC active.  
2010 Microchip Technology Inc.  
DS39969B-page 317  
PIC24FJ256DA210 FAMILY  
REGISTER 22-23: G1VSYNC: VERTICAL SYNCHRONIZATION CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VSLEN7  
VSLEN6  
VSLEN5  
VSLEN4  
VSLEN3  
VSLEN2  
VSLEN1  
VSLEN0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VSST7  
VSST6  
VSST5  
VSST4  
VSST3  
VSST2  
VSST1  
VSST0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
VSLEN<7:0>: VSYNC Pulse-Width Configuration bits (in lines)  
The DPVSOE bit (G1CON3<1>) must be set for the VSYNC signal to toggle; minimum value is 1.  
VSST<7:0>: VSYNC Start Delay Configuration bits (in lines)  
This is the number of lines from the start of vertical blanking to the start of VSYNC active.  
REGISTER 22-24: G1DBLCON: DISPLAY BLANKING CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VENST0  
bit 8  
VENST7  
VENST6  
VENST5  
VENST4  
VENST3  
VENST2  
VENST1  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HENST7  
HENST6  
HENST5  
HENST4  
HENST3  
HENST2  
HENST1  
HENST0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
VENST<7:0>: Vertical Blanking Start to First Displayed Line Configuration bits (in lines)  
This is the number of lines from the start of vertical blanking to the first displayed line of a frame.  
HENST<7:0>: Horizontal Blanking Start to First Displayed Pixel Configuration bits (in DISPCLKs)  
This is the number of GCLK cycles from the start of horizontal blanking to the first displayed pixel of  
each displayed line.  
DS39969B-page 318  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-25: G1CLUT: COLOR LOOK-UP TABLE CONTROL REGISTER  
R/W-0  
R-0, HSC  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CLUTEN  
CLUTBUSY  
CLUTTRD  
CLUTRWEN  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLUTADR7  
CLUTADR6 CLUTADR5 CLUTADR4 CLUTADR3 CLUTADR2 CLUTADR1  
CLUTADR0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
CLUTEN: Color Look-up Table Enable Control bit  
1= Color look-up table is enabled  
0= Color look-up table is disabled  
CLUTBUSY: Color Look-up Table Busy Status bit  
1= A CLUT entry read/write access is being executed  
0= No CLUT entry read/write access is being executed  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CLUTTRD: Color Look-up Table Read Trigger bit  
Enabling this bit will trigger a read to the CLUT location determined by the CLUTADR bits  
(G1CLUT<7:0>) with CLUTRWEN enabled.  
1= CLUT read trigger is enabled (must be cleared in software after reading data in the G1CLUTRD  
register)  
0= CLUT read trigger is disabled  
bit 8  
CLUTRWEN: Color Look-up Table Read/Write Enable Control bit  
This bit must be set when reading or modifying entries on the CLUT and it must also be cleared when  
CLUT is used by the display controller.  
1= Color look-up table read/write enabled; display controller cannot access the CLUT  
0= Color look-up table read/write disabled; display controller can access the CLUT  
bit 7-0  
CLUTADR<7:0>: Color Look-up Table Memory Address bits  
2010 Microchip Technology Inc.  
DS39969B-page 319  
PIC24FJ256DA210 FAMILY  
REGISTER 22-26: G1CLUTWR: COLOR LOOK-UP TABLE (CLUT) MEMORY WRITE DATA  
REGISTER  
R/W-0  
CLUTWR15 CLUTWR14 CLUTWR13 CLUTWR12 CLUTWR11 CLUTWR10 CLUTWR9 CLUTWR8  
bit 15 bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLUTWR7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLUTWR6  
CLUTWR5  
CLUTWR4  
CLUTWR3  
CLUTWR2 CLUTWR1 CLUTWR0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CLUTWR<15:0>: Color Look-up Table Memory Write Data bits  
A write to this register triggers a write to the CLUT memory at the address pointed to by the CLUTADR  
bits. A word write or a high byte write to this register triggers a write to the CLUT memory at the address  
pointed to by CLUTADR. Low byte write to this register will only update the G1CLUTWR<7:0> and no  
write to CLUT memory will be triggered. During power-up and power-down of the display, the most  
recent data written to this register will be used to control the timing of the GPWR signal. Refer to the  
PIC24F Family Reference Manual”, Section 43. “Graphics Controller Module (GFX)” for details on  
writing entries to the CLUT.  
REGISTER 22-27: G1CLUTRD: COLOR LOOK-UP TABLE (CLUT) MEMORY READ DATA REGISTER  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC R-0, HSC  
CLUTRD9 CLUTRD8  
bit 8  
CLUTRD15 CLUTRD14 CLUTRD13 CLUTRD12  
bit 15  
CLUTRD11  
CLUTRD10  
R-0, HSC  
CLUTRD7  
R-0, HSC  
CLUTRD6  
R-0, HSC  
CLUTRD5  
R-0, HSC  
CLUTRD4  
R-0, HSC  
CLUTRD3  
R-0, HSC  
CLUTRD2  
R-0, HSC  
R-0, HSC  
CLUTRD1 CLUTRD0  
bit 0  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CLUTRD<15:0>: Color Look-up Table Memory Read Data bits  
This register contains the most recent read from the CLUT memory pointed to by the CLUTADR bits  
(G1CLUT<7:0>). Reading of the CLUT memory is triggered when the CLUTTRD bit (G1CLUT<9>) goes  
from ‘0’ to ‘1’. Refer to the “PIC24F Family Reference Manual”, Section 43. “Graphics Controller Module  
(GFX)” for details on reading entries from the CLUT.  
DS39969B-page 320  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-28: G1MRGN: INTERRUPT ADVANCE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VBAMGN7  
VBAMGN6  
VBAMGN5  
VBAMGN4  
VBAMGN3 VBAMGN2 VBAMGN1 VBAMGN0  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HBAMGN7  
HBAMGN6  
HBAMGN5  
HBAMGN4  
HBAMGN3 HBAMGN2 HBAMGN1 HBAMGN0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-8  
bit 7-0  
VBAMGN<7:0>: Vertical Blanking Advance bits  
The number of DISPCLK cycles in advance that the vertical blanking interrupt will assert ahead of the  
actual start of the vertical blanking.  
HBAMGN<7:0>: Horizontal Blanking Advance bits  
The number of DISPCLK cycles in advance that the horizontal blanking interrupt will assert ahead of  
the actual start of the horizontal blanking.  
REGISTER 22-29: G1CHRX: CHARACTER-X COORDINATE PRINT POSITION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
R-0, HSC  
R-0, HSC  
CURPOSX10 CURPOSX9 CURPOSX8  
bit 8  
bit 15  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
CURPOSX7 CURPOSX6 CURPOSX5 CURPOSX4 CURPOSX3 CURPOSX2  
bit 7  
CURPOSX1 CURPOSX0  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-0  
Unimplemented: Read as ‘0’  
CURPOSX<10:0>: Current Character Position in the X-Coordinate bits  
2010 Microchip Technology Inc.  
DS39969B-page 321  
PIC24FJ256DA210 FAMILY  
REGISTER 22-30: G1CHRY: CHARACTER Y-COORDINATE PRINT POSITION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
R-0, HSC  
R-0, HSC  
CURPOSY10 CURPOSY9 CURPOSY8  
bit 8  
bit 15  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
CURPOSY7 CURPOSY6 CURPOSY5 CURPOSY4 CURPOSY3 CURPOSY2 CURPOSY1 CURPOSY0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-11  
bit 10-0  
Unimplemented: Read as ‘0’  
CURPOSY<10:0>: Current Character Position in the Y-Coordinate bits  
REGISTER 22-31: G1IPU: INFLATE PROCESSOR STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
R-0, HSC  
HUFFERR(2) BLCKERR(2) LENERR(2) WRAPERR(2) IPUDONE(1,2) BFINAL(1,2)  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
HUFFERR: Undefined Huffmann Code Encountered Status bit(2)  
1= Undefined code is encountered  
0= No undefined code is encountered  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
BLCKERR: Undefined Block Code Encountered Status bit(2)  
1= Undefined block is encountered  
0= No undefined block is encountered  
LENERR: Mismatch in Expected Block Length Status bit(2)  
1= Mismatch in block length is detected  
0= No mismatch in block length is detected  
WRAPERR: Wrap-Around Error Status bit(2)  
1= Wrap-around error is encountered  
0= No wrap-around error is encountered  
IPUDONE: IPU Decompression Status bit(1,2)  
1= Decompression is done  
0= Decompression is not yet done  
BFINAL: Final Block Encountered Status bit(1,2)  
1= Final block is encountered  
0= Final block is not encountered  
Note 1: IPUDONE and BFINAL status bits are set after successful decompression.  
2: All IPU status bits are available after each decompression. All status bits are automatically cleared every  
time a decompression command (IPU_DECOMPRESS) is issued.  
DS39969B-page 322  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 22-32: G1DBEN: DATA I/O PAD ENABLE REGISTER  
R/W-0  
GDBEN15  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
GDBEN14  
GDBEN13  
GDBEN12 GDBEN11 GDBEN10  
GDBEN9  
GDBEN8  
bit 8  
R/W-0  
GDBEN7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
GDBEN6  
GDBEN5  
GDBEN4  
GDBEN3  
GDBEN2  
GDBEN1  
GDBEN0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
GDBEN<15:0>: Display Data Pads Output Enable bits  
1= Corresponding display data (GD<x>) pin is enabled  
0= Corresponding display data (GD<x>) pin is disabled  
GDBEN<15:0> can be used to disable or enable specific data signals while the DPPINOE bit  
(G1CON3<9>) is set.  
GDBENx  
DPPINOE  
(where x = 0 to 15)  
1
1
0
1
0
x
Display data signal (GD) associated with GDBENx is enabled.  
Display data signal (GD) associated with GDBENx is disabled.  
Display data signal (GD) associated with GDBENx is disabled.  
2010 Microchip Technology Inc.  
DS39969B-page 323  
PIC24FJ256DA210 FAMILY  
22.2 Display Resolution and Memory  
Requirements  
22.4 Display Buffer and Work Areas  
Memory Locations  
The PIC24FJ256DA210 family of devices has two vari-  
ants in terms of on-board RAM (24-Kbyte and 96-Kbyte  
variants). The 24-Kbyte variant supports monochrome  
displays while the 96-Kbyte variant supports Quarter  
VGA (QVGA) color displays, up to 256 colors. Support of  
higher resolution displays with higher color depth  
requirements are available by extending the data space  
through external memory. Table 22-1 provides the sum-  
mary of image buffer memory requirements of different  
display resolutions and color depth requirements.  
The PIC24FJ256DA210 family of devices has variants  
with two on-board RAM sizes. These are the 24-Kbyte  
and 96-Kbyte variants. These two RAM variants are  
further divided in terms of pin counts. The 100-pin  
count device will have the EPMP module available for  
extending RAM for applications. The 64-pin count  
device will not have the EPMP modules. Extending the  
RAM size is necessary for applications that require  
larger display buffers and work areas. It is recom-  
mended that the display buffers and work areas are not  
mapped into an area that overlaps the internal RAM  
and the external RAM. The external RAM can be  
interfaced using the EPMP module. For details, refer to  
the “PIC24F Family Reference Manual”, Section 42.  
“Enhanced Parallel Master Port (EPMP)”  
(DS39730).  
22.3 Display Clock (GCLK) Source  
Frequency of the Graphics Controller Display Clock  
(GCLK) signal is determined by programming the  
GCLKDIV bits (CLKDIV2<15:9>). For more informa-  
tion, refer to the “PIC24F Family Reference Manual”,  
Section 6. “Oscillator” (DS39700).  
TABLE 22-1: BUFFER MEMORY REQUIREMENTS vs. DISPLAY CONFIGURATION  
Display Buffer Memory Requirements (Bytes)  
Display Resolution  
1 Bpp  
16320  
9600  
4800  
3200  
2400  
1024  
2 Bpp  
32640  
19200  
9600  
4 Bpp  
65280  
38400  
19200  
12800  
9600  
8 Bpp  
130560  
76800  
38400  
25600  
19200  
8192  
16 Bpp  
261120  
153600  
76800  
51200  
38400  
16384  
480x272 (WQVGA)  
320x240 (QVGA)  
240x160 (HQVGA)  
160x160  
6400  
160x120 (QQVGA)  
128x64  
4800  
2048  
4096  
Legend:  
Less than 24-Kbyte RAM variants (PIC24FJXXXDA106)  
Less than 96-Kbyte RAM variants (PIC24FJXXXDA2XX)  
External Memory with 96 Kbytes/24 Kbytes of RAM variants (PIC24FJXXXDAX10)  
DS39969B-page 324  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
A block diagram of the A/D Converter is shown in  
Figure 23-1.  
23.0 10-BIT HIGH-SPEED A/D  
CONVERTER  
To perform an A/D conversion:  
Note:  
This data sheet summarizes the features  
1. Configure the A/D module:  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 17. “10-Bit A/D Converter”  
(DS39705). The information in this data  
sheet supersedes the information in the  
FRM.  
a) Configure the port pins as analog inputs  
and/or select band gap reference inputs  
(ANCFG registers).  
b) Select the voltage reference source to  
match the expected range on analog inputs  
(AD1CON2<15:13>).  
c) Select the analog conversion clock to  
match the desired data rate with the  
processor clock (AD1CON3<7:0>).  
The 10-bit A/D Converter has the following key  
features:  
d) Select the appropriate sample/conversion  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 500 ksps  
sequence  
AD1CON3<12:8>).  
(AD1CON1<7:5>  
and  
• 24 analog input pins (PIC24FJXXXDAX10  
devices) and 16 analog input pins  
(PIC24FJXXXDAX06 devices)  
e) Select how the conversion results are  
presented in the buffer (AD1CON1<9:8>).  
f) Select the interrupt rate (AD1CON2<6:2>).  
g) Turn on the A/D module (AD1CON1<15>).  
2. Configure the A/D interrupt (if required):  
a) Clear the AD1IF bit.  
• External voltage reference input pins  
• Internal band gap reference inputs  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• 32-word conversion result buffer  
• Selectable Buffer Fill modes  
b) Select the A/D interrupt priority.  
• Four result alignment options  
• Operation during CPU Sleep and Idle modes  
On all PIC24FJ256DA210 family devices, the 10-bit  
A/D Converter has 24 analog input pins, designated  
AN0 through AN23. In addition, there are two analog  
input pins for external voltage reference connections  
(VREF+ and VREF-). These voltage reference inputs  
may be shared with other analog input pins.  
2010 Microchip Technology Inc.  
DS39969B-page 325  
PIC24FJ256DA210 FAMILY  
FIGURE 23-1:  
10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM  
Internal Data Bus  
16  
AVDD  
AVSS  
VR+  
VR-  
VREF+  
VREF-  
Comparator  
VINH  
VINL  
VR- VR+  
DAC  
AN0  
AN1  
AN2  
S/H  
10-Bit SAR  
Conversion Logic  
VINH  
Data Formatting  
AD1BUF0:  
AD1BUF1F  
VINL  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
ANCFG  
VINH  
AD1CSSL  
AD1CSSH  
AN23  
VBG  
VINL  
VBG/2  
VBG/6  
VCAP  
Sample Control  
Control Logic  
Conversion Control  
Input MUX Control  
Pin Config Control  
DS39969B-page 326  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 23-1: AD1CON1: A/D CONTROL REGISTER 1  
R/W-0  
ADON(1)  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADSIDL  
FORM1  
FORM0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
ASAM  
R
-0, HSC  
R
-0, HSC  
DONE  
bit 0  
SSRC2  
SSRC1  
SSRC0  
SAMP  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ADON: A/D Operating Mode bit(1)  
1= A/D Converter module is operating  
0= A/D Converter is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-10  
bit 9-8  
Unimplemented: Read as ‘0’  
FORM<1:0>: Data Output Format bits  
11= Signed fractional (sddd dddd dd00 0000)  
10= Fractional (dddd dddd dd00 0000)  
01= Signed integer (ssss sssd dddd dddd)  
00= Integer (0000 00dd dddd dddd)  
bit 7-5  
SSRC<2:0>: Conversion Trigger Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= CTMU event ends sampling and starts conversion  
101= Reserved  
100= Timer5 compare ends sampling and starts conversion  
011= Reserved  
010= Timer3 compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing SAMP bit ends sampling and starts conversion  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
ASAM: A/D Sample Auto-Start bit  
1= Sampling begins immediately after the last conversion completes. The SAMP bit is auto-set.  
0= Sampling begins when the SAMP bit is set  
bit 1  
bit 0  
SAMP: A/D Sample Enable bit  
1= A/D sample/hold amplifier is sampling input  
0= A/D sample/hold amplifier is holding  
DONE: A/D Conversion Status bit  
1= A/D conversion is done  
0= A/D conversion is NOT done  
Note 1: The values of the ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out  
the conversion values from the buffer before disabling the module.  
2010 Microchip Technology Inc.  
DS39969B-page 327  
PIC24FJ256DA210 FAMILY  
REGISTER 23-2: AD1CON2: A/D CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
r-0  
r
U-0  
R/W-0  
U-0  
U-0  
VCFG2  
VCFG1  
VCFG0  
CSCNA  
bit 15  
bit 8  
R-0, HSC  
BUFS  
R/W-0  
SMPI4  
R/W-0  
SMPI3  
R/W-0  
SMPI2  
R/W-0  
SMPI1  
R/W-0  
SMPI0  
R/W-0  
BUFM  
R/W-0  
ALTS  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Voltage Reference Configuration bits  
VCFG<2:0>  
VR+  
VR-  
000  
001  
010  
011  
1xx  
AVDD  
External VREF+ pin  
AVDD  
AVSS  
AVSS  
External VREF- pin  
External VREF- pin  
AVSS  
External VREF+ pin  
AVDD  
bit 12  
bit 11  
bit 10  
Reserved: Maintain as ‘0’  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for the CH0+ S/H Input for MUX A Input Multiplexer Setting bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
BUFS: Buffer Fill Status bit (valid only when BUFM = 1)  
1= A/D is currently filling buffer, 10-1F, user should access data in 00-0F  
0= A/D is currently filling buffer, 00-0F, user should access data in 10-1F  
bit 6-2  
SMPI<4:0>: Sample/Convert Sequences Per Interrupt Selection bits  
11111 = Interrupts at the completion of conversion for each 32nd sample/convert sequence  
11110 = Interrupts at the completion of conversion for each 31st sample/convert sequence  
.
.
.
00001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence  
00000 = Interrupts at the completion of conversion for each sample/convert sequence  
bit 1  
bit 0  
BUFM: Buffer Mode Select bit  
1 = Buffer is configured as two 16-word buffers (ADC1BUFn<31:16> and ADC1BUFn<15:0>)  
0 = Buffer is configured as one 32-word buffer (ADC1BUFn<31:0>)  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses MUX A input multiplexer settings for the first sample, then alternates between MUX B and  
MUX A input multiplexer settings for all subsequent samples  
0= Always uses the MUX A input multiplexer settings  
DS39969B-page 328  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 23-3: AD1CON3: A/D CONTROL REGISTER 3  
R/W-0  
ADRC  
r-0  
r
r-0  
r
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SAMC4  
SAMC3  
SAMC2  
SAMC1  
SAMC0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS7  
ADCS6  
ADCS5  
ADCS4  
ADCS3  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ADRC: A/D Conversion Clock Source bit  
1= A/D internal RC clock  
0= Clock is derived from the system clock  
bit 14-13  
bit 12-8  
Reserved: Maintain as ‘0’  
SAMC<4:0>: Auto-Sample Time bits  
11111= 31 TAD  
.
.
.
00001= 1 TAD  
00000= 0 TAD (not recommended)  
bit 7-0  
ADCS<7:0>: A/D Conversion Clock Select bits  
11111111 = 256 * TCY  
······  
00000001 = 2 * TCY  
00000000 = TCY  
2010 Microchip Technology Inc.  
DS39969B-page 329  
PIC24FJ256DA210 FAMILY  
REGISTER 23-4: AD1CHS: A/D INPUT SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
CH0SB4(1)  
R/W-0  
CH0SB3(1)  
R/W-0  
CH0SB2(1)  
R/W-0  
CH0SB1(1)  
R/W-0  
CH0SB0(1)  
CH0NB  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
R/W-0  
CH0SA4(1)  
R/W-0  
CH0SA3(1)  
R/W-0  
CH0SA2(1)  
R/W-0  
CH0SA1(1)  
R/W-0  
CH0SA0(1)  
CH0NA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CH0SB<4:0>: Channel 0 Positive Input Select for MUX B(1)  
Other = Not available; do not use  
11111= No channel used; all inputs are floating; used for CTMU  
11011= Channel 0 positive input is the band gap divided-by-six reference (VBG/6)  
11010= Channel 0 positive input is the core voltage (VCAP)  
11001= Channel 0 positive input is the band gap reference (VBG)  
11000= Channel 0 positive input is the band gap divided-by-two reference (VBG/2)  
10111= Channel 0 positive input is AN23(2)  
.
.
.
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 6-5  
bit 4-0  
Unimplemented: Read as ‘0’  
CH0SA<4:0>: Channel 0 Positive Input Select for MUX(1)  
Other = Not available; do not use  
11111= No Channel used; all inputs are floating; used for CTMU  
11011= Channel 0 positive input is the band gap divided-by-six reference (VBG/6)  
11010= Channel 0 positive input is the core voltage (VCAP)  
11001= Channel 0 positive input is the band gap reference (VBG)  
11000= Channel 0 positive input is the band gap divided-by-two reference (VBG/2)  
10111= Channel 0 positive input is AN23(2)  
.
.
.
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
Note 1: Combinations not shown here (11100to 11110) are unimplemented; do not use.  
2: Channel 0 positive inputs, AN16 through AN23, are not available on 64-pin devices (PIC24FJXXXDAX06).  
DS39969B-page 330  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 23-5: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VBG6EN  
