PIC32MX450 [MICROCHIP]

32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog; 32位微控制器(高达512 KB的闪存和128 KB的SRAM)与音频/图形/触摸( HMI ) ,USB和高级模拟
PIC32MX450
型号: PIC32MX450
厂家: MICROCHIP    MICROCHIP
描述:

32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog
32位微控制器(高达512 KB的闪存和128 KB的SRAM)与音频/图形/触摸( HMI ) ,USB和高级模拟

闪存 微控制器 静态存储器
文件: 总344页 (文件大小:12360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC32MX330/350/370/430/450/470  
32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM)  
with Audio/Graphics/Touch (HMI), USB, and Advanced Analog  
Operating Conditions  
Timers/Output Compare/Input Capture  
• 2.3V to 3.6V, -40ºC to +105ºC, DC to 80 MHz  
• Five General Purpose Timers:  
- Five 16-bit and up to two 32-bit Timers/Counters  
• Five Output Compare (OC) modules  
• Five Input Capture (IC) modules  
• Peripheral Pin Select (PPS) to allow function remap  
• Real-Time Clock and Calendar (RTCC) module  
Core: 80 MHz/105 DMIPS MIPS32® M4K®  
• MIPS16e mode for up to 40% smaller code size  
• Code-efficient (C and Assembly) architecture  
• Single-cycle (MAC) 32x16 and two-cycle 32x32 multiply  
®
Clock Management  
• 0.9% internal oscillator  
• Programmable PLLs and oscillator clock sources  
• Fail-Safe Clock Monitor (FSCM)  
• Independent Watchdog Timer  
• Fast wake-up and start-up  
Communication Interfaces  
• USB 2.0-compliant Full-speed OTG controller  
• Up to five UART modules (20 Mbps):  
- Supports LIN 1.2 protocols and IrDA support  
®
• Two 4-wire SPI modules (25 Mbps)  
2
• Two I C modules (up to 1 Mbaud) with SMBus support  
Power Management  
• PPS to allow function remap  
• Parallel Master Port (PMP)  
• Low-power management modes (Sleep and Idle)  
• Integrated Power-on Reset, Brown-out Reset, and High  
Voltage Detect  
• 0.5 mA/MHz dynamic current (typical)  
• 40 μA IPD current (typical)  
Direct Memory Access (DMA)  
• Four channels of hardware DMA with automatic data  
size detection  
• 32-bit Programmable Cyclic Redundancy Check (CRC)  
• Two additional channels dedicated to USB  
Audio/Graphics/Touch HMI Features  
• External graphics interface with up to 34 PMP pins  
Input/Output  
• 15 mA or 12 mA source/sink for standard VOH/VOL and  
up to 22 mA for non-standard VOH  
• 5V-tolerant pins  
• Selectable open drain, pull-ups, and pull-downs  
• External interrupts on all I/O pins  
2
• Audio data communication: I S, LJ, RJ, USB  
2
• Audio data control interface: SPI and I C™  
1
• Audio data master clock:  
- Generation of fractional clock frequencies  
- Can be synchronized with USB clock  
- Can be tuned in run-time  
• Charge Time Measurement Unit (CTMU):  
- Supports mTouch™ capacitive touch sensing  
- Provides high-resolution time measurement (1 ns)  
Qualification and Class B Support  
• AEC-Q100 REVG (Grade 2 -40ºC to +105ºC) planned  
• Class B Safety Library, IEC 60730  
Advanced Analog Features  
• ADC Module:  
- 10-bit 1 Msps rate with one Sample and Hold (S&H)  
- Up to 28 analog inputs  
Debugger Development Support  
• In-circuit and in-application programming  
®
• 4-wire MIPS Enhanced JTAG interface  
• Unlimited program and six complex data breakpoints  
• IEEE 1149.2-compatible (JTAG) boundary scan  
- Can operate during Sleep mode  
• Flexible and independent ADC trigger sources  
• On-chip temperature measurement capability  
• Comparators:  
- Two dual-input Comparator modules  
- Programmable references with 32 voltage points  
Packages  
Type  
QFN  
TQFP  
VTLA  
Pin Count  
I/O Pins (up to)  
Contact/Lead Pitch  
Dimensions  
64  
53  
64  
53  
100  
85  
100  
85  
124  
85  
0.50  
0.50  
0.40  
0.50  
0.50  
9x9x0.9  
10x10x1  
12x12x1  
14x14x1  
9x9x0.9  
Note: All dimensions are in millimeters (mm) unless specified.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 1  
PIC32MX330/350/370/430/450/470  
TABLE 1:  
PIC32MX330/350/370/430/450/470 CONTROLLER FAMILY FEATURES  
Remappable Peripherals  
QFN,  
TQFP  
PIC32MX330F064H 64  
64+12  
64+12  
16  
16  
37 5/5/5  
54 5/5/5  
37 5/5/5  
54 5/5/5  
37 5/5/5  
54 5/5/5  
4
5
4
5
4
5
5
5
4
5
4
5
4
5
4
5
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
2/2  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
4/0  
4/0  
4/0  
4/0  
4/0  
4/0  
4/0  
4/0  
4/2  
4/2  
4/2  
4/2  
4/2  
4/2  
4/2  
4/2  
53  
85  
53  
85  
53  
85  
51  
83  
51  
83  
51  
83  
51  
83  
51  
83  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
N
Y
100 TQFP  
124 VTLA  
QFN,  
PIC32MX330F064L  
PIC32MX350F128H 64  
128+12 32  
128+12 32  
256+12 64  
256+12 64  
TQFP  
100 TQFP  
124 VTLA  
QFN,  
PIC32MX350F128L  
PIC32MX350F256H 64  
TQFP  
100 TQFP  
124 VTLA  
QFN,  
PIC32MX350F256L  
PIC32MX370F512H 64  
512+12 128 37 5/5/5  
512+12 128 54 5/5/5  
TQFP  
100 TQFP  
124 VTLA  
QFN,  
PIC32MX370F512L  
PIC32MX430F064H 64  
64+12  
64+12  
16  
16  
34 5/5/5  
51 5/5/5  
34 5/5/5  
51 5/5/5  
34 5/5/5  
51 5/5/5  
TQFP  
100 TQFP  
124 VTLA  
QFN,  
PIC32MX430F064L  
PIC32MX450F128H 64  
128+12 32  
128+12 32  
256+12 64  
256+12 64  
TQFP  
100 TQFP  
124 VTLA  
QFN,  
PIC32MX450F128L  
PIC32MX450F256H 64  
TQFP  
100 TQFP  
124 VTLA  
QFN,  
PIC32MX450F256L  
PIC32MX470F512H 64  
512+12 128 34 5/5/5  
512+12 128 51 5/5/5  
TQFP  
100 TQFP  
124 VTLA  
PIC32MX470F512L  
Note 1:  
All devices feature 12 KB of Boot Flash memory.  
Four out of five timers are remappable.  
Four out of five external interrupts are remappable.  
2:  
3:  
DS60001185B-page 2  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Pin Diagrams  
(1,2,3)  
64-Pin QFN  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
AN22/RPE5/PMD5/RE5  
SOSCO/RPC14/T1CK/RC14  
SOSCI/RPC13/RC13  
RPD0/RD0  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AN23/PMD6/RE6  
AN27/PMD7/RE7  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
AN16/C1IND/RPG6/SCK2/PMA5/RG6  
AN17/C1INC/RPG7/PMA4/RG7  
AN18/C2IND/RPG8/PMA3/RG8  
MCLR  
RPD11/PMCS1/RD11  
RPD10/PMCS2/RD10  
RPD9/RD9  
RPD8/RTCC/RD8  
VSS  
PIC32MX330F064H  
PIC32MX350F128H  
PIC32MX350F256H  
PIC32MX370F512H  
AN19/C2INC/RPG9/PMA2/RG9  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
VDD  
AN5/C1INA/RPB5/RB5  
AN4/C1INB/RB4  
SCL1/RG2  
SDA1/RG3  
PGED3/AN3/C2INA/RPB3/RB3  
PGEC3/AN2/C2INB/RPB2/CTED13/RB2  
RPF6/SCK1/INT0/RF6  
RPF2/RF2  
PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1  
PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0  
RPF3/RF3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note 1:  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral  
Pin Select” for restrictions.  
2:  
3:  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See  
Section 12.0 “I/O Ports” for more information.  
The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 3  
PIC32MX330/350/370/430/450/470  
Pin Diagrams (Continued)  
(1,2,3)  
64-Pin QFN  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
AN22/RPE5/PMD5/RE5  
AN23/PMD6/RE6  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCO/RPC14/T1CK/RC14  
SOSCI/RPC13/RC13  
RPD0/INT0/RD0  
RPD11/PMCS1/RD11  
SCL1/RPD10/PMCS2/RD10  
SDA1/RPD9/RD9  
RPD8/RTCC/RD8  
VSS  
AN27/PMD7/RE7  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
AN16/C1IND/RPG6/SCK2/PMA5/RG6  
AN17/C1INC/RPG7/PMA4/RG7  
AN18/C2IND/RPG8/PMA3/RG8  
MCLR  
PIC32MX430F064H  
PIC32MX450F128H  
PIC32MX450F256H  
PIC32MX470F512H  
AN19/C2INC/RPG9/PMA2/RG9  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
VDD  
AN5/C1INA/RPB5/VBUSON/RB5  
AN4/C1INB/RB4  
D+  
PGED3/AN3/C2INA/RPB3/RB3  
PGEC3/AN2/C2INB/RPB2/CTED13/RB2  
PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1  
PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0  
D-  
VUSB  
VBUS  
3V3  
USBID/RF3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note 1:  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral  
Pin Select” for restrictions.  
2:  
3:  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See  
Section 12.0 “I/O Ports” for more information.  
The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
DS60001185B-page 4  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Pin Diagrams (Continued)  
(1,2)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
AN22/RPE5/PMD5/RE5  
1
2
SOSCO/RPC14/T1CK/RC14  
SOSCI/RPC13/RC13  
RPD0/RD0  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AN23/PMD6/RE6  
AN27/PMD7/RE7  
3
AN16/C1IND/RPG6/SCK2/PMA5/RG6  
AN17/C1INC/RPG7/PMA4/RG7  
AN18/C2IND/RPG8/PMA3/RG8  
MCLR  
4
RPD11/PMCS1/RD11  
RPD10/PMCS2/RD10  
RPD9/RD9  
5
6
7
RPD8/RTCC/RD8  
VSS  
PIC32MX330F064H  
PIC32MX350F128H  
PIC32MX350F256H  
PIC32MX370F512H  
8
AN19/C2INC/RPG9/PMA2/RG9  
VSS  
9
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
10  
11  
12  
13  
14  
15  
16  
VDD  
AN5/C1INA/RPB5/RB5  
AN4/C1INB/RB4  
SCL1/RG2  
PGED3/AN3/C2INA/RPB3/RB3  
PGEC3/AN2/C2INB/RPB2/CTED13/RB2  
SDA1/RG3  
RPF6/SCK1/INT0/RF6  
RPF2/RF2  
PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1  
PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0  
RPF3/RF3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note 1:  
2:  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral  
Pin Select” for restrictions.  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See  
Section 12.0 “I/O Ports” for more information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 5  
PIC32MX330/350/370/430/450/470  
Pin Diagrams (Continued)  
(1,2)  
64-Pin TQFP  
= Pins are up to 5V tolerant  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
AN22/RPE5/PMD5/RE5  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCO/RPC14/T1CK/RC14  
AN23/PMD6/RE6  
AN27/PMD7/RE7  
2
3
SOSCI/RPC13/RC13  
RPD0/INT0/RD0  
AN16/C1IND/RPG6/SCK2/PMA5/RG6  
AN17/C1INC/RPG7/PMA4/RG7  
RPD11/PMCS1/RD11  
SCL1/RPD10/PMCS2/RD10  
4
5
AN18/C2IND/RPG8/PMA3/RG8  
6
SDA1/RPD9/RD9  
RPD8/RTCC/RD8  
7
MCLR  
PIC32MX430F064H  
PIC32MX450F128H  
PIC32MX450F256H  
PIC32MX470F512H  
AN19/C2INC/RPG9/PMA2/RG9  
8
VSS  
VSS  
VDD  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
9
10  
11  
12  
AN5/C1INA/RPB5/VBUSON/RB5  
AN4/C1INB/RB4  
D+  
D-  
PGED3/AN3/C2INA/RPB3/RB3 13  
VUSB3V3  
PGEC3/AN2/C2INB/RPB2/CTED13/RB2  
14  
15  
VBUS  
PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1  
USBID/RF3  
PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Note 1:  
2:  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral  
Pin Select” for restrictions.  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See  
Section 12.0 “I/O Ports” for more information.  
DS60001185B-page 6  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Pin Diagrams (Continued)  
(1,2)  
= Pins are up to 5V tolerant  
100-Pin TQFP  
V
SS  
RG15  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
2
3
4
5
6
7
8
SOSCO/RPC14/T1CK/RC14  
SOSCI/RPC13/RC13  
RPD0/RD0  
VDD  
AN22/RPE5/PMD5/RE5  
AN23/PMD6/RE6  
RPD11/PMCS1/RD11  
RPD10/PMCS2/RD10  
RPD9/RD9  
AN27/PMD7/RE7  
RPC1/RC1  
RPC2/RC2  
RPD8/RTCC/RD8  
RPA15/RA15  
RPC3/RC3  
RPC4/CTED7/RC4  
9
RPA14/RA14  
AN16/C1IND/RPG6/SCK2/PMA5/RG6  
AN17/C1INC/RPG7/PMA4/RG7  
AN18/C2IND/RPG8/PMA3/RG8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
PIC32MX330F064L  
PIC32MX350F128L  
PIC32MX350F256L  
PIC32MX370F512L  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
MCLR  
VDD  
AN19/C2INC/RPG9/PMA2/RG9  
TDO/RA5  
VSS  
TDI/CTED9/RA4  
SDA2/RA3  
VDD  
TMS/CTED1/RA0  
RPE8/RE8  
SCL2/RA2  
SCL1/RG2  
RPE9/RE9  
SDA1/RG3  
AN5/C1INA/RPB5/RB5  
AN4/C1INB/RB4  
RPF6/SCK1/INT0/RF6  
PGED3/AN3/C2INA/RPB3/RB3  
PGEC3/AN2/C2INB/RPB2/CTED13/RB2  
PGEC1/AN1/RPB1/CTED12/RB1  
PGED1/AN0/RPB0/RB0  
RPF7/RF7  
RPF8/RF8  
RPF2/RF2  
RPF3/RF3  
Note 1:  
2:  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral  
Pin Select” for restrictions.  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See  
Section 12.0 “I/O Ports” for more information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 7  
PIC32MX330/350/370/430/450/470  
Pin Diagrams (Continued)  
(1,2)  
= Pins are up to 5V tolerant  
100-Pin TQFP  
Vss  
RG15  
75  
74  
73  
72  
71  
70  
69  
68  
1
2
3
4
5
6
7
8
VDD  
SOSCO/RPC14/T1CK/RC14  
SOSCI/RPC13/RC13  
AN22/RPE5/PMD5/RE5  
AN23/PMD6/RE6  
RPD0/INT0/RD0  
RPD11/PMCS1/RD11  
AN27/PMD7/RE7  
RPD10/SCK1/PMCS2/RD10  
RPC1/RC1  
RPD9/RD9  
RPC2/RC2  
RPD8/RTCC/RD8  
RPC3/RC3  
SDA1/RPA15/RA15  
RPC4/CTED7/RC4  
67  
66  
9
SCL1/RPA14/RA14  
AN16/C1IND/RPG6/SCK2/PMA5/RG6  
AN17/C1INC/RPG7/PMA4/RG7  
AN18/C2IND/RPG8/PMA3/RG8  
MCLR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PIC32MX430F064L  
PIC32MX450F128L  
PIC32MX450F256L  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
AN19/C2INC/RPG9/PMA2/RG9  
PIC32MX470F512L  
TDO/RA5  
TDI/CTED9/RA4  
SDA2/RA3  
SCL2/RA2  
D+  
VSS  
VDD  
TMS/CTED1/RA0  
RPE8/RE8  
RPE9/RE9  
D-  
AN5/C1INA/RPB5/VBUSON/RB5  
AN4/C1INB/RB4  
VUSB  
3V3  
VBUS  
PGED3/AN3/C2INA/RPB3/RB3  
PGEC3/AN2/C2INB/RPB2/CTED13/RB2  
PGEC1/AN1/RPB1/CTED12/RB1  
PGED1/AN0/RPB0/RB0  
RPF8/RF8  
RPF2/RF2  
USBID/RF3  
Note 1:  
2:  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral  
Pin Select” for restrictions.  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNCx). See  
Section 12.0 “I/O Ports” for more information.  
DS60001185B-page 8  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Pin Diagrams (Continued)  
(1)  
= Pins are up to 5V tolerant  
124-Pin VTLA  
A68 A67 A66 A65 A64 A63 A62 A61 A60 A59 A58 A57 A56 A55 A54 A53 A52 A51  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
B56 B55 B54 B53 B52 B51 B50 B49 B48 B47 B46 B45 B44 B43 B42 A50  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
A49  
B41 A48  
B40 A47  
B39 A46  
B38 A45  
B37 A44  
B36 A43  
PIC32MX330F064L  
PIC32MX350F128L  
B35 A42  
PIC32MX350F256L  
PIC32MX370F512L  
A10 B9  
A11 B10  
A12 B11  
B34 A41  
B33 A40  
B32 A39  
A13 B12  
A14 B13  
A15  
B31 A38  
B30 A37  
B29 A36  
A16 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28  
A35  
A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34  
Note 1: See Table 2 for the full list of pin names.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 9  
PIC32MX330/350/370/430/450/470  
(1,2)  
TABLE 2:  
PIN NAMES: PIC32MX3XXL DEVICES  
Package  
Bump #  
Package  
Bump #  
Full Pin Name  
Full Pin Name  
A1  
A2  
No Connect  
AN24/RPD1/RD1  
AN26/RPD3/RD3  
PMD13/RD13  
RPD5/PMRD/RD5  
PMD15/RD7  
No Connect  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
A65  
A66  
A67  
A68  
B1  
RG15  
VSS  
A3  
A4  
AN23/PMD6/RE6  
A5  
RPC1/RC1  
A6  
RPC3/RC3  
A7  
AN16/C1IND/RPG6/SCK2/PMA5/RG6  
No Connect  
A8  
AN18/C2IND/RPG8/PMA3/RG8  
AN19/C2INC/RPG9/PMA2/RG9  
VDD  
No Connect  
A9  
RPF1/PMD10/RF1  
RPG0/PMD8/RG0  
TRD3/CTED8/RA7  
VSS  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
A50  
A51  
Note 1:  
RPE8/RE8  
AN5/C1INA/RPB5/RB5  
PGED3/AN3/C2INA/RPB3/RB3  
VDD  
PMD1/RE1  
TRD1/RG12  
PGEC1/AN1/RPB1/CTED12/RB1  
No Connect  
AN20/PMD2/RE2  
AN21/PMD4/RE4  
No Connect  
No Connect  
No Connect  
VDD  
No Connect  
B2  
AN22/RPE5/PMD5/RE5  
AN27/PMD7/RE7  
RPC2/RC2  
PGEC2/AN6/RPB6/RB6  
VREF-/CVREF-/PMA7/RA9  
AVDD  
B3  
B4  
RPC4/CTED7/RC4  
AN17/C1INC/RPG7/PMA4/RG7  
MCLR  
B5  
AN8/RPB8/CTED10/RB8  
CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10  
B6  
B7  
VSS  
B8  
VSS  
TCK/CTED2/RA1  
RPF12/RF12  
AN13/PMA10/RB13  
AN15/RPB15/OCFB/CTED6/PMA0/RB15  
VDD  
B9  
TMS/CTED1/RA0  
RPE9/RE9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
AN4/C1INB/RB4  
VSS  
PGEC3/AN2/C2INB/RPB2/CTED13/RB2  
PGED1/AN0/RPB0/RB0  
No Connect  
RPD15/RD15  
RPF5/PMA8/RF5  
No Connect  
PGED2/AN7/RPB7/CTED3/RB7  
VREF+/CVREF+/PMA6/RA10  
AVSS  
No Connect  
RPF3/RF3  
RPF2/RF2  
AN9/RPB9/CTED4/RB9  
AN11/PMA12/RB11  
VDD  
RPF7/RF7  
SDA1/RG3  
SCL2/RA2  
RPF13/RF13  
TDI/CTED9/RA4  
VDD  
AN12/PMA11/RB12  
AN14/RPB14/CTED5/PMA1/RB14  
VSS  
OSC2/CLKO/RC15  
VSS  
RPD14/RD14  
RPA15/RA15  
RPD9/RD9  
RPF4/PMA9/RF4  
No Connect  
RPD11/PMCS1/RD11  
SOSCI/RPC13/RC13  
RPF8/RF8  
RPF6/SCKI/INT0/RF6  
SCL1/RG2  
VDD  
No Connect  
No Connect  
No Connect  
SDA2/RA3  
TDO/RA5  
OSC1/CLKI/RC12  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin  
Select” for restrictions.  
2:  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O  
Ports” for more information.  
DS60001185B-page 10  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
(1,2)  
TABLE 2:  
PIN NAMES: PIC32MX3XXL DEVICES  
(CONTINUED)  
Package  
Bump #  
Package  
Bump #  
Full Pin Name  
Full Pin Name  
B35  
B36  
No Connect  
B46  
B47  
B48  
B49  
B50  
B51  
B52  
B53  
B54  
B55  
B56  
VCAP  
RPA14/RA14  
No Connect  
VDD  
B37  
RPD8/RTCC/RD8  
RPD10/PMCS2/RD10  
RPD0/RD0  
B38  
RPF0/PMD11/RF0  
RPG1/PMD9/RG1  
TRCLK/RA6  
PMD0/RE0  
VDD  
B39  
B40  
SOSCO/RPC14/T1CK/RC14  
VSS  
B41  
B42  
AN25/RPD2/RD2  
RPD12/PMD12/RD12  
RPD4/PMWR/RD4  
PMD14/RD6  
B43  
TRD2/RG14  
TRD0/RG13  
B44  
B45  
RPE3/CTPLS/PMD3/RE3  
Note 1:  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin  
Select” for restrictions.  
2:  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O  
Ports” for more information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 11  
PIC32MX330/350/370/430/450/470  
Pin Diagrams (Continued)  
(1)  
= Pins are up to 5V tolerant  
124-Pin VTLA  
A68 A67 A66 A65 A64 A63 A62 A61 A60 A59 A58 A57 A56 A55 A54 A53 A52 A51  
A1  
A2  
A3  
A4  
A5  
A6  
B56 B55 B54 B53 B52 B51 B50 B49 B48 B47 B46 B45 B44 B43 B42 A50  
B1  
B2  
B3  
B4  
B5  
A49  
B41 A48  
B40 A47  
B39 A46  
B38 A45  
B37 A44  
A7  
A8  
A9  
B6  
B7  
B8  
B36 A43  
PIC32MX430F064L  
PIC32MX450F128L  
PIC32MX450F256L  
PIC32MX470F512L  
B35 A42  
B34 A41  
B33 A40  
B32 A39  
A10 B9  
A11 B10  
A12 B11  
A13 B12  
A14 B13  
A15  
B31 A38  
B30 A37  
B29 A36  
A16 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28  
A35  
A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34  
Note 1: See Table 3 for the full list of pin names.  
DS60001185B-page 12  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
(1,2)  
TABLE 3:  
PIN NAMES: PIC32MX4XXL DEVICES  
Package  
Bump #  
Package  
Bump #  
Full Pin Name  
Full Pin Name  
A1  
A2  
No Connect  
AN24/RPD1/RD1  
AN26/RPD3/RD3  
PMD13/RD13  
RPD5/PMRD/RD5  
PMD15/RD7  
No Connect  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
A65  
A66  
A67  
A68  
B1  
RG15  
A3  
VSS  
A4  
AN23/PMD6/RE6  
RPC1/RC1  
RPC3/RC3  
A5  
A6  
A7  
AN16/C1IND/RPG6/SCK2/PMA5/RG6  
AN18/C2IND/RPG8/PMA3/RG8  
AN19/C2INC/RPG9/PMA2/RG9  
VDD  
No Connect  
A8  
No Connect  
A9  
RPF1/PMD10/RF1  
RPG0/PMD8/RG0  
TRD3/CTED8/RA7  
VSS  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
A50  
A51  
Note 1:  
RPE8/RE8  
AN5/C1INA/RPB5/VBUSON/RB5  
PGED3/AN3/C2INA/RPB3/RB3  
VDD  
PMD1/RE1  
TRD1/RG12  
PGEC1/AN1/RPB1/CTED12/RB1  
No Connect  
AN20/PMD2/RE2  
AN21/PMD4/RE4  
No Connect  
No Connect  
No Connect  
VDD  
No Connect  
B2  
AN22/RPE5/PMD5/RE5  
AN27/PMD7/RE7  
RPC2/RC2  
PGEC2/AN6/RPB6/RB6  
VREF-/CVREF-/PMA7/RA9  
AVDD  
B3  
B4  
RPC4/CTED7/RC4  
AN17/C1INC/RPG7/PMA4/RG7  
MCLR  
B5  
AN8/RPB8/CTED10/RB8  
CVREFOUT/AN10/RPB10/CTED11/PMA13/RB10  
B6  
B7  
VSS  
B8  
VSS  
TCK/CTED2/RA1  
RPF12/RF12  
AN13/PMA10/RB13  
AN15/RPB15/OCFB/CTED6/PMA0/RB15  
VDD  
B9  
TMS/CTED1/RA0  
RPE9/RE9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
B32  
B33  
B34  
AN4/C1INB/RB4  
VSS  
PGEC3/AN2/C2INB/RPB2/CTED13/RB2  
PGED1/AN0/RPB0/RB0  
No Connect  
RPD15/RD15  
RPF5/PMA8/RF5  
No Connect  
PGED2/AN7/RPB7/CTED3/RB7  
VREF+/CVREF+/PMA6/RA10  
AVSS  
No Connect  
USBID/RF3  
RPF2/RF2  
AN9/RPB9/CTED4/RB9  
AN11/PMA12/RB11  
VDD  
VBUS  
D-  
SCL2/RA2  
RPF13/RF13  
TDI/CTED9/RA4  
VDD  
AN12/PMA11/RB12  
AN14/RPB14/CTED5/PMA1/RB14  
VSS  
OSC2/CLKO/RC15  
VSS  
RPD14/RD14  
SDA1/RPA15/RA15  
RPD9/RD9  
RPF4/PMA9/RF4  
No Connect  
RPD11/PMCS1/RD11  
SOSCI/RPC13/RC13  
RPF8/RF8  
VUSB3V3  
VDD  
D+  
No Connect  
No Connect  
No Connect  
SDA2/RA3  
TDO/RA5  
OSC1/CLKI/RC12  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin  
Select” for restrictions.  
2:  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O  
Ports” for more information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 13  
PIC32MX330/350/370/430/450/470  
(1,2)  
TABLE 3:  
PIN NAMES: PIC32MX4XXL DEVICES  
(CONTINUED)  
Package  
Bump #  
Package  
Bump #  
Full Pin Name  
Full Pin Name  
B35  
B36  
No Connect  
SCL1/RPA14/RA14  
B46  
B47  
B48  
B49  
B50  
B51  
B52  
B53  
B54  
B55  
B56  
VCAP  
No Connect  
VDD  
B37  
RPD8/RTCC/RD8  
RPD10/SCK1/PMCS2/RD10  
RPD0/INT0/RD0  
B38  
RPF0/PMD11/RF0  
RPG1/PMD9/RG1  
TRCLK/RA6  
PMD0/RE0  
B39  
B40  
SOSCO/RPC14/T1CK/RC14  
VSS  
B41  
B42  
AN25/RPD2/RD2  
RPD12/PMD12/RD12  
RPD4/PMWR/RD4  
PMD14/RD6  
VDD  
B43  
TRD2/RG14  
TRD0/RG13  
B44  
B45  
RPE3/CTPLS/PMD3/RE3  
Note 1:  
The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 “Peripheral Pin  
Select” for restrictions.  
2:  
Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 “I/O  
Ports” for more information.  
DS60001185B-page 14  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 17  
2.0 Guidelines for Getting Started with 32-bit MCUs........................................................................................................................ 27  
3.0 CPU............................................................................................................................................................................................ 33  
4.0 Memory Organization................................................................................................................................................................. 37  
5.0 Flash Program Memory.............................................................................................................................................................. 93  
6.0 Resets ........................................................................................................................................................................................ 97  
7.0 Interrupt Controller ................................................................................................................................................................... 101  
8.0 Oscillator Configuration............................................................................................................................................................ 109  
9.0 Prefetch Cache......................................................................................................................................................................... 119  
10.0 Direct Memory Access (DMA) Controller ................................................................................................................................. 129  
11.0 USB On-The-Go (OTG)............................................................................................................................................................ 145  
12.0 I/O Ports ................................................................................................................................................................................... 167  
13.0 Timer1 ...................................................................................................................................................................................... 177  
14.0 Timer2/3, Timer4/5................................................................................................................................................................... 181  
15.0 Input Capture............................................................................................................................................................................ 185  
16.0 Output Compare....................................................................................................................................................................... 189  
17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 191  
18.0 Inter-Integrated Circuit™ (I2C™).............................................................................................................................................. 199  
19.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 205  
20.0 Parallel Master Port (PMP)....................................................................................................................................................... 211  
21.0 Real-Time Clock and Calendar (RTCC)................................................................................................................................... 219  
22.0 10-bit Analog-to-Digital Converter (ADC)................................................................................................................................. 229  
23.0 Comparator .............................................................................................................................................................................. 237  
24.0 Comparator Voltage Reference (CVREF) ................................................................................................................................. 241  
25.0 Charge Time Measurement Unit (CTMU) ............................................................................................................................... 243  
26.0 Power-Saving Features ........................................................................................................................................................... 247  
27.0 Special Features ...................................................................................................................................................................... 251  
28.0 Instruction Set .......................................................................................................................................................................... 263  
29.0 Development Support............................................................................................................................................................... 265  
30.0 Electrical Characteristics.......................................................................................................................................................... 269  
31.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 315  
32.0 Packaging Information.............................................................................................................................................................. 319  
The Microchip Web Site..................................................................................................................................................................... 339  
Customer Change Notification Service.............................................................................................................................................. 339  
Customer Support.............................................................................................................................................................................. 339  
Reader Response.............................................................................................................................................................................. 340  
Product Identification System ............................................................................................................................................................ 341  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department  
via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site: http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 15  
PIC32MX330/350/370/430/450/470  
Referenced Sources  
This device data sheet is based on the following  
individual sections of the “PIC32 Family Reference  
Manual”. These documents should be considered as  
the general reference for the operation of a particular  
module or device feature.  
Note:  
To access the documents listed below,  
browse to the documentation section of  
the  
Microchip  
web  
site  
(www.microchip.com).  
Section 1. “Introduction” (DS60001127)  
Section 2. “CPU” (DS60001113)  
Section 3. “Memory Organization” (DS60001115)  
Section 4. “Prefetch Cache” (DS60001119)  
Section 5. “Flash Program Memory” (DS60001121)  
Section 6. “Oscillator Configuration” (DS60001112)  
Section 7. “Resets” (DS60001118)  
Section 8. “Interrupt Controller” (DS60001108)  
Section 9. “Watchdog Timer and Power-up Timer” (DS60001114)  
Section 10. “Power-Saving Features” (DS60001130)  
Section 12. “I/O Ports” (DS60001120)  
Section 13. “Parallel Master Port (PMP)” (DS60001128)  
Section 14. “Timers” (DS60001105)  
Section 15. “Input Capture” (DS60001122)  
Section 16. “Output Compare” (DS60001111)  
Section 17. “10-bit Analog-to-Digital Converter (ADC)” (DS60001104)  
Section 19. “Comparator” (DS60001110)  
Section 20. “Comparator Voltage Reference (CVREF)” (DS60001109)  
Section 21. “Universal Asynchronous Receiver Transmitter (UART)” (DS60001107)  
Section 23. “Serial Peripheral Interface (SPI)” (DS60001106)  
Section 24. “Inter-Integrated Circuit™ (I2C™)” (DS60001116)  
Section 27. “USB On-The-Go (OTG)” (DS60001126)  
Section 29. “Real-Time Clock and Calendar (RTCC)” (DS60001125)  
Section 31. “Direct Memory Access (DMA) Controller” (DS60001117)  
Section 32. “Configuration” (DS60001124)  
Section 33. “Programming and Diagnostics” (DS60001129)  
Section 37. “Charge Time Measurement Unit (CTMU)” (DS60001167)  
DS60001185B-page 16  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
This document contains device-specific information for  
PIC32MX330/350/370/430/450/470 devices.  
