PIC24HJ256GP610ATI/PF [MICROCHIP]

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP100, 14 X 14 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-100;
PIC24HJ256GP610ATI/PF
型号: PIC24HJ256GP610ATI/PF
厂家: MICROCHIP    MICROCHIP
描述:

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQFP100, 14 X 14 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-100

时钟 微控制器 外围集成电路
文件: 总326页 (文件大小:4874K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC24HJXXXGPX06A/X08A/X10A  
16-bit Microcontrollers (up to 256 KB Flash and  
16 KB SRAM) with Advanced Analog  
Operating Conditions  
Communication Interfaces  
• Two UART modules (10 Mbps)  
- With support for LIN 2.0 protocols and IrDA®  
• 3.0V to 3.6V, -40ºC to +150ºC, DC to 20 MIPS  
• 3.0V to 3.6V, -40ºC to +125ºC, DC to 40 MIPS  
• Two 4-wire SPI modules (15 Mbps)  
• Up to two I2C™ modules (up to 1 Mbaud) with  
SMBus support  
Core: 16-bit PIC24H CPU  
• Code-efficient (C and Assembly) architecture  
• Up to two Enhanced CAN (ECAN) modules  
(1 Mbaud) with 2.0B support  
• Single-cycle mixed-sign MUL plus hardware divide  
• Data Converter Interface (DCI) module with I2S  
codec support  
Clock Management  
• ±2% internal oscillator  
• Programmable PLLs and oscillator clock sources  
• Fail-Safe Clock Monitor (FSCM)  
• Independent Watchdog Timer (WDT)  
• Fast wake-up and start-up  
Input/Output  
• Sink/Source up to 10 mA (pin specific) for stan-  
dard VOH/VOL, up to 16 mA (pin specific) for non-  
standard VOH1  
• 5V-tolerant pins  
Power Management  
• Selectable open drain, pull-ups, and pull-downs  
• Up to 5 mA overvoltage clamp current  
• External interrupts on all I/O pins  
• Low-power management modes (Sleep, Idle,  
Doze)  
• Integrated Power-on Reset and Brown-out Reset  
• 1.35 mA/MHz dynamic current (typical)  
• 55 μA IPD current (typical)  
Qualification and Class B Support  
• AEC-Q100 REVG (Grade 1 -40ºC to +125ºC)  
• AEC-Q100 REVG (Grade 0 -40ºC to +150ºC)  
• Class B Safety Library, IEC 60730  
Advanced Analog Features  
• Two ADC modules:  
- Configurable as 10-bit, 1.1 Msps with four  
S&H or 12-bit, 500 ksps with one S&H  
Debugger Development Support  
• In-circuit and in-application programming  
• Two program and two complex data breakpoints  
• IEEE 1149.2-compatible (JTAG) boundary scan  
• Trace and run-time watch  
- 18 analog inputs on 64-pin devices and up to  
32 analog inputs on 100-pin devices  
• Flexible and independent ADC trigger sources  
Timers/Output Compare/Input Capture  
• Up to nine 16-bit timers/counters. Can pair up to  
make four 32-bit timers.  
• Eight Output Compare modules configurable as  
timers/counters  
• Eight Input Capture modules  
Packages  
Type  
QFN  
TQFP  
TQFP  
TQFP  
Pin Count  
Contact Lead/Pitch  
I/O Pins  
64  
0.50  
64  
0.50  
100  
0.50  
100  
0.40  
53  
53  
85  
85  
Dimensions  
9x9x0.9  
10x10x1  
12x12x1  
14x14x1  
Note: All dimensions are in millimeters (mm) unless specified.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 1  
PIC24HJXXXGPX06A/X08A/X10A  
PIC24H PRODUCT FAMILIES  
The PIC24H Family of devices is ideal for a wide vari-  
ety of 16-bit MCU embedded applications. The device  
names, pin counts, memory sizes and peripheral avail-  
ability of each device are listed below, followed by their  
pinout diagrams.  
PIC24H Family Controllers  
Program  
Device  
Pins  
Flash  
Memory (KB)  
PIC24HJ64GP206A  
64  
64  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
0
0
0
0
0
0
0
0
0
0
0
0
0
1 ADC,  
18 ch  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
0
0
1
1
0
0
1
1
0
0
0
0
2
53  
85  
53  
85  
53  
85  
53  
85  
53  
85  
53  
85  
85  
PT, MR  
PF, PT  
PT, MR  
PF, PT  
PT, MR  
PF, PT  
PT, MR  
PF, PT  
PT, MR  
PF, PT  
PT, MR  
PF, PT  
PF, PT  
PIC24HJ64GP210A 100  
PIC24HJ64GP506A 64  
64  
1 ADC,  
32 ch  
64  
8
1 ADC,  
18 ch  
PIC24HJ64GP510A 100  
PIC24HJ128GP206A 64  
PIC24HJ128GP210A 100  
PIC24HJ128GP506A 64  
PIC24HJ128GP510A 100  
PIC24HJ128GP306A 64  
PIC24HJ128GP310A 100  
PIC24HJ256GP206A 64  
PIC24HJ256GP210A 100  
PIC24HJ256GP610A 100  
64  
8
1 ADC,  
32 ch  
128  
128  
128  
128  
128  
128  
256  
256  
256  
8
1 ADC,  
18 ch  
8
1 ADC,  
32 ch  
8
1 ADC,  
18 ch  
8
1 ADC,  
32 ch  
16  
16  
16  
16  
16  
1 ADC,  
18 ch  
1 ADC,  
32 ch  
1 ADC,  
18 ch  
1 ADC,  
32 ch  
2 ADC,  
32 ch  
Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.  
2: Maximum I/O pin count includes pins shared by the peripheral functions.  
DS70592D-page 2  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams  
64-Pin QFN(1)  
= Pins are up to 5V tolerant  
6463 62 6160 59 5857 56 55 54 53 52 5150 49  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
RG15  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
IC4/INT4/RD11  
IC3/INT3/RD10  
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
SDO2/CN10/RG8  
MCLR  
PIC24HJ64GP206A(2)  
PIC24HJ128GP206A  
PIC24HJ256GP206A  
SS2/CN11/RG9  
VSS  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
SCL1/RG2  
SDA1/RG3  
AN2/SS1/CN4/RB2  
PGEC3/AN1/VREF-/CN3/RB1  
PGED3/AN0/VREF+/CN2/RB0  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
17 18 19 20 21 22 23 2425 26 2728 29 30 31 32  
Note 1: The metal plane at the bottom of the device is not connected to any pins and should be connected to VSS externally.  
2: The PIC24HJ64GP206A device does not have the SCL2 and SDA2 pins.  
3: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 3  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams (Continued)  
64-Pin QFN(1)  
= Pins are up to 5V tolerant  
6463 62 6160 59 58 57 56 55 54 53 52 5150 49  
RG15  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
IC4/INT4/RD11  
IC3/INT3/RD10  
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
SDO2/CN10/RG8  
MCLR  
SS2/CN11/RG9  
VSS  
PIC24HJ128GP306A  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
SCL1/RG2  
SDA1/RG3  
AN2/SS1/CN4/RB2  
PGEC3/AN1/VREF-/CN3/RB1  
PGED3/AN0/VREF+/CN2/RB0  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
17 18 19 20 21 22 23 2425 26 2728 29 30 31 32  
Note 1: The metal plane at the bottom of the device is not connected to any pins and should be connected to VSS externally.  
2: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
DS70592D-page 4  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams (Continued)  
64-Pin QFN(1)  
= Pins are up to 5V tolerant  
64 6362 61 6059 58 57 56 55 54 53 52 51 5049  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
RG15  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
IC4/INT4/RD11  
IC3/INT3/RD10  
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
SDO2/CN10/RG8  
MCLR  
SS2/CN11/RG9  
VSS  
PIC24HJ64GP506A  
PIC24HJ128GP506A  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
SCL1/RG2  
SDA1/RG3  
AN2/SS1/CN4/RB2  
PGEC3/AN1/VREF-/CN3/RB1  
PGED3/AN0/VREF+/CN2/RB0  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
17 18 19 20 21 2223 24 2526 27 2829 30 31 32  
Note 1: The metal plane at the bottom of the device is not connected to any pins and should be connected to VSS externally.  
2: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 5  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams (Continued)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
RG15  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
2
3
4
IC4/INT4/RD11  
5
IC3/INT3/RD10  
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
6
7
SS2/CN11/RG9  
VSS  
8
VSS  
PIC24HJ64GP206A  
PIC24HJ128GP206A  
PIC24HJ256GP206A  
9
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
PGEC3/AN1/VREF-/CN3/RB1  
PGED3/AN0/VREF+/CN2/RB0  
Note 1: This pin is not present on the PIC24HJ64GP206A device.  
2: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
DS70592D-page 6  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams (Continued)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
RG15  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
2
3
4
IC4/INT4/RD11  
5
IC3/INT3/RD10  
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
6
7
PIC24HJ128GP306A  
SS2/CN11/RG9  
VSS  
8
VSS  
9
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
PGEC3/AN1/VREF-/CN3/RB1  
PGED3/AN0/VREF+/CN2/RB0  
Note 1: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 7  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams (Continued)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
RG15  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
1
2
3
4
IC4/INT4/RD11  
5
IC3/INT3/RD10  
IC2/U1CTS/INT2/RD9  
IC1/INT1/RD8  
6
7
SS2/CN11/RG9  
VSS  
8
VSS  
PIC24HJ64GP506A  
PIC24HJ128GP506A  
9
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VDD  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
SCL1/RG2  
SDA1/RG3  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
PGEC3/AN1/VREF-/CN3/RB1  
PGED3/AN0/VREF+/CN2/RB0  
Note 1: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
DS70592D-page 8  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
100-Pin TQFP  
V
SS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
RG15  
1
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/CN1/RC13  
OC1/RD0  
VDD  
2
AN29/RE5  
AN30/RE6  
3
4
IC4/RD11  
AN31/RE7  
5
IC3/RD10  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
6
IC2/RD9  
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
SDO2/CN10/RG8  
MCLR  
PIC24HJ64GP210A  
PIC24HJ128GP210A  
PIC24HJ128GP310A  
PIC24HJ256GP210A  
SS2/CN11/RG9  
VDD  
VSS  
TDO/RA5  
VDD  
TDI/RA4  
TMS/RA0  
AN20/INT1/RA12  
AN21/INT2/RA13  
AN5/CN7/RB5  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN4/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
PGEC3/AN1/CN3/RB1  
PGED3/AN0/CN2/RB0  
Note 1: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 9  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams (Continued)  
100-Pin TQFP  
= Pins are up to 5V tolerant  
75  
VSS  
1
RG15  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/CN1/RC13  
OC1/RD0  
V
DD  
2
3
AN29/RE5  
AN30/RE6  
4
IC4/RD11  
AN31/RE7  
5
IC3/RD10  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
6
IC2/RD9  
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
PIC24HJ64GP510A  
PIC24HJ128GP510A  
SS2/CN11/RG9  
VDD  
V
SS  
TDO/RA5  
VDD  
TDI/RA4  
TMS/RA0  
AN20/INT1/RA12  
AN21/INT2/RA13  
AN5/CN7/RB5  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN4/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
PGEC3/AN1/CN3/RB1  
PGED3/AN0/CN2/RB0  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
Note 1: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
DS70592D-page 10  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Pin Diagrams (Continued)  
100-Pin TQFP  
= Pins are up to 5V tolerant  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VSS  
1
RG15  
PGEC2/SOSCO/T1CK/CN0/RC14  
PGED2/SOSCI/CN1/RC13  
OC1/RD0  
VDD  
2
AN29/RE5  
AN30/RE6  
3
4
IC4/RD11  
AN31/RE7  
5
IC3/RD10  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
SCK2/CN8/RG6  
6
IC2/RD9  
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
10  
11  
12  
VSS  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
PIC24HJ256GP610A  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SS2/CN11/RG9  
VDD  
VSS  
TDO/RA5  
VDD  
TDI/RA4  
TMS/RA0  
AN20/INT1/RA12  
AN21/INT2/RA13  
AN5/CN7/RB5  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN4/CN6/RB4  
AN3/CN5/RB3  
AN2/SS1/CN4/RB2  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
PGEC3/AN1/CN3/RB1  
PGED3/AN0/CN2/RB0  
Note 1: Refer to Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)” for proper connection to this pin.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 11  
PIC24HJXXXGPX06A/X08A/X10A  
Table of Contents  
PIC24H Product Families....................................................................................................................................................................... 2  
1.0 Device Overview ........................................................................................................................................................................ 15  
2.0 Guidelines for Getting Started with 16-Bit Microcontrollers........................................................................................................ 19  
3.0 CPU............................................................................................................................................................................................ 23  
4.0 Memory Organization................................................................................................................................................................. 29  
5.0 Flash Program Memory.............................................................................................................................................................. 59  
6.0 Reset ......................................................................................................................................................................................... 65  
7.0 Interrupt Controller ..................................................................................................................................................................... 69  
8.0 Direct Memory Access (DMA) .................................................................................................................................................. 113  
9.0 Oscillator Configuration ............................................................................................................................................................ 123  
10.0 Power-Saving Features............................................................................................................................................................ 133  
11.0 I/O Ports ................................................................................................................................................................................... 141  
12.0 Timer1 ...................................................................................................................................................................................... 145  
13.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ............................................................................................................................ 147  
14.0 Input Capture............................................................................................................................................................................ 153  
15.0 Output Compare....................................................................................................................................................................... 155  
16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 159  
2
17.0 Inter-Integrated Circuit™ (I C™).............................................................................................................................................. 165  
18.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 173  
19.0 Enhanced CAN (ECAN™) Module........................................................................................................................................... 179  
20.0 10-bit/12-bit Analog-to-Digital Converter (ADC)....................................................................................................................... 207  
21.0 Special Features ...................................................................................................................................................................... 221  
22.0 Instruction Set Summary.......................................................................................................................................................... 229  
23.0 Development Support............................................................................................................................................................... 237  
24.0 Electrical Characteristics .......................................................................................................................................................... 241  
25.0 High Temperature Electrical Characteristics............................................................................................................................ 287  
26.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 297  
27.0 Packaging Information.............................................................................................................................................................. 301  
Appendix A: Migrating from PIC24HJXXXGPX06/X08/X10 Devices to PIC24HJXXXGPX06A/X08A/X10A Devices....................... 311  
Appendix B: Revision History............................................................................................................................................................. 312  
Index ................................................................................................................................................................................................. 317  
The Microchip Web Site..................................................................................................................................................................... 321  
Customer Change Notification Service .............................................................................................................................................. 321  
Customer Support.............................................................................................................................................................................. 321  
Reader Response .............................................................................................................................................................................. 322  
Product Identification System............................................................................................................................................................. 323  
DS70592D-page 12  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-  
mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We wel-  
come your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 13  
PIC24HJXXXGPX06A/X08A/X10A  
Referenced Sources  
This device data sheet is based on the following  
individual chapters of the “dsPIC33F/PIC24H Family  
Reference Manual”. These documents should be  
considered as the general reference for the operation  
of a particular module or device feature.  
Note:  
To access the documents listed below,  
browse to the documentation section of  
the PIC24HJ256GP610A product page  
on  
the  
Microchip  
web  
site  
(www.microchip.com) or by selecting a  
family reference manual section from  
the following list.  
In addition to parameters, features, and  
other documentation, the resulting page  
provides links to the related family  
reference manual sections.  
Section 1. “Introduction” (DS70197)  
Section 2. “CPU” (DS70204)  
Section 3. “Data Memory” (DS70202)  
Section 4. “Program Memory” (DS70203)  
Section 5. “Flash Programming” (DS70191)  
Section 6. “Interrupts” (DS70184)  
Section 7. “Oscillator” (DS70186)  
Section 8. “Reset” (DS70192)  
Section 9. “Watchdog Timer and Power-Saving Modes” (DS70196)  
Section 10. “I/O Ports” (DS70193)  
Section 11. “Timers” (DS70205)  
Section 12. “Input Capture” (DS70198)  
Section 13. “Output Compare” (DS70209)  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183)  
Section 17. “UART” (DS70188)  
Section 18. “Serial Peripheral Interface (SPI)” (DS70206)  
Section 19. “Inter-Integrated Circuit™ (I2C™)” (DS70195)  
Section 20. “Data Converter Interface (DCI)” (DS70288)  
Section 21. “Enhanced Controller Area Network (ECAN™)” (DS70185)  
Section 22. “Direct Memory Access (DMA)” (DS70182)  
Section 23. “CodeGuard™ Security” (DS70199)  
Section 24. “Programming and Diagnostics” (DS70207)  
Section 25. “Device Configuration” (DS70194)  
DS70592D-page 14  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
This makes these families suitable for a wide variety of  
1.0  
DEVICE OVERVIEW  
high-performance digital signal control applications.  
The devices are pin compatible with the dsPIC33F fam-  
ily of devices, and also share a very high degree of  
compatibility with the dsPIC30F family devices. This  
allows easy migration between device families as may  
be necessitated by the specific functionality, computa-  
tional resource and system cost requirements of the  
application.  
Note:  
This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the informa-  
tion in this data sheet, refer to the latest  
family reference sections of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
The PIC24HJXXXGPX06A/X08A/X10A device family  
employs a powerful 16-bit architecture, ideal for  
applications that rely on high-speed, repetitive  
computations, as well as control.  
This document contains device specific information for  
the following devices:  
The 17 x 17 multiplier, hardware support for division  
operations, multi-bit data shifter, a large array of 16-bit  
working registers and a wide variety of data addressing  
• PIC24HJ64GP206A  
• PIC24HJ64GP210A  
• PIC24HJ64GP506A  
• PIC24HJ64GP510A  
• PIC24HJ128GP206A  
• PIC24HJ128GP210A  
• PIC24HJ128GP506A  
• PIC24HJ128GP510A  
• PIC24HJ128GP306A  
• PIC24HJ128GP310A  
• PIC24HJ256GP206A  
• PIC24HJ256GP210A  
• PIC24HJ256GP610A  
modes,  
together  
provide  
the  
PIC24HJXXXGPX06A/X08A/X10A Central Processing  
Unit (CPU) with extensive mathematical processing  
capability. Flexible and deterministic interrupt handling,  
coupled with a powerful array of peripherals, renders  
the PIC24HJXXXGPX06A/X08A/X10A devices suit-  
able for control applications. Further, Direct Memory  
Access (DMA) enables overhead-free transfer of data  
between several peripherals and a dedicated DMA  
RAM. Reliable, field programmable Flash program  
memory ensures scalability of applications that use  
PIC24HJXXXGPX06A/X08A/X10A devices.  
Figure 1-1 shows a general block diagram of the  
various core and peripheral modules in the  
PIC24HJXXXGPX06A/X08A/X10A family of devices,  
while Table 1-1 lists the functions of the various pins  
shown in the pinout diagrams.  
The PIC24HJXXXGPX06A/X08A/X10A device family  
includes devices with different pin counts (64 and 100  
pins), different program memory sizes (64 Kbytes, 128  
Kbytes and 256 Kbytes) and different RAM sizes (8  
Kbytes and 16 Kbytes).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 15  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 1-1:  
PIC24HJXXXGPX06A/X08A/X10A GENERAL BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Data Bus  
Interrupt  
Controller  
PORTA  
PORTB  
16  
16  
16  
8
DMA  
RAM  
Data Latch  
X RAM  
23  
PCH PCL  
Program Counter  
PCU  
23  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
DMA  
16  
Controller  
23  
16  
PORTC  
PORTD  
PORTE  
PORTF  
PORTG  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
17 x 17 Multiplier  
Divide Support  
16 x 16  
W Register Array  
Power-up  
Timer  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
16  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-bit ALU  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VCAP  
VDD, VSS  
MCLR  
Timers  
1-9  
ADC1,2  
ECAN1,2  
UART1,2  
OC/  
IC1-8  
CN1-23  
SPI1,2  
I2C1,2  
PWM1-8  
Note:  
Not all pins or features are implemented on all device pinout configurations. See Pin Diagrams for the specific pins and  
features present on each device.  
DS70592D-page 16  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS  
Pin  
Buffer  
Description  
Type  
Type  
AN0-AN31  
AVDD  
I
Analog Analog input channels.  
P
P
P
P
Positive supply for analog modules. This pin must be connected at all times.  
Ground reference for analog modules.  
AVSS  
CLKI  
I
ST/CMOS External clock source input. Always associated with OSC1 pin function.  
CLKO  
O
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes. Always associated  
with OSC2 pin function.  
CN0-CN23  
I
ST  
Input change notification inputs.  
Can be software programmed for internal weak pull-ups on all inputs.  
C1RX  
C1TX  
C2RX  
C2TX  
I
O
I
ST  
ST  
ECAN1 bus receive pin.  
ECAN1 bus transmit pin.  
ECAN2 bus receive pin.  
ECAN2 bus transmit pin.  
O
PGED1  
PGEC1  
PGED2  
PGEC2  
PGED3  
PGEC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
Data I/O pin for programming/debugging communication channel 1.  
Clock input pin for programming/debugging communication channel 1.  
Data I/O pin for programming/debugging communication channel 2.  
Clock input pin for programming/debugging communication channel 2.  
Data I/O pin for programming/debugging communication channel 3.  
Clock input pin for programming/debugging communication channel 3.  
I
I/O  
I
I/O  
I
IC1-IC8  
I
ST  
Capture inputs 1 through 8.  
INT0  
INT1  
INT2  
INT3  
INT4  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
External interrupt 0.  
External interrupt 1.  
External interrupt 2.  
External interrupt 3.  
External interrupt 4.  
MCLR  
I/P  
ST  
Master Clear (Reset) input. This pin is an active-low Reset to the device.  
OCFA  
OCFB  
OC1-OC8  
I
I
O
ST  
ST  
Compare Fault A input (for Compare Channels 1, 2, 3 and 4).  
Compare Fault B input (for Compare Channels 5, 6, 7 and 8).  
Compare outputs 1 through 8.  
OSC1  
I
ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
OSC2  
I/O  
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes.  
RA0-RA7  
RA9-RA10  
RA12-RA15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTA is a bidirectional I/O port.  
RB0-RB15  
I/O  
ST  
PORTB is a bidirectional I/O port.  
PORTC is a bidirectional I/O port.  
RC1-RC4  
RC12-RC15  
I/O  
I/O  
ST  
ST  
RD0-RD15  
RE0-RE7  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTD is a bidirectional I/O port.  
PORTE is a bidirectional I/O port.  
PORTF is a bidirectional I/O port.  
RF0-RF8  
RF12-RF13  
RG0-RG3  
RG6-RG9  
RG12-RG15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTG is a bidirectional I/O port.  
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
ST = Schmitt Trigger input with CMOS levels  
2009-2012 Microchip Technology Inc.  
DS70592D-page 17  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
Description  
Type  
SCK1  
SDI1  
SDO1  
SS1  
SCK2  
SDI2  
SDO2  
SS2  
I/O  
I
O
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for SPI1.  
SPI1 data in.  
SPI1 data out.  
SPI1 slave synchronization or frame pulse I/O.  
Synchronous serial clock input/output for SPI2.  
SPI2 data in.  
O
I/O  
SPI2 data out.  
SPI2 slave synchronization or frame pulse I/O.  
ST  
SCL1  
SDA1  
SCL2  
SDA2  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for I2C1.  
Synchronous serial data input/output for I2C1.  
Synchronous serial clock input/output for I2C2.  
Synchronous serial data input/output for I2C2.  
SOSCI  
I
ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise.  
SOSCO  
O
32.768 kHz low-power oscillator crystal output.  
TMS  
TCK  
TDI  
I
I
I
ST  
ST  
ST  
JTAG Test mode select pin.  
JTAG test clock input pin.  
JTAG test data input pin.  
JTAG test data output pin.  
TDO  
O
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
T6CK  
T7CK  
T8CK  
T9CK  
I
I
I
I
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Timer1 external clock input.  
Timer2 external clock input.  
Timer3 external clock input.  
Timer4 external clock input.  
Timer5 external clock input.  
Timer6 external clock input.  
Timer7 external clock input.  
Timer8 external clock input.  
Timer9 external clock input.  
I
O
I
O
I
O
I
O
ST  
ST  
ST  
ST  
UART1 clear to send.  
UART1 ready to send.  
UART1 receive.  
U1CTS  
U1RTS  
U1RX  
UART1 transmit.  
U1TX  
UART2 clear to send.  
UART2 ready to send.  
UART2 receive.  
U2CTS  
U2RTS  
U2RX  
UART2 transmit.  
U2TX  
VDD  
P
P
P
I
Positive supply for peripheral logic and I/O pins.  
CPU logic filter capacitor connection.  
VCAP  
VSS  
Ground reference for logic and I/O pins.  
VREF+  
VREF-  
Analog Analog voltage reference (high) input.  
Analog Analog voltage reference (low) input.  
I
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
ST = Schmitt Trigger input with CMOS levels  
DS70592D-page 18  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
MICROCONTROLLERS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F/PIC24H  
Family Reference Manual”. Please see  
Consider the following criteria when using decoupling  
capacitors:  
Value and type of capacitor: Recommendation  
of 0.1 µF (100 nF), 10-20V. This capacitor should  
be a low-ESR and have resonance frequency in  
the range of 20 MHz and higher. It is  
recommended that ceramic capacitors be used.  
the  
Microchip  
web  
site  
(www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within  
one-quarter inch (6 mm) in length.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Handling high frequency noise: If the board is  
experiencing high frequency noise, upward of  
tens of MHz, add a second ceramic-type capacitor  
in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 µF to 0.001 µF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible.  
For example, 0.1 µF in parallel with 0.001 µF.  
2.1  
Basic Connection Requirements  
Getting  
started  
with  
the  
PIC24HJXXXGPX06A/X08A/X10A family of 16-bit  
Microcontrollers (MCUs) requires attention to a minimal  
set of device pin connections before proceeding with  
development. The following is a list of pin names, which  
must always be connected:  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum thereby reducing PCB track inductance.  
• All AVDD and AVSS pins (regardless if ADC module  
is not used)  
(see Section 2.2 “Decoupling Capacitors”)  
• VCAP  
(see Section 2.3 “CPU Logic Filter Capacitor  
Connection (VCAP)”)  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins when external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for ADC module is implemented  
Note:  
The AVDD and AVSS pins must be  
connected independent of the ADC  
voltage reference source.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 19  
PIC24HJXXXGPX06A/X08A/X10A  
The placement of this capacitor should be close to the  
VCAP. It is recommended that the trace length not  
exceed one-quarter inch (6 mm). Refer to Section 21.2  
“On-Chip Voltage Regulator” for details.  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
0.1 µF  
Ceramic  
10 µF  
VDD  
Tantalum  
MCLR  
2.4  
Master Clear (MCLR) Pin  
R
The MCLR pin provides for two specific device  
functions:  
R1  
• Device Reset  
C
• Device programming and debugging  
PIC24H  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
VDD  
VSS  
VDD  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
(1)  
L1  
For example, as shown in Figure 2-2, it is  
recommended that the capacitor C, be isolated from  
the MCLR pin during programming and debugging  
operations.  
Note 1: As an option, instead of a hard-wired connection, an  
inductor (L1) can be substituted between VDD and  
AVDD to improve ADC noise rejection. The inductor  
impedance should be less than 1and the inductor  
capacity greater than 10 mA.  
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
Where:  
FCNV  
f =  
f =  
-------------  
2
(i.e., ADC conversion rate/2)  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
1
-----------------------  
2LC  
VDD  
2  
1
L = ---------------------  
(1)  
2f C  
R
(2)  
R1  
MCLR  
2.2.1  
TANK CAPACITORS  
PIC24H  
JP  
C
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including MCUs to supply a local  
power source. The value of the tank capacitor should  
be determined based on the trace resistance that con-  
nects the power supply source to the device, and the  
maximum current drawn by the device in the applica-  
tion. In other words, select the tank capacitor so that it  
meets the acceptable voltage sag at the device. Typical  
values range from 4.7 µF to 47 µF.  
Note 1: R 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the MCLR  
pin VIH and VIL specifications are met.  
2: R1 470will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
2.3  
CPU Logic Filter Capacitor  
Connection (VCAP)  
A low-ESR (< 5 Ohms) capacitor is required on the  
VCAP pin, which is used to stabilize the voltage  
regulator output voltage. The VCAP pin must not be  
connected to VDD, and must have a capacitor between  
4.7 µF and 10 µF, 16V connected to ground. The type  
can be ceramic or tantalum. Refer to Section 24.0  
“Electrical  
Characteristics”  
for  
additional  
information.  
DS70592D-page 20  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
2.5  
ICSP Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming™ (ICSP™) and debugging pur-  
poses. It is recommended to keep the trace length  
between the ICSP connector and the ICSP pins on the  
device as short as possible. If the ICSP connector is  
expected to experience an ESD event, a series resistor  
is recommended, with the value in the range of a few  
tens of Ohms, not to exceed 100 Ohms.  
Many MCUs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 9.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes, and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing  
requirements  
information  
in  
the  
“dsPIC33F/PIC24H Flash Programming Specification”  
(DS70152) for information on capacitive loading limits  
and pin input voltage high (VIH) and input low (VIL)  
requirements.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 3 or MPLAB REAL ICE™.  
Main Oscillator  
Guard Ring  
For more information on ICD 3 and REAL ICE  
connection requirements, refer to the following  
documents that are available on the Microchip web  
site.  
“Using MPLAB® ICD 3 In-Circuit Debugger”  
(poster) DS51765  
“MPLAB® ICD 3 Design Advisory” DS51764  
13  
14  
15  
16  
17  
18  
Guard Trace  
Secondary  
Oscillator  
“MPLAB® REAL ICE™ In-Circuit Emulator User’s  
Guide” DS51616  
“Using MPLAB® REAL ICE™” (poster) DS51749  
19  
20  
2009-2012 Microchip Technology Inc.  
DS70592D-page 21  
PIC24HJXXXGPX06A/X08A/X10A  
2.7  
Oscillator Value Conditions on  
Device Start-up  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 8 MHz for start-up with PLL enabled to comply with  
device PLL start-up conditions. This means that if the  
external oscillator frequency is outside this range, the  
application must start-up in the FRC mode first. The  
default PLL settings after a POR with an oscillator  
frequency outside this range will violate the device  
operating speed.  
Once the device powers up, the application firmware  
can initialize the PLL SFRs, CLKDIV and PLLDBF to a  
suitable value, and then perform a clock switch to the  
Oscillator + PLL clock source. Note that clock switching  
must be enabled in the device Configuration word.  
2.8  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If MPLAB ICD 3 or REAL ICE is selected as a debug-  
ger, it automatically initializes all of the A/D input pins  
(ANx) as “digital” pins, by setting all bits in the  
AD1PCFGL register.  
The bits in this register that correspond to the A/D pins  
that are initialized by MPLAB ICD 3 or REAL ICE, must  
not be cleared by the user application firmware;  
otherwise, communication errors will result between  
the debugger and the device.  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must clear the corresponding bits in the  
AD1PCFGL register during initialization of the ADC  
module.  
When MPLAB ICD 3 or REAL ICE is used as a  
programmer, the user application firmware must  
correctly configure the AD1PCFGL register. Automatic  
initialization of this register is only done during  
debugger operation. Failure to correctly configure the  
register(s) will result in all A/D pins being recognized as  
analog input pins, resulting in the port value being read  
as a logic ‘0’, which may affect user application  
functionality.  
2.9  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic-low state.  
Alternatively, connect a 1k to 10k resistor between VSS  
and the unused pins.  
DS70592D-page 22  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
3.1  
Data Addressing Overview  
3.0  
CPU  
The data space can be linearly addressed as 32K words  
or 64 Kbytes using an Address Generation Unit (AGU).  
The upper 32 Kbytes of the data space memory map can  
optionally be mapped into program space at any 16K pro-  
gram word boundary defined by the 8-bit Program Space  
Visibility Page (PSVPAG) register. The program to data  
space mapping feature lets any instruction access pro-  
gram space as if it were data space.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be  
a
comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 2. “CPU” (DS70204) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
The data space also includes 2 Kbytes of DMA RAM,  
which is primarily used for DMA data transfers, but may  
be used as general purpose RAM.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
3.2  
Special MCU Features  
The PIC24HJXXXGPX06A/X08A/X10A features  
a
17-bit by 17-bit, single-cycle multiplier. The multiplier  
can perform signed, unsigned and mixed-sign  
multiplication. Using a 17-bit by 17-bit multiplier for  
16-bit by 16-bit multiplication makes mixed-sign  
multiplication possible.  
The PIC24HJXXXGPX06A/X08A/X10A CPU module  
has a 16-bit (data) modified Harvard architecture with an  
enhanced instruction set and addressing modes. The  
CPU has a 24-bit instruction word with a variable length  
opcode field. The Program Counter (PC) is 23 bits wide  
and addresses up to 4M x 24 bits of user program  
memory space. The actual amount of program memory  
implemented varies by device. A single-cycle instruction  
prefetch mechanism is used to help maintain throughput  
and provides predictable execution. All instructions  
execute in a single cycle, with the exception of  
instructions that change the program flow, the double  
word move (MOV.D) instruction and the table instructions.  
Overhead-free, single-cycle program loop constructs are  
supported using the REPEAT instruction, which is  
interruptible at any point.  
The PIC24HJXXXGPX06A/X08A/X10A supports 16/16  
and 32/16 integer divide operations. All divide  
instructions are iterative operations. They must be  
executed within a REPEAT loop, resulting in a total  
execution time of 19 instruction cycles. The divide  
operation can be interrupted during any of those  
19 cycles without loss of data.  
A multi-bit data shifter is used to perform up to a 16-bit,  
left or right shift in a single cycle.  
The PIC24HJXXXGPX06A/X08A/X10A devices have  
sixteen, 16-bit working registers in the programmer’s  
model. Each of the working registers can serve as a data,  
address or address offset register. The 16th working  
register (W15) operates as a software Stack Pointer (SP)  
for interrupts and calls.  
The PIC24HJXXXGPX06A/X08A/X10A instruction set  
includes many addressing modes and is designed for  
optimum C compiler efficiency. For most instructions,  
the PIC24HJXXXGPX06A/X08A/X10A is capable of  
executing a data (or program data) memory read, a  
working register (data) read, a data memory write and  
a program (instruction) memory read per instruction  
cycle. As a result, three parameter instructions can be  
supported, allowing A + B = C operations to be  
executed in a single cycle.  
A block diagram of the CPU is shown in Figure 3-1,  
and  
the  
programmer’s  
model  
for  
the  
PIC24HJXXXGPX06A/X08A/X10A is shown in  
Figure 3-2.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 23  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 3-1:  
PIC24HJXXXGPX06A/X08A/X10A CPU CORE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
X Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
X RAM  
DMA  
RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
23  
Address  
Latch  
Stack  
Control  
Logic  
Loop  
Control  
Logic  
23  
16  
DMA  
Controller  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
17 x 17  
Multiplier  
Control Signals  
to Various Blocks  
16 x 16  
W Register Array  
Divide Support  
16  
16-bit ALU  
16  
To Peripheral Modules  
DS70592D-page 24  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 3-2:  
PIC24HJXXXGPX06A/X08A/X10A PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
W5  
W6  
W7  
Working Registers  
W8  
W9  
W10  
W11  
W12  
W13  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
Program Counter  
PC22  
PC0  
0
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
15  
Core Configuration Register  
CORCON  
DC  
N
Z
C
IPL2 IPL1 IPL0 RA  
SRL  
OV  
STATUS Register  
SRH  
2009-2012 Microchip Technology Inc.  
DS70592D-page 25  
PIC24HJXXXGPX06A/X08A/X10A  
3.3  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(1)  
R/W-0(2)  
IPL<2:0>(2)  
R/W-0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized  
data) of the result occurred  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude which  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation which affects the Z bit has set it at some time in the past  
0= The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit (MSb) of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
2: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
DS70592D-page 26  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(1)  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit 3(1)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 2  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 27  
PIC24HJXXXGPX06A/X08A/X10A  
3.4.2  
DIVIDER  
3.4  
Arithmetic Logic Unit (ALU)  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
The PIC24HJXXXGPX06A/X08A/X10A ALU is 16 bits  
wide and is capable of addition, subtraction, bit shifts  
and logic operations. Unless otherwise mentioned,  
arithmetic operations are 2’s complement in nature.  
Depending on the operation, the ALU may affect the  
values of the Carry (C), Zero (Z), Negative (N),  
Overflow (OV) and Digit Carry (DC) Status bits in the  
SR register. The C and DC Status bits operate as  
Borrow and Digit Borrow bits, respectively, for  
subtraction operations.  
• 32-bit signed/16-bit signed divide  
• 32-bit unsigned/16-bit unsigned divide  
• 16-bit signed/16-bit signed divide  
• 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. Sixteen-bit signed and  
unsigned DIV instructions can specify any W register  
for both the 16-bit divisor (Wn) and any W register  
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.  
The divide algorithm takes one cycle per bit of divisor,  
so both 32-bit/16-bit and 16-bit/16-bit instructions take  
the same number of cycles to execute.  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W reg-  
ister array, or data memory, depending on the address-  
ing mode of the instruction. Likewise, output data from  
the ALU can be written to the W register array or a data  
memory location.  
3.4.3  
MULTI-BIT DATA SHIFTER  
Refer to the “16-bit MCU and DSC Programmer’s  
Reference Manual” (DS70157) for information on the  
SR bits affected by each instruction.  
The multi-bit data shifter is capable of performing up to  
16-bit arithmetic or logic right shifts, or up to 16-bit left  
shifts in a single cycle. The source can be either a  
working register or a memory location.  
The  
PIC24HJXXXGPX06A/X08A/X10A  
CPU  
incorporates hardware support for both multiplication  
and division. This includes a dedicated hardware  
multiplier and support hardware for 16-bit divisor  
division.  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
3.4.1  
MULTIPLIER  
Using the high-speed 17-bit x 17-bit multiplier, the ALU  
supports unsigned, signed or mixed-sign operation in  
several multiplication modes:  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
DS70592D-page 28  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
4.1  
Program Address Space  
4.0  
MEMORY ORGANIZATION  
The program address memory space of the  
PIC24HJXXXGPX06A/X08A/X10A devices is 4M  
instructions. The space is addressable by a 24-bit value  
derived from either the 23-bit Program Counter (PC)  
during program execution, or from table operation or  
data space remapping as described in Section 4.4  
“Interfacing Program and Data Memory Spaces”.  
Note:  
This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the informa-  
tion in this data sheet, refer to Section 3.  
“Data Memory” (DS70202) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
User access to the program memory space is restricted  
to the lower half of the address range (0x000000 to  
0x7FFFFF). The exception is the use of TBLRD/TBLWT  
operations, which use TBLPAG<7> to permit access to  
the Configuration bits and Device ID sections of the  
configuration memory space.  
The PIC24HJXXXGPX06A/X08A/X10A architecture  
features separate program and data memory spaces  
and buses. This architecture also allows the direct  
access of program memory from the data space during  
code execution.  
Memory maps for the PIC24HJXXXGPX06A/X08A/  
X10A family of devices are shown in Figure 4-1.  
FIGURE 4-1:  
PROGRAM MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A FAMILY DEVICES  
PIC24HJ64XXXXXA  
PIC24HJ128XXXXXA  
PIC24HJ256XXXXXA  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Alternate Vector Table  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
(22K instructions)  
User Program  
Flash Memory  
(44K instructions)  
User Program  
Flash Memory  
(88K instructions)  
0x00ABFE  
0x00AC00  
0x0157FE  
0x015800  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
0x02ABFE  
0x02AC00  
(Read ‘0’s)  
Unimplemented  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
Reserved  
Reserved  
0xF7FFFE  
0xF80000  
Device Configuration  
Registers  
Device Configuration  
Registers  
Device Configuration  
Registers  
0xF80017  
0xF80010  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
0xFEFFFE  
0xFF0000  
0xFFFFFE  
2009-2012 Microchip Technology Inc.  
DS70592D-page 29  
PIC24HJXXXGPX06A/X08A/X10A  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.2  
INTERRUPT AND TRAP VECTORS  
All PIC24HJXXXGPX06A/X08A/X10A devices reserve  
the addresses between 0x00000 and 0x000200 for  
hard-coded program execution vectors. A hardware  
Reset vector is provided to redirect code execution  
from the default value of the PC on device Reset to the  
actual start of code. A GOTOinstruction is programmed  
by the user at 0x000000, with the actual address for the  
start of code at 0x000002.  
The program memory space is organized in word-  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (Figure 4-2).  
PIC24HJXXXGPX06A/X08A/X10A devices also have  
two interrupt vector tables, located from 0x000004 to  
0x0000FF and 0x000100 to 0x0001FF. These vector  
tables allow each of the many device interrupt sources  
to be handled by separate Interrupt Service Routines  
(ISRs). A more detailed discussion of the interrupt vec-  
tor tables is provided in Section 7.1 “Interrupt Vector  
Table”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS70592D-page 30  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
All word accesses must be aligned to an even address.  
4.2  
Data Address Space  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word opera-  
tions, or translating from 8-bit MCU code. If a mis-  
aligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed; if it occurred on a  
write, the instruction will be executed but the write does  
not occur. In either case, a trap is then executed, allow-  
ing the system and/or user to examine the machine  
state prior to execution of the address Fault.  
The PIC24HJXXXGPX06A/X08A/X10A CPU has a  
separate 16-bit wide data memory space. The data  
space is accessed using separate Address Generation  
Units (AGUs) for read and write operations. Data mem-  
ory maps of devices with different RAM sizes are  
shown in Figure 4-3 and Figure 4-4.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 4.4.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte  
(MSB) is not modified.  
A sign-extend instruction (SE) is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the Most Significant Byte of any W register by  
executing a zero-extend (ZE) instruction on the  
appropriate address.  
PIC24HJXXXGPX06A/X08A/X10A devices implement  
up to 16 Kbytes of data memory. Should an EA point to  
a location outside of this area, an all-zero word or byte  
will be returned.  
4.2.3  
SFR SPACE  
4.2.1  
DATA SPACE WIDTH  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the  
PIC24HJXXXGPX06A/X08A/X10A core and peripheral  
modules for controlling the operation of the device.  
The data memory space is organized in byte address-  
able, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes of each word have even addresses, while the  
Most Significant Bytes have odd addresses.  
SFRs are distributed among the modules that they  
control, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’. A complete listing of implemented  
SFRs, including their addresses, is shown in Table 4-1  
through Table 4-33.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCU  
devices and improve data space memory usage  
efficiency, the PIC24HJXXXGPX06A/X08A/X10A  
instruction set supports both word and byte operations.  
As a consequence of byte accessibility, all effective  
address calculations are internally scaled to step  
through word-aligned memory. For example, the core  
recognizes that Post-Modified Register Indirect  
Addressing mode [Ws++] will result in a value of Ws +  
1 for byte operations and Ws + 2 for word operations.  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Please  
refer to the corresponding device tables  
and pinout diagrams for device-specific  
information.  
4.2.4  
NEAR DATA SPACE  
The 8-Kbyte area between 0x0000 and 0x1FFF is  
referred to as the Near Data Space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a working  
register as an Address Pointer.  
Data byte reads will read the complete word that  
contains the byte, using the Least Significant bit (LSb)  
of any EA to determine which byte to select. The  
selected byte is placed onto the Least Significant Byte  
(LSB) of the data path. That is, data memory and reg-  
isters are organized as two parallel byte-wide entities  
with shared (word) address decode but separate write  
lines. Data byte writes only write to the corresponding  
side of the array or register which matches the byte  
address.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 31  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 4-3:  
DATA MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A DEVICES WITH 8 KB  
RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
Space  
X Data RAM (X)  
8 Kbyte  
SRAM Space  
0x1FFF  
0x2001  
0x1FFE  
0x2000  
DMA RAM  
0x27FF  
0x2801  
0x27FE  
0x2800  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70592D-page 32  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 4-4:  
DATA MEMORY MAP FOR PIC24HJXXXGPX06A/X08A/X10A DEVICES WITH 16 KB RAM  
LSB  
Address  
MSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
8 Kbyte  
Near  
Data  
0x07FE  
0x0800  
0x07FF  
0x0801  
Space  
0x1FFF  
0x1FFE  
X Data RAM (X)  
16 Kbyte  
SRAM Space  
0x3FFF  
0x4001  
0x3FFE  
0x4000  
DMA RAM  
0x47FF  
0x4801  
0x47FE  
0x4800  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
transferred from various peripherals using DMA. The  
DMA RAM can be accessed by the DMA controller  
without having to steal cycles from the CPU.  
4.2.5  
Every  
DMA RAM  
PIC24HJXXXGPX06A/X08A/X10A  
device  
contains 2 Kbytes of dual ported DMA RAM located at  
the end of data space. Memory locations in the DMA  
RAM space are accessible simultaneously by the CPU  
and the DMA controller module. DMA RAM is utilized by  
the DMA controller to store data to be transferred to  
various peripherals using DMA, as well as data  
When the CPU and the DMA controller attempt to  
concurrently write to the same DMA RAM location, the  
hardware ensures that the CPU is given precedence in  
accessing the DMA RAM location. Therefore, the DMA  
RAM provides a reliable means of transferring DMA  
data without ever having to stall the CPU.  
Note:  
DMA RAM can be used for general  
purpose data storage if the DMA function  
is not required in an application.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 33  
TABLE 4-1:  
CPU CORE REGISTERS MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0042  
0044  
0052  
0750  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0800  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
0000  
0000  
xxxx  
0000  
Stack Pointer Limit Register  
Program Counter Low Word Register  
PCL  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
SR  
Program Memory Visibility Page Address Pointer Register  
Repeat Loop Counter Register  
DC  
IPL<2:0>  
RA  
N
OV  
Z
C
CORCON  
DISICNT  
BSRAM  
IPL3  
PSV  
Disable Interrupts Counter Register  
IW_BSR IR_BSR RL_BSR  
IW_SSR IR_SSR RL_SSR  
SSRAM  
0752  