VBG2EN  
VBGEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2  
Unimplemented: Read as ‘0’  
VBG6EN: A/D Input VBG/6 Enable bit  
1= Band gap voltage divided-by-six reference (VBG/6) is enabled  
0= Band gap divided-by-six reference (VBG/6) is disabled  
bit 1  
bit 0  
VBG2EN: A/D Input VBG/2 Enable bit  
1= Band gap voltage divided-by-two reference (VBG/2) is enabled  
0= Band gap divided-by-two reference (VBG/2) is disabled  
VBGEN: A/D Input VBG Enable bit  
1= Band gap voltage reference (VBG) is enabled  
0= Band gap reference (VBG) is disabled  
REGISTER 23-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL15  
CSSL14  
CSSL13  
CSSL12  
CSSL11  
CSSL10  
CSSL9  
CSSL8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL7  
CSSL6  
CSSL5  
CSSL4  
CSSL3  
CSSL2  
CSSL1  
CSSL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
CSSL<15:0>: A/D Input Pin Scan Selection bits  
1= Corresponding analog channel is selected for input scan  
0= Analog channel is omitted from input scan  
2010 Microchip Technology Inc.  
DS39969B-page 331  
PIC24FJ256DA210 FAMILY  
REGISTER 23-7: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH)  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL27  
CSSL26  
CSSL25  
CSSL24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL23(1)  
CSSL22(1)  
CSSL21(1)  
CSSL20(1)  
CSSL19(1)  
CSSL18(1)  
CSSL17(1)  
CSSL16(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
CSSL27: A/D Input Band Gap Scan Selection bit  
1= Band gap divided-by-six reference (VBG/6) is selected for input scan  
0= Analog channel is omitted from input scan  
bit 10  
bit 9  
CSSL26: A/D Input Band Gap Scan Selection bit  
1= Internal core voltage (VCAP) is selected for input scan  
0= Analog channel is omitted from input scan  
CSSL25: A/D Input Half Band Gap Scan Selection bit  
1= Band gap reference (VBG) is selected for input scan  
0= Analog channel is omitted from input scan  
bit 8  
CSSL24: A/D Input Band Gap Scan Selection bit  
1= Band gap divided-by-two reference (VBG/2) is selected for input scan  
0= Analog channel is omitted from input scan  
bit 7-0  
CSSL<23:16>: Analog Input Pin Scan Selection bits(1)  
1= Corresponding analog channel selected for input scan  
0= Analog channel is omitted from input scan  
Note 1: Unimplemented in 64-pin devices, read as ‘0’.  
EQUATION 23-1: A/D CONVERSION CLOCK PERIOD(1)  
TAD  
– 1  
ADCS =  
TCY  
TAD = TCY • (ADCS = 1)  
Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.  
DS39969B-page 332  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 23-2:  
10-BIT A/D CONVERTER ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC 250  
RSS 5 k(Typical)  
Sampling  
Switch  
ANx  
RSS  
Rs  
CHOLD  
= DAC Capacitance  
= 4.4 pF (Typical)  
VA  
CPIN  
6-11 pF  
(Typical)  
ILEAKAGE  
VT = 0.6V  
500 nA  
VSS  
Legend: CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
RIC  
= Interconnect Resistance  
RSS  
= Sampling Switch Resistance  
CHOLD = Sample/Hold Capacitance (from DAC)  
Note:  
CPIN value depends on the device package and is not tested. The effect of CPIN IS negligible if Rs 5 k.  
FIGURE 23-3:  
A/D TRANSFER FUNCTION  
Output Code  
(Binary (Decimal))  
11 1111 1111(1023)  
11 1111 1110(1022)  
10 0000 0011(515)  
10 0000 0010(514)  
10 0000 0001(513)  
10 0000 0000(512)  
01 1111 1111(511)  
01 1111 1110(510)  
01 1111 1101(509)  
00 0000 0001(1)  
00 0000 0000(0)  
Voltage Level  
2010 Microchip Technology Inc.  
DS39969B-page 333  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 334  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The comparator outputs may be directly connected to  
the CxOUT pins. When the respective COE equals ‘1’,  
the I/O pad logic makes the unsynchronized output of  
the comparator available on the pin.  
24.0 TRIPLE COMPARATOR  
MODULE  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
A simplified block diagram of the module in shown in  
Figure 24-1. Diagrams of the possible individual  
comparator configurations are shown in Figure 24-2.  
intended to be a comprehensive reference  
source. For more information, refer to the  
associated “PIC24F Family Reference  
Manual”.  
Each comparator has its own control register,  
CMxCON (Register 24-1), for enabling and configuring  
its operation. The output and event status of all three  
comparators is provided in the CMSTAT register  
(Register 24-2).  
The triple comparator module provides three dual input  
comparators. The inputs to the comparator can be  
configured to use any one of five external analog inputs  
(CxINA, CxINB, CxINC, CxIND and VREF+) and a  
voltage reference input from one of the internal band  
gap references or the comparator voltage reference  
generator (VBG, VBG/2, VBG/6 and CVREF).  
FIGURE 24-1:  
TRIPLE COMPARATOR MODULE BLOCK DIAGRAM  
EVPOL<1:0>  
CCH<1:0>  
CEVT  
Trigger/Interrupt  
Logic  
Input  
Select  
Logic  
CPOL  
COE  
VIN-  
C1  
00  
01  
VIN+  
CXINB  
CXINC  
CXIND  
VBG  
C1OUT  
Pin  
COUT  
CEVT  
-
10  
11  
EVPOL<1:0>  
CPOL  
00  
01  
10  
VBG/2  
VBG/6  
Trigger/Interrupt  
Logic  
COE  
VIN-  
11  
VREF+  
C2  
VIN+  
C2OUT  
Pin  
(1)  
COUT  
CEVT  
CVREFM<1:0>  
EVPOL<1:0>  
CPOL  
0
1
CXINA  
+
0
1
Trigger/Interrupt  
Logic  
VREF+  
COE  
VIN-  
CVREF  
C3  
VIN+  
(1)  
CVREFP  
C3OUT  
Pin  
COUT  
CREF  
Note 1: Refer Register 25-1 for bit details.  
2010 Microchip Technology Inc.  
DS39969B-page 335  
PIC24FJ256DA210 FAMILY  
FIGURE 24-2:  
INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 0  
Comparator Off  
CEN = 0, CREF = x, CCH<1:0> = xx  
COE  
VIN-  
Cx  
VIN+  
Off (Read as ‘0’)  
CxOUT  
Pin  
Comparator CxINB > CxINA Compare  
Comparator CxINC > CxINA Compare  
CEN = 1, CCH<1:0> = 00  
CVREFM<1:0> = xx  
CEN = 1, CCH<1:0> = 01  
CVREFM<1:0> = xx  
COE  
COE  
VIN-  
VIN-  
CXINB  
CXINC  
Cx  
Cx  
VIN+  
VIN+  
CXINA  
CXINA  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CxINA Compare  
Comparator CxIND > CxINA Compare  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 00  
CEN = 1, CCH<1:0> = 10  
CVREFM<1:0> = xx  
COE  
COE  
VIN-  
VIN-  
VBG  
CXIND  
Cx  
Cx  
VIN+  
VIN+  
CXINA  
CXINA  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CxINA Compare  
Comparator VBG > CxINA Compare  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 01  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 10  
COE  
COE  
VIN-  
VIN-  
VBG/2  
VBG/6  
Cx  
Cx  
VIN+  
VIN+  
CXINA  
CXINA  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator CxIND > CxINA Compare  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 11  
COE  
VIN-  
VREF+  
Cx  
VIN+  
CXINA  
CxOUT  
Pin  
DS39969B-page 336  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 24-3:  
INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1AND CVREFP = 0  
Comparator CxINC > CVREF Compare  
Comparator CxINB > CVREF Compare  
CEN = 1, CCH<1:0> = 00  
CVREFM<1:0> = xx  
CVREFM<1:0> = xx  
CEN = 1, CCH<1:0> = 01  
COE  
COE  
VIN-  
VIN-  
CXINC  
CXINB  
Cx  
Cx  
VIN+  
VIN+  
CVREF  
CVREF  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CVREF Compare  
Comparator CxIND > CVREF Compare  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 00  
CVREFM<1:0> = xx  
CEN = 1, CCH<1:0> = 10  
COE  
COE  
VIN-  
VIN-  
VBG  
CXIND  
Cx  
Cx  
VIN+  
VIN+  
CVREF  
CVREF  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CVREF Compare  
Comparator VBG > CVREF Compare  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 10  
CVREFM<1:0> = 01  
CEN = 1, CCH<1:0> = 11  
COE  
COE  
VIN-  
VIN-  
VBG/6  
VBG/2  
Cx  
Cx  
VIN+  
VIN+  
CVREF  
CVREF  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator CxIND > CVREF Compare  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 11  
COE  
VIN-  
VREF+  
Cx  
VIN+  
CVREF  
CxOUT  
Pin  
FIGURE 24-4:  
INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1AND CVREFP = 1  
Comparator CxINC > CVREF Compare  
Comparator CxINB > CVREF Compare  
CEN = 1, CCH<1:0> = 01  
CEN = 1, CCH<1:0> = 00  
CVREFM<1:0> = xx  
CVREFM<1:0> = xx  
COE  
COE  
VIN-  
VIN-  
CXINC  
VREF+  
CXINB  
VREF+  
Cx  
Cx  
VIN+  
VIN+  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CVREF Compare  
Comparator CxIND > CVREF Compare  
CVREFM<1:0> = 00  
CEN = 1, CCH<1:0> = 11  
CEN = 1, CCH<1:> = 10  
CVREFM<1:0> = xx  
COE  
COE  
VIN-  
VIN-  
VBG  
CXIND  
Cx  
Cx  
VIN+  
VIN+  
VREF+  
VREF+  
CxOUT  
Pin  
CxOUT  
Pin  
Comparator VBG > CVREF Compare  
Comparator VBG > CVREF Compare  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 10  
CEN = 1, CCH<1:0> = 11  
CVREFM<1:0> = 01  
COE  
COE  
VIN-  
VIN-  
VBG/6  
VBG/2  
Cx  
Cx  
VIN+  
VIN+  
VREF+  
VREF+  
CxOUT  
Pin  
CxOUT  
Pin  
2010 Microchip Technology Inc.  
DS39969B-page 337  
PIC24FJ256DA210 FAMILY  
REGISTER 24-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1  
THROUGH 3)  
R/W-0  
CEN  
R/W-0  
COE  
R/W-0  
CPOL  
U-0  
U-0  
U-0  
R/W-0, HS  
CEVT  
R-0, HSC  
COUT  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
R/W-0  
CREF  
U-0  
U-0  
R/W-0  
CCH1  
R/W-0  
CCH0  
EVPOL1  
EVPOL0  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
CEN: Comparator Enable bit  
1= Comparator is enabled  
0= Comparator is disabled  
COE: Comparator Output Enable bit  
1= Comparator output is present on the CxOUT pin  
0= Comparator output is internal only  
CPOL: Comparator Output Polarity Select bit  
1= Comparator output is inverted  
0= Comparator output is not inverted  
bit 12-10  
bit 9  
Unimplemented: Read as ‘0’  
CEVT: Comparator Event bit  
1= Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts  
are disabled until the bit is cleared  
0= Comparator event has not occurred  
bit 8  
COUT: Comparator Output bit  
When CPOL = 0:  
1= VIN+ > VIN-  
0= VIN+ < VIN-  
When CPOL = 1:  
1= VIN+ < VIN-  
0= VIN+ > VIN-  
bit 7-6  
EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits  
11= Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)  
10= Trigger/event/interrupt is generated on transition of the comparator output:  
If CPOL = 0(non-inverted polarity):  
High-to-low transition only.  
If CPOL = 1(inverted polarity):  
Low-to-high transition only.  
01= Trigger/event/interrupt is generated on transition of comparator output:  
If CPOL = 0(non-inverted polarity):  
Low-to-high transition only.  
If CPOL = 1(inverted polarity):  
High-to-low transition only.  
00= Trigger/event/interrupt generation is disabled  
bit 5  
Unimplemented: Read as ‘0’  
DS39969B-page 338  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 24-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1  
THROUGH 3) (CONTINUED)  
bit 4  
CREF: Comparator Reference Select bits (non-inverting input)  
1= Non-inverting input connects to the internal CVREF voltage  
0= Non-inverting input connects to the CXINA pin  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
CCH<1:0>: Comparator Channel Select bits  
11= Inverting input of the comparator connects to the internal selectable reference voltage specified by  
the CVREFM<1:0> bits in the CVRCON register  
10= Inverting input of the comparator connects to the CXIND pin  
01= Inverting input of the comparator connects to the CXINC pin  
00= Inverting input of the comparator connects to the CXINB pin  
REGISTER 24-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
C3EVT  
R-0, HSC  
C2EVT  
R-0, HSC  
C1EVT  
CMIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
C3OUT  
R-0, HSC  
C2OUT  
R-0, HSC  
C1OUT  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMIDL: Comparator Stop in Idle Mode bit  
1= Discontinue operation of all comparators when device enters Idle mode  
0= Continue operation of all enabled comparators in Idle mode  
bit 14-11  
bit 10  
Unimplemented: Read as ‘0’  
C3EVT: Comparator 3 Event Status bit (read-only)  
Shows the current event status of Comparator 3 (CM3CON<9>).  
C2EVT: Comparator 2 Event Status bit (read-only)  
Shows the current event status of Comparator 2 (CM2CON<9>).  
C1EVT: Comparator 1 Event Status bit (read-only)  
Shows the current event status of Comparator 1 (CM1CON<9>).  
Unimplemented: Read as ‘0’  
bit 9  
bit 8  
bit 7-3  
bit 2  
C3OUT: Comparator 3 Output Status bit (read-only)  
Shows the current output of Comparator 3 (CM3CON<8>).  
C2OUT: Comparator 2 Output Status bit (read-only)  
Shows the current output of Comparator 2 (CM2CON<8>).  
C1OUT: Comparator 1 Output Status bit (read-only)  
Shows the current output of Comparator 1 (CM1CON<8>).  
bit 1  
bit 0  
2010 Microchip Technology Inc.  
DS39969B-page 339  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 340  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
25.1 Configuring the Comparator  
Voltage Reference  
25.0 COMPARATOR VOLTAGE  
REFERENCE  
The voltage reference module is controlled through the  
Note:  
This data sheet summarizes the features  
CVRCON register (Register 25-1). The comparator  
voltage reference provides two ranges of output  
voltage, each with 16 distinct levels. The range to be  
used is selected by the CVRR bit (CVRCON<5>). The  
primary difference between the ranges is the size of the  
steps selected by the CVREF Selection bits  
(CVR<3:0>), with one range offering finer resolution.  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
PIC24F Family Reference Manual”,  
Section 19. “Comparator Module”  
(DS39710). The information in this data  
sheet supersedes the information in the  
FRM.  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF-. The voltage source is selected by the CVRSS  
bit (CVRCON<4>).  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output.  
FIGURE 25-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
VREF+  
AVDD  
8R  
CVRSS = 0  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREF  
CVROE  
R
R
R
CVREF  
Pin  
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
AVSS  
2010 Microchip Technology Inc.  
DS39969B-page 341  
PIC24FJ256DA210 FAMILY  
REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CVREFP  
CVREFM1  
CVREFM0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CVREFP: Voltage Reference Select bit (valid only when CREF is ‘1’)  
1= VREF+ is used as a reference voltage to the comparators  
0= The CVR (4-bit DAC) within this module provides the the reference voltage to the comparators  
bit 9-8  
CVREFM<1:0>: Band Gap Reference Source Select bits (valid only when CCH<1:0> = 11)  
00= Band gap voltage is provided as an input to the comparators  
01= Band gap voltage divided-by-two is provided as an input to the comparators  
10= Band gap voltage divided-by-six is provided as an input to the comparators  
11= VREF+ pin is provided as an input the comparators  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit is powered on  
0= CVREF circuit is powered down  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is output on the CVREF pin  
0= CVREF voltage level is disconnected from the CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size  
0= CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source CVRSRC = VREF+ – VREF-  
0= Comparator reference source CVRSRC = AVDD – AVSS  
CVR<3:0>: Comparator VREF Value Selection 0 CVR<3:0> 15 bits  
When CVRR = 1:  
CVREF = (CVR<3:0>/ 24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)  
DS39969B-page 342  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
source polarity selection, and edge sequencing. The  
CTMUICON register controls the selection and trim of  
the current source.  
26.0 CHARGE TIME  
MEASUREMENT UNIT (CTMU)  
Note:  
This data sheet summarizes the features  
26.1 Measuring Capacitance  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
associated “PIC24F Family Reference  
Manual”, Section 11. “Charge Time  
Measurement Unit (CTMU)” (DS39724).  
The information in this data sheet  
supersedes the information in the FRM.  
The CTMU module measures capacitance by generat-  
ing an output pulse with a width equal to the time  
between edge events on two separate input channels.  
The pulse edge events to both input channels can be  
selected from four sources: two internal peripheral  
modules (OC1 and Timer1) and two external pins  
(CTEDG1 and CTEDG2). This pulse is used with the  
module’s precision current source to calculate  
capacitance according to the relationship:  
The Charge Time Measurement Unit (CTMU) is a flex-  
ible analog module that provides accurate differential  
time measurement between pulse sources, as well as  
asynchronous pulse generation. Its key features  
include:  
dV  
C = I ------  
dT  
For capacitance measurements, the A/D Converter  
samples an external capacitor (CAPP) on one of its  
input channels after the CTMU output’s pulse. A preci-  
sion resistor (RPR) provides current source calibration  
on a second A/D channel. After the pulse ends, the  
converter determines the voltage on the capacitor. The  
actual calculation of capacitance is performed in  
software by the application.  
• Four edge input trigger sources  
• Polarity control for each edge source  
• Control of edge sequence  
• Control of response to edges  
• Time measurement resolution of 1 nanosecond  
• Accurate current source suitable for capacitive  
measurement  
Figure 26-1 shows the external connections used for  
capacitance measurements, and how the CTMU and  
A/D modules are related in this application. This  
example also shows the edge events coming from  
Timer1, but other configurations using external edge  
sources are possible. A detailed discussion on measur-  
ing capacitance and time with the CTMU module is  
provided in the “PIC24F Family Reference Manual”.  
Together with other on-chip analog modules, the CTMU  
can be used to precisely measure time, measure  
capacitance, measure relative changes in capacitance  
or generate output pulses that are independent of the  
system clock. The CTMU module is ideal for interfacing  
with capacitive-based sensors.  
The CTMU is controlled through two registers:  
CTMUCON and CTMUICON. CTMUCON enables the  
module, and controls edge source selection, edge  
FIGURE 26-1:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR  
CAPACITANCE MEASUREMENT  
PIC24F Device  
Timer1  
CTMU  
EDG1  
EDG2  
Current Source  
Output  
Pulse  
A/D Converter  
ANx  
ANY  
CAPP  
RPR  
2010 Microchip Technology Inc.  
DS39969B-page 343  
PIC24FJ256DA210 FAMILY  
When the module is configured for pulse generation  
26.2 Measuring Time  
delay by setting the TGEN (CTMUCON<12>) bit, the  
internal current source is connected to the B input of  
Comparator 2. A capacitor (CDELAY) is connected to  
the Comparator 2 pin, C2INB, and the comparator volt-  
age reference, CVREF, is connected to C2INA. CVREF  
is then configured for a specific trip point. The module  
begins to charge CDELAY when an edge event is  
detected. When CDELAY charges above the CVREF trip  
point, a pulse is output on CTPLS. The length of the  
pulse delay is determined by the value of CDELAY and  
the CVREF trip point.  
Time measurements on the pulse width can be similarly  
performed using the A/D module’s internal capacitor  
(CAD) and a precision resistor for current calibration.  
Figure 26-2 shows the external connections used for  
time measurements, and how the CTMU and A/D  
modules are related in this application. This example  
also shows both edge events coming from the external  
CTEDG pins, but other configurations using internal  
edge sources are possible. A detailed discussion on  
measuring capacitance and time with the CTMU module  
is provided in the “PIC24F Family Reference Manual”.  
Figure 26-3 shows the external connections for pulse  
generation, as well as the relationship of the different  
analog modules required. While CTEDG1 is shown as  
the input pulse source, other options are available. A  
detailed discussion on pulse generation with the CTMU  
module is provided in the “PIC24F Family Reference  
Manual”.  
26.3 Pulse Generation and Delay  
The CTMU module can also generate an output pulse  
with edges that are not synchronous with the device’s  
system clock. More specifically, it can generate a pulse  
with a programmable delay from an edge event input to  
the module.  
FIGURE 26-2:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME  
MEASUREMENT TIME  
PIC24F Device  
CTMU  
CTEDG1  
CTEDG2  
EDG1  
EDG2  
Current Source  
Output  
Pulse  
A/D Converter  
ANx  
RPR  
CAD  
FIGURE 26-3:  
TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE  
DELAY GENERATION  
PIC24F Device  
CTMU  
CTEDG1  
EDG1  
CTPLS  
Current Source  
Comparator  
C2  
C2INB  
CDELAY  
CVREF  