1.0  
DEVICE OVERVIEW  
Note 1: This data sheet summarizes the features  
Figure 1-1 illustrates a general block diagram of the  
core and peripheral modules in the PIC32MX330/350/  
370/430/450/470 family of devices.  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to the related section of  
the “PIC32 Family Reference Manual,  
which is available from the Microchip  
web site (www.microchip.com/PIC32).  
Table 1-1 lists the functions of the various pins shown  
in the pinout diagrams.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
FIGURE 1-1:  
PIC32MX330/350/370/430/450/470 BLOCK DIAGRAM  
VCAP  
OSC2/CLKO  
OSC1/CLKI  
OSC/SOSC  
Oscillators  
Power-up  
Timer  
VDD,VSS  
MCLR  
FRC/LPRC  
Oscillators  
Oscillator  
Start-up Timer  
Voltage  
Regulator  
PLL  
Power-on  
Reset  
Precision  
Band Gap  
Reference  
DIVIDERS  
PLL-USB  
Watchdog  
Timer  
USBCLK  
SYSCLK  
PBCLK  
Brown-out  
Reset  
Timing  
Generation  
Peripheral Bus Clocked by SYSCLK  
CTMU  
PORTA/CNA  
Timer1-5  
Priority  
Interrupt  
Controller  
JTAG  
BSCAN  
PORTB/CNB  
PORTC/CNC  
PORTD/CND  
PORTE/CNE  
PORTF/CNF  
PORTG/CNG  
DMAC  
PWM  
OC1-5  
USB  
ICD  
32  
EJTAG  
®
INT  
®
MIPS32 M4K CPU Core  
IC1-5  
SPI1,2  
I2C1,2  
IS  
DS  
32  
Bus Matrix  
32  
32  
32  
32  
32  
32  
PMP  
32  
32  
32  
10-bit ADC  
UART1-5  
RTCC  
Cache & Prefetch  
Module  
Peripheral Bridge  
Data RAM  
Remappable  
Pins  
128  
128-bit wide  
Program Flash Memory  
Flash  
Controller  
Comparators  
1-2  
Note:  
Not all features are available on all devices. Refer to TABLE 1: “PIC32MX330/350/370/430/450/470 Controller  
Family Features” for the list of features by device.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 17  
PIC32MX330/350/370/430/450/470  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Type  
Buffer  
Type  
64-pin  
QFN/  
TQFP  
Pin Name  
Description  
100-pin  
TQFP  
124-pin  
VTLA  
AN0  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
4
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
10  
11  
12  
14  
98  
100  
3
B14  
A15  
B13  
A13  
B11  
A12  
A20  
B16  
A23  
B19  
A24  
B20  
B23  
A28  
B24  
A29  
A7  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
Analog input channels.  
5
B6  
6
A8  
8
A9  
62  
64  
1
A66  
A67  
B2  
2
4
A4  
49  
50  
51  
3
76  
77  
78  
5
A52  
B42  
A53  
B3  
External clock source input. Always associated with  
OSC1 pin function.  
CLKI  
39  
63  
B34  
I
ST/CMOS  
Oscillator crystal output. Connects to crystal or reso-  
nator in Crystal Oscillator mode. Optionally functions  
as CLKO in RC and EC modes. Always associated  
with the OSC2 pin function.  
CLKO  
40  
64  
A42  
O
Oscillator crystal input. ST buffer when configured in  
RC mode; CMOS otherwise.  
OSC1  
OSC2  
39  
40  
63  
64  
B34  
A42  
I
ST/CMOS  
Oscillator crystal output. Connects to crystal or reso-  
nator in Crystal Oscillator mode. Optionally functions  
as CLKO in RC and EC modes.  
I/O  
32.768 kHz low-power oscillator crystal input; CMOS  
otherwise.  
SOSCI  
47  
48  
73  
74  
A47  
B40  
I
ST/CMOS  
SOSCO  
O
32.768 kHz low-power oscillator crystal output.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: This pin is available on PIC32MX3XX devices only.  
2: This pin is available on PIC32MX4XX devices only.  
DS60001185B-page 18  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
64-pin  
QFN/  
TQFP  
Pin Name  
Description  
100-pin  
TQFP  
124-pin  
VTLA  
IC1  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
30  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
44  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
A29  
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
IC2  
IC3  
I
Capture Input 1-5  
IC4  
I
IC5  
I
OC1  
OC2  
OC3  
OC4  
OC5  
OCFA  
OCFB  
O
O
O
O
O
I
Output Compare Output 1  
Output Compare Output 2  
Output Compare Output 3  
Output Compare Output 4  
Output Compare Output 5  
Output Compare Fault A Input  
Output Compare Fault B Input  
External Interrupt 0  
I
(1)  
(2)  
(1)  
(2)  
(1)  
(2)  
INT0  
INT1  
INT2  
INT3  
INT4  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RA9  
RA10  
RA14  
RA15  
35 , 46  
PPS  
PPS  
PPS  
PPS  
55 , 72  
B30 , B39  
I
PPS  
PPS  
PPS  
PPS  
17  
PPS  
PPS  
PPS  
PPS  
B9  
I
External Interrupt 1  
I
External Interrupt 2  
I
External Interrupt 3  
I
External Interrupt 4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
38  
A26  
A39  
B32  
A40  
B33  
B51  
A62  
A21  
B17  
B36  
A44  
58  
59  
60  
61  
PORTA is a bidirectional I/O port  
91  
92  
28  
29  
66  
67  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: This pin is available on PIC32MX3XX devices only.  
2: This pin is available on PIC32MX4XX devices only.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 19  
PIC32MX330/350/370/430/450/470  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
64-pin  
QFN/  
TQFP  
Pin Name  
Description  
100-pin  
TQFP  
124-pin  
VTLA  
RB0  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
39  
47  
48  
40  
46  
49  
50  
51  
52  
53  
54  
55  
42  
43  
44  
45  
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
6
B14  
A15  
B13  
A13  
B11  
A12  
A20  
B16  
A23  
B19  
A24  
B20  
B23  
A28  
B24  
A29  
A5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
PORTB is a bidirectional I/O port  
RB8  
RB9  
RB10  
RB11  
RB12  
RB13  
RB14  
RB15  
RC1  
RC2  
RC3  
RC4  
RC12  
RC13  
RC14  
RC15  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD8  
RD9  
RD10  
RD11  
RD12  
RD13  
RD14  
RD15  
7
B4  
8
A6  
9
B5  
PORTC is a bidirectional I/O port  
63  
73  
74  
64  
72  
76  
77  
78  
81  
82  
83  
84  
68  
69  
70  
71  
79  
80  
47  
48  
B34  
A47  
B40  
A42  
B39  
A52  
B42  
A53  
B44  
A55  
B45  
A56  
B37  
A45  
B38  
A46  
B43  
A54  
B26  
A31  
PORTD is a bidirectional I/O port  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: This pin is available on PIC32MX3XX devices only.  
2: This pin is available on PIC32MX4XX devices only.  
DS60001185B-page 20  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
64-pin  
QFN/  
TQFP  
Pin Name  
Description  
100-pin  
TQFP  
124-pin  
VTLA  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
RE8  
RE9  
RF0  
RF1  
RF2  
RF3  
RF4  
RF5  
RF6  
RF7  
RF8  
RF12  
RF13  
RG0  
RG1  
60  
61  
62  
63  
64  
1
93  
94  
98  
99  
100  
3
B52  
A64  
A66  
B56  
A67  
B2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTE is a bidirectional I/O port  
2
4
A4  
3
5
B3  
58  
59  
18  
19  
87  
88  
52  
51  
49  
50  
A11  
B10  
B49  
A60  
A36  
A35  
B27  
A32  
(1)  
34  
33  
31  
32  
PORTF is a bidirectional I/O port  
(1)  
(1)  
(1)  
35  
55  
B30  
(1)  
(1)  
54  
A37  
53  
40  
B29  
A27  
B22  
A61  
B50  
B31  
A38  
A7  
39  
90  
89  
(1)  
RG2  
37  
36  
4
57  
(1)  
RG3  
56  
RG6  
10  
RG7  
5
11  
B6  
PORTG is a bidirectional I/O port  
RG8  
6
12  
A8  
RG9  
8
14  
A9  
RG12  
RG13  
RG14  
RG15  
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
96  
A65  
B55  
B54  
A2  
97  
95  
1
48  
PPS  
PPS  
PPS  
PPS  
74  
B40  
PPS  
PPS  
PPS  
PPS  
Timer1 External Clock Input  
Timer2 External Clock Input  
Timer3 External Clock Input  
Timer4 External Clock Input  
Timer5 External Clock Input  
PPS  
PPS  
PPS  
PPS  
I
I
I
I
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: This pin is available on PIC32MX3XX devices only.  
2: This pin is available on PIC32MX4XX devices only.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 21  
PIC32MX330/350/370/430/450/470  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
64-pin  
QFN/  
TQFP  
Pin Name  
Description  
100-pin  
TQFP  
124-pin  
VTLA  
U1CTS  
PPS  
PPS  
PPS  
I
ST  
UART1 Clear to Send  
U1RTS  
U1RX  
U1TX  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
O
I
ST  
UART1 Ready to Send  
UART1 Receive  
O
UART1 Transmit  
U2CTS  
PPS  
PPS  
PPS  
I
ST  
UART2 Clear to Send  
U2RTS  
U2RX  
U2TX  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
O
I
ST  
UART2 Ready to Send  
UART2 Receive  
O
UART2 Transmit  
U3CTS  
PPS  
PPS  
PPS  
I
ST  
UART3 Clear to Send  
U3RTS  
U3RX  
U3TX  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
O
I
ST  
UART3 Ready to Send  
UART3 Receive  
O
UART3 Transmit  
U4CTS  
PPS  
PPS  
PPS  
I
ST  
UART4 Clear to Send  
U4RTS  
U4RX  
U4TX  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
O
I
ST  
UART4 Ready to Send  
UART4 Receive  
O
UART4 Transmit  
(3)  
U5CTS  
PPS  
PPS  
PPS  
I
ST  
UART5 Clear to Send  
(3)  
U5RTS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
O
I
ST  
UART5 Ready to Send  
UART5 Receive  
(3)  
U5RX  
(3)  
U5TX  
O
UART5 Transmit  
(1)  
(2)  
(1)  
(2)  
(1)  
(2)  
SCK1  
SDI1  
35 , 50  
PPS  
55 , 70  
B30 , B38  
I/O  
O
ST  
Synchronous Serial Clock Input/Output for SPI1  
SPI1 Data In  
PPS  
PPS  
PPS  
PPS  
SDO1  
PPS  
I/O  
ST  
SPI1 Data Out  
SS1  
PPS  
4
PPS  
10  
PPS  
A7  
O
I/O  
O
ST  
SPI1 Slave Synchronization for Frame Pulse I/O  
Synchronous Serial Clock Input/Output for SPI2  
SPI2 Data In  
SCK2  
SDI2  
SDO2  
PPS  
PPS  
PPS  
PPS  
PPS  
PPS  
I/O  
ST  
SPI2 Data Out  
SS2  
PPS  
PPS  
57, 66  
56, 67  
58  
PPS  
O
I/O  
I/O  
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
ST  
SPI2 Slave Synchronization for Frame Pulse I/O  
Synchronous Serial Clock Input/Output for I2C1  
Synchronous Serial Data Input/Output for I2C1  
Synchronous Serial Clock Input/Output for I2C2  
Synchronous Serial Data Input/Output for I2C2  
JTAG Test Mode Select Pin  
(1)  
(2)  
(2)  
(1)  
(2)  
(2)  
SCL1  
SDA1  
SCL2  
SDA2  
TMS  
TCK  
37 , 44  
B31 , B36  
(1)  
(1)  
36 , 43  
A38 , A44  
32  
31  
23  
27  
28  
24  
42  
A39  
B32  
B9  
59  
17  
38  
A26  
A40  
B33  
B37  
I
JTAG Test Clock Input Pin  
TDI  
60  
I
JTAG Test Clock Input Pin  
TDO  
RTCC  
61  
O
I
JTAG Test Clock Output Pin  
68  
ST  
Real-Time Clock Alarm Output  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: This pin is available on PIC32MX3XX devices only.  
2: This pin is available on PIC32MX4XX devices only.  
DS60001185B-page 22  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
64-pin  
QFN/  
TQFP  
Pin Name  
Description  
100-pin  
TQFP  
124-pin  
VTLA  
CVREF-  
CVREF+  
CVREFOUT  
C1INA  
15  
16  
23  
11  
12  
5
28  
29  
A21  
B17  
A24  
A12  
B11  
B6  
I
I
Analog Comparator Voltage Reference (Low)  
Analog Comparator Voltage Reference (High)  
Analog Comparator Voltage Reference (Output)  
Analog  
34  
I
20  
I
C1INB  
21  
I
Analog  
Comparator 1 Inputs  
Analog  
C1INC  
C1IND  
C2INA  
11  
I
4
10  
A7  
I
Analog  
Analog  
13  
14  
8
22  
A13  
B13  
A9  
I
C2INB  
23  
I
Analog  
Comparator 2 Inputs  
Analog  
C2INC  
C2IND  
C1OUT  
C2OUT  
PMALL  
PMALH  
14  
I
6
12  
A8  
I
Analog  
PPS  
PPS  
30  
29  
PPS  
PPS  
44  
PPS  
PPS  
A29  
B24  
O
O
O
O
Comparator 1 Output  
Comparator 2 Output  
TTL/ST Parallel Master Port Address Latch Enable Low Byte  
TTL/ST Parallel Master Port Address Latch Enable High Byte  
43  
Parallel Master Port Address bit 0 Input (Buffered  
TTL/ST  
PMA0  
PMA1  
30  
29  
44  
43  
A29  
B24  
O
O
Slave modes) and Output (Master modes)  
Parallel Master Port Address bit 0 Input (Buffered  
TTL/ST  
Slave modes) and Output (Master modes)  
PMA2  
PMA3  
PMA4  
PMA5  
PMA6  
PMA7  
PMA8  
PMA9  
PMA10  
PMA11  
PMA12  
PMA13  
PMA14  
PMA15  
PMCS1  
PMCS2  
PMD0  
PMD1  
PMD2  
8
14  
12  
11  
10  
29  
28  
50  
49  
42  
41  
35  
34  
71  
70  
71  
72  
93  
94  
98  
A9  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
6
A8  
5
B6  
4
A7  
16  
22  
32  
31  
28  
27  
24  
23  
45  
44  
45  
44  
60  
61  
62  
B17  
A21  
A32  
B27  
A28  
B23  
B20  
A24  
A46  
B38  
A46  
B38  
B52  
A64  
A66  
Parallel Master Port data (Demultiplexed Master  
mode) or Address/Data (Multiplexed Master modes)  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: This pin is available on PIC32MX3XX devices only.  
2: This pin is available on PIC32MX4XX devices only.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 23  
PIC32MX330/350/370/430/450/470  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
64-pin  
QFN/  
TQFP  
Pin Name  
Description  
100-pin  
TQFP  
124-pin  
VTLA  
PMD3  
PMD4  
PMD5  
PMD6  
PMD7  
PMD8  
PMD9  
PMD10  
PMD11  
PMD12  
PMD13  
PMD14  
PMD15  
PMRD  
PMWR  
63  
64  
1
99  
100  
3
B56  
A67  
B2  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
TTL/ST  
2
4
A4  
3
5
B3  
53  
52  
34  
90  
89  
88  
87  
79  
80  
83  
84  
82  
81  
54  
A61  
B50  
A60  
B49  
B43  
A54  
B45  
A56  
A55  
B44  
A37  
Parallel Master Port Data (Demultiplexed Master  
mode) or Address/Data (Multiplexed Master modes)  
Parallel Master Port Read Strobe  
Parallel Master Port Write Strobe  
(2)  
VBUS  
Analog USB Bus Power Monitor  
USB internal transceiver supply. If the USB module is  
not used, this pin must be connected to VDD.  
(2)  
VUSB3V3  
35  
55  
B30  
P
(2)  
VBUSON  
11  
37  
36  
33  
20  
57  
56  
51  
A12  
B31  
A38  
A35  
O
I/O  
I/O  
I
USB Host and OTG bus power control Output  
(2)  
D+  
Analog USB D+  
Analog USB D-  
(2)  
D-  
(2)  
USBID  
ST  
USB OTG ID Detect  
Data I/O pin for Programming/Debugging  
Communication Channel 1  
PGED1  
PGEC1  
PGED2  
PGEC2  
PGED3  
PGEC3  
16  
15  
18  
17  
13  
14  
25  
24  
27  
26  
22  
23  
B14  
A15  
B16  
A20  
A13  
B13  
I/O  
ST  
Clock Input pin for Programming/Debugging  
Communication Channel 1  
I
I/O  
I
ST  
ST  
ST  
ST  
ST  
Data I/O Pin for Programming/Debugging  
Communication Channel 2  
Clock Input Pin for Programming/Debugging  
Communication Channel 2  
Data I/O Pin for Programming/Debugging  
Communication Channel 3  
I/O  
I
Clock Input Pin for Programming/Debugging  
Communication Channel 3  
TCK  
27  
23  
28  
24  
59  
60  
61  
62  
63  
38  
17  
60  
61  
91  
97  
96  
95  
92  
A26  
B9  
I
ST  
ST  
ST  
JTAG Test Clock Input Pin  
JTAG Test Mode Select Pin  
JTAG Test Data Input Pin  
JTAG Test Data Output Pin  
Trace clock  
TMS  
I
TDI  
A40  
B33  
B51  
B55  
A65  
B54  
A62  
I
TDO  
O
O
O
O
O
O
TRCLK  
TRD0  
TRD1  
TRD2  
TRD3  
Trace Data bit 0  
Trace Data bit 1  
Trace Data bit 2  
Trace Data bit 3  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: This pin is available on PIC32MX3XX devices only.  
2: This pin is available on PIC32MX4XX devices only.  
DS60001185B-page 24  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
64-pin  
QFN/  
TQFP  
Pin Name  
Description  
100-pin  
TQFP  
124-pin  
VTLA  
CTED1  
CTED2  
CTED3  
CTED4  
CTED5  
CTED6  
CTED7  
CTED8  
CTED9  
CTED10  
CTED11  
CTED12  
CTED13  
18  
22  
29  
30  
21  
23  
15  
14  
17  
38  
27  
33  
43  
44  
9
B9  
I
I
I
I
I
I
I
I
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
CTMU External Edge Input 1  
A26  
B16  
B19  
B24  
A29  
B5  
CTMU External Edge Input 2  
CTMU External Edge Input 3  
CTMU External Edge Input 4  
CTMU External Edge Input 5  
CTMU External Edge Input 6  
CTMU External Edge Input 7  
CTMU External Edge Input 8  
CTMU External Edge Input 9  
CTMU External Edge Input 10  
CTMU External Edge Input 11  
CTMU External Edge Input 12  
CTMU External Edge Input 13  
92  
60  
32  
34  
24  
23  
A62  
A40  
A23  
A24  
A15  
B13  
Master Clear (Reset) input. This pin is an active-low  
Reset to the device.  
MCLR  
7
13  
B7  
I/P  
ST  
Positive supply for analog modules. This pin must be  
connected at all times.  
AVDD  
AVSS  
19  
20  
30  
31  
A22  
B18  
P
P
P
P
Ground reference for analog modules  
Positive supply for peripheral logic and I/O pins  
Capacitor for Internal Voltage Regulator  
Ground reference for logic and I/O pins  
B1, A10, A14,  
B21, A30,  
A41, A48,  
A59, B53  
10, 26, 38, 2, 16, 37,  
VDD  
VCAP  
VSS  
P
P
P
57  
46, 62, 86  
56  
85  
B48  
A3, B8, B12,  
A25, B25,  
A43, B41,  
A63  
15, 36, 45,  
65, 75  
9, 25, 41  
VREF+  
VREF-  
16  
15  
29  
28  
B17  
A21  
I
I
Analog Analog Voltage Reference (High) Input  
Analog Analog Voltage Reference (Low) Input  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
Note 1: This pin is available on PIC32MX3XX devices only.  
2: This pin is available on PIC32MX4XX devices only.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 25  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 26  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 32-BIT MCUS  
The use of decoupling capacitors on power supply  
pins, such as VDD, VSS, AVDD and AVSS is required.  
See Figure 2-1.  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to the related section of  
the “PIC32 Family Reference Manual,  
which is available from the Microchip  
web site (www.microchip.com/PIC32).  
Consider the following criteria when using decoupling  
capacitors:  
Value and type of capacitor: A value of 0.1 µF  
(100 nF), 10-20V is recommended. The capacitor  
should be a low Equivalent Series Resistance (low-  
ESR) capacitor and have resonance frequency in  
the range of 20 MHz and higher. It is further  
recommended that ceramic capacitors be used.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close to  
the pins as possible. It is recommended that the  
capacitors be placed on the same side of the board  
as the device. If space is constricted, the capacitor  
can be placed on another layer on the PCB using a  
via; however, ensure that the trace length from the  
pin to the capacitor is within one-quarter inch  
(6 mm) in length.  
2.1  
Basic Connection Requirements  
Getting started with the PIC32MX330/350/370/430/  
450/470 family of 32-bit Microcontrollers (MCUs)  
requires attention to a minimal set of device pin con-  
nections before proceeding with development. The fol-  
lowing is a list of pin names, which must always be  
connected:  
Handling high frequency noise: If the board is  
experiencing high frequency noise, upward of tens  
of MHz, add a second ceramic-type capacitor in par-  
allel to the above described decoupling capacitor.  
The value of the second capacitor can be in the  
range of 0.01 µF to 0.001 µF. Place this second  
capacitor next to the primary decoupling capacitor.  
In high-speed circuit designs, consider implement-  
ing a decade pair of capacitances as close to the  
power and ground pins as possible. For example,  
0.1 µF in parallel with 0.001 µF.  
• All VDD and VSS pins (see 2.2 “Decoupling Capac-  
itors”)  
• All AVDD and AVSS pins, even if the ADC module is  
not used (see 2.2 “Decoupling Capacitors”)  
• VCAP pin (see 2.3 “Capacitor on Internal Voltage  
Regulator (VCAP)”)  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first, and  
then to the device pins. This ensures that the decou-  
pling capacitors are first in the power chain. Equally  
important is to keep the trace length between the  
capacitor and the power pins to a minimum thereby  
reducing PCB track inductance.  
• MCLR pin (see 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins, used for In-Circuit Serial Pro-  
gramming (ICSP™) and debugging purposes (see  
2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins, when external oscillator  
source is used (see 2.8 “External Oscillator Pins”)  
The following pin may be required, as well:  
VREF+/VREF- pins, used when external voltage  
reference for the ADC module is implemented.  
Note:  
The AVDD and AVSS pins must be  
connected, regardless of ADC use and  
the ADC voltage reference source.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 27  
PIC32MX330/350/370/430/450/470  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
2.4  
Master Clear (MCLR) Pin  
The MCLR pin provides for two specific device  
functions:  
0.1 µF  
Ceramic  
VDD  
• Device Reset  
• Device programming and debugging  
R
Pulling The MCLR pin low generates a device Reset.  
Figure 2-2 illustrates a typical MCLR circuit. During  
device programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R and C will need to be adjusted based on the  
application and PCB requirements.  
R1  
MCLR  
(1)  
C
VUSB3V3  
PIC32  
VDD  
VSS  
VDD  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
For example, as illustrated in Figure 2-2, it is  
recommended that the capacitor C, be isolated from  
the MCLR pin during programming and debugging  
operations.  
(2)  
Connect  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
L1(2)  
Place the components illustrated in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
Note 1: If the USB module is not used, this pin must be  
connected to VDD.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
2: As an option, instead of a hard-wired connection, an  
inductor (L1) can be substituted between VDD and  
AVDD to improve ADC noise rejection. The inductor  
impedance should be less than 1and the inductor  
capacity greater than 10 mA.  
VDD  
R(1)  
Where:  
R1(2)  
FCNV  
MCLR  
f = -------------  
(i.e., ADC conversion rate/2)  
2
PIC32  
JP  
C(3)  
1
f = -----------------------  
2LC  
2  
1
---------------------  
L =  
2f C  
Note 1: R 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the MCLR  
pin VIH and VIL specifications are met.  
2.2.1  
BULK CAPACITORS  
2: R1 470will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
The use of a bulk capacitor is recommended to improve  
power supply stability. Typical values range from 4.7 µF  
to 47 µF. This capacitor should be located as close to  
the device as possible.  
3: The capacitor can be sized to prevent uninten-  
tional Resets from brief glitches or to extend  
the device Reset period during POR.  
2.3  
Capacitor on Internal Voltage  
Regulator (VCAP)  
2.3.1  
INTERNAL REGULATOR MODE  
A low-ESR (1 ohm) capacitor is required on the VCAP  
pin, which is used to stabilize the internal voltage regu-  
lator output. The VCAP pin must not be connected to  
VDD, and must have a CEFC capacitor, with at least a  
6V rating, connected to ground. The type can be  
ceramic or tantalum. Refer to Section 30.0 “Electrical  
Characteristics” for additional information on CEFC  
specifications.  
DS60001185B-page 28  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
2.5  
ICSP Pins  
2.7  
Trace  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming™ (ICSP™) and debugging pur-  
poses. It is recommended to keep the trace length  
between the ICSP connector and the ICSP pins on the  
device as short as possible. If the ICSP connector is  
expected to experience an ESD event, a series resistor  
is recommended, with the value in the range of a few  
tens of Ohms, not to exceed 100 Ohms.  
The trace pins can be connected to a hardware  
trace-enabled programmer to provide a compressed  
real-time instruction trace. When used for trace, the  
TRD3, TRD2, TRD1, TRD0 and TRCLK pins should  
be dedicated for this use. The trace hardware  
requires a 22 Ohm series resistor between the trace  
pins and the trace connector.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
2.8  
External Oscillator Pins  
Many MCUs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 8.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same side  
of the board as the device. Also, place the oscillator cir-  
cuit close to the respective oscillator pins, not exceed-  
ing one-half inch (12 mm) distance between them. The  
load capacitors should be placed next to the oscillator  
itself, on the same side of the board. Use a grounded  
copper pour around the oscillator circuit to isolate them  
from surrounding circuits. The grounded copper pour  
should be routed directly to the MCU ground. Do not  
run any signal traces or power traces inside the ground  
pour. Also, if using a two-sided board, avoid any traces  
on the other side of the board where the crystal is  
placed. A suggested layout is illustrated in Figure 2-3.  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 3 or MPLAB REAL ICE™.  
For more information on ICD 3 and REAL ICE  
connection requirements, refer to the following  
documents that are available on the Microchip web  
site.  
“Using MPLAB® ICD 3” (poster) DS50001765  
“MPLAB® ICD 3 Design Advisory” DS50001764  
FIGURE 2-3:  
SUGGESTED OSCILLATOR  
CIRCUIT PLACEMENT  
“MPLAB® REAL ICE™ In-Circuit Debugger  
User’s Guide” DS50001616  
“Using MPLAB® REAL ICE™ Emulator” (poster)  
DS50001749  
2.6  
JTAG  
Oscillator  
Secondary  
The TMS, TDO, TDI and TCK pins are used for testing  
and debugging according to the Joint Test Action  
Group (JTAG) standard. It is recommended to keep the  
trace length between the JTAG connector and the  
JTAG pins on the device as short as possible. If the  
JTAG connector is expected to experience an ESD  
event, a series resistor is recommended, with the value  
in the range of a few tens of Ohms, not to exceed 100  
Ohms.  
Guard Trace  
Guard Ring  
Main Oscillator  
Pull-up resistors, series diodes and capacitors on the  
TMS, TDO, TDI and TCK pins are not recommended  
as they will interfere with the programmer/debugger  
communications to the device. If such discrete compo-  
nents are an application requirement, they should be  
removed from the circuit during programming and  
debugging. Alternatively, refer to the AC/DC character-  
istics and timing requirements information in the  
respective device Flash programming specification for  
information on capacitive loading limits and pin input  
voltage high (VIH) and input low (VIL) requirements.  
2.9  
Unused I/Os  
Unused I/O pins should not be allowed to float as  
inputs. They can be configured as outputs and driven  
to a logic-low state.  
Alternatively, inputs can be reserved by connecting the  
pin to VSS through a 1k to 10k resistor and configuring  
the pin as an input.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 29  
PIC32MX330/350/370/430/450/470  
2.10 Typical Application Connection  
Examples  
Examples of typical application connections are shown  
in Figure 2-4 and Figure 2-5.  
FIGURE 2-4:  
CAPACITIVE TOUCH SENSING WITH GRAPHICS APPLICATION  
PIC32MX430F064L  
Current Source  
CTMU  
To AN6  
To AN7  
To AN8  
To AN9  
To AN11  
To AN0  
To AN1  
AN0  
AN1  
R1  
C1  
R1  
C2  
R1  
R1  
C3  
R1  
C4  
C5  
ADC  
Read the Touch Sensors  
R2  
C1  
R2  
C2  
R2  
C3  
R2  
C4  
R2  
C5  
Microchip  
mTouch™  
Library  
AN9  
To AN5  
Process Samples  
AN11  
R3  
C1  
R3  
C2  
R3  
C3  
R3  
C4  
R3  
C5  
User  
Application  
Display Data  
LCD Controller  
Display  
PMD<7:0>  
PMWR  
Microchip  
Graphics  
Library  
Parallel  
Master  
Port  
Frame  
Buffer  
LCD  
Panel  
Controller  
FIGURE 2-5:  
AUDIO PLAYBACK APPLICATION  
PMD<7:0>  
USB  
Host  
PMP  
USB  
Display  
PMWR  
3
PIC32MX450F256L  
Stereo Headphones  
Speaker  
2
I S  
Audio  
Codec  
REFCLKO  
3
SPI  
3
MMC SD  
SDI  
DS60001185B-page 30  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 2-6:  
LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH  
PROJECTED CAPACITIVE TOUCH  
PIC32MX430F064L  
ANx  
CTMU  
ADC  
Microchip mTouch™  
GFX Libraries  
LCD Display  
Projected Capacitive  
Touch Overlay  
DMA  
PMP  
SRAM  
External Frame Buffer  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 31  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 32  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
- Programmable exception vector base  
- Atomic interrupt enable/disable  
- GPR shadow registers to minimize latency  
for interrupt handlers  
- Bit field manipulation instructions  
• MIPS16e® Code Compression:  
- 16-bit encoding of 32-bit instructions to  
improve code density  
- Special PC-relative instructions for efficient  
loading of addresses and constants  
- SAVEand RESTOREmacro instructions for  
setting up and tearing down stack frames  
within subroutines  
3.0  
CPU  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 2. “CPU”  
(DS60001113) in the “PIC32 Family  
Reference Manual”, which is available  
from  
the  
Microchip  
web site  
(www.microchip.com/PIC32). Resources  
for the MIPS32® M4K® Processor Core  
are available at http://www.mips.com.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
- Improved support for handling 8 and 16-bit  
data types  
• Simple Fixed Mapping Translation (FMT)  
Mechanism:  
• Simple Dual Bus Interface:  
- Independent 32-bit address and data busses  
- Transactions can be aborted to improve  
interrupt latency  
• Autonomous Multiply/Divide Unit (MDU):  
- Maximum issue rate of one 32x16 multiply  
per clock  
- Maximum issue rate of one 32x32 multiply  
every other clock  
- Early-in iterative divide. Minimum 11 and  
maximum 33 clock latency (dividend (rs) sign  
extension-dependent)  
The the MIPS32® M4K® Processor Core is the heart of  
the PIC32MX330/350/370/430/450/470 device proces-  
sor. The CPU fetches instructions, decodes each  
instruction, fetches source operands, executes each  
instruction and writes the results of instruction  
execution to the proper destinations.  