0000  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-2:  
CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJXXXGPX10A DEVICES  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000  
006A CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-3:  
CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJXXXGPX08A DEVICES  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000  
006A CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-4:  
CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJXXXGPX06A DEVICES  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN21IE  
CN20IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000  
006A CN21PUE CN20PUE CN18PUE CN17PUE CN16PUE 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-5:  
INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS  
INTCON2 0082 ALTIVT  
DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL  
0000  
DISI  
AD1IF  
U1TXIF  
T5IF  
OC8IF  
U1RXIF  
T4IF  
OC7IF  
T2IF  
IC8IF  
IC5IF  
C2RXIF  
C2TXIF  
T2IE  
IC8IE  
IC5IE  
C2RXIE  
C2TXIE  
INT4EP  
DMA0IF  
INT1IF  
DMA3IF  
T9IF  
INT3EP  
T1IF  
CNIF  
C1IF  
T8IF  
INT2EP  
OC1IF  
INT1EP INT0EP 0000  
IC1IF INT0IF 0000  
IFS0  
0084  
DMA1IF  
SPI1IF SPI1EIF  
T3IF  
OC2IF  
IC7IF  
IC2IF  
IFS1  
0086 U2TXIF U2RXIF  
INT2IF  
OC4IF OC3IF DMA2IF  
AD2IF  
MI2C1IF SI2C1IF 0000  
SPI2IF SPI2EIF 0000  
IFS2  
0088  
008A  
008C  
0094  
T6IF  
DMA4IF  
OC6IF OC5IF  
IC6IF  
C2IF  
IC4IF  
IC3IF  
C1RXIF  
IFS3  
DMA5IF  
INT4IF  
C1TXIF  
OC2IE  
IC7IE  
INT3IF  
MI2C2IF SI2C2IF  
T7IF  
0000  
0000  
0000  
IFS4  
DMA7IF  
DMA6IF  
DMA0IE  
INT1IE  
DMA3IE  
T9IE  
U2EIF  
OC1IE  
U1EIF  
IC1IE  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
IPC12  
IPC13  
IPC14  
IPC15  
IPC16  
IPC17  
DMA1IE  
AD1IE  
U1TXIE  
T5IE  
OC8IE  
U1RXIE  
T4IE  
OC7IE  
SPI1IE SPI1EIE  
T3IE  
IC2IE  
T1IE  
CNIE  
C1IE  
T8IE  
INT0IE  
0096 U2TXIE U2RXIE  
INT2IE  
OC4IE OC3IE DMA2IE  
AD2IE  
MI2C1IE SI2C1IE 0000  
SPI2IE SPI2EIE 0000  
0098  
009A  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00B8  
00BA  
00BC  
00BE  
00C0  
00C2  
00C4  
00C6  
T6IE  
DMA4IE  
OC6IE OC5IE  
IC6IE  
C2IE  
IC4IE  
IC3IE  
C1RXIE  
DMA5IE  
INT4IE  
C1TXIE  
INT3IE  
MI2C2IE SI2C2IE  
T7IE  
0000  
0000  
4444  
4444  
4444  
0444  
4044  
4444  
4444  
4444  
4444  
4444  
4444  
4404  
4444  
4444  
0004  
0040  
0440  
4444  
0000  
DMA7IE  
DMA6IE  
U2EIE  
U1EIE  
INT0IP<2:0>  
DMA0IP<2:0>  
T3IP<2:0>  
U1TXIP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
DMA2IP<2:0>  
T5IP<2:0>  
SPI2EIP<2:0>  
DMA3IP<2:0>  
IC6IP<2:0>  
OC8IP<2:0>  
T7IP<2:0>  
T9IP<2:0>  
C2IP<2:0>  
T1IP<2:0>  
T2IP<2:0>  
U1RXIP<2:0>  
OC1IP<2:0>  
OC2IP<2:0>  
SPI1IP<2:0>  
DMA1IP<2:0>  
IC1IP<2:0>  
IC2IP<2:0>  
SPI1EIP<2:0>  
AD1IP<2:0>  
MI2C1IP<2:0>  
AD2IP<2:0>  
OC3IP<2:0>  
INT2IP<2:0>  
SPI2IP<2:0>  
IC3IP<2:0>  
OC5IP<2:0>  
CNIP<2:0>  
IC8IP<2:0>  
T4IP<2:0>  
U2TXIP<2:0>  
C1IP<2:0>  
IC5IP<2:0>  
OC7IP<2:0>  
T6IP<2:0>  
T8IP<2:0>  
C2RXIP<2:0>  
IC7IP<2:0>  
OC4IP<2:0>  
U2RXIP<2:0>  
C1RXIP<2:0>  
IC4IP<2:0>  
OC6IP<2:0>  
DMA4IP<2:0>  
MI2C2IP<2:0>  
INT4IP<2:0>  
SI2C2IP<2:0>  
INT3IP<2:0>  
DMA5IP<2:0>  
U1EIP<2:0>  
DMA7IP<2:0>  
U2EIP<2:0>  
C1TXIP<2:0>  
C2TXIP<2:0>  
DMA6IP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-6:  
TIMER REGISTER MAP  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
Timer1 Register  
Period Register 1  
0000  
FFFF  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
T1CON  
TMR2  
TON  
TSIDL  
TGATE  
TCKPS<1:0>  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
0114  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TMR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer4 Register  
TMR5HLD 0116  
Timer5 Holding Register (for 32-bit operations only)  
Timer5 Register  
TMR5  
PR4  
0118  
011A  
011C  
011E  
0120  
0122  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
TMR6  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer6 Register  
TMR7HLD 0124  
Timer7 Holding Register (for 32-bit operations only)  
Timer7 Register  
TMR7  
PR6  
0126  
0128  
012A  
012C  
012E  
0130  
Period Register 6  
PR7  
Period Register 7  
T6CON  
T7CON  
TMR8  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer8 Register  
TMR9HLD 0132  
Timer9 Holding Register (for 32-bit operations only)  
Timer9 Register  
TMR9  
PR8  
0134  
0136  
0138  
013A  
013C  
Period Register 8  
PR9  
Period Register 9  
T8CON  
T9CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-7:  
INPUT CAPTURE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
IC5BUF  
IC5CON  
IC6BUF  
IC6CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
Legend:  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
0154  
0156  
0158  
015A  
015C  
015E  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
Input 5 Capture Register  
ICTMR  
Input 6 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8 Capture Register  
ICTMR  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-8:  
OUTPUT COMPARE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
019E  
01A0  
01A2  
01A4  
01A6  
01A8  
01AA  
01AC  
01AE  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3CON  
OC4RS  
OC4R  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4CON  
OC5RS  
OC5R  
Output Compare 5 Secondary Register  
Output Compare 5 Register  
OC5CON  
OC6RS  
OC6R  
Output Compare 6 Secondary Register  
Output Compare 6 Register  
OC6CON  
OC7RS  
OC7R  
Output Compare 7 Secondary Register  
Output Compare 7 Register  
OC7CON  
OC8RS  
OC8R  
Output Compare 8 Secondary Register  
Output Compare 8 Register  
OC8CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-9:  
I2C1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
Legend:  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-10: I2C2 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C2RCV  
I2C2TRN  
I2C2BRG  
I2C2CON  
I2C2STAT  
I2C2ADD  
I2C2MSK  
Legend:  
0210  
0212  
0214  
0216  
0218  
021A  
021C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-11: UART1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD URXINV  
ADDEN RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN UTXBF  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-12: UART2 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U2MODE  
U2STA  
0230  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD URXINV  
ADDEN RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0232 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U2TXREG  
U2RXREG  
U2BRG  
0234  
0236  
0238  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-13: SPI1 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
Legend:  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI1 Transmit and Receive Buffer Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-14: SPI2 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI2STAT  
0260  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
SPI2CON1 0262  
DISSCK DISSDO MODE16  
PPRE<1:0>  
SPI2CON2 0264 FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI2BUF  
0268  
SPI2 Transmit and Receive Buffer Register  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-15: ADC1 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0300  
0320  
0322  
0324  
0326  
ADC1BUF0  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS123  
AD1CHS0  
ADC Data Buffer 0  
FORM<1:0>  
CHPS<1:0>  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL ADDMABM  
AD12B  
CSCNA  
SSRC<2:0>  
SIMSAM ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
CH123NB<1:0>  
CH0SB<4:0>  
CH123SB  
CH123NA<1:0>  
CH123SA 0000  
0328 CH0NB  
CH0NA  
CH0SA<4:0>  
0000  
AD1PCFGH(1) 032A PCFG31 PCFG30 PCFG29  
PCFG28  
PCFG12  
CSS28  
CSS12  
PCFG27 PCFG26 PCFG25 PCFG24 PCFG23 PCFG22 PCFG21 PCFG20 PCFG19 PCFG18 PCFG17 PCFG16  
0000  
0000  
0000  
0000  
0000  
0000  
AD1PCFGL  
AD1CSSH(1)  
AD1CSSL  
AD1CON4  
Reserved  
032C PCFG15 PCFG14 PCFG13  
PCFG11 PCFG10 PCFG9  
PCFG8  
CSS24  
CSS8  
PCFG7  
CSS23  
CSS7  
PCFG6  
CSS22  
CSS6  
PCFG5  
CSS21  
CSS5  
PCFG4  
CSS20  
CSS4  
PCFG3 PCFG2 PCFG1  
PCFG0  
CSS16  
CSS0  
032E CSS31  
0330 CSS15  
CSS30  
CSS14  
CSS29  
CSS13  
CSS27  
CSS11  
CSS26  
CSS10  
CSS25  
CSS9  
CSS19  
CSS3  
CSS18  
CSS2  
CSS17  
CSS1  
0332  
DMABL<2:0>  
0334-  
033E  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
Not all ANx inputs are available on all devices. See the device pin diagrams for available ANx inputs.  
TABLE 4-16: ADC2 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC2BUF0  
AD2CON1  
AD2CON2  
AD2CON3  
AD2CHS123  
AD2CHS0  
Reserved  
0340  
0360  
0362  
0364  
0366  
0368  
036A  
ADC Data Buffer 0  
FORM<1:0>  
CHPS<1:0>  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
ADON  
ADSIDL ADDMABM  
AD12B  
CSCNA  
SSRC<2:0>  
SIMSAM ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
CH123NB<1:0>  
CH0SB<3:0>  
CH123SB  
CH0NA  
CH123NA<1:0>  
CH0SA<3:0>  
CH123SA  
CH0NB  
PCFG8  
PCFG0  
AD2PCFGL  
Reserved  
036C PCFG15 PCFG14 PCFG13  
PCFG12  
PCFG11 PCFG10 PCFG9  
PCFG7 PCFG6 PCFG5  
PCFG4  
PCFG3 PCFG2 PCFG1  
036E  
0370  
0372  
CSS15  
CSS14  
CSS13  
CSS11  
CSS10  
CSS9  
CSS7  
CSS6  
CSS5  
CSS3  
AD2CSSL  
AD2CON4  
Reserved  
CSS12  
CSS8  
CSS4  
CSS2  
CSS1  
CSS0  
DMABL<2:0>  
0374-  
037E  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-17: DMA REGISTER MAP  
All  
Resets  
File Name Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMA0CON 0380 CHEN  
DMA0REQ 0382 FORCE  
DMA0STA 0384  
SIZE  
DIR  
HALF  
NULLW  
AMODE<1:0>  
MODE<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA0STB 0386  
DMA0PAD 0388  
DMA0CNT 038A  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA1CON 038C CHEN  
DMA1REQ 038E FORCE  
DMA1STA 0390  
AMODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA1STB 0392  
DMA1PAD 0394  
DMA1CNT 0396  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA2CON 0398 CHEN  
DMA2REQ 039A FORCE  
DMA2STA 039C  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA2STB 039E  
DMA2PAD 03A0  
DMA2CNT 03A2  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA3CON 03A4 CHEN  
DMA3REQ 03A6 FORCE  
DMA3STA 03A8  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA3STB 03AA  
DMA3PAD 03AC  
DMA3CNT 03AE  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA4CON 03B0 CHEN  
DMA4REQ 03B2 FORCE  
DMA4STA 03B4  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA4STB 03B6  
DMA4PAD 03B8  
DMA4CNT 03BA  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA5CON 03BC CHEN  
DMA5REQ 03BE FORCE  
DMA5STA 03C0  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
DMA5STB 03C2  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-17: DMA REGISTER MAP (CONTINUED)  
All  
Resets  
File Name Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMA5PAD 03C4  
PAD<15:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DMA5CNT 03C6  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA6CON 03C8 CHEN  
DMA6REQ 03CA FORCE  
DMA6STA 03CC  
AMODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA6STB 03CE  
DMA6PAD 03D0  
DMA6CNT 03D2  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA7CON 03D4 CHEN  
DMA7REQ 03D6 FORCE  
DMA7STA 03D8  
AMODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA7STB 03DA  
DMA7PAD 03DC  
DMA7CNT 03DE  
CNT<9:0>  
DMACS0  
DMACS1  
DSADR  
03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000  
03E2  
03E4  
LSTCH<3:0>  
PPST7  
PPST6  
PPST5  
PPST4  
PPST3  
PPST2  
PPST1  
PPST0  
0000  
0000  
DSADR<15:0>  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 OR 1 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1CTRL1  
C1CTRL2  
C1VEC  
0400  
0402  
0404  
0406  
0408  
040A  
040C  
040E  
0410  
0412  
CSIDL  
ABAT  
REQOP<2:0>  
OPMODE<2:0>  
CANCAP  
WIN  
0480  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DNCNT<4:0>  
ICODE<6:0>  
FSA<4:0>  
FNRB<5:0>  
FIFOIF RBOVIF  
FIFOIE RBOVIE  
FILHIT<4:0>  
C1FCTRL  
C1FIFO  
C1INTF  
C1INTE  
C1EC  
DMABS<2:0>  
FBP<5:0>  
TXBO  
TXBP  
RXBP  
TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF  
WAKIE  
ERRIF  
ERRIE  
RBIF  
RBIE  
TBIF  
TBIE  
TERRCNT<7:0>  
RERRCNT<7:0>  
BRP<5:0>  
C1CFG1  
C1CFG2  
C1FEN1  
SJW<1:0>  
WAKFIL  
SEG2PH<2:0>  
SEG2PHTS  
FLTEN7  
SAM  
SEG1PH<2:0>  
PRSEG<2:0>  
0414 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8  
FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 FFFF  
C1FMSKSEL1 0418  
C1FMSKSEL2 041A  
F7MSK<1:0>  
F15MSK<1:0>  
F6MSK<1:0>  
F14MSK<1:0>  
F5MSK<1:0>  
F13MSK<1:0>  
F4MSK<1:0>  
F12MSK<1:0>  
F3MSK<1:0>  
F11MSK<1:0>  
F2MSK<1:0>  
F10MSK<1:0>  
F1MSK<1:0>  
F9MSK<1:0>  
F0MSK<1:0>  
F8MSK<1:0>  
0000  
0000  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0400-  
041E  
See definition when WIN = x  
C1RXFUL1 0420 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 0000  
C1RXFUL2 0422 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000  
C1RXOVF1 0428 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
C1RXOVF2 042A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
C1TR01CO 0430 TXEN1  
N
TX  
ABT1  
TX  
LARB1  
TX  
ERR1  
TX  
REQ1  
RTREN1  
RTREN3  
RTREN5  
RTREN7  
TX1PRI<1:0>  
TX3PRI<1:0>  
TX5PRI<1:0>  
TX7PRI<1:0>  
TXEN0  
TXEN2  
TXEN4  
TXEN6  
TX  
ABAT0  
TX  
LARB0  
TX  
ERR0  
TX  
REQ0  
RTREN0  
RTREN2  
RTREN4  
RTREN6  
TX0PRI<1:0>  
TX2PRI<1:0>  
TX4PRI<1:0>  
TX6PRI<1:0>  
0000  
0000  
0000  
xxxx  
C1TR23CO 0432 TXEN3  
N
TX  
ABT3  
TX  
LARB3  
TX  
ERR3  
TX  
REQ3  
TX  
ABAT2  
TX  
LARB2  
TX  
ERR2  
TX  
REQ2  
C1TR45CO 0434 TXEN5  
N
TX  
ABT5  
TX  
LARB5  
TX  
ERR5  
TX  
REQ5  
TX  
ABAT4  
TX  
LARB4  
TX  
ERR4  
TX  
REQ4  
C1TR67CO 0436 TXEN7  
N
TX  
ABT7  
TX  
LARB7  
TX  
ERR7  
TX  
REQ7  
TX  
ABAT6  
TX  
LARB6  
TX  
ERR6  
TX  
REQ6  
C1RXD  
C1TXD  
Legend:  
0440  
0442  
Recieved Data Word  
Transmit Data Word  
xxxx  
xxxx  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See definition when WIN = x  
F1BP<3:0>  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0400-  
041E  
C1BUFPNT1  
C1BUFPNT2  
C1BUFPNT3  
C1BUFPNT4  
C1RXM0SID  
C1RXM0EID  
C1RXM1SID  
C1RXM1EID  
C1RXM2SID  
C1RXM2EID  
C1RXF0SID  
C1RXF0EID  
C1RXF1SID  
Legend:  
0420  
0422  
0424  
0426  
0430  
0432  
0434  
0436  
0438  
043A  
0440  
0442  
0444  
F3BP<3:0>  
F2BP<3:0>  
F6BP<3:0>  
F10BP<3:0>  
F14BP<3:0>  
F0BP<3:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
F7BP<3:0>  
F11BP<3:0>  
F15BP<3:0>  
F5BP<3:0>  
F9BP<3:0>  
F13BP<3:0>  
F4BP<3:0>  
F8BP<3:0>  
F12BP<3:0>  
SID<10:3>  
SID<2:0>  
MIDE  
MIDE  
EID<17:16>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EID<17:16>  
EID<7:0>  
MIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 FOR PIC24HJXXXGP506A/510A/610A DEVICES ONLY (CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1RXF1EID  
C1RXF2SID  
C1RXF2EID  
C1RXF3SID  
C1RXF3EID  
C1RXF4SID  
C1RXF4EID  
C1RXF5SID  
C1RXF5EID  
C1RXF6SID  
C1RXF6EID  
C1RXF7SID  
C1RXF7EID  
C1RXF8SID  
C1RXF8EID  
C1RXF9SID  
C1RXF9EID  
C1RXF10SID  
C1RXF10EID  
C1RXF11SID  
C1RXF11EID  
C1RXF12SID  
C1RXF12EID  
C1RXF13SID  
C1RXF13EID  
C1RXF14SID  
C1RXF14EID  
C1RXF15SID  
C1RXF15EID  
Legend:  
0446  
0448  
044A  
044C  
044E  
0450  
0452  
0454  
0456  
0458  
045A  
045C  
045E  
0460  
0462  
0464  
0466  
0468  
046A  
046C  
046E  
0470  
0472  
0474  
0476  
0478  
047A  
047C  
047E  
EID<15:8>  
EID<7:0>  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EXIDE  
EID<17:16>  
EID<7:0>  
EXIDE  
EXIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EID<7:0>  
EXIDE  
EXIDE  
EID<7:0>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR PIC24HJ256GP610A DEVICES ONLY  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C2CTRL1  
C2CTRL2  
C2VEC  
0500  
0502  
0504  
0506  
0508  
050A  
050C  
050E  
0510  
0512  
CSIDL  
ABAT  
REQOP<2:0>  
OPMODE<2:0>  
CANCAP  
WIN  
0480  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DNCNT<4:0>  
FILHIT<4:0>  
ICODE<6:0>  
FSA<4:0>  
FNRB<5:0>  
C2FCTRL  
C2FIFO  
C2INTF  
C2INTE  
C2EC  
DMABS<2:0>  
FBP<5:0>  
TXBO  
TXBP  
RXBP  
TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF ERRIF  
WAKIE ERRIE  
FIFOIF RBOVIF  
FIFOIE RBOVIE  
RBIF  
RBIE  
TBIF  
TBIE  
TERRCNT<7:0>  
RERRCNT<7:0>  
BRP<5:0>  
C2CFG1  
C2CFG2  
C2FEN1  
SJW<1:0>  
SEG2PHTS SAM  
FLTEN7  
F3MSK<1:0>  
F11MSK<1:0>  
WAKFIL  
SEG2PH<2:0>  
SEG1PH<2:0>  
PRSEG<2:0>  
0514 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8  
FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 FFFF  
C2FMSKSEL1 0518  
C2FMSKSEL2 051A  
F7MSK<1:0>  
F15MSK<1:0>  
F6MSK<1:0>  
F14MSK<1:0>  
F5MSK<1:0>  
F13MSK<1:0>  
F4MSK<1:0>  
F12MSK<1:0>  
F2MSK<1:0>  
F10MSK<1:0>  
F1MSK<1:0>  
F9MSK<1:0>  
F0MSK<1:0>  
F8MSK<1:0>  
0000  
0000  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-22: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR PIC24HJ256GP610A DEVICES ONLY  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0500-  
051E  
See definition when WIN = x  
C2RXFUL1  
C2RXFUL2  
0520 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 0000  
0522 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000  
C2RXOVF1 0528 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
C2RXOVF2 052A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
C2TR01CON 0530 TXEN1  
C2TR23CON 0532 TXEN3  
C2TR45CON 0534 TXEN5  
C2TR67CON 0536 TXEN7  
TX  
ABAT1  
TX  
LARB1  
TX  
ERR1  
TX  
REQ1  
RTREN1  
RTREN3  
RTREN5  
RTREN7  
TX1PRI<1:0>  
TX3PRI<1:0>  
TX5PRI<1:0>  
TX7PRI<1:0>  
TXEN0  
TXEN2  
TXEN4  
TXEN6  
TX  
ABAT0  
TX  
LARB0  
TX  
ERR0  
TX  
REQ0  
RTREN0  
RTREN2  
RTREN4  
RTREN6  
TX0PRI<1:0>  
TX2PRI<1:0>  
TX4PRI<1:0>  
TX6PRI<1:0>  
0000  
0000  
0000  
xxxx  
TX  
ABAT3  
TX  
LARB3  
TX  
ERR3  
TX  
REQ3  
TX  
ABAT2  
TX  
LARB2  
TX  
ERR2  
TX  
REQ2  
TX  
ABAT5  
TX  
LARB5  
TX  
ERR5  
TX  
REQ5  
TX  
ABAT4  
TX  
LARB4  
TX  
ERR4  
TX  
REQ4  
TX  
TX  
TX  
TX  
TX  
TX  
TX  
TX  
ABAT7  
LARB7  
ERR7  
REQ7  
ABAT6  
LARB6  
ERR6  
REQ6  
C2RXD  
C2TXD  
Legend:  
0540  
0542  
Recieved Data Word  
Transmit Data Word  
xxxx  
xxxx  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610A DEVICES ONLY  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See definition when WIN = x  
F1BP<3:0>  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0500-  
051E  
C2BUFPNT1  
C2BUFPNT2  
C2BUFPNT3  
C2BUFPNT4  
C2RXM0SID  
C2RXM0EID  
C2RXM1SID  
C2RXM1EID  
C2RXM2SID  
C2RXM2EID  
C2RXF0SID  
C2RXF0EID  
C2RXF1SID  
C2RXF1EID  
C2RXF2SID  
C2RXF2EID  
C2RXF3SID  
C2RXF3EID  
C2RXF4SID  
C2RXF4EID  
C2RXF5SID  
C2RXF5EID  
C2RXF6SID  
C2RXF6EID  
C2RXF7SID  
C2RXF7EID  
C2RXF8SID  
C2RXF8EID  
C2RXF9SID  
C2RXF9EID  
C2RXF10SID  
C2RXF10EID  
C2RXF11SID  
Legend:  
0520  
0522  
0524  
0526  
0530  
0532  
0534  
0536  
0538  
053A  
0540  
0542  
0544  
0546  
0548  
054A  
054C  
054E  
0550  
0552  
0554  
0556  
0558  
055A  
055C  
055E  
0560  
0562  
0564  
0566  
0568  
056A  
056C  
F3BP<3:0>  
F2BP<3:0>  
F6BP<3:0>  
F10BP<3:0>  
F14BP<3:0>  
F0BP<3:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
F7BP<3:0>  
F12BP<3:0>  
F15BP<3:0>  
F5BP<3:0>  
F9BP<3:0>  
F4BP<3:0>  
F8BP<3:0>  
F12BP<3:0>  
F13BP<3:0>  
SID<2:0>  
SID<10:3>  
MIDE  
MIDE  
EID<17:16>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EID<17:16>  
EID<7:0>  
MIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610A DEVICES ONLY (CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C2RXF11EID  
C2RXF12SID  
C2RXF12EID  
C2RXF13SID  
C2RXF13EID  
C2RXF14SID  
C2RXF14EID  
C2RXF15SID  
C2RXF15EID  
Legend:  
056E  
0570  
0572  
0574  
0576  
0578  
057A  
057C  
057E  
EID<15:8>  
EID<7:0>  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EXIDE  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
TABLE 4-24: PORTA REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
06C0  
TRISA15  
RA15  
TRISA14  
RA14  
TRISA13  
RA13  
LATA13  
TRISA12  
RA12  
LATA12  
TRISA10  
RA10  
LATA10  
TRISA9  
RA9  
TRISA7  
RA7  
TRISA6  
RA6  
TRISA5  
RA5  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
F6FF  
xxxx  
xxxx  
0000  
LATA15  
ODCA15  
LATA14  
ODCA14  
LATA9  
LATA7  
LATA6  
LATA5  
ODCA5  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
ODCA1  
LATA0  
ODCA0  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 4-25: PORTB REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C6  
02C8  
02CA  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8  
TRISB7  
RB7  
TRISB6 TRISB5 TRISB4  
TRISB3 TRISB2 TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
LATB15  
LATB14  
LATB13  
LATB12  
LATB11  
LATB10  
LATB9  
LATB8  
LATB7  
LATB6  
LATB5  
LATB4  
LATB3  
LATB2  
LATB1  
LATB0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 4-26: PORTC REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02CC TRISC15 TRISC14 TRISC13 TRISC12  
TRISC4  
RC4  
TRISC3  
RC3  
TRISC2  
RC2  
TRISC1  
RC1  
F01E  
xxxx  
xxxx  
02CE  
02D0  
RC15  
RC14  
RC13  
RC12  
LATC15 LATC14 LATC13 LATC12  
LATC4  
LATC3  
LATC2  
LATC1  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 4-27: PORTD REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
PORTD  
LATD  
02D2  
02D4  
02D6  
06D2  
TRISD15  
RD15  
TRISD14  
RD14  
TRISD13  
RD13  
TRISD12  
RD12  
TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0  
FFFF  
xxxx  
xxxx  
0000  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
LATD15  
ODCD15  
LATD14  
ODCD14  
LATD13  
ODCD13  
LATD12  
ODCD12  
LATD11  
ODCD11  
LATD10  
ODCD10  
LATD9  
ODCD9  
LATD8  
ODCD8  
LATD7  
ODCD7  
LATD6  
ODCD6  
LATD5  
ODCD5  
LATD4  
ODCD4  
LATD3  
ODCD3  
LATD2  
ODCD2  
LATD1  
ODCD1  
LATD0  
ODCD0  
ODCD  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 4-28: PORTE REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISE  
PORTE  
LATE  
02D8  
02DA  
02DC  
TRISE7  
RE7  
TRISE6  
RE6  
TRISE5  
RE5  
TRISE4  
RE4  
TRISE3  
RE3  
TRISE2  
RE2  
TRISE1  
RE1  
TRISE0  
RE0  
00FF  
xxxx  
xxxx  
LATE7  
LATE6  
LATE5  
LATE4  
LATE3  
LATE2  
LATE1  
LATE0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 4-29: PORTF REGISTER MAP(1)  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
TRISF  
PORTF  
LATF  
02DE  
02E0  
02E2  
06DE  
TRISF13  
RF13  
TRISF12  
RF12  
TRISF8  
RF8  
TRISF7  
RF7  
TRISF6  
RF6  
TRISF5  
RF5  
TRISF4  
RF4  
TRISF3  
RF3  
TRISF2  
RF2  
TRISF1  
RF1  
TRISF0  
RF0  
31FF  
xxxx  
xxxx  
0000  
LATF13  
ODCF13  
LATF12  
ODCF12  
LATF8  
ODCF8  
LATF7  
ODCF7  
LATF6  
ODCF6  
LATF5  
ODCF5  
LATF4  
ODCF4  
LATF3  
ODCF3  
LATF2  
ODCF2  
LATF1  
ODCF1  
LATF0  
ODCF0  
ODCF(2)  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 4-30: PORTG REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISG  
PORTG  
LATG  
02E4  
02E6  
02E8  
06E4  
TRISG15  
RG15  
TRISG14  
RG14  
TRISG13  
RG13  
TRISG12  
RG12  
TRISG9  
RG9  
TRISG8  
RG8  
TRISG7  
RG7  
TRISG6  
RG6  
TRISG3  
RG3  
TRISG2  
RG2  
TRISG1  
RG1  
TRISG0  
RG0  
F3CF  
xxxx  
xxxx  
0000  
LATG15  
ODCG15  
LATG14  
ODCG14  
LATG13  
ODCG13  
LATG12  
ODCG12  
LATG9  
ODCG9  
LATG8  
ODCG8  
LATG7  
ODCG7  
LATG6  
ODCG6  
LATG3  
ODCG3  
LATG2  
ODCG2  
LATG1  
ODCG1  
LATG0  
ODCG0  
ODCG(2)  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 4-31: SYSTEM CONTROL REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740  
0742  
0744  
0746  
0748  
TRAPR IOPUWR  
COSC<2:0>  
DOZE<2:0>  
NOSC<2:0>  
FRCDIV<2:0>  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx(1)  
0300(2)  
3040  
OSCCON  
CLKDIV  
PLLFBD  
OSCTUN  
CLKLOCK  
LOCK  
LPOSCEN OSWEN  
ROI  
DOZEN  
PLLPOST<1:0>  
PLLPRE<4:0>  
PLLDIV<8:0>  
0030  
TUN<5:0>  
0000  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
RCON register Reset values dependent on type of Reset.  
OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.  
TABLE 4-32: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP<3:0>  
0000(1)  
0000  
NVMKEY<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-33: PMD REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
0770  
0772  
0774  
T5MD  
IC8MD  
T9MD  
T4MD  
IC7MD  
T8MD  
T3MD  
IC6MD  
T7MD  
T2MD  
IC5MD  
T6MD  
T1MD  
IC4MD  
IC3MD  
IC2MD  
IC1MD  
I2C1MD  
OC8MD  
U2MD  
OC7MD  
U1MD  
OC6MD  
SPI2MD SPI1MD  
C2MD  
C1MD  
OC2MD  
I2C2MD  
AD1MD  
OC1MD  
AD2MD  
0000  
0000  
0000  
PMD2  
OC5MD OC4MD OC3MD  
PMD3  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
PIC24HJXXXGPX06A/X08A/X10A  
4.2.6  
SOFTWARE STACK  
4.2.7  
DATA RAM PROTECTION FEATURE  
The PIC24H product family supports Data RAM protec-  
tion features that enable segments of RAM to be  
protected when used in conjunction with Boot and  
Secure Code Segment Security. BSRAM (Secure RAM  
segment for BS) is accessible only from the Boot Seg-  
ment Flash code, when enabled. SSRAM (Secure  
RAM segment for RAM) is accessible only from the  
Secure Segment Flash code, when enabled. See  
Table 4-1 for an overview of the BSRAM and SSRAM  
SFRs.  
In addition to its use as a working register, the W15  
register in the PIC24HJXXXGPX06A/X08A/X10A  
devices is also used as a software Stack Pointer. The  
Stack Pointer always points to the first available free  
word and grows from lower to higher addresses. It pre-  
decrements for stack pops and post-increments for  
stack pushes, as shown in Figure 4-5. For a PC push  
during any CALLinstruction, the MSB of the PC is zero-  
extended before the push, ensuring that the MSB is  
always clear.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSB  
of the PC prior to the push.  
4.3  
Instruction Addressing Modes  
The addressing modes in Table 4-34 form the basis of  
the addressing modes optimized to support the specific  
features of individual instructions. The addressing  
modes provided in the MAC class of instructions are  
somewhat different from those in the other instruction  
types.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap will not occur. The stack error trap will occur on a  
subsequent push operation. Thus, for example, if it is  
desirable to cause a stack error trap when the stack  
grows beyond address 0x2000 in RAM, initialize the  
SPLIM with the value 0x1FFE.  
4.3.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (Near Data Space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
4.3.2  
MCU INSTRUCTIONS  
The 3-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where:  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
Operand 1 is always a working register (i.e., the  
addressing mode can only be Register Direct) which is  
referred to as Wb.  
FIGURE 4-5:  
CALL STACK FRAME  
0x0000  
15  
0
Operand 2 can be a W register, fetched from data  
memory, or a 5-bit literal. The result location can be  
either a W register or a data memory location. The fol-  
lowing addressing modes are supported by MCU  
instructions:  
PC<15:0>  
000000000  
W15 (before CALL)  
• Register Direct  
PC<22:16>  
<Free Word>  
• Register Indirect  
W15 (after CALL)  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-bit or 10-bit Literal  
POP : [--W15]  
PUSH: [W15++]  
Note:  
Not all instructions support all the  
addressing modes given above.  
Individual instructions may support  
different subsets of these addressing  
modes.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 53  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 4-34: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the EA.  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
Register Indirect with Literal Offset The sum of Wn and a literal forms the EA.  
4.3.3  
MOVE INSTRUCTIONS  
4.4  
Interfacing Program and Data  
Memory Spaces  
Move instructions provide a greater degree of address-  
ing flexibility than other instructions. In addition to the  
Addressing modes supported by most MCU instruc-  
tions, move instructions also support Register Indirect  
with Register Offset Addressing mode, also referred to  
as Register Indexed mode.  
The PIC24HJXXXGPX06A/X08A/X10A architecture  
uses a 24-bit wide program space and a 16-bit wide  
data space. The architecture is also a modified Harvard  
scheme, meaning that data can also be present in the  
program space. To use this data successfully, it must  
be accessed in a way that preserves the alignment of  
information in both spaces.  
Note:  
For the MOV instructions, the Addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (Register Offset)  
field is shared between both source and  
destination (but typically only used by  
one).  
Aside  
from  
normal  
execution,  
the  
PIC24HJXXXGPX06A/X08A/X10A architecture pro-  
vides two methods by which program space can be  
accessed during operation:  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
In summary, the following Addressing modes are  
supported by move instructions:  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
• Register Direct  
• Register Indirect  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated from time to time. It also allows  
access to all bytes of the program word. The remap-  
ping method allows an application to access a large  
block of data on a read-only basis, which is ideal for  
look ups from a large table of static data. It can only  
access the least significant word of the program word.  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
• 16-bit Literal  
Note:  
Not all instructions support all the  
Addressing modes given above.  
4.4.1  
ADDRESSING PROGRAM SPACE  
Individual instructions may support  
different subsets of these Addressing  
modes.  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
4.3.4  
OTHER INSTRUCTIONS  
Besides the various addressing modes outlined above,  
some instructions use literal constants of various sizes.  
For example, BRA (branch) instructions use 16-bit  
signed literals to specify the branch destination directly,  
whereas the DISI instruction uses a 14-bit unsigned  
literal field. In some instructions, the source of an oper-  
and or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
DS70592D-page 54  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
For remapping operations, the 8-bit Program Space  
Table 4-35 and Figure 4-6 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, whereas D<15:0> refers to a data space  
word.  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xxx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 55  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 4-6:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word  
alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted  
in the configuration memory space.  
DS70592D-page 56  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
2. TBLRDH (Table Read High): In Word mode, it  
maps the entire upper word of a program address  
(P<23:16>) to a data address. Note that  
D<15:8>, the ‘phantom byte’, will always be ‘0’.  
4.4.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDHand TBLWTHinstruc-  
tions are the only method to read or write the upper  
8 bits of a program space word as data.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper ‘phantom’ byte is  
selected (Byte Select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit,  
word wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and config-  
uration spaces. When TBLPAG<7> = 0, the table page  
is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
Two table instructions are provided to move byte or  
word sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when Byte Select is ‘1’; the lower byte  
is selected when it is ‘0’.  
FIGURE 4-7:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B(Wn<0> = 0)  
TBLRDL.B(Wn<0> = 1)  
TBLRDL.B(Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
2009-2012 Microchip Technology Inc.  
DS70592D-page 57  
PIC24HJXXXGPX06A/X08A/X10A  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.4.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access of stored con-  
stant data from the data space without the need to use  
special instructions (i.e., TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG func-  
tions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. Note that by incrementing the PC by 2 for  
each program memory word, the lower 15 bits of data  
space addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
a REPEAT loop, the MOV and MOV.D instructions  
require one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV, which are executed inside  
a REPEAT loop, there will be some instances that  
require two instruction cycles in addition to the  
specified execution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
Data reads to this area add an additional cycle to the  
instruction being executed, since two program memory  
fetches are required.  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data, using PSV, to execute in a  
single cycle.  
Although each data space address, 0x8000 and higher,  
maps directly into a corresponding program memory  
address (see Figure 4-8), only the lower 16 bits of the  
FIGURE 4-8:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...while the lower 15 bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
DS70592D-page 58  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
lines for power (VDD), ground (VSS) and Master Clear  
5.0  
FLASH PROGRAM MEMORY  
(MCLR). This allows customers to manufacture boards  
with unprogrammed devices and then program the dig-  
ital signal controller just before shipping the product.  
This also allows the most recent firmware or a custom  
firmware to be programmed.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
5. “Flash Programming” (DS70191) of  
the “dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
can write program memory data either in blocks or  
‘rows’ of 64 instructions (192 bytes) at a time, or single  
instructions and erase program memory in blocks or  
‘pages’ of 512 instructions (1536 bytes) at a time.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
5.1  
Table Instructions and Flash  
Programming  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits<7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 5-1.  
The PIC24HJXXXGPX06A/X08A/X10A devices con-  
tain internal Flash program memory for storing and  
executing application code. The memory is readable,  
writable and erasable during normal operation over the  
entire VDD range.  
Flash memory can be programmed in two ways:  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
1. In-Circuit Serial Programming™ (ICSP™)  
programming capability  
2. Run-Time Self-Programming (RTSP)  
ICSP  
programming  
capability  
allows  
a
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
PIC24HJXXXGPX06A/X08A/X10A device to be seri-  
ally programmed while in the end application circuit.  
This is simply done with two lines for programming  
clock and programming data (one of the alternate pro-  
gramming pin pairs: PGECx/PGEDx, and three other  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
2009-2012 Microchip Technology Inc.  
DS70592D-page 59  
PIC24HJXXXGPX06A/X08A/X10A  
For example, if the device is operating at +125°C, the  
FRC accuracy will be ±5%. If the TUN<5:0> bits (see  
Register 9-4) are set to ‘b111111, the minimum row  
write time is equal to Equation 5-2.  
5.2  
RTSP Operation  
The PIC24HJXXXGPX06A/X08A/X10A Flash program  
memory array is organized into rows of 64 instructions  
or 192 bytes. RTSP allows the user to erase a page of  
memory, which consists of eight rows (512 instructions)  
at a time, and to program one row or one word at a  
time. Table 24-12 displays typical erase and program-  
ming times. The 8-row erase pages and single row  
write rows are edge-aligned, from the beginning of pro-  
gram memory, on boundaries of 1536 bytes and 192  
bytes, respectively.  
EQUATION 5-2:  
MINIMUM ROW WRITE  
TIME  
11064 Cycles  
TRW = ---------------------------------------------------------------------------------------------- = 1 . 4 3 5 ms  
7.37 MHz  1 + 0.05  1 0.00375  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers in sequential order. The  
instruction words loaded must always be from a group  
of 64 boundary.  
The maximum row write time is equal to Equation 5-3.  
EQUATION 5-3:  
MAXIMUM ROW WRITE  
TIME  
11064 Cycles  
TRW = --------------------------------------------------------------------------------------------- = 1.586ms  
7.37 MHz  1 0.05  1 0.00375  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by set-  
ting the control bits in the NVMCON register. A total of  
64 TBLWTL and TBLWTH instructions are required to  
load the instructions.  
Setting the WR bit (NVMCON<15>) starts the  
operation, and the WR bit is automatically cleared  
when the operation is finished.  
All of the table write operations are single-word writes  
(two instruction cycles) because only the buffers are  
5.4  
Control Registers  
written.  
A
programming cycle is required for  
The two SFRs that are used to read and write the  
program Flash memory are:  
programming each row.  
NVMCON  
5.3  
Programming Operations  
• NVMKEY  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the  
programming operation is finished.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 0x55 and 0xAA to the  
NVMKEY register. Refer to Section 5.3 “Programming  
Operations” for further details.  
The programming time depends on the FRC accuracy  
(see Table 24-19) and the value of the FRC Oscillator  
Tuning register (see Register 9-4). Use the following  
formula to calculate the minimum and maximum values  
for the Row Write Time, Page Erase Time and Word  
Write Cycle Time parameters (see Table 24-12).  
EQUATION 5-1:  
PROGRAMMING TIME  
T
-------------------------------------------------------------------------------------------------------------------------  
7.37 MHz  FRC Accuracy%  FRC Tuning%  
DS70592D-page 60  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP<3:0>(2)  
bit 7  
bit 0  
Legend:  
SO = Settable only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(2)  
1111= Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)  
1110= Reserved  
1101= Erase General Segment and FGS Configuration Register  
(ERASE = 1) or no operation (ERASE = 0)  
1100= Erase Secure Segment and FSS Configuration Register  
(ERASE = 1) or no operation (ERASE = 0)  
1011= Reserved  
0100= Reserved  
0011= Memory word program operation (ERASE = 0) or no operation (ERASE = 1)  
0010= Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)  
0001= Memory row program operation (ERASE = 0) or no operation (ERASE = 1)  
0000= Program or erase a single Configuration register byte  
Note 1: These bits can only be reset on a POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 61  
PIC24HJXXXGPX06A/X08A/X10A  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-2).  
5.4.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of program Flash  
memory at a time. To do this, it is necessary to erase  
the 8-row erase page that contains the desired row.  
The general process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 0x55 to NVMKEY.  
c) Write 0xAA to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash mem-  
ory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the page (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash memory.  
b) Write the starting address of the page to be  
erased into the TBLPAG and W registers.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as shown  
in Example 5-3.  
c) Perform a dummy table write operation  
(TBLWTL) to any address within the page  
that needs to be erased.  
d) Write 0x55 to NVMKEY.  
e) Write 0xAA to NVMKEY.  
f) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY PAGE  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA<15:0> pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
Note:  
A program memory page erase operation  
is set up by performing a dummy table  
write (TBLWTL) operation to any address  
within the page. This methodology is dif-  
ferent from the page erase operation on  
dsPIC30F/33F devices in which the erase  
page was selected using a dedicated pair  
of registers (NVMADRU and NVMADR).  
DS70592D-page 62  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
EXAMPLE 5-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
2009-2012 Microchip Technology Inc.  
DS70592D-page 63  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 64  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
6.0  
RESET  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
Any active source of Reset will make the SYSRST sig-  
nal active. Many registers associated with the CPU and  
peripherals are forced to a known Reset state. Most  
registers are unaffected by a Reset; their status is  
unknown on POR and unchanged by all other Resets.  
intended to be  
a
comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 8. “Reset” (DS70192) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
Note:  
Refer to the specific peripheral or CPU  
section of this data sheet for register  
Reset states.  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1). A POR will clear all bits, except for  
the POR bit (RCON<0>), that are set. The user can set  
or clear any bit at any time during code execution. The  
RCON bits only serve as status bits. Setting a particular  
Reset status bit in software does not cause a device  
Reset to occur.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
• MCLR: Master Clear Pin Reset  
• SWR: RESETInstruction  
• WDT: Watchdog Timer Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Opcode and Uninitialized W  
Register Reset  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
2009-2012 Microchip Technology Inc.  
DS70592D-page 65  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
VREGS(3)  
IOPUWR  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-9  
bit 8  
Unimplemented: Read as ‘0’  
VREGS: Voltage Regulator Standby During Sleep bit(3)  
1= Voltage Regulator is active during Sleep mode  
0= Voltage Regulator goes into standby mode during Sleep  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
3: For PIC24HJ256GPX06A/X08A/X10A devices, this bit is unimplemented and reads back programmed  
value.  
DS70592D-page 66  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 6-1:  
RESET FLAG BIT OPERATION  
Flag Bit Setting Event  
Trap conflict event  
Clearing Event  
TRAPR (RCON<15>)  
IOPUWR (RCON<14>)  
POR, BOR  
POR, BOR  
Illegal opcode or uninitialized  
W register access  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
MCLR Reset  
POR  
RESETinstruction  
WDT time-out  
POR, BOR  
PWRSAVinstruction, POR, BOR  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
BOR, POR  
POR, BOR  
POR, BOR  
POR  
Note: All Reset flag bits may be set or cleared by the user software.  
6.1  
Clock Source Selection at Reset  
6.2  
Device Reset Times  
If clock switching is enabled, the system clock source at  
device Reset is chosen, as shown in Table 6-2. If clock  
switching is disabled, the system clock source is always  
selected according to the oscillator Configuration bits.  
Refer to Section 9.0 “Oscillator Configuration” for  
further details.  
The Reset times for various types of device Reset are  
summarized in Table 6-3. The system Reset signal is  
released after the POR and PWRT delay times expire.  
The time at which the device actually begins to execute  
code also depends on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable reset delay times.  
TABLE 6-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
The FSCM delay determines the time at which the  
FSCM begins to monitor the system clock source after  
the reset signal is released.  
Reset Type  
Clock Source Determinant  
POR  
BOR  
Oscillator Configuration bits  
(FNOSC<2:0>)  
MCLR  
WDTR  
SWR  
COSC Control bits  
(OSCCON<14:12>)  
2009-2012 Microchip Technology Inc.  
DS70592D-page 67  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 6-3:  
Reset Type  
POR  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
FSCM  
Delay  
Clock Source  
SYSRST Delay  
See Notes  
1, 2, 3  
EC, FRC, LPRC  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
Any Clock  
TPOR + TSTARTUP + TRST  
TFSCM  
TFSCM  
TFSCM  
TPOR + TSTARTUP + TRST  
TLOCK  
1, 2, 3, 5, 6  
TPOR + TSTARTUP + TRST  
TOST  
1, 2, 3, 4, 6  
TPOR + TSTARTUP + TRST  
TOST + TLOCK  
1, 2, 3, 4, 5, 6  
MCLR  
TRST  
TRST  
TRST  
TRST  
TRST  
TRST  
3
3
3
3
3
3
WDT  
Any Clock  
Software  
Any clock  
Illegal Opcode  
Uninitialized W  
Trap Conflict  
Any Clock  
Any Clock  
Any Clock  
Note 1: TPOR = Power-on Reset delay (10 s nominal).  
2: TSTARTUP = Conditional POR delay of 20 s nominal (if on-chip regulator is enabled) or 64 ms nominal  
Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down  
states, including waking from Sleep mode, only if the regulator is enabled.  
3: TRST = Internal state Reset time (20 s nominal).  
4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the  
oscillator clock to the system.  
5: TLOCK = PLL lock time (20 s nominal).  
6: TFSCM = Fail-Safe Clock Monitor delay (100 s nominal).  
6.2.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
6.2.2.1  
FSCM Delay for Crystal and PLL  
Clock Sources  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) have a relatively long start-up  
time. Therefore, one or more of the following conditions  
is possible after the Reset signal is released:  
When the system clock source is provided by a crystal  
oscillator and/or the PLL, a small delay, TFSCM, is auto-  
matically inserted after the POR and PWRT delay  
times. The FSCM does not begin to monitor the system  
clock source until this delay expires. The FSCM delay  
time is nominally 500 s and provides additional time  
for the oscillator and/or PLL to stabilize. In most cases,  
the FSCM delay prevents an oscillator failure trap at a  
device Reset when the PWRT is disabled.  
• The oscillator circuit has not begun to oscillate  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used)  
• The PLL has not achieved a lock (if PLL is used)  
6.3  
Special Function Register Reset  
States  
The device will not begin to execute code until a valid  
clock source has been released to the system. There-  
fore, the oscillator and PLL start-up delays must be  
considered when the Reset delay time must be known.  
Most of the Special Function Registers (SFRs) associ-  
ated with the CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function and their  
Reset values are specified in each section of this  
manual.  
6.2.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
If the FSCM is enabled, it begins to monitor the system  
clock source when the Reset signal is released. If a  
valid clock source is not available at this time, the  
device automatically switches to the FRC oscillator and  
the user can switch to the desired crystal oscillator in  
the Trap Service Routine.  
The Reset value for each SFR does not depend on the  
type of Reset, with the exception of two registers. The  
Reset value for the Reset Control register, RCON,  
depends on the type of device Reset. The Reset value  
for the Oscillator Control register, OSCCON, depends  
on the type of Reset and the programmed values of the  
oscillator Configuration bits in the FOSC Configuration  
register.  
DS70592D-page 68  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
7.1.1  
ALTERNATE VECTOR TABLE  
7.0  
INTERRUPT CONTROLLER  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be  
a
comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 6. “Interrupts” (DS70184) of  
The AIVT supports debugging by providing a means to  
switch between an application and a support environ-  
ment without requiring the interrupt vectors to be  
reprogrammed. This feature also enables switching  
between applications for evaluation of different soft-  
ware algorithms at run time. If the AIVT is not needed,  
the AIVT should be programmed with the same  
addresses used in the IVT.  
the  
Reference Manual”, which is available  
from the Microchip web site  
(www.microchip.com).  
“dsPIC33F/PIC24H  
Family  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
7.2  
Reset Sequence  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The PIC24HJXXXGPX06A/X08A/X10A device clears  
its registers in response to a Reset which forces the PC  
to zero. The digital signal controller then begins pro-  
gram execution at location 0x000000. The user pro-  
grams a GOTOinstruction at the Reset address which  
redirects program execution to the appropriate start-up  
routine.  
The PIC24HJXXXGPX06A/X08A/X10A interrupt con-  
troller reduces the numerous peripheral interrupt  
request signals to a single interrupt request signal to  
the PIC24HJXXXGPX06A/X08A/X10A CPU. It has the  
following features:  
• Up to 8 processor exceptions and software traps  
• 7 user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors consisting of  
8 nonmaskable trap vectors plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Interrupt vectors are prioritized in terms of their natural  
priority; this priority is linked to their position in the  
vector table. All other things being equal, lower  
addresses have a higher natural priority. For example,  
the interrupt associated with vector 0 will take priority  
over interrupts at any other vector address.  
PIC24HJXXXGPX06A/X08A/X10A devices implement  
up to 61 unique interrupts and 5 nonmaskable traps.  
These are summarized in Table 7-1 and Table 7-2.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 69  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 7-1:  
PIC24HJXXXGPX06A/X08A/X10A INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
(1)  
Interrupt Vector Table (IVT)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 7-1 for the list of implemented interrupt vectors.  
DS70592D-page 70  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 7-1:  
INTERRUPT VECTORS  
Interrupt  
Request(IRQ)  
Number  
Vector  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
8
0
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x00003E  
0x000040  
0x000042  
0x000044  
0x000046  
0x000048  
0x00004A  
0x00004C  
0x00004E  
0x000050  
0x000052  
0x000054  
0x000056  
0x000058  
0x00005A  
0x00005C  
0x00005E  
0x000060  
0x000062  
0x000064  
0x000066  
0x000068  
0x00006A  
0x00006C  
0x00006E  
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
0x00013E  
0x000140  
0x000142  
0x000144  
0x000146  
0x000148  
0x00014A  
0x00014C  
0x00014E  
0x000150  
0x000152  
0x000154  
0x000156  
0x000158  
0x00015A  
0x00015C  
0x00015E  
0x000160  
0x000162  
0x000164  
0x000166  
0x000168  
0x00016A  
0x00016C  
0x00016E  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer1  
9
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
2
3
4
DMA0 – DMA Channel 0  
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
5
6
7
8
T3 – Timer3  
9
SPI1E – SPI1 Error  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC1 – Analog-to-Digital Converter 1  
DMA1 – DMA Channel 1  
Reserved  
SI2C1 – I2C1 Slave Events  
MI2C1 – I2C1 Master Events  
Reserved  
CN - Change Notification Interrupt  
INT1 – External Interrupt 1  
ADC2 – Analog-to-Digital Converter 2  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
DMA2 – DMA Channel 2  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
T4 – Timer4  
T5 – Timer5  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
SPI2E – SPI2 Error  
SPI1 – SPI1 Transfer Done  
C1RX – ECAN1 Receive Data Ready  
C1 – ECAN1 Event  
DMA3 – DMA Channel 3  
IC3 – Input Capture 3  
IC4 – Input Capture 4  
IC5 – Input Capture 5  
IC6 – Input Capture 6  
OC5 – Output Compare 5  
OC6 – Output Compare 6  
OC7 – Output Compare 7  
OC8 – Output Compare 8  
Reserved  
2009-2012 Microchip Technology Inc.  
DS70592D-page 71  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 7-1:  
INTERRUPT VECTORS (CONTINUED)  
Interrupt  
Vector  
Number  
Request(IRQ)  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
54  
55  
46  
47  
0x000070  
0x000072  
0x000074  
0x000076  
0x000078  
0x00007A  
0x00007C  
0x00007E  
0x000080  
0x000082  
0x000084  
0x000170  
0x000172  
0x000174  
0x000176  
0x000178  
0x00017A  
0x00017C  
0x00017E  
0x000180  
0x000182  
0x000184  
DMA4 – DMA Channel 4  
T6 – Timer6  
56  
48  
T7 – Timer7  
57  
49  
SI2C2 – I2C2 Slave Events  
MI2C2 – I2C2 Master Events  
T8 – Timer8  
58  
50  
59  
51  
60  
52  
T9 – Timer9  
61  
53  
INT3 – External Interrupt 3  
INT4 – External Interrupt 4  
C2RX – ECAN2 Receive Data Ready  
C2 – ECAN2 Event  
62  
54  
63  
55  
64  
56  
65-68  
69  
57-60  
61  
0x000086-0x00008C 0x000186-0x00018C Reserved  
0x00008E 0x00018E DMA5 – DMA Channel 5  
0x000090-0x000094 0x000190-0x000194 Reserved  
70-72  
73  
62-64  
65  
0x000096  
0x000098  
0x00009A  
0x00009C  
0x00009E  
0x0000A0  
0x0000A2  
0x000196  
0x000198  
0x00019A  
0x00019C  
0x00019E  
0x0001A0  
0x0001A2  
U1E – UART1 Error  
74  
66  
U2E – UART2 Error  
75  
67  
Reserved  
76  
68  
DMA6 – DMA Channel 6  
DMA7 – DMA Channel 7  
C1TX – ECAN1 Transmit Data Request  
C2TX – ECAN2 Transmit Data Request  
77  
69  
78  
70  
79  
71  
80-125  
72-117  
0x0000A4-0x0000FE 0x0001A4-0x0001FE Reserved  