DS39969B-page 344  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
R/W-0  
TGEN(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CTMUEN  
CTMUSIDL  
EDGEN  
EDGSEQEN  
IDISSEN  
CTTRIG  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0, HSC R/W-0, HSC  
EDG2POL  
EDG2SEL1 EDG2SEL0  
EDG1POL  
EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT  
bit 0  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CTMUEN: CTMU Enable bit  
1= Module is enabled  
0= Module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when the device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 10  
bit 10  
bit 9  
TGEN: Time Generation Enable bit(1)  
1= Enables edge delay generation  
0= Disables edge delay generation  
EDGEN: Edge Enable bit  
1= Edges are not blocked  
0= Edges are blocked  
EDGSEQEN: Edge Sequence Enable bit  
1= Edge 1 event must occur before Edge 2 event can occur  
0= No edge sequence is needed  
IDISSEN: Analog Current Source Control bit  
1= Analog current source output is grounded  
0= Analog current source output is not grounded  
bit 8  
CTTRIG: Trigger Control bit  
1= Trigger output is enabled  
0= Trigger output is disabled  
bit 7  
EDG2POL: Edge 2 Polarity Select bit  
1= Edge 2 is programmed for a positive edge response  
0= Edge 2 is programmed for a negative edge response  
bit 6-5  
EDG2SEL<1:0>: Edge 2 Source Select bits  
11= CTEDG1 pin  
10= CTEDG2 pin  
01= OC1 module  
00= Timer1 module  
bit 4  
EDG1POL: Edge 1 Polarity Select bit  
1= Edge 1 is programmed for a positive edge response  
0= Edge 1 is programmed for a negative edge response  
Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
2010 Microchip Technology Inc.  
DS39969B-page 345  
PIC24FJ256DA210 FAMILY  
REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)  
bit 3-2  
EDG1SEL<1:0>: Edge 1 Source Select bits  
11= CTEDG1 pin  
10= CTEDG2 pin  
01= OC1 module  
00= Timer1 module  
bit 1  
bit 0  
EDG2STAT: Edge 2 Status bit  
1= Edge 2 event has occurred  
0= Edge 2 event has not occurred  
EDG1STAT: Edge 1 Status bit  
1= Edge 1 event has occurred  
0= Edge 1 event has not occurred  
Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See  
Section 10.4 “Peripheral Pin Select (PPS)” for more information.  
REGISTER 26-2: CTMUICON: CTMU CURRENT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRNG1  
R/W-0  
IRNG0  
ITRIM5  
ITRIM4  
ITRIM3  
ITRIM2  
ITRIM1  
ITRIM0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
ITRIM<5:0>: Current Source Trim bits  
011111= Maximum positive change from nominal current  
011110  
.
.
.
000001= Minimum positive change from nominal current  
000000= Nominal current output specified by IRNG<1:0>  
111111= Minimum negative change from nominal current  
.
.
.
100010  
100001= Maximum negative change from nominal current  
bit 9-8  
bit 7-0  
IRNG<1:0>: Current Source Range Select bits  
11= 100 Base Current  
10= 10 Base Current  
01= Base current level (0.55 A nominal)  
00= Current source is disabled  
Unimplemented: Read as ‘0’  
DS39969B-page 346  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
27.1.1  
CONSIDERATIONS FOR  
CONFIGURING PIC24FJ256DA210  
FAMILY DEVICES  
27.0 SPECIAL FEATURES  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
following sections of the “PIC24F Family  
Reference Manual”. The information in  
this data sheet supersedes the information  
in the FRMs.  
In PIC24FJ256DA210 family devices, the configuration  
bytes are implemented as volatile memory. This means  
that configuration data must be programmed each time  
the device is powered up. Configuration data is stored  
in the three words at the top of the on-chip program  
memory space, known as the Flash Configuration  
Words. Their specific locations are shown in  
Table 27-1. These are packed representations of the  
actual device Configuration bits, whose actual  
locations are distributed among several locations in  
configuration space. The configuration data is automat-  
ically loaded from the Flash Configuration Words to the  
proper Configuration registers during device Resets.  
Section 9. “Watchdog Timer (WDT)”  
(DS39697)  
Section 32. “High-Level Device  
Integration” (DS39719)  
Section 33. “Programming and  
Diagnostics” (DS39716)  
Note:  
Configuration data is reloaded on all types  
of device Resets.  
PIC24FJ256DA210 family devices include several  
features intended to maximize application flexibility and  
reliability, and minimize cost through elimination of  
external components. These are:  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™  
• In-Circuit Emulation  
The upper byte of all Flash Configuration Words in pro-  
gram memory should always be ‘0000 0000’. This  
makes them appear to be NOP instructions in the  
remote event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘0’s to these  
locations has no effect on device operation.  
27.1 Configuration Bits  
The Configuration bits can be programmed (read as ‘0’),  
or left unprogrammed (read as ‘1’), to select various  
device configurations. These bits are mapped starting at  
program memory location F80000h. A detailed explana-  
tion of the various bit functions is provided in  
Register 27-1 through Register 27-6.  
Note:  
Performing a page erase operation on the  
last page of program memory clears the  
Flash Configuration Words, enabling code  
protection as a result. Therefore, users  
should avoid performing page erase  
operations on the last page of program  
memory.  
Note that address F80000h is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (800000h-FFFFFFh) which can only be  
accessed using table reads and table writes.  
TABLE 27-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ256DA210 FAMILY  
DEVICES  
Configuration Word Addresses  
Device  
1
2
3
4
PIC24FJ128DAXXX  
PIC24FJ256DAXXX  
157FEh  
2ABFEh  
157FCh  
2ABFCh  
157FAh  
2ABFAh  
157F8h  
2ABF8h  
2010 Microchip Technology Inc.  
DS39969B-page 347  
PIC24FJ256DA210 FAMILY  
REGISTER 27-1: CW1: FLASH CONFIGURATION WORD 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
r-x  
R/PO-1  
R/PO-1  
GCP  
R/PO-1  
GWRP  
R/PO-1  
DEBUG  
r-1  
R/PO-1  
ICS1  
R/PO-1  
ICS0  
reserved  
JTAGEN  
reserved  
bit 15  
bit 8  
R/PO-1  
R/PO-1  
WINDIS  
R/PO-1  
ALTVREF(1)  
R/PO-1  
FWPSA  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
FWDTEN  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
Reserved: The value is unknown; program as ‘0’  
JTAGEN: JTAG Port Enable bit  
bit 14  
1= JTAG port is enabled  
0= JTAG port is disabled  
bit 13  
bit 12  
GCP: General Segment Program Memory Code Protection bit  
1= Code protection is disabled  
0= Code protection is enabled for the entire program memory space  
GWRP: General Segment Code Flash Write Protection bit  
1= Writes to program memory are allowed  
0= Writes to program memory are not allowed  
DEBUG: Background Debugger Enable bit  
bit 11  
1= Device resets into Operational mode  
0= Device resets into Debug mode  
bit 10  
Reserved: Always maintain as ‘1’  
bit 9-8  
ICS<1:0>: Emulator Pin Placement Select bits  
11= Emulator functions are shared with PGEC1/PGED1  
10= Emulator functions are shared with PGEC2/PGED2  
01= Emulator functions are shared with PGEC3/PGED3  
00= Reserved; do not use  
bit 7  
bit 6  
FWDTEN: Watchdog Timer Enable bit  
1= Watchdog Timer is enabled  
0= Watchdog Timer is disabled  
WINDIS: Windowed Watchdog Timer Disable bit  
1= Standard Watchdog Timer is enabled  
0= Windowed Watchdog Timer is enabled; FWDTEN must be ‘1’  
ALTVREF: Alternate VREF Pin Selection bit(1)  
bit 5  
1= VREF is on a default pin (VREF+ on RA10 and VREF- on RA9)  
0= VREF is on an alternate pin (VREF+ on RB0 and VREF- on RB1)  
Note 1: Unimplemented in 64-pin devices, maintain at ‘1’ (VREF+ on RB0 and VREF- on RB1).  
DS39969B-page 348  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 27-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)  
bit 4  
FWPSA: WDT Prescaler Ratio Select bit  
1= Prescaler ratio of 1:128  
0= Prescaler ratio of 1:32  
bit 3-0  
WDTPS<3:0>: Watchdog Timer Postscaler Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
Note 1: Unimplemented in 64-pin devices, maintain at ‘1’ (VREF+ on RB0 and VREF- on RB1).  
2010 Microchip Technology Inc.  
DS39969B-page 349  
PIC24FJ256DA210 FAMILY  
REGISTER 27-2: CW2: FLASH CONFIGURATION WORD 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
R/PO-1  
IESO  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
PLLDIV2  
PLLDIV1  
PLLDIV0  
PLL96MHZ  
FNOSC2  
FNOSC1  
FNOSC0  
bit 15  
bit 8  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
r-1  
r-1  
R/PO-1  
R/PO-1  
FCKSM1  
FCKSM0  
OSCIOFCN  
IOL1WAY  
reserved  
reserved  
POSCMD1  
POSCMD0  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
IESO: Internal External Switchover bit  
1= IESO mode (Two-Speed Start-up) is enabled  
0= IESO mode (Two-Speed Start-up) is disabled  
bit 14-12  
PLLDIV<2:0>: 96 MHz PLL Prescaler Select bits  
111= Oscillator input is divided by 12 (48 MHz input)  
110= Oscillator input is divided by 8 (32 MHz input)  
101= Oscillator input is divided by 6 (24 MHz input)  
100= Oscillator input is divided by 5 (20 MHz input)  
011= Oscillator input is divided by 4 (16 MHz input)  
010= Oscillator input is divided by 3 (12 MHz input)  
001= Oscillator input is divided by 2 (8 MHz input)  
000= Oscillator input is used directly (4 MHz input)  
bit 11  
PLL96MHZ: 96 MHz PLL Start-Up Enable bit  
1= 96 MHz PLL is enabled automatically on start-up  
0= 96 MHz PLL is software controlled (can be enabled by setting the PLLEN bit in CLKDIV<5>)  
bit 10-8  
FNOSC<2:0>: Initial Oscillator Select bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7-6  
bit 5  
FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits  
1x= Clock switching and Fail-Safe Clock Monitor are disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFCN: OSCO Pin Configuration bit  
If POSCMD<1:0> = 11or 00:  
1= OSCO/CLKO/RC15 functions as CLKO (FOSC/2)  
0= OSCO/CLKO/RC15 functions as port I/O (RC15)  
If POSCMD<1:0> = 10 or 01:  
OSCIOFCN has no effect on OSCO/CLKO/RC15.  
DS39969B-page 350  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 27-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)  
bit 4  
IOL1WAY: IOLOCK One-Way Set Enable bit  
1= The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been  
completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.  
0= The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been  
completed  
bit 3-2  
bit 1-0  
Reserved: Always maintain as ‘1’  
POSCMD<1:0>: Primary Oscillator Configuration bits  
11= Primary oscillator is disabled  
10= HS Oscillator mode is selected  
01= XT Oscillator mode is selected  
00= EC Oscillator mode is selected  
REGISTER 27-3: CW3: FLASH CONFIGURATION WORD 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
R/PO-1  
R/PO-1  
R/PO-1  
WPDIS  
R/PO-1  
ALTPMP(1)  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
WPEND  
WPCFG  
WUTSEL1  
WUTSEL0  
SOSCSEL1 SOSCSEL0  
bit 8  
bit 15  
R/PO-1  
WPFP7  
R/PO-1  
WPFP6  
R/PO-1  
WPFP5  
R/PO-1  
WPFP4  
R/PO-1  
WPFP3  
R/PO-1  
WPFP2  
R/PO-1  
WPFP1  
R/PO-1  
WPFP0  
bit 7  
bit 0  
Legend:  
PO = Program-Once bit  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
‘1’ = Bit is set  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
WPEND: Segment Write Protection End Page Select bit  
1= Protected code segment upper boundary is at the last page of program memory; the lower  
boundary is the code page specified by WPFP<7:0>  
0= Protected code segment lower boundary is at the bottom of the program memory (000000h); upper  
boundary is the code page specified by WPFP<7:0>  
bit 14  
bit 13  
WPCFG: Configuration Word Code Page Write Protection Select bit  
1= Last page (at the top of program memory) and Flash Configuration Words are not write-protected(3)  
0= Last page and Flash Configuration Words are write-protected, provided WPDIS = ‘0’  
WPDIS: Segment Write Protection Disable bit  
1= Segmented code protection is disabled  
0= Segmented code protection is enabled; protected segment is defined by the WPEND, WPCFG and  
WPFPx Configuration bits  
ALTPMP: Alternate EPMP Pin Mapping bit(1)  
bit 12  
1= EPMP pins are in default location mode  
0= EPMP pins are in alternate location mode  
Note 1: Unimplemented in 64-pin devices, maintain at ‘1’.  
2: Ensure that the SCLKI pin is made a digital input while using this configuration, see Table 10-1.  
3: Regardless of WPCFG status, if WPEND = 1or if WPFP corresponds to the Configuration Word’s page,  
the Configuration Word’s page is protected.  
2010 Microchip Technology Inc.  
DS39969B-page 351  
PIC24FJ256DA210 FAMILY  
REGISTER 27-3: CW3: FLASH CONFIGURATION WORD 3 (CONTINUED)  
bit 11-10  
WUTSEL<1:0>: Voltage Regulator Standby Mode Wake-up Time Select bits  
11= Default regulator start-up time is used  
01= Fast regulator start-up time is used  
x0= Reserved; do not use  
bit 9-8  
SOSCSEL<1:0>: SOSC Selection Configuration bits  
11= Secondary oscillator is in Default (high drive strength) Oscillator mode  
10= Reserved; do not use  
01= Secondary oscillator is in Low-Power (low drive strength) Oscillator mode  
00= External clock (SCLKI) or Digital I/O mode(2)  
bit 7-0  
WPFP<7:0>: Write Protected Code Segment Boundary Page bits  
Designates the 512 instruction words page boundary of the protected code segment.  
If WPEND = 1:  
Specifies the lower page boundary of the code-protected segment; the last page being the last  
implemented page in the device.  
If WPEND = 0:  
Specifies the upper page boundary of the code-protected segment; Page 0 being the lower boundary.  
Note 1: Unimplemented in 64-pin devices, maintain at ‘1’.  
2: Ensure that the SCLKI pin is made a digital input while using this configuration, see Table 10-1.  
3: Regardless of WPCFG status, if WPEND = 1or if WPFP corresponds to the Configuration Word’s page,  
the Configuration Word’s page is protected.  
REGISTER 27-4: CW4: FLASH CONFIGURATION WORD 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
bit 15  
bit 8  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 23-16  
bit 15-0  
Unimplemented: Read as ‘0’  
Reserved: Always maintain as ‘1’  
DS39969B-page 352  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
REGISTER 27-5: DEVID: DEVICE ID REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
R
R
R
R
R
R
R
R
FAMID7  
FAMID6  
FAMID5  
FAMID4  
FAMID3  
FAMID2  
FAMID1  
FAMID0  
bit 15  
bit 8  
R
R
R
R
R
R
R
R
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
DEV2  
DEV1  
DEV0  
bit 7  
bit 0  
Legend: R = Readable bit  
U = Unimplemented bit  
bit 23-16  
bit 15-8  
Unimplemented: Read as ‘1’  
FAMID<7:0>: Device Family Identifier bits  
01000001= PIC24FJ256DA210 family  
DEV<7:0>: Individual Device Identifier bits  
bit 7-0  
00001000= PIC24FJ128DA206  
00001001= PIC24FJ128DA106  
00001010= PIC24FJ128DA210  
00001011= PIC24FJ128DA110  
00001100= PIC24FJ256DA206  
00001101= PIC24FJ256DA106  
00001110= PIC24FJ256DA210  
00001111= PIC24FJ256DA110  
2010 Microchip Technology Inc.  
DS39969B-page 353  
PIC24FJ256DA210 FAMILY  
REGISTER 27-6: DEVREV: DEVICE REVISION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R
R
R
R
REV3  
REV2  
REV1  
REV0  
bit 0  
bit 7  
Legend: R = Readable bit  
U = Unimplemented bit  
bit 23-4  
bit 3-0  
Unimplemented: Read as ‘0’  
REV<3:0>: Device revision identifier bits  
Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>).  
This can be used to generate an interrupt to trigger an  
orderly shutdown.  
27.2 On-Chip Voltage Regulator  
All PIC24FJ256DA210 family devices power their core  
digital logic at a nominal 1.8V. This may create an issue  
for designs that are required to operate at a higher  
typical voltage, such as 3.3V. To simplify system  
design, all devices in the PIC24FJ256DA210 family  
incorporate an on-chip regulator that allows the device  
to run its core logic from VDD.  
FIGURE 27-1:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
Regulator Enabled (ENVREG tied to VDD):  
(1)  
3.3V  
The regulator is controlled by the ENVREG pin. Tying VDD  
to the pin enables the regulator, which in turn, provides  
power to the core from the other VDD pins. When the reg-  
ulator is enabled, a low-ESR capacitor (such as ceramic)  
must be connected to the VCAP pin (Figure 27-1). This  
helps to maintain the stability of the regulator. The recom-  
mended value for the filter capacitor (CEFC) is provided in  
PIC24FJXXXDA1/DA2  
VDD  
ENVREG  
VCAP  
CEFC  
(10 F typ)  
VSS  
Section 30.1 “DC Characteristics”  
.
Note 1: This is a typical operating voltage. Refer to  
Section 30.1 “DC Characteristics” for  
the full operating ranges of VDD.  
27.2.1  
VOLTAGE REGULATOR  
LOW-VOLTAGE DETECTION  
When the on-chip regulator is enabled, it provides a  
constant voltage of 1.8V nominal to the digital core  
logic.  
27.2.2  
ON-CHIP REGULATOR AND POR  
When the voltage regulator is enabled, it takes approx-  
imately 10 s for it to generate output. During this time,  
designated as TVREG, code execution is disabled.  
TVREG is applied every time the device resumes  
operation after any power-down, including Sleep mode.  
TVREG is determined by the status of the VREGS bit  
(RCON<8>) and the WUTSEL Configuration bits  
(CW3<11:10>). Refer to Section 30.0 “Electrical  
Characteristics” for more information on TVREG.  
The regulator can provide this level from a VDD of about  
2.1V, all the way up to the device’s VDDMAX. It does not  
have the capability to boost VDD levels. In order to pre-  
vent “brown-out” conditions when the voltage drops too  
low for the regulator, the Brown-out Reset occurs. Then  
the regulator output follows VDD with a typical voltage  
drop of 300 mV.  
To provide information about when the regulator  
voltage starts reducing, the on-chip regulator includes  
a simple Low-Voltage Detect circuit, which sets the  
DS39969B-page 354  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
27.2.3  
When  
ON-CHIP REGULATOR AND BOR  
the on-chip regulator is enabled,  
27.3 Watchdog Timer (WDT)  
For PIC24FJ256DA210 family devices, the WDT is  
driven by the LPRC oscillator. When the WDT is  
enabled, the clock source is also enabled.  
PIC24FJ256DA210 family devices also have a simple  
brown-out capability. If the voltage supplied to the reg-  
ulator is inadequate to maintain the output level, the  
regulator Reset circuitry will generate a Brown-out  
Reset. This event is captured by the BOR (RCON<1>)  
flag bit. The brown-out voltage specifications are  
provided in Section 7. “Reset” (DS39712) in the  
PIC24F Family Reference Manual”.  
The nominal WDT clock source from LPRC is 31 kHz.  
This feeds a prescaler that can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the FWPSA Configuration bit.  
With a 31 kHz input, the prescaler yields a nominal  
WDT Time-out period (TWDT) of 1 ms in 5-bit mode or  
4 ms in 7-bit mode.  
Note:  
For more information, see Section 30.0  
“Electrical Characteristics”. The infor-  
mation in this data sheet supersedes the  
information in the FRM.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPS<3:0> Con-  
figuration bits (CW1<3:0>), which allows the selection  
of a total of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler time-out periods, ranging  
from 1 ms to 131 seconds, can be achieved.  
27.2.4  
VOLTAGE REGULATOR STANDBY  
MODE  
When enabled, the on-chip regulator always consumes  
a small incremental amount of current over IDD/IPD,  
including when the device is in Sleep mode, even  
though the core digital logic does not require power. To  
provide additional savings in applications where power  
resources are critical, the regulator can be made to  
enter Standby mode on its own whenever the device  
goes into Sleep mode. This feature is controlled by the  
VREGS bit (RCON<8>). Clearing the VREGS bit  
enables the Standby mode. When waking up from  
Standby mode, the regulator needs to wait for TVREG to  
expire before wake-up.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
The regulator wake-up time required for Standby  
mode is controlled by the WUTSEL<1:0>  
(CW3<11:10>) Configuration bits. The regulator  
wake-up time is lower when WUTSEL<1:0> = 01, and  
higher when WUTSEL<1:0> = 11. Refer to the TVREG  
specification in Table 30-10 for regulator wake-up  
time.  
• By a CLRWDTinstruction during normal execution  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAVinstruction was exe-  
cuted. The corresponding SLEEP or IDLE  
(RCON<3:2>) bits will need to be cleared in software  