3.1  
Features  
• 5-stage pipeline  
• 32-bit address and data paths  
• MIPS32® Enhanced Architecture (Release 2):  
• Power Control:  
- Minimum frequency: 0 MHz  
- Low-Power mode (triggered by WAITinstruction)  
- Extensive use of local gated clocks  
• EJTAG Debug and Instruction Trace:  
- Support for single stepping  
- Multiply-accumulate and multiply-subtract  
instructions  
- Targeted multiply instruction  
- Zero/One detect instructions  
- WAITinstruction  
- Virtual instruction and data address/value  
- Breakpoints  
- Conditional move instructions (MOVN, MOVZ)  
- Vectored interrupts  
®
®
FIGURE 3-1:  
MIPS32 M4K PROCESSOR CORE BLOCK DIAGRAM  
CPU  
EJTAG  
MDU  
TAP  
Off-chip Debug Interface  
Execution Core  
(RF/ALU/Shift)  
FMT  
Dual Bus Interface  
Bus Interface  
Bus Matrix  
System  
Co-processor  
Power  
Management  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 33  
PIC32MX330/350/370/430/450/470  
3.2.2  
MULTIPLY/DIVIDE UNIT (MDU)  
3.2  
Architecture Overview  
The MIPS32® M4K® processor core includes a Multi-  
ply/Divide Unit (MDU) that contains a separate pipeline  
for multiply and divide operations. This pipeline oper-  
ates in parallel with the Integer Unit (IU) pipeline and  
does not stall when the IU pipeline stalls. This allows  
MDU operations to be partially masked by system stalls  
and/or other integer unit instructions.  
The MIPS32® M4K® processor core contains several  
logic blocks working together in parallel, providing an  
efficient high-performance computing engine. The  
following blocks are included with the core:  
• Execution Unit  
• Multiply/Divide Unit (MDU)  
• System Control Coprocessor (CP0)  
• Fixed Mapping Translation (FMT)  
• Dual Internal Bus interfaces  
• Power Management  
The high-performance MDU consists of a 32x16 booth  
recoded multiplier, result/accumulation registers (HI  
and LO), a divide state machine, and the necessary  
multiplexers and control logic. The first number shown  
(‘32’ of 32x16) represents the rs operand. The second  
number (‘16’ of 32x16) represents the rt operand. The  
PIC32 core only checks the value of the latter (rt) oper-  
and to determine how many times the operation must  
pass through the multiplier. The 16x16 and 32x16  
operations pass through the multiplier once. A 32x32  
operation passes through the multiplier twice.  
• MIPS16e® Support  
• Enhanced JTAG (EJTAG) Controller  
3.2.1  
EXECUTION UNIT  
The MIPS32® M4K® processor core execution unit  
implements a load/store architecture with single-cycle  
ALU operations (logical, shift, add, subtract) and an  
autonomous multiply/divide unit. The core contains  
thirty-two 32-bit General Purpose Registers (GPRs)  
used for integer operations and address calculation.  
One additional register file shadow set (containing  
thirty-two registers) is added to minimize context  
switching overhead during interrupt/exception process-  
ing. The register file consists of two read ports and one  
write port and is fully bypassed to minimize operation  
latency in the pipeline.  
The MDU supports execution of one 16x16 or 32x16  
multiply operation every clock cycle; 32x32 multiply  
operations can be issued every other clock cycle.  
Appropriate interlocks are implemented to stall the  
issuance of back-to-back 32x32 multiply operations.  
The multiply operand size is automatically determined  
by logic built into the MDU.  
Divide operations are implemented with a simple 1 bit  
per clock iterative algorithm. An early-in detection  
checks the sign extension of the dividend (rs) operand.  
If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit  
wide rs, 15 iterations are skipped and for a 24-bit wide  
rs, 7 iterations are skipped. Any attempt to issue a sub-  
sequent MDU instruction while a divide is still active  
causes an IU pipeline stall until the divide operation is  
completed.  
The execution unit includes:  
• 32-bit adder used for calculating the data address  
• Address unit for calculating the next instruction  
address  
• Logic for branch determination and branch target  
address calculation  
• Load aligner  
• Bypass multiplexers used to avoid stalls when  
executing instruction streams where data  
producing instructions are followed closely by  
consumers of their results  
• Leading Zero/One detect unit for implementing  
the CLZand CLOinstructions  
Table 3-1 lists the repeat rate (peak issue rate of cycles  
until the operation can be reissued) and latency (num-  
ber of cycles until a result is available) for the PIC32  
core multiply and divide instructions. The approximate  
latency and repeat rates are listed in terms of pipeline  
clocks.  
• Arithmetic Logic Unit (ALU) for performing bitwise  
logical operations  
• Shifter and store aligner  
®
®
TABLE 3-1:  
MIPS32 M4K PROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/  
DIVIDE UNIT LATENCIES AND REPEAT RATES  
Op code  
Operand Size (mul rt) (div rs)  
Latency  
Repeat Rate  
MULT/MULTU, MADD/MADDU,  
MSUB/MSUBU  
16 bits  
32 bits  
16 bits  
32 bits  
8 bits  
1
2
1
2
MUL  
2
1
3
2
DIV/DIVU  
12  
19  
26  
33  
11  
18  
25  
32  
16 bits  
24 bits  
32 bits  
DS60001185B-page 34  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The MIPS architecture defines that the result of a  
multiply or divide operation be placed in the HI and LO  
registers. Using the Move-From-HI (MFHI) and Move-  
From-LO (MFLO) instructions, these values can be  
transferred to the General Purpose Register file.  
3.2.3  
SYSTEM CONTROL  
COPROCESSOR (CP0)  
In the MIPS architecture, CP0 is responsible for the  
virtual-to-physical address translation, the exception  
control system, the processor’s diagnostics capability,  
the operating modes (Kernel, User and Debug) and  
whether interrupts are enabled or disabled. Configura-  
tion information, such as presence of options like  
MIPS16e®, is also available by accessing the CP0  
registers, listed in Table 3-2.  
In addition to the HI/LO targeted operations, the  
MIPS32® architecture also defines a multiply instruction,  
MUL, which places the least significant results in the pri-  
mary register file instead of the HI/LO register pair. By  
avoiding the explicit MFLO instruction required when  
using the LO register, and by supporting multiple desti-  
nation registers, the throughput of multiply-intensive  
operations is increased.  
Two other instructions, Multiply-Add (MADD) and  
Multiply-Subtract (MSUB), are used to perform the  
multiply-accumulate and multiply-subtract operations.  
The MADDinstruction multiplies two numbers and then  
adds the product to the current contents of the HI and  
LO registers. Similarly, the MSUBinstruction multiplies  
two operands and then subtracts the product from the  
HI and LO registers. The MADD and MSUB operations  
are commonly used in DSP algorithms.  
TABLE 3-2:  
COPROCESSOR 0 REGISTERS  
Register  
Number  
Register  
Name  
Function  
0-6  
7
Reserved  
Reserved in the PIC32MX330/350/370/430/450/470 family core.  
HWREna  
BadVAddr(1)  
Count(1)  
Reserved  
Compare(1)  
Status(1)  
IntCtl(1)  
SRSCtl(1)  
SRSMap(1)  
Cause(1)  
EPC(1)  
Enables access via the RDHWRinstruction to selected hardware registers.  
Reports the address for the most recent address-related exception.  
Processor cycle count.  
8
9
10  
11  
Reserved in the PIC32MX330/350/370/430/450/470 family core.  
Timer interrupt control.  
12  
12  
12  
12  
13  
14  
15  
15  
16  
16  
16  
16  
17-22  
23  
24  
25-29  
30  
31  
Processor status and control.  
Interrupt system status and control.  
Shadow register set status and control.  
Provides mapping from vectored interrupt to a shadow set.  
Cause of last general exception.  
Program counter at last exception.  
PRId  
Processor identification and revision.  
Exception vector base register.  
EBASE  
Config  
Configuration register.  
Config1  
Configuration register 1.  
Config2  
Configuration register 2.  
Config3  
Configuration register 3.  
Reserved  
Debug(2)  
DEPC(2)  
Reserved  
ErrorEPC(1)  
DESAVE(2)  
Reserved in the PIC32MX330/350/370/430/450/470 family core.  
Debug control and exception status.  
Program counter at last debug exception.  
Reserved in the PIC32MX330/350/370/430/450/470 family core.  
Program counter at last error.  
Debug handler scratchpad register.  
Note 1: Registers used in exception processing.  
2: Registers used during debug.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 35  
PIC32MX330/350/370/430/450/470  
Coprocessor 0 also contains the logic for identifying  
and managing exceptions. Exceptions can be caused  
by a variety of sources, including alignment errors in  
data, external events or program errors. Table 3-3 lists  
the exception types in order of priority.  
®
®
TABLE 3-3:  
Exception  
MIPS32 M4K PROCESSOR CORE EXCEPTION TYPES  
Description  
Reset  
DSS  
Assertion MCLR or a Power-on Reset (POR).  
EJTAG debug single step.  
DINT  
EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the  
EjtagBrk bit in the ECR register.  
NMI  
Assertion of NMI signal.  
Interrupt  
DIB  
Assertion of unmasked hardware or software interrupt signal.  
EJTAG debug hardware instruction break matched.  
Fetch address alignment error. Fetch reference to protected address.  
Instruction fetch bus error.  
AdEL  
IBE  
DBp  
EJTAG breakpoint (execution of SDBBPinstruction).  
Execution of SYSCALLinstruction.  
Sys  
Bp  
Execution of BREAKinstruction.  
RI  
Execution of a reserved instruction.  
CpU  
CEU  
Ov  
Execution of a coprocessor instruction for a coprocessor that is not enabled.  
Execution of a CorExtend instruction when CorExtendis not enabled.  
Execution of an arithmetic instruction that overflowed.  
Execution of a trap (when trap condition is true).  
EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).  
Load address alignment error. Load reference to protected address.  
Store address alignment error. Store to protected address.  
Load or store bus error.  
Tr  
DDBL/DDBS  
AdEL  
AdES  
DBE  
DDBL  
EJTAG data hardware breakpoint matched in load data compare.  
3.3  
Power Management  
3.4  
EJTAG Debug Support  
The MIPS® M4K® processor core offers a number of  
power management features, including low-power  
design, active power management and power-down  
modes of operation. The core is a static design that  
supports slowing or Halting the clocks, which reduces  
system power consumption during Idle periods.  
The MIPS® M4K® processor core provides for an  
Enhanced JTAG (EJTAG) interface for use in the soft-  
ware debug of application and kernel code. In addition  
to standard User mode and Kernel modes of operation,  
the M4K® core provides a Debug mode that is entered  
after a debug exception (derived from a hardware  
breakpoint, single-step exception, etc.) is taken and  
continues until a Debug Exception Return (DERET)  
instruction is executed. During this time, the processor  
executes the debug exception handler routine.  
3.3.1  
INSTRUCTION-CONTROLLED  
POWER MANAGEMENT  
The mechanism for invoking Power-Down mode is  
through execution of the WAIT instruction. For more  
information on power management, see Section 26.0  
“Power-Saving Features”.  
The EJTAG interface operates through the Test Access  
Port (TAP), a serial communication port used for trans-  
ferring test data in and out of the core. In addition to the  
standard JTAG instructions, special instructions  
defined in the EJTAG specification define which  
registers are selected and how they are used.  
3.3.2  
LOCAL CLOCK GATING  
The majority of the power consumed by the  
PIC32MX330/350/370/430/450/470 family core is in  
the clock tree and clocking registers. The PIC32MX  
family uses extensive use of local gated-clocks to  
reduce this dynamic power consumption.  
DS60001185B-page 36  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
4.1  
Memory Layout  
4.0  
MEMORY ORGANIZATION  
PIC32MX330/350/370/430/450/470 microcontrollers  
implement two address schemes: virtual and physical.  
All hardware resources, such as program memory,  
data memory and peripherals, are located at their  
respective physical addresses. Virtual addresses are  
exclusively used by the CPU to fetch and execute  
instructions as well as access peripherals. Physical  
addresses are used by bus master peripherals, such as  
DMA and the Flash controller, that access memory  
independently of the CPU.  
Note:  
This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/470  
family of devices. It is not intended to be a  
comprehensive reference source.For  
detailed information, refer to Section 3.  
“Memory Organization” (DS60001115)  
in the “PIC32 Family Reference Manual,  
which is available from the Microchip  
web site (www.microchip.com/PIC32).  
PIC32MX330/350/370/430/450/470 microcontrollers  
provide 4 GB of unified virtual memory address space.  
All memory regions, including program, data memory,  
SFRs and Configuration registers, reside in this  
address space at their respective unique addresses.  
The program and data memories can be optionally par-  
titioned into user and kernel memories. In addition, the  
data memory can be made executable, allowing  
PIC32MX330/350/370/430/450/470 devices to execute  
from data memory.  
The memory maps for the PIC32MX330/350/370/430/  
450/470 devices are illustrated in Figure 4-1 through  
Figure 4-3.  
Key features include:  
• 32-bit native data width  
• Separate User (KUSEG) and Kernel (KSEG0/  
KSEG1) mode address space  
• Flexible program Flash memory partitioning  
• Flexible data RAM partitioning for data and  
program space  
• Separate boot Flash memory for protected code  
• Robust bus exception handling to intercept   
runaway code  
• Simple memory mapping with Fixed Mapping  
Translation (FMT) unit  
• Cacheable (KSEG0) and non-cacheable (KSEG1)  
address regions  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 37  
PIC32MX330/350/370/430/450/470  
FIGURE 4-1:  
MEMORY MAP FOR DEVICES WITH 64 KB OF PROGRAM MEMORY  
Virtual  
Physical  
Memory Map(1)  
Memory Map(1)  
0xFFFFFFFF  
0xBFC03000  
0xBFC02FFF  
0xFFFFFFFF  
Reserved  
Device  
Configuration  
Registers  
0xBFC02FF0  
0xBFC02FEF  
Boot Flash  
Reserved  
SFRs  
0xBFC00000  
0xBF900000  
0xBF8FFFFF  
Reserved  
0xBF800000  
Reserved  
Program Flash(2)  
Reserved  
RAM(2)  
0xBD010000  
0xBD00FFFF  
0xBD000000  
0xA0004000  
0xA0003FFF  
0xA0000000  
0x1FC03000  
0x1FC02FFF  
Device  
Configuration  
Registers  
Reserved  
0x9FC03000  
0x9FC02FFF  
Device  
Configuration  
Registers  
0x1FC02FF0  
0x1FC02FEF  
0x9FC02FF0  
0x9FC02FEF  
Boot Flash  
Reserved  
SFRs  
0x1FC00000  
Boot Flash  
Reserved  
0x9FC00000  
0x1F900000  
0x1F8FFFFF  
0x9D010000  
0x9D00FFFF  
0x1F800000  
Program Flash(2)  
Reserved  
Reserved  
0x9D000000  
0x1D010000  
0x1D00FFFF  
0x80004000  
0x80003FFF  
Program Flash(2)  
0x1D000000  
RAM(2)  
Reserved  
RAM(2)  
0x80000000  
0x00000000  
0x00004000  
0x00003FFF  
0x00000000  
Reserved  
Note 1: Memory areas are not shown to scale.  
2: The size of this memory region is programmable (see Section 3. “Memory Organization”  
(DS60001115) in the “PIC32 Family Reference Manual”) and can be changed by initializa-  
tion code provided by end-user development tools (refer to the specific development tool  
documentation for information).  
DS60001185B-page 38  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 4-2:  
MEMORY MAP FOR DEVICES WITH 128 KB OF PROGRAM MEMORY  
Virtual  
Physical  
Memory Map(1)  
Memory Map(1)  
0xFFFFFFFF  
0xBFC03000  
0xBFC02FFF  
0xFFFFFFFF  
Reserved  
Device  
Configuration  
Registers  
0xBFC02FF0  
0xBFC02FEF  
Boot Flash  
Reserved  
SFRs  
0xBFC00000  
0xBF900000  
0xBF8FFFFF  
Reserved  
0xBF800000  
Reserved  
Program Flash(2)  
Reserved  
RAM(2)  
0xBD020000  
0xBD01FFFF  
0xBD000000  
0xA0008000  
0xA0007FFF  
0xA0000000  
0x1FC03000  
0x1FC02FFF  
Device  
Configuration  
Registers  
Reserved  
0x9FC03000  
0x9FC02FFF  
Device  
Configuration  
Registers  
0x1FC02FF0  
0x1FC02FEF  
0x9FC02FF0  
0x9FC02FEF  
Boot Flash  
Reserved  
SFRs  
0x1FC00000  
Boot Flash  
Reserved  
0x9FC00000  
0x1F900000  
0x1F8FFFFF  
0x9D020000  
0x9D01FFFF  
0x1F800000  
Program Flash(2)  
Reserved  
Reserved  
0x9D000000  
0x1D020000  
0x1D01FFFF  
0x80008000  
0x80007FFF  
Program Flash(2)  
0x1D000000  
RAM(2)  
Reserved  
RAM(2)  
0x80000000  
0x00000000  
0x00008000  
0x00007FFF  
0x00000000  
Reserved  
Note 1: Memory areas are not shown to scale.  
2: The size of this memory region is programmable (see Section 3. “Memory Organization”  
(DS60001115) in the “PIC32 Family Reference Manual”) and can be changed by initializa-  
tion code provided by end-user development tools (refer to the specific development tool  
documentation for information).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 39  
PIC32MX330/350/370/430/450/470  
FIGURE 4-3:  
MEMORY MAP FOR DEVICES WITH 256 KB OF PROGRAM MEMORY  
Virtual  
Physical  
Memory Map(1)  
Memory Map(1)  
0xFFFFFFFF  
0xBFC03000  
0xBFC02FFF  
0xFFFFFFFF  
Reserved  
Device  
Configuration  
Registers  
0xBFC02FF0  
0xBFC02FEF  
Boot Flash  
Reserved  
SFRs  
0xBFC00000  
0xBF900000  
0xBF8FFFFF  
Reserved  
0xBF800000  
Reserved  
Program Flash(2)  
Reserved  
RAM(2)  
0xBD040000  
0xBD03FFFF  
0xBD000000  
0xA0010000  
0xA000FFFF  
0xA0000000  
0x1FC03000  
0x1FC02FFF  
Device  
Configuration  
Registers  
Reserved  
0x9FC03000  
0x9FC02FFF  
Device  
Configuration  
Registers  
0x1FC02FF0  
0x1FC02FEF  
0x9FC02FF0  
0x9FC02FEF  
Boot Flash  
Reserved  
SFRs  
0x1FC00000  
Boot Flash  
Reserved  
0x9FC00000  
0x1F900000  
0x1F8FFFFF  
0x9D040000  
0x9D03FFFF  
0x1F800000  
Program Flash(2)  
Reserved  
Reserved  
0x9D000000  
0x1D040000  
0x1D03FFFF  
0x80010000  
0x8000FFFF  
Program Flash(2)  
0x1D000000  
RAM(2)  
Reserved  
RAM(2)  
0x80000000  
0x00000000  
0x00010000  
0x0000FFFF  
0x00000000  
Reserved  
Note 1: Memory areas are not shown to scale.  
2: The size of this memory region is programmable (see Section 3. “Memory Organization”  
(DS60001115) in the “PIC32 Family Reference Manual”) and can be changed by initializa-  
tion code provided by end-user development tools (refer to the specific development tool  
documentation for information).  
DS60001185B-page 40  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 4-4:  
MEMORY MAP FOR DEVICES WITH 512 KB OF PROGRAM MEMORY  
Virtual  
Physical  
Memory Map(1)  
Memory Map(1)  
0xFFFFFFFF  
0xBFC03000  
0xBFC02FFF  
0xFFFFFFFF  
Reserved  
Device  
Configuration  
Registers  
0xBFC02FF0  
0xBFC02FEF  
Boot Flash  
Reserved  
SFRs  
0xBFC00000  
0xBF900000  
0xBF8FFFFF  
Reserved  
0xBF800000  
Reserved  
Program Flash(2)  
Reserved  
RAM(2)  
0xBD080000  
0xBD07FFFF  
0xBD000000  
0xA0020000  
0xA001FFFF  
0xA0000000  
0x1FC03000  
0x1FC02FFF  
Device  
Configuration  
Registers  
Reserved  
0x9FC03000  
0x9FC02FFF  
Device  
Configuration  
Registers  
0x1FC02FF0  
0x1FC02FEF  
0x9FC02FF0  
0x9FC02FEF  
Boot Flash  
Reserved  
SFRs  
0x1FC00000  
Boot Flash  
Reserved  
0x9FC00000  
0x1F900000  
0x1F8FFFFF  
0x9D080000  
0x9D07FFFF  
0x1F800000  
Program Flash(2)  
Reserved  
Reserved  
0x9D000000  
0x1D080000  
0x1D07FFFF  
0x80020000  
0x8001FFFF  
Program Flash(2)  
0x1D000000  
RAM(2)  
Reserved  
RAM(2)  
0x80000000  
0x00000000  
0x00020000  
0x0001FFFF  
0x00000000  
Reserved  
Note 1: Memory areas are not shown to scale.  
2: The size of this memory region is programmable (see Section 3. “Memory Organization”  
(DS60001115) in the “PIC32 Family Reference Manual”) and can be changed by initializa-  
tion code provided by end-user development tools (refer to the specific development tool  
documentation for information).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 41  
4.2  
Special Function Register Maps  
Table 4-1 through Table 4-39 contain the peripheral address maps for the PIC32MX330/350/370/430/450/470 devices.  
TABLE 4-1:  
BUS MATRIX REGISTER MAP  
Bits  
31/15 30/14 29/13  
28/12 27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
BMXCHEDMA  
BMXERRIXI BMXERRICD BMXERRDMA BMXERRDS BMXERRIS 041F  
(1)  
2000 BMXCON  
15:0  
31:16  
15:0  
BMXWSDRM  
BMXARB<2:0>  
0047  
0000  
0000  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
(1)  
(1)  
2010 BMXDKPBA  
BMXDKPBA<15:0>  
31:16  
15:0  
2020 BMXDUDBA  
BMXDUDBA<15:0>  
31:16  
15:0  
(1)  
2030 BMXDUPBA  
2040 BMXDRMSZ  
BMXDUPBA<15:0>  
31:16  
15:0  
BMXDRMSZ<31:0>  
31:16  
15:0  
BMXPUPBA<19:16>  
(1)  
2050 BMXPUPBA  
2060 BMXPFMSZ  
2070 BMXBOOTSZ  
BMXPUPBA<15:0>  
31:16  
15:0  
BMXPFMSZ<31:0>  
BMXBOOTSZ<31:0>  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more information.  
TABLE 4-2:  
INTERRUPT REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
MVEC  
TPC<2:0>  
INT4EP  
SS0  
0000  
1000 INTCON  
1010 INTSTAT  
INT3EP INT2EP INT1EP INT0EP 0000  
31:16  
15:0  
0000  
0000  
0000  
0000  
SRIPL<2:0>  
VEC<5:0>  
31:16  
15:0  
1020  
1030  
1040  
1050  
1060  
1070  
1080  
1090  
10A0  
10B0  
10C0  
10D0  
10E0  
IPTMR  
IFS0  
IFS1  
IFS2  
IEC0  
IEC1  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPTMR<31:0>  
31:16 FCEIF  
15:0 IC3EIF  
31:16 U3RXIF  
RTCCIF FSCMIF  
T3IF INT2IF  
AD1IF  
OC2IF  
OC5IF  
IC2IF  
IC5IF  
IC2EIF  
U2TXIF  
I2C1SIF  
IC5EIF  
T2IF  
T5IF  
INT1IF  
U2EIF  
U1TXIF  
INT4IF  
OC1IF  
OC4IF  
IC1IF  
IC4IF  
IC4EIF  
T1IF  
T4IF  
INT3IF OC3IF  
CS1IF CS0IF  
IC3IF 0000  
CTIF 0000  
IC1EIF  
INT0IF  
PMPIF  
U3EIF I2C2MIF I2C2SIF  
I2C2BIF  
U2RXIF  
I2C1BIF  
SPI2TXIF SPI2RXIF SPI2EIF  
PMPEIF  
CNGIF CNFIF CNEIF 0000  
(2)  
15:0  
31:16  
15:0  
CNDIF  
CNCIF  
CNBIF  
CNAIF  
I2C1MIF  
U1RXIF  
U1EIF  
SPI1TXIF SPI1RXIF SPI1EIF USBIF  
CMP2IF CMP1IF 0000  
0000  
U4TXIF U4RXIF U4EIF U3TXIF 0000  
U5RXIF  
IC4IE  
(1)  
(1)  
(1)  
DMA3IF  
DMA2IF  
IC5IE  
DMA1IF  
IC5EIE  
T2IE  
DMA0IF  
T5IE  
CTMUIF U5TXIF  
U5EIF  
31:16 FCEIE RTCCIE FSCMIE  
AD1IE  
OC2IE  
OC5IE  
INT4IE  
OC1IE  
OC4IE  
IC1IE  
IC4EIE  
T1IE  
T4IE  
INT3IE OC3IE  
CS1IE CS0IE  
IC3IE 0000  
CTIE 0000  
15:0 IC3EIE  
31:16 U3RXIE  
T3IE  
INT2IE  
IC2IE  
IC2EIE  
U2TXIE  
I2C1SIE  
INT1IE  
U2EIE  
U1TXIE  
IC1EIE  
INT0IE  
PMPIE  
U3EIE I2C2MIE I2C2SIE  
I2C2BIE  
U2RXIE  
I2C1BIE  
SPI2TXIE SPI2RXIE SPI2EIE  
PMPEIE  
CNGIE CNFIE CNEIE 0000  
(2)  
15:0  
31:16  
15:0  
CNDIE  
CNCIE  
CNBIE  
CNAIE  
I2C1MIE  
U1RXIE  
U1EIE  
SPI1TXIE SPI1RXIE SPI1EIE USBIE  
CMP2IE CMP1IE 0000  
0000  
U4TXIE U4RXIE U4EIE U3TXIE 0000  
U5RXIE  
(1)  
(1)  
(1)  
DMA3IE  
DMA2IE  
DMA1IE  
DMA0IE CTMUIE U5TXIE  
U5EIE  
31:16  
15:0  
INT0IP<2:0>  
CS0IP<2:0>  
INT1IP<2:0>  
IC1IP<2:0>  
INT2IP<2:0>  
IC2IP<2:0>  
INT3IP<2:0>  
IC3IP<2:0>  
INT4IP<2:0>  
IC4IP<2:0>  
AD1IP<2:0>  
IC5IP<2:0>  
INT0IS<1:0>  
CS1IP<2:0>  
CTIP<2:0>  
OC1IP<2:0>  
T1IP<2:0>  
OC2IP<2:0>  
T2IP<2:0>  
OC3IP<2:0>  
T3IP<2:0>  
OC4IP<2:0>  
T4IP<2:0>  
OC5IP<2:0>  
T5IP<2:0>  
CS1IS<1:0>  
CTIS<1:0>  
OC1IS<1:0>  
T1IS<1:0>  
OC2IS<1:0>  
T2IS<1:0>  
OC3IS<1:0>  
T3IS<1:0>  
OC4IS<1:0>  
T4IS<1:0>  
OC5IS<1:0>  
T5IS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
CS0IS<1:0>  
INT1IS<1:0>  
IC1IS<1:0>  
INT2IS<1:0>  
IC2IS<1:0>  
INT3IS<1:0>  
IC3IS<1:0>  
INT4IS<1:0>  
IC4IS<1:0>  
AD1IS<1:0>  
IC5IS<1:0>  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This bit is available on PIC32MX3XXFXXXL devices only.  
TABLE 4-2:  
INTERRUPT REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
CMP1IP<2:0>  
RTCCIP<2:0>  
U1IP<2:0>  
CMP1IS<1:0>  
RTCCIS<1:0>  
U1IS<1:0>  
FCEIP<2:0>  
FCEIS<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
10F0  
1100  
1110  
1120  
1130  
1140  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
FSCMIP<2:0>  
FSCMIS<1:0>  
(2)  
(2)  
31:16  
15:0  
SPI1IP<2:0>  
SPI1IS<1:0>  
USBIP<2:0>  
SPI2IP<2:0>  
CNIP<2:0>  
U4IP<2:0>  
USBIS<1:0>  
SPI2IS<1:0>  
CNIS<1:0>  
CMP2IP<2:0>  
PMPIP<2:0>  
I2C1IP<2:0>  
U3IP<2:0>  
U2IP<2:0>  
DMA0IP<2:0>  
U5IP<2:0>  
CMP2IS<1:0>  
PMPIS<1:0>  
I2C1IS<1:0>  
U3IS<1:0>  
31:16  
15:0  
31:16  
15:0  
U4IS<1:0>  
I2C2IP<2:0>  
DMA1IP<2:0>  
CTMUIP<2:0>  
I2C2IS<1:0>  
DMA1IS<1:0>  
CTMUIS<1:0>  
U2IS<1:0>  
31:16  
15:0  
DMA0IS<1:0>  
U5IS<1:0>  
31:16  
15:0  
DMA3IP<2:0>  
DMA3IS<1:0>  
DMA2IP<2:0>  
DMA2IS<1:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This bit is available on PIC32MX3XXFXXXL devices only.  
TABLE 4-3:  
TIMER1 THROUGH TIMER5 REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
ON  
SIDL  
TWDIS  
TWIP  
TGATE  
TSYNC  
TCS  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
0600 T1CON  
0610 TMR1  
0620 PR1  
0800 T2CON  
0810 TMR2  
0820 PR2  
0A00 T3CON  
0A10 TMR3  
0A20 PR3  
0C00 T4CON  
0C10 TMR4  
0C20 PR4  
0E00 T5CON  
0E10 TMR5  
0E20 PR5  
15:0  
31:16  
15:0  
TCKPS<1:0>  
TMR1<15:0>  
31:16  
15:0  
PR1<15:0>  
31:16  
15:0  
ON  
SIDL  
TGATE  
TCKPS<2:0>  
T32  
TCS  
31:16  
15:0  
TMR2<15:0>  
31:16  
15:0  
PR2<15:0>  
31:16  
15:0  
ON  
SIDL  
TGATE  
TCKPS<2:0>  
TCS  
31:16  
15:0  
TMR3<15:0>  
31:16  
15:0  
PR3<15:0>  
31:16  
15:0  
ON  
SIDL  
TGATE  
TCKPS<2:0>  
T32  
TCS  
31:16  
15:0  
TMR4<15:0>  
31:16  
15:0  
PR4<15:0>  
31:16  
15:0  
ON  
SIDL  
TGATE  
TCKPS<2:0>  
TCS  
31:16  
15:0  
TMR5<15:0>  
31:16  
15:0  
PR5<15:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-4:  
INPUT CAPTURE 1 THROUGH INPUT CAPTURE 5 REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
0000  
(1)  
2000 IC1CON  
15:0  
31:16  
15:0  
ON  
SIDL  
FEDGE  
C32  
ICTMR  
ICI<1:0>  
ICOV  
ICBNE  
ICM<2:0>  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
2010 IC1BUF  
IC1BUF<31:0>  
31:16  
15:0  
(1)  
2200 IC2CON  
ON  
SIDL  
FEDGE  
C32  
ICTMR  
ICI<1:0>  
ICOV  
ICBNE  
ICM<2:0>  
31:16  
15:0  
2210 IC2BUF  
IC2BUF<31:0>  
31:16  
15:0  
(1)  
2400 IC3CON  
ON  
SIDL  
FEDGE  
C32  
ICTMR  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICOV  
ICBNE  
ICM<2:0>  
31:16  
15:0  
2410 IC3BUF  
IC3BUF<31:0>  
31:16  
15:0  
(1)  
2600 IC4CON  
ON  
SIDL  
FEDGE  
C32  
ICTMR  
ICOV  
ICBNE  
ICM<2:0>  
31:16  
15:0  
2610 IC4BUF  
IC4BUF<31:0>  
31:16  
15:0  
(1)  
2800 IC5CON  
ON  
SIDL  
FEDGE  
C32  
ICTMR  
ICOV  
ICBNE  
ICM<2:0>  
31:16  
15:0  
2810 IC5BUF  
IC5BUF<31:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more informa-  
tion.  