TABLE 7-2:  
TRAP VECTORS  
Vector Number  
IVT Address  
AIVT Address  
Trap Source  
Reserved  
0
1
2
3
4
5
6
7
0x000004  
0x000006  
0x000008  
0x00000A  
0x00000C  
0x00000E  
0x000010  
0x000012  
0x000104  
0x000106  
0x000108  
0x00010A  
0x00010C  
0x00010E  
0x000110  
0x000112  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
DMA Error Trap  
Reserved  
Reserved  
DS70592D-page 72  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
The IPC registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
7.3  
Interrupt Control and Status  
Registers  
PIC24HJXXXGPX06A/X08A/X10A devices implement  
a total of 30 registers for the interrupt controller:  
The INTTREG register contains the associated inter-  
rupt vector number and the new CPU interrupt priority  
level, which are latched into vector number (VEC-  
NUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in  
the INTTREG register. The new interrupt priority level  
is the priority of the pending interrupt.  
• INTCON1  
• INTCON2  
• IFS0 through IFS4  
• IEC0 through IEC4  
• IPC0 through IPC17  
• INTTREG  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having vector number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP  
bits in the first position of IPC0 (IPC0<2:0>).  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the Inter-  
rupt Nesting Disable (NSTDIS) bit as well as the control  
and status flags for the processor trap sources. The  
INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers con-  
tain bits that control interrupt functionality. The CPU  
STATUS register, SR, contains the IPL<2:0> bits  
(SR<7:5>). These bits indicate the current CPU inter-  
rupt priority level. The user can change the current  
CPU priority level by writing to the IPL bits.  
The IFS registers maintain all of the interrupt request  
flags. Each source of interrupt has a Status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
The IEC registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
The CORCON register contains the IPL3 bit which,  
together with IPL<2:0>, also indicates the current CPU  
priority level. IPL3 is a read-only bit so that trap events  
cannot be masked by the user software.  
All Interrupt registers are described in Register 7-1  
through Register 7-32.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 73  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-1:  
SR: CPU STATUS REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
bit 7  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
Note 1: For complete register details, see Register 3-2.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70592D-page 74  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
DMACERR MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
bit 14-7  
bit 6  
Unimplemented: Read as ‘0’  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide by zero  
0= Math error trap was not caused by a divide by zero  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DMACERR: DMA Controller Error Status bit  
1= DMA controller error trap has occurred  
0= DMA controller error trap has not occurred  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
2009-2012 Microchip Technology Inc.  
DS70592D-page 75  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 3  
bit 2  
bit 1  
bit 0  
INT3EP: External Interrupt 3 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS70592D-page 76  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
DMA1IF  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
R/W-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
DMA01IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
DMA01IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2012 Microchip Technology Inc.  
DS70592D-page 77  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70592D-page 78  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
U2TXIF  
bit 15  
R/W-0  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
R/W-0  
U2RXIF  
DMA21IF  
bit 8  
R/W-0  
IC8IF  
R/W-0  
IC7IF  
R/W-0  
AD2IF  
R/W-0  
INT1IF  
R/W-0  
CNIF  
U-0  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
DMA21IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
IC8IF: Input Capture Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
IC7IF: Input Capture Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
AD2IF: ADC2 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2012 Microchip Technology Inc.  
DS70592D-page 79  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)  
bit 3  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70592D-page 80  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
R/W-0  
T6IF  
R/W-0  
U-0  
R/W-0  
OC8IF  
R/W-0  
OC7IF  
R/W-0  
OC6IF  
R/W-0  
OC5IF  
R/W-0  
IC6IF  
DMA4IF  
bit 15  
bit 8  
R/W-0  
IC5IF  
R/W-0  
IC4IF  
R/W-0  
IC3IF  
R/W-0  
R/W-0  
C1IF  
R/W-0  
R/W-0  
SPI2IF  
R/W-0  
DMA3IF  
C1RXIF  
SPI2EIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
T6IF: Timer6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
Unimplemented: Read as ‘0’  
OC8IF: Output Compare Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
OC7IF: Output Compare Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC6IF: Output Compare Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC5IF: Output Compare Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC6IF: Input Capture Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC5IF: Input Capture Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C1IF: ECAN1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2012 Microchip Technology Inc.  
DS70592D-page 81  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)  
bit 2  
bit 1  
bit 0  
C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2EIF: SPI2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70592D-page 82  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
C2IF  
DMA5IF  
bit 15  
bit 8  
R/W-0  
C2RXIF  
bit 7  
R/W-0  
INT4IF  
R/W-0  
INT3IF  
R/W-0  
T9IF  
R/W-0  
T8IF  
R/W-0  
R/W-0  
R/W-0  
T7IF  
MI2C2IF  
SI2C2IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
C2IF: ECAN2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C2RXIF: ECAN2 Receive Data Ready Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT4IF: External Interrupt 4 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT3IF: External Interrupt 3 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T9IF: Timer9 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T8IF: Timer8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C2IF: I2C2 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T7IF: Timer7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2012 Microchip Technology Inc.  
DS70592D-page 83  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
R/W-0  
C2TXIF  
bit 7  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U2EIF  
R/W-0  
U1EIF  
U-0  
C1TXIF  
DMA7IF  
DMA6IF  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
C2TXIF: ECAN2 Transmit Data Request Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
bit 5  
bit 4  
C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
U2EIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
U1EIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
DS70592D-page 84  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
DMA1IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
R/W-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
DMA0IE  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1EIE: SPI1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 85  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70592D-page 86  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
R/W-0  
U2TXIE  
U2RXIE  
INT2IE  
DMA2IE  
bit 15  
bit 8  
R/W-0  
IC8IE  
R/W-0  
IC7IE  
R/W-0  
AD2IE  
R/W-0  
R/W-0  
CNIE  
U-0  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
IC8IE: Input Capture Channel 8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
IC7IE: Input Capture Channel 7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
AD2IE: ADC2 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 87  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)  
bit 3  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70592D-page 88  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
R/W-0  
T6IE  
R/W-0  
U-0  
R/W-0  
OC8IE  
R/W-0  
OC7IE  
R/W-0  
OC6IE  
R/W-0  
OC5IE  
R/W-0  
IC6IE  
DMA4IE  
bit 15  
bit 8  
R/W-0  
IC5IE  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
R/W-0  
R/W-0  
C1IE  
R/W-0  
R/W-0  
R/W-0  
DMA3IE  
C1RXIE  
SPI2IE  
SPI2EIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
T6IE: Timer6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13  
bit 12  
Unimplemented: Read as ‘0’  
OC8IE: Output Compare Channel 8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
OC7IE: Output Compare Channel 7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC6IE: Output Compare Channel 6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC5IE: Output Compare Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC6IE: Input Capture Channel 6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC5IE: Input Capture Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
C1IE: ECAN1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 89  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)  
bit 2  
bit 1  
bit 0  
C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI2EIE: SPI2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70592D-page 90  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
C2IE  
DMA5IE  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T9IE  
R/W-0  
T8IE  
R/W-0  
R/W-0  
R/W-0  
T7IE  
C2RXIE  
INT4IE  
INT3IE  
MI2C2IE  
SI2C2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
C2IE: ECAN2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
C2RXIE: ECAN2 Receive Data Ready Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT4IE: External Interrupt 4 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT3IE: External Interrupt 3 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T9IE: Timer9 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T8IE: Timer8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
MI2C2IE: I2C2 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SI2C2IE: I2C2 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T7IE: Timer7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 91  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U2EIE  
R/W-0  
U1EIE  
U-0  
C2TXIE  
C1TXIE  
DMA7IE  
DMA6IE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
C2TXIE: ECAN2 Transmit Data Request Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
bit 5  
bit 4  
C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA7IE: DMA Channel 7 Data Transfer Complete Enable Status bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
U2EIE: UART2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 1  
bit 0  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Unimplemented: Read as ‘0’  
DS70592D-page 92  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T1IP<2:0>  
OC1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC1IP<2:0>  
INT0IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 93  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T2IP<2:0>  
OC2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC2IP<2:0>  
DMA0IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70592D-page 94  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
U1RXIP<2:0>  
SPI1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SPI1EIP<2:0>  
T3IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 95  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
DMA1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AD1IP<2:0>  
U1TXIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70592D-page 96  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CNIP<2:0>  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-7  
bit 6-4  
Unimplemented: Read as ‘0’  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 97  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IC8IP<2:0>  
IC7IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AD2IP<2:0>  
INT1IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70592D-page 98  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T4IP<2:0>  
OC4IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
OC3IP<2:0>  
DMA2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 99  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
U2TXIP<2:0>  
U2RXIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
INT2IP<2:0>  
T5IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70592D-page 100  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
C1IP<2:0>  
C1RXIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SPI2IP<2:0>  
SPI2EIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C1IP<2:0>: ECAN1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI2IP<2:0>: SPI2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 101  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IC5IP<2:0>  
IC4IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC3IP<2:0>  
DMA3IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70592D-page 102  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
OC7IP<2:0>  
OC6IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
OC5IP<2:0>  
IC6IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 103  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T6IP<2:0>  
DMA4IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
OC8IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T6IP<2:0>: Timer6 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70592D-page 104  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T8IP<2:0>  
MI2C2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SI2C2IP<2:0>  
T7IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T8IP<2:0>: Timer8 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T7IP<2:0>: Timer7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 105  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
C2RXIP<2:0>  
INT4IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
INT3IP<2:0>  
T9IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C2RXIP<2:0>: ECAN2 Receive Data Ready Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
INT4IP<2:0>: External Interrupt 4 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT3IP<2:0>: External Interrupt 3 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T9IP<2:0>: Timer9 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70592D-page 106  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
C2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
C2IP<2:0>: ECAN2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
DMA5IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2009-2012 Microchip Technology Inc.  
DS70592D-page 107  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
U2EIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1EIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
U2EIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70592D-page 108  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
C2TXIP<2:0>  
C1TXIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
DMA7IP<2:0>  
DMA6IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C2TXIP<2:0>: ECAN2 Transmit Data Request Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA6IP<2:0>: DMA Channel 6 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 109  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001 = CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
1111111= Interrupt Vector pending is number 135  
0000001= Interrupt Vector pending is number 9  
0000000= Interrupt Vector pending is number 8  
DS70592D-page 110  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
To configure an interrupt source:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources may be programmed  
to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value 0x0E with SRL.  
To enable user interrupts, the POPinstruction may be  
used to restore the previous SR value.  
Note: At a device Reset, the IPCx registers are  
initialized, such that all user interrupt  
sources are assigned to priority level 4.  
Note that only user interrupts with a priority level of 7 or  
less can be disabled. Trap sources (level 8-level 15)  
cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISIinstruction provides a convenient way to dis-  
able interrupts of priority levels 1-6 for a fixed period of  
time. Level 7 interrupt sources are not disabled by the  
DISI instruction.  
4. Enable the interrupt source by setting the inter-  
rupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method that is used to declare an ISR and initialize  
the IVT with the correct vector address will depend on  
the programming language (i.e., C or assembler) and  
the language development toolsuite that is used to  
develop the application. In general, the user must clear  
the interrupt flag in the appropriate IFSx register for the  
source of interrupt that the ISR handles. Otherwise, the  
ISR will be re-entered immediately after exiting the  
routine. If the ISR is coded in assembly language, it  
must be terminated using a RETFIE instruction to  
unstack the saved PC value, SRL value and old CPU  
priority level.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 111  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 112  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 8-1:  
PERIPHERALS WITH DMA  
SUPPORT  
8.0  
DIRECT MEMORY ACCESS  
(DMA)  
Peripheral  
IRQ Number  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
22. “Direct Memory Access (DMA)”  
(DS70182) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
INT0  
0
1
Input Capture 1  
Input Capture 2  
Output Compare 1  
Output Compare 2  
Timer2  
5
2
6
7
Timer3  
8
SPI1  
10  
33  
11  
12  
30  
31  
13  
21  
34  
70  
55  
71  
SPI2  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
UART1 Reception  
UART1 Transmission  
UART2 Reception  
UART2 Transmission  
ADC1  
ADC2  
Direct Memory Access (DMA) is a very efficient  
mechanism of copying data between peripheral SFRs  
(e.g., UART Receive register, Input Capture 1 buffer),  
and buffers or variables stored in RAM, with minimal  
CPU intervention. The DMA controller can  
automatically copy entire blocks of data without  
requiring the user software to read or write the  
peripheral Special Function Registers (SFRs) every  
time a peripheral interrupt occurs. The DMA controller  
uses a dedicated bus for data transfers and, therefore,  
does not steal cycles from the code execution flow of  
the CPU. To exploit the DMA capability, the  
corresponding user buffers or variables must be  
located in DMA RAM.  
ECAN1 Reception  
ECAN1 Transmission  
ECAN2 Reception  
ECAN2 Transmission  
The DMA controller features eight identical data  
transfer channels.  
Each channel has its own set of control and status  
registers. Each DMA channel can be configured to  
copy data either from buffers stored in dual port DMA  
RAM to peripheral SFRs, or from peripheral SFRs to  
buffers in DMA RAM.  
The DMA controller supports the following features:  
• Word or byte sized data transfers  
The PIC24HJXXXGPX06A/X08A/X10A peripherals  
that can utilize DMA are listed in Table 8-1 along with  
their associated Interrupt Request (IRQ) numbers.  
• Transfers from peripheral to DMA RAM or DMA  
RAM to peripheral  
• Indirect Addressing of DMA RAM locations with or  
without automatic post-increment  
• Peripheral Indirect Addressing – In some  
peripherals, the DMA RAM read/write addresses  
may be partially derived from the peripheral  
• One-Shot Block Transfers – Terminating DMA  
transfer after one block transfer  
• Continuous Block Transfers – Reloading DMA RAM  
buffer start address after every block transfer is  
complete  
• Ping-Pong Mode – Switching between two DMA  
RAM start addresses between successive block  
transfers, thereby filling two buffers alternately  
• Automatic or manual initiation of block transfers  
• Each channel can select from 19 possible sources  
of data sources or destinations  
For each DMA channel, a DMA interrupt request is  
generated when a block transfer is complete. Alterna-  
tively, an interrupt can be generated when half of the  
block has been filled.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 113  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 8-1:  
TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS  
Peripheral Indirect Address  
DMA Controller  
DMA  
Ready  
Peripheral 3  
DMA  
Channels  
DMA RAM  
SRAM  
PORT 1 PORT 2  
CPU  
DMA  
SRAM X-Bus  
DMA DS Bus  
CPU Peripheral DS Bus  
CPU  
DMA  
CPU  
DMA  
Non-DMA  
Ready  
Peripheral  
DMA  
Ready  
Peripheral 2  
DMA  
Ready  
Peripheral 1  
CPU  
Note: CPU and DMA address buses are not shown for clarity.  
8.1  
DMAC Registers  
Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7)  
contains the following registers:  
• A 16-bit DMA Channel Control register  
(DMAxCON)  
• A 16-bit DMA Channel IRQ Select register  
(DMAxREQ)  
• A 16-bit DMA RAM Primary Start Address Offset  
register (DMAxSTA)  
• A 16-bit DMA RAM Secondary Start Address  
Offset register (DMAxSTB)  
• A 16-bit DMA Peripheral Address register  
(DMAxPAD)  
• A 10-bit DMA Transfer Count register (DMAxCNT)  
An additional pair of status registers, DMACS0 and  
DMACS1 are common to all DMAC channels.  
DS70592D-page 114  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 8-1:  
DMAxCON: DMA CHANNEL x CONTROL REGISTER  
R/W-0  
CHEN  
R/W-0  
SIZE  
R/W-0  
DIR  
R/W-0  
HALF  
R/W-0  
U-0  
U-0  
U-0  
NULLW  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMODE<1:0>  
MODE<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
CHEN: Channel Enable bit  
1= Channel enabled  
0= Channel disabled  
SIZE: Data Transfer Size bit  
1= Byte  
0= Word  
DIR: Transfer Direction bit (source/destination bus select)  
1= Read from DMA RAM address, write to peripheral address  
0= Read from peripheral address, write to DMA RAM address  
HALF: Early Block Transfer Complete Interrupt Select bit  
1= Initiate block transfer complete interrupt when half of the data has been moved  
0= Initiate block transfer complete interrupt when all of the data has been moved  
NULLW: Null Data Peripheral Write Mode Select bit  
1= Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)  
0= Normal operation  
bit 10-6  
bit 5-4  
Unimplemented: Read as ‘0’  
AMODE<1:0>: DMA Channel Operating Mode Select bits  
11= Reserved  
10= Peripheral Indirect Addressing mode  
01= Register Indirect without Post-Increment mode  
00= Register Indirect with Post-Increment mode  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
MODE<1:0>: DMA Channel Operating Mode Select bits  
11= One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)  
10= Continuous, Ping-Pong modes enabled  
01= One-Shot, Ping-Pong modes disabled  
00= Continuous, Ping-Pong modes disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 115  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 8-2:  
DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER  
R/W-0  
FORCE(1)  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQSEL6(2) IRQSEL5(2) IRQSEL4(2) IRQSEL3(2) IRQSEL2(2)  
IRQSEL1(2) IRQSEL0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FORCE: Force DMA Transfer bit(1)  
1= Force a single DMA transfer (Manual mode)  
0= Automatic DMA transfer initiation by DMA request  
bit 14-7  
bit 6-0  
Unimplemented: Read as ‘0’  
IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits(2)  
0000000-1111111= DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ  
Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced  
DMA transfer is complete.  
2: Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.  
DS70592D-page 116  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 8-3:  
DMAxSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
STA<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
STA<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STA<15:0>: Primary DMA RAM Start Address bits (source or destination)  
REGISTER 8-4:  
DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STB<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
STB<7:0>  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)  
2009-2012 Microchip Technology Inc.  
DS70592D-page 117  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 8-5:  
DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PAD<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
PAD<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PAD<15:0>: Peripheral Address Register bits  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
REGISTER 8-6:  
DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNT<9:8>(2)  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CNT<7:0>(2)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
CNT<9:0>: DMA Transfer Count Register bits(2)  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
2: Number of DMA transfers = CNT<9:0> + 1.  
DS70592D-page 118  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 8-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0  
R/C-0  
PWCOL7  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
PWCOL6  
PWCOL5  
PWCOL4  
PWCOL3  
PWCOL2  
PWCOL1  
PWCOL0  
bit 8  
R/C-0  
XWCOL7  
bit 7  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
XWCOL6  
XWCOL5  
XWCOL4  
XWCOL3  
XWCOL2  
XWCOL1  
XWCOL0  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
PWCOL7: Channel 7 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL6: Channel 6 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL5: Channel 5 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL4: Channel 4 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL3: Channel 3 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL2: Channel 2 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL1: Channel 1 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 8  
PWCOL0: Channel 0 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 7  
XWCOL7: Channel 7 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 6  
XWCOL6: Channel 6 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 5  
XWCOL5: Channel 5 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 4  
XWCOL4: Channel 4 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
2009-2012 Microchip Technology Inc.  
DS70592D-page 119  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 8-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
XWCOL3: Channel 3 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL2: Channel 2 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL1: Channel 1 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL0: Channel 0 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
DS70592D-page 120  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 8-8:  
DMACS1: DMA CONTROLLER STATUS REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
LSTCH<3:0>  
bit 15  
bit 8  
R-0  
PPST7  
bit 7  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PPST6  
PPST5  
PPST4  
PPST3  
PPST2  
PPST1  
PPST0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
LSTCH<3:0>: Last DMA Channel Active bits  
1111= No DMA transfer has occurred since system Reset  
1110-1000= Reserved  
0111= Last data transfer was by DMA Channel 7  
0110= Last data transfer was by DMA Channel 6  
0101= Last data transfer was by DMA Channel 5  
0100= Last data transfer was by DMA Channel 4  
0011= Last data transfer was by DMA Channel 3  
0010= Last data transfer was by DMA Channel 2  
0001= Last data transfer was by DMA Channel 1  
0000= Last data transfer was by DMA Channel 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PPST7: Channel 7 Ping-Pong Mode Status Flag bit  
1= DMA7STB register selected  
0= DMA7STA register selected  
PPST6: Channel 6 Ping-Pong Mode Status Flag bit  
1= DMA6STB register selected  
0= DMA6STA register selected  
PPST5: Channel 5 Ping-Pong Mode Status Flag bit  
1= DMA5STB register selected  
0= DMA5STA register selected  
PPST4: Channel 4 Ping-Pong Mode Status Flag bit  
1= DMA4STB register selected  
0= DMA4STA register selected  
PPST3: Channel 3 Ping-Pong Mode Status Flag bit  
1= DMA3STB register selected  
0= DMA3STA register selected  
PPST2: Channel 2 Ping-Pong Mode Status Flag bit  
1= DMA2STB register selected  
0= DMA2STA register selected  
PPST1: Channel 1 Ping-Pong Mode Status Flag bit  
1= DMA1STB register selected  
0= DMA1STA register selected  
PPST0: Channel 0 Ping-Pong Mode Status Flag bit  
1= DMA0STB register selected  
0= DMA0STA register selected  
2009-2012 Microchip Technology Inc.  
DS70592D-page 121  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 8-9:  
DSADR: MOST RECENT DMA RAM ADDRESS  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<15:8>  
bit 15  
R-0  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits  
DS70592D-page 122  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
The  
PIC24HJXXXGPX06A/X08A/X10A  
oscillator  
9.0  
OSCILLATOR  
CONFIGURATION  
system provides:  
• Various external and internal oscillator options as  
clock sources  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
• An on-chip PLL to scale the internal operating  
frequency to the required system clock frequency  
intended to be  
a
comprehensive  
• The internal FRC oscillator can also be used with  
the PLL, thereby allowing full-speed operation  
without any external clock generation hardware  
reference source. To complement the  
information in this data sheet, refer to  
Section 7. “Oscillator” (DS70186) of  
the “dsPIC33F/dsPIC33F/PIC24H Family  
Reference Manual”, which is available  
• Clock switching between various clock sources  
• Programmable clock postscaler for system power  
savings  
from  
the  
Microchip  
web  
site  
(www.microchip.com).  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• An Oscillator Control register (OSCCON)  
• Nonvolatile Configuration bits for main oscillator  
selection.  
A simplified diagram of the oscillator system is shown  
in Figure 9-1.  
FIGURE 9-1:  
PIC24HJXXXGPX06A/X08A/X10A OSCILLATOR SYSTEM DIAGRAM  
Primary Oscillator  
OSC1  
OSC2  
DOZE<2:0>  
XT, HS, EC  
S2  
R(2)  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
S3  
S1  
FCY  
PLL(1)  
S1/S3  
POSCMD<1:0>  
(3)  
FP  
FRC  
Oscillator  
÷ 2  
FRCDIVN  
S7  
FOSC  
FRCDIV<2:0>  
TUN<5:0>  
FRCDIV16  
FRC  
S6  
S0  
÷ 16  
LPRC  
SOSC  
LPRC  
Oscillator  
S5  
Secondary Oscillator  
SOSCO  
SOSCI  
S4  
LPOSCEN  
Clock Switch  
Reset  
Clock Fail  
S7  
NOSC<2:0> FNOSC<2:0>  
WDT, PWRT,  
FSCM  
Timer 1  
Note 1: See Figure 9-2 for PLL details.  
2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 Mmust be connected.  
3: The term, FP refers to the clock source for all the peripherals, while FCY refers to the clock source for the CPU. Through-  
out this document FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different  
when Doze mode is used in any ratio other than 1:1, which is the default.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 123  
PIC24HJXXXGPX06A/X08A/X10A  
(FOSC<1:0>), select the oscillator source that is used at  
a Power-on Reset. The FRC primary oscillator is the  
default (unprogrammed) selection.  
9.1  
CPU Clocking System  
There are seven system clock options provided by the  
PIC24HJXXXGPX06A/X08A/X10A:  
The Configuration bits allow users to choose between  
twelve different clock modes, shown in Table 9-1.  
• FRC Oscillator  
• FRC Oscillator with PLL  
• Primary (XT, HS or EC) Oscillator  
• Primary Oscillator with PLL  
• Secondary (LP) Oscillator  
• LPRC Oscillator  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected) FOSC is divided by 2 to  
generate the device instruction clock (FCY) and the  
peripheral clock time base (FP). FCY defines the  
operating speed of the device, and speeds up to 40  
MHz are supported by the PIC24HJXXXGPX06A/  
X08A/X10A architecture.  
• FRC Oscillator with postscaler  
9.1.1  
SYSTEM CLOCK SOURCES  
Instruction execution speed or device operating  
frequency, FCY, is calculated, as shown in  
Equation 9-1:  
The FRC (Fast RC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. The user software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> (CLKDIV<10:8>) bits.  
EQUATION 9-1:  
DEVICE OPERATING  
FREQUENCY  
FOSC  
2
FCY =  
-------------  
The primary oscillator can use one of the following as  
its clock source:  
• XT (Crystal): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is con-  
nected to the OSC1 and OSC2 pins.  
9.1.3  
PLL CONFIGURATION  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides a significant amount of  
flexibility in selecting the device operating speed. A  
block diagram of the PLL is shown in Figure 9-2.  
• HS (High-Speed Crystal): Crystals in the range of  
10 MHz to 40 MHz. The crystal is connected to  
the OSC1 and OSC2 pins.  
• EC (External Clock): External clock signal is  
directly applied to the OSC1 pin.  
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2, 3,  
... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected to be in the range of 0.8 MHz to 8 MHz.  
Since the minimum prescale factor is 2, this implies that  
FIN must be chosen to be in the range of 1.6 MHz to 16  
MHz. The prescale factor ‘N1’ is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
The secondary (LP) oscillator is designed for low power  
and uses a 32.768 kHz crystal or ceramic resonator.  
The LP oscillator uses the SOSCI and SOSCO pins.  
The LPRC (Low-Power RC) internal oscIllator runs at a  
nominal frequency of 32.768 kHz. It is also used as a  
reference clock by the Watchdog Timer (WDT) and  
Fail-Safe Clock Monitor (FSCM).  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip  
Phase-Locked Loop (PLL) to provide a wide range of  
output frequencies for device operation. PLL  
configuration is described in Section 9.1.3 “PLL  
Configuration”.  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor ‘M’,  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
The VCO output is further divided by a postscale factor  
‘N2’. This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 80 MHz, which  
generates device operating speeds of 6.25-40 MIPS.  
The FRC frequency depends on the FRC accuracy  
(see Table 24-19) and the value of the FRC Oscillator  
Tuning register (see Register 9-4).  
9.1.2  
SYSTEM CLOCK SELECTION  
The oscillator source that is used at a device Power-on  
Reset event is selected using Configuration bit settings.  
The oscillator Configuration bit settings are located in the  
Configuration registers in the program memory. (Refer to  
Section 21.1 “Configuration Bits” for further details.)  
The Initial Oscillator Selection Configuration bits,  
FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscil-  
lator Mode Select Configuration bits, POSCMD<1:0>  
For a primary oscillator or FRC oscillator, output ‘FIN’,  
the PLL output ‘FOSC’ is given by:  
EQUATION 9-2:  
FOSC CALCULATION  
M
N1 N2  
FOSC = FIN ------------------  
DS70592D-page 124  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
For example, suppose a 10 MHz crystal is being used,  
with “XT with PLL” being the selected oscillator mode.  
If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO  
input of 10/2 = 5 MHz, which is within the acceptable  
range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then  
M = 32. This yields a VCO output of 5 x 32 = 160 MHz,  
which is within the 100-200 MHz ranged needed.  
EQUATION 9-3:  
XT WITH PLL MODE  
EXAMPLE  
1 10000000 32  
FOSC  
FCY =  
= -- --------------------------------- = 40 MIPS  
-------------  
2
2 2  
2
If PLLPOST<1:0> = 0, then N2 = 2. This provides a  
Fosc of 160/2 = 80 MHz. The resultant device operating  
speed is 80/2 = 40 MIPS.  
FIGURE 9-2:  
PIC24HJXXXGPX06A/X08A/X10A PLL BLOCK DIAGRAM  
FVCO  
0.8-8.0 MHz  
100-200 MHz  
Here(1)  
12.5-80 MHz  
Here(1)  
Here(1)  
Source (Crystal, External Clock  
or Internal RC)  
FOSC  
PLLPRE  
VCO  
PLLPOST  
X
PLLDIV  
N1  
Divide by  
2-33  
N2  
Divide by  
2, 4, 8  
M
Divide by  
2-513  
Note 1: This frequency range must be satisfied at all times.  
TABLE 9-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
See Note  
1, 2  
Fast RC Oscillator with Divide-by-N  
(FRCDIVN)  
Internal  
xx  
111  
Internal  
xx  
110  
1
Fast RC Oscillator with Divide-by-16  
(FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Internal  
Secondary  
Primary  
xx  
xx  
10  
101  
100  
011  
1
1
Secondary (Timer1) Oscillator (Sosc)  
Primary Oscillator (HS) with PLL  
(HSPLL)  
Primary Oscillator (XT) with PLL  
(XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
1
Primary Oscillator (EC) with PLL  
(ECPLL)  
Primary Oscillator (HS)  
Primary  
Primary  
Primary  
Internal  
Internal  
10  
01  
00  
xx  
xx  
010  
010  
010  
001  
000  
1
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
1
1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 125  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1,3)  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
NOSC<2:0>(2)  
R/W-y  
bit 8  
COSC<2:0>  
bit 15  
R/W-0  
CLKLOCK  
bit 7  
U-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
R/W-0  
R/W-0  
LOCK  
LPOSCEN  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
C = Clear only bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
111= Fast RC oscillator (FRC) with Divide-by-N  
110= Fast RC oscillator (FRC) with Divide-by-16  
101= Low-Power RC oscillator (LPRC)  
100= Secondary oscillator (Sosc)  
011= Primary oscillator (XT, HS, EC) with PLL  
010= Primary oscillator (XT, HS, EC)  
001= Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL)  
000= Fast RC oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
NOSC<2:0>: New Oscillator Selection bits(2)  
bit 10-8  
111= Fast RC oscillator (FRC) with Divide-by-N  
110= Fast RC oscillator (FRC) with Divide-by-16  
101= Low-Power RC oscillator (LPRC)  
100= Secondary oscillator (Sosc)  
011= Primary oscillator (XT, HS, EC) with PLL  
010= Primary oscillator (XT, HS, EC)  
001= Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCDIVN + PLL)  
000= Fast RC oscillator (FRC)  
bit 7  
CLKLOCK: Clock Lock Enable bit  
1= If (FCKSM0 = 1), the clock and PLL configurations are locked  
If (FCKSM0 = 0), the clock and PLL configurations may be modified  
0= Clock and PLL selections are not locked, configurations may be modified  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock, or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2  
Unimplemented: Read as ‘0’  
Note 1: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70186) in the  
“dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
3: This register is reset only on a Power-on Reset (POR).  
DS70592D-page 126  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1,3) (CONTINUED)  
bit 1  
LPOSCEN: Secondary (LP) Oscillator Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70186) in the  
“dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
3: This register is reset only on a Power-on Reset (POR).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 127  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 9-2:  
CLKDIV: CLOCK DIVISOR REGISTER(2)  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
DOZE<2:0>  
FRCDIV<2:0>  
bit 15  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST<1:0>  
PLLPRE<4:0>  
bit 7  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
111= FCY/128  
110= FCY/64  
101= FCY/32  
100= FCY/16  
011= FCY/8 (default)  
010= FCY/4  
001= FCY/2  
000= FCY/1  
bit 11  
DOZEN: DOZE Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
111= FRC divide by 256  
110= FRC divide by 64  
101= FRC divide by 32  
100= FRC divide by 16  
011= FRC divide by 8  
010= FRC divide by 4  
001= FRC divide by 2  
000= FRC divide by 1 (default)  
bit 7-6  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
11= Output/8  
10= Reserved  
01= Output/4 (default)  
00= Output/2  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
11111= Input/33  
00001= Input/3  
00000= Input/2 (default)  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
2: This register is reset only on a Power-on Reset (POR).  
DS70592D-page 128  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 9-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV<8>  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
111111111= 513  
000110000= 50 (default)  
000000010= 4  
000000001= 3  
000000000= 2  
Note 1: This register is reset only on a Power-on Reset (POR).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 129  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 9-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<5:0>(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
111111= Center frequency – 0.375% (7.345 MHz)  
100001= Center frequency – 11.625% (6.52 MHz)  
100000= Center frequency – 12% (6.49 MHz)  
011111= Center frequency + 11.625% (8.23 MHz)  
011110= Center frequency + 11.25% (8.20 MHz)  
000001= Center frequency + 0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither  
characterized nor tested.  
2: This register is reset only on a Power-on Reset (POR).  
DS70592D-page 130  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
2. If a valid clock switch has been initiated, the  
9.2  
Clock Switching Operation  
LOCK  
(OSCCON<5>)  
and  
the  
CF  
Applications are free to switch between any of the four  
clock sources (Primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects that could result from this flexibility,  
PIC24HJXXXGPX06A/X08A/X10A devices have a  
safeguard lock built into the switch process.  
(OSCCON<3>) status bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
Note:  
Primary Oscillator mode has three different  
submodes (XT, HS and EC) which are  
determined by the POSCMD<1:0> Config-  
uration bits. While an application can  
switch to and from Primary Oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or LP (if LPOSCEN remains set).  
9.2.1  
ENABLING CLOCK SWITCHING  
To enable clock switching, the FCKSM1 Configuration  
bit in the Configuration register must be programmed to  
0’. (Refer to Section 21.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing sensitive code should not be  
executed during this time.  
2: Direct clock switches between any pri-  
mary oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL modes.  
3: Refer to Section 7. “Oscillator”  
(DS70186) in the “dsPIC33F/PIC24H  
Family Reference Manual” for details.  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSC bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSC  
Configuration bits.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
9.2.2  
OSCILLATOR SWITCHING SEQUENCE  
9.3  
Fail-Safe Clock Monitor (FSCM)  
At a minimum, performing a clock switch requires this  
basic sequence:  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
1. If  
desired,  
read  
the  
COSC  
bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
If an oscillator failure occurs, the FSCM generates a  
clock failure trap event and switches the system clock  
over to the FRC oscillator. Then the application  
program can either attempt to restart the oscillator or  
execute a controlled shutdown. The trap can be treated  
as a warm Reset by simply loading the Reset address  
into the oscillator fail trap vector.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 131  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 132  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
10.2 Instruction-Based Power-Saving  
Modes  
10.0 POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
PIC24HJXXXGPX06A/X08A/X10A devices have two  
special power-saving modes that are entered through  
the execution of a special PWRSAV instruction. Sleep  
mode stops clock operation and halts all code execu-  
tion. Idle mode halts the CPU and code execution, but  
allows peripheral modules to continue operation. The  
assembly syntax of the PWRSAVinstruction is shown in  
Example 10-1.  
intended to be  
a
comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 9. “Watchdog Timer and  
Power-Saving Modes” (DS70196) of  
the  
Reference Manual”, which is available  
from the Microchip web site  
(www.microchip.com).  
“dsPIC33F/PIC24H  
Family  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to “wake-up”.  
10.2.1  
SLEEP MODE  
Sleep mode has these features:  
The  
PIC24HJXXXGPX06A/X08A/X10A  
devices  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
provide the ability to manage power consumption by  
selectively managing clocking to the CPU and the  
peripherals. In general, a lower clock frequency and a  
reduction in the number of circuits being clocked  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current  
constitutes  
PIC24HJXXXGPX06A/X08A/X10A  
lower  
consumed  
devices  
power.  
can  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled  
manage power consumption in four different ways:  
• Clock frequency  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled  
• Instruction-based Sleep and Idle modes  
• Software-controlled Doze mode  
• Selective peripheral control in software  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption while  
still maintaining critical application features, such as  
timing-sensitive communications.  
• Some device features or peripherals may continue  
to operate in Sleep mode. This includes items such  
as the input change notification on the I/O ports, or  
peripherals that use an external clock input. Any  
peripheral that requires the system clock source for  
its operation is disabled in Sleep mode.  
10.1 Clock Frequency and Clock  
Switching  
The device will wake-up from Sleep mode on any of  
these events:  
PIC24HJXXXGPX06A/X08A/X10A devices allow a  
wide range of clock frequencies to be selected under  
application control. If the system clock configuration is  
not locked, users can choose low-power or high-preci-  
sion oscillators by simply changing the NOSC bits  
(OSCCON<10:8>). The process of changing a system  
clock during operation, as well as limitations to the pro-  
cess, are discussed in more detail in Section 9.0  
“Oscillator Configuration”.  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
• A WDT time-out  
On wake-up from Sleep, the processor restarts with the  
same clock source that was active when Sleep mode  
was entered.  
EXAMPLE 10-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
2009-2012 Microchip Technology Inc.  
DS70592D-page 133  
PIC24HJXXXGPX06A/X08A/X10A  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default setting.  
10.2.2  
IDLE MODE  
Idle mode has these features:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 10.4  
“Peripheral Module Disable”).  
It is also possible to use Doze mode to selectively  
reduce power consumption in event-driven applica-  
tions. This allows clock-sensitive functions, such as  
synchronous communications, to continue without  
interruption while the CPU idles, waiting for something  
to invoke an interrupt routine. Enabling the automatic  
return to full-speed CPU operation on interrupts is  
enabled by setting the ROI bit (CLKDIV<15>). By  
default, interrupt events have no effect on Doze mode  
operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled.  
• Any device Reset.  
For example, suppose the device is operating at  
20 MIPS and the CAN module has been configured for  
500 kbps based on this device operating speed. If the  
device is now placed in Doze mode with a clock  
frequency ratio of 1:4, the CAN module continues to  
communicate at the required bit rate of 500 kbps, but  
the CPU now starts executing instructions at a  
frequency of 5 MIPS.  
• A WDT time-out.  
On wake-up from Idle, the clock is reapplied to the CPU  
and instruction execution will begin (2-4 clock cycles  
later), starting with the instruction following the PWRSAV  
instruction, or the first instruction in the ISR.  
10.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
10.4 Peripheral Module Disable  
Any interrupt that coincides with the execution of a  
PWRSAV instruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled via the appropriate PMD  
control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
10.3 Doze Mode  
Generally, changing clock speed and invoking one of the  
power-saving modes are the preferred strategies for  
reducing power consumption. There may be cir-  
cumstances, however, where this is not practical. For  
example, it may be necessary for an application to main-  
tain uninterrupted synchronous communication, even  
while it is doing nothing else. Reducing system clock  
speed may introduce communication errors, while using  
a power-saving mode may stop communications  
completely.  
A peripheral module is only enabled if both the associ-  
ated bit in the PMD register is cleared and the peripheral  
is supported by the specific dsPIC® DSC variant. If the  
peripheral is present in the device, it is enabled in the  
PMD register by default.  
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of 1  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of 1 instruction cycle  
(assuming the module control registers  
are already configured to enable module  
operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock contin-  
ues to operate from the same source and at the same  
speed. Peripheral modules continue to be clocked at  
the same speed, while the CPU clock speed is  
reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS70592D-page 134  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
R/W-0  
T5MD  
R/W-0  
T4MD  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
U2MD  
R/W-0  
U1MD  
R/W-0  
R/W-0  
R/W-0  
C2MD  
R/W-0  
C1MD  
R/W-0  
AD1MD(1)  
I2C1MD  
SPI2MD  
SPI1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
T5MD: Timer5 Module Disable bit  
1= Timer5 module is disabled  
0= Timer5 module is enabled  
T4MD: Timer4 Module Disable bit  
1= Timer4 module is disabled  
0= Timer4 module is enabled  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled  
0= Timer3 module is enabled  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
bit 10-8  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
U2MD: UART2 Module Disable bit  
1= UART2 module is disabled  
0= UART2 module is enabled  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled  
0= UART1 module is enabled  
SPI2MD: SPI2 Module Disable bit  
1= SPI2 module is disabled  
0= SPI2 module is enabled  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
C2MD: ECAN2 Module Disable bit  
1= ECAN2 module is disabled  
0= ECAN2 module is enabled  
Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins  
multiplexed with ANx will be in Digital mode.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 135  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)  
bit 1  
C1MD: ECAN1 Module Disable bit  
1= ECAN1 module is disabled  
0= ECAN1 module is enabled  
bit 0  
AD1MD: ADC1 Module Disable bit(1)  
1= ADC1 module is disabled  
0= ADC1 module is enabled  
Note 1: PCFGx bits have no effect if ADC module is disabled by setting this bit. In this case all port pins  
multiplexed with ANx will be in Digital mode.  
DS70592D-page 136  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IC8MD  
IC7MD  
IC6MD  
IC5MD  
IC4MD  
IC3MD  
IC2MD  
IC1MD  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OC8MD  
OC7MD  
OC6MD  
OC5MD  
OC4MD  
OC3MD  
OC2MD  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
IC8MD: Input Capture 8 Module Disable bit  
1= Input Capture 8 module is disabled  
0= Input Capture 8 module is enabled  
IC7MD: Input Capture 7 Module Disable bit  
1= Input Capture 7 module is disabled  
0= Input Capture 7 module is enabled  
IC6MD: Input Capture 6 Module Disable bit  
1= Input Capture 6 module is disabled  
0= Input Capture 6 module is enabled  
IC5MD: Input Capture 5 Module Disable bit  
1= Input Capture 5 module is disabled  
0= Input Capture 5 module is enabled  
IC4MD: Input Capture 4 Module Disable bit  
1= Input Capture 4 module is disabled  
0= Input Capture 4 module is enabled  
IC3MD: Input Capture 3 Module Disable bit  
1= Input Capture 3 module is disabled  
0= Input Capture 3 module is enabled  
IC2MD: Input Capture 2 Module Disable bit  
1= Input Capture 2 module is disabled  
0= Input Capture 2 module is enabled  
bit 8  
IC1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7  
OC8MD: Output Compare 8 Module Disable bit  
1= Output Compare 8 module is disabled  
0= Output Compare 8 module is enabled  
bit 6  
OC7MD: Output Compare 4 Module Disable bit  
1= Output Compare 7 module is disabled  
0= Output Compare 7 module is enabled  
bit 5  
OC6MD: Output Compare 6 Module Disable bit  
1= Output Compare 6 module is disabled  
0= Output Compare 6 module is enabled  
bit 4  
OC5MD: Output Compare 5 Module Disable bit  
1= Output Compare 5 module is disabled  
0= Output Compare 5 module is enabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 137  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
OC4MD: Output Compare 4 Module Disable bit  
1= Output Compare 4 module is disabled  