after the device wakes up.  
When the regulator’s Standby mode is turned off  
(VREGS = 1), the device wakes up without waiting for  
TVREG. However, with the VREGS bit set, the power  
consumption while in Sleep mode will be approximately  
40 A higher than what it would be if the regulator was  
allowed to enter Standby mode.  
The WDT Flag bit, WDTO (RCON<4>), is not auto-  
matically cleared following a WDT time-out. To detect  
subsequent WDT events, the flag must be cleared in  
software.  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
2010 Microchip Technology Inc.  
DS39969B-page 355  
PIC24FJ256DA210 FAMILY  
27.3.1  
WINDOWED OPERATION  
27.3.2  
CONTROL REGISTER  
The Watchdog Timer has an optional Fixed-Window  
mode of operation. In this Windowed mode, CLRWDT  
instructions can only reset the WDT during the last 1/4  
of the programmed WDT period. A CLRWDTinstruction  
executed before that window causes a WDT Reset,  
similar to a WDT time-out.  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit. When the FWDTEN Configuration bit  
is set, the WDT is always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN Control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for  
critical code segments and disable the WDT during  
non-critical segments for maximum power savings.  
Windowed WDT mode is enabled by programming the  
WINDIS Configuration bit (CW1<6>) to ‘0’.  
FIGURE 27-2:  
WDT BLOCK DIAGRAM  
SWDTEN  
FWDTEN  
LPRC Control  
Wake from Sleep  
FWPSA  
WDTPS<3:0>  
Prescaler  
(5-bit/7-bit)  
WDT  
Counter  
Postscaler  
WDT Overflow  
1:1 to 1:32.768  
LPRC Input  
Reset  
31 kHz  
1 ms/4 ms  
All Device Resets  
Transition to  
New Clock Source  
Exit Sleep or  
Idle Mode  
CLRWDTInstr.  
PWRSAVInstr.  
Sleep or Idle Mode  
DS39969B-page 356  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The size and type of protection for the segmented code  
range are configured by the WPFPx, WPEND, WPCFG  
and WPDIS bits in Configuration Word 3. Code seg-  
27.4 Program Verification and  
Code Protection  
PIC24FJ256DA210 family devices provide two compli-  
mentary methods to protect application code from  
overwrites and erasures. These also help to protect the  
device from inadvertent configuration changes during  
run time.  
ment protection is enabled by programming the WPDIS  
bit (= 0). The WPFP bits specify the size of the segment  
to be protected, by specifying the 512-word code page  
that is the start or end of the protected segment. The  
specified region is inclusive, therefore, this page will  
also be protected.  
27.4.1  
GENERAL SEGMENT PROTECTION  
The WPEND bit determines if the protected segment  
uses the top or bottom of the program space as a  
boundary. Programming WPEND (= 0) sets the bottom  
of program memory (000000h) as the lower boundary  
of the protected segment. Leaving WPEND unpro-  
grammed (= 1) protects the specified page through the  
last page of implemented program memory, including  
the Configuration Word locations.  
For all devices in the PIC24FJ256DA210 family, the  
on-chip program memory space is treated as a single  
block, known as the General Segment (GS). Code pro-  
tection for this block is controlled by one Configuration  
bit, GCP. This bit inhibits external reads and writes to  
the program memory space. It has no direct effect in  
normal execution mode.  
Write protection is controlled by the GWRP bit in the  
Configuration Word. When GWRP is programmed to  
0’, internal write and erase operations to program  
memory are blocked.  
A separate bit, WPCFG, is used to protect the last page  
of program space, including the Flash Configuration  
Words. Programming WPCFG (= 0) protects the last  
page in addition to the pages selected by the WPEND  
and WPFP<7:0> bits setting. This is useful in circum-  
stances where write protection is needed for both the  
code segment in the bottom of the memory and the  
Flash Configuration Words.  
27.4.2  
CODE SEGMENT PROTECTION  
In addition to global General Segment protection, a  
separate subrange of the program memory space can  
be individually protected against writes and erases.  
This area can be used for many purposes where a sep-  
arate block of write and erase-protected code is  
needed, such as bootloader applications. Unlike  
common boot block implementations, the specially  
protected segment in the PIC24FJ256DA210 family  
devices can be located by the user anywhere in the  
program space and configured in a wide range of sizes.  
The various options for segment code protection are  
shown in Table 27-2.  
Code segment protection provides an added level of  
protection to a designated area of program memory by  
disabling the NVM safety interlock whenever a write or  
erase address falls within a specified range. It does not  
override General Segment protection controlled by the  
GCP or GWRP bits. For example, if GCP and GWRP  
are enabled, enabling segmented code protection for  
the bottom half of program memory does not undo  
General Segment protection for the top half.  
2010 Microchip Technology Inc.  
DS39969B-page 357  
PIC24FJ256DA210 FAMILY  
To safeguard against unpredictable events, Configura-  
tion bit changes resulting from individual cell level  
disruptions (such as ESD events) will cause a parity  
error and trigger a device Reset.  
27.4.3  
CONFIGURATION REGISTER  
PROTECTION  
The Configuration registers are protected against  
inadvertent or unwanted changes or reads in two ways.  
The primary protection method is the same as that of  
the RP registers – shadow registers contain a compli-  
mentary value which is constantly compared with the  
actual value.  
The data for the Configuration registers is derived from  
the Flash Configuration Words in program memory.  
When the GCP bit is set, the source data for device  
configuration is also protected as a consequence. Even  
if General Segment protection is not enabled, the  
device configuration can be protected by using the  
appropriate code segment protection setting.  
TABLE 27-2: CODE SEGMENT PROTECTION CONFIGURATION OPTIONS  
Segment Configuration Bits  
Write/Erase Protection of Code Segment  
WPDIS  
WPEND  
WPCFG  
1
X
x
No additional protection is enabled; all program memory protection is configured  
by GCP and GWRP.  
0
1
x
Addresses from the first address of the code page are defined by WPFP<7:0>  
through the end of implemented program memory (inclusive), write/erase  
protected, including Flash Configuration Words.  
0
0
0
0
1
0
Address 000000h through the last address of the code page is defined by  
WPFP<7:0> (inclusive), write/erase protected.  
Address 000000h through the last address of code page is defined by  
WPFP<7:0> (inclusive), write/erase protected and the last page, including Flash  
Configuration Words are write/erase protected.  
27.5 JTAG Interface  
27.7 In-Circuit Debugger  
PIC24FJ256DA210 family devices implement a JTAG  
interface, which supports boundary scan device  
testing.  
When MPLAB® ICD 3 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This func-  
tion allows simple debugging functions when used with  
MPLAB IDE. Debugging functionality is controlled  
through the PGECx (Emulation/Debug Clock) and  
PGEDx (Emulation/Debug Data) pins.  
27.6  
In-Circuit Serial Programming™  
PIC24FJ256DA210 family microcontrollers can be seri-  
ally programmed while in the end application circuit.  
This is simply done with two lines for clock (PGECx)  
and data (PGEDx), and three other lines for power  
(VDD), ground (VSS) and MCLR. This allows customers  
to manufacture boards with unprogrammed devices  
and then program the microcontroller just before  
shipping the product. This also allows the most recent  
firmware or a custom firmware to be programmed.  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS and the PGECx/PGEDx pin pair des-  
ignated by the ICS Configuration bits. In addition, when  
the feature is enabled, some of the resources are not  
available for general use. These resources include the  
first 80 bytes of data RAM and two I/O pins.  
DS39969B-page 358  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
28.1 MPLAB Integrated Development  
Environment Software  
28.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
DS39969B-page 359  
PIC24FJ256DA210 FAMILY  
28.2 MPLAB C Compilers for Various  
Device Families  
28.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
28.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
28.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
28.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS39969B-page 360  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
28.7 MPLAB SIM Software Simulator  
28.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip’s most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet  
easy-to-use graphical user interface of MPLAB Inte-  
grated Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer’s PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
28.10 PICkit 3 In-Circuit  
Debugger/Programmer and  
PICkit 3 Debug Express  
28.8 MPLAB REAL ICE In-Circuit  
Emulator System  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer’s PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with  
in-circuit debugger systems (RJ11) or with the new  
high-speed, noise tolerant, Low-Voltage Differential Sig-  
nal (LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers signifi-  
cant advantages over competitive emulators including  
low-cost, full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, a rugge-  
dized probe interface and long (up to three meters) inter-  
connection cables.  
2010 Microchip Technology Inc.  
DS39969B-page 361  
PIC24FJ256DA210 FAMILY  
28.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
28.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
28.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39969B-page 362  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
The literal instructions that involve data movement may  
use some of the following operands:  
29.0 INSTRUCTION SET SUMMARY  
Note:  
This chapter is a brief summary of the  
PIC24F instruction set architecture and is  
not intended to be a comprehensive  
reference source.  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The PIC24F instruction set adds many enhancements  
to the previous PIC® MCU instruction sets, while main-  
taining an easy migration from previous PIC MCU  
instruction sets. Most instructions are a single program  
memory word. Only three instructions require two  
program memory locations.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
• The first source operand which is a register ‘Wb’  
without any address modifier  
• The second source operand which is a literal  
value  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction. The instruction set is  
highly orthogonal and is grouped into four basic  
categories:  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The control instructions may use some of the following  
operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• A program memory address  
• The mode of the table read and table write  
instructions  
• Control operations  
All instructions are a single word, except for certain  
double-word instructions, which were made  
double-word instructions so that all the required infor-  
mation is available in these 48 bits. In the second word,  
the 8 MSbs are ‘0’s. If this second word is executed as  
an instruction (by itself), it will execute as a NOP.  
Table 29-1 shows the general symbols used in  
describing the instructions. The PIC24F instruction set  
summary in Table 29-2 lists all the instructions, along  
with the status flags affected by each instruction.  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
reads and writes, and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles.  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
However, word or byte-oriented file register instructions  
have two operands:  
Certain instructions that involve skipping over the sub-  
sequent instruction require either two or three cycles if  
the skip is performed, depending on whether the  
instruction being skipped is a single-word or two-word  
instruction. Moreover, double-word moves require two  
cycles. The double-word instructions execute in two  
instruction cycles.  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
2010 Microchip Technology Inc.  
DS39969B-page 363  
PIC24FJ256DA210 FAMILY  
TABLE 29-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
<n:m>  
.b  
Register bit field  
Byte mode selection  
.d  
Double-Word mode selection  
.S  
Shadow register select  
.w  
Word mode selection (default)  
bit4  
4-bit Bit Selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0000h...1FFFh}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
lit14  
lit16  
lit23  
None  
PC  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16383}  
16-bit unsigned literal {0...65535}  
23-bit unsigned literal {0...8388607}; LSB must be ‘0’  
Field does not require an entry, may be blank  
Program Counter  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Wn  
Dividend, Divisor working register pair (direct addressing)  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
WREG  
Ws  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Source W register { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wso  
DS39969B-page 364  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 29-2: INSTRUCTION SET OVERVIEW  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
ADD  
ADDC  
AND  
ASR  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
BTSC  
f
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
f,WREG  
WREG = f + WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
f = f + WREG + (C)  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
1
N, Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N, Z  
1
N, Z  
Wd = Wb .AND. lit5  
1
N, Z  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N, Z  
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater than or Equal  
Branch if Unsigned Greater than or Equal  
Branch if Greater than  
Branch if Unsigned Greater than  
Branch if Less than or Equal  
Branch if Unsigned Less than or Equal  
Branch if Less than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OV,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Overflow  
None  
Branch Unconditionally  
Branch if Zero  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
1
None  
Bit Toggle Ws  
1
None  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
Ws,#bit4  
Bit Test Ws, Skip if Clear  
1
1
None  
(2 or 3)  
2010 Microchip Technology Inc.  
DS39969B-page 365  
PIC24FJ256DA210 FAMILY  
TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
f,#bit4  
Description  
Bit Test f, Skip if Set  
Words Cycles  
BTSS  
BTSS  
BTSS  
1
1
1
None  
(2 or 3)  
Ws,#bit4  
Bit Test Ws, Skip if Set  
1
None  
(2 or 3)  
BTST  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Ws,Wb  
Z
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
C
Z
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
Wn  
None  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
Ws  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
None  
CLRWDT  
COM  
CLRWDT  
Clear Watchdog Timer  
WDTO, Sleep  
COM  
COM  
COM  
CP  
f
f = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N, Z  
f,WREG  
Ws,Wd  
f
WREG = f  
N, Z  
Wd = Ws  
N, Z  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
DAW  
DEC  
DAW.B  
DEC  
Wn  
Wn = Decimal Adjust Wn  
f = f –1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f –1  
1
DEC  
Wd = Ws – 1  
1
DEC2  
DEC2  
f = f – 2  
1
DEC2  
f,WREG  
Ws,Wd  
#lit14  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
WREG = f – 2  
1
DEC2  
Wd = Ws – 2  
1
DISI  
DIV  
DISI  
Disable Interrupts for k Instruction Cycles  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Swap Wns with Wnd  
1
DIV.SW  
DIV.SD  
DIV.UW  
DIV.UD  
EXCH  
18  
18  
18  
18  
1
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
None  
EXCH  
FF1L  
FF1R  
FF1L  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
1
C
FF1R  
1
C
DS39969B-page 366  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
GOTO  
GOTO  
GOTO  
INC  
Expr  
Go to Address  
Go to Indirect  
f = f + 1  
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
None  
Wn  
None  
INC  
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
INC  
f,WREG  
WREG = f + 1  
Wd = Ws + 1  
f = f + 2  
INC  
Ws,Wd  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f,WREG  
WREG = f + 2  
Wd = Ws + 2  
f = f .IOR. WREG  
Ws,Wd  
f
IOR  
f,WREG  
WREG = f .IOR. WREG  
N, Z  
IOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
#lit14  
Wd = lit10 .IOR. Wd  
N, Z  
IOR  
Wd = Wb .IOR. Ws  
N, Z  
IOR  
Wd = Wb .IOR. lit5  
N, Z  
LNK  
LSR  
LNK  
Link Frame Pointer  
None  
LSR  
f
f = Logical Right Shift f  
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
LSR  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Move f to Wn  
LSR  
Ws,Wd  
LSR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,Wn  
LSR  
N, Z  
MOV  
MOV  
None  
MOV  
[Wns+Slit10],Wnd  
f
Move [Wns+Slit10] to Wnd  
Move f to f  
None  
MOV  
N, Z  
MOV  
f,WREG  
Move f to WREG  
N, Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit Literal to Wn  
None  
MOV.b  
MOV  
Move 8-bit Literal to Wn  
None  
Move Wn to f  
None  
MOV  
Wns,[Wns+Slit10]  
Wso,Wdo  
WREG,f  
Move Wns to [Wns+Slit10]  
Move Ws to Wd  
MOV  
None  
N, Z  
MOV  
Move WREG to f  
MOV.D  
MOV.D  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
MUL.SU  
MUL.UU  
MUL  
Wns,Wd  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)  
W3:W2 = f * WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Ws,Wnd  
MUL  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
f
NEG  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)  
Pop Shadow Registers  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
POP.S  
None  
All  
PUSH  
PUSH  
f
Push f to Top-of-Stack (TOS)  
1
1
1
1
1
1
2
1
None  
None  
None  
None  
PUSH  
Wso  
Wns  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns+1) to Top-of-Stack (TOS)  
Push Shadow Registers  
PUSH.D  
PUSH.S  
2010 Microchip Technology Inc.  
DS39969B-page 367  
PIC24FJ256DA210 FAMILY  
TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
PWRSAV  
RCALL  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
WDTO, Sleep  
None  
Computed Call  
2
None  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
Return from Interrupt  
1
None  
1
None  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
None  
3 (2)  
3 (2)  
3 (2)  
1
None  
#lit10,Wn  
Return with Literal in Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Wnd = Sign-Extended Ws  
f = FFFFh  
None  
None  
f
C, N, Z  
RLC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RLC  
1
C, N, Z  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
1
N, Z  
f,WREG  
Ws,Wd  
f
1
N, Z  
1
N, Z  
1
C, N, Z  
RRC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RRC  
1
C, N, Z  
RRNC  
RRNC  
RRNC  
RRNC  
SE  
1
N, Z  
f,WREG  
Ws,Wd  
Ws,Wnd  
f
1
N, Z  
1
N, Z  
SE  
1
C, N, Z  
SETM  
SETM  
SETM  
SETM  
SL  
1
None  
WREG  
WREG = FFFFh  
1
None  
Ws  
Ws = FFFFh  
1
None  
SL  
f
f = Left Shift f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
SL  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f
WREG = Left Shift f  
1
SL  
Wd = Left Shift Ws  
1
SL  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
f = f – WREG  
1
SL  
1
N, Z  
SUB  
SUB  
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
1
SUB  
Wn = Wn – lit10  
1
SUB  
Wd = Wb – Ws  
1
SUB  
Wd = Wb – lit5  
1
SUBB  
SUBB  
SUBB  
f = f – WREG – (C)  
1
f,WREG  
WREG = f – WREG – (C)  
1
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUBR  
f,WREG  
WREG = WREG – f  
Wd = Ws – Wb  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wd = lit5 – Wb  
SUBBR  
SUBBR  
SUBBR  
f
f = WREG – f – (C)  
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
f,WREG  
WREG = WREG – f – (C)  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
Wd = Ws – Wb – (C)  
1
1
1
1
1
1
1
1
1
2
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
Wd = lit5 – Wb – (C)  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
None  
TBLRDH  
TBLRDH  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
None  
DS39969B-page 368  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<15:0> to Wd  
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