TABLE 4-5:  
OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 5 REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
3000 OC1CON  
3010 OC1R  
3020 OC1RS  
3200 OC2CON  
3210 OC2R  
3220 OC2RS  
3400 OC3CON  
3410 OC3R  
3420 OC3RS  
3600 OC4CON  
3610 OC4R  
3620 OC4RS  
3800 OC5CON  
3810 OC5R  
3820 OC5RS  
ON  
SIDL  
OC32  
OCFLT OCTSEL  
OCM<2:0>  
31:16  
15:0  
OC1R<31:0>  
OC1RS<31:0>  
31:16  
15:0  
31:16  
15:0  
ON  
SIDL  
OC32  
OCFLT OCTSEL  
OCM<2:0>  
31:16  
15:0  
OC2R<31:0>  
31:16  
15:0  
OC2RS<31:0>  
31:16  
15:0  
ON  
SIDL  
OC32  
OCFLT OCTSEL  
OCM<2:0>  
31:16  
15:0  
OC3R<31:0>  
31:16  
15:0  
OC3RS<31:0>  
31:16  
15:0  
ON  
SIDL  
OC32  
OCFLT OCTSEL  
OCM<2:0>  
31:16  
15:0  
OC4R<31:0>  
31:16  
15:0  
OC4RS<31:0>  
31:16  
15:0  
ON  
SIDL  
OC32  
OCFLT OCTSEL  
OCM<2:0>  
31:16  
15:0  
OC5R<31:0>  
31:16  
15:0  
OC5RS<31:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-6:  
I2C1 AND I2C2 REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
A10M  
DISSLW  
SMEN  
GCEN  
STREN  
ACKDT  
ACKEN  
RCEN  
PEN  
RSEN  
SEN  
0000  
BFFF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
BFFF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
5000 I2C1CON  
5010 I2C1STAT  
5020 I2C1ADD  
5030 I2C1MSK  
5040 I2C1BRG  
5050 I2C1TRN  
5060 I2C1RCV  
5100 I2C2CON  
5110 I2C2STAT  
5120 I2C2ADD  
5130 I2C2MSK  
5140 I2C2BRG  
5150 I2C2TRN  
5160 I2C2RCV  
SCLREL STRICT  
31:16  
15:0 ACKSTAT TRSTAT  
BCL  
GCSTAT ADD10  
IWCOL  
I2COV  
D_A  
P
S
R_W  
RBF  
TBF  
31:16  
15:0  
ON  
Address Register  
31:16  
15:0  
Address Mask Register  
31:16  
15:0  
Baud Rate Generator Register  
31:16  
15:0  
Transmit Register  
31:16  
15:0  
Receive Register  
31:16  
15:0  
GCEN  
STREN  
ACKDT  
ACKEN  
RCEN  
PEN  
RSEN  
SEN  
SIDL  
SCLREL STRICT  
A10M  
DISSLW  
SMEN  
31:16  
15:0 ACKSTAT TRSTAT  
BCL  
GCSTAT ADD10  
IWCOL  
I2COV  
D_A  
P
S
R_W  
RBF  
TBF  
31:16  
15:0  
Address Register  
31:16  
15:0  
Address Mask Register  
31:16  
15:0  
Baud Rate Generator Register  
31:16  
15:0  
Transmit Register  
31:16  
15:0  
Receive Register  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and  
INV Registers” for more information.  
TABLE 4-7:  
UART1 THROUGH UART5 REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
IREN  
RTSMD  
0000  
(1)  
6000 U1MODE  
UEN<1:0>  
WAKE  
LPBACK ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
UTXBF  
ADM_EN  
TRMT  
ADDR<7:0>  
(1)  
6010 U1STA  
UTXISEL<1:0>  
UTXINV URXEN UTXBRK UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA FFFF  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
6020 U1TXREG  
6030 U1RXREG  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
(1)  
6040 U1BRG  
Baud Rate Generator Prescaler  
ON  
SIDL  
IREN  
RTSMD  
31:16  
15:0  
(1)  
6200 U2MODE  
UEN<1:0>  
WAKE  
LPBACK ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
UTXBF  
ADM_EN  
TRMT  
ADDR<7:0>  
(1)  
6210 U2STA  
UTXISEL<1:0>  
UTXINV URXEN UTXBRK UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA FFFF  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
6220 U2TXREG  
6230 U2RXREG  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
(1)  
6240 U2BRG  
Baud Rate Generator Prescaler  
ON  
SIDL  
IREN  
RTSMD  
31:16  
15:0  
(1)  
6400 U3MODE  
UEN<1:0>  
WAKE  
LPBACK ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
UTXBF  
ADM_EN  
TRMT  
ADDR<7:0>  
(1)  
6410 U3STA  
UTXISEL<1:0>  
UTXINV URXEN UTXBRK UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA FFFF  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
6420 U3TXREG  
6430 U3RXREG  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
(1)  
6440 U3BRG  
Baud Rate Generator Prescaler  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more informa-  
tion.  
TABLE 4-7:  
UART1 THROUGH UART5 REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
ON  
SIDL  
IREN  
RTSMD  
0000  
31:16  
15:0  
(1)  
6600 U4MODE  
UEN<1:0>  
WAKE  
LPBACK ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
UTXBF  
ADM_EN  
TRMT  
ADDR<7:0>  
(1)  
6610 U4STA  
UTXISEL<1:0>  
UTXINV URXEN UTXBRK UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA FFFF  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
6620 U4TXREG  
6630 U4RXREG  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
(1)  
6640 U4BRG  
Baud Rate Generator Prescaler  
ON  
SIDL  
IREN  
RTSMD  
31:16  
15:0  
(1)  
6800 U5MODE  
UEN<1:0>  
WAKE  
LPBACK ABAUD  
RXINV  
BRGH  
PDSEL<1:0>  
STSEL 0000  
0000  
31:16  
15:0  
UTXBF  
ADM_EN  
TRMT  
ADDR<7:0>  
(1)  
6810 U5STA  
UTXISEL<1:0>  
UTXINV URXEN UTXBRK UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA FFFF  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
6820 U5TXREG  
6830 U5RXREG  
TX8  
Transmit Register  
31:16  
15:0  
RX8  
Receive Register  
31:16  
15:0  
(1)  
6840 U5BRG  
Baud Rate Generator Prescaler  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more informa-  
tion.  
TABLE 4-8:  
SPI2 AND SPI2 REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16 FRMEN FRMSYNC FRMPOL MSSEN FRMSYPW  
FRMCNT<2:0>  
MCLKSEL  
SSEN  
CKP  
MSTEN  
SPIFE  
ENHBUF 0000  
5800 SPI1CON  
15:0  
31:16  
15:0  
ON  
SIDL  
DISSDO MODE32 MODE16  
RXBUFELM<4:0>  
SMP  
CKE  
DISSDI  
STXISEL<1:0>  
TXBUFELM<4:0>  
SRXISEL<1:0>  
0000  
0000  
SPI1STAT  
SPI1BUF  
SPI1BRG  
5810  
5820  
5830  
FRMERR SPIBUSY  
SPITUR  
SRMT  
SPIROV SPIRBE  
SPITBE  
SPITBF SPIRBF 19EB  
31:16  
15:0  
0000  
0000  
DATA<31:0>  
31:16  
15:0  
BRG<8:0>  
0000  
0000  
0000  
31:16  
SPI1CON2  
5840  
SPI  
SGNEXT  
FRM  
ERREN  
SPI  
ROVEN  
SPI  
AUD  
MONO  
15:0  
IGNROV IGNTUR AUDEN  
AUDMOD<1:0>  
SPIFE  
SRXISEL<1:0>  
0000  
TUREN  
31:16 FRMEN FRMSYNC FRMPOL MSSEN FRMSYPW  
FRMCNT<2:0>  
MCLKSEL  
SSEN  
CKP  
MSTEN  
ENHBUF 0000  
SPI2CON  
SPI2STAT  
SPI2BUF  
SPI2BRG  
5A00  
5A10  
5A20  
5A30  
15:0  
31:16  
15:0  
ON  
SIDL  
DISSDO MODE32 MODE16  
RXBUFELM<4:0>  
SMP  
CKE  
DISSDI  
STXISEL<1:0>  
TXBUFELM<4:0>  
0000  
0000  
FRMERR SPIBUSY  
SPITUR  
SRMT  
SPIROV SPIRBE  
SPITBE  
SPITBF SPIRBF 19EB  
31:16  
15:0  
0000  
0000  
DATA<31:0>  
31:16  
15:0  
BRG<8:0>  
0000  
0000  
0000  
31:16  
SPI2CON2  
5A40  
SPI  
SGNEXT  
FRM  
ERREN  
SPI  
ROVEN  
SPI  
AUD  
MONO  
15:0  
IGNROV IGNTUR AUDEN  
AUDMOD<1:0>  
0000  
TUREN  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV  
Registers” for more information.  
TABLE 4-9:  
ADC REGISTER MAP  
Bits  
Register  
Name  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
CLRASAM  
ASAM  
SAMP  
0000  
(1)  
9000 AD1CON1  
9010 AD1CON2  
9020 AD1CON3  
FORM<2:0>  
SSRC<2:0>  
DONE 0000  
31:16  
15:0  
CSCNA  
BUFS  
ALTS  
0000  
0000  
0000  
0000  
0000  
0000  
(1)  
(1)  
VCFG<2:0>  
OFFCAL  
SMPI<3:0>  
BUFM  
31:16  
15:0  
ADRC  
SAMC<4:0>  
CH0SB<4:0>  
ADCS<7:0>  
31:16 CH0NB  
CH0NA  
CH0SA<4:0>  
(1)  
9040 AD1CHS  
9050 AD1CSSL  
15:0  
31:16  
CSSL30 CSSL29 CSSL28 CSSL27 CSSL26 CSSL25 CSSL24 CSSL23 CSSL22 CSSL21 CSSL20 CSSL19 CSSL18 CSSL17 CSSL16 0000  
(1)  
15:0 CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10  
CSSL9  
CSSL8  
CSSL7  
CSSL6  
CSSL5  
CSSL4  
CSSL3  
CSSL2  
CSSL1  
CSSL0 0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
31:16  
15:0  
9070 ADC1BUF0  
9080 ADC1BUF1  
9090 ADC1BUF2  
90A0 ADC1BUF3  
90B0 ADC1BUF4  
90C0 ADC1BUF5  
90D0 ADC1BUF6  
90E0 ADC1BUF7  
90F0 ADC1BUF8  
9100 ADC1BUF9  
9110 ADC1BUFA  
ADC Result Word 0 (ADC1BUF0<31:0>)  
ADC Result Word 1 (ADC1BUF1<31:0>)  
ADC Result Word 2 (ADC1BUF2<31:0>)  
ADC Result Word 3 (ADC1BUF3<31:0>)  
ADC Result Word 4 (ADC1BUF4<31:0>)  
ADC Result Word 5 (ADC1BUF5<31:0>)  
ADC Result Word 6 (ADC1BUF6<31:0>)  
ADC Result Word 7 (ADC1BUF7<31:0>)  
ADC Result Word 8 (ADC1BUF8<31:0>)  
ADC Result Word 9 (ADC1BUF9<31:0>)  
ADC Result Word A (ADC1BUFA<31:0>)  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
details.  
TABLE 4-9:  
ADC REGISTER MAP (CONTINUED)  
Bits  
Register  
Name  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
9120 ADC1BUFB  
9130 ADC1BUFC  
9140 ADC1BUFD  
9150 ADC1BUFE  
9160 ADC1BUFF  
ADC Result Word B (ADC1BUFB<31:0>)  
ADC Result Word C (ADC1BUFC<31:0>)  
ADC Result Word D (ADC1BUFD<31:0>)  
ADC Result Word E (ADC1BUFE<31:0>)  
ADC Result Word F (ADC1BUFF<31:0>)  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
details.  
TABLE 4-10: DMA GLOBAL REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
0000  
0000  
0000  
0000  
0000  
0000  
3000 DMACON  
3010 DMASTAT  
3020 DMAADDR  
SUSPEND DMABUSY  
31:16  
15:0  
RDWR  
DMACH<2:0>  
31:16  
15:0  
DMAADDR<31:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-11: DMA CRC REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
BYTO<1:0>  
WBO  
BITO  
0000  
0000  
0000  
0000  
0000  
0000  
3030 DCRCCON  
3040 DCRCDATA  
3050 DCRCXOR  
PLEN<4:0>  
CRCEN CRCAPP CRCTYP  
CRCCH<2:0>  
31:16  
15:0  
DCRCDATA<31:0>  
DCRCXOR<31:0>  
31:16  
15:0  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-12: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
0000  
0000  
00FF  
FFF8  
3060 DCH0CON  
3070 DCH0ECON  
3080 DCH0INT  
3090 DCH0SSA  
30A0 DCH0DSA  
30B0 DCH0SSIZ  
30C0 DCH0DSIZ  
30D0 DCH0SPTR  
30E0 DCH0DPTR  
30F0 DCH0CSIZ  
3100 DCH0CPTR  
3110 DCH0DAT  
3120 DCH1CON  
3130 DCH1ECON  
3140 DCH1INT  
3150 DCH1SSA  
3160 DCH1DSA  
15:0 CHBUSY  
CHCHNS CHEN  
CHAED CHCHN CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT PATEN  
SIRQEN AIRQEN  
31:16  
15:0  
CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000  
CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
00FF  
FFF8  
31:16  
15:0  
CHDSA<31:0>  
31:16  
15:0  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
31:16  
15:0 CHBUSY  
CHCHNS CHEN  
CHAED CHCHN CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT PATEN  
SIRQEN AIRQEN  
31:16  
15:0  
CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000  
CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
0000  
0000  
0000  
31:16  
15:0  
CHDSA<31:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-12: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
00FF  
FFF8  
3170 DCH1SSIZ  
3180 DCH1DSIZ  
3190 DCH1SPTR  
31A0 DCH1DPTR  
31B0 DCH1CSIZ  
31C0 DCH1CPTR  
31D0 DCH1DAT  
31E0 DCH2CON  
31F0 DCH2ECON  
3200 DCH2INT  
3210 DCH2SSA  
3220 DCH2DSA  
3230 DCH2SSIZ  
3240 DCH2DSIZ  
3250 DCH2SPTR  
3260 DCH2DPTR  
3270 DCH2CSIZ  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
31:16  
15:0 CHBUSY  
CHCHNS CHEN  
CHAED CHCHN CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT PATEN  
SIRQEN AIRQEN  
31:16  
15:0  
CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000  
CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
31:16  
15:0  
CHDSA<31:0>  
31:16  
15:0  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-12: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
3280 DCH2CPTR  
3290 DCH2DAT  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
0000  
0000  
0000  
00FF  
FFF8  
31:16  
32A0 DCH3CON  
32B0 DCH3ECON  
32C0 DCH3INT  
32D0 DCH3SSA  
32E0 DCH3DSA  
32F0 DCH3SSIZ  
3300 DCH3DSIZ  
3310 DCH3SPTR  
3320 DCH3DPTR  
3330 DCH3CSIZ  
3340 DCH3CPTR  
3350 DCH3DAT  
15:0 CHBUSY  
CHCHNS CHEN  
CHAED CHCHN CHAEN  
CHEDET  
CHPRI<1:0>  
31:16  
15:0  
CHAIRQ<7:0>  
CHSIRQ<7:0>  
CFORCE CABORT PATEN  
SIRQEN AIRQEN  
31:16  
15:0  
CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000  
CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000  
0000  
31:16  
15:0  
CHSSA<31:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
31:16  
15:0  
CHDSA<31:0>  
31:16  
15:0  
CHSSIZ<15:0>  
31:16  
15:0  
CHDSIZ<15:0>  
31:16  
15:0  
CHSPTR<15:0>  
31:16  
15:0  
CHDPTR<15:0>  
31:16  
15:0  
CHCSIZ<15:0>  
31:16  
15:0  
CHCPTR<15:0>  
31:16  
15:0  
CHPDAT<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-13: COMPARATOR REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
COE  
CPOL  
COUT  
CREF  
0000  
E1C3  
0000  
E1C3  
0000  
A000 CM1CON  
A010 CM2CON  
A060 CMSTAT  
EVPOL<1:0>  
CCH<1:0>  
31:16  
15:0  
ON  
COE  
CPOL  
COUT  
EVPOL<1:0>  
CREF  
CCH<1:0>  
31:16  
15:0  
SIDL  
C3OUT  
C2OUT  
C1OUT 0000  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-14: COMPARATOR VOLTAGE REFERENCE REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
9800 CVRCON  
ON  
CVROE  
CVRR  
CVRSS  
CVR<3:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-15: FLASH CONTROLLER REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
(1)  
F400 NVMCON  
WR  
WREN  
WRERR LVDERR LVDSTAT  
NVMOP<3:0>  
31:16  
15:0  
F410 NVMKEY  
NVMKEY<31:0>  
NVMADDR<31:0>  
NVMDATA<31:0>  
31:16  
15:0  
(1)  
F420 NVMADDR  
31:16  
15:0  
F430 NVMDATA  
31:16  
15:0  
NVMSRC  
F440  
NVMSRCADDR<31:0>  
ADDR  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more  
information.  
TABLE 4-16: SYSTEM CONTROL REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
(2)  
(2)  
31:16  
15:0  
PLLODIV<2:0>  
FRCDIV<2:0>  
SOSCRDY PBDIVRDY  
PBDIV<1:0>  
PLLMULT<2:0>  
x1xx  
OSCCON  
F000  
(4)  
(4)  
COSC<2:0>  
NOSC<2:0>  
CLKLOCK ULOCK  
SLOCK  
SLPEN  
CF  
UFRCEN  
SOSCEN OSWEN xxxx  
31:16  
15:0  
0000  
F010 OSCTUN  
TUN<5:0>  
0000  
0000  
0000  
31:16  
15:0  
RODIV<14:0>  
REFOCON  
REFOTRIM  
F020  
F030  
ON  
SIDL  
OE  
RSLP  
DIVSWEN ACTIVE  
ROSEL<3:0>  
31:16  
15:0  
ROTRIM<8:0>  
0000  
0000  
0000  
ON  
31:16  
15:0  
0000 WDTCON  
SWDTPS<4:0>  
WDTWINEN WDTCLR 0000  
31:16  
15:0  
HVDR  
SWR  
WDTO  
SLEEP  
IDLE  
BOR  
0000  
F600  
RCON  
(2)  
CMR  
VREGS  
EXTR  
POR xxxx  
0000  
SWRST 0000  
0000  
31:16  
15:0  
F610 RSWRST  
31:16  
15:0  
CFGCON  
F200  
IOLOCK PMDLOCK  
JTAGEN  
TDOEN 000B  
0000  
TROEN  
31:16  
15:0  
(3)  
SYSKEY  
PMD1  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
SYSKEY<31:0>  
F230  
F240  
F250  
F260  
F270  
F280  
F290  
0000  
31:16  
15:0  
CVRMD  
0000  
AD1MD 0000  
0000  
CTMUMD  
31:16  
15:0  
CMP2MD CMP1MD 0000  
31:16  
15:0  
OC5MD OC4MD  
OC3MD  
IC3MD  
OC2MD  
IC2MD  
OC1MD 0000  
IC5MD  
IC4MD  
IC1MD  
0000  
0000  
0000  
31:16  
15:0  
T5MD  
T4MD  
T3MD  
T2MD  
I2C1MD  
U2MD  
T1MD  
(5)  
31:16  
15:0  
USB1MD  
I2C1MD 0000  
U1MD 0000  
PMPMD 0000  
(4)  
SPI2MD SPI1MD  
U5MD  
U4MD  
U3MD  
31:16  
15:0  
REFOMD RTCCMD 0000  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2  
“CLR, SET, and INV Registers” for more information.  
2:  
3:  
4:  
5:  
Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.  
This register does not have associated CLR, SET, INV registers.  
This bit is available on 100-pin devices only.  
This bit is available on PIC32MX4XX devices only.  
TABLE 4-17: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
FSRSSEL<2:0>  
31:16 FVBUSONIO FUSBIDIO IOL1WAY PMDL1WAY  
15:0  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
2FF0 DEVCFG3  
2FF4 DEVCFG2  
2FF8 DEVCFG1  
2FFC DEVCFG0  
USERID<15:0>  
31:16  
FPLLODIV<2:0>  
FPLLIDIV<2:0>  
(1)  
(1)  
15:0 UPLLEN  
UPLLIDIV<2:0>  
FPLLMUL<2:0>  
31:16  
15:0  
FWDTWINSZ<1:0> FWDTEN WINDIS  
WDTPS<4:0>  
FCKSM<1:0>  
FPBDIV<1:0>  
CP  
OSCIOFNC POSCMOD<1:0>  
IESO  
FSOSCEN  
FNOSC<2:0>  
31:16  
15:0  
BWP  
PWP<7:4>  
PWP<3:0>  
ICESEL<1:0>  
JTAGEN  
DEBUG<1:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This bit is available on PIC32MX4XX devices only.  
TABLE 4-18: DEVICE AND REVISION ID SUMMARY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
VER<3:0>  
DEVID<27:16>  
xxxx  
xxxx  
F220  
DEVID  
DEVID<15:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
Reset values are dependent on the device variant.  
TABLE 4-19: PORTA REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,  
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
SIDL  
0000  
0060  
0000  
6000 ANSELA  
ANSELA10 ANSELA9  
31:16  
6010  
TRISA  
15:0 TRISA15 TRISA14  
TRISA10 TRISA9  
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 xxxx  
31:16  
15:0  
RA15  
RA14  
RA10  
RA9  
RA7  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
0000  
xxxx  
0000  
6020 PORTA  
31:16  
6030  
6040  
LATA  
15:0 LATA15  
31:16  
LATA14  
LATA10  
LATA9  
LATA7  
LATA6  
LATA5  
LATA4  
LATA3  
LATA2  
LATA1  
LATA0 xxxx  
0000  
ODCA0 xxxx  
0000  
ODCA  
15:0 ODCA15 ODCA14  
31:16  
ODCA7  
ODCA6  
ODCA5  
ODCA4  
ODCA3  
ODCA2  
ODCA1  
6050 CNPUA  
6060 CNPDA  
6070 CNCONA  
6080 CNENA  
15:0 CNPUA15 CNPUA14  
31:16  
15:0 CNPDA15 CNPDA14  
CNPUA10 CNPUA9  
CNPUA7 CNPUA6 CNPUA5 CNPUA4 CNPUA3 CNPUA2 CNPUA1 CNPUA0 xxxx  
0000  
CNPDA7 CNPDA6 CNPDA5 CNPDA4 CNPDA3 CNPDA2 CNPDA1 CNPDA0 xxxx  
CNPDA10 CNPDA9  
31:16  
15:0  
ON  
0000  
0000  
0000  
31:16  
15:0 CNIEA15 CNIEA14  
CNIEA10 CNIEA9  
CNIEA7 CNIEA6 CNIEA5 CNIEA4 CNIEA3 CNIEA2 CNIEA1 CNIEA0 xxxx  
31:16  
15:0  
0000  
xxxx  
6090 CNSTATA  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
STATA15 STATA14  
STATA10 STATA9  
STATA7 STATA6 STATA5 STATA4 STATA3 STATA2 STATA1 STATA0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-20: PORTB REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
0000  
6100 ANSELB  
15:0 ANSELB15 ANSELB14 ANSELB13 ANSELB12 ANSELB11 ANSELB10 ANSELB9 ANSELB8 ANSELB7 ANSELB6 ANSELB5 ANSELB4 ANSELB3 ANSELB2 ANSELB1 ANSELB0 FFFF  
31:16  
TRISB4  
0000  
6110  
6120 PORTB  
6130 LATB  
TRISB  
15:0 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5  
TRISB3 TRISB2 TRISB1 TRISB0 xxxx  
31:16  
15:0  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB7  
RB6  
RB5  
RB3  
RB2  
RB1  
RB0  
0000  
xxxx  
0000  
RB4  
31:16  
15:0 LATB15  
31:16  
LATB14  
LATB13  
LATB12  
LATB11  
LATB10  
LATB9  
LATB8  
LATB7  
LATB6  
LATB5  
LATB4  
LATB3  
LATB2  
LATB1  
LATB0 xxxx  
0000  
6150 CNPUB  
6160 CNPDB  
6170 CNCONB  
6180 CNENB  
15:0 CNPUB15 CNPUB14 CNPUB13 CNPUB12 CNPUB11 CNPUB10 CNPUB9 CNPUB8 CNPUB7 CNPUB6 CNPUB5 CNPUB4 CNPUB3 CNPUB2 CNPUB1 CNPUB0 xxxx  
31:16 0000  
15:0 CNPDB15 CNPDB14 CNPDB13 CNPDB12 CNPDB11 CNPDB10 CNPDB9 CNPDB8 CNPDB7 CNPDB6 CNPDB5 CNPDB4 CNPDB3 CNPDB2 CNPDB1 CNPDB0 xxxx  
31:16  
15:0  
ON  
SIDL  
0000  
0000  
0000  
31:16  
15:0 CNIEB15 CNIEB14 CNIEB13 CNIEB12 CNIEB11 CNIEB10 CNIEB9 CNIEB8 CNIEB7 CNIEB6 CNIEB5 CNIEB4 CNIEB3 CNIEB2 CNIEB1 CNIEB0 xxxx  
31:16  
0000  
6190 CNSTATB  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATB15 STATB14 STATB13 STATB12 STATB11 STATB10 STATB9 STATB8 STATB7 STATB6 STATB5 STATB4 STATB3 STATB2 STATB1 STATB0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-21: PORTC REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,  
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
F000  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
0000  
xxxx  
0000  
xxxx  
6200 ANSELC  
6210 TRISC  
6220 PORTC  
31:16  
15:0  
TRISC15  
TRISC14  
TRISC13  
TRISC12  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
31:16  
15:0  
RC15  
RC14  
RC13  
RC12  
RC4  
RC3  
RC2  
RC1  
31:16  
15:0  
6230  
6240  
LATC  
LATC15  
LATC14  
LATC13  
LATC12  
LATC4  
LATC3  
LATC2  
LATC1  
31:16  
15:0  
ODCC  
ODCC4  
ODCC3  
ODCC2  
ODCC1  
31:16  
6250 CNPUC  
6260 CNPDC  
6270 CNCONC  
6280 CNENC  
6290 CNSTATC  
15:0 CNPUC15  
31:16  
15:0 CNPDC15  
CNPUC14  
CNPUC13  
CNPUC12  
CNPUC4 CNPUC3 CNPUC2 CNPUC1  
CNPDC14  
CNPDC13  
CNPDC12  
CNPDC4 CNPDC3 CNPDC2 CNPDC1  
31:16  
15:0  
ON  
SIDL  
31:16  
15:0  
CNIEC15  
CNIEC14  
CNIEC13  
CNIEC12  
CNIEC4  
CNIEC3  
CNIEC2  
CNIEC1  
31:16  
15:0 CNSTATC15 CNSTATC14 CNSTATC13 CNSTATC12  
CNSTATC4 CNSTATC3 CNSTATC2 CNSTATC1  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-22: PORTC REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,  
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
TRISC15  
TRISC13  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
0000  
0000  
xxxx  
0000  
xxxx  
6210 TRISC  
6220 PORTC  
TRISC14  
TRISC12  
31:16  
15:0  
RC15  
RC14  
RC13  
RC12  
31:16  
15:0  
6230  
LATC  
LATC15  
LATC14  
LATC13  
LATC12  
31:16  
6250 CNPUC  
6260 CNPDC  
6270 CNCONC  
6280 CNENC  
6290 CNSTATC  
15:0 CNPUC15  
31:16  
15:0 CNPDC15  
CNPUC14  
CNPUC13  
CNPUC12  
CNPDC14  
CNPDC13  
CNPDC12  
31:16  
15:0  
ON  
SIDL  
31:16  
15:0  
CNIEC15  
CNIEC14  
CNIEC13  
CNIEC12  
31:16  
15:0 CNSTATC15 CNSTATC14 CNSTATC13 CNSTATC12  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-23: PORTD REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,  
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
00E0  
0000  
6300 ANSELD  
6310 TRISD  
5320 PORTD  
ANSELD3 ANSELD2 ANSELD1  
31:16  
15:0 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 xxxx  
31:16  
15:0  
RD15  
RD14  
RD13  
RD12  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
0000  
xxxx  
0000  
31:16  
6330  
6340  
LATD  
15:0 LATD15  
31:16  
LATD14  
LATD13  
LATD12  
LATD11  
LATD10  
LATD9  
LATD8  
LATD7  
LATD6  
LATD5  
LATD4  
LATD3  
LATD2  
LATD1  
LATD0 xxxx  
0000  
ODCD0 xxxx  
0000  
ODCD  
15:0 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4  
31:16  
6350 CNPUD  
6360 CNPDD  
6370 CNCOND  
6380 CNEND  
15:0 CNPUD15 CNPUD14 CNPUD13 CNPUD12 CNPUD11 CNPUD10 CNPUD9 CNPUD8 CNPUD7 CNPUD6 CNPUD5 CNPUD4 CNPUD3 CNPUD2 CNPUD1 CNPUD0 xxxx  
31:16 0000  
15:0 CNPDD15 CNPDD14 CNPDD13 CNPDD12 CNPDD11 CNPDD10 CNPDD9 CNPDD8 CNPDD7 CNPDD6 CNPDD5 CNPDD4 CNPDD3 CNPDD2 CNPDD1 CNPDD0 xxxx  
31:16  
15:0  
ON  
SIDL  
0000  
0000  
0000  
31:16  
15:0 CNIED15 CNIED14 CNIED13 CNIED12 CNIED11 CNIED10 CNIED9 CNIED8 CNIED7 CNIED6 CNIED5 CNIED4 CNIED3 CNIED2 CNIED1 CNIED0 xxxx  
31:16  
0000  
6390 CNSTATD  
CNS  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
TATD15 STATD14 STATD13 STATD12 STATD11 STATD10 STATD9 STATD8 STATD7 STATD6 STATD5 STATD4 STATD3 STATD2 STATD1 STATD0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-24: PORTD REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,  
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, PIC32MX470F512H DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
0000  
00E0  
0000  
6300 ANSELD  
6310 TRISD  
5320 PORTD  
ANSELD3 ANSELD2 ANSELD1  
31:16  
15:0  
TRISD3  
TRISD2  
TRISD1  
TRISD11 TRISD10  
TRISD9  
TRISD8  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD0 xxxx  
31:16  
15:0  
RD11  
RD10  
RD0  
0000  
xxxx  
0000  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
31:16  
15:0  
6330  
LATD  
LATD11  
LATD10  
LATD9  
LATD8  
LATD7  
LATD6  
LATD5  
LATD4  
LATD3  
LATD2  
LATD1  
LATD0 xxxx  
0000  
ODCD0 xxxx  
0000  
31:16  
15:0  
6340 ODCD  
6350 CNPUD  
6360 CNPDD  
6370 CNCOND  
6380 CNEND  
ODCD11  
ODCD10  
ODCD9  
ODCD8  
ODCD7  
ODCD6  
ODCD5  
ODCD4  
31:16  
15:0  
CNPUD11 CNPUD10 CNPUD9 CNPUD8 CNPUD7 CNPUD6 CNPUD5 CNPUD4 CNPUD3 CNPUD2 CNPUD1 CNPUD0 xxxx  
0000  
CNPDD11 CNPDD10 CNPDD9 CNPDD8 CNPDD7 CNPDD6 CNPDD5 CNPDD4 CNPDD3 CNPDD2 CNPDD1 CNPDD0 xxxx  
31:16  
15:0  
31:16  
15:0  
0000  
0000  
0000  
31:16  
15:0  
CNIED11 CNIED10 CNIED9 CNIED8 CNIED7 CNIED6 CNIED5 CNIED4 CNIED3 CNIED2 CNIED1 CNIED0 xxxx  
31:16  
0000  
6390 CNSTATD  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATD11 STATD10 STATD9 STATD8 STATD7 STATD6 STATD5 STATD4 STATD3 STATD2 STATD1 STATD0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-25: PORTE REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,  
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, PIC32MX470F512L DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
ANSELE2  
0000  
00F4  
0000  
6400 ANSELE  
6410 TRISE  
6420 PORTE  
ANSELE7 ANSELE6 ANSELE5 ANSELE4  
31:16  
15:0  
TRISE7  
TRISE6  
TRISE5  
TRISE4  
TRISE9 TRISE8  
TRISE3  
TRISE2  
TRISE1 TRISE0 xxxx  
31:16  
15:0  
RE9  
RE8  
RE1  
RE0  
0000  
xxxx  
0000  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
31:16  
15:0  
6440  
6440  
LATE  
LATE9  
LATE8  
LATE7  
LATE6  
LATE5  
LATE4  
LATE3  
LATE2  
LATE1  
LATE0 xxxx  
0000  
ODCE0 xxxx  
0000  
31:16  
15:0  
ODCE  
ODCE9  
ODCE8  
ODCE3  
ODCE1  
31:16  
15:0  
6450 CNPUE  
6460 CNPDE  
6470 CNCONE  