0= Output Compare 4 module is enabled  
OC3MD: Output Compare 3 Module Disable bit  
1= Output Compare 3 module is disabled  
0= Output Compare 3 module is enabled  
OC2MD: Output Compare 2 Module Disable bit  
1= Output Compare 2 module is disabled  
0= Output Compare 2 module is enabled  
OC1MD: Output Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
DS70592D-page 138  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3  
R/W-0  
T9MD  
R/W-0  
T8MD  
R/W-0  
T7MD  
R/W-0  
T6MD  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AD2MD(1)  
I2C2MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
T9MD: Timer9 Module Disable bit  
1= Timer9 module is disabled  
0= Timer9 module is enabled  
T8MD: Timer8 Module Disable bit  
1= Timer8 module is disabled  
0= Timer8 module is enabled  
T7MD: Timer7 Module Disable bit  
1= Timer7 module is disabled  
0= Timer7 module is enabled  
T6MD: Timer6 Module Disable bit  
1= Timer6 module is disabled  
0= Timer6 module is enabled  
bit 11-2  
bit 1  
Unimplemented: Read as ‘0’  
I2C2MD: I2C2 Module Disable bit  
1= I2C2 module is disabled  
0= I2C2 module is enabled  
bit 0  
AD2MD: AD2 Module Disable bit(1)  
1= AD2 module is disabled  
0= AD2 module is enabled  
Note 1: The PCFGx bits will have no effect if the ADC module is disabled by setting this bit. In this case, all port  
pins multiplexed with ANx will be in Digital mode.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 139  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 140  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 11-1 shows  
11.0 I/O PORTS  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
When a peripheral is enabled and actively driving an  
associated pin, the use of the pin as a general purpose  
output pin is disabled. The I/O pin may be read, but the  
output driver for the parallel port bit will be disabled. If  
a peripheral is enabled, but the peripheral is not  
actively driving a pin, that pin may be driven by a port.  
intended to be  
a
comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 10. “I/O Ports” (DS70193) of  
the  
Reference Manual”, which is available  
from the Microchip web site  
(www.microchip.com).  
“dsPIC33F/PIC24H  
Family  
All port pins have three registers directly associated  
with their operation as digital I/O. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, the pin is  
then an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx), read the latch.  
Writes to the latch, write the latch. Reads from the port  
(PORTx), read the port pins, while writes to the port  
pins, write the latch.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pins will read as zeros.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKIN) are shared between the peripherals and  
the parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is nonetheless  
regarded as a dedicated port because there is no other  
competing source of outputs. An example is the INT4  
pin.  
11.1 Parallel I/O (PIO) Ports  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The periph-  
eral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
Note:  
The voltage on a digital input pin can be  
between -0.3V to 5.6V.  
FIGURE 11-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Output Multiplexers  
Peripheral Module  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
Output Enable  
0
PIO Module  
1
0
Output Data  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Read Port  
Input Data  
2009-2012 Microchip Technology Inc.  
DS70592D-page 141  
PIC24HJXXXGPX06A/X08A/X10A  
11.2 Open-Drain Configuration  
11.4 I/O Port Write/Read Timing  
In addition to the PORT, LAT and TRIS registers for  
data control, some port pins can also be individually  
configured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits con-  
figures the corresponding pin to act as an open-drain  
output.  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically, this instruction  
would be a NOP.  
11.5 Input Change Notification  
The input change notification function of the I/O ports  
allows the PIC24HJXXXGPX06A/X08A/X10A devices  
to generate interrupt requests to the processor in  
response to a change-of-state on selected input pins.  
This feature is capable of detecting input  
change-of-states even in Sleep mode, when the clocks  
are disabled. Depending on the device pin count, there  
are up to 24 external signals (CN0 through CN23) that  
can be selected (enabled) for generating an interrupt  
request on a change-of-state.  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired 5V  
tolerant pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
See the Pin Diagramssection for the available pins  
and their functionality.  
11.3 Configuring Analog Port Pins  
There are four control registers associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
CN interrupt enable (CNxIE) control bits for each of the  
CN input pins. Setting any of these bits enables a CN  
interrupt for the corresponding pins.  
The use of the ADxPCFGH, ADxPCFGL and TRIS  
registers control the operation of the Analog-to-Digital  
port pins. The port pins that are desired as analog  
inputs must have their corresponding TRIS bit set  
(input). If the TRIS bit is cleared (output), the digital out-  
put level (VOH or VOL) is converted.  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source that is connected  
to the pin and eliminate the need for external resistors  
when push button or keypad devices are connected.  
The pull-ups are enabled separately using the CNPU1  
and CNPU2 registers, which contain the weak pull-up  
enable (CNxPUE) bits for each of the CN pins. Setting  
any of the control bits enables the weak pull-ups for the  
corresponding pins.  
Clearing any bit in the ADxPCFGH or ADxPCFGL reg-  
ister configures the corresponding bit to be an analog  
pin. This is also the Reset state of any I/O pin that has  
an analog (ANx) function associated with it.  
Note:  
In devices with two ADC modules, if the  
corresponding PCFG bit in either  
AD1PCFGH(L) and AD2PCFGH(L) is  
cleared, the pin is configured as an analog  
input.  
Note:  
Pull-ups on change notification pins  
should always be disabled whenever the  
port pin is configured as a digital output.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
The voltage on an analog input pin can be  
between -0.3V to (VDD + 0.3 V).  
EXAMPLE 11-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
btss  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
PORTB, #13  
; Next Instruction  
DS70592D-page 142  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
4. Each CN pin has a configurable internal weak  
pull-up resistor. The pull-ups act as a current  
11.6 I/O Helpful Tips  
1. In some cases, certain pins as defined in TABLE  
24-9: “DC Characteristics: I/O Pin Input Speci-  
fications” under “Injection Current”, have internal  
protection diodes to VDD and VSS. The term  
“Injection Current” is also referred to as “Clamp  
Current”. On designated pins, with sufficient exter-  
nal current limiting precautions by the user, I/O pin  
input voltages are allowed to be greater or less  
than the data sheet absolute maximum ratings  
with nominal VDD with respect to the VSS and VDD  
supplies. Note that when the user application for-  
ward biases either of the high or low side internal  
input clamp diodes, that the resulting current being  
injected into the device that is clamped internally  
by the VDD and VSS power rails, may affect the  
ADC accuracy by four to six counts.  
source connected to the pin, and eliminates the  
need for external resistors in certain applica-  
tions. The internal pull-up is to ~(VDD-0.8) not  
VDD. This is still above the minimum VIH of  
CMOS and TTL devices.  
5. When driving LEDs directly, the I/O pin can source  
or sink more current than what is specified in the  
VOH/IOH and VOL/IOL DC characteristic specifica-  
tion. The respective IOH and IOL current rating only  
applies to maintaining the corresponding output at  
or above the VOH and at or below the VOL levels.  
However, for LEDs unlike digital inputs of an exter-  
nally connected device, they are not governed by  
the same minimum VIH/VIL levels. An I/O pin out-  
put can safely sink or source any current less than  
that listed in the absolute maximum rating section  
of the data sheet. For example:  
2. I/O pins that are shared with any analog input pin,  
(i.e., ANx), are always analog pins by default after  
any reset. Consequently, any pin(s) configured as  
an analog input pin, automatically disables the dig-  
ital input pin buffer. As such, any attempt to read a  
digital input pin will always return a ‘0’ regardless  
of the digital logic level on the pin if the analog pin  
is configured. To use a pin as a digital I/O pin on a  
shared ANx pin, the user application needs to con-  
figure the analog pin configuration registers in the  
ADC module, (i.e., ADxPCFGL, AD1PCFGH), by  
setting the appropriate bit that corresponds to that  
I/O port pin to a ‘1’. On devices with more than one  
ADC, both analog pin configurations for both ADC  
modules must be configured as a digital I/O pin for  
that pin to function as a digital I/O pin.  
VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V  
The maximum output current sourced by any 8 mA  
I/O pin = 12 mA.  
LED source current < 12 mA is technically  
permitted. Refer to the VOH/IOH graphs in  
Section 24.0 “Electrical Characteristics” for  
additional information.  
11.7 I/O Resources  
Many useful resources related to I/O are provided on  
the main product page of the Microchip web site for the  
devices listed in this data sheet. This product page,  
which can be accessed using this link, contains the  
latest updates and additional information.  
Note:  
Although it is not possible to use a digital  
input pin when its analog function is  
enabled, it is possible to use the digital I/O  
output function, TRISx = 0x0, while the  
analog function is also enabled. However,  
this is not recommended, particularly if the  
analog input is connected to an external  
analog voltage source, which would cre-  
ate signal contention between the analog  
signal and the output pin driver.  
Note:  
In the event you are not able to access the  
product page using the link above, enter  
this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en546061  
11.7.1  
KEY RESOURCES  
Section 10. “I/O Ports” (DS70193)  
• Code Samples  
3. Most I/O pins have multiple functions. Referring to  
the device pin diagrams in the data sheet, the pri-  
orities of the functions allocated to any pins are  
indicated by reading the pin name from  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
left-to-right. The left most function name takes pre-  
cedence over any function to its right in the naming  
convention. Forexample:AN16/T2CK/T7CK/RC1.  
This indicates that AN16 is the highest priority in  
this example and will supersede all other functions  
to its right in the list. Those other functions to its  
right, even if enabled, would not work as long as  
any other function to its left was enabled. This rule  
applies to all of the functions listed for a given pin.  
• Development Tools  
2009-2012 Microchip Technology Inc.  
DS70592D-page 143  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 144  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Timer1 also supports these features:  
• Timer gate operation  
12.0 TIMER1  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
11. “Timers” (DS70205) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
Figure 12-1 presents a block diagram of the 16-bit  
timer module.  
To configure Timer1 for operation:  
1. Set the TON bit (= 1) in the T1CON register.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits in the T1CON register.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits in the T1CON register.  
4. Set or clear the TSYNC bit in T1CON to select  
synchronous or asynchronous operation.  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the real-time clock, or operate  
as a free-running interval timer/counter. Timer1 can  
operate in three modes:  
5. Load the timer period value into the PR1  
register.  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP<2:0>, to set  
the interrupt priority.  
• 16-bit Timer  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
FIGURE 12-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
1
Sync  
Comparator  
PR1  
TSYNC  
2009-2012 Microchip Technology Inc.  
DS70592D-page 145  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from pin T1CK (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
DS70592D-page 146  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
For 32-bit timer/counter operation, Timer2, Timer4,  
13.0 TIMER2/3, TIMER4/5, TIMER6/7  
Timer6 or Timer8 is the least significant word; Timer3,  
Timer5, Timer7 or Timer9 is the most significant word  
of the 32-bit timers.  
AND TIMER8/9  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
11. “Timers” (DS70205) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
Note:  
For 32-bit operation, T3CON, T5CON,  
T7CON and T9CON control bits are  
ignored. Only T2CON, T4CON, T6CON  
and T8CON control bits are used for setup  
and control. Timer2, Timer4, Timer6 and  
Timer8 clock and gate inputs are utilized  
for the 32-bit timer modules, but an inter-  
rupt is generated with the Timer3, Timer5,  
Ttimer7 and Timer9 interrupt flags.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9  
for 32-bit operation:  
1. Set the corresponding T32 control bit.  
2. Select the prescaler ratio for Timer2, Timer4,  
Timer6 or Timer8 using the TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
The Timer2/3, Timer4/5, Timer6/7 and Timer8/9  
modules are 32-bit timers, which can also be config-  
ured as four independent 16-bit timers with selectable  
operating modes.  
4. Load the timer period value. PR3, PR5, PR7 or  
PR9 contains the most significant word of the  
value, while PR2, PR4, PR6 or PR8 contains the  
least significant word.  
As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and  
Timer8/9 operate in three modes:  
5. If interrupts are required, set the interrupt enable  
bit, T3IE, T5IE, T7IE or T9IE. Use the priority  
bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or  
T9IP<2:0>, to set the interrupt priority. While  
Timer2, Timer4, Timer6 or Timer8 control the  
timer, the interrupt appears as a Timer3, Timer5,  
Timer7 or Timer9 interrupt.  
• Two Independent 16-bit Timers (e.g., Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
• Single 32-bit Timer  
• Single 32-bit Synchronous Counter  
They also support these features:  
6. Set the corresponding TON bit.  
• Timer Gate Operation  
The timer value at any point is stored in the register  
pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or  
TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always  
contains the most significant word of the count, while  
TMR2, TMR4, TMR6 or TMR8 contains the least  
significant word.  
• Selectable Prescaler Settings  
• Timer Operation during Idle and Sleep modes  
• Interrupt on a 32-bit Period Register Match  
• Time Base for Input Capture and Output Compare  
Modules (Timer2 and Timer3 only)  
• ADC1 Event Trigger (Timer2/3 only)  
• ADC2 Event Trigger (Timer4/5 only)  
To configure any of the timers for individual 16-bit  
operation:  
1. Clear the T32 bit corresponding to that timer.  
Individually, all eight of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the event trigger; this  
is implemented only with Timer2/3. The operating  
modes and enabled features are determined by setting  
the appropriate bit(s) in the T2CON, T3CON, T4CON,  
T5CON, T6CON, T7CON, T8CON and T9CON regis-  
ters. T2CON, T4CON, T6CON and T8CON are shown  
in generic form in Register 13-1. T3CON, T5CON,  
T7CON and T9CON are shown in Register 13-2.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value into the PRx  
register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
6. Set the TON bit.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 147  
PIC24HJXXXGPX06A/X08A/X10A  
A block diagram for a 32-bit timer pair (Timer4/5)  
example is shown in Figure 13-1 and a timer (Timer4)  
operating in 16-bit mode example is shown in  
Figure 13-2.  
Note:  
Only Timer2 and Timer3 can trigger a  
DMA data transfer.  
FIGURE 13-1:  
TIMER2/3 (32-BIT) BLOCK DIAGRAM(1)  
TCKPS<1:0>  
2
TON  
1x  
01  
00  
T2CK  
Gate  
Sync  
Prescaler  
1, 8, 64, 256  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T3IF  
CK  
PR2  
PR3  
(2)  
ADC Event Trigger  
Equal  
Reset  
Comparator  
MSb  
LSb  
TMR3  
TMR2  
Sync  
16  
Read TMR2  
Write TMR2  
16  
16  
TMR3HLD  
16  
Data Bus<15:0>  
Note 1: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective  
to the T2CON register.  
2: The ADC event trigger is available only on Timer2/3.  
DS70592D-page 148  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 13-2:  
TIMER2 (16-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
T2CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TGATE  
TCS  
TGATE  
TCY  
1
0
Q
D
Set T2IF  
Q
CK  
Reset  
Equal  
TMR2  
Sync  
Comparator  
PR2  
2009-2012 Microchip Technology Inc.  
DS70592D-page 149  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32  
U-0  
R/W-0  
TCS(1)  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
When T32 = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When T32 = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-bit Timer Mode Select bit  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit(1)  
1= External clock from pin TxCK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: The TxCK pin is not available on all timers. Refer to the Pin Diagramssection for the available pins.  
DS70592D-page 150  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS<1:0>(1)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(1,3)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(2)  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1,3)  
1= External clock from pin TyCK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery operation; all timer  
functions are set through T2CON.  
2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit  
must be cleared to operate the 32-bit timer in Idle mode.  
3: The TyCK pin is not available on all timers. Refer to the Pin Diagramssection for the available pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 151  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 152  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
• Capture timer value on every edge (rising and  
falling)  
14.0 INPUT CAPTURE  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”, Section 12. “Input Capture”  
(DS70198), which is available from the  
Microchip web site (www.microchip.com).  
• Prescaler Capture Event modes:  
- Capture timer value on every 4th rising  
edge of input at ICx pin  
- Capture timer value on every 16th rising  
edge of input at ICx pin  
Each input capture channel can select between one of  
two 16-bit timers (Timer2 or Timer3) for the time base.  
The selected timer can use either an internal or  
external clock.  
Other operational features include:  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
• Interrupt on input capture event  
• 4-word FIFO buffer for capture values  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
• Input capture can also be used to provide  
additional sources of external interrupts.  
The  
PIC24HJXXXGPX06A/X08A/X10A  
devices  
support up to eight input capture channels.  
Note:  
Only IC1 and IC2 can trigger a DMA data  
transfer. If DMA data transfers are  
required, the FIFO buffer size must be set  
to 1 (ICI<1:0> = 00).  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
• Simple Capture Event modes:  
- Capture timer value on every falling edge of  
input at ICx pin  
- Capture timer value on every rising edge of  
input at ICx pin  
FIGURE 14-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-bit Timers  
TMRy TMRz  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Edge Detection Logic  
and  
Clock Synchronizer  
FIFO  
R/W  
Logic  
Prescaler  
Counter  
(1, 4, 16)  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
3
Mode Select  
ICOV, ICBNE (ICxCON<4:3>)  
ICxBUF  
ICxI<1:0>  
Interrupt  
Logic  
ICxCON  
Set Flag ICxIF  
System Bus  
(in IFSn Register)  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 153  
PIC24HJXXXGPX06A/X08A/X10A  
14.1 Input Capture Registers  
REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
ICTMR(1)  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Module Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bits(1)  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode  
(Rising edge detect only, all other control bits are not applicable.)  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling)  
(ICI<1:0> bits do not control interrupt generation for this mode.)  
000= Input capture module turned off  
DS70592D-page 154  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
The state of the output pin changes when the timer  
15.0 OUTPUT COMPARE  
value matches the Compare register value. The output  
compare module generates either a single output  
pulse, or a sequence of output pulses, by changing the  
state of the output pin on the compare match events.  
The output compare module can also generate  
interrupts on compare match events.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
families of devices. It is not intended to be  
a comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F/PIC24H  
Family Reference Manual”, Section 13.  
“Output Compare” (DS70209), which is  
available on the Microchip web site  
(www.microchip.com).  
The output compare module has multiple operating  
modes:  
• Active-Low One-Shot mode  
• Active-High One-Shot mode  
Toggle mode  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Delayed One-Shot mode  
• Continuous Pulse mode  
• PWM mode without Fault Protection  
• PWM mode with Fault Protection  
The output compare module can select either Timer2 or  
Timer3 for its time base. The module compares the  
value of the timer with the value of one or two Compare  
registers depending on the operating mode selected.  
FIGURE 15-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
3
Output  
Enable  
Logic  
Output  
Enable  
OCM<2:0>  
Mode Select  
Comparator  
OCFA  
0
1
0
OCTSEL  
1
16  
16  
TMR2  
Rollover  
TMR3  
Rollover  
TMR3  
TMR2  
2009-2012 Microchip Technology Inc.  
DS70592D-page 155  
PIC24HJXXXGPX06A/X08A/X10A  
application must disable the associated timer when  
writing to the Output Compare Control registers to  
avoid malfunctions.  
15.1 Output Compare Modes  
Configure the Output Compare modes by setting the  
appropriate Output Compare Mode (OCM<2:0>) bits in  
the Output Compare Control (OCxCON<2:0>) register.  
Table 15-1 lists the different bit settings for the Output  
Compare modes. Figure 15-2 illustrates the output  
compare operation for various modes. The user  
Note:  
See Section 13. “Output Compare”  
(DS70209) in the “dsPIC33F/PIC24H  
Family Reference Manual” for OCxR and  
OCxRS register restrictions.  
TABLE 15-1: OUTPUT COMPARE MODES  
OCM<2:0>  
Mode  
Module Disabled  
OCx Pin Initial State  
OCx Interrupt Generation  
000  
001  
010  
011  
100  
101  
110  
Controlled by GPIO register  
Active-Low One-Shot  
Active-High One-Shot  
Toggle  
0
1
OCx rising edge  
OCx falling edge  
Current output is maintained OCx rising and falling edge  
Delayed One-Shot  
Continuous Pulse  
PWM without Fault Protection  
0
0
OCx falling edge  
OCx falling edge  
No interrupt  
0’, if OCxR is zero  
1’, if OCxR is non-zero  
111  
PWM with Fault Protection  
0’, if OCxR is zero  
OCFA falling edge for OC1 to OC4  
1’, if OCxR is non-zero  
FIGURE 15-2:  
OUTPUT COMPARE OPERATION  
Output Compare  
Mode Enabled  
Timer is Reset on  
Period Match  
OCxRS  
OCxR  
TMRy  
Active-Low One-Shot  
(OCM = 001)  
Active-High One-Shot  
(OCM = 010)  
Toggle  
(OCM = 011)  
Delayed One-Shot  
(OCM = 100)  
Continuous Pulse  
(OCM = 101)  
PWM  
(OCM = 110or 111)  
DS70592D-page 156  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R-0, HC  
OCFLT  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OCTSEL  
OCM<2:0>  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare x halts in CPU Idle mode  
0= Output Compare x continues to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in hardware only)  
0= No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)  
bit 3  
OCTSEL: Output Compare Timer Select bit  
1= Timer3 is the clock source for Compare x  
0= Timer2 is the clock source for Compare x  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx, Fault pin enabled  
110= PWM mode on OCx, Fault pin disabled  
101= Initialize OCx pin low, generate continuous output pulses on OCx pin  
100= Initialize OCx pin low, generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high, compare event forces OCx pin low  
001= Initialize OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
2009-2012 Microchip Technology Inc.  
DS70592D-page 157  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 158  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
The Serial Peripheral Interface (SPI) module is a syn-  
16.0 SERIAL PERIPHERAL  
chronous serial interface useful for communicating with  
other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift regis-  
ters, display drivers, Analog-to-Digital converters, etc.  
The SPI module is compatible with SPI and SIOP from  
Motorola®.  
INTERFACE (SPI)  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual“, Section 18. “Serial Peripheral  
Interface (SPI)” (DS70206), which is  
available from the Microchip web site  
(www.microchip.com).  
Note: In this section, the SPI modules are  
referred to together as SPIx, or sepa-  
rately as SPI1 and SPI2. Special Function  
Registers will follow a similar notation.  
For example, SPIxCON refers to the con-  
trol register for the SPI1 or SPI2 module.  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates various status conditions.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The serial interface consists of 4 pins: SDIx (serial data  
input), SDOx (serial data output), SCKx (shift clock  
input or output), and SSx (active-low slave select).  
In Master mode operation, SCK is a clock output but in  
Slave mode, it is a clock input.  
FIGURE 16-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SSx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
2009-2012 Microchip Technology Inc.  
DS70592D-page 159  
PIC24HJXXXGPX06A/X08A/X10A  
16.1 SPI Helpful Tips  
16.2 SPI Resources  
1. In Frame mode, if there is a possibility that the  
master may not be initialized before the slave:  
Many useful resources related to SPI are provided on  
the main product page of the Microchip web site for the  
devices listed in this data sheet. This product page,  
which can be accessed using this link, contains the  
latest updates and additional information.  
a) If FRMPOL (SPIxCON2<13>) = 1, use a  
pull-down resistor on SSx.  
b) If FRMPOL = 0, use a pull-up resistor on  
SSx.  
Note:  
In the event you are not able to access the  
product page using the link above, enter  
this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en546061  
Note:  
This insures that the first frame  
transmission after initialization is not  
shifted or corrupted.  
2. In non-framed 3-wire mode, (i.e., not using SSx  
from a master):  
16.2.1  
KEY RESOURCES  
a) If CKP (SPIxCON1<6>) = 1, always place a  
Section 18. “Serial Peripheral Interface (SPI)”  
(DS70206)  
pull-up resistor on SSx.  
b) If CKP = 0, always place a pull-down  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
resistor on SSx.  
Note:  
This will insure that during power-up and  
initialization the master/slave will not lose  
sync due to an errant SCK transition that  
would cause the slave to accumulate data  
shift errors for both transmit and receive  
appearing as corrupted data.  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
3. FRMEN (SPIxCON2<15>) = 1 and SSEN  
(SPIxCON1<7>) = 1 are exclusive and invalid.  
In Frame mode, SCKx is continuous and the  
Frame sync pulse is active on the SSx pin,  
which indicates the start of a data frame.  
Note:  
Not all third-party devices support Frame  
mode timing. Refer to the SPI electrical  
characteristics for details.  
4. In Master mode only, set the SMP bit  
(SPIxCON1<9>) to a ‘1’ for the fastest SPI data  
rate possible. The SMP bit can only be set at the  
same time or after the MSTEN bit  
(SPIxCON1<5>) is set.  
5. To avoid invalid slave read data to the master,  
the user’s master software must guarantee  
enough time for slave software to fill its write buf-  
fer before the user application initiates a master  
write/read cycle. It is always advisable to pre-  
load the SPIxBUF transmit register in advance  
of the next master transaction cycle. SPIxBUF is  
transferred to the SPI shift register and is empty  
once the data transmission begins.  
DS70592D-page 160  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
16.3  
SPI Control Registers  
REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the  
previous data in the SPIxBUF register  
0= No overflow has occurred  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 161  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(3)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
SPRE<2:0>(2)  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
PPRE<1:0>(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)(3)  
1= SSx pin used for Slave mode  
0= SSx pin not used by module. Pin controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
2: Do not set both Primary and Secondary prescalers to a value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
DS70592D-page 162  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE<2:0>: Secondary Prescale bits (Master mode)(2)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)(2)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
2: Do not set both Primary and Secondary prescalers to a value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 163  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled (SSx pin used as frame sync pulse input/output)  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
bit 0  
Unimplemented: Read as ‘0’  
This bit must not be set to ‘1’ by the user application  
DS70592D-page 164  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
17.1 Operating Modes  
17.0 INTER-INTEGRATED  
2
CIRCUIT™ (I C™)  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7 and 10-bit addressing.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
intended to be  
a
comprehensive  
The following types of I2C operation are supported:  
reference source. To complement the  
information in this data sheet, refer to  
Section 19. “Inter-Integrated Circuit™  
(I2C™)” (DS70195) of the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com).  
• I2C slave operation with 7-bit addressing  
• I2C slave operation with 10-bit addressing  
• I2C master operation with 7-bit or 10-bit addressing  
For details about the communication sequence in each  
of these modes, please refer to the “dsPIC33F/PIC24H  
Family Reference Manual”.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Inter-Integrated Circuit (I2C) module provides  
complete hardware support for both Slave and Multi-  
Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
The PIC24HJXXXGPX06A/X08A/X10A devices have  
up to two I2C interface modules, denoted as I2C1 and  
I2C2. Each I2C module has a 2-pin interface: the SCLx  
pin is clock and the SDAx pin is data.  
Each I2C module ‘x’ (x = 1 or 2) offers the following key  
features:  
• I2C interface supporting both master and slave  
operation  
• I2C Slave mode supports 7-bit and 10-bit  
addressing  
• I2C Master mode supports 7-bit and 10-bit  
addressing  
• I2C Port allows bidirectional transfers between  
master and slaves  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control)  
• I2C supports multi-master operation; detects bus  
collision and will arbitrate accordingly  
2009-2012 Microchip Technology Inc.  
DS70592D-page 165  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 17-1:  
I2C™ BLOCK DIAGRAM (X = 1 OR 2)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Match Detect  
Write  
Read  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS70592D-page 166  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
2
2
17.2  
C Resources  
17.3 I C Registers  
Many useful resources related to I2C are provided on  
the main product page of the Microchip web site for the  
devices listed in this data sheet. This product page,  
which can be accessed using this link, contains the  
latest updates and additional information.  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write.  
I2CxRSR is the shift register used for shifting data,  
whereas I2CxRCV is the buffer register to which data  
bytes are written, or from which data bytes are read.  
I2CxRCV is the receive buffer. I2CxTRN is the transmit  
register to which bytes are written during a transmit  
operation.  
Note:  
In the event you are not able to access the  
product page using the link above, enter  
this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en546061  
17.2.1  
KEY RESOURCES  
The I2CxADD register holds the slave address. A  
status bit, ADD10, indicates 10-bit Address mode. The  
I2CxBRG acts as the Baud Rate Generator (BRG)  
reload value.  
Section 11. “Inter-Integrated Circuit™ (I2C™)”  
(DS70195)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV  
and an interrupt pulse is generated.  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
2009-2012 Microchip Technology Inc.  
DS70592D-page 167  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0 HC  
ACKEN  
R/W-0 HC  
RCEN  
R/W-0 HC  
PEN  
R/W-0 HC  
RSEN  
R/W-0 HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HC = Cleared in hardware  
x = Bit is unknown  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module. All I2C pins are controlled by port functions.  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters an Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear  
at beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses Acknowledged  
0= IPMI mode disabled  
A10M: 10-bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMBus specification  
0= Disable SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CxRSR  
(module is enabled for reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
DS70592D-page 168  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.  
Hardware clear at end of master Acknowledge sequence.  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of  
master Repeated Start sequence.  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.  
0= Start condition not in progress  
2009-2012 Microchip Technology Inc.  
DS70592D-page 169  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0 HSC  
R-0 HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0 HS  
BCL  
R-0 HSC  
GCSTAT  
R-0 HSC  
ADD10  
ACKSTAT  
bit 15  
bit 8  
R/C-0 HS  
IWCOL  
R/C-0 HS  
I2COV  
R-0 HSC  
D_A  
R/C-0 HSC R/C-0 HSC  
R-0 HSC  
R_W  
R-0 HSC  
RBF  
R-0 HSC  
TBF  
P
S
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
C = Clear only bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HSC = Hardware set/cleared  
x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
DS70592D-page 170  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software  
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 171  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSKx: Mask for Address Bit x Select bit  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
DS70592D-page 172  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
• Full-Duplex, 8 or 9-bit Data Transmission through  
the UxTX and UxRX pins  
18.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
• Hardware Flow Control Option with UxCTS and  
UxRTS pins  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
17. “UART” (DS70188) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
• Fully Integrated Baud Rate Generator with 16-bit  
Prescaler  
• Baud rates ranging from 10 Mbps to 38 bps at 40  
MIPS  
• 4-deep First-In-First-Out (FIFO) Transmit Data  
Buffer  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
• A Separate Interrupt for all UART Error Conditions  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA® Encoder and Decoder Logic  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules avail-  
able in the PIC24HJXXXGPX06A/X08A/X10A device  
family. The UART is a full-duplex asynchronous system  
that can communicate with peripheral devices, such as  
personal computers, LIN, RS-232 and RS-485 inter-  
faces. The module also supports a hardware flow con-  
trol option with the UxCTS and UxRTS pins and also  
includes an IrDA® encoder and decoder.  
• 16x Baud Clock Output for IrDA® Support  
A simplified block diagram of the UART is shown in  
Figure 18-1. The UART module consists of the key  
important hardware elements:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
The primary features of the UART module are:  
FIGURE 18-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
/BCLK  
UxRTS  
Hardware Flow Control  
UART Receiver  
UxCTS  
UxRX  
UxTX  
UART Transmitter  
Note 1: Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as  
a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as  
a result of a UART1 or UART2 transmission or reception.  
2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word  
(i.e., UTXISEL<1:0> = 00and URXISEL<1:0> = 00).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 173  
PIC24HJXXXGPX06A/X08A/X10A  
18.1 UART Helpful Tips  
18.2 UART Resources  
1. In multi-node direct-connect UART networks,  
Many useful resources related to UART are provided  
on the main product page of the Microchip web site for  
the devices listed in this data sheet. This product page,  
which can be accessed using this link, contains the  
latest updates and additional information.  
UART  
receive  
inputs  
react  
to  
the  
complementary logic level defined by the  
URXINV bit (UxMODE<4>), which defines the  
idle state, the default of which is logic high, (i.e.,  
URXINV = 0). Because remote devices do not  
initialize at the same time, it is likely that one of  
the devices, because the RX line is floating, will  
trigger a start bit detection and will cause the  
first byte received after the device has been ini-  
tialized to be invalid. To avoid this situation, the  
user should use a pull-up or pull-down resistor  
on the RX pin depending on the value of the  
URXINV bit.  
Note:  
In the event you are not able to access the  
product page using the link above, enter  
this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en546061  
18.2.1  
KEY RESOURCES  
Section 17. “UART” (DS70188)  
• Code Samples  
a) If URXINV = 0, use a pull-up resistor on the  
RX pin.  
• Application Notes  
• Software Libraries  
• Webinars  
b) If URXINV = 1, use a pull-down resistor on  
the RX pin.  
2. The first character received on a wake-up from  
Sleep mode caused by activity on the UxRX pin  
of the UART module will be invalid. In Sleep  
mode, peripheral clocks are disabled. By the  
time the oscillator system has restarted and  
stabilized from Sleep mode, the baud rate bit  
sampling clock relative to the incoming UxRX bit  
timing is no longer synchronized, resulting in the  
first character being invalid. This is to be  
expected.  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70592D-page 174  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
18.3 UART Control Registers  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
R/W-0  
RTSMD  
UEN<1:0>  
bit 15  
bit 8  
R/W-0 HC  
WAKE  
R/W-0  
R/W-0 HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL<1:0>  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA® encoder and decoder enabled  
0= IrDA® encoder and decoder disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11= UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (0x55)  
before any data; cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 175  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 4  
URXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS70592D-page 176  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXISEL1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
C = Clear only bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is  
at least one character open in the transmit buffer)  
bit 14  
UTXINV: Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IREN = 1:  
1= IrDA® encoded UxTX Idle state is ‘1’  
0= IrDA® encoded UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(1)  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled  
by port.  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer. Receive buffer has one or more characters.  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 177  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect  
0= Address Detect mode disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
bit 1  
bit 0  
OERR: Receive Buffer Overrun Error Status bit (read/clear only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed. Clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the UxRSR to the empty state  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
DS70592D-page 178  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
19.0 ENHANCED CAN (ECAN™)  
MODULE  
• Programmable clock source  
• Programmable link to input capture module (IC2  
for both CAN1 and CAN2) for time-stamping and  
network synchronization  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”, Section 21. “Enhanced Con-  
troller Area Network (ECAN™)”  
(DS70185), which is available from the  
Microchip web site (www.microchip.com).  
• Low-power Sleep and Idle mode  
The CAN bus module consists of a protocol engine and  
message buffering/control. The CAN protocol engine  
handles all functions for receiving and transmitting  
messages on the CAN bus. Messages are transmitted  
by first loading the appropriate data registers. Status  
and errors can be checked by reading the appropriate  
registers. Any message detected on the CAN bus is  
checked for errors and then matched against filters to  
see if it should be received and stored in one of the  
receive registers.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
19.2 Frame Types  
The CAN module transmits various types of frames  
which include data messages, remote transmission  
requests and as other frames that are automatically  
generated for control purposes. The following frame  
types are supported:  
19.1 Overview  
The Enhanced Controller Area Network (ECAN™)  
module is a serial interface, useful for communicating  
with other CAN modules or microcontroller devices.  
This interface/protocol was designed to allow commu-  
• Standard Data Frame:  
A standard data frame is generated by a node when  
the node wishes to transmit data. It includes an 11-bit  
standard identifier (SID) but not an 18-bit extended  
identifier (EID).  
nications  
within  
noisy  
environments.  
The  
PIC24HJXXXGPX06A/X08A/X10A devices contain up  
to two ECAN modules.  
The CAN module is a communication controller imple-  
menting the CAN 2.0 A/B protocol, as defined in the  
BOSCH specification. The module will support CAN 1.2,  
CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active  
versions of the protocol. The module implementation is  
a full CAN system. The CAN specification is not covered  
within this data sheet. The reader may refer to the  
BOSCH CAN specification for further details.  
• Extended Data Frame:  
An extended data frame is similar to a standard data  
frame but includes an extended identifier as well.  
• Remote Frame:  
It is possible for a destination node to request the  
data from the source. For this purpose, the  
destination node sends a remote frame with an iden-  
tifier that matches the identifier of the required data  
frame. The appropriate data source node will then  
send a data frame as a response to this remote  
request.  
The module features are as follows:  
• Implementation of the CAN protocol, CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• Standard and extended data frames  
• 0-8 bytes data length  
• Error Frame:  
• Programmable bit rate up to 1 Mbit/sec  
An error frame is generated by any node that detects  
a bus error. An error frame consists of two fields: an  
error flag field and an error delimiter field.  
• Automatic response to remote transmission  
requests  
• Up to 8 transmit buffers with application specified  
prioritization and abort capability (each buffer may  
contain up to 8 bytes of data)  
• Overload Frame:  
An overload frame can be generated by a node as a  
result of two conditions. First, the node detects a  
dominant bit during interframe space which is an ille-  
gal condition. Second, due to internal conditions, the  
node is not yet able to start reception of the next  
message. A node may generate a maximum of 2  
sequential overload frames to delay the start of the  
next message.  
• Up to 32 receive buffers (each buffer may contain  
up to 8 bytes of data)  
• Up to 16 full (standard/extended identifier)  
acceptance filters  
• 3 full acceptance filter masks  
• DeviceNet™ addressing support  
• Programmable wake-up functionality with  
integrated low-pass filter  
• Interframe Space:  
Interframe space separates a proceeding frame (of  
whatever type) from a following data or remote  
frame.  
• Programmable Loopback mode supports self-test  
operation  
2009-2012 Microchip Technology Inc.  
DS70592D-page 179  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 19-1:  
ECAN™ MODULE BLOCK DIAGRAM  
RXF15 Filter  
RXF14 Filter  
RXF13 Filter  
RXF12 Filter  
RXF11 Filter  
RXF10 Filter  
RXF9 Filter  
RXF8 Filter  
RXF7 Filter  
RXF6 Filter  
RXF5 Filter  
RXF4 Filter  
RXF3 Filter  
RXF2 Filter  
RXF1 Filter  
RXF0 Filter  
DMA Controller  
TRB7 TX/RX Buffer Control Register  
TRB6 TX/RX Buffer Control Register  
TRB5 TX/RX Buffer Control Register  
TRB4 TX/RX Buffer Control Register  
TRB3 TX/RX Buffer Control Register  
TRB2 TX/RX Buffer Control Register  
TRB1 TX/RX Buffer Control Register  
TRB0 TX/RX Buffer Control Register  
RXM2 Mask  
RXM1 Mask  
RXM0 Mask  
Transmit Byte  
Sequencer  
Message Assembly  
Buffer  
Control  
Configuration  
Logic  
CPU  
Bus  
CAN Protocol  
Engine  
Interrupts  
(1)  
(1)  
CiTX  
CiRX  
Note 1: i = 1 or 2 refers to a particular ECAN™ module (ECAN1 or ECAN2).  
DS70592D-page 180  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
The module can be programmed to apply a low-pass  
19.3 Modes of Operation  
filter function to the CiRX input line while the module or  
the CPU is in Sleep mode. The WAKFIL bit  
(CiCFG2<14>) enables or disables the filter.  
The CAN module can operate in one of several operation  
modes selected by the user. These modes include:  
• Initialization Mode  
• Disable Mode  
• Normal Operation Mode  
• Listen Only Mode  
• Listen All Messages Mode  
• Loopback Mode  
Note:  
Typically, if the CAN module is allowed to  
transmit in a particular mode of operation  
and  
a
transmission is requested  
immediately after the CAN module has  
been placed in that mode of operation, the  
module waits for 11 consecutive recessive  
bits on the bus before starting  
transmission. If the user application  
switches to Disable mode within this 11-bit  
period, the transmission is then aborted  
and the corresponding TXABT bit is set  
and the TXREQ bit is cleared.  
Modes are requested by setting the REQOP<2:0> bits  
(CiCTRL1<10:8>). Entry into a mode is Acknowledged  
by  
monitoring  
the  
OPMODE<2:0>  
bits  
(CiCTRL1<7:5>). The module will not change the mode  
and the OPMODE bits until a change in mode is  
acceptable, generally during bus Idle time, which is  
defined as at least 11 consecutive recessive bits.  
19.3.3  
NORMAL OPERATION MODE  
19.3.1  
INITIALIZATION MODE  
Normal Operation mode is selected when  
REQOP<2:0> = 000. In this mode, the module is  
activated and the I/O pins will assume the CAN bus  
functions. The module will transmit and receive CAN  
bus messages via the CiTX and CiRX pins.  
In the Initialization mode, the module will not transmit or  
receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The programmer will  
have access to Configuration registers that are access  
restricted in other modes. The module will protect the  
user from accidentally violating the CAN protocol  
through programming errors. All registers which control  
the configuration of the module cannot be modified  
while the module is on-line. The CAN module will not  
be allowed to enter the Configuration mode while a  
transmission is taking place. The Configuration mode  
serves as a lock to protect the following registers.  
19.3.4  
LISTEN ONLY MODE  
If the Listen Only mode is activated, the module on the  
CAN bus is passive. The transmitter buffers revert to  
the port I/O function. The receive pins remain inputs.  
For the receiver, no error flags or Acknowledge signals  
are sent. The error counters are deactivated in this  
state. The Listen Only mode can be used for detecting  
the baud rate on the CAN bus. To use this, it is neces-  
sary that there are at least two further nodes that  
communicate with each other.  
• All Module Control Registers  
• Baud Rate and Interrupt Configuration Registers  
• Bus Timing Registers  
• Identifier Acceptance Filter Registers  
• Identifier Acceptance Mask Registers  
19.3.5  
LISTEN ALL MESSAGES MODE  
The module can be set to ignore all errors and receive  
any message. The Listen All Messages mode is acti-  
vated by setting REQOP<2:0> = ‘111’. In this mode,  
the data which is in the message assembly buffer, until  
the time an error occurred, is copied in the receive buf-  
fer and can be read via the CPU interface.  
19.3.2  
DISABLE MODE  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts will  
remain and the error counters will retain their value.  
19.3.6  
LOOPBACK MODE  
If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the  
module will enter the Module Disable mode. If the module  
is active, the module will wait for 11 recessive bits on the  
CAN bus, detect that condition as an Idle bus, then  
accept the module disable command. When the  
OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indi-  
cates whether the module successfully went into Module  
Disable mode. The I/O pins will revert to normal I/O  
function when the module is in the Module Disable mode.  
If the Loopback mode is activated, the module will con-  
nect the internal transmit signal to the internal receive  
signal at the module boundary. The transmit and  
receive pins revert to their port I/O function.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 181  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-1: CiCTRL1: ECAN™ MODULE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
CSIDL  
R/W-0  
ABAT  
r-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
REQOP<2:0>  
bit 15  
R-1  
R-0  
R-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
WIN  
OPMODE<2:0>  
CANCAP  
bit 7  
Legend:  
bit 0  
r = Bit is Reserved  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
ABAT: Abort All Pending Transmissions bit  
1= Signal all transmit buffers to abort transmission  
0= Module will clear this bit when all transmissions are aborted  
bit 11  
Reserved: Do not use  
bit 10-8  
REQOP<2:0>: Request Operation Mode bits  
111= Set Listen All Messages mode  
110= Reserved – do not use  
101= Reserved – do not use  
100= Set Configuration mode  
011= Set Listen Only Mode  
010= Set Loopback mode  
001= Set Disable mode  
000= Set Normal Operation mode  
bit 7-5  
OPMODE<2:0>: Operation Mode bits  
111= Module is in Listen All Messages mode  
110= Reserved  
101= Reserved  
100= Module is in Configuration mode  
011= Module is in Listen Only mode  
010= Module is in Loopback mode  
001= Module is in Disable mode  
000= Module is in Normal Operation mode  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CANCAP: CAN Message Receive Timer Capture Event Enable bit  
1= Enable input capture based on CAN message receive  
0= Disable CAN capture  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
WIN: SFR Map Window Select bit  
1= Use filter window  
0= Use buffer window  
DS70592D-page 182  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-2: CiCTRL2: ECAN™ MODULE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DNCNT<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DNCNT<4:0>: DeviceNet™ Filter Bit Number bits  
10010-11111= Invalid selection  
10001= Compare up to data byte 3, bit 6 with EID<17>  
00001= Compare up to data byte 1, bit 7 with EID<0>  
00000= Do not compare data bytes  