None  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
None  
None  
None  
N, Z  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N, Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N, Z  
XOR  
N, Z  
XOR  
Wd = Wb .XOR. lit5  
N, Z  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C, Z, N  
2010 Microchip Technology Inc.  
DS39969B-page 369  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 370  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
30.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the PIC24FJ256DA210 family electrical characteristics. Additional information will  
be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC24FJ256DA210 family are listed below. Exposure to these maximum rating  
conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other  
conditions above the parameters indicated in the operation listings of this specification, is not implied.  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +100°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)  
Voltage on any digital only pin with respect to VSS when VDD < 3.0V............................................ -0.3V to (VDD + 0.3V)  
Voltage on any digital only pin with respect to VSS when VDD > 3.0V..................................................... -0.3V to (+5.5V)  
Voltage on VBUS pin with respect to VSS, independent of VDD or VUSB ................................................. -0.3V to (+5.5V)  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 1)................................................................................................................250 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 1)....................................................................................................200 mA  
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 30-1).  
†NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2010 Microchip Technology Inc.  
DS39969B-page 371  
PIC24FJ256DA210 FAMILY  
30.1 DC Characteristics  
FIGURE 30-1:  
PIC24FJ256DA210 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
3.6V  
3.6V  
2.2V  
2.2V  
VBOR  
VBOR  
32 MHz  
Frequency  
VCAP (nominal On-Chip Regulator output voltage) = 1.8V.  
Note:  
TABLE 30-1: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
PIC24FJ256DA210 family:  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Power Dissipation (with ENVREG = 1):  
Internal Chip Power Dissipation: PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
PI/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJMAX TA)/JA  
TABLE 30-2: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Note  
Package Thermal Resistance, 12x12x1 mm TQFP  
Package Thermal Resistance, 10x10x1 mm TQFP  
Package Thermal Resistance, 9x9x0.9 mm QFN  
Package Thermal Resistance, 10x10x1.1 mm BGA  
JA  
JA  
JA  
JA  
69.4  
76.6  
28.0  
40.2  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
DS39969B-page 372  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 30-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
VBOR  
1.8V  
3.6  
V
V
V
Regulator enabled  
Regulator enabled  
(2)  
VCAP  
DC12 VDR  
RAM Data Retention  
Voltage(1)  
1.5  
DC16 VPOR  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
Vss  
0.05  
2.0  
V
DC17 SVDD  
VBOR  
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
V/ms 0-3.3V in 66 ms  
0-2.5V in 50 ms  
Brown-out Reset Voltage  
on VDD Transition,  
High-to-Low  
2.10  
2.2  
V
Regulator enabled  
VLVD  
LVD Trip Voltage  
VBOR + 0.10  
V
Note 1: This is the limit to which the RAM data can be retained, while the on-chip regulator output voltage starts  
following the VDD.  
2: This is the on-chip regulator output voltage specification.  
2010 Microchip Technology Inc.  
DS39969B-page 373  
PIC24FJ256DA210 FAMILY  
TABLE 30-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(2)  
DC20D  
DC20E  
DC20F  
DC23D  
DC23E  
DC23F  
DC24D  
DC24E  
DC24F  
DC31D  
DC31E  
DC31F  
0.8  
0.8  
0.8  
3.0  
3.0  
3.0  
12.0  
12.0  
12.0  
55  
1.3  
1.3  
1.3  
4.8  
4.8  
4.8  
18  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
3.3V(3)  
3.3V(3)  
3.3V(3)  
3.3V(3)  
1 MIPS  
4 MIPS  
18  
16 MIPS  
18  
95  
55  
95  
A  
LPRC (31 kHz)  
135  
225  
A  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an  
impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven  
with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD;  
WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral  
modules are operating and all of the Peripheral Module Disable (PMD) bits are set.  
3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.  
DS39969B-page 374  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 30-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Idle Current (IIDLE)(2)  
DC40D  
DC40E  
DC40F  
DC43D  
DC43E  
DC43F  
DC47D  
DC47E  
DC47F  
DC50D  
DC50E  
DC50F  
DC51D  
DC51E  
DC51F  
170  
170  
220  
0.6  
320  
320  
380  
1.2  
1.2  
1.2  
4.8  
4.8  
4.8  
1.8  
1.8  
1.8  
85  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
3.3V(3)  
3.3V(3)  
3.3V(3)  
3.3V(3)  
3.3V(3)  
1 MIPS  
4 MIPS  
A  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
0.6  
0.7  
2.3  
2.3  
16 MIPS  
2.4  
0.8  
FRC (4 MIPS)  
0.8  
1.0  
40.0  
40.0  
120.0  
LPRC (31 kHz)  
85  
A  
210  
A  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IIDLE current is measured with the core off; OSCI driven with external square wave from rail to rail.  
All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No  
peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.  
3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.  
2010 Microchip Technology Inc.  
DS39969B-page 375  
PIC24FJ256DA210 FAMILY  
TABLE 30-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)(2)  
DC60D  
DC60E  
DC60H  
DC60F  
DC61D  
DC61E  
DC61H  
DC61F  
DC62D  
DC62E  
DC62H  
DC62F  
DC63D  
DC63E  
DC63H  
DC63F  
20.0  
20.0  
55.0  
95.0  
1.0  
45  
45  
105  
185  
3.5  
3.5  
3.5  
6.5  
6
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+60°C  
+85°C  
-40°C  
+25°C  
+60°C  
+85°C  
-40°C  
+25°C  
+60°C  
+85°C  
-40°C  
+25°C  
+60°C  
+85°C  
3.3V(3)  
3.3V(3)  
3.3V(3)  
3.3V(3)  
Base power-down current(4)  
1.0  
31 kHz LPRC oscillator with  
RTCC, WDT or Timer1:ILPRC  
(4)  
1.0  
2.5  
1.5  
Low drive strength, 32 kHz crystal  
with RTCC or Timer1: ISOSC;  
SOSCSEL<1:0> = 01(4)  
1.5  
6
1.5  
6
8.0  
18  
18  
18  
18  
25  
4.0  
32 kHz crystal  
4.0  
with RTCC or Timer1: ISOSC;  
6.5  
SOSCSEL<1:0> = 11(4)  
12.0  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IPD is measured with the device in Sleep mode (all peripherals and clocks are shut down). All I/Os  
are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear and the  
Peripheral Module Disable (PMD) bits for all unused peripherals are set.  
3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.  
4: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
DS39969B-page 376  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 30-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise  
stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param Symbo  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
No.  
l
VIL  
Input Low Voltage(3)  
I/O Pins with ST Buffer  
I/O Pins with TTL Buffer  
MCLR  
DI10  
DI11  
DI15  
DI16  
DI17  
DI18  
DI19  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
V
V
OSCI (XT mode)  
OSCI (HS mode)  
I/O Pins with I2C™ Buffer:  
I/O Pins with SMBus Buffer:  
Input High Voltage(3)  
SMBus enabled  
VIH  
DI20  
DI21  
I/O Pins with ST Buffer:  
with Analog Functions,  
Digital Only  
0.8 VDD  
0.8 VDD  
VDD  
5.5  
V
V
I/O Pins with TTL Buffer:  
with Analog Functions,  
Digital Only  
0.25 VDD + 0.8  
0.25 VDD + 0.8  
VDD  
5.5  
V
V
DI25  
DI26  
DI27  
DI28  
MCLR  
0.8 VDD  
0.7 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
V
V
V
OSCI (XT mode)  
OSCI (HS mode)  
I/O Pins with I2C™ Buffer:  
with Analog Functions,  
Digital Only  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
DI29  
DI30  
I/O Pins with SMBus Buffer:  
with Analog Functions,  
Digital Only  
2.5V VPIN VDD  
2.1  
2.1  
VDD  
5.5  
V
V
ICNPU  
CNxx Pull-up Current  
CNxx Pull-down Current  
Input Leakage Current(2)  
I/O Ports  
150  
15  
350  
70  
550  
150  
A  
A  
VDD = 3.3V, VPIN = VSS  
VDD = 3.3V, VPIN = VDD  
DI30A ICNPD  
IIL  
DI50  
+1  
+1  
A  
A  
VSS VPIN VDD,  
pin at high-impedance  
DI51  
Analog Input Pins  
VSS VPIN VDD,  
pin at high-impedance  
DI55  
DI56  
MCLR  
+1  
+1  
A  
A  
VSS VPIN VDD  
OSCI/CLKI  
VSS VPIN VDD,  
EC, XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Negative current is defined as current sourced by the pin.  
3: Refer to Table 1-1 for I/O pins buffer types.  
2010 Microchip Technology Inc.  
DS39969B-page 377  
PIC24FJ256DA210 FAMILY  
TABLE 30-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
DO10  
DO16  
I/O Ports  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 6.6 mA, VDD = 3.6V  
IOL = 5.0 mA, VDD = 2.2V  
IOL = 6.6 mA, VDD = 3.6V  
IOL = 5.0 mA, VDD = 2.2V  
OSCO/CLKO  
VOH  
Output High Voltage  
DO20  
I/O Ports  
3.0  
2.4  
1.65  
1.4  
2.4  
V
V
V
V
V
V
IOH = -3.0 mA, VDD = 3.6V  
IOH = -6.0 mA, VDD = 3.6V  
IOH = -1.0 mA, VDD = 2.2V  
IOH = -3.0 mA, VDD = 2.2V  
IOH = -6.0 mA, VDD = 3.6V  
IOH = -1.0 mA, VDD = 2.2V  
DO26  
OSCO/CLKO  
1.4  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 30-9: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise  
DC CHARACTERISTICS  
stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1) Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
D132B  
EP  
10000  
VMIN  
VMIN  
20  
3.6  
3.6  
E/W -40C to +85C  
VPR  
VDD for Read  
V
V
VMIN = Minimum operating voltage  
VMIN = Minimum operating voltage  
VDD for Self-Timed Write  
D133A TIW  
Self-Timed Word Write  
Cycle Time  
s  
Self-Timed Row Write  
Cycle Time  
20  
20  
1.5  
40  
ms  
ms  
D133B TIE  
Self-Timed Page Erase  
Time  
D134  
D135  
TRETD  
IDDP  
Characteristic Retention  
Year If no other specifications are  
violated  
Supply Current during  
Programming  
16  
mA  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
DS39969B-page 378  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 30-10: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ Max Units  
Comments  
VRGOUT Regulator Output Voltage  
1.8  
1.2  
10  
V
V
VBG  
Internal Band Gap Reference  
External Filter Capacitor Value  
CEFC  
4.7  
F Series resistance < 3 Ohm  
recommended; < 5 Ohm  
required.  
TVREG  
10  
s  
VREGS = 1, VREGS = 0with  
WUTSEL<1:0> = 01or any POR  
or BOR  
190  
1
s  
Sleep wake-up with VREGS = 0  
and WUTSEL<1:0> = 11  
TBG  
Band Gap Reference Start-up  
Time  
ms  
30.2 AC Characteristics and Timing Parameters  
The information contained in this section defines the PIC24FJ256DA210 family AC characteristics and timing parameters.  
TABLE 30-11: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Operating voltage VDD range as described in Section 30.1 “DC Characteristics”.  
FIGURE 30-2:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSCO  
VDD/2  
Load Condition 2 – for OSCO  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSCO  
15 pF for OSCO output  
VSS  
2010 Microchip Technology Inc.  
DS39969B-page 379  
PIC24FJ256DA210 FAMILY  
TABLE 30-12: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
No.  
DO50 COSCO  
OSCO/CLKO Pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSCI  
DO56 CIO  
DO58 CB  
All I/O Pins and OSCO  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
FIGURE 30-3:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q3  
Q2  
OSCI  
OS20  
OS25  
OS30 OS30  
OS31 OS31  
CLKO  
OS40  
OS41  
DS39969B-page 380  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 30-13: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10 FOSC  
External CLKI Frequency  
(External clocks allowed  
only in EC mode)  
DC  
4
32  
48  
MHz EC  
MHz ECPLL  
Oscillator Frequency  
3.5  
4
10  
10  
31  
10  
8
32  
32  
33  
MHz XT  
MHz XTPLL  
MHz HS  
MHz HSPLL  
kHz  
SOSC  
OS20 TOSC  
OS25 TCY  
TOSC = 1/FOSC  
See parameter OS10 for  
FOSC value  
Instruction Cycle Time(2)  
62.5  
DC  
ns  
ns  
OS30 TosL,  
TosH  
External Clock in (OSCI) 0.45 x TOSC  
High or Low Time  
EC  
EC  
OS31 TosR, External Clock in (OSCI)  
20  
ns  
TosF  
OS40 TckR  
OS41 TckF  
Rise or Fall Time  
CLKO Rise Time(3)  
CLKO Fall Time(3)  
6
6
10  
10  
ns  
ns  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at “Min.” values with an  
external clock applied to the OSCI/CLKI pin. When an external clock input is used, the “Max.” cycle time  
limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the  
Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
TABLE 30-14: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.2V TO 3.6V)  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50 FPLLI  
PLL Input Frequency  
Range(2)  
4
4
48  
32  
MHz ECPLL mode  
MHz HSPLL mode  
MHz XTPLL mode  
MHz  
4
8
OS51 FSYS  
OS52 TLOCK  
OS53 DCLK  
PLL Output Frequency  
Range  
95.76  
96.24  
PLL Start-up Time  
(Lock Time)  
200  
s  
CLKO Stability (Jitter)  
-0.25  
0.25  
%
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2010 Microchip Technology Inc.  
DS39969B-page 381  
PIC24FJ256DA210 FAMILY  
TABLE 30-15: INTERNAL RC ACCURACY  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
F20  
FRC Accuracy @  
8 MHz(1,2)  
-1  
±0.15  
1
%
%
-40°C TA +85°C 2.2V VDD 3.6V  
F21  
LPRC @ 31 kHz  
-20  
20  
-40°C TA +85°C VCAP (on-chip regulator  
output voltage) = 1.8V  
Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.  
2: To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB)  
must be kept to a minimum.  
TABLE 30-16: RC OSCILLATOR START-UP TIME  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TFRC  
TLPRC  
15  
50  
s  
s  
TABLE 30-17: RESET AND BROWN-OUT RESET REQUIREMENTS  
Standard Operating Conditions: 2.2V to 3.6V (unless other-  
wise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
SY10 TMCL  
SY12 TPOR  
SY13 TIOZ  
MCLR Pulse width (Low)  
Power-on Reset Delay  
2
2
s  
s  
ns  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
100  
SY25 TBOR  
TRST  
Brown-out Reset Pulse Width  
Internal State Reset Time  
1
s  
s  
VDD VBOR  
50  
DS39969B-page 382  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
FIGURE 30-4:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note:  
Refer to Figure 30-2 for load conditions.  
TABLE 30-18: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.2V to 3.6V (unless otherwise  
stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31 TIOR  
DO32 TIOF  
Port Output Rise Time  
Port Output Fall Time  
20  
10  
10  
25  
25  
ns  
ns  
ns  
DI35  
TINP  
INTx Pin High or Low  
Time (input)  
DI40  
TRBP  
CNx High or Low Time  
(input)  
2
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2010 Microchip Technology Inc.  
DS39969B-page 383  
PIC24FJ256DA210 FAMILY  
TABLE 30-19: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.2V to 3.6V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 2.2  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05 VREFH  
AD06 VREFL  
AD07 VREF  
Reference Voltage High  
Reference Voltage Low  
AVSS + 1.7  
AVSS  
AVDD  
V
V
V
AVDD – 1.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS – 0.3  
Analog Input  
AD10 VINH-VINL Full-Scale Input Span  
VREFL  
VREFH  
AVDD + 0.3  
AVDD/2  
V
V
V
(Note 2)  
AD11 VIN  
AD12 VINL  
Absolute Input Voltage  
AVSS – 0.3  
AVSS – 0.3  
Absolute VINL Input  
Voltage  
AD13  
Leakage Current  
±1.0  
±610  
2.5K  
nA  
VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V,  
Source Impedance = 2.5 k  
AD17 RIN  
RecommendedImpedance  
of Analog Voltage Source  
10-bit  
ADC Accuracy  
AD20B Nr  
Resolution  
10  
±1  
bits  
AD21B INL  
Integral Nonlinearity  
<±2  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
AD22B DNL  
AD23B GERR  
AD24B EOFF  
AD25B  
Differential Nonlinearity  
Gain Error  
±0.5  
±1  
<±1  
±3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Offset Error  
±1  
±2  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Monotonicity(1)  
Guaranteed  
Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.  
DS39969B-page 384  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
TABLE 30-20: ADC CONVERSION TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 2.2V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
ADC Clock Period  
75  
ns  
ns  
TCY = 75 ns, AD1CON3  
in default state  
ADC Internal RC Oscillator  
Period  
250  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
tSAMP  
Conversion Time  
Throughput Rate  
Sample Time  
12  
1
500  
TAD  
ksps AVDD > 2.7V  
TAD  
Clock Parameters  
AD61  
tPSS  
Sample Start Delay from Setting  
Sample bit (SAMP)  
2
3
TAD  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
2010 Microchip Technology Inc.  
DS39969B-page 385  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 386  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
31.0 PACKAGING INFORMATION  
31.1 Package Marking Information  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC24FJ256  
DA106-I/  
PT  
e
3
1020017  
Example  
64-Lead QFN (9x9x0.9 mm)  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
PIC24FJ256  
DA206-I/MR  
e
3
1010017  
100-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ256DA  
110-I/PT  
1020017  
e
3
121-BGA (10x10x1.1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ256DA  
110-I/BG  
e
3
1020017  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS39969B-page 387  
PIC24FJ256DA210 FAMILY  
31.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
c
NOTE 2  
α
A
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
DS39969B-page 388  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
2010 Microchip Technology Inc.  
DS39969B-page 389  
PIC24FJ256DA210 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39969B-page 390  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS39969B-page 391  
PIC24FJ256DA210 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39969B-page 392  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
e
E
E1  
N
b
123  
NOTE 2  
NOTE 1  
c
α
A
φ
L
A1  
β
A2  
L1  
6ꢄꢃ&!  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
89ꢒ  
ꢒꢚ8  
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
8
ꢀꢓꢓ  
ꢓꢁꢔꢓꢅ1ꢗ+  
M
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
ꢖꢎ  
ꢖꢀ  
7
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢀꢁꢓꢓ  
M
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢐ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢐ  
ꢀꢐꢝ  
)
ꢓꢁꢀ@  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢀꢓꢓ1  
2010 Microchip Technology Inc.  
DS39969B-page 393  
PIC24FJ256DA210 FAMILY  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
DS39969B-page 394  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS39969B-page 395  
PIC24FJ256DA210 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39969B-page 396  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
APPENDIX A: REVISION HISTORY  
Revision A (February 2010)  
Original data sheet for the PIC24FJ256DA210 family of  
devices.  
Revision B (May 2010)  
Minor changes throughout text and the values in  
Section 30.0 “Electrical Characteristics” were  
updated.  
2010 Microchip Technology Inc.  
DS39969B-page 397  
PIC24FJ256DA210 FAMILY  
NOTES:  
DS39969B-page 398  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
INDEX  
Shared I/O Port Structure......................................... 157  
SPI Master, Frame Master Connection .................... 220  
SPI Master, Frame Slave Connection ...................... 220  
SPI Master/Slave Connection  
(Enhanced Buffer Modes)................................. 219  
SPI Master/Slave Connection  
(Standard Mode)............................................... 219  
SPI Slave, Frame Master Connection ...................... 220  
SPI Slave, Frame Slave Connection ........................ 220  
SPIx Module (Enhanced Mode)................................ 213  
SPIx Module (Standard Mode) ................................. 212  
System Clock............................................................ 141  
Triple Comparator Module........................................ 335  
UART (Simplified)..................................................... 231  
USB OTG  
Device Mode Power Modes.............................. 241  
USB OTG Interrupt Funnel....................................... 248  
USB OTG Module..................................................... 240  
Watchdog Timer (WDT)............................................ 356  