6480 CNENE  
CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPDE3 CNPUE2 CNPUE1 CNPUE0 xxxx  
0000  
CNPDE9 CNPDE8 CNPDE7 CNPDE6 CNPDE5 CNPDE4 CNPDE3 CNPDE2 CNPDE1 CNPDE0 xxxx  
31:16  
15:0  
31:16  
15:0  
0000  
0000  
0000  
31:16  
15:0  
CNIEE9 CNIEE8 CNIEE7 CNIEE6 CNIEE5 CNIEE4 CNIEE3 CNIEE2 CNIEE1 CNIEE0 xxxx  
31:16  
0000  
6490 CNSTATE  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATE9 STATE8 STATE7 STATE6 STATE5 STATE4 STATE3 STATE2 STATE1 STATE0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-26: PORTE REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,  
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
ANSELE2  
0000  
00F4  
0000  
6400 ANSELE  
6410 TRISE  
6420 PORTE  
ANSELE7 ANSELE6 ANSELE5 ANSELE4  
31:16  
15:0  
TRISE7  
TRISE6  
TRISE5  
TRISE4  
TRISE3  
TRISE2  
TRISE1 TRISE0 xxxx  
31:16  
15:0  
RE1  
RE0  
0000  
xxxx  
0000  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
31:16  
15:0  
6440  
6440  
LATE  
LATE7  
LATE6  
LATE5  
LATE4  
LATE3  
LATE2  
LATE1  
LATE0 xxxx  
0000  
ODCE0 xxxx  
0000  
31:16  
15:0  
ODCE  
ODCE3  
ODCE1  
31:16  
15:0  
6450 CNPUE  
6460 CNPDE  
6470 CNCONE  
6480 CNENE  
CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPDE3 CNPUE2 CNPUE1 CNPUE0 xxxx  
0000  
CNPDE7 CNPDE6 CNPDE5 CNPDE4 CNPDE3 CNPDE2 CNPDE1 CNPDE0 xxxx  
31:16  
15:0  
31:16  
15:0  
0000  
0000  
0000  
31:16  
15:0  
CNIEE7  
CNIEE6  
CNIEE5  
CNIEE4 CNIEE3 CNIEE2 CNIEE1 CNIEE0 xxxx  
31:16  
0000  
6490 CNSTATE  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATE7 STATE6 STATE5 STATE4 STATE3 STATE2 STATE1 STATE0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-27: PORTF REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, AND PIC32MX370F512L DEVICES  
ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
TRISF8  
TRISF7  
TRISF6  
TRISF5  
TRISF4  
TRISF3  
TRISF2  
TRISF1  
0000  
6510 TRISF  
6520 PORTF  
TRISF13 TRISF12  
TRISF0 xxxx  
31:16  
15:0  
RF13  
RF12  
RF0  
0000  
xxxx  
0000  
RF8  
RF7  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
31:16  
15:0  
6530  
LATF  
LATF13  
LATF12  
LATF8  
LATF7  
LATF6  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0 xxxx  
0000  
ODCF0 xxxx  
0000  
31:16  
15:0  
6540 ODCF  
6550 CNPUF  
6560 CNPDF  
6570 CNCONF  
6580 CNENF  
ODCF13 ODCF12  
ODCF8  
ODCF7  
ODCF6  
ODCF5  
ODCF4  
ODCF3  
ODCF2  
ODCF1  
31:16  
15:0  
CNPUF13 CNPUF12  
CNPUF8 CNPUF7 CNPUF6 CNPUF5 CNPUF4 CNPDF3 CNPUF2 CNPUF1 CNPUF0 xxxx  
0000  
CNPDF8 CNPDF7 CNPDF6 CNPDF5 CNPDF4 CNPDF3 CNPDF2 CNPDF1 CNPDF0 xxxx  
31:16  
15:0  
CNPDF13 CNPDF12  
31:16  
15:0  
SIDL  
0000  
0000  
0000  
31:16  
15:0  
CNIEF13 CNIEF12  
CNIEF8 CNIEF7 CNIEF6 CNIEF5 CNIEF4 CNIEF3 CNIEF2 CNIEF1 CNIEF0 xxxx  
31:16  
0000  
6590 CNSTATF  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATF13 STATF12  
STATF8 STATF7 STATF6 STATF5 STATF4 STATF3 STATF2 STATF1 STATF0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-28: PORTF REGISTER MAP FOR PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES  
ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
TRISF8  
TRISF5  
TRISF4  
TRISF3  
TRISF2  
TRISF1  
0000  
6510 TRISF  
6520 PORTF  
TRISF13 TRISF12  
TRISF0 xxxx  
31:16  
15:0  
RF13  
RF12  
RF0  
0000  
xxxx  
0000  
RF8  
RF5  
RF4  
RF3  
RF2  
RF1  
31:16  
15:0  
6530  
6540  
LATF  
LATF13  
LATF12  
LATF8  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0 xxxx  
0000  
ODCF0 xxxx  
0000  
31:16  
15:0  
ODCF  
ODCF13 ODCF12  
ODCF8  
ODCF5  
ODCF4  
ODCF3  
ODCF2  
ODCF1  
31:16  
15:0  
6550 CNPUF  
6560 CNPDF  
6570 CNCONF  
6580 CNENF  
CNPUF13 CNPUF12  
CNPUF8  
CNPUF5 CNPUF4 CNPDF3 CNPUF2 CNPUF1 CNPUF0 xxxx  
0000  
CNPDF5 CNPFF4 CNPDF3 CNPDF2 CNPDF1 CNPDF0 xxxx  
31:16  
15:0  
CNPDF13 CNPDF12  
CNPDF8  
31:16  
15:0  
SIDL  
0000  
0000  
0000  
31:16  
15:0  
CNIEF13 CNIEF12  
CNIEF8  
CNIEF5 CNIEF4 CNIEF3 CNIEF2 CNIEF1 CNIEF0 xxxx  
31:16  
0000  
6590 CNSTATF  
CN  
CN  
CN  
STATF8  
CN  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATF13 STATF12  
STATF5 STATF4 STATF3 STATF2 STATF1 STATF0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-29: PORTF REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, AND PIC32MX370F512H DEVICES  
ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
TRISF6  
TRISF5  
TRISF4  
TRISF3  
TRISF2  
TRISF1  
0000  
6510 TRISF  
6520 PORTF  
TRISF0 xxxx  
31:16  
15:0  
RF0  
0000  
xxxx  
0000  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
31:16  
15:0  
6530  
6540  
LATF  
LATF6  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0 xxxx  
0000  
ODCF0 xxxx  
0000  
31:16  
15:0  
ODCF  
ODCF6  
ODCF5  
ODCF4  
ODCF3  
ODCF2  
ODCF1  
31:16  
15:0  
6550 CNPUF  
6560 CNPDF  
6570 CNCONF  
6580 CNENF  
CNPUF6 CNPUF5 CNPUF4 CNPUF3 CNPUF2 CNPUF1 CNPUF0 xxxx  
0000  
CNPDF6 CNPDF5 CNPDF4 CNPDF3 CNPDF2 CNPDF1 CNPDF0 xxxx  
31:16  
15:0  
31:16  
15:0  
0000  
0000  
0000  
SIDL  
31:16  
15:0  
CNIEF6 CNIEF5 CNIEF4  
CNIEF3 CNIEF2 CNIEF1 CNIEF0 xxxx  
31:16  
0000  
6590 CNSTATF  
CN  
CN  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATF6 STATF5 STATF4 STATF3 STATF2 STATF1 STATF0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-30: PORTF REGISTER MAP FOR PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES  
ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
TRISF5  
TRISF4  
TRISF3  
TRISF1  
0000  
6510 TRISF  
6520 PORTF  
TRISF0 xxxx  
31:16  
15:0  
RF0  
0000  
xxxx  
0000  
RF5  
RF4  
RF3  
RF1  
31:16  
15:0  
6530  
LATF  
LATF5  
LATF4  
LATF3  
LATF1  
LATF0 xxxx  
0000  
ODCF0 xxxx  
0000  
31:16  
15:0  
6540 ODCF  
6550 CNPUF  
6560 CNPDF  
6570 CNCONF  
6580 CNENF  
ODCF5  
ODCF4  
ODCF3  
ODCF1  
31:16  
15:0  
CNPUF5 CNPUF4 CNPUF3  
CNPUF1 CNPUF0 xxxx  
0000  
CNPDF1 CNPDF0 xxxx  
31:16  
15:0  
CNPDF5 CNPDF4 CNPDF3  
31:16  
15:0  
0000  
0000  
0000  
SIDL  
31:16  
15:0  
CNIEF5 CNIEF4 CNIEF3  
CNIEF1 CNIEF0 xxxx  
31:16  
0000  
6590 CNSTATF  
CN  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATF5 STATF4 STATF3  
STATF1 STATF0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-31: PORTG REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,  
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
01C0  
0000  
6600 ANSELG  
6610 TRISG  
6620 PORTG  
ANSELG9 ANSELG8 ANSELG7 ANSELG6  
31:16  
TRISG9  
TRISG8  
TRISG7  
TRISG6  
15:0 TRISG15 TRISG14 TRISG13 TRISG12  
TRISG3 TRISG2 TRISG1 TRISG0 xxxx  
31:16  
15:0  
RG15  
RG14  
RG13  
RG12  
RG3  
RG2  
RG1  
RG0  
0000  
xxxx  
0000  
RG9  
RG8  
RG7  
RG6  
31:16  
6630  
LATG  
15:0 LATG15  
31:16  
LATG14  
LATG13  
LATG12  
LATG9  
LATG8  
LATG7  
LATG6  
LATG3  
LATG2  
LATG1  
LATG0 xxxx  
0000  
6640 ODCG  
6650 CNPUG  
6660 CNPDG  
6670 CNCONG  
6680 CNENG  
15:0 ODCG15 ODCG14 ODCG13 ODCG12  
31:16  
15:0 CNPUG15 CNPUG14 CNPUG13 CNPUG12  
31:16  
15:0 CNPDG15 CNPDG14 CNPDG13 CNPDG12  
ODCG3 ODCG2 ODCG1 ODCG0 xxxx  
0000  
CNPUG3 CNPUG2 CNPUG1 CNPUG0 xxxx  
0000  
CNPDG3 CNPDG2 CNPDG1 CNPDG0 xxxx  
CNPUG9 CNPUG8 CNPUG7 CNPUG6  
CNPDG9 CNPDG8 CNPDG7 CNPDG6  
31:16  
15:0  
ON  
SIDL  
0000  
0000  
0000  
31:16  
15:0 CNIEG15 CNIEG14 CNIEG13 CNIEG12  
CNIEG9  
CNIEG8  
CNIEG7  
CNIEG6  
CNIEG3 CNIEG2 CNIEG1 CNIEG0 xxxx  
31:16  
0000  
6690 CNSTATG  
CN  
CN  
CN  
CN  
CN  
STATG9  
CN  
STATG8  
CN  
STATG7  
CN  
STATG6  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATG15 STATG14 STATG13 STATG12  
STATG3 STATG2 STATG1 STATG0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-32: PORTG REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,  
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
0000  
01C0  
0000  
6600 ANSELG  
6610 TRISG  
6620 PORTG  
ANSELG9 ANSELG8 ANSELG7 ANSELG6  
31:16  
15:0  
TRISG9  
TRISG8  
TRISG7  
TRISG6  
TRISG3 TRISG2 TRISG1 TRISG0 xxxx  
31:16  
15:0  
RG3  
RG2  
RG1  
RG0  
0000  
xxxx  
0000  
RG9  
RG8  
RG7  
RG6  
31:16  
15:0  
6630  
LATG  
LATG9  
LATG8  
LATG7  
LATG6  
LATG3  
LATG2  
LATG1  
LATG0 xxxx  
0000  
31:16  
15:0  
6640 ODCG  
6650 CNPUG  
6660 CNPDG  
6670 CNCONG  
6680 CNENG  
ODCG3 ODCG2 ODCG1 ODCG02 xxxx  
0000  
CNPUG3 CNPUG2 CNPUG1 CNPUG0 xxxx  
0000  
CNPDG3 CNPDG2 CNPDG1 CNPDG0 xxxx  
31:16  
15:0  
CNPUG9 CNPUG8 CNPUG7 CNPUG6  
31:16  
15:0  
CNPDG9 CNPDG8 CNPDG7 CNPDG6  
31:16  
15:0  
0000  
0000  
0000  
31:16  
15:0  
CNIEG9  
CNIEG8  
CNIEG7  
CNIEG6  
CNIEG3 CNIEG2 CNIEG1 CNIEG0 xxxx  
31:16  
0000  
6690 CNSTATG  
CN  
STATG9  
CN  
STATG8  
CN  
STATG7  
CN  
STATG6  
CN  
CN  
CN  
CN  
15:0  
xxxx  
STATG3 STATG2 STATG1 STATG0  
Legend:  
x= Unknown value on Reset; — = Unimplemented, read as ‘0’; Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-33: PERIPHERAL PIN SELECT INPUT REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
FA04  
FA08  
FA0C  
FA10  
FA18  
FA1C  
FA20  
FA24  
FA28  
FA2C  
FA30  
FA34  
FA38  
FA48  
INT1R  
INT2R  
INT3R  
INT4R  
T2CKR  
T3CKR  
T4CKR  
T5CKR  
IC1R  
INT1R<3:0>  
31:16  
15:0  
INT2R<3:0>  
31:16  
15:0  
INT3R<3:0>  
31:16  
15:0  
INT4R<3:0>  
31:16  
15:0  
T2CKR<3:0>  
31:16  
15:0  
T3CKR<3:0>  
31:16  
15:0  
T4CKR<3:0>  
31:16  
15:0  
T5CKR<3:0>  
31:16  
15:0  
IC1R<3:0>  
31:16  
15:0  
IC2R  
IC2R<3:0>  
31:16  
15:0  
IC3R  
IC3R<3:0>  
31:16  
15:0  
IC4R  
IC4R<3:0>  
31:16  
15:0  
IC5R  
IC5R<3:0>  
31:16  
15:0  
OCFAR  
OCFBR  
OCFAR<3:0>  
31:16  
15:0  
FA4C  
OCFBR<3:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-33: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
FA50  
U1RXR  
U1RXR<3:0>  
31:16  
15:0  
FA54 U1CTSR  
U1CTSR<3:0>  
31:16  
15:0  
FA58  
U2RXR  
U2RXR<3:0>  
31:16  
15:0  
FA5C U2CTSR  
U2CTSR<3:0>  
31:16  
15:0  
FA60  
U3RXR  
U3RXR<3:0>  
31:16  
15:0  
FA64 U3CTSR  
U3CTSR<3:0>  
31:16  
15:0  
FA68  
U4RXR  
U4RXR<3:0>  
31:16  
15:0  
FA6C U4CTSR  
U4CTSR<3:0>  
31:16  
15:0  
FA70  
U5RXR  
U5RXR<3:0>  
31:16  
15:0  
FA74 U5CTSR  
U5CTSR<3:0>  
31:16  
15:0  
FA84  
FA88  
FA90  
FA94  
SDI1R  
SS1R  
SDI2R  
SS2R  
SDI1R<3:0>  
31:16  
15:0  
SS1R<3:0>  
31:16  
15:0  
SDI2R<3:0>  
31:16  
15:0  
SS2R<3:0>  
31:16  
15:0  
FAD0 REFCLKIR  
Legend:  
REFCLKIR<3:0>  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-34: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
(1)  
(1)  
FB38 RPA14R  
FB3C RPA15R  
FB40 RPB0R  
FB44 RPB1R  
FB48 RPB2R  
FB4C RPB3R  
FB54 RPB5R  
FB58 RPB6R  
FB5C RPB7R  
FB60 RPB8R  
FB64 RPB9R  
RPA14<3:0>  
31:16  
15:0  
RPA15<3:0>  
31:16  
15:0  
RPB0<3:0>  
31:16  
15:0  
RPB1<3:0>  
31:16  
15:0  
RPB2<3:0>  
31:16  
15:0  
RPB3<3:0>  
31:16  
15:0  
RPB5<3:0>  
31:16  
15:0  
RPB6<3:0>  
31:16  
15:0  
RPB7<3:0>  
31:16  
15:0  
RPB8<3:0>  
31:16  
15:0  
RPB9<3:0>  
31:16  
15:0  
FB68 RPB10R  
FB78 RPB14R  
FB7C RPB15R  
RPB10<3:0>  
31:16  
15:0  
RPB14<3:0>  
31:16  
15:0  
RPB15<3:0>  
31:16  
15:0  
(1)  
FB84 RPC1R  
FB88 RPC2R  
FB8C RPC3R  
FB90 RPC4R  
RPC1<3:0>  
31:16  
15:0  
(1)  
(1)  
(1)  
RPC2<3:0>  
31:16  
15:0  
RPC3<3:0>  
31:16  
15:0  
RPC4<3:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This register is not available on 64-pin devices.  
TABLE 4-34: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
(1)  
(1)  
FBB4 RPC13R  
FBB8 RPC14R  
FBC0 RPD0R  
FBC4 RPD1R  
FBC8 RPD2R  
FBCC RPD3R  
FBD0 RPD4R  
FBD4 RPD5R  
FBE0 RPD8R  
FBE4 RPD9R  
FBE8 RPD10R  
FBEC RPD11R  
FBF0 RPD12R  
FBF8 RPD14R  
FBFC RPD15R  
RPC13<3:0>  
31:16  
15:0  
RPC14<3:0>  
31:16  
15:0  
RPD0<3:0>  
31:16  
15:0  
RPD1<3:0>  
31:16  
15:0  
RPD2<3:0>  
31:16  
15:0  
RPD3<3:0>  
31:16  
15:0  
RPD4<3:0>  
31:16  
15:0  
RPD5<3:0>  
31:16  
15:0  
RPD8<3:0>  
31:16  
15:0  
RPD9<3:0>  
31:16  
15:0  
RPD10<3:0>  
31:16  
15:0  
RPD11<3:0>  
31:16  
15:0  
(1)  
(1)  
(1)  
RPD12<3:0>  
31:16  
15:0  
RPD14<3:0>  
31:16  
15:0  
RPD15<3:0>  
31:16  
15:0  
(1)  
FC0C RPE3R  
FC14 RPE5R  
FC20 RPE8R  
RPE3<3:0>  
31:16  
15:0  
(1)  
RPE5<3:0>  
31:16  
15:0  
(1)  
RPE8<3:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This register is not available on 64-pin devices.  
TABLE 4-34: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
(1)  
FC24 RPE9R  
FC40 RPF0R  
FC44 RPF1R  
FC48 RPF2R  
FC4C RPF3R  
FC50 RPF4R  
FC54 RPF5R  
FC58 RPF6R  
RPE9<3:0>  
31:16  
15:0  
RPF0<3:0>  
31:16  
15:0  
RPF1<3:0>  
31:16  
15:0  
RPF2<3:0>  
31:16  
15:0  
RPF3<3:0>  
31:16  
15:0  
RPF4<3:0>  
31:16  
15:0  
RPF5<3:0>  
31:16  
15:0  
RPF6<3:0>  
31:16  
15:0  
(1)  
(1)  
FC5C RPF7R  
FC60 RPF8R  
RPF7<3:0>  
31:16  
15:0  
RPF8<3:0>  
31:16  
15:0  
(1)  
(1)  
FC70 RPF12R  
FC74 RPF13R  
RPF12<3:0>  
31:16  
15:0  
RPF13<3:0>  
31:16  
15:0  
(1)  
FC80 RPG0R  
FC84 RPG1R  
FC98 RPG6R  
FC9C RPG7R  
FCA0 RPG8R  
FCA4 RPG9R  
RPG0<3:0>  
31:16  
15:0  
(1)  
RPG1<3:0>  
31:16  
15:0  
RPG6<3:0>  
31:16  
15:0  
RPG7<3:0>  
31:16  
15:0  
RPG8<3:0>  
31:16  
15:0  
RPG9<3:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This register is not available on 64-pin devices.  
TABLE 4-35: PARALLEL MASTER PORT REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
ALP  
CS2P  
CS1P  
WRSP  
0000  
7000 PMCON  
7010 PMMODE  
7020 PMADDR  
7030 PMDOUT  
7040 PMDIN  
7050 PMAEN  
7060 PMSTAT  
ADRMUX<1:0>  
PMPTTL PTWREN PTRDEN  
CSF<1:0>  
RDSP 0000  
31:16  
15:0  
MODE16  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
BUSY  
IRQM<1:0>  
INCM<1:0>  
MODE<1:0>  
WAITB<1:0>  
WAITM<3:0>  
WAITE<1:0>  
31:16  
15:0  
CS2  
CS1  
ADDR<13:0>  
31:16  
15:0  
DATAOUT<31:0>  
DATAIN<31:0>  
31:16  
15:0  
31:16  
15:0  
PTEN<15:0>  
31:16  
15:0  
IBF  
IBOV  
IB3F  
IB2F  
IB1F  
IB0F  
OBE  
OBUF  
OB3E  
OB2E  
OB1E  
OB0E BFBF  
Legend:  
Note 1:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-36: PREFETCH REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
CHECOH 0000  
(1)  
4000 CHECON  
DCSZ<1:0>  
PREFEN<1:0>  
PFMWS<2:0>  
0007  
31:16 CHEWEN  
0000  
00xx  
(1)  
4010 CHEACC  
CHEIDX<3:0>  
15:0  
31:16  
15:0  
LTAGBOOT  
LTAG<23:16>  
LVALID  
xxx0  
xxx2  
(1)  
4020 CHETAG  
LTAG<15:4>  
LLOCK  
LTYPE  
31:16  
15:0  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
(1)  
4030 CHEMSK  
4040 CHEW0  
4050 CHEW1  
4060 CHEW2  
4070 CHEW3  
4080 CHELRU  
4090 CHEHIT  
40A0 CHEMIS  
40C0 CHEPFABT  
LMASK<15:5>  
31:16  
15:0  
CHEW0<31:0>  
CHEW1<31:0>  
CHEW2<31:0>  
CHEW3<31:0>  
31:16  
15:0  
31:16  
15:0  
31:16  
15:0  
CHELRU<24:16>  
31:16  
15:0  
CHELRU<15:0>  
CHEHIT<31:0>  
31:16  
15:0  
31:16  
15:0  
CHEMIS<31:0>  
31:16  
15:0  
CHEPFABT<31:0>  
Legend:  
Note 1:  
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for more  
information.  
TABLE 4-37: RTCC REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
ON  
SIDL  
CAL<9:0>  
0000  
RTCWREN RTCSYNC HALFSEC RTCOE 0000  
0200 RTCCON  
0210 RTCALRM  
0220 RTCTIME  
0230 RTCDATE  
0240 ALRMTIME  
0250 ALRMDATE  
RTSECSEL RTCCLKON  
31:16  
0000  
0000  
xxxx  
xx00  
xxxx  
xx00  
xxxx  
xx00  
00xx  
xx0x  
15:0 ALRMEN CHIME  
PIV  
ALRMSYNC  
AMASK<3:0>  
HR01<3:0>  
ARPT<7:0>  
31:16  
15:0  
HR10<3:0>  
MIN10<3:0>  
MIN01<3:0>  
SEC10<3:0>  
YEAR10<3:0>  
DAY10<3:0>  
HR10<3:0>  
SEC01<3:0>  
YEAR01<3:0>  
DAY01<3:0>  
HR01<3:0>  
31:16  
15:0  
MONTH10<3:0>  
MONTH01<3:0>  
WDAY01<3:0>  
MIN01<3:0>  
31:16  
15:0  
MIN10<3:0>  
SEC10<3:0>  
SEC01<3:0>  
31:16  
15:0  
MONTH10<3:0>  
MONTH01<3:0>  
WDAY01<3:0>  
DAY10<3:0>  
DAY01<3:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-38: CTMU REGISTER MAP  
Bits  
24/8  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16 EDG1MOD EDG1POL  
EDG2STAT  
0000  
0000  
EDG1SEL<3:0>  
CTMUSIDL TGEN  
EDG1STAT EDG2MOD EDG2POL  
CTTRIG  
EDG2SEL<3:0>  
ITRIM<5:0>  
A200 CTMUCON  
15:0  
ON  
EDGEN EDGSEQEN IDISSEN  
IRNG<1:0>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 “CLR, SET, and INV Registers” for  
more information.  
TABLE 4-39: USB REGISTER MAP  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
IDIF  
ACTVIF  
0000  
(2)  
5040 U1OTGIR  
5050 U1OTGIE  
5060 U1OTGSTAT  
5070 U1OTGCON  
T1MSECIF LSTATEIF  
SESVDIF SESENDIF  
VBUSVDIF 0000  
0000  
VBUSVDIE 0000  
0000  
VBUSVD 0000  
0000  
31:16  
15:0  
IDIE  
T1MSECIE LSTATEIE  
ACTVIE  
SESVDIE SESENDIE  
31:16  
15:0  
LSTATE  
(3)  
ID  
SESVD SESEND  
31:16  
15:0  
DPPULUP DMPULUP DPPULDWN DMPULDWN VBUSON OTGEN VBUSCHG VBUSDIS 0000  
31:16  
15:0  
UACTPND  
0000  
5080  
5200  
U1PWRC  
(4)  
USLPGRD USBBUSY  
USUSPEND USBPWR 0000  
31:16  
IDLEIF  
TRNIF  
0000  
(2)  
U1IR  
URSTIF 0000  
DETACHIF 0000  
15:0  
31:16  
15:0  
STALLIF ATTACHIF RESUMEIF  
SOFIF  
UERRIF  
0000  
5210  
5220  
U1IE  
URSTIE 0000  
DETACHIE 0000  
STALLIE ATTACHIE RESUMEIE  
IDLEIE  
TRNIE  
SOFIE  
UERRIE  
31:16  
15:0  
BTSEF  
BMXEF  
DMAEF  
CRC5EF  
EOFEF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
(2)  
U1EIR  
BTOEF  
DFN8EF CRC16EF  
PIDEF  
31:16  
15:0  
5230  
5240  
5250  
U1EIE  
CRC5EE  
EOFEE  
BTSEE  
BMXEE  
DMAEE  
BTOEE  
DFN8EE CRC16EE  
PIDEE  
31:16  
15:0  
DIR  
PPBI  
(3)  
U1STAT  
ENDPT<3:0>  
31:16  
SE0  
PKTDIS  
TOKBUSY  
U1CON  
USBEN 0000  
SOFEN 0000  
15:0  
JSTATE  
USBRST HOSTEN RESUME PPBRST  
31:16  
15:0  
LSPDEN  
DEVADDR<6:0>  
0000  
0000  
0000  
0000  
5260  
5270  
U1ADDR  
U1BDTP1  
31:16  
15:0  
BDTPTRL<7:1>  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See  
Section 12.2 “CLR, SET, and INV Registers” for more information.  
This register does not have associated SET and INV registers.  
This register does not have associated CLR, SET and INV registers.  
Reset value for this bit is undefined.  
2:  
3:  
4:  
TABLE 4-39: USB REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
(3)  
(3)  
5280 U1FRML  
FRML<7:0>  
31:16  
15:0  
FRMH<2:0>  
5290 U1FRMH  
31:16  
15:0  
52A0  
52B0  
52C0  
52D0  
52E0  
5300  
5310  
5320  
5330  
5340  
5350  
5360  
5370  
5380  
U1TOK  
U1SOF  
U1BDTP2  
U1BDTP3  
U1CNFG1  
U1EP0  
PID<3:0>  
EP<3:0>  
31:16  
15:0  
CNT<7:0>  
31:16  
15:0  
BDTPTRH<7:0>  
31:16  
15:0  
BDTPTRU<7:0>  
31:16  
15:0  
UTEYE  
USBSIDL  
UOEMON  
UASUSPND 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
31:16  
15:0  
LSPD  
RETRYDIS  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
U1EP1  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
U1EP2  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
U1EP3  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
U1EP4  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
U1EP5  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
U1EP6  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
U1EP7  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
U1EP8  
EPCONDIS EPRXEN EPTXEN EPSTALL  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See  
Section 12.2 “CLR, SET, and INV Registers” for more information.  
This register does not have associated SET and INV registers.  
This register does not have associated CLR, SET and INV registers.  
Reset value for this bit is undefined.  
2:  
3:  
4:  
TABLE 4-39: USB REGISTER MAP (CONTINUED)  
Bits  
31/15  
30/14  
29/13  
28/12  
27/11  
26/10  
25/9  
24/8  
23/7  
22/6  
21/5  
20/4  
19/3  
18/2  
17/1  
16/0  
31:16  
15:0  
0000  
5390  
53A0  
53B0  
53C0  
53D0  
53E0  
53F0  
U1EP9  
U1EP10  
U1EP11  
U1EP12  
U1EP13  
U1EP14  
U1EP15  
EPCONDIS EPRXEN EPTXEN EPSTALL  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
0000  
EPHSHK 0000  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
31:16  
15:0  
EPCONDIS EPRXEN EPTXEN EPSTALL  
Legend:  
x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See  
Section 12.2 “CLR, SET, and INV Registers” for more information.  
This register does not have associated SET and INV registers.  
This register does not have associated CLR, SET and INV registers.  
Reset value for this bit is undefined.  
2:  
3:  
4:  
PIC32MX330/350/370/430/450/470  
4.3  
Control Registers  
Register 4-1 through Register 4-8 are used for setting  
the RAM and Flash memory partitions for data and  
code.  
REGISTER 4-1:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
BMXCON: BUS MATRIX CONFIGURATION REGISTER  
Bit Bit Bit Bit Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
U-0  
U-0  
BMX  
CHEDMA  
R/W-1  
31:24  
U-0  
U-0  
U-0  
R/W-1  
BMX  
ERRIXI  
U-0  
R/W-1  
BMX  
ERRICD  
U-0  
R/W-1  
BMX  
ERRDS  
U-0  
R/W-1  
BMX  
ERRIS  
U-0  
BMX  
ERRDMA  
U-0  
23:16  
15:8  
7:0  
U-0  
U-0  
R/W-1  
BMX  
WSDRM  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-1  
U-0  
U-0  
BMXARB<2:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
bit 31-27 Unimplemented: Read as ‘0’  
bit 26 BMXCHEDMA: BMX PFM Cacheability for DMA Accesses bit  
1= Enable program Flash memory (data) cacheability for DMA accesses  
(requires cache to have data caching enabled)  
0= Disable program Flash memory (data) cacheability for DMA accesses  
(hits are still read from the cache, but misses do not update the cache)  
bit 25-21 Unimplemented: Read as ‘0’  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
BMXERRIXI: Enable Bus Error from IXI bit  
1= Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus  
0= Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus  
BMXERRICD: Enable Bus Error from ICD Debug Unit bit  
1= Enable bus error exceptions for unmapped address accesses initiated from ICD  
0= Disable bus error exceptions for unmapped address accesses initiated from ICD  
BMXERRDMA: Bus Error from DMA bit  
1= Enable bus error exceptions for unmapped address accesses initiated from DMA  
0= Disable bus error exceptions for unmapped address accesses initiated from DMA  
BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)  
1= Enable bus error exceptions for unmapped address accesses initiated from CPU data access  
0= Disable bus error exceptions for unmapped address accesses initiated from CPU data access  
BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)  
1= Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access  
0= Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access  
bit 15-7 Unimplemented: Read as ‘0’  
bit 6  
BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit  
1= Data RAM accesses from CPU have one wait state for address setup  
0= Data RAM accesses from CPU have zero wait states for address setup  
Unimplemented: Read as ‘0’  
bit 5-3  
bit 2-0  
BMXARB<2:0>: Bus Matrix Arbitration Mode bits  
111= Reserved (using these Configuration modes will produce undefined behavior)  
011= Reserved (using these Configuration modes will produce undefined behavior)  
010= Arbitration Mode 2  
001= Arbitration Mode 1 (default)  
000= Arbitration Mode 0  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 87  
PIC32MX330/350/370/430/450/470  
REGISTER 4-2:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-0  
R-0  
BMXDKPBA<15:8>  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
BMXDKPBA<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-10 BMXDKPBA<15:10>: DRM Kernel Program Base Address bits  
When non-zero, this value selects the relative base address for kernel program space in RAM  
bit 9-0  
BMXDKPBA<9:0>: Read-Only bits  
Value is always ‘0’, which forces 1 KB increments  
Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal  
mode data usage.  
2: The value in this register must be less than or equal to BMXDRMSZ.  
DS60001185B-page 88  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 4-3:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
24/16/8/0  
25/17/9/1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-0  
R-0  
BMXDUDBA<15:8>  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
BMXDUDBA<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits  
When non-zero, the value selects the relative base address for User mode data space in RAM, the value  
must be greater than BMXDKPBA.  
bit 9-0  
BMXDUDBA<9:0>: Read-Only bits  
Value is always ‘0’, which forces 1 KB increments  
Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal  
mode data usage.  