2009-2012 Microchip Technology Inc.  
DS70592D-page 183  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-3: CiVEC: ECAN™ MODULE INTERRUPT CODE REGISTER  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FILHIT<4:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-1  
R-0  
R-0  
R-0  
R-0  
ICODE<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Number bits  
10000-11111= Reserved  
01111= Filter 15  
00001= Filter 1  
00000= Filter 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
ICODE<6:0>: Interrupt Flag Code bits  
1000101-1111111= Reserved  
1000100= FIFO almost full interrupt  
1000011= Receiver overflow interrupt  
1000010= Wake-up interrupt  
1000001= Error interrupt  
1000000= No interrupt  
0010000-0111111= Reserved  
0001111= RB15 buffer Interrupt  
0001001= RB9 buffer interrupt  
0001000= RB8 buffer interrupt  
0000111= TRB7 buffer interrupt  
0000110= TRB6 buffer interrupt  
0000101= TRB5 buffer interrupt  
0000100= TRB4 buffer interrupt  
0000011= TRB3 buffer interrupt  
0000010= TRB2 buffer interrupt  
0000001= TRB1 buffer interrupt  
0000000= TRB0 Buffer interrupt  
DS70592D-page 184  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-4: CiFCTRL: ECAN™ MODULE FIFO CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMABS<2:0>  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FSA<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
DMABS<2:0>: DMA Buffer Size bits  
111= Reserved; do not use  
110= 32 buffers in DMA RAM  
101= 24 buffers in DMA RAM  
100= 16 buffers in DMA RAM  
011= 12 buffers in DMA RAM  
010= 8 buffers in DMA RAM  
001= 6 buffers in DMA RAM  
000= 4 buffers in DMA RAM  
bit 12-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FSA<4:0>: FIFO Area Starts with Buffer bits  
11111= RB31 buffer  
11110= RB30 buffer  
00001= TRB1 buffer  
00000= TRB0 buffer  
2009-2012 Microchip Technology Inc.  
DS70592D-page 185  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-5: CiFIFO: ECAN™ MODULE FIFO STATUS REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
FBP<5:0>  
R-0  
R-0  
R-0  
R-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
FNRB<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FBP<5:0>: FIFO Write Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
000001= TRB1 buffer  
000000= TRB0 buffer  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FNRB<5:0>: FIFO Next Read Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
000001= TRB1 buffer  
000000= TRB0 buffer  
DS70592D-page 186  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-6: CiINTF: ECAN™ MODULE INTERRUPT FLAG REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TXBO  
TXBP  
RXBP  
TXWAR  
RXWAR  
EWARN  
bit 15  
bit 8  
R/C-0  
IVRIF  
R/C-0  
R/C-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
RBIF  
R/C-0  
TBIF  
WAKIF  
ERRIF  
FIFOIF  
RBOVIF  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
TXBO: Transmitter in Error State Bus Off bit  
1= Transmitter is in Bus Off state  
0= Transmitter is not in Bus Off state  
bit 12  
bit 11  
bit 10  
bit 9  
TXBP: Transmitter in Error State Bus Passive bit  
1= Transmitter is in Bus Passive state  
0= Transmitter is not in Bus Passive state  
RXBP: Receiver in Error State Bus Passive bit  
1= Receiver is in Bus Passive state  
0= Receiver is not in Bus Passive state  
TXWAR: Transmitter in Error State Warning bit  
1= Transmitter is in Error Warning state  
0= Transmitter is not in Error Warning state  
RXWAR: Receiver in Error State Warning bit  
1= Receiver is in Error Warning state  
0= Receiver is not in Error Warning state  
bit 8  
EWARN: Transmitter or Receiver in Error State Warning bit  
1= Transmitter or receiver is in Error Warning state  
0= Transmitter or receiver is not in Error Warning state  
bit 7  
IVRIF: Invalid Message Received Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
WAKIF: Bus Wake-up Activity Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
FIFOIF: FIFO Almost Full Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
RBOVIF: RX Buffer Overflow Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
RBIF: RX Buffer Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
TBIF: TX Buffer Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009-2012 Microchip Technology Inc.  
DS70592D-page 187  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-7: CiINTE: ECAN™ MODULE INTERRUPT ENABLE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IVRIE  
R/W-0  
R/W-0  
ERRIE  
U-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
TBIE  
WAKIE  
FIFOIE  
RBOVIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IVRIE: Invalid Message Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
bit 5  
WAKIE: Bus Wake-up Activity Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
ERRIE: Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
FIFOIE: FIFO Almost Full Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
bit 1  
bit 0  
RBOVIE: RX Buffer Overflow Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
RBIE: RX Buffer Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
TBIE: TX Buffer Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70592D-page 188  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-8: CiEC: ECAN™ MODULE TRANSMIT/RECEIVE ERROR COUNT REGISTER  
R-0  
bit 15  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TERRCNT<7:0>  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RERRCNT<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
TERRCNT<7:0>: Transmit Error Count bits  
RERRCNT<7:0>: Receive Error Count bits  
2009-2012 Microchip Technology Inc.  
DS70592D-page 189  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-9: CiCFG1: ECAN™ MODULE BAUD RATE CONFIGURATION REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SJW<1:0>  
BRP<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SJW<1:0>: Synchronization Jump Width bits  
11= Length is 4 x TQ  
10= Length is 3 x TQ  
01= Length is 2 x TQ  
00= Length is 1 x TQ  
bit 5-0  
BRP<5:0>: Baud Rate Prescaler bits  
11 1111= TQ = 2 x 64 x 1/FCAN  
00 0010= TQ = 2 x 3 x 1/FCAN  
00 0001= TQ = 2 x 2 x 1/FCAN  
00 0000= TQ = 2 x 1 x 1/FCAN  
DS70592D-page 190  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-10: CiCFG2: ECAN™ MODULE BAUD RATE CONFIGURATION REGISTER 2  
U-0  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
WAKFIL  
SEG2PH<2:0>  
bit 15  
R/W-x  
R/W-x  
SAM  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEG2PHTS  
SEG1PH<2:0>  
PRSEG<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
WAKFIL: Select CAN bus Line Filter for Wake-up bit  
1= Use CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 13-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SEG2PH<2:0>: Phase Buffer Segment 2 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN bus Line bit  
1= Bus line is sampled three times at the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
bit 2-0  
SEG1PH<2:0>: Phase Buffer Segment 1 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
PRSEG<2:0>: Propagation Time Segment bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
2009-2012 Microchip Technology Inc.  
DS70592D-page 191  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-11: CiFEN1: ECAN™ MODULE ACCEPTANCE FILTER ENABLE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN15  
FLTEN14  
FLTEN13  
FLTEN12  
FLTEN11  
FLTEN10  
FLTEN9  
FLTEN8  
bit 15  
bit 8  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN7  
FLTEN6  
FLTEN5  
FLTEN4  
FLTEN3  
FLTEN2  
FLTEN1  
FLTEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
FLTENn: Enable Filter n (0-15) to Accept Messages bits  
1= Enable Filter n  
0= Disable Filter n  
DS70592D-page 192  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-12: CiBUFPNT1: ECAN™ MODULE FILTER 0-3 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
F3BP<3:0>  
F2BP<3:0>  
R/W-0  
F1BP<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F0BP<3:0>  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F3BP<3:0>: RX Buffer Written when Filter 3 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
F2BP<3:0>: RX Buffer Written when Filter 2 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
F1BP<3:0>: RX Buffer Written when Filter 1 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 3-0  
F0BP<3:0>: RX Buffer Written when Filter 0 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
2009-2012 Microchip Technology Inc.  
DS70592D-page 193  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-13: CiBUFPNT2: ECAN™ MODULE FILTER 4-7 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
F7BP<3:0>  
F6BP<3:0>  
R/W-0  
F5BP<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F4BP<3:0>  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F7BP<3:0>: RX Buffer Written when Filter 7 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 3-0  
F4BP<3:0>: RX Buffer Written when Filter 4 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
DS70592D-page 194  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-14: CiBUFPNT3: ECAN™ MODULE FILTER 8-11 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
F11BP<3:0>  
F10BP<3:0>  
R/W-0  
F9BP<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F8BP<3:0>  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F11BP<3:0>: RX Buffer Written when Filter 11 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
F10BP<3:0>: RX Buffer Written when Filter 10 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
F9BP<3:0>: RX Buffer Written when Filter 9 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 3-0  
F8BP<3:0>: RX Buffer Written when Filter 8 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
2009-2012 Microchip Technology Inc.  
DS70592D-page 195  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-15: CiBUFPNT4: ECAN™ MODULE FILTER 12-15 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
F15BP<3:0>  
F14BP<3:0>  
R/W-0  
F13BP<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F12BP<3:0>  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F15BP<3:0>: RX Buffer Written when Filter 15 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
F13BP<3:0>: RX Buffer Written when Filter 13 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 3-0  
F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
DS70592D-page 196  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-16: CiRXFnSID: ECAN™ MODULE ACCEPTANCE FILTER n STANDARD IDENTIFIER  
(n = 0, 1, ..., 15)  
R/W-x  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SID<10:3>  
bit 8  
R/W-x  
R/W-x  
U-0  
R/W-x  
EXIDE  
U-0  
R/W-x R/W-x  
EID<17:16>  
SID<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Message address bit SIDx must be ‘1’ to match filter  
0= Message address bit SIDx must be ‘0’ to match filter  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
EXIDE: Extended Identifier Enable bit  
If MIDE = 1:  
1= Match only messages with extended identifier addresses  
0= Match only messages with standard identifier addresses  
If MIDE = 0:  
Ignore EXIDE bit.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Message address bit EIDx must be ‘1’ to match filter  
0= Message address bit EIDx must be ‘0’ to match filter  
REGISTER 19-17: CiRXFnEID: ECAN™ MODULE ACCEPTANCE FILTER n EXTENDED IDENTIFIER  
(n = 0, 1, ..., 15)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID<15:8>  
bit 15  
R/W-x  
bit 7  
bit 8  
R/W-x  
bit 0  
R/W-x  
R/W-x  
R/W-x R/W-x  
EID<7:0>  
R/W-x  
R/W-x  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Message address bit EIDx must be ‘1’ to match filter  
0= Message address bit EIDx must be ‘0’ to match filter  
2009-2012 Microchip Technology Inc.  
DS70592D-page 197  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-18: CiFMSKSEL1: ECAN™ MODULE FILTER 7-0 MASK SELECTION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F7MSK<1:0>  
F6MSK<1:0>  
F5MSK<1:0>  
F4MSK<1:0>  
bit 15  
bit 8  
R/W-0 R/W-0  
F3MSK<1:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F2MSK<1:0>  
F1MSK<1:0>  
F0MSK<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-12  
bit 11-10  
bit 9-8  
F7MSK<1:0>: Mask Source for Filter 7 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
F6MSK<1:0>: Mask Source for Filter 6 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
F5MSK<1:0>: Mask Source for Filter 5 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
F4MSK<1:0>: Mask Source for Filter 4 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 7-6  
F3MSK<1:0>: Mask Source for Filter 3 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 5-4  
F2MSK<1:0>: Mask Source for Filter 2 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 3-2  
F1MSK<1:0>: Mask Source for Filter 1 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 1-0  
F0MSK<1:0>: Mask Source for Filter 0 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
DS70592D-page 198  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F15MSK<1:0>  
F14MSK<1:0>  
F13MSK<1:0>  
F12MSK<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11MSK<1:0>  
F10MSK<1:0>  
F9MSK<1:0>  
F8MSK<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-12  
bit 11-10  
bit 9-8  
F15MSK<1:0>: Mask Source for Filter 15 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
F14MSK<1:0>: Mask Source for Filter 14 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
F13MSK<1:0>: Mask Source for Filter 13 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
F12MSK<1:0>: Mask Source for Filter 12 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 7-6  
F11MSK<1:0>: Mask Source for Filter 11 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 5-4  
F10MSK<1:0>: Mask Source for Filter 10 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 3-2  
F9MSK<1:0>: Mask Source for Filter 9 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 1-0  
F8MSK<1:0>: Mask Source for Filter 8 bit  
11= Reserved; do not use  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
2009-2012 Microchip Technology Inc.  
DS70592D-page 199  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-20: CiRXMnSID: ECAN™ MODULE ACCEPTANCE FILTER MASK n STANDARD  
IDENTIFIER  
R/W-x  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SID<10:3>  
bit 8  
R/W-x  
R/W-x  
U-0  
R/W-x  
MIDE  
U-0  
R/W-x R/W-x  
EID<17:16>  
SID<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Include bit SIDx in filter comparison  
0= Bit SIDx is don’t care in filter comparison  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
MIDE: Identifier Receive Mode bit  
1= Match only message types (standard or extended address) that correspond to EXIDE bit in filter  
0= Match either standard or extended address message if filters match  
(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Include bit EIDx in filter comparison  
0= Bit EIDx is don’t care in filter comparison  
REGISTER 19-21: CiRXMnEID: ECAN™ TECHNOLOGY ACCEPTANCE FILTER MASK n EXTENDED  
IDENTIFIER  
R/W-x  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
EID<15:8>  
R/W-x  
R/W-x  
R/W-x  
EID<7:0>  
R/W-x  
R/W-x  
R/W-x  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Include bit EIDx in filter comparison  
0= Bit EIDx is don’t care in filter comparison  
DS70592D-page 200  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-22: CiRXFUL1: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL15  
RXFUL14  
RXFUL13  
RXFUL12  
RXFUL11  
RXFUL10  
RXFUL9  
RXFUL8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL7  
RXFUL6  
RXFUL5  
RXFUL4  
RXFUL3  
RXFUL2  
RXFUL1  
RXFUL0  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL15:RXFUL0: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty (clear by application software)  
REGISTER 19-23: CiRXFUL2: ECAN™ MODULE RECEIVE BUFFER FULL REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL31  
RXFUL30  
RXFUL29  
RXFUL28  
RXFUL27  
RXFUL26  
RXFUL25  
RXFUL24  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL23  
RXFUL22  
RXFUL21  
RXFUL20  
RXFUL19  
RXFUL18  
RXFUL17  
RXFUL16  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL31:RXFUL16: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty (clear by application software)  
2009-2012 Microchip Technology Inc.  
DS70592D-page 201  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-24: CiRXOVF1: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF15  
RXOVF14  
RXOVF13  
RXOVF12  
RXOVF11  
RXOVF10  
RXOVF9  
RXOVF8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF7  
RXOVF6  
RXOVF5  
RXOVF4  
RXOVF3  
RXOVF2  
RXOVF1  
RXOVF0  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXOVF15:RXOVF0: Receive Buffer n Overflow bits  
1= Module pointed a write to a full buffer (set by module)  
0= Overflow is cleared (clear by application software)  
REGISTER 19-25: CiRXOVF2: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF24  
bit 8  
RXOVF31  
RXOVF30  
RXOVF29  
RXOVF28  
RXOVF27  
RXOVF26  
RXOVF25  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF23  
RXOVF22  
RXOVF21  
RXOVF20  
RXOVF19  
RXOVF18  
RXOVF17  
RXOVF16  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXOVF31:RXOVF16: Receive Buffer n Overflow bits  
1= Module pointed a write to a full buffer (set by module)  
0= Overflow is cleared (clear by application software)  
DS70592D-page 202  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-26: CiTRmnCON: ECAN™ MODULE TX/RX BUFFER m CONTROL REGISTER  
(m = 0,2,4,6; n = 1,3,5,7)  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENn  
TXABTn  
TXLARBn  
TXERRn  
TXREQn  
RTRENn  
TXnPRI<1:0>  
bit 15  
bit 8  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENm  
TXABTm(1) TXLARBm(1) TXERRm(1) TXREQm  
RTRENm  
TXmPRI<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
See Definition for Bits 7-0, Controls Buffer n  
TXENm: TX/RX Buffer Selection bit  
1= Buffer TRBn is a transmit buffer  
0= Buffer TRBn is a receive buffer  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
TXABTm: Message Aborted bit(1)  
1= Message was aborted  
0= Message completed transmission successfully  
TXLARBm: Message Lost Arbitration bit(1)  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERRm: Error Detected During Transmission bit(1)  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQm: Message Send Request bit  
Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when the message  
is successfully sent. Clearing the bit to ‘0’ while set will request a message abort.  
RTRENm: Auto-Remote Transmit Enable bit  
1= When a remote transmit is received, TXREQ will be set  
0= When a remote transmit is received, TXREQ will be unaffected  
TXmPRI<1:0>: Message Transmission Priority bits  
11= Highest message priority  
10= High intermediate message priority  
01= Low intermediate message priority  
00= Lowest message priority  
Note 1: This bit is cleared when TXREQ is set.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 203  
PIC24HJXXXGPX06A/X08A/X10A  
Note:  
The buffers, SID, EID, DLC, Data Field and Receive Status registers are stored in DMA RAM. These are  
not Special Function Registers.  
REGISTER 19-27: CiTRBnSID: ECAN™ MODULE BUFFER n STANDARD IDENTIFIER  
(n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
SID<10:6>  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SRR  
R/W-x  
IDE  
SID<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SID<10:0>: Standard Identifier bits  
SRR: Substitute Remote Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 0  
IDE: Extended Identifier bit  
1= Message will transmit extended identifier  
0= Message will transmit standard identifier  
REGISTER 19-28: CiTRBnEID: ECAN™ MODULE BUFFER n EXTENDED IDENTIFIER  
(n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
EID<17:14>  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
EID<13:6>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
EID<17:6>: Extended Identifier bits  
DS70592D-page 204  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-29: CiTRBnDLC: ECAN™ MODULE BUFFER n DATA LENGTH CONTROL  
(n = 0, 1, ..., 31)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
RTR  
R/W-x  
RB1  
EID<5:0>  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-x  
RB0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DLC<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
EID<5:0>: Extended Identifier bits  
RTR: Remote Transmission Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 8  
RB1: Reserved Bit 1  
User must set this bit to ‘0’ per CAN protocol.  
Unimplemented: Read as ‘0’  
bit 7-5  
bit 4  
RB0: Reserved Bit 0  
User must set this bit to ‘0’ per CAN protocol.  
DLC<3:0>: Data Length Code bits  
bit 3-0  
REGISTER 19-30: CiTRBnDm: ECAN™ MODULE BUFFER n DATA FIELD BYTE m  
(n = 0, 1, ..., 31; m = 0, 1, ..., 7)(1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
TRBnDm<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRnDm<7:0>: Data Field Buffer ‘n’ Byte ‘m’ bits  
Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 205  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 19-31: CiTRBnSTAT: ECAN™ MODULE RECEIVE BUFFER n STATUS  
(n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
FILHIT<4:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers)  
Encodes number of filter that resulted in writing this buffer.  
Unimplemented: Read as ‘0’  
bit 7-0  
DS70592D-page 206  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Depending on the particular device pinout, the Ana-  
log-to-Digital Converter can have up to 32 analog input  
20.0 10-BIT/12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
pins, designated AN0 through AN31. In addition, there  
are two analog input pins for external voltage reference  
connections. These voltage reference inputs may be  
shared with other analog input pins. The actual number  
of analog input pins and external voltage reference  
input configuration will depend on the specific device.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
family of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”, Section 16. “Analog-to-Digital  
Converter (ADC)” (DS70183), which is  
available from the Microchip web site  
(www.microchip.com).  
A block diagram of the Analog-to-Digital Converter is  
shown in Figure 20-1.  
20.2 Analog-to-Digital Initialization  
The following configuration steps should be performed.  
1. Configure the ADC module:  
a) Select port pins as analog inputs  
(ADxPCFGH<15:0> or ADxPCFGL<15:0>)  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
b) Select voltage reference source to match  
expected range on analog inputs  
(ADxCON2<15:13>)  
c) Select the analog conversion clock to  
match desired data rate with processor  
clock (ADxCON3<7:0>)  
The PIC24HJXXXGPX06A/X08A/X10A devices have  
up to 32 Analog-to-Digital input channels. These  
devices also have up to 2 Analog-to-Digital converter  
modules (ADCx, where ‘x’ = 1 or 2), each with its own  
set of Special Function Registers.  
d) Determine how many S/H channels will  
be  
used  
(ADxCON2<9:8>  
and  
ADxPCFGH<15:0> or ADxPCFGL<15:0>)  
e) Select the appropriate sample/conversion  
sequence  
ADxCON3<12:8>)  
(ADxCON1<7:5>  
and  
The AD12B bit (ADxCON1<10>) allows each of the  
ADC modules to be configured by the user as either a  
10-bit, 4-sample/hold ADC (default configuration) or a  
12-bit, 1-sample/hold ADC.  
f) Select how conversion results are  
presented in the buffer (ADxCON1<9:8>)  
g) Turn on the ADC module (ADxCON1<15>)  
2. Configure ADC interrupt (if required):  
a) Clear the ADxIF bit  
Note:  
The ADC module needs to be disabled  
before modifying the AD12B bit.  
b) Select ADC interrupt priority  
20.1 Key Features  
The 10-bit ADC configuration has the following key  
features:  
20.3 ADC and DMA  
If more than one conversion result needs to be buffered  
before triggering an interrupt, DMA data transfers can  
be used. Both ADC1 and ADC2 can trigger a DMA data  
transfer. If ADC1 or ADC2 is selected as the DMA IRQ  
source, a DMA transfer occurs when the AD1IF or  
AD2IF bit gets set as a result of an ADC1 or ADC2  
sample conversion sequence.  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 1.1 Msps  
• Up to 32 analog input pins  
• External voltage reference input pins  
• Simultaneous sampling of up to four analog input  
pins  
• Automatic Channel Scan mode  
The SMPI<3:0> bits (ADxCON2<5:2>) are used to  
select how often the DMA RAM buffer pointer is  
incremented.  
• Selectable conversion trigger source  
• Selectable Buffer Fill modes  
The ADDMABM bit (ADxCON1<12>) determines how  
the conversion results are filled in the DMA RAM buffer  
area being used for ADC. If this bit is set, DMA buffers  
are written in the order of conversion. The module will  
provide an address to the DMA channel that is the  
same as the address used for the non-DMA  
stand-alone buffer. If the ADDMABM bit is cleared, the  
DMA buffers are written in Scatter/Gather mode. The  
module will provide a scatter/gather address to the  
DMA channel, based on the index of the analog input  
and the size of the DMA buffer.  
• Two result alignment options (signed/unsigned)  
• Operation during CPU Sleep and Idle modes  
The 12-bit ADC configuration supports all the above  
features, except:  
• In the 12-bit configuration, conversion speeds of  
up to 500 ksps are supported  
• There is only 1 sample/hold amplifier in the 12-bit  
configuration, so simultaneous sampling of  
multiple channels is not supported.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 207  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 20-1:  
ADCx MODULE BLOCK DIAGRAM  
AN0  
ANy(3)  
S/H0  
CHANNEL  
SCAN  
+
CH0SB<4:0>  
-
CH0SA<4:0>  
CH0  
CSCNA  
AN1  
VREFL  
CH0NB  
CH0NA  
AN0  
AN3  
AVDD VREF-(1)  
VREF+(1)  
AVSS  
S/H1  
+
-
CH123SA CH123SB  
AN6  
CH1(2)  
VCFG<2:0>  
AN9  
VREFL  
VREFH  
VREFL  
CH123NB  
CH123NA  
ADC1BUF0  
SAR ADC  
AN1  
AN4  
S/H2  
+
-
CH123SA  
CH123SB  
CH2(2)  
AN7  
AN10  
VREFL  
CH123NA  
CH123NB  
AN2  
AN5  
S/H3  
+
-
CH123SA CH123SB  
AN8  
CH3(2)  
AN11  
VREFL  
CH123NA  
CH123NB  
Alternate  
Input Selection  
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
3: For 64-pin devices, y = 17; for 100-pin devices, y =31; for ADC2, y = 15.  
DS70592D-page 208  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 20-2:  
ANALOG-TO-DIGITAL CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
ADxCON3<15>  
ADC Internal  
RC Clock  
(2)  
1
0
TAD  
ADxCON3<5:0>  
6
ADC Conversion  
Clock Multiplier  
TCY  
(1)  
TOSC  
X2  
1, 2, 3, 4, 5,..., 64  
Note 1: Refer to Figure 9-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal to the clock source  
frequency. TOSC = 1/FOSC.  
2: See the ADC electrical specifications for exact RC clock value.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 209  
PIC24HJXXXGPX06A/X08A/X10A  
20.4 ADC Helpful Tips  
20.5 ADC Resources  
1. The SMPI<3:0> (AD1CON2<5:2>) control bits:  
Many useful resources related to ADC are provided on  
the main product page of the Microchip web site for the  
devices listed in this data sheet. This product page,  
which can be accessed using this link, contains the  
latest updates and additional information.  
a) Determine when the ADC interrupt flag is  
set and an interrupt is generated if enabled.  
b) When the CSCNA bit (AD1CON2<10>) is  
set to ‘1’, determines when the ADC analog  
scan channel list defined in the AD1CSSL/  
AD1CSSH registers starts over from the  
beginning.  
Note:  
In the event you are not able to access the  
product page using the link above, enter  
this URL in your browser:  
c) On devices without a DMA peripheral,  
determines when ADC result buffer pointer  
to ADC1BUF0-ADC1BUFF, gets reset back  
to the beginning at ADC1BUF0.  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en546061  
20.5.1  
KEY RESOURCES  
2. On devices without a DMA module, the ADC has  
16 result buffers. ADC conversion results are  
stored sequentially in ADC1BUF0-ADC1BUFF  
regardless of which analog inputs are being  
used subject to the SMPI<3:0> bits  
(AD1CON2<5:2>) and the condition described  
in 1c above. There is no relationship between  
the ANx input being measured and which ADC  
buffer (ADC1BUF0-ADC1BUFF) that the  
conversion results will be placed in.  
Section 16. “Analog-to-Digital Converter  
(ADC)” (DS70183)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
3. On devices with a DMA module, the ADC mod-  
ule has only  
1 ADC result buffer, (i.e.,  
ADC1BUF0), per ADC peripheral and the ADC  
conversion result must be read either by the  
CPU or DMA controller before the next ADC  
conversion is complete to avoid overwriting the  
previous value.  
4. The DONE bit (AD1CON1<0>) is only cleared at  
the start of each conversion and is set at the  
completion of the conversion, but remains set  
indefinitely even through the next sample phase  
until the next conversion begins. If application  
code is monitoring the DONE bit in any kind of  
software loop, the user must consider this  
behavior because the CPU code execution is  
faster than the ADC. As a result, in manual sam-  
ple mode, particularly where the users code is  
setting the SAMP bit (AD1CON1<1>), the  
DONE bit should also be cleared by the user  
application just before setting the SAMP bit.  
5. On devices with two ADC modules, the  
ADCxPCFG registers for both ADC modules  
must be set to a logic ‘1’ to configure a target  
I/O pin as a digital I/O pin. Failure to do so  
means that any alternate digital input function  
will always see only a logic ‘0’ as the digital  
input buffer is held in Disable mode.  
DS70592D-page 210  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
20.6  
ADC Control Registers  
REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2)  
R/W-0  
ADON  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADSIDL  
ADDMABM  
AD12B  
FORM<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
ASAM  
R/W-0  
HC,HS  
R/C-0  
HC, HS  
SSRC<2:0>  
SIMSAM  
SAMP  
DONE  
bit 7  
Legend:  
bit 0  
HC = Cleared by hardware  
W = Writable bit  
HS = Set by hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
ADON: ADC Operating Mode bit  
1= ADC module is operating  
0= ADC module is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
ADDMABM: DMA Buffer Build Mode bit  
1= DMA buffers are written in the order of conversion. The module will provide an address to the DMA  
channel that is the same as the address used for the non-DMA stand-alone buffer  
0= DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address  
to the DMA channel, based on the index of the analog input and the size of the DMA buffer  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
AD12B: 10-Bit or 12-Bit Operation Mode bit  
1= 12-bit, 1-channel ADC operation  
0= 10-bit, 4-channel ADC operation  
bit 9-8  
FORM<1:0>: Data Output Format bits  
For 10-bit operation:  
11= Reserved  
10= Reserved  
01= Signed integer (DOUT = ssss sssd dddd dddd, where s= .NOT.d<9>)  
00= Integer (DOUT = 0000 00dd dddd dddd)  
For 12-bit operation:  
11= Reserved  
10= Reserved  
01= Signed Integer (DOUT = ssss sddd dddd dddd, where s= .NOT.d<11>)  
00= Integer (DOUT = 0000 dddd dddd dddd)  
bit 7-5  
SSRC<2:0>: Sample Clock Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
101= Reserved  
100= GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion  
011= Reserved  
010= GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing sample bit ends sampling and starts conversion  
2009-2012 Microchip Technology Inc.  
DS70592D-page 211  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1(where x = 1 or 2) (CONTINUED)  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01or 1x)  
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’  
1= Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or  
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)  
0= Samples multiple channels individually in sequence  
bit 2  
bit 1  
ASAM: ADC Sample Auto-Start bit  
1= Sampling begins immediately after last conversion. SAMP bit is auto-set  
0= Sampling begins when SAMP bit is set  
SAMP: ADC Sample Enable bit  
1= ADC sample/hold amplifiers are sampling  
0= ADC sample/hold amplifiers are holding  
If ASAM = 0, software may write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.  
If SSRC = 000, software may write ‘0’ to end sampling and start conversion. If SSRC 000,  
automatically cleared by hardware to end sampling and start conversion.  
bit 0  
DONE: ADC Conversion Status bit  
1= ADC conversion cycle is completed.  
0= ADC conversion not started or in progress  
Automatically set by hardware when analog-to-digital conversion is complete. Software may write ‘0’  
to clear DONE status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation  
in progress. Automatically cleared by hardware at start of a new conversion.  
DS70592D-page 212  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2)  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
SMPI<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Converter Voltage Reference Configuration bits  
VREF+  
VREF-  
000  
AVDD  
AVSS  
AVSS  
001 External VREF+  
010 AVDD  
011 External VREF+  
1xx AVDD  
External VREF-  
External VREF-  
AVSS  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ during Sample A bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
CHPS<1:0>: Selects Channels Utilized bits  
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’  
1x= Converts CH0, CH1, CH2 and CH3  
01= Converts CH0 and CH1  
00= Converts CH0  
BUFS: Buffer Fill Status bit (only valid when BUFM = 1)  
1= ADC is currently filling second half of buffer, user should access data in first half  
0= ADC is currently filling first half of buffer, user should access data in second half  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion  
operations per interrupt  
1111= Increments the DMA address or generates interrupt after completion of every 16th sample/  
conversion operation  
1110= Increments the DMA address or generates interrupt after completion of every 15th sample/  
conversion operation  
0001= Increments the DMA address or generates interrupt after completion of every 2nd sample/con-  
version operation  
0000= Increments the DMA address or generates interrupt after completion of every sample/conver-  
sion operation  
bit 1  
bit 0  
BUFM: Buffer Fill Mode Select bit  
1= Starts filling first half of buffer on first interrupt and second half of buffer on next interrupt  
0= Always starts filling buffer from the beginning  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses channel input selects for Sample A on first sample and Sample B on next sample  
0= Always uses channel input selects for Sample A  
2009-2012 Microchip Technology Inc.  
DS70592D-page 213  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-3: ADxCON3: ADCx CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
SAMC<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS<7:0>(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: ADC Conversion Clock Source bit  
1= ADC internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto Sample Time bits(1)  
11111= 31 TAD  
00001= 1 TAD  
00000= 0 TAD  
bit 7-0  
ADCS<7:0>: Analog-to-Digital Conversion Clock Select bits(2)  
11111111= Reserved  
01000000= Reserved  
00111111= TCY ·(ADCS<7:0> + 1) = 64 ·TCY = TAD  
00000010= TCY ·(ADCS<7:0> + 1) = 3 ·TCY = TAD  
00000001= TCY ·(ADCS<7:0> + 1) = 2 ·TCY = TAD  
00000000= TCY ·(ADCS<7:0> + 1) = 1 ·TCY = TAD  
Note 1: This bit only used if ADxCON1<7:5> (SSRC<2:0>) = 111.  
2: This bit is not used if ADxCON3<15> (ADRC) = 1.  
DS70592D-page 214  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
DMABL<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits  
111= Allocates 128 words of buffer to each analog input  
110= Allocates 64 words of buffer to each analog input  
101= Allocates 32 words of buffer to each analog input  
100= Allocates 16 words of buffer to each analog input  
011= Allocates 8 words of buffer to each analog input  
010= Allocates 4 words of buffer to each analog input  
001= Allocates 2 words of buffer to each analog input  
000= Allocates 1 word of buffer to each analog input  
2009-2012 Microchip Technology Inc.  
DS70592D-page 215  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NB<1:0>  
CH123SB  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NA<1:0>  
CH123SA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits  
When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as ‘0’  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
0x= CH1, CH2, CH3 negative input is VREF-  
bit 8  
CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit  
When AD12B = 1, CHxSB is: U-0, Unimplemented, Read as ‘0’  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
bit 7-3  
bit 2-1  
Unimplemented: Read as ‘0’  
CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits  
When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as ‘0’  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
0x= CH1, CH2, CH3 negative input is VREF-  
bit 0  
CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit  
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
DS70592D-page 216  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH0SB<4:0>(1)  
R/W-0  
R/W-0  
bit 8  
R/W-0  
CH0NB  
bit 15  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH0SA<4:0>(1)  
R/W-0  
CH0NA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for Sample B bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits(1)  
11111= Channel 0 positive input is AN31  
11110= Channel 0 positive input is AN30  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for Sample A bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 6-5  
bit 4-0  
Unimplemented: Read as ‘0’  
CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits(1)  
11111= Channel 0 positive input is AN31  
11110= Channel 0 positive input is AN30  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
Note 1: ADC2 can only select AN0 through AN15 as positive inputs.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 217  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS31  
CSS30  
CSS29  
CSS28  
CSS27  
CSS26  
CSS25  
CSS24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS23  
CSS22  
CSS21  
CSS20  
CSS19  
CSS18  
CSS17  
CSS16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CSS<31:16>: ADC Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected  
for scan without a corresponding input on device will convert VREFL.  
2: CSSx = ANx, where x = 16 through 31.  
REGISTER 20-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS11  
R/W-0  
R/W-0  
CSS9  
R/W-0  
CSS8  
CSS15  
CSS14  
CSS13  
CSS12  
CSS10  
bit 15  
bit 8  
R/W-0  
CSS7  
R/W-0  
CSS6  
R/W-0  
CSS5  
R/W-0  
CSS4  
R/W-0  
CSS3  
R/W-0  
CSS2  
R/W-0  
CSS1  
R/W-0  
CSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CSS<15:0>: ADC Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected  
for scan without a corresponding input on device will convert VREF-.  
2: CSSx = ANx, where x = 0 through 15.  
DS70592D-page 218  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH(1,2,3,4)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG31  
PCFG30  
PCFG29  
PCFG28  
PCFG27  
PCFG26  
PCFG25  
PCFG24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG23  
PCFG22  
PCFG21  
PCFG20  
PCFG19  
PCFG18  
PCFG17  
PCFG16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PCFG<31:16>: ADC Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVSS  
0= Port pin in Analog mode, port read input disabled, ADC samples pin voltage  
Note 1: On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on  
ports without a corresponding input on device.  
2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 high port Configuration register exists.  
3: PCFGx = ANx, where x = 16 through 31.  
4: PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In  
this case all port pins multiplexed with ANx will be in Digital mode.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 219  
PIC24HJXXXGPX06A/X08A/X10A  
REGISTER 20-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW(1,2,3,4)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG15  
PCFG14  
PCFG13  
PCFG12  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG7  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PCFG<15:0>: ADC Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVSS  
0= Port pin in Analog mode, port read input disabled, ADC samples pin voltage  
Note 1: On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on  
ports without a corresponding input on device.  
2: On devices with 2 analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration  
of port pins multiplexed with AN0-AN15.  
3: PCFGx = ANx, where x = 0 through 15.  
4: PCFGx bits will have no effect if ADC module is disabled by setting ADxMD bit in the PMDx register. In this  
case all port pins multiplexed with ANx will be in Digital mode.  
DS70592D-page 220  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
21.1 Configuration Bits  
21.0 SPECIAL FEATURES  
PIC24HJXXXGPX06A/X08A/X10A devices provide  
nonvolatile memory implementation for device  
configuration bits. Refer to Section 25. “Device Con-  
figuration” (DS70194) of the “dsPIC33F/PIC24H  
Family Reference Manual”, for more information on this  
implementation.  
Note 1: This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
families of devices. However, it is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
23.  
“CodeGuard™  
Security”  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select vari-  
ous device configurations. These bits are mapped  
starting at program memory location 0xF80000.  
(DS70199), Section 24. “Programming  
and Diagnostics” (DS70207), and Sec-  
tion 25. “Device Configuration”  
(DS70194) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
The device Configuration register map is shown in  
Table 21-1.  
The individual Configuration bit descriptions for the  
Configuration registers are shown in Table 21-2.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Note that address 0xF80000 is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (0x800000-0xFFFFFF), which can only  
be accessed using table reads and table writes.  
PIC24HJXXXGPX06A/X08A/X10A devices include  
several features intended to maximize application flex-  
ibility and reliability, and minimize cost through elimina-  
tion of external components. These are:  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
• In-Circuit Emulation  
TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP  
Address  
Name  
Bit 7  
RBS<1:0>  
RSS<1:0>  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BSS<2:0>  
SSS<2:0>  
BWRP  
SWRP  
GWRP  
0xF80000 FBS  
0xF80002 FSS  
0xF80004 FGS  
0xF80006 FOSCSEL  
0xF80008 FOSC  
0xF8000A FWDT  
0xF8000C FPOR  
0xF8000E FICD  
0xF80010 FUID0  
0xF80012 FUID1  
0xF80014 FUID2  
0xF80016 FUID3  
GSS<1:0>  
FNOSC<2:0>  
IESO  
Reserved(2)  
FCKSM<1:0>  
OSCIOFNC POSCMD<1:0>  
WDTPOST<3:0>  
FWDTEN  
WINDIS PLLKEN(3) WDTPRE  
Reserved(4)  
FPWRT<2:0>  
Reserved(1)  
JTAGEN  
ICS<1:0>  
User Unit ID Byte 0  
User Unit ID Byte 1  
User Unit ID Byte 2  
User Unit ID Byte 3  
Legend: — = unimplemented bits, read as ‘0’.  
Note 1: These bits are reserved for use by development tools and must be programmed as ‘1’.  
2: When read, this bit returns the current programmed value.  
3: This bit is unimplemented on PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A  
devices and reads as ‘0’.  
4: These bits are reserved and always read as ‘1’.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 221  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 21-2: CONFIGURATION BITS DESCRIPTION  
RTSP  
Bit Field  
Register  
Description  
Effect  
BWRP  
FBS  
Immediate Boot Segment Program Flash Write Protection  
1= Boot segment may be written  
0= Boot segment is write-protected  
BSS<2:0>  
FBS  
Immediate Boot Segment Program Flash Code Protection Size  
X11= No Boot program Flash segment  
Boot space is 1K IW less VS  
110= Standard security; boot program Flash segment starts at End of  
VS, ends at 0x0007FE  
010= High security; boot program Flash segment starts at End of VS,  
ends at 0x0007FE  
Boot space is 4K IW less VS  
101= Standard security; boot program Flash segment starts at End of  
VS, ends at 0x001FFE  
001= High security; boot program Flash segment starts at End of VS,  
ends at 0x001FFE  
Boot space is 8K IW less VS  
100= Standard security; boot program Flash segment starts at End of  
VS, ends at 0x003FFE  
000= High security; boot program Flash segment starts at End of VS,  
ends at 0x003FFE  
RBS<1:0>  
SWRP  
FBS  
FSS  
Immediate Boot Segment RAM Code Protection  
11= No Boot RAM defined  
10= Boot RAM is 128 Bytes  
01= Boot RAM is 256 Bytes  
00 = Boot RAM is 1024 Bytes  
Immediate Secure Segment Program Flash Write Protection  
1= Secure segment may be written  
0= Secure segment is write-protected  
DS70592D-page 222  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)  
RTSP  
Effect  
Bit Field  
Register  
Description  
SSS<2:0>  
FSS  
Immediate Secure Segment Program Flash Code Protection Size  
(FOR 128K and 256K DEVICES)  
X11= No Secure program Flash segment  
Secure space is 8K IW less BS  
110= Standard security; secure program Flash segment starts at End of  
BS, ends at 0x003FFE  
010= High security; secure program Flash segment starts at End of BS,  
ends at 0x003FFE  
Secure space is 16K IW less BS  
101= Standard security; secure program Flash segment starts at End of  
BS, ends at 0x007FFE  
001= High security; secure program Flash segment starts at End of BS,  
ends at 0x007FFE  
Secure space is 32K IW less BS  
100= Standard security; secure program Flash segment starts at End of  
BS, ends at 0x00FFFE  
000= High security; secure program Flash segment starts at End of BS,  
ends at 0x00FFFE  
(FOR 64K DEVICES)  
X11= No Secure program Flash segment  
Secure space is 4K IW less BS  
110= Standard security; secure program Flash segment starts at End of  
BS, ends at 0x001FFE  
010= High security; secure program Flash segment starts at End of BS,  
ends at 0x001FFE  
Secure space is 8K IW less BS  
101= Standard security; secure program Flash segment starts at End of  
BS, ends at 0x003FFE  
001= High security; secure program Flash segment starts at End of BS,  
ends at 0x003FFE  
Secure space is 16K IW less BS  
100= Standard security; secure program Flash segment starts at End of  
BS, ends at 0x007FFE  
000= High security; secure program Flash segment starts at End of BS,  
ends at 0x007FFE  
RSS<1:0>  
GSS<1:0>  
FSS  
FGS  
Immediate Secure Segment RAM Code Protection  
11= No Secure RAM defined  
10= Secure RAM is 256 Bytes less BS RAM  
01= Secure RAM is 2048 Bytes less BS RAM  
00= Secure RAM is 4096 Bytes less BS RAM  
Immediate General Segment Code-Protect bit  
11= User program memory is not code-protected  
10= Standard Security; general program Flash segment starts at End of  
SS, ends at EOM  
0x= High Security; general program Flash segment starts at End of ESS,  
ends at EOM  
GWRP  
FGS  
Immediate General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
2009-2012 Microchip Technology Inc.  
DS70592D-page 223  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)  
RTSP  
Bit Field  
Register  
Description  
Effect  
FOSCSEL Immediate Internal External Start-up Option bit  
1= Start-up device with FRC, then automatically switch to the  
IESO  
user-selected oscillator source when ready  
0= Start-up device with user-selected oscillator source  
FNOSC<2:0> FOSCSEL  
If clock  
Initial Oscillator Source Selection bits  
switch is 111= Internal Fast RC (FRC) oscillator with postscaler  
enabled, 110= Reserved  
RTSP  
101= LPRC oscillator  
effect is on 100= Secondary (LP) oscillator  
any device 011= Primary (XT, HS, EC) oscillator with PLL  
Reset;  
010= Primary (XT, HS, EC) oscillator  
otherwise, 001= Internal Fast RC (FRC) oscillator with PLL  
Immediate 000= FRC oscillator  
FCKSM<1:0>  
FOSC  
Immediate Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFNC  
FOSC  
FOSC  
Immediate OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is clock output  
0= OSC2 is general purpose digital I/O pin  
POSCMD<1:0>  
Immediate Primary Oscillator Mode Select bits  
11= Primary oscillator disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
FWDTEN  
FWDT  
Immediate Watchdog Timer Enable bit  
1= Watchdog Timer always enabled (LPRC oscillator cannot be disabled.  
Clearing the SWDTEN bit in the RCON register will have no effect.)  
0 = Watchdog Timer enabled/disabled by user software (LPRC can be  
disabled by clearing the SWDTEN bit in the RCON register)  
WINDIS  
PLLKEN  
FWDT  
FWDT  
FWDT  
FWDT  
Immediate Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
Immediate PLL Lock Enable bit  
1= Clock switch to PLL source will wait until the PLL lock signal is valid.  
0= Clock switch will not wait for the PLL lock signal.  
WDTPRE  
WDTPOST  
Immediate Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
Immediate Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
0001= 1:2  
0000= 1:1  
DS70592D-page 224  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)  
RTSP  
Effect  
Bit Field  
Register  
Description  
FPWRT<2:0>  
FPOR  
Immediate Power-on Reset Timer Value Select bits  
111= PWRT = 128 ms  
110= PWRT = 64 ms  
101= PWRT = 32 ms  
100= PWRT = 16 ms  
011= PWRT = 8 ms  
010= PWRT = 4 ms  
001= PWRT = 2 ms  
000= PWRT = Disabled  
JTAGEN  
ICS<1:0>  
FICD  
FICD  
Immediate JTAG Enable bits  
1= JTAG enabled  
0= JTAG disabled  
Immediate ICD Communication Channel Select bits  
11= Communicate on PGEC1 and PGED1  
10= Communicate on PGEC2 and PGED2  
01= Communicate on PGEC3 and PGED3  
00= Reserved  
2009-2012 Microchip Technology Inc.  
DS70592D-page 225  
PIC24HJXXXGPX06A/X08A/X10A  
21.2 On-Chip Voltage Regulator  
21.3 Brown-out Reset (BOR)  
All of the PIC24HJXXXGPX06A/X08A/X10A devices  
power their core digital logic at a nominal 2.5V. This  
may create an issue for designs that are required to  
operate at a higher typical voltage, such as 3.3V. To  
simplify system design, all devices in the  
PIC24HJXXXGPX06A/X08A/X10A family incorporate  
an on-chip regulator that allows the device to run its  
core logic from VDD.  
The BOR (Brown-out Reset) module is based on an  
internal voltage reference circuit that monitors the reg-  
ulated voltage VCAP. The main purpose of the BOR  
module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (i.e.,  
missing portions of the AC cycle waveform due to bad  
power transmission lines or voltage sags due to exces-  
sive current draw when a large inductive load is turned  
on).  
The regulator provides power to the core from the other  
VDD pins. The regulator requires that a low-ESR (less  
than 5 ohms) capacitor (such as tantalum or ceramic)  
be connected to the VCAP pin (Figure 21-1). This helps  
to maintain the stability of the regulator. The  
recommended value for the filter capacitor is provided  
in Table 24-13 of Section 24.1 “DC Characteristics”.  
A BOR will generate a Reset pulse which will reset the  
device. The BOR will select the clock source, based on  
the device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>). Furthermore, if an oscillator mode is  
selected, the BOR will activate the Oscillator Start-up  
Timer (OST). The system clock is held until OST  
expires. If the PLL is used, the clock will be held until  
the LOCK bit (OSCCON<5>) is ‘1’.  
Note:  
It is important for the low-ESR capacitor to  
be placed as close as possible to the VCAP  
pin.  
Concurrently, the PWRT time-out (TPWRT) will be  
applied before the internal Reset is released. If  
TPWRT = 0 and a crystal oscillator is being used, a  
nominal delay of TFSCM = 100 is applied. The total  
delay in this case is TFSCM.  
On a POR, it takes approximately 20 s for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
The BOR Status bit (RCON<1>) will be set to indicate  
that a BOR has occurred. The BOR circuit continues to  
operate while in Sleep or Idle modes and will reset the  
device should VDD fall below the BOR threshold  
voltage.  
FIGURE 21-1:  
ON-CHIP VOLTAGE  
REGULATOR  
CONNECTIONS(1,2,3)  
3.3V  
PIC24H  
VDD  
VCAP  
VSS  
CEFC  
10 µF  
Note 1: These are typical operating voltages. Refer to  
Table 24-13 located in Section 24.1 “DC  
Characteristics” for the full operating ranges  
of VDD and VCAP.  
2: It is important for the low-ESR capacitor to  
be placed as close as possible to the VCAP  
pin.  
3: Typical VCAP pin voltage = 2.5V when VDD   
VDDMIN.  
DS70592D-page 226  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
If the WDT is enabled, it will continue to run during  
21.4 Watchdog Timer (WDT)  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAVinstruction was exe-  
cuted. The corresponding SLEEP or IDLE bits  
(RCON<3,2>) will need to be cleared in software after  
the device wakes up.  
For PIC24HJXXXGPX06A/X08A/X10A devices, the  
WDT is driven by the LPRC oscillator. When the WDT  
is enabled, the clock source is also enabled.  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler than can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>) which allow the selec-  