A
A/D Conversion  
10-Bit High-Speed A/D Converter............................. 325  
A/D Converter ................................................................... 325  
Analog Input Model................................................... 333  
Transfer Function...................................................... 333  
AC Characteristics  
ADC Conversion Timing ........................................... 385  
CLKO and I/O Timing................................................ 383  
Internal RC Accuracy................................................ 382  
Alternate Interrupt Vector Table (AIVT) .............................. 93  
Alternative Master  
EPMP........................................................................ 273  
Assembler  
MPASM Assembler................................................... 360  
B
Block Diagram  
CRC .......................................................................... 297  
Block Diagrams  
C
10-Bit High-Speed A/D Converter............................. 326  
16-Bit Asynchronous Timer3 and Timer5 ................. 193  
16-Bit Synchronous Timer2 and Timer4 ................... 193  
16-Bit Timer1 Module................................................ 189  
32-Bit Timer2/3 and Timer4/5 ................................... 192  
96 MHz PLL .............................................................. 150  
Accessing Program Space Using Table  
C Compilers  
MPLAB C18.............................................................. 360  
Charge Time Measurement Unit (CTMU)......................... 343  
Key Features ............................................................ 343  
Charge Time Measurement Unit. See CTMU.  
Code Examples  
Basic Sequence for Clock Switching in  
Operations .......................................................... 77  
Addressing for Table Registers................................... 81  
BDT Mapping for Endpoint Buffering Modes ............ 244  
CALL Stack Frame...................................................... 75  
Comparator Voltage Reference ................................ 341  
CPU Programmer’s Model.......................................... 41  
CRC Shift Engine Detail............................................ 297  
CTMU Connections and Internal Configuration  
for Capacitance Measurement.......................... 343  
CTMU Typical Connections and Internal  
Assembly.......................................................... 149  
Configuring UART1 I/O Input/Output  
Functions (PPS) ............................................... 168  
EDS Read From Program Memory in Assembly........ 80  
EDS Read in Assembly .............................................. 72  
EDS Write in Assembly .............................................. 73  
Erasing a Program Memory Block (Assembly)........... 84  
I/O Port Read/Write in ‘C’ ......................................... 163  
I/O Port Read/Write in Assembly.............................. 163  
Initiating a Programming Sequence ........................... 85  
PWRSAV Instruction Syntax .................................... 155  
Setting the RTCWREN Bit........................................ 286  
Single-Word Flash Programming ............................... 86  
Single-Word Flash Programming  
Configuration for Pulse Delay Generation ........ 344  
CTMU Typical Connections and Internal  
Configuration for Time Measurement ............... 344  
Data Access From Program Space  
Address Generation........................................... 76  
Graphics Module Overview....................................... 305  
(‘C’ Language).................................................... 86  
Code Protection................................................................ 357  
Code Segment Protection ........................................ 357  
Configuration Options....................................... 358  
Configuration Protection........................................... 358  
Comparator Voltage Reference........................................ 341  
Configuring ............................................................... 341  
Configuration Bits ............................................................. 347  
Core Features..................................................................... 15  
CPU  
Arithmetic Logic Unit (ALU) ........................................ 43  
Control Registers........................................................ 42  
Core Registers............................................................ 40  
Programmer’s Model .................................................. 39  
CRC  
2
I C Module................................................................ 224  
Individual Comparator Configurations,  
CREF = 0.......................................................... 336  
Individual Comparator Configurations,  
CREF = 1 and CVREFP = 0 ............................. 337  
Individual Comparator ConfigurationS,  
CREF = 1 and CVREFP = 1 ............................. 337  
Input Capture ............................................................ 197  
On-Chip Regulator Connections............................... 354  
Output Compare (16-Bit Mode)................................. 202  
Output Compare (Double-Buffered,  
16-Bit PWM Mode) ........................................... 204  
PCI24FJ256DA210 Family (General) ......................... 20  
PIC24F CPU Core ...................................................... 40  
PSV Operation (Higher Word) .................................... 79  
PSV Operation (Lower Word) ..................................... 79  
Reset System.............................................................. 87  
RTCC........................................................................ 285  
32-Bit Programmable Cyclic  
Redundancy Check .......................................... 297  
Polynomials .............................................................. 298  
Setup Examples for 16 and 32-Bit Polynomials ....... 298  
User Interface........................................................... 298  
2010 Microchip Technology Inc.  
DS39969B-page 399  
PIC24FJ256DA210 FAMILY  
CTMU  
F
Measuring Capacitance ............................................343  
Flash Configuration Words ......................................... 46, 347  
Measuring Time ........................................................344  
Pulse Delay and Generation .....................................344  
Customer Change Notification Service .............................405  
Customer Notification Service...........................................405  
Customer Support.............................................................405  
Flash Program Memory ...................................................... 81  
and Table Instructions ................................................ 81  
Enhanced ICSP Operation ......................................... 82  
JTAG Operation.......................................................... 82  
Programming Algorithm.............................................. 84  
RTSP Operation ......................................................... 82  
Single-Word Programming ......................................... 86  
D
Data Memory  
Address Space............................................................47  
Memory Map ...............................................................48  
Near Data Space ........................................................49  
SFR Space..................................................................49  
Software Stack............................................................75  
Space Organization, Alignment ..................................49  
DC Characteristics  
I/O Pin Input Specifications.......................................377  
I/O Pin Output Specifications....................................378  
Program Memory ......................................................378  
Development Support .......................................................359  
Device Features  
G
Graphics Controller (GFX)................................................ 305  
Key Features ............................................................ 305  
Graphics Controller Module (GFX) ................................... 305  
Graphics Display Module  
Display Clock (GCLK) Source .................................. 324  
Display Configuration................................................ 324  
Memory Locations .................................................... 324  
Memory Requirements ............................................. 324  
Module Registers...................................................... 306  
Graphics Display Module (GFX)....................................... 305  
100/121--Pin ...............................................................19  
64-Pin..........................................................................18  
Doze Mode........................................................................156  
I
I/O Ports  
Analog Port Pins Configuration................................. 158  
Analog/Digital Function of an I/O Pin........................ 158  
Input Change Notification ......................................... 163  
Open-Drain Configuration......................................... 158  
Parallel (PIO) ............................................................ 157  
Peripheral Pin Select ................................................ 164  
Pull-ups and Pull-downs ........................................... 163  
Selectable Input Sources.......................................... 165  
E
EDS...................................................................................273  
Electrical Characteristics  
A/D Specifications.....................................................384  
Absolute Maximum Ratings ......................................371  
Capacitive Loading on Output Pin ............................380  
External Clock Timing ...............................................381  
Idle Current ...............................................................375  
Load Conditions and Requirements for  
2
I C  
Clock Rates .............................................................. 225  
Reserved Addresses ................................................ 225  
Setting Baud Rate as Bus Master............................. 225  
Slave Address Masking ............................................ 225  
Idle Mode.......................................................................... 156  
Input Capture  
32-Bit Mode .............................................................. 198  
Operations ................................................................ 198  
Synchronous and Trigger Modes.............................. 197  
Input Capture with Dedicated Timers ............................... 197  
Input Voltage Levels for Port or Pin  
Tolerated Description Input....................................... 158  
Instruction Set  
Overview................................................................... 365  
Summary .................................................................. 363  
Instruction-Based Power-Saving Modes................... 155, 156  
Interfacing Program and Data Spaces................................ 75  
Specifications....................................................379  
Operating Current .....................................................374  
PLL Clock Timing Specifications...............................381  
Power-Down Current ................................................376  
RC Oscillator Start-up Time ......................................382  
Reset and Brown-out Reset Requirements ..............382  
Temperature and Voltage Specifications..................373  
Thermal Conditions...................................................372  
V/F Graph .................................................................372  
Voltage Regulator Specifications ..............................379  
Enhanced Parallel Master Port. See EPMP......................273  
ENVREG Pin.....................................................................354  
EPMP................................................................................273  
Alternative Master.....................................................273  
Key Features.............................................................273  
Master Port Pins .......................................................274  
Equations  
2
Inter-Integrated Circuit. See I C. ...................................... 223  
Internet Address ............................................................... 405  
Interrupt Vector Table (IVT)................................................ 93  
Interrupts  
16-Bit, 32-Bit CRC Polynomials ................................298  
A/D Conversion Clock Period ...................................332  
Baud Rate Reload Calculation..................................225  
Calculating the PWM Period .....................................204  
Calculation for Maximum PWM Resolution...............205  
Estimating USB Transceiver Current  
Control and Status Registers...................................... 96  
Implemented Vectors.................................................. 95  
Reset Sequence ......................................................... 93  
Setup and Service Procedures................................. 140  
Trap Vectors............................................................... 94  
Vector Table ............................................................... 94  
Consumption.....................................................243  
Relationship Between Device and SPI  
Clock Speed......................................................221  
RTCC Calibration......................................................294  
UART Baud Rate with BRGH = 0 .............................232  
UART Baud Rate with BRGH = 1 .............................232  
Errata ..................................................................................14  
J
JTAG Interface.................................................................. 358  
DS39969B-page 400  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
Program Memory  
K
Access Using Table Instructions ................................ 77  
Key Features..................................................................... 347  
CTMU........................................................................ 343  
EPMP........................................................................ 273  
RTCC........................................................................ 285  
Address Construction ................................................. 75  
Address Space ........................................................... 45  
Flash Configuration Words......................................... 46  
Memory Maps............................................................. 45  
Organization ............................................................... 46  
Reading From Program Memory Using EDS ............. 78  
Pulse-Width Modulation (PWM) Mode.............................. 203  
Pulse-Width Modulation. See PWM.  
M
Memory Organization.......................................................... 45  
Microchip Internet Web Site.............................................. 405  
MPLAB ASM30 Assembler, Linker, Librarian ................... 360  
MPLAB Integrated Development  
Environment Software............................................... 359  
MPLAB PM3 Device Programmer .................................... 362  
MPLAB REAL ICE In-Circuit Emulator System................. 361  
MPLINK Object Linker/MPLIB Object Librarian ................ 360  
PWM  
Duty Cycle and Period.............................................. 204  
R
Reader Response............................................................. 406  
Reference Clock Output ................................................... 152  
Register Maps  
N
A/D Converter............................................................. 61  
ANCFG....................................................................... 64  
ANSEL........................................................................ 64  
Comparators............................................................... 66  
CPU Core ................................................................... 50  
CRC............................................................................ 66  
CTMU ......................................................................... 62  
Enhanced Parallel Master/Slave Port......................... 65  
Graphics ..................................................................... 69  
Near Data Space ................................................................ 49  
O
Oscillator Configuration  
96 MHz PLL .............................................................. 149  
Clock Selection ......................................................... 142  
Clock Switching......................................................... 148  
Sequence.......................................................... 148  
CPU Clocking Scheme ............................................. 142  
Display Clock Frequency Division............................. 152  
Initial Configuration on POR ..................................... 142  
USB Operations........................................................ 151  
Output Compare  
2
I C™........................................................................... 56  
ICN ............................................................................. 51  
Input Capture.............................................................. 54  
Interrupt Controller...................................................... 52  
NVM............................................................................ 70  
Output Compare......................................................... 55  
Pad Configuration....................................................... 60  
Peripheral Pin Select.................................................. 67  
PMD............................................................................ 70  
PORTA ....................................................................... 58  
PORTB ....................................................................... 58  
PORTC....................................................................... 59  
PORTD....................................................................... 59  
PORTE ....................................................................... 59  
PORTF ....................................................................... 60  
PORTG....................................................................... 60  
RTCC.......................................................................... 65  
SPI.............................................................................. 58  
System........................................................................ 70  
Timers......................................................................... 53  
UART.......................................................................... 57  
USB OTG ................................................................... 63  
Registers  
32-Bit Mode............................................................... 201  
Synchronous and Trigger Modes.............................. 201  
Output Compare with Dedicated Timers........................... 201  
P
Packaging ......................................................................... 387  
Details....................................................................... 388  
Marking ..................................................................... 387  
Peripheral Enable Bits ...................................................... 156  
Peripheral Module Disable Bits......................................... 156  
Peripheral Pin Select (PPS).............................................. 164  
Available Peripherals and Pins ................................. 164  
Configuration Control................................................ 167  
Considerations for Use ............................................. 168  
Input Mapping ........................................................... 164  
Mapping Exceptions.................................................. 167  
Output Mapping ........................................................ 166  
Peripheral Priority ..................................................... 164  
Registers................................................................... 169  
Pin Descriptions  
100-Pin Devices............................................................ 8  