2: The value in this register must be less than or equal to BMXDRMSZ.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 89  
PIC32MX330/350/370/430/450/470  
REGISTER 4-4:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-0  
R-0  
BMXDUPBA<15:8>  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
BMXDUPBA<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits  
When non-zero, the value selects the relative base address for User mode program space in RAM,  
BMXDUPBA must be greater than BMXDUDBA.  
bit 9-0  
BMXDUPBA<9:0>: Read-Only bits  
Value is always ‘0’, which forces 1 KB increments  
Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal  
mode data usage.  
2: The value in this register must be less than or equal to BMXDRMSZ.  
DS60001185B-page 90  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 4-5:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
BMXDRMSZ: DATA RAM SIZE REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
31:24  
23:16  
15:8  
7:0  
BMXDRMSZ<31:24>  
R
R
BMXDRMSZ<23:16>  
R
R
BMXDRMSZ<15:8>  
R
R
BMXDRMSZ<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 BMXDRMSZ<31:0>: Data RAM Memory (DRM) Size bits  
Static value that indicates the size of the Data RAM in bytes:  
0x00004000 = device has 16 KB RAM  
0x00008000 = device has 32 KB RAM  
0x00010000 = device has 64 KB RAM  
0x00020000 = device has 128 KB RAM  
REGISTER 4-6:  
Bit Bit  
BMXPUPBA: PROGRAM FLASH (PFM) USER PROGRAM BASE ADDRESS  
REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BMXPUPBA<19:16>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-0  
R-0  
R-0  
R-0  
BMXPUPBA<15:8>  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
BMXPUPBA<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-20 Unimplemented: Read as ‘0’  
bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits  
bit 10-0 BMXPUPBA<10:0>: Read-Only bits  
Value is always ‘0’, which forces 2 KB increments  
Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal  
mode data usage.  
2: The value in this register must be less than or equal to BMXPFMSZ.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 91  
PIC32MX330/350/370/430/450/470  
REGISTER 4-7:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER  
Bit Bit Bit Bit Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
31:24  
23:16  
15:8  
7:0  
BMXPFMSZ<31:24>  
R
R
BMXPFMSZ<23:16>  
R
R
BMXPFMSZ<15:8>  
R
R
BMXPFMSZ<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits  
Static value that indicates the size of the PFM in bytes:  
0x00010000 = device has 64 KB Flash  
0x00020000 = device has 128 KB Flash  
0x00040000 = device has 256 KB Flash  
0x00080000 = device has 512 KB Flash  
REGISTER 4-8:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER  
Bit Bit Bit Bit Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
31:24  
23:16  
15:8  
7:0  
BMXBOOTSZ<31:24>  
R
R
BMXBOOTSZ<23:16>  
R
R
BMXBOOTSZ<15:8>  
R
R
BMXBOOTSZ<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 BMXBOOTSZ<31:0>: Boot Flash Memory (BFM) Size bits  
Static value that indicates the size of the Boot PFM in bytes:  
0x00003000 = device has 12 KB Boot Flash  
DS60001185B-page 92  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
PIC32MX330/350/370/430/450/470 devices contain an  
5.0  
FLASH PROGRAM MEMORY  
internal Flash program memory for executing user  
code. There are three methods by which the user can  
program this memory:  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 5. “Flash  
Program Memory” (DS60001121) in the  
“PIC32 Family Reference Manual”, which  
is available from the Microchip web site  
(www.microchip.com/PIC32).  
• Run-Time Self-Programming (RTSP)  
• EJTAG Programming  
• In-Circuit Serial Programming™ (ICSP™)  
RTSP is performed by software executing from either  
Flash or RAM memory. Information about RTSP  
techniques is available in Section 5. “Flash Program  
Memory” (DS60001121) in the “PIC32 Family  
Reference Manual”.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
EJTAG is performed using the EJTAG port of the  
device and an EJTAG capable programmer.  
ICSP is performed using a serial data connection to the  
device and allows much faster programming times than  
RTSP.  
The EJTAG and ICSP methods are described in the  
PIC32  
Flash  
Programming  
Specification”  
(DS60001145), which can be downloaded from the  
Microchip web site.  
Note:  
On PIC32MX330/350/370/430/450/470  
devices, the Flash page size is 4 KB and  
the row size is 512 bytes (1024 IW and  
128 IW, respectively).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 93  
PIC32MX330/350/370/430/450/470  
5.1  
Control Registers  
REGISTER 5-1:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3  
NVMCON: PROGRAMMING CONTROL REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
26/18/10/2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
WR  
U-0  
R/W-0  
WREN  
U-0  
R-0  
R-0  
R-0  
U-0  
U-0  
U-0  
WRERR(1) LVDERR(1) LVDSTAT(1)  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
NVMOP<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
WR: Write Control bit  
This bit is writable when WREN = 1and the unlock sequence is followed.  
1= Initiate a Flash operation. Hardware clears this bit when the operation completes  
0= Flash operation complete or inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable writes to WR bit and enables LVD circuit  
0= Disable writes to WR bit and disables LVD circuit  
This is the only bit in this register reset by a device Reset.  
WRERR: Write Error bit(1)  
This bit is read-only and is automatically set by hardware.  
1= Program or erase sequence did not complete successfully  
0= Program or erase sequence completed normally  
bit 12  
bit 11  
LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled)(1)  
This bit is read-only and is automatically set by hardware.  
1= Low-voltage detected (possible data corruption, if WRERR is set)  
0= Voltage level is acceptable for programming  
LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled)(1)  
This bit is read-only and is automatically set, and cleared, by hardware.  
1= Low-voltage event active  
0= Low-voltage event NOT active  
bit 10-4 Unimplemented: Read as ‘0’  
bit 3-0  
NVMOP<3:0>: NVM Operation bits  
These bits are writable when WREN = 0.  
1111= Reserved  
0111= Reserved  
0110= No operation  
0101= Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected  
0100= Page erase operation: erases page selected by NVMADDR, if it is not write-protected  
0011= Row program operation: programs row selected by NVMADDR, if it is not write-protected  
0010= No operation  
0001= Word program operation: programs word selected by NVMADDR, if it is not write-protected  
0000= No operation  
Note 1: This bit is cleared by setting NVMOP == 0000b, and initiating a Flash operation (i.e., WR).  
DS60001185B-page 94  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 5-2:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
NVMKEY: PROGRAMMING UNLOCK REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
31:24  
23:16  
15:8  
7:0  
NVMKEY<31:24>  
W-0  
W-0  
NVMKEY<23:16>  
W-0  
W-0  
NVMKEY<15:8>  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 NVMKEY<31:0>: Unlock Register bits  
These bits are write-only, and read as ‘0’ on any read  
Note 1: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.  
REGISTER 5-3:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
NVMADDR: FLASH ADDRESS REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
NVMADDR<31:24>  
R/W-0  
R/W-0  
NVMADDR<23:16>  
R/W-0  
R/W-0  
NVMADDR<15:8>  
R/W-0  
R/W-0  
NVMADDR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 NVMADDR<31:0>: Flash Address bits  
Bulk/Chip/PFM Erase: Address is ignored.  
Page Erase: Address identifies the page to erase.  
Row Program: Address identifies the row to program.  
Word Program: Address identifies the word to program.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 95  
PIC32MX330/350/370/430/450/470  
REGISTER 5-4:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
NVMDATA: FLASH PROGRAM DATA REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
NVMDATA<31:24>  
R/W-0  
R/W-0  
NVMDATA<23:16>  
R/W-0  
R/W-0  
NVMDATA<15:8>  
R/W-0  
R/W-0  
NVMDATA<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 NVMDATA<31:0>: Flash Programming Data bits  
Note 1: The bits in this register are only reset by a Power-on Reset (POR).  
REGISTER 5-5:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
NVMSRCADDR: SOURCE DATA ADDRESS REGISTER  
Bit Bit Bit Bit Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
NVMSRCADDR<31:24>  
R/W-0  
R/W-0  
NVMSRCADDR<23:16>  
R/W-0  
R/W-0  
NVMSRCADDR<15:8>  
R/W-0  
R/W-0  
NVMSRCADDR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits  
The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits  
(NVMCON<3:0>) are set to perform row programming.  
DS60001185B-page 96  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The Reset module combines all Reset sources and  
controls the device Master Reset signal, SYSRST. The  
6.0  
RESETS  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 7. “Resets”  
(DS60001118) in the “PIC32 Family  
Reference Manual”, which is available  
following is a list of device Reset sources:  
• POR: Power-on Reset  
• MCLR: Master Clear Reset pin  
• SWR: Software Reset  
• WDTR: Watchdog Timer Reset  
• BOR: Brown-out Reset  
• CMR: Configuration Mismatch Reset  
• HVDR: High Voltage Detect Reset  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
A simplified block diagram of the Reset module is  
illustrated in Figure 6-1.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
FIGURE 6-1:  
SYSTEM RESET BLOCK DIAGRAM  
MCLR  
MCLR  
WDTR  
Glitch Filter  
Sleep or Idle  
WDT  
Time-out  
Voltage  
Regulator  
Enabled  
POR  
Power-up  
Timer  
SYSRST  
VDD  
VDD Rise  
Detect  
BOR  
Brown-out  
Reset  
Configuration  
Mismatch  
Reset  
CMR  
SWR  
Brown-out  
Reset  
Software Reset  
VCAP  
HVDR  
HVD Detect  
and Reset  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 97  
PIC32MX330/350/370/430/450/470  
6.1  
Control Registers  
REGISTER 6-1:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
RCON: RESET CONTROL REGISTER  
Bit Bit Bit  
Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
R/W-0  
HVDR  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0, HS  
R/W-0  
R/W-0, HS  
R/W-0, HS  
R/W-0, HS  
R/W-0, HS  
R/W-0, HS  
CMR  
R/W-1, HS  
BOR(1)  
VREGS  
R/W-1, HS  
POR(1)  
U-0  
EXTR  
SWR  
WDTO  
SLEEP  
IDLE  
Legend:  
HS = Set by hardware  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-30 Unimplemented: Read as ‘0’  
bit 29 HVDR: High Voltage Detect Reset Flag bit  
1= High Voltage Detect (HVD) Reset has occurred  
0= HVD Reset has not occurred  
bit 28-10 Unimplemented: Read as ‘0’  
bit 9  
bit 8  
bit 7  
bit 6  
CMR: Configuration Mismatch Reset Flag bit  
1= Configuration mismatch Reset has occurred  
0= Configuration mismatch Reset has not occurred  
VREGS: Voltage Regulator Standby Enable bit  
1= Regulator is enabled and is on during Sleep mode  
0= Regulator is disabled and is off during Sleep mode  
EXTR: External Reset (MCLR) Pin Flag bit  
1= Master Clear (pin) Reset has occurred  
0= Master Clear (pin) Reset has not occurred  
SWR: Software Reset Flag bit  
1= Software Reset was executed  
0= Software Reset as not executed  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT Time-out has occurred  
0= WDT Time-out has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
SLEEP: Wake From Sleep Flag bit  
1= Device was in Sleep mode  
0= Device was not in Sleep mode  
IDLE: Wake From Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
BOR: Brown-out Reset Flag bit(1)  
1= Brown-out Reset has occurred  
0= Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit(1)  
1= Power-on Reset has occurred  
0= Power-on Reset has not occurred  
Note 1: User software must clear this bit to view next detection.  
DS60001185B-page 98  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 6-2:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
RSWRST: SOFTWARE RESET REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
W-0, HC  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SWRST(1)  
Legend:  
HC = Cleared by hardware  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 31-1 Unimplemented: Read as ‘0’  
bit 0  
SWRST: Software Reset Trigger bit(1)  
1= Enable software Reset event  
0= No effect  
Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section  
6. “Oscillator” (DS60001112) in the “PIC32 Family Reference Manual” for details.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 99  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 100  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The PIC32MX330/350/370/430/450/470 interrupt mod-  
ule includes the following features:  
7.0  
INTERRUPT CONTROLLER  
Note 1: This data sheet summarizes the features  
• Up to 76 interrupt sources  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 8. “Interrupt  
Controller” (DS60001108) in the “PIC32  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
• Up to 46 interrupt vectors  
• Single and multi-vector mode operations  
• Five external interrupts with edge polarity control  
• Interrupt proximity timer  
• Seven user-selectable priority levels for each  
vector  
• Four user-selectable subpriority levels within each  
priority  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Dedicated shadow set configurable for any priority level  
(see the FSRSSEL<2:0> bits (DEVCFG3<18:16>) in  
27.0 “Special Features” for more information)  
• Software can generate any interrupt  
• User-configurable interrupt vector table location  
• User-configurable interrupt vector spacing  
PIC32MX330/350/370/430/450/470 devices generate  
interrupt requests in response to interrupt events from  
peripheral modules. The interrupt control module exists  
externally to the CPU logic and prioritizes the interrupt  
events before presenting them to the CPU.  
FIGURE 7-1:  
INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM  
Vector Number  
Priority Level  
Interrupt Controller  
CPU Core  
Shadow Set Number  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 101  
PIC32MX330/350/370/430/450/470  
TABLE 7-1:  
INTERRUPT IRQ, VECTOR AND BIT LOCATION  
Interrupt Bit Location  
Vector  
#
Persistent  
Interrupt  
Interrupt Source(1)  
IRQ #  
Flag  
Enable  
Priority  
Sub-priority  
Highest Natural Order Priority  
CT – Core Timer Interrupt  
CS0 – Core Software Interrupt 0  
CS1 – Core Software Interrupt 1  
INT0 – External Interrupt  
T1 – Timer1  
0
0
IFS0<0>  
IFS0<1>  
IFS0<2>  
IFS0<3>  
IFS0<4>  
IFS0<5>  
IFS0<6>  
IFS0<7>  
IFS0<8>  
IFS0<9>  
IEC0<0>  
IEC0<1>  
IEC0<2>  
IEC0<3>  
IEC0<4>  
IEC0<5>  
IEC0<6>  
IEC0<7>  
IEC0<8>  
IEC0<9>  
IPC0<4:2>  
IPC0<12:10>  
IPC0<20:18>  
IPC0<28:26>  
IPC1<4:2>  
IPC0<1:0>  
IPC0<9:8>  
No  
No  
1
1
2
2
IPC0<17:16>  
IPC0<25:24>  
IPC1<1:0>  
No  
3
3
No  
4
4
No  
IC1E – Input Capture 1 Error  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
INT1 – External Interrupt 1  
T2 – Timer2  
5
5
IPC1<12:10>  
IPC1<12:10>  
IPC1<20:18>  
IPC1<28:26>  
IPC2<4:2>  
IPC1<9:8>  
Yes  
Yes  
No  
6
5
IPC1<9:8>  
7
6
IPC1<17:16>  
IPC1<25:24>  
IPC2<1:0>  
8
7
No  
9
8
No  
IC2E – Input Capture 2  
IC2 – Input Capture 2  
OC2 – Output Compare 2  
INT2 – External Interrupt 2  
T3 – Timer3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
9
IFS0<10> IEC0<10>  
IFS0<11> IEC0<11>  
IFS0<12> IEC0<12>  
IFS0<13> IEC0<13>  
IFS0<14> IEC0<14>  
IFS0<15> IEC0<15>  
IFS0<16> IEC0<16>  
IFS0<17> IEC0<17>  
IFS0<18> IEC0<18>  
IFS0<19> IEC0<19>  
IFS0<20> IEC0<20>  
IFS0<21> IEC0<21>  
IFS0<22> IEC0<22>  
IFS0<23> IEC0<23>  
IFS0<24> IEC0<24>  
IFS0<25> IEC0<25>  
IFS0<26> IEC0<26>  
IFS0<27> IEC0<27>  
IFS0<28> IEC0<28>  
IFS0<29> IEC0<29>  
IFS0<30> IEC0<30>  
IFS0<31> IEC0<31>  
IPC2<12:10>  
IPC2<12:10>  
IPC2<20:18>  
IPC2<28:26>  
IPC3<4:2>  
IPC2<9:8>  
Yes  
Yes  
No  
9
IPC2<9:8>  
10  
11  
12  
13  
13  
14  
15  
16  
17  
17  
18  
19  
20  
21  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
30  
30  
31  
31  
31  
32  
32  
32  
33  
IPC2<17:16>  
IPC2<25:24>  
IPC3<1:0>  
No  
No  
IC3E – Input Capture 3  
IC3 – Input Capture 3  
OC3 – Output Compare 3  
INT3 – External Interrupt 3  
T4 – Timer4  
IPC3<12:10>  
IPC3<12:10>  
IPC3<20:18>  
IPC3<28:26>  
IPC4<4:2>  
IPC3<9:8>  
Yes  
Yes  
No  
IPC3<9:8>  
IPC3<17:16>  
IPC3<25:24>  
IPC4<1:0>  
No  
No  
IC4E – Input Capture 4 Error  
IC4 – Input Capture 4  
OC4 – Output Compare 4  
INT4 – External Interrupt 4  
T5 – Timer5  
IPC4<12:10>  
IPC4<12:10>  
IPC4<20:18>  
IPC4<28:26>  
IPC5<4:2>  
IPC4<9:8>  
Yes  
Yes  
No  
IPC4<9:8>  
IPC4<17:16>  
IPC4<25:24>  
IPC5<1:0>  
No  
No  
IC5E – Input Capture 5 Error  
IC5 – Input Capture 5  
OC5 – Output Compare 5  
AD1 – ADC1 Convert done  
FSCM – Fail-Safe Clock Monitor  
IPC5<12:10>  
IPC5<12:10>  
IPC5<20:18>  
IPC5<28:26>  
IPC6<4:2>  
IPC5<9:8>  
Yes  
Yes  
No  
IPC5<9:8>  
IPC5<17:16>  
IPC5<25:24>  
IPC6<1:0>  
Yes  
No  
RTCC – Real-Time Clock and Calendar 30  
IPC6<12:10>  
IPC6<20:18>  
IPC6<28:26>  
IPC7<4:2>  
IPC6<9:8>  
No  
FCE – Flash Control Event  
CMP1 – Comparator Interrupt  
CMP2 – Comparator Interrupt  
USB – USB Interrupts  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
IPC6<17:16>  
IPC6<25:24>  
IPC7<1:0>  
No  
IFS1<0>  
IFS1<1>  
IFS1<2>  
IFS1<3>  
IFS1<4>  
IFS1<5>  
IFS1<6>  
IFS1<7>  
IFS1<8>  
IFS1<9>  
IEC1<0>  
IEC1<1>  
IEC1<2>  
IEC1<3>  
IEC1<4>  
IEC1<5>  
IEC1<6>  
IEC1<7>  
IEC1<8>  
IEC1<9>  
No  
No  
IPC7<12:10>  
IPC7<20:18>  
IPC7<20:18>  
IPC7<20:18>  
IPC7<28:26>  
IPC7<28:26>  
IPC7<28:26>  
IPC8<4:2>  
IPC7<9:8>  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SPI1E – SPI1 Fault  
IPC7<17:16>  
IPC7<17:16>  
IPC7<17:16>  
IPC7<25:24>  
IPC7<25:24>  
IPC7<25:24>  
IPC8<1:0>  
SPI1RX – SPI1 Receive Done  
SPI1TX – SPI1 Transfer Done  
U1E – UART1 Fault  
U1RX – UART1 Receive Done  
U1TX – UART1 Transfer Done  
I2C1B – I2C1 Bus Collision Event  
I2C1S – I2C1 Slave Event  
I2C1M – I2C1 Master Event  
CNA – PORTA Input Change Interrupt  
IFS1<10> IEC1<10>  
IFS1<11> IEC1<11>  
IFS1<12> IEC1<12>  
IPC8<4:2>  
IPC8<1:0>  
IPC8<4:2>  
IPC8<1:0>  
IPC8<12:10>  
IPC8<9:8>  
Note 1: Not all interrupt sources are available on all devices. See TABLE 1: “PIC32MX330/350/370/430/450/470 Controller  
Family Features” for the list of available peripherals.  
DS60001185B-page 102  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 7-1:  
INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)  
Interrupt Bit Location  
Vector  
#
Persistent  
Interrupt  
Interrupt Source(1)  
IRQ #  
Flag  
Enable  
Priority  
Sub-priority  
CNB – PORTB Input Change Interrupt  
CNC – PORTC Input Change Interrupt  
CND – PORTD Input Change Interrupt  
CNE – PORTE Input Change Interrupt  
CNF – PORTF Input Change Interrupt  
CNG – PORTG Input Change Interrupt  
PMP – Parallel Master Port  
PMPE – Parallel Master Port Error  
SPI2E – SPI2 Fault  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
33  
33  
33  
33  
33  
33  
34  
34  
35  
35  
35  
36  
36  
36  
37  
37  
37  
38  
38  
38  
39  
39  
39  
40  
40  
40  
41  
42  
43  
44  
45  
IFS1<13> IEC1<13>  
IFS1<14> IEC1<14>  
IFS1<15> IEC1<15>  
IFS1<16> IEC1<16>  
IFS1<17> IEC1<17>  
IFS1<18> IEC1<18>  
IFS1<19> IEC1<19>  
IFS1<20> IEC1<20>  
IFS1<21> IEC1<21>  
IFS1<22> IEC1<22>  
IFS1<23> IEC1<23>  
IFS1<24> IEC1<24>  
IFS1<25> IEC1<25>  
IFS1<26> IEC1<26>  
IFS1<27> IEC1<27>  
IFS1<28> IEC1<28>  
IFS1<29> IEC1<29>  
IFS1<30> IEC1<30>  
IFS1<31> IEC1<31>  
IPC8<12:10>  
IPC8<12:10>  
IPC8<12:10>  
IPC8<12:10>  
IPC8<12:10>  
IPC8<12:10>  
IPC8<20:18>  
IPC8<20:18>  
IPC8<28:26>  
IPC8<28:26>  
IPC8<28:26>  
IPC9<4:2>  
IPC8<9:8>  
IPC8<9:8>  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
IPC8<9:8>  
IPC8<9:8>  
IPC8<9:8>  
IPC8<9:8>  
IPC8<17:16>  
IPC8<17:16>  
IPC8<25:24>  
IPC8<25:24>  
IPC8<25:24>  
IPC9<1:0>  
SPI2RX – SPI2 Receive Done  
SPI2TX – SPI2 Transfer Done  
U2E – UART2 Error  
U2RX – UART2 Receiver  
IPC9<4:2>  
IPC9<1:0>  
U2TX – UART2 Transmitter  
I2C2B – I2C2 Bus Collision Event  
I2C2S – I2C2 Slave Event  
I2C2M – I2C2 Master Event  
U3E – UART3 Error  
IPC9<4:2>  
IPC9<1:0>  
IPC9<12:10>  
IPC9<12:10>  
IPC9<12:10>  
IPC9<20:18>  
IPC9<20:18>  
IPC9<20:18>  
IPC9<28:26>  
IPC9<28:26>  
IPC9<28:26>  
IPC10<4:2>  
IPC10<4:2>  
IPC10<4:2>  
IPC10<12:10>  
IPC9<9:8>  
IPC9<9:8>  
IPC9<9:8>  
IPC9<17:16>  
IPC9<17:16>  
IPC9<17:16>  
IPC9<25:24>  
IPC9<25:24>  
IPC9<25:24>  
IPC10<1:0>  
IPC10<1:0>  
IPC10<1:0>  
IPC10<9:8>  
U3RX – UART3 Receiver  
U3TX – UART3 Transmitter  
U4E – UART4 Error  
IFS2<0>  
IFS2<1>  
IFS2<2>  
IFS2<3>  
IFS2<4>  
IFS2<5>  
IFS2<6>  
IFS2<7>  
IFS2<8>  
IFS2<9>  
IEC2<0>  
IEC2<1>  
IEC2<2>  
IEC2<3>  
IEC2<4>  
IEC2<5>  
IEC2<6>  
IEC2<7>  
IEC2<8>  
IEC2<9>  
U4RX – UART4 Receiver  
U4TX – UART4 Transmitter  
U5E – UART5 Error  
U5RX – UART5 Receiver  
U5TX – UART5 Transmitter  
CTMU – CTMU Event  
DMA0 – DMA Channel 0  
IPC10<20:18> IPC10<17:16>  
IPC10<28:26> IPC10<25:24>  
DMA1 – DMA Channel 1  
DMA2 – DMA Channel 2  
IFS2<10> IEC2<10>  
IFS2<11> IEC2<11> IPC11<12:10>  
Lowest Natural Order Priority  
IPC11<4:2>  
IPC11<1:0>  
IPC11<9:8>  
DMA3 – DMA Channel 3  
Note 1: Not all interrupt sources are available on all devices. See TABLE 1: “PIC32MX330/350/370/430/450/470 Controller  
Family Features” for the list of available peripherals.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 103  
PIC32MX330/350/370/430/450/470  
7.1  
Interrupts Control Registers  
REGISTER 7-1:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
INTCON: INTERRUPT CONTROL REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SS0  
U-0  
U-0  
U-0  
R/W-0  
MVEC  
R/W-0  
INT4EP  
U-0  
R/W-0  
R/W-0  
R/W-0  
TPC<2:0>  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT3EP  
INT2EP  
INT1EP  
INT0EP  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-17 Unimplemented: Read as ‘0’  
bit 16 SS0: Single Vector Shadow Register Set bit  
1= Single vector is presented with a shadow register set  
0= Single vector is not presented with a shadow register set  
bit 15-13 Unimplemented: Read as ‘0’  
bit 12  
MVEC: Multi Vector Configuration bit  
1= Interrupt controller configured for multi vectored mode  
0= Interrupt controller configured for single vectored mode  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits  
111= Interrupts of group priority 7 or lower start the Interrupt Proximity timer  
110= Interrupts of group priority 6 or lower start the Interrupt Proximity timer  
101= Interrupts of group priority 5 or lower start the Interrupt Proximity timer  
100= Interrupts of group priority 4 or lower start the Interrupt Proximity timer  
011= Interrupts of group priority 3 or lower start the Interrupt Proximity timer  
010= Interrupts of group priority 2 or lower start the Interrupt Proximity timer  
001= Interrupts of group priority 1 start the Interrupt Proximity timer  
000= Disables Interrupt Proximity timer  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Polarity Control bit  
1= Rising edge  
0= Falling edge  
bit 3  
bit 2  
bit 1  
bit 0  
INT3EP: External Interrupt 3 Edge Polarity Control bit  
1= Rising edge  
0= Falling edge  
INT2EP: External Interrupt 2 Edge Polarity Control bit  
1= Rising edge  
0= Falling edge  
INT1EP: External Interrupt 1 Edge Polarity Control bit  
1= Rising edge  
0= Falling edge  
INT0EP: External Interrupt 0 Edge Polarity Control bit  
1= Rising edge  
0= Falling edge  
DS60001185B-page 104  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 7-2:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
INTSTAT: INTERRUPT STATUS REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
SRIPL<2:0>(1)  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VEC<5:0>(1)  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-11 Unimplemented: Read as ‘0’  
bit 10-8 SRIPL<2:0>: Requested Priority Level bits(1)  
000-111= The priority level of the latest interrupt presented to the CPU  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
VEC<5:0>: Interrupt Vector bits(1)  
00000-11111= The interrupt vector that is presented to the CPU  
Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.  
REGISTER 7-3:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
IPTMR: INTERRUPT PROXIMITY TIMER REGISTER  
Bit Bit Bit Bit Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
IPTMR<31:24>  
R/W-0  
R/W-0  
IPTMR<23:16>  
R/W-0  
R/W-0  
IPTMR<15:8>  
R/W-0  
R/W-0  
IPTMR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits  
Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by  
an interrupt event.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 105  
PIC32MX330/350/370/430/450/470  
REGISTER 7-4:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
IFSx: INTERRUPT FLAG STATUS REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R/W-0  
IFS31  
R/W-0  
IFS23  
R/W-0  
IFS15  
R/W-0  
IFS7  
R/W-0  
IFS30  
R/W-0  
IFS22  
R/W-0  
IFS14  
R/W-0  
IFS6  
R/W-0  
IFS29  
R/W-0  
IFS21  
R/W-0  
IFS13  
R/W-0  
IFS5  
R/W-0  
IFS28  
R/W-0  
IFS20  
R/W-0  
IFS12  
R/W-0  
IFS4  
R/W-0  
IFS27  
R/W-0  
IFS19  
R/W-0  
IFS11  
R/W-0  
IFS3  
R/W-0  
IFS26  
R/W-0  
IFS18  
R/W-0  
IFS10  
R/W-0  
IFS2  
R/W-0  
IFS25  
R/W-0  
IFS17  
R/W-0  
IFS9  
R/W-0  
IFS1  
R/W-0  
IFS24  
R/W-0  
IFS16  
R/W-0  
IFS8  
R/W-0  
IFS0  
31:24  
23:16  
15:8  
7:0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 IFS31-IFS0: Interrupt Flag Status bits  
1= Interrupt request has occurred  
0= No interrupt request has occurred  
Note 1: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit  
definitions.  
REGISTER 7-5:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
IECx: INTERRUPT ENABLE CONTROL REGISTER  
Bit Bit Bit Bit Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
R/W-0  
IEC31  
R/W-0  
R/W-0  
IEC30  
R/W-0  
R/W-0  
IEC29  
R/W-0  
R/W-0  
IEC28  
R/W-0  
R/W-0  
IEC27  
R/W-0  
R/W-0  
IEC26  
R/W-0  
R/W-0  
IEC25  
R/W-0  
IEC17  
R/W-0  
IEC9  
R/W-0  
IEC1  
R/W-0  
IEC24  
R/W-0  
IEC16  
R/W-0  
IEC8  
R/W-0  
IEC0  
31:24  
23:16  
15:8  
7:0  
IEC23  
R/W-0  
IEC22  
R/W-0  
IEC21  
R/W-0  
IEC20  
R/W-0  
IEC19  
R/W-0  
IEC18  
R/W-0  
IEC15  
R/W-0  
IEC14  
R/W-0  
IEC13  
R/W-0  
IEC12  
R/W-0  
IEC11  
R/W-0  
IEC10  
R/W-0  
IEC7  
IEC6  
IEC5  
IEC4  
IEC3  
IEC2  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 IEC31-IEC0: Interrupt Enable bits  
1= Interrupt is enabled  
0= Interrupt is disabled  
Note 1: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit  
definitions.  
DS60001185B-page 106  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 7-6:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
IPCx: INTERRUPT PRIORITY CONTROL REGISTER  
Bit Bit Bit Bit Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
IP3<2:0>  
R/W-0  
IS3<1:0>  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IP2<2:0>  
R/W-0  
IS2<1:0>  
U-0  
U-0  
U-0  
R/W-0  
IP1<2:0>  
R/W-0  
IS1<1:0>  
IS0<1:0>  
U-0  
U-0  
U-0  
R/W-0  
IP0<2:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-29 Unimplemented: Read as ‘0’  
bit 28-26 IP3<2:0>: Interrupt Priority bits  
111= Interrupt priority is 7  
010= Interrupt priority is 2  
001= Interrupt priority is 1  
000= Interrupt is disabled  
bit 25-24 IS3<1:0>: Interrupt Subpriority bits  
11= Interrupt subpriority is 3  
10= Interrupt subpriority is 2  
01= Interrupt subpriority is 1  
00= Interrupt subpiority is 0  
bit 23-21 Unimplemented: Read as ‘0’  
bit 20-18 IP2<2:0>: Interrupt Priority bits  
111= Interrupt priority is 7  
010= Interrupt priority is 2  
001= Interrupt priority is 1  
000= Interrupt is disabled  
bit 17-16 IS2<1:0>: Interrupt Subpriority bits  
11= Interrupt subpriority is 3  
10= Interrupt subpriority is 2  
01= Interrupt subpriority is 1  
00= Interrupt subpriority is 0  
bit 15-13 Unimplemented: Read as ‘0’  
bit 12-10 IP1<2:0>: Interrupt Priority bits  
111= Interrupt priority is 7  
010= Interrupt priority is 2  
001= Interrupt priority is 1  
000= Interrupt is disabled  
Note 1: This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit  
definitions.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 107  
PIC32MX330/350/370/430/450/470  
REGISTER 7-6:  
IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)  
bit 9-8  
IS1<1:0>: Interrupt Subpriority bits  
11= Interrupt subpriority is 3  
10= Interrupt subpriority is 2  
01= Interrupt subpriority is 1  
00= Interrupt subpriority is 0  
bit 7-5  
bit 4-2  
Unimplemented: Read as ‘0’  
IP0<2:0>: Interrupt Priority bits  
111= Interrupt priority is 7  
010= Interrupt priority is 2  
001= Interrupt priority is 1  
000= Interrupt is disabled  
bit 1-0  
IS0<1:0>: Interrupt Subpriority bits  
11= Interrupt subpriority is 3  
10= Interrupt subpriority is 2  
01= Interrupt subpriority is 1  
00= Interrupt subpriority is 0  
Note 1: This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit  
definitions.  