tion of a total of 16 settings, from 1:1 to 1:32,768. Using  
the prescaler and postscaler, time-out periods ranging  
from 1 ms to 131 seconds can be achieved.  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN con-  
trol bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for crit-  
ical code segments and disable the WDT during  
non-critical segments for maximum power savings.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
Note:  
If the WINDIS bit (FWDT<6>) is cleared,  
the CLRWDTinstruction should be executed  
by the application software only during the  
last 1/4 of the WDT period. This CLRWDT  
window can be determined by using a timer.  
If a CLRWDTinstruction is executed before  
this window, a WDT Reset occurs.  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
FIGURE 21-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPRE  
Prescaler  
WDTPOST<3:0>  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
0
RS  
RS  
Postscaler  
WDT  
Reset  
(divide by N1)  
(divide by N2)  
LPRC Clock  
WDT Window Select  
WINDIS  
CLRWDTInstruction  
2009-2012 Microchip Technology Inc.  
DS70592D-page 227  
PIC24HJXXXGPX06A/X08A/X10A  
21.5 JTAG Interface  
21.7 In-Circuit Serial Programming  
Programming Capability  
PIC24HJXXXGPX06A/X08A/X10A devices implement  
a JTAG interface, which supports boundary scan  
device testing, as well as in-circuit programming.  
Detailed information on the interface will be provided in  
future revisions of the document.  
PIC24HJXXXGPX06A/X08A/X10A family digital signal  
controllers can be serially programmed while in the end  
application circuit. This is simply done with two lines for  
clock and data and three other lines for power, ground  
and the programming sequence. This allows custom-  
ers to manufacture boards with unprogrammed  
devices and then program the digital signal controller  
just before shipping the product. This also allows the  
most recent firmware or a custom firmware, to be pro-  
grammed. Please refer to the “dsPIC33F/PIC24H  
Note:  
For further information, refer to the  
dsPIC33F/PIC24H Family Reference  
Manual“, Section 24. “Programming  
and Diagnostics” (DS70207), which is  
available from the Microchip web site  
(www.microchip.com).  
Flash  
Programming  
Specification”  
(DS70152)  
document for details about ICSP programming  
capability.  
21.6 Code Protection and  
CodeGuard™ Security  
Any one out of three pairs of programming clock/data  
pins may be used:  
The PIC24H product families offer advanced imple-  
mentation of CodeGuard™ Security. CodeGuard  
Security enables multiple parties to securely share  
resources (memory, interrupts and peripherals) on a  
single chip. This feature helps protect individual  
Intellectual Property in collaborative system designs.  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
21.8 In-Circuit Debugger  
When coupled with software encryption libraries,  
CodeGuard Security can be used to securely update  
Flash even when multiple IP are resident on the single  
chip. The code protection features vary depending on  
the actual PIC24H implemented. The following  
sections provide an overview these features.  
When MPLAB® ICD 3 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This func-  
tion allows simple debugging functions when used with  
MPLAB IDE. Debugging functionality is controlled  
through the PGECx (Emulation/Debug Clock) and  
PGEDx (Emulation/Debug Data) pin functions.  
The code protection features are controlled by the  
Configuration registers: FBS, FSS and FGS.  
Any one out of three pairs of debugging clock/data pins  
may be used:  
Note:  
For further information, refer to the  
dsPIC33F/PIC24H Family Reference  
Manual”, Section 23. “CodeGuard™  
Security” (DS70239), which is available  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
from  
the  
Microchip  
web  
site  
To use the in-circuit debugger function of the device,  
the design must implement ICSP programming capa-  
bility connections to MCLR, VDD, VSS and the PGEDx/  
PGECx pin pair. In addition, when the feature is  
enabled, some of the resources are not available for  
general use. These resources include the first 80 bytes  
of data RAM and two I/O pins.  
(www.microchip.com).  
DS70592D-page 228  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
22.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of the PIC24HJXXXGPX06A/X08A/X10A  
families of devices. However, it is not  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
intended to be  
a
comprehensive  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
reference source. To complement the  
information in this data sheet, refer to the  
related section in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
The literal instructions that involve data movement may  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
The PIC24H instruction set is identical to that of the  
PIC24F, and is a subset of the dsPIC30F/33F  
instruction set.  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand which is a register ‘Wb’  
without any address modifier  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The second source operand which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The control instructions may use some of the following  
operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• A program memory address  
• The mode of the table read and table write  
instructions  
• DSP operations  
• Control operations  
All instructions are a single word, except for certain  
double word instructions, which were made double  
word instructions so that all the required information is  
available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it will execute as a NOP.  
Table 22-1 shows the general symbols used in  
describing the instructions.  
The PIC24H instruction set summary in Table 22-2 lists  
all the instructions, along with the status flags affected  
by each instruction.  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
reads and writes and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles. Certain instructions that involve skipping over the  
subsequent instruction require either two or three cycles  
if the skip is performed, depending on whether the  
instruction being skipped is a single-word or double word  
instruction. Moreover, double word moves require two  
cycles. The double word instructions execute in two  
instruction cycles.  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
Note:  
For more details on the instruction set,  
refer to the “16-bit MCU and DSC  
Programmer’s  
Reference  
Manual”  
(DS70157).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 229  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
bit4  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
lit14  
lit16  
lit23  
None  
PC  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
16-bit unsigned literal {0...65535}  
23-bit unsigned literal {0...8388608}; LSB must be ‘0’  
Field does not require an entry, may be blank  
Program Counter  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
Wm*Wm  
Multiplicand and Multiplier working register pair for Square instructions   
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Wm*Wn  
Multiplicand and Multiplier working register pair for DSP instructions   
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0...W15}  
One of 16 source working registers {W0...W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register   
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
DS70592D-page 230  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 22-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
ADD  
f
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
1
ADD  
ADDC  
AND  
ASR  
ADD  
f,WREG  
WREG = f + WREG  
1
ADD  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wd = lit10 + Wd  
1
ADD  
Wd = Wb + Ws  
1
ADD  
Wd = Wb + lit5  
1
1
2
3
4
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
f = f + WREG + (C)  
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
1
AND  
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
Wd = Wb .AND. lit5  
1
N,Z  
AND  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
AND  
1
N,Z  
AND  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
ASR  
f,WREG  
1
ASR  
Ws,Wd  
1
ASR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
ASR  
1
N,Z  
5
6
BCLR  
BRA  
BCLR  
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
BRA  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
Branch if unsigned less than  
Branch if Negative  
None  
BRA  
None  
BRA  
NC,Expr  
NN,Expr  
NZ,Expr  
Expr  
Branch if Not Carry  
None  
BRA  
Branch if Not Negative  
Branch if Not Zero  
None  
BRA  
None  
BRA  
Branch Unconditionally  
Branch if Zero  
None  
BRA  
Z,Expr  
1 (2)  
2
None  
BRA  
Wn  
Computed Branch  
None  
7
BSET  
BSW  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
8
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
9
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
1
None  
BTG  
Bit Toggle Ws  
1
None  
10  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1
1
None  
None  
None  
(2 or 3)  
11  
BTSS  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
2009-2012 Microchip Technology Inc.  
DS70592D-page 231  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
12  
BTST  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
Bit Test Ws to Z  
C
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Ws,Wb  
Z
Z
13  
BTSTS  
f,#bit4  
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
Wn  
None  
None  
None  
None  
None  
WDTO,Sleep  
N,Z  
Call indirect subroutine  
f = 0x0000  
f
CLR  
WREG  
Ws  
WREG = 0x0000  
Ws = 0x0000  
CLR  
16  
17  
CLRWDT  
COM  
CLRWDT  
COM  
Clear Watchdog Timer  
f = f  
f
COM  
f,WREG  
WREG = f  
N,Z  
COM  
CP  
Ws,Wd  
Wd = Ws  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
18  
CP  
f
Compare f with WREG  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Compare Wb with lit5  
CP  
Wb,Ws  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
f
Ws  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = decimal adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
1
DEC  
Wd = Ws – 1  
1
27  
DEC2  
DEC2  
DEC2  
DEC2  
DISI  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
f = f – 2  
1
f,WREG  
Ws,Wd  
#lit14  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
WREG = f – 2  
1
Wd = Ws – 2  
1
28  
29  
DISI  
DIV  
Disable Interrupts for k instruction cycles  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Swap Wns with Wnd  
1
18  
18  
18  
18  
1
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
30  
31  
32  
33  
34  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
C
1
C
1
C
2
None  
Wn  
Go to indirect  
2
None  
DS70592D-page 232  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
35  
INC  
INC  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
Wd = Ws + 1  
f = f + 2  
INC  
36  
37  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
#lit14  
f
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
N,Z  
IOR  
N,Z  
IOR  
Wd = Wb .IOR. Ws  
N,Z  
IOR  
Wd = Wb .IOR. lit5  
N,Z  
38  
39  
LNK  
LSR  
LNK  
Link Frame Pointer  
None  
LSR  
f = Logical Right Shift f  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
LSR  
f,WREG  
Ws,Wd  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Move f to Wn  
LSR  
LSR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,Wn  
LSR  
N,Z  
40  
MOV  
MOV  
None  
MOV  
f
Move f to f  
None  
MOV  
f,WREG  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move f to WREG  
N,Z  
MOV  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
None  
MOV.b  
MOV  
None  
Move Wn to f  
None  
MOV  
Wso,Wdo  
WREG,f  
Wns,Wd  
Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Move Ws to Wd  
None  
MOV  
Move WREG to f  
None  
MOV.D  
MOV.D  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
None  
None  
41  
MUL  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
None  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
f
W3:W2 = f * WREG  
1
1
None  
42  
NEG  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
43  
44  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
2
1
1
All  
None  
45  
46  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
PUSH  
Wso  
Wns  
None  
PUSH.D  
PUSH.S  
PWRSAV  
None  
None  
PWRSAV  
#lit1  
Go into Sleep or Idle mode  
WDTO,Sleep  
2009-2012 Microchip Technology Inc.  
DS70592D-page 233  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
47  
RCALL  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
Expr  
Wn  
Relative Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
None  
None  
Computed Call  
48  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software device Reset  
1
None  
1
None  
49  
50  
51  
52  
53  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
None  
Return from interrupt  
3 (2)  
3 (2)  
3 (2)  
1
None  
#lit10,Wn  
Return with literal in Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Wnd = sign-extended Ws  
f = 0xFFFF  
None  
None  
f
C,N,Z  
RLC  
f,WREG  
Ws,Wd  
f
1
C,N,Z  
RLC  
1
C,N,Z  
54  
55  
56  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
1
N,Z  
f,WREG  
Ws,Wd  
f
1
N,Z  
1
N,Z  
1
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
f
1
C,N,Z  
RRC  
1
C,N,Z  
RRNC  
RRNC  
RRNC  
RRNC  
SE  
1
N,Z  
f,WREG  
Ws,Wd  
Ws,Wnd  
f
1
N,Z  
1
N,Z  
57  
58  
SE  
1
C,N,Z  
SETM  
SETM  
SETM  
SETM  
SL  
1
None  
WREG  
WREG = 0xFFFF  
1
None  
Ws  
Ws = 0xFFFF  
1
None  
59  
60  
61  
SL  
f
f = Left Shift f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
SL  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f
WREG = Left Shift f  
1
SL  
Wd = Left Shift Ws  
1
SL  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
f = f – WREG  
1
SL  
1
N,Z  
SUB  
SUBB  
SUB  
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
WREG = f – WREG  
1
SUB  
Wn = Wn – lit10  
1
SUB  
Wd = Wb – Ws  
1
SUB  
Wd = Wb – lit5  
1
SUBB  
SUBB  
SUBB  
f
f = f – WREG – (C)  
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
#lit10,Wn  
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
62  
63  
SUBR  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG – f  
Wd = Ws – Wb  
Wd = lit5 – Wb  
SUBBR  
f = WREG – f – (C)  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
Wd = lit5 – Wb – (C)  
64  
65  
SWAP  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Wn  
None  
TBLRDH  
TBLRDH  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
None  
DS70592D-page 234  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<15:0> to Wd  
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
None  
None  
None  
None  
N,Z  
67  
68  
69  
70  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
Wd = Wb .XOR. lit5  
N,Z  
71  
ZE  
ZE  
Wnd = Zero-extend Ws  
C,Z,N  
2009-2012 Microchip Technology Inc.  
DS70592D-page 235  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 236  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
23.1 MPLAB Integrated Development  
Environment Software  
23.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 237  
PIC24HJXXXGPX06A/X08A/X10A  
23.2 MPLAB C Compilers for Various  
Device Families  
23.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
23.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
23.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
23.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS70592D-page 238  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
23.7 MPLAB SIM Software Simulator  
23.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
23.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
23.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 239  
PIC24HJXXXGPX06A/X08A/X10A  
23.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
23.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
23.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70592D-page 240  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
24.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics. Additional  
information is provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A family are listed below. Exposure to these maxi-  
mum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or  
any other conditions above the parameters indicated in the operation listings of this specification is not implied.  
Absolute Maximum Ratings  
(See Note 1 )  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +160°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(4) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(4) .................................................. -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(4) ..................................................... -0.3V to 3.6V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum current sourced/sunk by any 2x I/O pin(3) ................................................................................................8 mA  
Maximum current sourced/sunk by any 4x I/O pin(3) ..............................................................................................15 mA  
Maximum current sourced/sunk by any 8x I/O pin(3) ..............................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods can affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).  
3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx  
and PGEDx pins, which are able to sink/source 12 mA.  
4: See the “Pin Diagrams” section for 5V tolerant pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 241  
PIC24HJXXXGPX06A/X08A/X10A  
24.1 DC Characteristics  
TABLE 24-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
PIC24HJXXXGPX06A/X08A/X10A  
VBOR-3.6V(1)  
VBOR-3.6V(1)  
-40°C to +85°C  
-40°C to +125°C  
40  
40  
Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded  
performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11  
for the minimum and maximum BOR values.  
TABLE 24-2: THERMAL OPERATING CONDITIONS  
Rating  
Industrial Temperature Devices  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Extended Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+150  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)  
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)  
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)  
JA  
JA  
JA  
JA  
40  
40  
40  
28  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
DS70592D-page 242  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
3.0  
1.8  
3.6  
V
V
V
Industrial and Extended  
DC12  
DC16  
VDR  
RAM Data Retention Voltage(2)  
VPOR  
VDD Start Voltage  
to ensure internal  
VSS  
Power-on Reset signal  
DC17  
SVDD  
VDD Rise Rate  
0.03  
V/ms 0-3.0V in 0.1s  
to ensure internal  
Power-on Reset signal  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 243  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(2)  
Max  
Units  
Conditions  
No.(3)  
Operating Current (IDD)(1)  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
27  
27  
27  
27  
36  
37  
38  
39  
43  
46  
46  
47  
65  
65  
65  
65  
84  
84  
84  
84  
30  
30  
30  
35  
40  
40  
45  
45  
50  
50  
55  
55  
70  
70  
70  
70  
90  
90  
90  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from  
rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits  
are set to zero and unimplemented PMDx bits are set to one)  
• CPU executing while(1)statement  
• JTAG is disabled  
2: These parameters are characterized but not tested in manufacturing.  
3: Data in “Typ” column is at 3.3V, +25ºC unless otherwise stated.  
DS70592D-page 244  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Parameter  
Typical(2)  
No.(3)  
Max  
Units  
Conditions  
Idle Current (IIDLE): Core OFF Clock ON Base Current(1)  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43a  
DC43d  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
3
3
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
3.3V  
3.3V  
3
3
4
5
+25°C  
+85°C  
+125°C  
-40°C  
6
6
8
9
+25°C  
+85°C  
+125°C  
+25°C  
-40°C  
3.3V  
3.3V  
3.3V  
10  
10  
15  
15  
15  
15  
16  
16  
16  
16  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Base IIDLE current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits  
are set to zero and unimplemented PMDx bits are set to one)  
• JTAG is disabled  
2: These parameters are characterized but not tested in manufacturing.  
3: Data in “Typ” column is at 3.3V, +25ºC unless otherwise stated.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 245  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(2)  
Max  
Units  
Conditions  
No.(3)  
Power-Down Current (IPD)(1)  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
50  
50  
200  
600  
8
200  
200  
500  
1000  
13  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current(3)  
10  
12  
13  
15  
+25°C  
+85°C  
+125°C  
(3)  
Watchdog Timer Current: IWDT  
20  
25  
Note 1: IPD (Sleep) current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled, all peripheral modules except the ADC are disabled  
(PMDx bits are all ‘1’s). The following ADC settings are enabled for each ADC module (ADCx) prior to  
executing the PWRSAV instruction: ADON = 1, VCFG = 1, AD12B = 1and ADxMD = 0.  
• VREGS bit (RCON<8>) = 0(i.e., core regulator is set to stand-by while the device is in Sleep mode)  
• RTCC is disabled.  
• JTAG is disabled  
2: Data in the “Typ” column is at 3.3V, +25ºC unless otherwise stated.  
3: The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This  
current should be added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
5: These parameters are characterized, but are not tested in manufacturing.  
DS70592D-page 246  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Doze  
Ratio  
Parameter No.  
Typical(2)  
Max  
Units  
Conditions  
Doze Current (IDOZE)(1)  
DC73a  
11  
11  
11  
42  
26  
25  
41  
25  
24  
42  
26  
25  
35  
30  
30  
50  
30  
30  
50  
30  
30  
50  
30  
30  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DC73f  
-40°C  
+25°C  
+85°C  
3.3V  
40 MIPS  
40 MIPS  
40 MIPS  
40 MIPS  
DC73g  
DC70a  
DC70f  
1:64  
1:128  
1:2  
3.3V  
3.3V  
DC70g  
DC71a  
DC71f  
1:64  
1:128  
1:2  
DC71g  
DC72a  
DC72f  
1:64  
1:128  
+125°C 3.3V  
DC72g  
Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDOZE measurements are as follows:  
• Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square  
wave from rail-to-rail with overshoot/undershoot < 250 mV  
• CLKO is configured as an I/O input pin in the Configuration word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits  
are set to zero and unimplemented PMDx bits are set to one)  
• CPU executing while(1)statement  
• JTAG is disabled  
2: Data in the “Typ” column is at 3.3V, +25ºC unless otherwise stated.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 247  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O pins  
DI10  
DI15  
DI16  
DI18  
DI19  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8 V  
V
V
V
V
V
MCLR  
I/O Pins with OSC1 or SOSCI  
I/O Pins with I2C  
I/O Pins with I2C  
Input High Voltage  
SMBus disabled  
SMBus enabled  
VIH  
DI20  
I/O Pins Not 5V Tolerant(4)  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
I/O Pins 5V Tolerant(4)  
DI28  
DI29  
SDAx, SCLx  
0.7 VDD  
2.1  
5.5  
5.5  
V
V
SMBus disabled  
SMBus enabled  
SDAx, SCLx  
ICNPU  
IIL  
CNx Pull-up Current  
DI30  
50  
250  
400  
A VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2,3)  
DI50  
DI51  
I/O Pins 5V Tolerant(4)  
±2  
±1  
A VSS VPIN VDD,  
Pin at high-impedance  
I/O Pins Not 5V Tolerant(4)  
A VSS VPIN VDD,  
Pin at high-impedance,  
-40°C TA +85°C  
DI51a  
DI51b  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
±2  
A Shared with external reference  
pins, -40°C TA +85°C  
±3.5  
A VSS VPIN VDD, Pin at  
high-impedance,  
-40°C TA +125°C  
DI51c  
I/O Pins Not 5V Tolerant(4)  
±8  
A Analog pins shared with  
external reference pins,  
-40°C TA +125°C  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
A VSS VPIN VDD  
A VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor a list of 5V tolerant pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
DS70592D-page 248  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
IICL  
Input Low Injection Current  
DI60a  
All pins except VDD, VSS, AVDD,  
AVSS, MCLR, VCAP, SOSCI,  
SOSCO, and RB11  
0
-5(5,8)  
mA  
IICH  
Input High Injection Current  
DI60b  
DI60c  
All pins except VDD, VSS, AVDD,  
AVSS, MCLR, VCAP, SOSCI,  
SOSCO, RB11, and all 5V  
tolerant pins(7)  
0
+5(6,7,8) mA  
IICT  
Total Input Injection Current  
(sum of all I/O and control  
pins)  
-20(9)  
+20(9)  
mA Absolute instantaneous sum of  
all ± input injection currents  
from all I/O pins  
( | IICL + | IICH | )  IICT  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor a list of 5V tolerant pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 249  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
Output Low Voltage  
I/O Pins:  
2x Sink Driver Pins - All pins not  
defined by 4x or 8x driver pins  
IOL 3 mA, VDD = 3.3V  
0.4  
0.4  
V
V
Output Low Voltage  
I/O Pins:  
4x Sink Driver Pins - RA2, RA3,  
RA9, RA10, RA14, RA15, RB0,  
RB1, RB11, RF4, RF5, RG2, RG3  
DO10 VOL  
IOL 6 mA, VDD = 3.3V  
Output Low Voltage  
I/O Pins:  
0.4  
V
V
IOL 10 mA, VDD = 3.3V  
IOL -3 mA, VDD = 3.3V  
8x Sink Driver Pins - OSC2, CLKO,  
RC15  
Output High Voltage  
I/O Pins:  
2x Source Driver Pins - All pins not  
defined by 4x or 8x driver pins  
2.4  
Output High Voltage  
I/O Pins:  
4x Source Driver Pins - RA2, RA3,  
RA9, RA10, RA14, RA15, RB0,  
RB1, RB11, RF4, RF5, RG2, RG3  
2.4  
2.4  
V
V
IOL -6 mA, VDD = 3.3V  
IOL -10 mA, VDD = 3.3V  
DO20 VOH  
Output High Voltage  
I/O Pins:  
8x Source Driver Pins - OSC2,  
CLKO, RC15  
Output High Voltage  
I/O Pins:  
2x Source Driver Pins - All pins not  
defined by 4x or 8x driver pins  
IOH -6 mA, VDD = 3.3V  
See Note 1  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
IOH -5 mA, VDD = 3.3V  
See Note 1  
V
V
V
IOH -2 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
IOH -12 mA, VDD = 3.3V  
See Note 1  
4x Source Driver Pins - RA2, RA3,  
RA9, RA10, RA14, RA15, RB0,  
RB1, RB11, RF4, RF5, RG2, RG3  
IOH -11 mA, VDD = 3.3V  
See Note 1  
DO20A VOH1  
IOH -3 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
8x Source Driver Pins - OSC2,  
CLKO, RC15  
IOH -16 mA, VDD = 3.3V  
See Note 1  
IOH -12 mA, VDD = 3.3V  
See Note 1  
IOH -4 mA, VDD = 3.3V  
See Note 1  
Note 1: Parameters are characterized, but not tested.  
DS70592D-page 250  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param.  
Symbol  
Characteristic(1)  
Min(1) Typ Max(1) Units  
Conditions  
BO10  
VBOR  
BOR Event on VDD transition high-to-low 2.40  
2.55  
V
VDD  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10,000  
VMIN  
E/W  
V
VPR  
VDD for Read  
3.6  
VMIN = Minimum operating  
voltage  
D132b VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
VMIN  
20  
10  
3.6  
V
VMIN = Minimum operating  
voltage  
D134  
D135  
TRETD  
IDDP  
Year Provided no other specifications are  
violated  
Supply Current during  
Programming  
mA  
D136a TRW  
D136b TRW  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
Row Write Time  
1.32  
1.28  
20.1  
19.5  
42.3  
41.1  
1.74  
1.79  
26.5  
27.3  
55.9  
57.6  
ms TRW = 11064 FRC cycles,  
TA = +85°C, See Note 2  
Row Write Time  
ms TRW = 11064 FRC cycles,  
TA = +150°C, See Note 2  
Page Erase Time  
Page Erase Time  
Word Write Cycle Time  
Word Write Cycle Time  
ms TPE = 168517 FRC cycles,  
TA = +85°C, See Note 2  
ms TPE = 168517 FRC cycles,  
TA = +150°C, See Note 2  
µs TWW = 355 FRC cycles,  
TA = +85°C, See Note 2  
µs TWW = 355 FRC cycles,  
TA = +150°C, See Note 2  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111(for Min), TUN<5:0> = b'100000(for Max).  
This parameter depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tun-  
ing register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see  
Section 5.3 “Programming Operations”.  
TABLE 24-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor Value  
4.7  
10  
F  
Capacitor must be low  
series resistance (< 5 Ohms)  
2009-2012 Microchip Technology Inc.  
DS70592D-page 251  
PIC24HJXXXGPX06A/X08A/X10A  
24.2 AC Characteristics and Timing  
Parameters  
This section defines PIC24HJXXXGPX06A/X08A/  
X10A AC characteristics and timing parameters.  
TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Table 24-1.  
FIGURE 24-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
DO50 COSCO  
OSC2/SOSCO pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
DS70592D-page 252  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS31 OS31  
OS25  
OS41  
OS40  
TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10 FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
40  
MHz EC  
Oscillator Crystal Frequency  
3.5  
10  
10  
40  
33  
MHz XT  
MHz HS  
kHz SOSC  
OS20 TOSC  
OS25 TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2)  
12.5  
25  
DC  
DC  
ns  
ns  
ns  
OS30 TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
0.375 x TOSC  
0.625 x TOSC  
EC  
OS31 TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
ns  
EC  
OS40 TckR  
OS41 TckF  
OS42 GM  
CLKO Rise Time(3)  
CLKO Fall Time(3)  
14  
5.2  
5.2  
16  
18  
ns  
ns  
External Oscillator  
mA/V VDD = 3.3V  
TA = +25ºC  
Transconductance(4)  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 253  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range(2)  
0.8  
8
MHz ECPLL, HSPLL, XTPLL  
modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency  
100  
200  
MHz  
OS52  
OS53  
TLOCK  
DCLK  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)  
0.9  
-3  
1.5  
0.5  
3.1  
3
mS  
%
Measured over 100 ms  
period  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: These parameters are characterized by similarity but are not tested in manufacturing. This specification is  
based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time base  
or communication clocks used by peripherals use the formula:  
Peripheral Clock Jitter = DCLK / (FOSC/Peripheral bit rate clock)  
Example Only: Fosc = 80 MHz, DCLK = 3%, SPI bit rate clock, (i.e. SCK), is 5 MHz  
SPI SCK Jitter = [ DCLK / (80 MHz/5 MHz)] = [3%/ 16] = [3% / 4] = 0.75%  
TABLE 24-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ 7.3728 MHz(1)  
F20a  
F20b  
FRC  
FRC  
-2  
-5  
+2  
+5  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.  
TABLE 24-19: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1)  
F21a LPRC  
F21b LPRC  
-30  
-35  
+30  
+35  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
Note 1: Change of LPRC frequency as VDD changes.  
DS70592D-page 254  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-3:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-20: I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
20  
2
10  
10  
25  
25  
ns  
ns  
Port Output Fall Time  
INTx Pin High or Low Time (input)  
CNx High or Low Time (input)  
ns  
DI40  
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 255  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
SY30  
PWRT  
Time-out  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 24-1 for load conditions.  
DS70592D-page 256  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TMCL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
s  
-40°C to +85°C  
TPWRT  
2
4
ms  
-40°C to +85°C  
User programmable  
8
16  
32  
64  
128  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay  
3
10  
30  
s  
s  
-40°C to +85°C  
I/O High-Impedance from  
MCLR Low or Watchdog  
Timer Reset  
0.68  
0.72  
1.2  
SY20  
TWDT1  
Watchdog Timer Time-out  
Period  
See Section 21.4 “Watchdog  
Timer (WDT)” and LPRC  
specification F21 (Table 24-19)  
SY30  
SY35  
TOST  
Oscillator Start-up Timer  
Period  
1024 TOSC  
500  
TOSC = OSC1 period  
-40°C to +85°C  
TFSCM  
Fail-Safe Clock Monitor  
Delay  
900  
s  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 257  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-5:  
TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TA10  
TA11  
TTXH  
TTXL  
TxCK High Time  
TxCK Low Time  
Synchronous,  
no prescaler  
TCY + 20  
ns  
Must also meet  
parameter TA15  
Synchronous, (TCY + 20)/N  
with prescaler  
ns  
Asynchronous  
20  
ns  
ns  
Synchronous, (TCY + 20)/N  
no prescaler  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
20  
20  
ns  
ns  
ns  
N = prescale  
value  
(1,8,64,256)  
Asynchronous  
TA15  
TTXP  
TxCK Input Period Synchronous,  
no prescaler  
2TCY + 40  
Synchronous,  
with prescaler  
Greater of:  
40 ns or  
(2TCY + 40)/  
N
N = prescale  
value  
(1, 8, 64, 256)  
Asynchronous  
40  
ns  
OS60  
TA20  
Ft1  
SOSC1/T1CK Oscillator Input  
frequency Range (oscillator  
enabled by setting TCS bit  
(T1CON<1>))  
DC  
50  
kHz  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.75TCY+40  
1.75TCY  
+40  
ns  
Note 1: Timer1 is a Type A.  
DS70592D-page 258  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-23: TIMER2, 4, 6 AND 8 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TB10 TtxH  
TB11 TtxL  
TB15 TtxP  
TxCK High Synchronous  
Time mode  
Greater of:  
20 or  
(TCY + 20)/N  
ns Must also meet  
parameter TB15  
N = prescale  
value  
(1, 8, 64, 256)  
TxCK Low Synchronous  
Time mode  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
Must also meet  
parameter TB15  
N = prescale  
value  
(1, 8, 64, 256)  
TxCK Input Synchronous  
Period mode  
Greater of:  
40 or  
(2 TCY + 40)/N  
ns N = prescale  
value  
(1, 8, 64, 256)  
TB20 TCKEXTMRL Delay from External TxCK  
0.75 TCY + 40  
1.75 TCY + 40 ns  
Clock Edge to Timer Incre-  
ment  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
TABLE 24-24: TIMER3, 5, 7 AND 9 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TC10 TtxH  
TC11 TtxL  
TC15 TtxP  
TxCK High  
Time  
Synchronous  
Synchronous  
TCY + 20  
ns  
Must also meet  
parameter TC15  
TxCK Low  
Time  
TCY + 20  
ns  
ns  
Must also meet  
parameter TC15  
TxCK Input  
Period  
Synchronous,  
with prescaler  
2 TCY + 40  
N = prescale  
value  
(1, 8, 64, 256)  
TC20 TCKEXTMRL Delay from External TxCK  
0.75 TCY + 40  
1.75 TCY + 40  
ns  
Clock Edge to Timer Incre-  
ment  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 259  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-6:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-25: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 24-7:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter D032  
See parameter D031  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70592D-page 260  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-8:  
OCFA  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OC15  
OCx  
Tri-state  
Active  
TABLE 24-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
TCY+20  
ns  
OC20  
TFLT  
Fault Input Pulse-Width  
TCY+20  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 261  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-28: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
15 MHz  
10 MHz  
10 MHz  
15 MHz  
11 MHz  
15 MHz  
11 MHz  
Table 24-29  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 24-30  
Table 24-31  
0
1
Table 24-32  
Table 24-33  
Table 24-34  
Table 24-35  
1
0
1
1
0
0
1
0
0
0
0
FIGURE 24-9:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING  
CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SP30, SP31  
SP30, SP31  
Note: Refer to Figure 24-1 for load conditions.  
DS70592D-page 262  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-10:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING  
CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-29: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP20  
Maximum SCK Frequency  
SCKx Output Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SCKx Output Rise Time  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, SDOx Data Output Setup to  
TdiV2scL  
First SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 263  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-11:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING  
CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
SDIx  
SP40  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-30: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP20  
Maximum SCK Frequency  
SCKx Output Fall Time  
10  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Output Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70592D-page 264  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-12:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP = 1) TIMING  
CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30, SP31  
SP30, SP31  
LSb In  
MSb In  
Bit 14 - - - -1  
SP40  
SP41  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-31: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
-40ºC to +125ºC and  
SP10  
Maximum SCK Frequency  
10  
MHz  
see Note 3  
SP20  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Fall Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO32  
and Note 4  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO31  
and Note 4  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 265  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-13:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
MSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70592D-page 266  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-32: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SCKx Input Rise Time  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
See parameterDO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameterDO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP41  
SP50  
SP51  
SP52  
SP60  
30  
50  
50  
ns  
ns  
ns  
ns  
ns  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specificiation.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 267  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-14:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP72  
SP73  
SP70  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70592D-page 268  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-33: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
11  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameterDO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameterDO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
SP60  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
50  
50  
ns  
ns  
ns  
ns  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specificiation.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 269  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-15:  
SPIx SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
LSb  
SP35  
MSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
LSb In  
SP41  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70592D-page 270  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-34: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameterDO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameterDO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
10  
50  
ns  
ns  
ns  
TssH2doZ SSx to SDOx Output  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specificiation.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 271  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-16:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
LSb  
SP35  
MSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
LSb In  
SP41  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70592D-page 272  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-35: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 2.4V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
11  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameterDO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameterDO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
10  
50  
ns  
ns  
ns  
TssH2doZ SSx to SDOx Output  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specificiation.  
4: Assumes 50 pF load on all SPIx pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 273  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-17:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 24-1 for load conditions.  
FIGURE 24-18:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 24-1 for load conditions.  
DS70592D-page 274  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
ns  
1 MHz mode(2) TCY/2 (BRG + 1)  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
400 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
1 MHz mode(2)  
IM50  
IM51  
CB  
Bus Capacitive Loading  
Pulse Gobbler Delay  
400  
390  
TPGD  
65  
See Note 3  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit™  
(I2C™)” (DS70195) in the “PIC24H Family Reference Manual”. Please see the Microchip web site  
(www.microchip.com) for the latest PIC24H Family Reference Manual chapters.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: Typical value for this parameter is 130 ns.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 275  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-19:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 24-20:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
DS70592D-page 276  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
IS10  
IS11  
TLO:SCL Clock Low Time 100 kHz mode  
4.7  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
s  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
s  
s  
THI:SCL Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1 MHz mode(1)  
0.6  
s  
Device must operate at a  
minimum of 10 MHz  
0.5  
300  
300  
100  
1000  
300  
300  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 277  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-21:  
ECAN™ MODULE I/O TIMING CHARACTERISTICS  
CiTx Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CiRx Pin  
(input)  
CA20  
TABLE 24-38: ECAN™ MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
CA10  
CA11  
CA20  
TioF  
TioR  
Tcwf  
Port Output Fall Time  
Port Output Rise Time  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
Pulse-Width to Trigger  
CAN Wake-up Filter  
120  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
DS70592D-page 278  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-39: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param Symbo  
Characteristic  
Module VDD Supply  
Module VSS Supply  
Min.  
Typ  
Max.  
Units  
Conditions  
No.  
l
Device Supply  
AD01 AVDD  
AD02 AVSS  
Greater of  
VDD – 0.3  
or 3.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05 VREFH Reference Voltage High  
AD05a  
AVSS + 2.5  
AVDD  
3.6  
V
V
3.0  
VREFH = AVDD  
VREFL = AVSS = 0  
AD06 VREFL  
AD06a  
Reference Voltage Low  
AVSS  
0
AVDD – 2.5  
0
V
V
VREFH = AVDD  
VREFL = AVSS = 0  
AD07 VREF  
Absolute Reference  
Voltage  
2.5  
3.6  
10  
V
VREF = VREFH - VREFL  
AD08 IREF  
AD08a IAD  
Current Drain  
A ADC off  
Operating Current  
7.0  
2.7  
9.0  
3.2  
mA 10-bit ADC mode, See Note 1  
mA 12-bit ADC mode, See Note 1  
Analog Input  
AD12 VINH  
AD13 VINL  
AD17 RIN  
Input Voltage Range VINH  
Input Voltage Range VINL  
VINL  
VREFH  
V
This voltage reflects Sample  
and Hold Channels 0, 1, 2,  
and 3 (CH0-CH3), positive  
input  
VREFL  
AVSS + 1V  
V
This voltage reflects Sample  
and Hold Channels 0, 1, 2,  
and 3 (CH0-CH3), negative  
input  
Recommended Imped-  
ance of Analog Voltage  
Source  
200  
200  
10-bit ADC  
12-bit ADC  
Note 1: These parameters are not characterized or tested in manufacturing.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 279  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-40: ADC MODULE SPECIFICATIONS (12-BIT MODE)(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-  
AD20a Nr  
AD21a INL  
Resolution  
12 data bits  
bits  
Integral Nonlinearity  
-2  
>-1  
+2  
<1  
10  
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD22a DNL  
Differential Nonlinearity  
Gain Error  
3.4  
0.9  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Monotonicity  
Guaranteed  
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-  
AD20a Nr  
AD21a INL  
AD22a DNL  
Resolution  
12 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
>-1  
+2  
<1  
20  
10  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
10.5  
3.8  
Offset Error  
Monotonicity  
Guaranteed  
Dynamic Performance (12-bit Mode)  
AD30a THD  
Total Harmonic Distortion  
-75  
dB  
dB  
AD31a SINAD  
Signal to Noise and  
Distortion  
68.5  
69.5  
AD32a SFDR  
Spurious Free Dynamic  
Range  
80  
dB  
AD33a  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
250  
kHz  
bits  
AD34a ENOB  
11.09  
11.3  
Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD +  
0.3) or VIL source < (VSS – 0.3)).  
DS70592D-page 280  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-  
AD20b Nr  
AD21b INL  
Resolution  
10 data bits  
bits  
Integral Nonlinearity  
-1.5  
>-1  
+1.5  
<1  
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD22b DNL  
Differential Nonlinearity  
Gain Error  
3
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
2
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Monotonicity  
Guaranteed  
ADC Accuracy (10-bit Mode) – Measurements with internal VREF+/VREF-  
AD20b Nr  
AD21b INL  
AD22b DNL  
Resolution  
10 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-1  
>-1  
7
+1  
<1  
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
Offset Error  
3
Monotonicity  
Guaranteed  
Dynamic Performance (10-bit Mode)  
AD30b THD  
Total Harmonic Distortion  
-64  
dB  
dB  
AD31b SINAD  
Signal to Noise and  
Distortion  
57  
58.5  
AD32b SFDR  
Spurious Free Dynamic  
Range  
72  
dB  
AD33b  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
550  
kHz  
bits  
AD34b ENOB  
9.16  
9.4  
Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts (i.e., VIH source > (VDD +  
0.3) or VIL source < (VSS – 0.3)).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 281  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-22:  
ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS  
(ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
AD61  
Clear SAMP  
SAMP  
AD60  
TSAMP  
AD55  
DONE  
AD1IF  
1
2
3
4
5
6
7
8
9
Software sets AD1CON. SAMP to start sampling.  
Sampling ends, conversion sequence starts.  
Convert bit 11.  
1
2
4
5
6
7
8
9
Sampling starts after discharge period. TSAMP is described in  
Section 28. “Analog-to-Digital Converter (ADC) without DMA”  
(DS70249) in the “dsPIC33F/PIC24H Family Reference Manual”.  
Please see the Microchip web site (www.microchip.com)  
Convert bit 10.  
Convert bit 1.  
for the latest dsPIC33F/PIC24H Family Reference Manual sections.  
Convert bit 0.  
Software clears AD1CON. SAMP to start conversion.  
3
One TAD for end of conversion.  
DS70592D-page 282  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-42: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ(2) Max.  
Units  
Conditions  
Clock Parameters(1)  
AD50  
AD51  
TAD  
tRC  
ADC Clock Period  
117.6  
ns  
ns  
ADC Internal RC Oscillator  
Period  
250  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
Conversion Time  
Throughput Rate  
Sample Time  
14 TAD  
ns  
ksps  
500  
TSAMP  
3 TAD  
Timing Parameters  
AD60  
tPCS  
2.0 TAD  
3.0 TAD  
Auto convert trigger not  
selected  
Conversion Start from Sample  
Trigger(2)  
AD61  
AD62  
AD63  
tPSS  
tCSS  
tDPU  
Sample Start from Setting  
Sample (SAMP) bit(2)  
2.0 TAD  
0.5 TAD  
3.0 TAD  
s  
Conversion Completion to  
Sample Start (ASAM = 1)(2)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(2,3)  
20  
Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity  
performance, especially at elevated temperatures.  
2: These parameters are characterized but not tested in manufacturing.  
3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1).  
During this time, the ADC result is indeterminate.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 283  
PIC24HJXXXGPX06A/X08A/X10A  
FIGURE 24-23:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS  
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)  
AD50  
Set SAMP  
AD61  
ADCLK  
Instruction  
Execution  
Clear SAMP  
AD60  
SAMP  
TSAMP  
AD55  
AD55  
DONE  
AD1IF  
1
2
3
4
5
6
7
8
5
6
7
8
– Software sets AD1CON. SAMP to start sampling.  
1
2
– Sampling starts after discharge period. TSAMP is described in Section 28. “Analog-to-Digital Converter (ADC)  
without DMA” (DS70249) in the “dsPIC33F/PIC24H Family Reference Manual”.  
– Software clears AD1CON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 9.  
3
4
5
6
7
8
– Convert bit 8.  
– Convert bit 0.  
– One TAD for end of conversion.  
FIGURE 24-24:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Set ADON  
Execution  
SAMP  
AD1IF  
TSAMP  
TSAMP  
AD55  
AD55  
AD55  
DONE  
1
2
3
4
5
6
7
3
4
5
6
8
– Software sets AD1CON. ADON to start AD operation.  
– Convert bit 0.  
5
1
2
– Sampling starts after discharge period. TSAMP is described in  
Section 28. “Analog-to-Digital Converter (ADC) without DMA”  
(DS70249) in the “dsPIC33F/PIC24H Family Reference Manual'.  
– One TAD for end of conversion.  
– Begin conversion of next channel.  
6
7
8
– Convert bit 9.  
3
4
– Sample for time specified by SAMC<4:0>.  
– Convert bit 8.  
DS70592D-page 284  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 24-43: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
Clock Parameters  
AD50 TAD  
AD51 tRC  
ADC Clock Period  
76  
ns  
ns  
ADC Internal RC Oscillator Period  
250  
Conversion Rate  
AD55 tCONV  
AD56 FCNV  
Conversion Time  
Throughput Rate  
12 TAD  
1.1  
Msps  
AD57 TSAMP Sample Time  
2 TAD  
Timing Parameters  
AD60 tPCS  
AD61 tPSS  
AD62 tCSS  
AD63 tDPU  
Conversion Start from Sample  
2.0 TAD  
2.0 TAD  
3.0 TAD  
3.0 TAD  
s  
Auto-Convert Trigger  
not selected  
Trigger(2)  
Sample Start from Setting  
Sample (SAMP) bit(2)  
0.5 TAD  
Conversion Completion to  
Sample Start (ASAM = 1)(2)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(2,3)  
20  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity  
performance, especially at elevated temperatures.  
3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1).  
During this time, the ADC result is indeterminate.  
TABLE 24-44: DMA READ/WRITE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
DM1a DMA Read/Write Cycle Time  
2 TCY  
ns This characteristic applies to  
PIC24HJ256GPX06A/X08A/X10A  
devices only.  
DM1b DMA Read/Write Cycle Time  
1 TCY  
ns This characteristic applies to all  
devices with the exception of the  
PIC24HJ256GPX06A/X08A/X10A.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 285  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 286  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
25.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS  
This section provides an overview of PIC24HJXXXGPX06A/X08A/X10A electrical characteristics for devices operating  
in an ambient temperature range of -40°C to +150°C.  
The specifications between -40°C to +150°C are identical to those shown in Section 24.0 “Electrical Characteristics”  
for operation between -40°C to +125°C, with the exception of the parameters listed in this section.  
Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in  
Section 24.0 “Electrical Characteristics” is the Industrial and Extended temperature equivalent of HDC10.  
Absolute maximum ratings for the PIC24HJXXXGPX06A/X08A/X10A high temperature devices are listed below.  
Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of  
the device at these or any other conditions above the parameters indicated in the operation listings of this specification  
is not implied.  
Absolute Maximum Ratings  
(See Note 1 )  
Ambient temperature under bias(4) .........................................................................................................-40°C to +150°C  
Storage temperature .............................................................................................................................. -65°C to +160°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(5) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(5) ....................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(5) .................................................... -0.3V to 5.6V  
Voltage on VCAP with respect to VSS ...................................................................................................... 2.25V to 2.75V  
Maximum current out of VSS pin .............................................................................................................................60 mA  
Maximum current into VDD pin(2).............................................................................................................................60 mA  
Maximum junction temperature............................................................................................................................. +155°C  
Maximum current sourced/sunk by any 2x I/O pin(3) ................................................................................................2 mA  
Maximum current sourced/sunk by any 4x I/O pin(3) ................................................................................................4 mA  