121 (BGA)-Pin Devices............................................... 11  
64-Pin Devices.............................................................. 6  
Pin Diagrams  
100-Pin TQFP............................................................... 7  
121-Pin BGA............................................................... 10  
64-Pin TQFP/QFN ........................................................ 5  
Pinout Descriptions ............................................................. 21  
POR  
AD1CHS (A/D Input Select)...................................... 330  
AD1CON1 (A/D Control 1)........................................ 327  
AD1CON2 (A/D Control 2)........................................ 328  
AD1CON3 (A/D Control 3)........................................ 329  
AD1CSSH (A/D Input Scan Select, High)................. 332  
AD1CSSL (A/D Input Scan Select, Low).................. 331  
ALCFGRPT (Alarm Configuration) ........................... 289  
ALMINSEC (Alarm Minutes and Seconds Value)..... 293  
ALMTHDY (Alarm Month and Day Value)................ 292  
ALWDHR (Alarm Weekday and Hours Value) ......... 293  
ANCFG (A/D Band Gap Reference  
Configuration)................................................... 331  
ANSA (PORTA Analog Function Selection) ............. 159  
ANSB (PORTB Analog Function Selection) ............. 160  
ANSC (PORTC Analog Function Selection)............. 160  
ANSD (PORTD Analog Function Selection)............. 161  
ANSE (PORTE Analog Function Selection) ............. 161  
and On-Chip Voltage Regulator................................ 354  
Power-Saving  
Clock Frequency and Clock Switching...................... 155  
Features.................................................................... 155  
Instruction-Based Modes .......................................... 155  
Power-up Requirements ................................................... 355  
Product Identification System ........................................... 407  
2010 Microchip Technology Inc.  
DS39969B-page 401  
PIC24FJ256DA210 FAMILY  
ANSF (PORTF Analog Function Selection)..............162  
ANSG (PORTG Analog Function Selection).............162  
BDnSTAT Prototype (Buffer Descriptor n  
G1STAT (Graphics Control Status) .......................... 310  
G1VSYNC (Vertical Synchronization Control).......... 318  
G1W1ADRH (GPU Work Area 1  
Status, CPU Mode)...........................................247  
BDnSTAT Prototype (Buffer Descriptor n  
Start Address High) .......................................... 313  
G1W1ADRL (GPU Work Area 1  
Status, USB Mode) ...........................................246  
CLKDIV (Clock Divider) ............................................145  
CLKDIV2 (Clock Divider 2) .......................................147  
CMSTAT (Comparator Status)..................................339  
CMxCON (Comparator x Control).............................338  
CORCON (CPU Core Control).............................. 43, 98  
CRCCON1 (CRC Control 1) .....................................300  
CRCCON2 (CRC Control 2) .....................................301  
CRCDATH (CRC Data High) ....................................302  
CRCDATL (CRC Data Low)......................................302  
CRCWDATH (CRC Shift High) .................................303  
CRCWDATL (CRC Shift Low)...................................303  
CRCXORH (CRC XOR High) ...................................302  
CRCXORL (CRC XOR Polynomial,  
Low Byte)..........................................................301  
CTMUCON (CTMU Control) .....................................345  
CTMUICON (CTMU Current Control) .......................346  
CVRCON (Comparator Voltage  
Reference Control)............................................342  
CW1 (Flash Configuration Word 1)...........................348  
CW2 (Flash Configuration Word 2)...........................350  
CW3 (Flash Configuration Word 3)...........................351  
CW4 (Flash Configuration Word 4)...........................352  
DEVID (Device ID)....................................................353  
DEVREV (Device Revision)......................................354  
G1ACTDA (Active Display Area) ..............................317  
G1CHRX (Character X-Coordinate  
Start Address Low)........................................... 313  
G1W2ADRH (GPU Work Area 2  
Start Address High ........................................... 314  
G1W2ADRL (GPU Work Area 2  
Start Address Low)........................................... 313  
I2CxCON (I2Cx Control)........................................... 226  
I2CxMSK (I2Cx Slave Mode Address Mask)............ 230  
I2CxSTAT (I2Cx Status) ........................................... 228  
ICxCON1 (Input Capture x Control 1)....................... 199  
ICxCON2 (Input Capture x Control 2)....................... 200  
IEC0 (Interrupt Enable Control 0) ............................. 109  
IEC1 (Interrupt Enable Control 1) ............................. 110  
IEC2 (Interrupt Enable Control 2) ............................. 112  
IEC3 (Interrupt Enable Control 3) ............................. 113  
IEC4 (Interrupt Enable Control 4) ............................. 114  
IEC5 (Interrupt Enable Control 5) ............................. 115  
IEC6 (Interrupt Enable Control 6) ............................. 116  
IFS0 (Interrupt Flag Status 0)................................... 101  
IFS1 (Interrupt Flag Status 1)................................... 102  
IFS2 (Interrupt Flag Status 2)................................... 103  
IFS3 (Interrupt Flag Status 3)................................... 105  
IFS4 (Interrupt Flag Status 4)................................... 106  
IFS5 (Interrupt Flag Status 5)................................... 107  
IFS6 (Interrupt Flag Status 6)................................... 108  
INTCON1 (Interrupt Control 1).................................... 99  
INTCON2 (Interrupt Control 2).................................. 100  
INTTREG (Interrupt Controller Test.......................... 139  
IPC0 (Interrupt Priority Control 0)............................. 117  
IPC1 (Interrupt Priority Control 1)............................. 118  
IPC10 (Interrupt Priority Control 10) ......................... 127  
IPC11 (Interrupt Priority Control 11) ......................... 128  
IPC12 (Interrupt Priority Control 12) ......................... 129  
IPC13 (Interrupt Priority Control 13) ......................... 130  
IPC15 (Interrupt Priority Control 15) ......................... 131  
IPC16 (Interrupt Priority Control 16) ......................... 132  
IPC18 (Interrupt Priority Control 18) ......................... 133  
IPC19 (Interrupt Priority Control 19) ......................... 133  
IPC2 (Interrupt Priority Control 2)............................. 119  
IPC20 (Interrupt Priority Control 20) ......................... 134  
IPC21 (Interrupt Priority Control 21) ......................... 135  
IPC22 (Interrupt Priority Control 22) ......................... 136  
IPC23 (Interrupt Priority Control 23) ......................... 137  
IPC25 (Interrupt Priority Control 25) ......................... 138  
IPC3 (Interrupt Priority Control 3)............................. 120  
IPC4 (Interrupt Priority Control 4)............................. 121  
IPC5 (Interrupt Priority Control 5)............................. 122  
IPC6 (Interrupt Priority Control 6)............................. 123  
IPC7 (Interrupt Priority Control 7)............................. 124  
IPC8 (Interrupt Priority Control 8)............................. 125  
IPC9 (Interrupt Priority Control 9)............................. 126  
IPCn (Interrupt Priority Control 0-23)........................ 137  
MINSEC (RTCC Minutes and Seconds Value)......... 291  
MTHDY (RTCC Month and Day Value).................... 290  
NVMCON (Flash Memory Control)............................. 83  
OCxCON1 (Output Compare x Control 1) ................ 206  
OCxCON2 (Output Compare x Control 2) ................ 208  
OSCCON (Oscillator Control)................................... 143  
Print Position)....................................................321  
G1CHRY (Character Y-Coordinate  
Print Position)....................................................322  
G1CLUT (Color Look-up Table Control) ...................319  
G1CLUTRD (Color Look-up Table Memory  
Read Data)........................................................320  
G1CLUTWR (Color Look-up Table Memory  
Write Data)........................................................320  
G1CMDH (GPU Command High) .............................306  
G1CMDL (GPU Command Low)...............................306  
G1CON1 (Display Control 1) ....................................307  
G1CON2 (Display Control 2) ....................................308  
G1CON3 (Display Control 3) ....................................309  
G1DBEN (Data I/O Pad Enable)...............................323  
G1DBLCON (Display Blanking Control)....................318  
G1DPADRH (Display Buffer Start  
Address High) ...................................................315  
G1DPADRL (Display Buffer Start  
Address Low)....................................................315  
G1DPDPH (Display Buffer Height) ...........................316  
G1DPHT (Display Total Height)................................316  
G1DPW (Display Buffer Width).................................315  
G1DPWT (Display Total Width) ................................316  
G1HSYNC (Horizontal  
Synchronization Control)...................................317  
G1IE (GFX Interrupt Enable) ....................................311  
G1IPU (Inflate Processor Status)..............................322  
G1IR (GFX Interrupt Status) .....................................312  
G1MRGN (Interrupt Advance) ..................................321  
G1PUH (GPU Work Area Height).............................314  
G1PUW (GPU Work Area Width) .............................314  
DS39969B-page 402  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
OSCTUN (FRC Oscillator Tune)............................... 146  
Revision History................................................................ 397  
RTCC  
PADCFG1 (Pad Configuration Control) ............ 283, 288  
PMCON1 (EPMP Control 1) ..................................... 275  
PMCON2 (EPMP Control 2) ..................................... 276  
PMCON3 (EPMP Control 3) ..................................... 277  
PMCON4 (EPMP Control 4) ..................................... 278  
PMCSxBS (Chip Select x Base Address)................. 280  
PMCSxCF (Chip Select x Configuration).................. 279  
PMCSxMD (Chip Select x Mode).............................. 281  
PMSTAT (EPMP Status, Slave Mode)...................... 282  
RCFGCAL (RTCC Calibration and Configuration).... 287  
RCON (Reset Control)................................................ 88  
REFOCON (Reference Oscillator Control) ............... 153  
RPINRn (PPS Input) ......................................... 169–179  
RPORn (PPS Output) ....................................... 180–187  
SPIxCON1 (SPIx Control 1)...................................... 216  
SPIxCON2 (SPIx Control 2)...................................... 218  
SPIxSTAT (SPIx Status and Control) ....................... 214  
SR (ALU STATUS) ............................................... 42, 97  
T1CON (Timer1 Control)........................................... 190  
TxCON (Timer2 and Timer4 Control)........................ 194  
TyCON (Timer3 and Timer5 Control)........................ 195  
U1ADDR (USB Address) .......................................... 261  
U1CNFG1 (USB Configuration 1)............................. 262  
U1CNFG2 (USB Configuration 2)............................. 263  
U1CON (USB Control, Device Mode)....................... 259  
U1CON (USB Control, Host Mode)........................... 260  
U1EIE (USB Error Interrupt Enable) ......................... 270  
U1EIR (USB Error Interrupt Status).......................... 269  
U1EPn (USB Endpoint n Control)............................. 271  
U1IE (USB Interrupt Enable)..................................... 268  
U1IR (USB Interrupt Status, Device Mode) .............. 266  
U1IR (USB Interrupt Status, Host Mode).................. 267  
U1OTGCON (USB OTG Control) ............................. 256  
U1OTGIE (USB OTG Interrupt Enable,  
Host Mode) ....................................................... 265  
U1OTGIR (USB OTG Interrupt Status,  
Host Mode) ....................................................... 264  
U1OTGSTAT (USB OTG Status).............................. 255  
U1PWMCON USB (VBUS PWM Generator  
Control)............................................................. 272  
U1PWRC (USB Power Control)................................ 257  
U1SOF (USB OTG Start-Of-Token  
Threshold, Host Mode) ..................................... 262  
U1STAT (USB Status) .............................................. 258  
U1TOK (USB Token, Host Mode)............................. 261  
UxMODE (UARTx Mode).......................................... 234  
UxSTA (UARTx Status and Control)......................... 236  
WKDYHR (RTCC Weekday and Hours Value)......... 291  
YEAR (RTCC Year Value)........................................ 290  
Alarm Configuration.................................................. 294  
Calibration ................................................................ 294  
Key Features ............................................................ 285  
Register Mapping ..................................................... 286  
S
Selective Peripheral Power Control.................................. 156  
Serial Peripheral Interface (SPI)....................................... 211  
Serial Peripheral Interface. See SPI.  
SFR Space ......................................................................... 49  
Sleep Mode ...................................................................... 155  
Software Simulator (MPLAB SIM) .................................... 361  
Software Stack ................................................................... 75  
Special Features................................................................. 16  
SPI.................................................................................... 211  
T
Timer1 .............................................................................. 189  
Timer2/3 and Timer4/5 ..................................................... 191  
Timing Diagrams  
CLKO and I/O Timing ............................................... 383  
External Clock .......................................................... 380  
Triple Comparator............................................................. 335  
Triple Comparator Module................................................ 335  
U
UART................................................................................ 231  
Baud Rate Generator (BRG) .................................... 232  
IrDA Support............................................................. 233  
Operation of UxCTS and UxRTS Pins...................... 233  
Receiving in 8-Bit or 9-Bit Data Mode ...................... 233  
Transmitting  
Break and Sync Sequence............................... 233  
in 8-Bit Data Mode............................................ 233  
Transmitting in 9-Bit Data Mode............................... 233  
Universal Asynchronous Receiver Transmitter. See UART.  
Universal Serial Bus  
Buffer Descriptors  
Assignment in Different Buffering Modes ......... 245  
Interrupts  
and USB Transactions...................................... 249  
Universal Serial Bus. See USB OTG.  
USB On-The-Go (OTG)...................................................... 16  
USB OTG ......................................................................... 239  
Buffer Descriptors and BDT...................................... 244  
Device Mode Operation............................................ 249  
DMA Interface........................................................... 245  
Hardware  
Calculating  
Resets  
Transceiver Power Requirements............ 243  
Hardware Configuration............................................ 241  
Device Mode..................................................... 241  
External Interface ............................................. 243  
Host and OTG Modes....................................... 242  
VBUS Voltage Generation ................................. 243  
Host Mode Operation ............................................... 250  
Interrupts .................................................................. 248  
Operation.................................................................. 252  
Registers .................................................................. 254  
VBUS Voltage Generation ......................................... 243  
BOR (Brown-out Reset).............................................. 87  
Clock Source Selection............................................... 90  
CM (Configuration Mismatch Reset)........................... 87  
Delay Times................................................................ 91  
Device Times .............................................................. 90  
IOPUWR (Illegal Opcode Reset) ................................ 87  
MCLR (Pin Reset)....................................................... 87  
POR (Power-on Reset)............................................... 87  
RCON Flags Operation............................................... 89  
SFR States.................................................................. 90  
SWR (RESET Instruction)........................................... 87  
TRAPR (Trap Conflict Reset)...................................... 87  
UWR (Uninitialized W Register Reset) ....................... 87  
WDT (Watchdog Timer Reset).................................... 87  
2010 Microchip Technology Inc.  
DS39969B-page 403  
PIC24FJ256DA210 FAMILY  
V
W
Voltage Regulator (On-Chip).............................................354  
and BOR ...................................................................355  
Low Voltage Detection ..............................................354  
Standby Mode...........................................................355  
Watchdog Timer (WDT).................................................... 355  
Control Register........................................................ 356  
Windowed Operation ................................................ 356  
WWW Address ................................................................. 405  
WWW, On-Line Support ..................................................... 14  
DS39969B-page 404  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
2010 Microchip Technology Inc.  
DS39969B-page 405  
PIC24FJ256DA210 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC24FJ256DA210 Family  
DS39969B  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39969B-page 406  
2010 Microchip Technology Inc.  
PIC24FJ256DA210 FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PIC 24 FJ 256 DA2 10 T - I / PT - XXX  
a)  
b)  
c)  
PIC24FJ128DA206-I/PT:  
PIC24F device with Graphics Controller and  
USB On-The-Go, 128-KB program memory,  
96-KB data memory, 64-pin, Industrial temp.,  
TQFP package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
PIC24FJ256DA110-I/PT:  
Program Memory Size (KB)  
Product Group  
PIC24F device with Graphics Controller and  
USB On-The-Go, 256-KB program memory,  
24-KB data memory, 100-pin, Industrial temp.,  
TQFP package.  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
PIC24FJ256DA210-I/BG:  
PIC24F device with Graphics Controller and  
USB On-The-Go, 256-KB program memory,  
96-KB data memory, 121-pin, Industrial temp.,  
BGA package.  
Pattern  
Architecture  
24 = 16-bit modified Harvard without DSP  
Flash Memory Family FJ = Flash program memory  
Product Group  
Pin Count  
DA2 = General purpose microcontrollers with  
Graphics Controller and USB On-The-Go  
06 = 64-pin  
10 = 100-pin (TQFP)/121-pin (BGA)  
Temperature Range  
Package  
I
= -40C to +85C (Industrial)  
PT = 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack)  
PT = 64-lead, TQFP (Thin Quad Flatpack)  
MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack, No Lead)  
BG = 121-pin BGA package  
Pattern  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
ES = Engineering Sample  
2010 Microchip Technology Inc.  
DS39969B-page 407  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/05/10  
DS39969B-page 408  
2010 Microchip Technology Inc.  