DS60001185B-page 108  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The PIC32MX330/350/370/430/450/470 oscillator  
system has the following modules and features:  
8.0  
OSCILLATOR  
CONFIGURATION  
• A Total of four external and internal oscillator  
options as clock sources  
Note 1: This data sheet summarizes the  
features of the PIC32MX330/350/370/  
430/450/470 family of devices. It is not  
• On-Chip PLL with user-selectable input divider,  
multiplier and output divider to boost operating  
frequency on select internal and external  
oscillator sources  
• On-Chip user-selectable divisor postscaler on  
select oscillator sources  
intended to be  
a
comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 6. “Oscillator Configuration”  
(DS60001112) in the “PIC32 Family  
Reference Manual”, which is available  
• Software-controllable switching between   
various clock sources  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and permits safe application recovery  
or shutdown  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Dedicated On-Chip PLL for USB peripheral  
A block diagram of the oscillator system is provided in  
Figure 8-1.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 109  
PIC32MX330/350/370/430/450/470  
FIGURE 8-1:  
PIC32MX330/350/370/430/450/470 FAMILY CLOCK DIAGRAM  
(5)  
USB PLL  
USB Clock (48 MHz)  
UFIN  
div 2  
div x  
PLL x24  
UFRCEN  
UFIN 4 MHz  
UPLLIDIV<2:0>  
UPLLEN  
ROTRIM<8:0>  
(M)  
REFCLKI  
OE  
POSC  
FRC  
REFCLKO  
To SPI  
LPRC  
SOSC  
PBCLK  
M
512  
System USB PLL  
2 N + ---------  
4 MHz FIN 5 MHz  
SYSCLK  
FIN  
div x  
PLL  
RODIV<4:0>  
(N)  
ROSEL<3:0>  
FPLLIDIV<2:0>  
COSC<2:0>  
PLLMULT<2:0>  
div y  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
PLLODIV<2:0>  
Primary Oscillator  
(POSC)  
(3)  
OSC1  
C1  
Peripherals  
Postscaler  
div x  
POSC (XT, HS, EC)  
FRC  
To Internal  
Logic  
(2)  
F
PBCLK (TPB)  
R
XTAL  
(1)  
P
R
Enable  
(1)  
S
R
PBDIV<1:0>  
(3)  
C2  
(4)  
div 16  
OSC2  
FRC/16  
FRCDIV  
div 2  
To ADC  
CPU and Select Peripherals  
SYSCLK  
FRC  
Oscillator  
8 MHz typical  
Postscaler  
FRCDIV<2:0>  
TUN<5:0>  
LPRC  
Oscillator  
LPRC  
SOSC  
31.25 kHz typical  
Secondary Oscillator (SOSC)  
SOSCO  
SOSCI  
32.768 kHz  
SOSCEN and FSOSCEN  
Clock Control Logic  
FSCM INT  
Fail-Safe  
Clock  
Monitor  
FSCM Event  
NOSC<2:0>  
COSC<2:0>  
FSCMEN<1:0>  
OSWEN  
WDT, PWRT  
Timer1, RTCC  
Notes: 1. A series resistor, RS, may be required for AT strip cut crystals or eliminate clipping. Alternately, to increase oscillator circuit gain,  
add a parallel resistor, RP, with a value of 1 M  
2. The internal feedback resistor, RF, is typically in the range of 2 to 10 M  
3. Refer to Section 6. “Oscillator Configuration” (DS60001112) in the “PIC32 Family Reference Manual” for help in determining the  
best oscillator components.  
4. PBCLK out is available on the OSC2 pin in certain clock modes.  
5. USB PLL is available on PIC32MX4XX devices only.  
DS60001185B-page 110  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
8.1  
Control Registers  
REGISTER 8-1:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
OSCCON: OSCILLATOR CONTROL REGISTER  
Bit Bit Bit Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
R/W-y  
R/W-y  
PLLODIV<2:0>  
R/W-y  
R/W-y  
R/W-0  
R/W-y  
R/W-y  
R/W-0  
FRCDIV<2:0>  
R/W-y  
R/W-1  
R/W-y  
R/W-y  
31:24  
23:16  
15:8  
7:0  
U-0  
R-0  
R-1  
R/W-y  
SOSCRDY PBDIVRDY  
PBDIV<1:0>  
R-0  
PLLMULT<2:0>  
R/W-y  
U-0  
R-0  
R-0  
COSC<2:0>  
R-0  
U-0  
R/W-0  
R/W-0  
CF  
NOSC<2:0>  
R/W-y  
R-0  
R/W-0  
R/W-0  
UFRCEN(1)  
R/W-0  
CLKLOCK ULOCK(1)  
SLOCK  
SLPEN  
SOSCEN  
OSWEN  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-30 Unimplemented: Read as ‘0’  
bit 29-27 PLLODIV<2:0>: Output Divider for PLL  
111= PLL output divided by 256  
110= PLL output divided by 64  
101= PLL output divided by 32  
100= PLL output divided by 16  
011= PLL output divided by 8  
010= PLL output divided by 4  
001= PLL output divided by 2  
000= PLL output divided by 1  
bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits  
111= FRC divided by 256  
110= FRC divided by 64  
101= FRC divided by 32  
100= FRC divided by 16  
011= FRC divided by 8  
010= FRC divided by 4  
001= FRC divided by 2 (default setting)  
000= FRC divided by 1  
bit 23  
bit 22  
Unimplemented: Read as ‘0’  
SOSCRDY: Secondary Oscillator (SOSC) Ready Indicator bit  
1= Indicates that the Secondary Oscillator is running and is stable  
0= Secondary Oscillator is still warming up or is turned off  
bit 21  
PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit  
1= PBDIV<1:0> bits can be written  
0= PBDIV<1:0> bits cannot be written  
bit 20-19 PBDIV<1:0>: Peripheral Bus Clock (PBCLK) Divisor bits  
11= PBCLK is SYSCLK divided by 8 (default)  
10= PBCLK is SYSCLK divided by 4  
01= PBCLK is SYSCLK divided by 2  
00= PBCLK is SYSCLK divided by 1  
Note 1: This bit is available on PIC32MX4XX devices only.  
Note:  
Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the  
“PIC32 Family Reference Manual” for details.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 111  
PIC32MX330/350/370/430/450/470  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 18-16 PLLMULT<2:0>: Phase-Locked Loop (PLL) Multiplier bits  
111= Clock is multiplied by 24  
110= Clock is multiplied by 21  
101= Clock is multiplied by 20  
100= Clock is multiplied by 19  
011= Clock is multiplied by 18  
010= Clock is multiplied by 17  
001= Clock is multiplied by 16  
000= Clock is multiplied by 15  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12 COSC<2:0>: Current Oscillator Selection bits  
111= Internal Fast RC (FRC) Oscillator divided by OSCCON<FRCDIV> bits  
110= Internal Fast RC (FRC) Oscillator divided by 16  
101= Internal Low-Power RC (LPRC) Oscillator  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator (POSC) with PLL module (XTPLL, HSPLL or ECPLL)  
010= Primary Oscillator (POSC) (XT, HS or EC)  
001= Internal Fast RC Oscillator with PLL module via Postscaler (FRCPLL)  
000= Internal Fast RC (FRC) Oscillator  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8 NOSC<2:0>: New Oscillator Selection bits  
111= Internal Fast RC Oscillator (FRC) divided by OSCCON<FRCDIV> bits  
110= Internal Fast RC Oscillator (FRC) divided by 16  
101= Internal Low-Power RC (LPRC) Oscillator  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL or ECPLL)  
010= Primary Oscillator (XT, HS or EC)  
001= Internal Fast Internal RC Oscillator with PLL module via Postscaler (FRCPLL)  
000= Internal Fast Internal RC Oscillator (FRC)  
On Reset, these bits are set to the value of the FNOSC Configuration bits (DEVCFG1<2:0>).  
bit 7  
CLKLOCK: Clock Selection Lock Enable bit  
If clock switching and monitoring is disabled (FCKSM<1:0> = 1x):  
1= Clock and PLL selections are locked  
0= Clock and PLL selections are not locked and may be modified  
If clock switching and monitoring is enabled (FCKSM<1:0> = 0x):  
Clock and PLL selections are never locked and may be modified.  
bit 6  
ULOCK: USB PLL Lock Status bit(1)  
1= Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied  
0= Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or  
USB PLL is disabled  
bit 5  
bit 4  
SLOCK: PLL Lock Status bit  
1= PLL module is in lock or PLL module start-up timer is satisfied  
0= PLL module is out of lock, PLL start-up timer is running or PLL is disabled  
SLPEN: Sleep Mode Enable bit  
1= Device will enter Sleep mode when a WAITinstruction is executed  
0= Device will enter Idle mode when a WAITinstruction is executed  
Note 1: This bit is available on PIC32MX4XX devices only.  
Note:  
Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the  
“PIC32 Family Reference Manual” for details.  
DS60001185B-page 112  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
CF: Clock Fail Detect bit  
1= FSCM has detected a clock failure  
0= No clock failure has been detected  
UFRCEN: USB FRC Clock Enable bit(1)  
1= Enable FRC as the clock source for the USB clock source  
0= Use the Primary Oscillator or USB PLL as the USB clock source  
SOSCEN: Secondary Oscillator (SOSC) Enable bit  
1= Enable Secondary Oscillator  
0= Disable Secondary Oscillator  
OSWEN: Oscillator Switch Enable bit  
1= Initiate an oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: This bit is available on PIC32MX4XX devices only.  
Note:  
Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the  
“PIC32 Family Reference Manual” for details.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 113  
PIC32MX330/350/370/430/450/470  
REGISTER 8-2:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
OSCTUN: FRC TUNING REGISTER  
Bit Bit Bit  
Bit  
Bit  
Bit  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<5:0>(1)  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-6 Unimplemented: Read as ‘0’  
bit 5-0  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
100000= Center frequency -12.5%  
100001=  
111111=  
000000= Center frequency. Oscillator runs at minimal frequency (8 MHz)  
000001=  
011110=  
011111= Center frequency +12.5%  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither  
characterized, nor tested.  
Note:  
Writes to this register require an unlock sequence. Refer to Section 6. “Oscillator” (DS60001112) in the  
“PIC32 Family Reference Manual” for details.  
DS60001185B-page 114  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 8-3:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
24/16/8/0  
25/17/9/1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
RODIV<14:8>(3)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RODIV<7:0>(3)  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0, HC  
R-0, HS, HC  
RSLP(2)  
ON  
SIDL  
OE  
DIVSWEN  
ACTIVE  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ROSEL<3:0>(1)  
Legend:  
HC = Hardware Clearable HS = Hardware Settable  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31  
Unimplemented: Read as ‘0’  
bit 30-16 RODIV<14:0>: Reference Clock Divider bits(1)  
This value selects the Reference Clock Divider bits. See Figure 8-1 for more information.  
bit 15  
ON: Output Enable bit  
1= Reference Oscillator Module enabled  
0= Reference Oscillator Module disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Peripheral Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
OE: Reference Clock Output Enable bit  
1= Reference clock is driven out on REFCLKO pin  
0= Reference clock is not driven out on REFCLKO pin  
RSLP: Reference Oscillator Module Run in Sleep bit(2)  
1= Reference Oscillator Module output continues to run in Sleep  
0= Reference Oscillator Module output is disabled in Sleep  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
DIVSWEN: Divider Switch Enable bit  
1= Divider switch is in progress  
0= Divider switch is complete  
bit 8  
ACTIVE: Reference Clock Request Status bit  
1= Reference clock request is active  
0= Reference clock request is not active  
bit 7-4  
Unimplemented: Read as ‘0’  
Note 1: The ROSEL and RODIV bits should not be written while the ACTIVE bit is ‘1’, as undefined behavior may  
result.  
2: This bit is ignored when the ROSEL<3:0> bits = 0000or 0001.  
3: While the ON bit is set to ‘1’, writes to these bits do not take effect until the DIVSWEN bit is also set to ‘1’.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 115  
PIC32MX330/350/370/430/450/470  
REGISTER 8-3:  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 3-0  
ROSEL<3:0>: Reference Clock Source Select bits(1)  
1111= Reserved; do not use  
1001= Reserved; do not use  
1000= REFCLKI  
0111= System PLL output  
0110= USB PLL output  
0101= SOSC  
0100= LPRC  
0011= FRC  
0010= POSC  
0001= PBCLK  
0000= SYSCLK  
Note 1: The ROSEL and RODIV bits should not be written while the ACTIVE bit is ‘1’, as undefined behavior may  
result.  
2: This bit is ignored when the ROSEL<3:0> bits = 0000or 0001.  
3: While the ON bit is set to ‘1’, writes to these bits do not take effect until the DIVSWEN bit is also set to ‘1’.  
DS60001185B-page 116  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 8-4:  
REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
ROTRIM<8:1>  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ROTRIM<0>  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits  
111111111= 511/512 divisor added to RODIV value  
111111110= 510/512 divisor added to RODIV value  
100000000= 256/512 divisor added to RODIV value  
000000010= 2/512 divisor added to RODIV value  
000000001= 1/512 divisor added to RODIV value  
000000000= 0/512 divisor added to RODIV value  
bit 22-0 Unimplemented: Read as ‘0’  
Note 1: While the ON bit (REFOCON<15>) is ‘1’, writes to this register do not take effect until the DIVSWEN bit is  
also set to ‘1’.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 117  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 118  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Prefetch cache increases performance for applications  
9.0  
PREFETCH CACHE  
executing out of the cacheable program Flash memory  
regions by implementing instruction caching, constant  
data caching and instruction prefetching.  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 4. “Prefetch  
Cache” (DS60001119) in the “PIC32  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
9.1  
Features  
• 16 fully associative lockable cache lines  
• 16-byte cache lines  
• Up to four cache lines allocated to data  
• Two cache lines with address mask to hold  
repeated instructions  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Pseudo LRU replacement policy  
• All cache lines are software writable  
• 16-byte parallel memory fetch  
• Predictive instruction prefetch  
A simplified block diagram of the Prefetch Cache  
module is illustrated in Figure 9-1.  
FIGURE 9-1:  
PREFETCH CACHE MODULE BLOCK DIAGRAM  
CTRL  
FSM  
Cache Line  
Tag Logic  
CTRL  
Bus Control  
Cache Control  
Prefetch Control  
Hit LRU  
Cache  
Line  
Address  
Encode  
RDATA  
Miss LRU  
Hit Logic  
Prefetch  
Prefetch  
RDATA  
CTRL  
PFM  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 119  
PIC32MX330/350/370/430/450/470  
9.2  
Control Registers  
REGISTER 9-1:  
CHECON: CACHE CONTROL REGISTER  
Bit Bit Bit Bit  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
Bit  
Range  
Bit  
Bit  
Bit  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CHECOH  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DCSZ<1:0>  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
PREFEN<1:0>  
PFMWS<2:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-17 Unimplemented: Write ‘0’; ignore read  
bit 16  
CHECOH: Cache Coherency Setting on a PFM Program Cycle bit  
1= Invalidate all data and instruction lines  
0= Invalidate all data lnes and instruction lines that are not locked  
bit 15-10 Unimplemented: Write ‘0’; ignore read  
bit 9-8  
DCSZ<1:0>: Data Cache Size in Lines bits  
11= Enable data caching with a size of 4 Lines  
10= Enable data caching with a size of 2 Lines  
01= Enable data caching with a size of 1 Line  
00= Disable data caching  
Changing these bits induce all lines to be reinitialized to the “invalid” state.  
bit 7-6  
bit 5-4  
Unimplemented: Write ‘0’; ignore read  
PREFEN<1:0>: Predictive Prefetch Enable bits  
11= Enable predictive prefetch for both cacheable and non-cacheable regions  
10= Enable predictive prefetch for non-cacheable regions only  
01= Enable predictive prefetch for cacheable regions only  
00= Disable predictive prefetch  
bit 3  
Unimplemented: Write ‘0’; ignore read  
bit 2-0  
PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits  
111= Seven Wait states  
110= Six Wait states  
101= Five Wait states  
100= Four Wait states  
011= Three Wait states  
010= Two Wait states  
001= One Wait state  
000= Zero Wait state  
DS60001185B-page 120  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 9-2:  
Bit Bit  
CHEACC: CACHE ACCESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
CHEWEN  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
23:16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
15:8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7:0  
CHEIDX<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31  
CHEWEN: Cache Access Enable bits for registers CHETAG, CHEMSK, CHEW0, CHEW1, CHEW2, and  
CHEW3  
1= The cache line selected by CHEIDX<3:0> is writeable  
0= The cache line selected by CHEIDX<3:0> is not writeable  
bit 30-4 Unimplemented: Write ‘0’; ignore read  
bit 3-0 CHEIDX<3:0>: Cache Line Index bits  
The value selects the cache line for reading or writing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 121  
PIC32MX330/350/370/430/450/470  
REGISTER 9-3:  
CHETAG: CACHE TAG REGISTER  
Bit Bit Bit  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
Bit  
Range  
Bit  
Bit  
Bit  
Bit  
Bit  
24/16/8/0  
R/W-0  
LTAGBOOT  
R/W-x  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
LTAG<19:12>  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
LTAG<11:4>  
R/W-x  
R/W-0  
R/W-0  
R/W-1  
U-0  
LTAG<3:0>  
LVALID  
LLOCK  
LTYPE  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31  
LTAGBOOT: Line TAG Address Boot bit  
1= The line is in the 0x1D000000 (physical) area of memory  
0= The line is in the 0x1FC00000 (physical) area of memory  
bit 30-24 Unimplemented: Write ‘0’; ignore read  
bit 23-4 LTAG<19:0>: Line TAG Address bits  
LTAG<19:0> bits are compared against physical address to determine a hit. Because its address range and  
position of PFM in kernel space and user space, the LTAG PFM address is identical for virtual addresses,  
(system) physical addresses, and PFM physical addresses.  
bit 3  
bit 2  
bit 1  
bit 0  
LVALID: Line Valid bit  
1= The line is valid and is compared to the physical address for hit detection  
0= The line is not valid and is not compared to the physical address for hit detection  
LLOCK: Line Lock bit  
1= The line is locked and will not be replaced  
0= The line is not locked and can be replaced  
LTYPE: Line Type bit  
1= The line caches instruction words  
0= The line caches data words  
Unimplemented: Write ‘0’; ignore read  
DS60001185B-page 122  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 9-4:  
CHEMSK: CACHE TAG MASK REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LMASK<10:3>  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
LMASK<2:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Write ‘0’; ignore read  
bit 15-5 LMASK<10:0>: Line Mask bits  
1= Enables mask logic to force a match on the corresponding bit position in LTAG<19:0> bits  
(CHETAG<23:4>) and the physical address.  
0= Only writeable for values of CHEIDX<3:0> bits (CHEACC<3:0>) equal to 0x0A and 0x0B.   
Disables mask logic.  
bit 4-0  
Unimplemented: Write ‘0’; ignore read  
REGISTER 9-5:  
Bit Bit  
CHEW0: CACHE WORD 0  
Bit Bit  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
Range 31/23/15/7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
CHEW0<31:24>  
R/W-x  
R/W-x  
R/W-x  
23:16  
CHEW0<23:16>  
R/W-x  
R/W-x  
R/W-x  
15:8  
CHEW0<15:8>  
R/W-x  
R/W-x  
R/W-x  
7:0  
CHEW0<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 CHEW0<31:0>: Word 0 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>)  
Readable only if the device is not code-protected.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 123  
PIC32MX330/350/370/430/450/470  
REGISTER 9-6:  
Bit Bit  
CHEW1: CACHE WORD 1  
Bit Bit  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
Range 31/23/15/7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
CHEW1<31:24>  
R/W-x  
R/W-x  
R/W-x  
23:16  
CHEW1<23:16>  
R/W-x  
R/W-x  
R/W-x  
15:8  
CHEW1<15:8>  
R/W-x  
R/W-x  
R/W-x  
7:0  
CHEW1<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 CHEW1<31:0>: Word 1 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>)  
Readable only if the device is not code-protected.  
REGISTER 9-7:  
Bit Bit  
CHEW2: CACHE WORD 2  
Bit Bit  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
Bit  
Bit  
Bit  
Bit  
Bit  
24/16/8/0  
Range 31/23/15/7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
CHEW2<31:24>  
R/W-x  
R/W-x  
R/W-x  
23:16  
CHEW2<23:16>  
R/W-x  
R/W-x  
R/W-x  
15:8  
CHEW2<15:8>  
R/W-x  
R/W-x  
R/W-x  
7:0  
CHEW2<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 CHEW2<31:0>: Word 2 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>)  
Readable only if the device is not code-protected.  
DS60001185B-page 124  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 9-8:  
Bit Bit  
CHEW3: CACHE WORD 3  
Bit Bit  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
Range 31/23/15/7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
CHEW3<31:24>  
R/W-x  
R/W-x  
R/W-x  
23:16  
CHEW3<23:16>  
R/W-x  
R/W-x  
R/W-x  
15:8  
CHEW3<15:8>  
R/W-x  
R/W-x  
R/W-x  
7:0  
CHEW3<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 CHEW3<31:0>: Word 3 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>)  
Readable only if the device is not code-protected.  
Note:  
This register is a window into the cache data array and is readable only if the device is not code-protected.  
REGISTER 9-9:  
Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
CHELRU: CACHE LRU REGISTER  
Bit Bit Bit  
Bit  
Bit  
Bit  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
CHELRU<24>  
R-0  
31:24  
23:16  
15:8  
7:0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CHELRU<23:16>  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CHELRU<15:8>  
R-0  
R-0  
CHELRU<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-25 Unimplemented: Write ‘0’; ignore read  
bit 24-0 CHELRU<24:0>: Cache Least Recently Used State Encoding bits  
Indicates the pseudo-LRU state of the cache.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 125  
PIC32MX330/350/370/430/450/470  
REGISTER 9-10: CHEHIT: CACHE HIT STATISTICS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
CHEHIT<31:24>  
R/W-x  
R/W-x  
R/W-x  
23:16  
CHEHIT<23:16>  
R/W-x  
R/W-x  
R/W-x  
15:8  
CHEHIT<15:8>  
R/W-x  
R/W-x  
R/W-x  
7:0  
CHEHIT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 CHEHIT<31:0>: Cache Hit Count bits  
Incremented each time the processor issues an instruction fetch or load that hits the prefetch cache from a  
cacheable region. Non-cacheable accesses do not modify this value.  
REGISTER 9-11: CHEMIS: CACHE MISS STATISTICS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
CHEMIS<31:24>  
R/W-x  
R/W-x  
R/W-x  
23:16  
CHEMIS<23:16>  
R/W-x  
R/W-x  
R/W-x  
15:8  
CHEMIS<15:8>  
R/W-x  
R/W-x  
R/W-x  
7:0  
CHEMIS<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 CHEMIS<31:0>: Cache Miss Count bits  
Incremented each time the processor issues an instruction fetch from a cacheable region that misses the  
prefetch cache. Non-cacheable accesses do not modify this value.  
DS60001185B-page 126  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 9-12: CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
CHEPFABT<31:24>  
R/W-x  
R/W-x  
R/W-x  
23:16  
CHEPFABT<23:16>  
R/W-x  
R/W-x  
R/W-x  
15:8  
CHEPFABT<15:8>  
R/W-x  
R/W-x  
R/W-x  
7:0  
CHEPFABT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits  
Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load  
or store.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 127  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 128  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
• Automatic word-size detection:  
10.0 DIRECT MEMORY ACCESS  
- Transfer granularity, down to byte level  
(DMA) CONTROLLER  
- Bytes need not be word-aligned at source  
and destination  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 31. “Direct  
Memory Access (DMA) Controller”  
(DS60001117) in the “PIC32 Family  
Reference Manual”, which is available  
• Fixed priority channel arbitration  
• Flexible DMA channel operating modes:  
- Manual (software) or automatic (interrupt)  
DMA requests  
- One-Shot or Auto-Repeat Block Transfer  
modes  
- Channel-to-channel chaining  
• Flexible DMA requests:  
from  
the  
Microchip  
web  
site  
- A DMA request can be selected from any of  
the peripheral interrupt sources  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
- Each channel can select any (appropriate)  
observable interrupt as its DMA request  
source  
- A DMA transfer abort can be selected from  
any of the peripheral interrupt sources  
- Pattern (data) match transfer termination  
• Multiple DMA channel status interrupts:  
- DMA channel block transfer complete  
- Source empty or half empty  
The PIC32 Direct Memory Access (DMA) controller is a  
bus master module useful for data transfers between  
different devices without CPU intervention. The source  
and destination of a DMA transfer can be any of the  
memory mapped modules existent in the PIC32 (such  
as Peripheral Bus (PBUS) devices: SPI, UART, PMP,  
etc.) or memory itself.  
- Destination full or half full  
- DMA transfer aborted due to an external  
event  
- Invalid DMA address generated  
• DMA debug support features:  
Following are some of the key features of the DMA  
controller module:  
- Most recent address accessed by a DMA  
channel  
• Four identical channels, each featuring:  
- Auto-increment source and destination  
address registers  
- Most recent DMA channel to transfer data  
• CRC Generation module:  
- Source and destination pointers  
- CRC module can be assigned to any of the  
available channels  
- Memory to memory and memory to  
peripheral transfers  
- CRC module is highly configurable  
FIGURE 10-1:  
DMA BLOCK DIAGRAM  
INT Controller  
System IRQ  
Peripheral Bus  
Address Decoder  
Channel 0 Control  
Channel 1 Control  
I
0
I
I
Device Bus + Bus Arbitration  
Y
Bus Interface  
1
2
I
Global Control  
(DMACON)  
Channel n Control  
n
Channel Priority  
Arbitration  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 129  
PIC32MX330/350/370/430/450/470  
10.1 Control Registers  
REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4  
27/19/11/3  
26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
SUSPEND DMABUSY  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: DMA On bit(1)  
1= DMA module is enabled  
0= DMA module is disabled  
bit 14-13 Unimplemented: Read as ‘0’  
bit 12  
SUSPEND: DMA Suspend bit  
1= DMA transfers are suspended to allow CPU uninterrupted access to data bus  
0= DMA operates normally  
bit 11  
DMABUSY: DMA Module Busy bit(4)  
1= DMA module is active  
0= DMA module is disabled and not actively transferring data  
bit 10-0 Unimplemented: Read as ‘0’  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
DS60001185B-page 130  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 10-2: DMASTAT: DMA STATUS REGISTER  
Bit Bit Bit Bit Bit  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
Bit  
Bit  
Bit  
Bit  
24/16/8/0  
Range 31/23/15/7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
23:16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
15:8  
R-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
7:0  
RDWR  
DMACH<2:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-4 Unimplemented: Read as ‘0’  
bit 3  
RDWR: Read/Write Status bit  
1= Last DMA bus access was a read  
0= Last DMA bus access was a write  
bit 2-0 DMACH<2:0>: DMA Channel bits  
These bits contain the value of the most recent active DMA channel.  
REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
31:24  
DMAADDR<31:24>  
R-0  
R-0  
R-0  
23:16  
DMAADDR<23:16>  
R-0  
R-0  
R-0  
15:8  
DMAADDR<15:8>  
R-0  
R-0  
R-0  
7:0  
DMAADDR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 DMAADDR<31:0>: DMA Module Address bits  
These bits contain the address of the most recent DMA access.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 131  
PIC32MX330/350/370/430/450/470  
REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
WBO(1)  
U-0  
U-0  
U-0  
R/W-0  
BITO  
U-0  
31:24  
23:16  
15:8  
7:0  
BYTO<1:0>  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PLEN<4:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
CRCEN  
CRCAPP(1) CRCTYP  
CRCCH<2:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-30 Unimplemented: Read as ‘0’  
bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits  
11= Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order  
per half-word)  
10= Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per  
half-word)  
01= Endian byte swap on word boundaries (i.e., reverse source byte order)  
00= No swapping (i.e., source byte order)  
bit 27  
WBO: CRC Write Byte Order Selection bit(1)  
1= Source data is written to the destination re-ordered as defined by BYTO<1:0>  
0= Source data is written to the destination unaltered  
bit 26-25 Unimplemented: Read as ‘0’  
bit 24  
BITO: CRC Bit Order Selection bit(4)  
When CRCTYP (DCRCCON<15>) = 1(CRC module is in IP Header mode):  
1= The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)  
0= The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)  
When CRCTYP (DCRCCON<15>) = 0(CRC module is in LFSR mode):  
1= The LFSR CRC is calculated Least Significant bit first (i.e., reflected)  
0= The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)  
bit 23-13 Unimplemented: Read as ‘0’  
bit 12-8 PLEN<4:0>: Polynomial Length bits(1)  
When CRCTYP (DCRCCON<15>) = 1(CRC module is in IP Header mode):  
These bits are unused.  
When CRCTYP (DCRCCON<15>) = 0(CRC module is in LFSR mode):  
Denotes the length of the polynomial – 1.  
bit 7  
CRCEN: CRC Enable bit  
1= CRC module is enabled and channel transfers are routed through the CRC module  
0= CRC module is disabled and channel transfers proceed normally  
Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.  
DS60001185B-page 132  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)  
bit 6  
CRCAPP: CRC Append Mode bit(1)  
1= The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer  
completes the DMA writes the calculated CRC value to the location given by CHxDSA  
0= The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the  
destination  
bit 5  
CRCTYP: CRC Type Selection bit  
1= The CRC module will calculate an IP header checksum  
0= The CRC module will calculate a LFSR CRC  
bit 4-3  
bit 2-0  
Unimplemented: Read as ‘0’  
CRCCH<2:0>: CRC Channel Select bits  
111= CRC is assigned to Channel 7  
110= CRC is assigned to Channel 6  
101= CRC is assigned to Channel 5  
100= CRC is assigned to Channel 4  
011= CRC is assigned to Channel 3  
010= CRC is assigned to Channel 2  
001= CRC is assigned to Channel 1  
000= CRC is assigned to Channel 0  
Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 133  
PIC32MX330/350/370/430/450/470  
REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
DCRCDATA<31:24>  
R/W-0  
R/W-0  
R/W-0  
23:16  
DCRCDATA<23:16>  
R/W-0  
R/W-0  
R/W-0  
15:8  
DCRCDATA<15:8>  
R/W-0  
R/W-0  
R/W-0  
7:0  
DCRCDATA<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 DCRCDATA<31:0>: CRC Data Register bits  
Writing to this register will seed the CRC generator. Reading from this register will return the current value of  
the CRC. Bits greater than PLEN will return ‘0’ on any read.  
When CRCTYP (DCRCCON<15>) = 1(CRC module is in IP Header mode):  
Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always ‘0’. Data written  
to this register is converted and read back in 1’s complement form (i.e., current IP header checksum value).  
When CRCTYP (DCRCCON<15>) = 0(CRC module is in LFSR mode):  
Bits greater than PLEN will return ‘0’ on any read.  
REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
DCRCXOR<31:24>  
R/W-0  
R/W-0  
R/W-0  
23:16  
DCRCXOR<23:16>  
R/W-0  
R/W-0  
R/W-0  
15:8  
DCRCXOR<15:8>  
R/W-0  
R/W-0  
R/W-0  
7:0  
DCRCXOR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits  
When CRCTYP (DCRCCON<15>) = 1(CRC module is in IP Header mode):  
This register is unused.  
When CRCTYP (DCRCCON<15>) = 0(CRC module is in LFSR mode):  
1= Enable the XOR input to the Shift register  
0= Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in  
the register  
DS60001185B-page 134  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 10-7: DCHxCON: DMA CHANNEL ‘x’ CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CHBUSY  
R/W-0  
CHEN(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CHCHNS(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R-0  
R/W-0  
CHAED  
CHCHN  
CHAEN  
CHEDET  
CHPRI<1:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
CHBUSY: Channel Busy bit  
1= Channel is active or has been enabled  
0= Channel is inactive or has been disabled  
bit 14-9 Unimplemented: Read as ‘0’  
bit 8  
bit 7  
bit 6  
bit  
CHCHNS: Chain Channel Selection bit(1)  
1= Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)  
0= Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)  
CHEN: Channel Enable bit(2)  
1= Channel is enabled  
0= Channel is disabled  
CHAED: Channel Allow Events If Disabled bit  
1= Channel start/abort events will be registered, even if the channel is disabled  
0= Channel start/abort events will be ignored if the channel is disabled  
CHCHN: Channel Chain Enable bit  
1= Allow channel to be chained  
0= Do not allow channel to be chained  
bit 4  
CHAEN: Channel Automatic Enable bit  
1= Channel is continuously enabled, and not automatically disabled after a block transfer is complete  
0= Channel is disabled on block transfer complete  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CHEDET: Channel Event Detected bit  
1= An event has been detected  
0= No events have been detected  
bit 1-0  
CHPRI<1:0>: Channel Priority bits  
11= Channel has priority 3 (highest)  
10= Channel has priority 2  
01= Channel has priority 1  
00= Channel has priority 0  
Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).  