Maximum current sourced/sunk by any 8x I/O pin(3) ................................................................................................8 mA  
Maximum current sunk by all ports combined ........................................................................................................10 mA  
Maximum current sourced by all ports combined(2) ................................................................................................10 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods can affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).  
3: Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+,  
VREF-, SCLx, SDAx, PGECx, and PGEDx pins.  
4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which  
the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior  
written approval from Microchip Technology Inc.  
5: Refer to the Pin Diagramssection for 5V tolerant pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 287  
PIC24HJXXXGPX06A/X08A/X10A  
25.1 High Temperature DC Characteristics  
TABLE 25-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temperature Range  
(in °C)  
Characteristic  
PIC24HJXXXGPX06A/X08A/X10A  
HDC5  
VBOR to 3.6V(1)  
-40°C to +150°C  
20  
Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded  
performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11  
for the minimum and maximum BOR values.  
TABLE 25-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
High Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+155  
+150  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD - IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = ({VDD - VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ - TA)/JA  
TABLE 25-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
DC CHARACTERISTICS  
Parameter  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Operating Voltage  
HDC10  
Supply Voltage  
VDD  
3.0  
3.3  
3.6  
V
-40°C to +150°C  
TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)  
HDC60e  
250  
2000  
A  
+150°C  
3.3V  
Base Power-Down Current(1,3)  
Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.  
2: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
3: These currents are measured on the device containing the most memory in this family.  
4: These parameters are characterized, but are not tested in manufacturing.  
DS70592D-page 288  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)  
(2,4)  
HDC61c  
3
5
A  
+150°C  
3.3V  
Watchdog Timer Current: IWDT  
Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.  
2: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
3: These currents are measured on the device containing the most memory in this family.  
4: These parameters are characterized, but are not tested in manufacturing.  
TABLE 25-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical(1)  
No.  
Doze  
Ratio  
Max  
Units  
Conditions  
HDC72a  
HDC72f  
HDC72g  
39  
18  
18  
45  
25  
25  
1:2  
1:64  
1:128  
mA  
mA  
mA  
+150°C  
3.3V  
20 MIPS  
Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 289  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 25-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for High  
Temperature  
DC CHARACTERISTICS  
Param. Symbol  
Characteristic  
Min. Typ. Max. Units  
Conditions  
Output Low Voltage  
IOL 1.8 mA, VDD = 3.3V  
See Note 1  
I/O Pins:  
2x Sink Driver Pins - All pins not  
defined by 4x or 8x driver pins  
0.4  
0.4  
V
V
Output Low Voltage  
I/O Pins:  
4x Sink Driver Pins - RA2, RA3, RA9,  
RA10, RA14, RA15, RB0, RB1, RB11,  
RF4, RF5, RG2, RG3  
IOL 3.6 mA, VDD = 3.3V  
See Note 1  
HDO10 VOL  
Output Low Voltage  
I/O Pins:  
IOL 6 mA, VDD = 3.3V  
See Note 1  
0.4  
V
V
8x Sink Driver Pins - OSC2, CLKO,  
RC15  
Output High Voltage  
I/O Pins:  
2x Source Driver Pins - All pins not  
defined by 4x or 8x driver pins  
IOL -1.8 mA, VDD = 3.3V  
See Note 1  
2.4  
Output High Voltage  
I/O Pins:  
IOL -3 mA, VDD = 3.3V  
See Note 1  
4x Source Driver Pins - RA2, RA3,  
RA9, RA10, RA14, RA15, RB0, RB1,  
RB11, RF4, RF5, RG2, RG3  
2.4  
2.4  
V
V
HDO20 VOH  
Output High Voltage  
I/O Pins:  
8x Source Driver Pins - OSC2, CLKO,  
RC15  
IOL -6 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
I/O Pins:  
2x Source Driver Pins - All pins not  
defined by 4x or 8x driver pins  
IOH -1.9 mA, VDD = 3.3V  
See Note 1  
1.5  
2.0  
IOH -1.85 mA, VDD =  
3.3V  
V
See Note 1  
IOH -1.4 mA, VDD = 3.3V  
See Note 1  
3.0  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
Output High Voltage  
IOH -3.9 mA, VDD = 3.3V  
See Note 1  
4x Source Driver Pins - RA2, RA3,  
RA9, RA10, RA14, RA15, RB0, RB1,  
RB11, RF4, RF5, RG2, RG3  
HDO20A VOH1  
IOH -3.7 mA, VDD = 3.3V  
See Note 1  
V
V
IOH -2 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
8x Source Driver Pins - OSC2, CLKO,  
RC15  
IOH -7.5 mA, VDD = 3.3V  
See Note 1  
IOH -6.8 mA, VDD = 3.3V  
See Note 1  
IOH -3 mA, VDD = 3.3V  
See Note 1  
Note 1: Parameters are characterized, but not tested.  
DS70592D-page 290  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
25.2 AC Characteristics and Timing  
Parameters  
The information contained in this section defines  
PIC24HJXXXGPX06A/X08A/X10A AC characteristics  
and timing parameters for high temperature devices.  
However, all AC timing specifications in this section are  
the same as those in Section 24.2 “AC  
Characteristics and Timing Parameters”, with the  
exception of the parameters listed in this section.  
Parameters in this section begin with an H, which  
denotes High temperature. For example, parameter  
OS53 in Section 24.2 “AC Characteristics and  
Timing Parameters” is the Industrial and Extended  
temperature equivalent of HOS53.  
TABLE 25-7: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC CHARACTERISTICS  
Operating voltage VDD range as described in Table 25-1.  
FIGURE 25-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 25-8: PLL CLOCK TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
HOS53  
DCLK  
CLKO Stability (Jitter)(1)  
-5  
0.5  
5
%
Measured over 100 ms  
period  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 291  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 25-9: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz (1)  
HF21  
LPRC  
-70(2)  
+70(2)  
%
-40°C TA +150°C  
Note 1: Change of LPRC frequency as VDD changes.  
2: Characterized but not tested.  
TABLE 25-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35  
HSP40  
HSP41  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
10  
25  
ns  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
28  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
35  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 25-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
10  
25  
ns  
HSP36 TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
35  
28  
35  
ns  
ns  
ns  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
HSP41 TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70592D-page 292  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 25-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
35  
55  
ns  
ns  
ns  
ns  
25  
25  
15  
TdiV2scL  
to SCKx Edge  
HSP41 TscH2diL,  
TscL2diL  
Hold Time of SDIx Data Input to  
SCKx Edge  
See Note 2  
HSP51 TssH2doZ SSx to SDOx Output  
High-Impedance  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Assumes 50 pF load on all SPIx pins.  
TABLE 25-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35  
HSP40  
HSP41  
HSP51  
HSP60  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
35  
ns  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
25  
25  
15  
55  
55  
ns  
ns  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
See Note 2  
TssH2doZ SSx to SDOX Output  
High-Impedance  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Assumes 50 pF load on all SPIx pins.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 293  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 25-14: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
Reference Inputs  
HAD08  
IREF  
Current Drain  
250  
600  
50  
A ADC operating, See Note 1  
A ADC off, See Note 1  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: These parameters are characterized, but are not tested in manufacturing.  
TABLE 25-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)(3)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-(1)  
AD23a  
AD24a  
GERR  
EOFF  
Gain Error  
5
10  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
2
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-(1)  
AD23a  
AD24a  
GERR  
EOFF  
Gain Error  
2
2
10  
5
20  
10  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
Offset Error  
Dynamic Performance (12-bit Mode)(2)  
HAD33a FNYQ  
Input Signal Bandwidth  
200 kHz  
Note 1: These parameters are characterized, but are tested at 20 ksps only.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
TABLE 25-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)(3)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-(1)  
AD23b  
AD24b  
GERR  
EOFF  
Gain Error  
3
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
2
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-(1)  
AD23b  
AD24b  
GERR  
EOFF  
Gain Error  
7
3
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
Offset Error  
Dynamic Performance (10-bit Mode)(2)  
400 kHz  
Note 1: These parameters are characterized, but are tested at 20 ksps only.  
HAD33b FNYQ  
Input Signal Bandwidth  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
DS70592D-page 294  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE 25-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Clock Parameters  
HAD50 TAD  
ADC Clock Period(1)  
Throughput Rate(1)  
147  
Conversion Rate  
ns  
HAD56 FCNV  
400  
Ksps  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 25-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Clock Parameters  
HAD50  
HAD56  
TAD  
ADC Clock Period(1)  
Throughput Rate(1)  
104  
ns  
Conversion Rate  
FCNV  
800  
Ksps  
Note 1: These parameters are characterized but not tested in manufacturing.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 295  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 296  
2009-2012 Microchip Technology Inc.  
26.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS  
Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes  
only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating  
range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
FIGURE 26-1:  
VOH – 2x DRIVER PINS  
FIGURE 26-3:  
VOH – 8x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
FIGURE 26-2:  
VOH – 4x DRIVER PINS  
FIGURE 26-4:  
VOH – 16x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
FIGURE 26-5:  
VOL – 2x DRIVER PINS  
FIGURE 26-7:  
VOL – 8x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
FIGURE 26-6:  
VOL – 4x DRIVER PINS  
FIGURE 26-8:  
VOL – 16x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
FIGURE 26-9:  
TYPICAL FRC FREQUENCY @ VDD = 3.3V  
FIGURE 26-10:  
TYPICAL LPRC FREQUENCY @ VDD = 3.3V  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 300  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
27.0 PACKAGING INFORMATION  
27.1 Package Marking Information  
64-Lead QFN (9x9x0.9mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
24HJ64GP  
206A-I/MR  
e
3
YYWWNNN  
0610017  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC24HJ  
256GP706A  
e
3
-I/PT  
0510017  
100-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24HJ256  
GP710A-I/PT  
0510017  
e
3
100-Lead TQFP (14x14x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24HJ256  
GP710A-I/PF  
0510017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 301  
PIC24HJXXXGPX06A/X08A/X10A  
27.2 Package Details  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70592D-page 302  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2012 Microchip Technology Inc.  
DS70592D-page 303  
PIC24HJXXXGPX06A/X08A/X10A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70592D-page 304  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
A1  
β
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
64  
0.50 BSC  
1.00  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
N
e
A
A2  
A1  
L
1.20  
1.05  
0.15  
0.75  
0.95  
0.05  
0.45  
Foot Length  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
E
D
E1  
D1  
c
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
α
0.22  
12°  
12°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-085B  
2009-2012 Microchip Technology Inc.  
DS70592D-page 305  
PIC24HJXXXGPX06A/X08A/X10A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70592D-page 306  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
e
E
E1  
N
b
123  
NOTE 2  
NOTE 1  
c
α
A
φ
L
A1  
β
A2  
L1  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
N
e
A
100  
0.40 BSC  
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
Foot Length  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
E
D
E1  
D1  
c
14.00 BSC  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
0.09  
0.13  
11°  
0.20  
0.23  
13°  
b
α
0.18  
12°  
12°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-100B  
2009-2012 Microchip Technology Inc.  
DS70592D-page 307  
PIC24HJXXXGPX06A/X08A/X10A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70592D-page 308  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
e
E1  
E
b
N
α
NOTE 1  
1 23  
NOTE 2  
A
φ
c
A2  
A1  
β
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
100  
0.50 BSC  
1.00  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Foot Length  
N
e
A
A2  
A1  
L
1.20  
1.05  
0.15  
0.75  
0.95  
0.05  
0.45  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
Overall Length  
E
D
E1  
D1  
c
16.00 BSC  
16.00 BSC  
14.00 BSC  
14.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
α
0.22  
12°  
12°  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-110B  
2009-2012 Microchip Technology Inc.  
DS70592D-page 309  
PIC24HJXXXGPX06A/X08A/X10A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70592D-page 310  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
APPENDIX A: MIGRATING FROM  
PIC24HJXXXGPX06/  
X08/X10 DEVICES TO  
PIC24HJXXXGPX06A/  
X08A/X10A DEVICES  
The PIC24HJXXXGPX06A/X08A/X10A devices were  
designed to enhance the PIC24HJXXXGPX06/X08/  
X10 families of devices.  
In general, the PIC24HJXXXGPX06A/X08A/X10A  
devices are backward-compatible with  
PIC24HJXXXGPX06/X08/X10 devices; however,  
manufacturing differences may cause  
PIC24HJXXXGPX06A/X08A/X10A devices to behave  
differently from PIC24HJXXXGPX06/X08/X10 devices.  
Therefore, complete system test and characterization  
is recommended if PIC24HJXXXGPX06A/X08A/X10A  
devices are used to replace PIC24HJXXXGPX06/X08/  
X10 devices.  
The following enhancements were introduced:  
• Extended temperature support of up to +125ºC  
• Enhanced Flash module with higher endurance  
and retention  
• New PLL Lock Enable configuration bit  
• Added Timer5 trigger for ADC1 and Timer3 trigger  
for ADC2  
2009-2012 Microchip Technology Inc.  
DS70592D-page 311  
PIC24HJXXXGPX06A/X08A/X10A  
Revision B (October 2009)  
APPENDIX B: REVISION HISTORY  
The revision includes the following global update:  
Revision A (April 2009)  
• Added Note 2 to the shaded table that appears at  
the beginning of each chapter. This new note  
provides information regarding the availability of  
registers and their associated bits  
This is the initial released version of the document.  
This revision also includes minor typographical and  
formatting changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE B-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit  
Microcontrollers”  
Added information on high temperature operation (see “Operating  
Range:”).  
Section 10.0 “Power-Saving Features”  
Updated the last paragraph to clarify the number of cycles that occur  
prior to the start of instruction execution (see Section 10.2.2 “Idle  
Mode”).  
Section 11.0 “I/O Ports”  
Changed the reference to digital-only pins to 5V tolerant pins in the  
second paragraph of Section 11.2 “Open-Drain Configuration”.  
Section 18.0 “Universal Asynchronous  
Receiver Transmitter (UART)”  
Updated the two baud rate range features to: 10 Mbps to 38 bps at  
40 MIPS.  
Section 20.0 “10-bit/12-bit Analog-to-Digital Updated the ADCx block diagram (see Figure 20-1).  
Converter (ADC)”  
Section 21.0 “Special Features”  
Updated the second paragraph and removed the fourth paragraph in  
Section 21.1 “Configuration Bits”.  
Updated the Device Configuration Register Map (see Table 21-1).  
Section 24.0 “Electrical Characteristics”  
Updated the Absolute Maximum Ratings for high temperature and  
added Note 4.  
Updated Power-Down Current parameters DC60d, DC60a, DC60b,  
and DC60d (see Table 24-7).  
Added I2Cx Bus Data Timing Requirements (Master Mode)  
parameter IM51 (see Table 24-36).  
Updated the SPIx Module Slave Mode (CKE = 1) Timing  
Characteristics (see Figure 24-12).  
Updated the Internal LPRC Accuracy parameters (see Table 24-18  
and Table 24-19).  
Updated the ADC Module Specifications (12-bit Mode) parameters  
AD23a and AD24a (see Table 24-40).  
Updated the ADC Module Specifications (10-bit Mode) parameters  
AD23b and AD24b (see Table 24-41).  
Section 25.0 “High Temperature Electrical Added new chapter with high temperature specifications.  
Characteristics”  
“Product Identification System”  
Added the “H” definition for high temperature.  
DS70592D-page 312  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Revision C (March 2011)  
This revision includes typographical and formatting  
changes throughout the data sheet text. In addition, all  
occurrences of VDDCORE have been removed.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE B-2:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
Section 2.0 “Guidelines for Getting Started The frequency limitation for device PLL start-up conditions was  
with 16-Bit Microcontrollers”  
updated in Section 2.7 “Oscillator Value Conditions on Device  
Start-up”.  
The second paragraph in Section 2.9 “Unused I/Os” was updated.  
Section 4.0 “Memory Organization”  
The All Resets values for the following SFRs in the Timer Register  
Map were changed (see Table 4-6):  
• TMR1  
• TMR2  
• TMR3  
• TMR4  
• TMR5  
• TMR6  
• TMR7  
• TMR8  
• TMR9  
Section 9.0 “Oscillator Configuration”  
Added Note 3 to the OSCCON: Oscillator Control Register (see  
Register 9-1).  
Added Note 2 to the CLKDIV: Clock Divisor Register (see  
Register 9-2).  
Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see  
Register 9-3).  
Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see  
Register 9-4).  
Section 20.0 “10-bit/12-bit Analog-to-Digital Updated the VREFL references in the ADC1 module block diagram  
Converter (ADC)”  
(see Figure 20-1).  
Section 21.0 “Special Features”  
Added a new paragraph and removed the third paragraph in  
Section 21.1 “Configuration Bits”.  
Added the column “RTSP Effects” to the Configuration Bits  
Descriptions (see Table 21-2).  
2009-2012 Microchip Technology Inc.  
DS70592D-page 313  
PIC24HJXXXGPX06A/X08A/X10A  
TABLE B-2:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 24.0 “Electrical Characteristics”  
Removed Note 4 from the DC Temperature and Voltage  
Specifications (see Table 24-4).  
Updated the maximum value for parameter DI19 and added  
parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input  
Specifications (see Table 24-9).  
Removed Note 2 from the AC Characteristics: Internal RC Accuracy  
(see Table 24-18).  
Updated the characteristic description for parameter DI35 in the I/O  
Timing Requirements (see Table 24-20).  
Updated the ADC Module Specification minimum values for  
parameters AD05 and AD07, and updated the maximum value for  
parameter AD06 (see Table 24-39).  
Added Note 1 to the ADC Module Specifications (12-bit Mode) (see  
Table 24-40).  
Added Note 1 to the ADC Module Specifications (10-bit Mode) (see  
Table 24-41).  
Added DMA Read/Write Timing Requirements (see Table 24-44).  
Section 25.0 “High Temperature Electrical  
Characteristics”  
Updated all ambient temperature end range values to +150ºC  
throughout the chapter.  
Updated the storage temperature end range to +160ºC.  
Updated the maximum junction temperature from +145ºC to +155ºC.  
Updated the maximum values for High Temperature Devices in the  
Thermal Operating Conditions (see Table 25-2).  
Added Note 3 and updated the ADC Module Specifications (12-bit  
Mode), removing all parameters with the exception of HAD33a (see  
Table 25-15).  
Added Note 3 and updated the ADC Module Specifications (10-bit  
Mode), removing all parameters with the exception of HAD33b (see  
Table 25-16).  
DS70592D-page 314  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
Revision D (June 2012)  
This revision includes typographical and formatting  
changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE B-3:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
Section 2.0 “Guidelines for Getting Started Updated the Recommended Minimum Connection (see Figure 2-1).  
with 16-Bit Microcontrollers”  
Section 9.0 “Oscillator Configuration”  
Updated the COSC<2:0> and NOSC<2:0> bit value definitions for  
001’ (see Register 9-1).  
Section 20.0 “10-bit/12-bit Analog-to-Digital Updated the Analog-to-Digital Conversion Clock Period Block  
Converter (ADC)”  
Diagram (see Figure 20-2).  
Section 21.0 “Special Features”  
Added Note 3 to the On-chip Voltage Regulator Connections (see  
Figure 21-1).  
Section 24.0 “Electrical Characteristics”  
Updated “Absolute Maximum Ratings”.  
Updated Operating MIPS vs. Voltage (see Table 24-1).  
Removed parameter DC18 from the DC Temperature and Voltage  
Specifications (see Table 24-4).  
Updated the notes in the following tables:  
Table 24-5  
Table 24-6  
Table 24-7  
Table 24-8  
Updated the I/O Pin Output Specifications (see Table 24-10).  
Updated the Conditions for parameter BO10 (see Table 24-11).  
Updated the Conditions for parameters D136b, D137b, and D138b  
(TA = 150ºC) (see Table 24-12).  
Section 25.0 “High Temperature Electrical Updated “Absolute Maximum Ratings”.  
Characteristics”  
Updated the I/O Pin Output Specifications (see Table 25-6).  
Removed Table 25-7: DC Characteristics: Program Memory.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 315  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 316  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
INDEX  
Customer Notification Service .......................................... 321  
Customer Support............................................................. 321  
A
AC Characteristics .................................................... 252, 291  
ADC Module.............................................................. 294  
ADC Module (10-bit Mode) ....................................... 294  
ADC Module (12-bit Mode) ....................................... 294  
Internal RC Accuracy................................................ 254  
Load Conditions................................................ 252, 291  
ADC Module  
ADC1 Register Map.................................................... 42  
ADC2 Register Map.................................................... 42  
Alternate Interrupt Vector Table (AIVT) .............................. 69  
Analog-to-Digital Converter............................................... 207  
DMA.......................................................................... 207  
Initialization ............................................................... 207  
Key Features............................................................. 207  
Arithmetic Logic Unit (ALU)................................................. 28  
Assembler  
D
Data Address Space........................................................... 31  
Alignment.................................................................... 31  
Memory Map for PIC24HJXXXGPX06A/X08A/X10A  
Devices with 16 KB RAM.................................... 33  
Memory Map for PIC24HJXXXGPX06A/X08A/X10A  
Devices with 8 KB RAM...................................... 32  
Near Data Space........................................................ 31  
Software Stack ........................................................... 53  
Width .......................................................................... 31  
DC and AC Characteristics  
Graphs and Tables................................................... 297  
DC Characteristics............................................................ 242  
Doze Current (IDOZE)................................................ 289  
High Temperature..................................................... 288  
I/O Pin Input Specifications ...................................... 248  
I/O Pin Output Specifications............................ 250, 290  
Idle Current (IDOZE) .................................................. 247  
Idle Current (IIDLE).................................................... 245  
Operating Current (IDD) ............................................ 244  
Operating MIPS vs. Voltage ..................................... 288  
Power-Down Current (IPD)........................................ 246  
Power-down Current (IPD) ........................................ 288  
Program Memory...................................................... 251  
Temperature and Voltage......................................... 288  
Temperature and Voltage Specifications.................. 243  
Thermal Operating Conditions.................................. 288  
Development Support....................................................... 237  
DMA Module  
MPASM Assembler................................................... 238  
Automatic Clock Stretch.................................................... 166  
B
Block Diagrams  
16-bit Timer1 Module................................................ 145  
ADC1 Module............................................................ 208  
Connections for On-Chip Voltage Regulator............. 226  
ECAN Module ........................................................... 180  
Input Capture ............................................................ 153  
Output Compare ....................................................... 155  
PIC24H ....................................................................... 16  
PIC24H CPU Core...................................................... 24  
PIC24H Oscillator System Diagram.......................... 123  
PIC24H PLL.............................................................. 125  
Reset System.............................................................. 65  
Shared Port Structure ............................................... 141  
SPI ............................................................................ 159  
Timer2 (16-bit) .......................................................... 149  
Timer2/3 (32-bit) ....................................................... 148  
UART ........................................................................ 173  
Watchdog Timer (WDT)............................................ 227  
DMA Register Map ..................................................... 43  
DMAC Registers............................................................... 114  
DMAxCNT ................................................................ 114  
DMAxCON................................................................ 114  
DMAxPAD ................................................................ 114  
DMAxREQ................................................................ 114  
DMAxSTA................................................................. 114  
DMAxSTB................................................................. 114  
C
E
C Compilers  
ECAN Module  
MPLAB C18 .............................................................. 238  
Clock Switching................................................................. 131  
Enabling.................................................................... 131  
Sequence.................................................................. 131  
Code Examples  
Erasing a Program Memory Page............................... 62  
Initiating a Programming Sequence............................ 63  
Loading Write Buffers ................................................. 63  
Port Write/Read ........................................................ 142  
PWRSAV Instruction Syntax..................................... 133  
Code Protection ........................................................ 221, 228  
Configuration Bits.............................................................. 221  
Description (Table).................................................... 222  
Configuration Register Map .............................................. 221  
Configuring Analog Port Pins............................................ 142  
CPU  
CiFMSKSEL2 register .............................................. 199  
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)......... 44  
ECAN1 Register Map (C1CTRL1.WIN = 0)................ 45  
ECAN1 Register Map (C1CTRL1.WIN = 1)................ 45  
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)......... 47  
ECAN2 Register Map (C2CTRL1.WIN = 0)................ 47  
ECAN2 Register Map (C2CTRL1.WIN = 1)................ 48  
Frame Types ............................................................ 179  
Modes of Operation.................................................. 181  
Overview................................................................... 179  
ECAN Registers  
Filter 15-8 Mask Selection Register  
(CiFMSKSEL2)................................................. 199  
Electrical Characteristics .................................................. 241  
AC..................................................................... 252, 291  
Enhanced CAN Module .................................................... 179  
Equations  
Device Operating Frequency.................................... 124  
FOSC Calculation..................................................... 124  
XT with PLL Mode Example ..................................... 125  
Errata.................................................................................. 13  
Control Register.......................................................... 26  
CPU Clocking System....................................................... 124  
PLL Configuration ..................................................... 124  
Selection ................................................................... 124  
Sources..................................................................... 124  
Customer Change Notification Service ............................. 321  
2009-2012 Microchip Technology Inc.  
DS70592D-page 317  
PIC24HJXXXGPX06A/X08A/X10A  
F
M
Flash Program Memory.......................................................59  
Control Registers ........................................................60  
Operations ..................................................................60  
Programming Algorithm ..............................................62  
RTSP Operation..........................................................60  
Table Instructions........................................................59  
Flexible Configuration .......................................................221  
FSCM  
Memory Organization ......................................................... 29  
Microchip Internet Web Site.............................................. 321  
Modes of Operation  
Disable...................................................................... 181  
Initialization............................................................... 181  
Listen All Messages.................................................. 181  
Listen Only................................................................ 181  
Loopback .................................................................. 181  
Normal Operation ..................................................... 181  
MPLAB ASM30 Assembler, Linker, Librarian................... 238  
MPLAB Integrated Development  
Environment Software .............................................. 237  
MPLAB PM3 Device Programmer .................................... 240  
MPLAB REAL ICE In-Circuit Emulator System ................ 239  
MPLINK Object Linker/MPLIB Object Librarian................ 238  
Multi-Bit Data Shifter........................................................... 28  
Delay for Crystal and PLL Clock Sources...................68  
Device Resets.............................................................68  
H
High Temperature Electrical Characteristics.....................287  
I
I/O Ports............................................................................141  
Parallel I/O (PIO).......................................................141  
Write/Read Timing ....................................................142  
N
2
I C  
NVM Module  
Operating Modes ......................................................165  
Registers...................................................................167  
I C Module  
Register Map .............................................................. 52  
2
O
I2C1 Register Map ......................................................40  
I2C2 Register Map ......................................................40  
In-Circuit Debugger...........................................................228  
In-Circuit Emulation...........................................................221  
In-Circuit Serial Programming (ICSP) ....................... 221, 228  
Input Capture  
Registers...................................................................154  
Input Change Notification Module.....................................142  
Instruction Addressing Modes.............................................53  
File Register Instructions ............................................53  
Fundamental Modes Supported..................................54  
MCU Instructions ........................................................53  
Move and Accumulator Instructions............................54  
Other Instructions........................................................54  
Instruction Set  
Open-Drain Configuration................................................. 142  
Output Compare ............................................................... 155  
P
Packaging......................................................................... 301  
Details....................................................................... 304  
Marking..................................................................... 301  
Peripheral Module Disable (PMD) .................................... 134  
Pinout I/O Descriptions (table)............................................ 17  
PMD Module  
Register Map .............................................................. 52  
POR and Long Oscillator Start-up Times ........................... 68  
PORTA  
Register Map .............................................................. 50  
PORTB  
Register Map .............................................................. 50  
PORTC  
Register Map .............................................................. 50  
PORTD  
Register Map .............................................................. 50  
PORTE  
Overview ...................................................................231  
Summary...................................................................229  
Instruction-Based Power-Saving Modes...........................133  
Idle ............................................................................134  
Sleep.........................................................................133  
Internal RC Oscillator  
Register Map .............................................................. 51  
PORTF  
Register Map .............................................................. 51  
PORTG  
Register Map .............................................................. 51  
Power-Saving Features .................................................... 133  
Clock Frequency and Switching ............................... 133  
Program Address Space..................................................... 29  
Construction ............................................................... 55  
Data Access from Program Memory Using  
Program Space Visibility..................................... 58  
Data Access from Program Memory  
Use with WDT...........................................................227  
Internet Address................................................................321  
Interrupt Control and Status Registers................................73  
IECx ............................................................................73  
IFSx.............................................................................73  
INTCON1 ....................................................................73  
INTCON2 ....................................................................73  
INTTREG ....................................................................73  
IPCx ............................................................................73  
Interrupt Setup Procedures...............................................111  
Initialization ...............................................................111  
Interrupt Disable........................................................111  
Interrupt Service Routine ..........................................111  
Trap Service Routine ................................................111  
Interrupt Vector Table (IVT) ................................................69  
Interrupts Coincident with Power Save Instructions..........134  
Using Table Instructions..................................... 57  
Data Access from, Address Generation ..................... 56  
Memory Map............................................................... 29  
Table Read Instructions  
TBLRDH ............................................................. 57  
TBLRDL.............................................................. 57  
Visibility Operation...................................................... 58  
Program Memory  
J
JTAG Boundary Scan Interface ........................................221  
Interrupt Vector........................................................... 30  
Organization ............................................................... 30  
Reset Vector............................................................... 30  
DS70592D-page 318  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
ICxCON (Input Capture x Control)............................ 154  
IEC0 (Interrupt Enable Control 0)............................... 85  
R
Reader Response............................................................. 322  
Registers  
IEC1 (Interrupt Enable Control 1)............................... 87  
IEC2 (Interrupt Enable Control 2)............................... 89  
IEC3 (Interrupt Enable Control 3)............................... 91  
IEC4 (Interrupt Enable Control 4)............................... 92  
IFS0 (Interrupt Flag Status 0)..................................... 77  
IFS1 (Interrupt Flag Status 1)..................................... 79  
IFS2 (Interrupt Flag Status 2)..................................... 81  
IFS3 (Interrupt Flag Status 3)..................................... 83  
IFS4 (Interrupt Flag Status 4)..................................... 84  
INTCON1 (Interrupt Control 1) ................................... 75  
INTCON2 (Interrupt Control 2) ................................... 76  
IPC0 (Interrupt Priority Control 0)............................... 93  
IPC1 (Interrupt Priority Control 1)............................... 94  
IPC10 (Interrupt Priority Control 10)......................... 103  
IPC11 (Interrupt Priority Control 11)......................... 104  
IPC12 (Interrupt Priority Control 12)......................... 105  
IPC13 (Interrupt Priority Control 13)......................... 106  
IPC14 (Interrupt Priority Control 14)......................... 107  
IPC15 (Interrupt Priority Control 15)......................... 107  
IPC16 (Interrupt Priority Control 16)................. 108, 110  
IPC17 (Interrupt Priority Control 17)......................... 109  
IPC2 (Interrupt Priority Control 2)............................... 95  
IPC3 (Interrupt Priority Control 3)............................... 96  
IPC4 (Interrupt Priority Control 4)............................... 97  
IPC5 (Interrupt Priority Control 5)............................... 98  
IPC6 (Interrupt Priority Control 6)............................... 99  
IPC7 (Interrupt Priority Control 7)............................. 100  
IPC8 (Interrupt Priority Control 8)............................. 101  
IPC9 (Interrupt Priority Control 9)............................. 102  
NVMCON (Flash Memory Control)............................. 61  
OCxCON (Output Compare x Control)..................... 157  
OSCCON (Oscillator Control)................................... 126  
OSCTUN (FRC Oscillator Tuning)............................ 130  
PLLFBD (PLL Feedback Divisor) ............................. 129  
PMD1 (Peripheral Module Disable Control  
ADxCHS0 (ADCx Input Channel 0 Select................. 217  
ADxCHS123 (ADCx Input  
Channel 1, 2, 3 Select) ..................................... 216  
ADxCON1 (ADCx Control 1)..................................... 211  
ADxCON2 (ADCx Control 2)..................................... 213  
ADxCON3 (ADCx Control 3)..................................... 214  
ADxCON4 (ADCx Control 4)..................................... 215  
ADxCSSH (ADCx Input Scan Select High)............... 218  
ADxCSSL (ADCx Input Scan Select Low) ................ 218  
ADxPCFGH (ADCx Port Configuration High) ........... 219  
ADxPCFGL (ADCx Port Configuration Low)............. 220  
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)........... 193  
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)........... 194  
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)......... 195  
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)....... 196  
CiCFG1 (ECAN Baud Rate Configuration 1) ............ 190  
CiCFG2 (ECAN Baud Rate Configuration 2) ............ 191  
CiCTRL1 (ECAN Control 1) ...................................... 182  
CiCTRL2 (ECAN Control 2) ...................................... 183  
CiEC (ECAN Transmit/Receive Error Count)............ 189  
CiFCTRL (ECAN FIFO Control)................................ 185  
CiFEN1 (ECAN Acceptance Filter Enable)............... 192  
CiFIFO (ECAN FIFO Status)..................................... 186  
CiFMSKSEL1 (ECAN Filter 7-0 Mask  
Selection).................................................. 198, 199  
CiINTE (ECAN Interrupt Enable) .............................. 188  
CiINTF (ECAN Interrupt Flag)................................... 187  
CiRXFnEID (ECAN Acceptance Filter n  
Extended Identifier)........................................... 197  
CiRXFnSID (ECAN Acceptance Filter n  
Standard Identifier) ........................................... 197  
CiRXFUL1 (ECAN Receive Buffer Full 1)................. 201  
CiRXFUL2 (ECAN Receive Buffer Full 2)................. 201  
CiRXMnEID (ECAN Acceptance Filter Mask n  
Extended Identifier)........................................... 200  
CiRXMnSID (ECAN Acceptance Filter Mask n  
Register 1)........................................................ 135  
PMD1 (Peripheral Module Disable Control  
Register 1)........................................................ 135  
PMD2 (Peripheral Module Disable Control  
Register 2)........................................................ 137  
PMD3 (Peripheral Module Disable Control  
Standard Identifier) ........................................... 200  
CiRXOVF1 (ECAN Receive Buffer Overflow 1)........ 202  
CiRXOVF2 (ECAN Receive Buffer Overflow 2)........ 202  
CiTRBnDLC (ECAN Buffer n Data  
Register 3)........................................................ 139  
RCON (Reset Control)................................................ 66  
SPIxCON1 (SPIx Control 1) ..................................... 162  
SPIxCON2 (SPIx Control 2) ..................................... 164  
SPIxSTAT (SPIx Status and Control)....................... 161  
SR (CPU Status) .................................................. 26, 74  
T1CON (Timer1 Control) .......................................... 146  
TxCON (T2CON, T4CON, T6CON or  
T8CON Control)................................................ 150  
TyCON (T3CON, T5CON, T7CON or  
T9CON Control)................................................ 151  
UxMODE (UARTx Mode) ......................................... 175  
UxSTA (UARTx Status and Control) ........................ 177  
Length Control)................................................. 205  
CiTRBnEID (ECAN Buffer n Extended Identifier) ..... 204  
CiTRBnSID (ECAN Buffer n Standard Identifier)...... 204  
CiTRBnSTAT (ECAN Receive Buffer n Status)........ 206  
CiTRmnCON (ECAN TX/RX Buffer m Control)......... 203  
CiVEC (ECAN Interrupt Code).................................. 184  
CLKDIV (Clock Divisor)............................................. 128  
CORCON (Core Control) ...................................... 27, 74  
DMACS0 (DMA Controller Status 0)......................... 119  
DMACS1 (DMA Controller Status 1)......................... 121  
DMAxCNT (DMA Channel x Transfer Count) ........... 118  
DMAxCON (DMA Channel x Control)....................... 115  
DMAxPAD (DMA Channel x Peripheral Address)..... 118  
DMAxREQ (DMA Channel x IRQ Select) ................. 116  
DMAxSTA (DMA Channel x RAM Start  
Reset  
Clock Source Selection .............................................. 67  
Special Function Register Reset States..................... 68  
Times.......................................................................... 67  
Reset Sequence ................................................................. 69  
Resets ................................................................................ 65  
Address A) ........................................................ 117  
DMAxSTB (DMA Channel x RAM Start  
Address B) ........................................................ 117  
DSADR (Most Recent DMA RAM Address).............. 122  
I2CxCON (I2Cx Control) ........................................... 168  
I2CxMSK (I2Cx Slave Mode Address Mask) ............ 172  
I2CxSTAT (I2Cx Status) ........................................... 170  
2009-2012 Microchip Technology Inc.  
DS70592D-page 319  
PIC24HJXXXGPX06A/X08A/X10A  
Timing Specifications  
S
10-bit Analog-to-Digital Conversion  
Serial Peripheral Interface (SPI) .......................................159  
Software Simulator (MPLAB SIM).....................................239  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame......................................................53  
Special Features ...............................................................221  
SPI Module  
SPI1 Register Map......................................................41  
SPI2 Register Map......................................................41  
Symbols Used in Opcode Descriptions.............................230  
System Control  
Requirements ................................................... 285  
CAN I/O Requirements............................................. 278  
I2Cx Bus Data Requirements (Master Mode)........... 275  
I2Cx Bus Data Requirements (Slave Mode)............. 277  
Output Compare Requirements................................ 260  
PLL Clock ......................................................... 254, 291  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out  
Reset Requirements......................................... 257  
Simple OC/PWM Mode Requirements ..................... 261  
Timer1 External Clock Requirements....................... 258  
Timer2 External Clock Requirements....................... 259  
Timer3 External Clock Requirements....................... 259  
Register Map...............................................................52  
T
Temperature and Voltage Specifications  
AC ..................................................................... 252, 291  
Timer1...............................................................................145  
Timer2/3, Timer4/5, Timer6/7 and Timer8/9 .....................147  
Timing Characteristics  
CLKO and I/O ...........................................................255  
Timing Diagrams  
U
UART Module  
UART1 Register Map.................................................. 40  
UART2 Register Map.................................................. 41  
V
10-bit Analog-to-Digital Conversion (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,  
SAMC<4:0> = 00001).......................................284  
10-bit Analog-to-Digtial Conversion (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 0,  
Voltage Regulator (On-Chip) ............................................ 226  
W
Watchdog Timer (WDT)............................................ 221, 227  
Programming Considerations ................................... 227  
WWW Address ................................................................. 321  
WWW, On-Line Support ..................................................... 13  
SSRC<2:0> = 000) ...........................................284  
12-bit Analog-to-Digital Conversion  
(ASAM = 0, SSRC<2:0> = 000)........................282  
ECAN I/O ..................................................................278  
External Clock...........................................................253  
I2Cx Bus Data (Master Mode) ..................................274  
I2Cx Bus Data (Slave Mode) ....................................276  
I2Cx Bus Start/Stop Bits (Master Mode)...................274  
I2Cx Bus Start/Stop Bits (Slave Mode).....................276  
Input Capture (CAPx)................................................260  
OC/PWM...................................................................261  
Output Compare (OCx).............................................260  
Reset, Watchdog Timer, Oscillator Start-up Timer  
and Power-up Timer .........................................256  
Timer1, 2 and 3 External Clock.................................258  
Timing Requirements  
ADC Conversion (10-bit mode).................................295  
ADC Conversion (12-bit Mode).................................295  
CLKO and I/O ...........................................................255  
External Clock...........................................................253  
Input Capture ............................................................260  
SPIx Master Mode (CKE = 0)....................................292  
SPIx Module Master Mode (CKE = 1).......................292  
SPIx Module Slave Mode (CKE = 0).........................293  
SPIx Module Slave Mode (CKE = 1).........................293  
DS70592D-page 320  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQs), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2009-2012 Microchip Technology Inc.  
DS70592D-page 321  
PIC24HJXXXGPX06A/X08A/X10A  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS70592D  
Application (optional):  
Would you like a reply?  
Y
N
Device: PIC24HJXXXGPX06A/X08A/X10A  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70592D-page 322  
2009-2012 Microchip Technology Inc.  
PIC24HJXXXGPX06A/X08A/X10A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PIC 24 HJ 256 GP6 10 A T I/PT - XXX  
a)  
b)  
PIC24HJ256GP210AI/PT:  
General-purpose PIC24H, 256 KB program  
memory, 100-pin, Industrial temp.,  
TQFP package.  
Microchip Trademark  
Architecture  
PIC24HJ64GP506AI/PT-ES:  
Flash Memory Family  
General-purpose PIC24H, 64 KB program  
memory, 64-pin, Industrial temp.,  
TQFP package, Engineering Sample.  
Program Memory Size (KB)  
Product Group  
Pin Count  
Revision Level  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
24  
=
=
16-bit Microcontroller  
Flash Memory Family: HJ  
Flash program memory, 3.3V, High-speed  
Product Group:  
GP2  
=
=
=
=
General purpose family  
General purpose family  
General purpose family  
General purpose family  
GP3  
GP5  
GP6  
Pin Count:  
06  
10  
=
=
64-pin  
100-pin  
Temperature Range:  
I
E
H
=
=
=
-40C to+85C(Industrial)  
-40C to+125C(Extended)  
-40C to+150C(High)  
Package:  
Pattern:  
PT  
PF  
MR  
=
=
=
10x10 or 12x12 mm TQFP (Thin Quad Flatpack)  
14x14 mm TQFP (Thin Quad Flatpack)  
9x9x0.9 mm QFN (Thin Quad Flatpack)  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
ES  
=
Engineering Sample  
2009-2012 Microchip Technology Inc.  
DS70592D-page 323  
PIC24HJXXXGPX06A/X08A/X10A  
NOTES:  
DS70592D-page 324  
2009-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62076-345-2  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2009-2012 Microchip Technology Inc.  
DS70592D-page 325  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS70592D-page 326  
2009-2012 Microchip Technology Inc.  