相关型号:

PIC24FJ256DA206T-I/PT

16-BIT, FLASH, 32 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-64
MICROCHIP

PIC24FJ256DA210

64/100-Pin, 16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG)
MICROCHIP

PIC24FJ256DA210-I

PIC24FJ256DA210 FAMILY, 64-100-Pin, 16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG)
MICROCHIP

PIC24FJ256DA210-I-PT

16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG)
MICROCHIP

PIC24FJ256DA210T-I/BG

64/100-Pin, 16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG)
MICROCHIP

PIC24FJ256DA210T-I/MR

64/100-Pin, 16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG)
MICROCHIP

PIC24FJ256DA210T-I/PT

64/100-Pin, 16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG)
MICROCHIP

PIC24FJ256GA

64/80/100-Pin, 16-Bit General Purpose Flash Microcontrollers with Peripheral Pin Select
MICROCHIP

PIC24FJ256GA106

PIC24FJ256GA110 Family Silicon Errata and Data Sheet Clarification
MICROCHIP

PIC24FJ256GA106-I/MR

16-BIT, FLASH, 32 MHz, MICROCONTROLLER, PQCC64, 9 X 9 MM, 0,90 MM HEIGHT, LEAD FREE, PLASTIC, QFN-64
MICROCHIP

PIC24FJ256GA106-I/PT

16-BIT, EEPROM, 32 MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, TQFP-64
MICROCHIP

PIC24FJ256GA106T-I

64/80/100-Pin, 16-Bit General Purpose Flash Microcontrollers with Peripheral Pin Select
MICROCHIP