相关型号:

PIC24HJ256GP610I/FT

PIC24HJ256GP610I/FT
MICROCHIP

PIC24HJ256GP610I/PF

High-Performance, 16-Bit Microcontrollers
MICROCHIP

PIC24HJ256GP610I/PF-ES

High-Performance, 16-Bit Microcontrollers
MICROCHIP

PIC24HJ256GP610I/PT

High-Performance, 16-Bit Microcontrollers
MICROCHIP

PIC24HJ256GP610I/PT-ES

High-Performance, 16-Bit Microcontrollers
MICROCHIP

PIC24HJ256GP610T-I/PF

16-BIT, FLASH, 32 MHz, MICROCONTROLLER, PQFP100, 14 X 14 MM, 1 MM HEIGHT, PLASTIC, MS-026, TQFP-100
MICROCHIP

PIC24HJ256GP610T-I/PT

16-BIT, FLASH, 32 MHz, MICROCONTROLLER, PQFP100, 12 X 12 MM, 1 MM HEIGHT, PLASTIC, MS-026, TQFP-100
MICROCHIP

PIC24HJ256GP610TE/MR

16-bit Microcontrollers with Advanced Analog
MICROCHIP

PIC24HJ256GP610TE/PF

16-bit Microcontrollers with Advanced Analog
MICROCHIP

PIC24HJ256GP610TE/PT

16-bit Microcontrollers with Advanced Analog
MICROCHIP

PIC24HJ256GP610TH/MR

16-bit Microcontrollers with Advanced Analog
MICROCHIP

PIC24HJ256GP610TH/PF

16-bit Microcontrollers with Advanced Analog
MICROCHIP