2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if  
available on the device variant) to see when the channel is suspended, as it may take some clock cycles  
to complete a current transaction before the channel is suspended.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 135  
PIC32MX330/350/370/430/450/470  
REGISTER 10-8: DCHxECON: DMA CHANNEL ‘x’ EVENT CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
CHAIRQ<7:0>(1)  
R/W-1  
CHSIRQ<7:0>(1)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
S-0  
S-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
CFORCE  
CABORT  
PATEN  
SIRQEN  
AIRQEN  
Legend:  
S = Settable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-24 Unimplemented: Read as ‘0’  
bit 23-16 CHAIRQ<7:0>: Channel Transfer Abort IRQ bits(1)  
11111111= Interrupt 255 will abort any transfers in progress and set CHAIF flag  
00000001= Interrupt 1 will abort any transfers in progress and set CHAIF flag  
00000000= Interrupt 0 will abort any transfers in progress and set CHAIF flag  
bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits(1)  
11111111= Interrupt 255 will initiate a DMA transfer  
00000001= Interrupt 1 will initiate a DMA transfer  
00000000= Interrupt 0 will initiate a DMA transfer  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
CFORCE: DMA Forced Transfer bit  
1= A DMA transfer is forced to begin when this bit is written to a ‘1’  
0= This bit always reads ‘0’  
CABORT: DMA Abort Transfer bit  
1= A DMA transfer is aborted when this bit is written to a ‘1’  
0= This bit always reads ‘0’  
PATEN: Channel Pattern Match Abort Enable bit  
1= Abort transfer and clear CHEN on pattern match  
0= Pattern match is disabled  
SIRQEN: Channel Start IRQ Enable bit  
1= Start channel cell transfer if an interrupt matching CHSIRQ occurs  
0= Interrupt number CHSIRQ is ignored and does not start a transfer  
AIRQEN: Channel Abort IRQ Enable bit  
1= Channel transfer is aborted if an interrupt matching CHAIRQ occurs  
0= Interrupt number CHAIRQ is ignored and does not terminate a transfer  
Unimplemented: Read as ‘0’  
Note 1: See Table 7-1: “Interrupt IRQ, Vector and Bit Location” for the list of available interrupt IRQ sources.  
DS60001185B-page 136  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 10-9: DCHxINT: DMA CHANNEL ‘x’ INTERRUPT CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
R/W-0  
CHSDIE  
U-0  
R/W-0  
CHSHIE  
U-0  
R/W-0  
CHDDIE  
U-0  
R/W-0  
CHDHIE  
U-0  
R/W-0  
CHBCIE  
U-0  
R/W-0  
CHCCIE  
U-0  
R/W-0  
CHTAIE  
U-0  
R/W-0  
CHERIE  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHSDIF  
CHSHIF  
CHDDIF  
CHDHIF  
CHBCIF  
CHCCIF  
CHTAIF  
CHERIF  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-24 Unimplemented: Read as ‘0’  
CHSDIE: Channel Source Done Interrupt Enable bit  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
1= Interrupt is enabled  
0= Interrupt is disabled  
CHSHIE: Channel Source Half Empty Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
CHDDIE: Channel Destination Done Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
CHDHIE: Channel Destination Half Full Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
CHBCIE: Channel Block Transfer Complete Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
CHTAIE: Channel Transfer Abort Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
CHERIE: Channel Address Error Interrupt Enable bit  
1= Interrupt is enabled  
0= Interrupt is disabled  
bit 15-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
CHSDIF: Channel Source Done Interrupt Flag bit  
1= Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)  
0= No interrupt is pending  
CHSHIF: Channel Source Half Empty Interrupt Flag bit  
1= Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)  
0= No interrupt is pending  
CHDDIF: Channel Destination Done Interrupt Flag bit  
1= Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)  
0= No interrupt is pending  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 137  
PIC32MX330/350/370/430/450/470  
REGISTER 10-9: DCHxINT: DMA CHANNEL ‘x’ INTERRUPT CONTROL REGISTER (CONTINUED)  
bit 4  
CHDHIF: Channel Destination Half Full Interrupt Flag bit  
1= Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)  
0= No interrupt is pending  
bit 3  
CHBCIF: Channel Block Transfer Complete Interrupt Flag bit  
1= A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a  
pattern match event occurs  
0= No interrupt is pending  
bit 2  
bit 1  
bit 0  
CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit  
1= A cell transfer has been completed (CHCSIZ bytes have been transferred)  
0= No interrupt is pending  
CHTAIF: Channel Transfer Abort Interrupt Flag bit  
1= An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted  
0= No interrupt is pending  
CHERIF: Channel Address Error Interrupt Flag bit  
1= A channel address error has been detected   
Either the source or the destination address is invalid.  
0= No interrupt is pending  
DS60001185B-page 138  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 10-10: DCHxSSA: DMA CHANNEL ‘x’ SOURCE START ADDRESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
CHSSA<31:24>  
R/W-0  
R/W-0  
CHSSA<23:16>  
R/W-0  
R/W-0  
CHSSA<15:8>  
R/W-0  
R/W-0  
CHSSA<7:0>  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 31-0  
CHSSA<31:0> Channel Source Start Address bits  
Channel source start address.  
Note: This must be the physical address of the source.  
REGISTER 10-11: DCHxDSA: DMA CHANNEL ‘x’ DESTINATION START ADDRESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
CHDSA<31:24>  
R/W-0  
R/W-0  
R/W-0  
23:16  
CHDSA<23:16>  
R/W-0  
R/W-0  
R/W-0  
15:8  
CHDSA<15:8>  
R/W-0  
R/W-0  
R/W-0  
7:0  
CHDSA<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits  
Channel destination start address.  
Note: This must be the physical address of the destination.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 139  
PIC32MX330/350/370/430/450/470  
REGISTER 10-12: DCHxSSIZ: DMA CHANNEL ‘x’ SOURCE SIZE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHSSIZ<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHSSIZ<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-0 CHSSIZ<15:0>: Channel Source Size bits  
1111111111111111= 65,535 byte source size  
0000000000000010= 2 byte source size  
0000000000000001= 1 byte source size  
0000000000000000= 65,536 byte source size  
REGISTER 10-13: DCHxDSIZ: DMA CHANNEL ‘x’ DESTINATION SIZE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHDSIZ<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHDSIZ<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-0 CHDSIZ<15:0>: Channel Destination Size bits  
1111111111111111 = 65,535 byte destination size  
0000000000000010= 2 byte destination size  
0000000000000001= 1 byte destination size  
0000000000000000= 65,536 byte destination size  
DS60001185B-page 140  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 10-14: DCHxSPTR: DMA CHANNEL ‘x’ SOURCE POINTER REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CHSPTR<15:8>  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CHSPTR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits  
1111111111111111= Points to byte 65,535 of the source  
0000000000000001= Points to byte 1 of the source  
0000000000000000= Points to byte 0 of the source  
Note 1: When in Pattern Detect mode, this register is reset on a pattern detect.  
REGISTER 10-15: DCHxDPTR: DMA CHANNEL ‘x’ DESTINATION POINTER REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CHDPTR<15:8>  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CHDPTR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits  
1111111111111111= Points to byte 65,535 of the destination  
0000000000000001= Points to byte 1 of the destination  
0000000000000000= Points to byte 0 of the destination  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 141  
PIC32MX330/350/370/430/450/470  
REGISTER 10-16: DCHxCSIZ: DMA CHANNEL ‘x’ CELL-SIZE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHCSIZ<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHCSIZ<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits  
1111111111111111= 65,535 bytes transferred on an event  
0000000000000010= 2 bytes transferred on an event  
0000000000000001= 1 byte transferred on an event  
0000000000000000= 65,536 bytes transferred on an event  
REGISTER 10-17: DCHxCPTR: DMA CHANNEL ‘x’ CELL POINTER REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CHCPTR<15:8>  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CHCPTR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-0 CHCPTR<7:0>: Channel Cell Progress Pointer bits  
1111111111111111= 65,535 bytes have been transferred since the last event  
0000000000000001= 1 byte has been transferred since the last event  
0000000000000000= 0 bytes have been transferred since the last event  
Note 1: When in Pattern Detect mode, this register is reset on a pattern detect.  
DS60001185B-page 142  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 10-18: DCHxDAT: DMA CHANNEL ‘x’ PATTERN DATA REGISTER  
Bit Bit Bit Bit Bit Bit Bit  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
Bit  
Bit  
24/16/8/0  
Range 31/23/15/7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
23:16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
15:8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7:0  
CHPDAT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7-0 CHPDAT<7:0>: Channel Data Register bits  
Pattern Terminate mode:  
Data to be matched must be stored in this register to allow terminate on match.  
All other modes:  
Unused.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 143  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 144  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The clock generator provides the 48 MHz clock  
11.0 USB ON-THE-GO (OTG)  
required for USB full-speed and low-speed communi-  
cation. The voltage comparators monitor the voltage on  
the VBUS pin to determine the state of the bus. The  
transceiver provides the analog translation between  
the USB bus and the digital logic. The SIE is a state  
machine that transfers data to and from the endpoint  
buffers and generates the hardware protocol for data  
transfers. The USB DMA controller transfers data  
between the data buffers in RAM and the SIE. The inte-  
grated pull-up and pull-down resistors eliminate the  
need for external signaling components. The register  
interface allows the CPU to configure and  
communicate with the module.  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 27. “USB  
On-The-Go (OTG)” (DS60001126) in the  
“PIC32 Family Reference Manual”, which  
is available from the Microchip web site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The PIC32 USB module includes the following  
features:  
• USB Full-speed support for host and device  
• Low-speed host support  
The Universal Serial Bus (USB) module contains  
analog and digital components to provide a USB 2.0  
full-speed and low-speed embedded host, full-speed  
device or OTG implementation with a minimum of  
external components. This module in Host mode is  
intended for use as an embedded host and therefore  
does not implement a UHCI or OHCI controller.  
• USB OTG support  
• Integrated signaling resistors  
• Integrated analog comparators for VBUS  
monitoring  
• Integrated USB transceiver  
• Transaction handshaking performed by hardware  
• Endpoint buffering anywhere in system RAM  
• Integrated DMA to access system RAM and Flash  
The USB module consists of the clock generator, the  
USB voltage comparators, the transceiver, the Serial  
Interface Engine (SIE), a dedicated USB DMA control-  
ler, pull-up and pull-down resistors, and the register  
interface. A block diagram of the PIC32 USB OTG  
module is presented in Figure 11-1.  
Note:  
The implementation and use of the USB  
specifications, as well as other third party  
specifications or technologies, may  
require licensing; including, but not limited  
to, USB Implementers Forum, Inc. (also  
referred to as USB-IF). The user is fully  
responsible  
for  
investigating  
and  
satisfying any applicable licensing  
obligations.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 145  
PIC32MX330/350/370/430/450/470  
FIGURE 11-1:  
PIC32MX430/450/470 USB INTERFACE DIAGRAM  
USBEN  
FRC  
USB Suspend  
Oscillator  
8 MHz Typical  
CPU Clock Not POSC  
Sleep  
TUN<5:0>(4)  
Primary Oscillator  
(POSC)  
(5)  
UFIN  
PLL  
Div x  
Div 2  
UFRCEN(3)  
OSC1  
UPLLEN(6)  
UPLLIDIV(6)  
USB Suspend  
To Clock Generator for Core and Peripherals  
Sleep or Idle  
OSC2  
(PB Out)(1)  
USB Module  
USB  
SRP Charge  
SRP Discharge  
Voltage  
Bus  
Comparators  
48 MHz USB Clock(7)  
Full Speed Pull-up  
D+(2)  
Registers  
and  
Control  
Interface  
Host Pull-down  
SIE  
Transceiver  
Low Speed Pull-up  
D-(2)  
DMA  
System  
RAM  
Host Pull-down  
ID Pull-up  
ID(8)  
(8)  
VBUSON  
Transceiver Power 3.3V  
VUSB3V3  
Note 1: PB clock is only available on this pin for select EC modes.  
2: Pins can be used as digital inputs when USB is not enabled.  
3: This bit field is contained in the OSCCON register.  
4: This bit field is contained in the OSCTRM register.  
5: USB PLL UFIN requirements: 4 MHz.  
6: This bit field is contained in the DEVCFG2 register.  
7: A 48 MHz clock is required for proper USB operation.  
8: Pins can be used as GPIO when the USB module is disabled.  
DS60001185B-page 146  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
11.1 Control Registers  
REGISTER 11-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER  
Bit Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
U-0  
R/WC-0, HS  
IDIF  
T1MSECIF LSTATEIF  
ACTVIF  
SESVDIF SESENDIF  
VBUSVDIF  
Legend:  
WC = Write ‘1’ to clear  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
IDIF: ID State Change Indicator bit  
1= Change in ID state detected  
0= No change in ID state detected  
T1MSECIF: 1 Millisecond Timer bit  
1= 1 millisecond timer has expired  
0= 1 millisecond timer has not expired  
LSTATEIF: Line State Stable Indicator bit  
1= USB line state has been stable for 1 ms, but different from last time  
0= USB line state has not been stable for 1 ms  
ACTVIF: Bus Activity Indicator bit  
1= Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up  
0= Activity has not been detected  
SESVDIF: Session Valid Change Indicator bit  
1= VBUS voltage has dropped below the session end level  
0= VBUS voltage has not dropped below the session end level  
SESENDIF: B-Device VBUS Change Indicator bit  
1= A change on the session end input was detected  
0= No change on the session end input was detected  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
VBUSVDIF: A-Device VBUS Change Indicator bit  
1= Change on the session valid input detected  
0= No change on the session valid input detected  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 147  
PIC32MX330/350/370/430/450/470  
REGISTER 11-2: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IDIE  
R/W-0  
R/W-0  
R/W-0  
ACTVIE  
R/W-0  
R/W-0  
U-0  
R/W-0  
VBUSVDIE  
T1MSECIE LSTATEIE  
SESVDIE SESENDIE  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
IDIE: ID Interrupt Enable bit  
1= ID interrupt enabled  
0= ID interrupt disabled  
T1MSECIE: 1 Millisecond Timer Interrupt Enable bit  
1= 1 millisecond timer interrupt enabled  
0= 1 millisecond timer interrupt disabled  
LSTATEIE: Line State Interrupt Enable bit  
1= Line state interrupt enabled  
0= Line state interrupt disabled  
ACTVIE: Bus Activity Interrupt Enable bit  
1= ACTIVITY interrupt enabled  
0= ACTIVITY interrupt disabled  
SESVDIE: Session Valid Interrupt Enable bit  
1= Session valid interrupt enabled  
0= Session valid interrupt disabled  
SESENDIE: B-Session End Interrupt Enable bit  
1= B-session end interrupt enabled  
0= B-session end interrupt disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
VBUSVDIE: A-VBUS Valid Interrupt Enable bit  
1= A-VBUS valid interrupt enabled  
0= A-VBUS valid interrupt disabled  
DS60001185B-page 148  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-3: U1OTGSTAT: USB OTG STATUS REGISTER  
Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
ID  
U-0  
R-0  
U-0  
R-0  
R-0  
U-0  
R-0  
LSTATE  
SESVD  
SESEND  
VBUSVD  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
ID: ID Pin State Indicator bit  
1= No cable is attached or a type B cable has been plugged into the USB receptacle  
0= A “type A” OTG cable has been plugged into the USB receptacle  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LSTATE: Line State Stable Indicator bit  
1= USB line state (U1CON<SE0> and U1CON<JSTATE>) has been stable for the previous 1 ms  
0= USB line state (U1CON<SE0> and U1CON<JSTATE>) has not been stable for the previous 1 ms  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SESVD: Session Valid Indicator bit  
1= VBUS voltage is above Session Valid on the A or B device  
0= VBUS voltage is below Session Valid on the A or B device  
bit 2  
SESEND: B-Device Session End Indicator bit  
1= VBUS voltage is below Session Valid on the B device  
0= VBUS voltage is above Session Valid on the B device  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
VBUSVD: A-Device VBUS Valid Indicator bit  
1= VBUS voltage is above Session Valid on the A device  
0= VBUS voltage is below Session Valid on the A device  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 149  
PIC32MX330/350/370/430/450/470  
REGISTER 11-4: U1OTGCON: USB OTG CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5  
28/20/12/4  
27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OTGEN  
R/W-0  
R/W-0  
DPPULUP DMPULUP DPPULDWN DMPULDWN VBUSON  
VBUSCHG VBUSDIS  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DPPULUP: D+ Pull-Up Enable bit  
1= D+ data line pull-up resistor is enabled  
0= D+ data line pull-up resistor is disabled  
DMPULUP: D- Pull-Up Enable bit  
1= D- data line pull-up resistor is enabled  
0= D- data line pull-up resistor is disabled  
DPPULDWN: D+ Pull-Down Enable bit  
1= D+ data line pull-down resistor is enabled  
0= D+ data line pull-down resistor is disabled  
DMPULDWN: D- Pull-Down Enable bit  
1= D- data line pull-down resistor is enabled  
0= D- data line pull-down resistor is disabled  
VBUSON: VBUS Power-on bit  
1= VBUS line is powered  
0= VBUS line is not powered  
OTGEN: OTG Functionality Enable bit  
1= DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control  
0= DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control  
VBUSCHG: VBUS Charge Enable bit  
1= VBUS line is charged through a pull-up resistor  
0= VBUS line is not charged through a resistor  
VBUSDIS: VBUS Discharge Enable bit  
1= VBUS line is discharged through a pull-down resistor  
0= VBUS line is not discharged through a resistor  
DS60001185B-page 150  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-5: U1PWRC: USB POWER CONTROL REGISTER  
Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3  
Bit  
26/18/10/2  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
UACTPND  
USLPGRD USBBUSY  
USUSPEND USBPWR  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7 UACTPND: USB Activity Pending bit  
1= USB bus activity has been detected; but an interrupt is pending, it has not been generated yet  
0= An interrupt is not pending  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
USLPGRD: USB Sleep Entry Guard bit  
1= Sleep entry is blocked if USB bus activity is detected or if a notification is pending  
0= USB module does not block Sleep entry  
bit 3  
USBBUSY: USB Module Busy bit(1)  
1= USB module is active or disabled, but not ready to be enabled  
0= USB module is not active and is ready to be enabled  
Note: When USBPWR = 0and USBBUSY = 1, status from all other registers is invalid and writes to all  
USB module registers produce undefined results.  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
USUSPEND: USB Suspend Mode bit  
1= USB module is placed in Suspend mode  
(The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)  
0= USB module operates normally  
bit 0  
USBPWR: USB Operation Enable bit  
1= USB module is turned on  
0= USB module is disabled  
(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power  
consumption.)  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 151  
PIC32MX330/350/370/430/450/470  
REGISTER 11-6: U1IR: USB INTERRUPT REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6  
29/21/13/5  
28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R-0  
R/WC-0, HS  
(5)  
URSTIF  
7:0  
STALLIF ATTACHIF(1) RESUMEIF(2)  
IDLEIF  
TRNIF(3)  
SOFIF  
UERRIF(4)  
(6)  
DETACHIF  
Legend:  
WC = Write ‘1’ to clear  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
STALLIF: STALL Handshake Interrupt bit  
1= In Host mode a STALL handshake was received during the handshake phase of the transaction  
In Device mode a STALL handshake was transmitted during the handshake phase of the transaction  
0= STALL handshake has not been sent  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
bit 0  
ATTACHIF: Peripheral Attach Interrupt bit(1)  
1= Peripheral attachment was detected by the USB module  
0= Peripheral attachment was not detected  
RESUMEIF: Resume Interrupt bit(2)  
1= K-State is observed on the D+ or D- pin for 2.5 µs  
0= K-State is not observed  
IDLEIF: Idle Detect Interrupt bit  
1= Idle condition detected (constant Idle state of 3 ms or more)  
0= No Idle condition detected  
TRNIF: Token Processing Complete Interrupt bit(3)  
1= Processing of current token is complete; a read of the U1STAT register will provide endpoint information  
0= Processing of current token not complete  
SOFIF: SOF Token Interrupt bit  
1= SOF token received by the peripheral or the SOF threshold reached by the host  
0= SOF token was not received nor threshold reached  
UERRIF: USB Error Condition Interrupt bit(4)  
1= Unmasked error condition has occurred  
0= Unmasked error condition has not occurred  
URSTIF: USB Reset Interrupt bit (Device mode)(5)  
1= Valid USB Reset has occurred  
0= No USB Reset has occurred  
DETACHIF: USB Detach Interrupt bit (Host mode)(6)  
1= Peripheral detachment was detected by the USB module  
0= Peripheral detachment was not detected  
Note 1: This bit is valid only if the HOSTEN bit is set (see Register 11-11), there is no activity on the USB for  
2.5 µs, and the current bus state is not SE0.  
2: When not in Suspend mode, this interrupt should be disabled.  
3: Clearing this bit will cause the STAT FIFO to advance.  
4: Only error conditions enabled through the U1EIE register will set this bit.  
5: Device mode.  
6: Host mode.  
DS60001185B-page 152  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER  
Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
Bit  
Bit  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
URSTIE(2)  
7:0  
STALLIE  
ATTACHIE RESUMEIE  
IDLEIE  
TRNIE  
SOFIE  
UERRIE(1)  
(3)  
DETACHIE  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
STALLIE: STALL Handshake Interrupt Enable bit  
1= STALL interrupt enabled  
0= STALL interrupt disabled  
ATTACHIE: ATTACH Interrupt Enable bit  
1= ATTACH interrupt enabled  
0= ATTACH interrupt disabled  
RESUMEIE: RESUME Interrupt Enable bit  
1= RESUME interrupt enabled  
0= RESUME interrupt disabled  
IDLEIE: Idle Detect Interrupt Enable bit  
1= Idle interrupt enabled  
0= Idle interrupt disabled  
TRNIE: Token Processing Complete Interrupt Enable bit  
1= TRNIF interrupt enabled  
0= TRNIF interrupt disabled  
SOFIE: SOF Token Interrupt Enable bit  
1= SOFIF interrupt enabled  
0= SOFIF interrupt disabled  
UERRIE: USB Error Interrupt Enable bit(1)  
1= USB Error interrupt enabled  
0= USB Error interrupt disabled  
URSTIE: USB Reset Interrupt Enable bit(2)  
1= URSTIF interrupt enabled  
0= URSTIF interrupt disabled  
DETACHIE: USB Detach Interrupt Enable bit(3)  
1= DATTCHIF interrupt enabled  
0= DATTCHIF interrupt disabled  
Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.  
2: Device mode.  
3: Host mode.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 153  
PIC32MX330/350/370/430/450/470  
REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
R/WC-0, HS  
CRC5EF(4)  
R/WC-0, HS  
7:0  
BTSEF  
BMXEF  
DMAEF(1)  
BTOEF(2)  
DFN8EF  
CRC16EF  
PIDEF  
EOFEF(3,5)  
Legend:  
WC = Write ‘1’ to clear  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
BTSEF: Bit Stuff Error Flag bit  
1= Packet rejected due to bit stuff error  
0= Packet accepted  
BMXEF: Bus Matrix Error Flag bit  
1= The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.  
0= No address error  
DMAEF: DMA Error Flag bit(1)  
1= USB DMA error condition detected  
0= No DMA error  
BTOEF: Bus Turnaround Time-Out Error Flag bit(2)  
1= Bus turnaround time-out has occurred  
0= No bus turnaround time-out  
DFN8EF: Data Field Size Error Flag bit  
1= Data field received is not an integral number of bytes  
0= Data field received is an integral number of bytes  
CRC16EF: CRC16 Failure Flag bit  
1= Data packet rejected due to CRC16 error  
0= Data packet accepted  
Note 1: This type of error occurs when the module’s request for the DMA bus is not granted in time to service the  
module’s demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer  
size is not sufficient to store the received data packet causing it to be truncated.  
2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP)  
has elapsed.  
3: This type of error occurs when the module is transmitting or receiving data and the SOF counter has  
reached zero.  
4: Device mode.  
5: Host mode.  
DS60001185B-page 154  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)  
bit 1  
CRC5EF: CRC5 Host Error Flag bit(4)  
1= Token packet rejected due to CRC5 error  
0= Token packet accepted  
EOFEF: EOF Error Flag bit(3,5)  
1= EOF error condition detected  
0= No EOF error condition  
bit 0  
PIDEF: PID Check Failure Flag bit  
1= PID check failed  
0= PID check passed  
Note 1: This type of error occurs when the module’s request for the DMA bus is not granted in time to service the  
module’s demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer  
size is not sufficient to store the received data packet causing it to be truncated.  
2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP)  
has elapsed.  
3: This type of error occurs when the module is transmitting or receiving data and the SOF counter has  
reached zero.  
4: Device mode.  
5: Host mode.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 155  
PIC32MX330/350/370/430/450/470  
REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CRC5EE(1)  
EOFEE(2)  
R/W-0  
7:0  
BTSEE  
BMXEE  
DMAEE  
BTOEE  
DFN8EE  
CRC16EE  
PIDEE  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
BTSEE: Bit Stuff Error Interrupt Enable bit  
1= BTSEF interrupt enabled  
0= BTSEF interrupt disabled  
BMXEE: Bus Matrix Error Interrupt Enable bit  
1= BMXEF interrupt enabled  
0= BMXEF interrupt disabled  
DMAEE: DMA Error Interrupt Enable bit  
1= DMAEF interrupt enabled  
0= DMAEF interrupt disabled  
BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit  
1= BTOEF interrupt enabled  
0= BTOEF interrupt disabled  
DFN8EE: Data Field Size Error Interrupt Enable bit  
1= DFN8EF interrupt enabled  
0= DFN8EF interrupt disabled  
CRC16EE: CRC16 Failure Interrupt Enable bit  
1= CRC16EF interrupt enabled  
0= CRC16EF interrupt disabled  
CRC5EE: CRC5 Host Error Interrupt Enable bit(1)  
1= CRC5EF interrupt enabled  
0= CRC5EF interrupt disabled  
EOFEE: EOF Error Interrupt Enable bit(2)  
1= EOF interrupt enabled  
0= EOF interrupt disabled  
bit 0  
PIDEE: PID Check Failure Interrupt Enable bit  
1= PIDEF interrupt enabled  
0= PIDEF interrupt disabled  
Note 1: Device mode.  
2: Host mode.  
Note:  
For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.  
DS60001185B-page 156  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-10: U1STAT: USB STATUS REGISTER  
Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
DIR  
R-x  
U-0  
U-0  
ENDPT<3:0>  
PPBI  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7-4 ENDPT<3:0>: Encoded Number of Last Endpoint Activity bits  
(Represents the number of the BDT, updated by the last USB transfer.)  
1111= Endpoint 15  
1110= Endpoint 14  
0001= Endpoint 1  
0000= Endpoint 0  
bit 3  
bit 2  
DIR: Last BD Direction Indicator bit  
1= Last transaction was a transmit transfer (TX)  
0= Last transaction was a receive transfer (RX)  
PPBI: Ping-Pong BD Pointer Indicator bit  
1= The last transaction was to the ODD BD bank  
0= The last transaction was to the EVEN BD bank  
bit 1-0 Unimplemented: Read as ‘0’  
Note:  
The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only  
valid when U1IR<TRNIF> is active. Clearing the U1IR<TRNIF> bit advances the FIFO. Data in register is  
invalid when U1IR<TRNIF> = 0.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 157  
PIC32MX330/350/370/430/450/470  
REGISTER 11-11: U1CON: USB CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6  
29/21/13/5  
28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-x  
R-x  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PKTDIS(4)  
USBEN(4)  
SOFEN(5)  
7:0  
JSTATE  
SE0  
USBRST HOSTEN(2) RESUME(3) PPBRST  
TOKBUSY(1,5)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
bit 6  
bit 5  
JSTATE: Live Differential Receiver JSTATE flag bit  
1= JSTATE detected on the USB  
0= No JSTATE detected  
SE0: Live Single-Ended Zero flag bit  
1= Single Ended Zero detected on the USB  
0= No Single Ended Zero detected  
PKTDIS: Packet Transfer Disable bit(4)  
1= Token and packet processing disabled (set upon SETUP token received)  
0= Token and packet processing enabled  
TOKBUSY: Token Busy Indicator bit(1,5)  
1= Token being executed by the USB module  
0= No token being executed  
bit 4  
bit 3  
bit 2  
USBRST: Module Reset bit(5)  
1= USB reset generated  
0= USB reset terminated  
HOSTEN: Host Mode Enable bit(2)  
1= USB host capability enabled  
0= USB host capability disabled  
RESUME: RESUME Signaling Enable bit(3)  
1= RESUME signaling activated  
0= RESUME signaling disabled  
Note 1: Software is required to check this bit before issuing another token command to the U1TOK register (see  
Register 11-15).  
2: All host control logic is reset any time that the value of this bit is toggled.  
3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and  
then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to  
the RESUME signaling when this bit is cleared.  
4: Device mode.  
5: Host mode.  
DS60001185B-page 158  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-11: U1CON: USB CONTROL REGISTER (CONTINUED)  
bit 1  
PPBRST: Ping-Pong Buffers Reset bit  
1= Reset all Even/Odd buffer pointers to the EVEN BD banks  
0= Even/Odd buffer pointers not being Reset  
bit 0  
USBEN: USB Module Enable bit(4)  
1= USB module and supporting circuitry enabled  
0= USB module and supporting circuitry disabled  
SOFEN: SOF Enable bit(5)  
1= SOF token sent every 1 ms  
0= SOF token disabled  
Note 1: Software is required to check this bit before issuing another token command to the U1TOK register (see  
Register 11-15).  
2: All host control logic is reset any time that the value of this bit is toggled.  
3: Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and  
then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to  
the RESUME signaling when this bit is cleared.  
4: Device mode.  
5: Host mode.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 159  
PIC32MX330/350/370/430/450/470  
REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
LSPDEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DEVADDR<6:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7 LSPDEN: Low Speed Enable Indicator bit  
1= Next token command to be executed at Low Speed  
0= Next token command to be executed at Full Speed  
bit 6-0 DEVADDR<6:0>: 7-bit USB Device Address bits  
REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FRML<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7-0 FRML<7:0>: The 11-bit Frame Number Lower bits  
The register bits are updated with the current frame number whenever a SOF TOKEN is received.  
DS60001185B-page 160  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER  
Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
FRMH<2:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-3 Unimplemented: Read as ‘0’  
bit 2-0 FRMH<2:0>: The Upper 3 bits of the Frame Numbers bits  
The register bits are updated with the current frame number whenever a SOF TOKEN is received.  
REGISTER 11-15: U1TOK: USB TOKEN REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PID<3:0>(1)  
EP<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7-4 PID<3:0>: Token Type Indicator bits(1)  
0001= OUT (TX) token type transaction  
1001= IN (RX) token type transaction  
1101= SETUP (TX) token type transaction  
Note: All other values are reserved and must not be used.  
bit 3-0 EP<3:0>: Token Command Endpoint Address bits  
The four bit value must specify a valid endpoint.  
Note 1: All other values are reserved and must not be used.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 161  
PIC32MX330/350/370/430/450/470  
REGISTER 11-16: U1SOF: USB SOF THRESHOLD REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CNT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7-0 CNT<7:0>: SOF Threshold Value bits  
Typical values of the threshold are:  
01001010 = 64-byte packet  
00101010 = 32-byte packet  
00011010= 16-byte packet  
00010010= 8-byte packet  
REGISTER 11-17: U1BDTP1: USB BDT PAGE 1 REGISTER  
Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
BDTPTRL<15:9>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7-1 BDTPTRL<15:9>: BDT Base Address bits  
This 7-bit value provides address bits 15 through 9 of the BDT base address, which defines the starting  
location of the BDT in system memory.  
The 32-bit BDT base address is 512-byte aligned.  
bit 0  
Unimplemented: Read as ‘0’  
DS60001185B-page 162  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-18: U1BDTP2: USB BDT PAGE 2 REGISTER  
Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BDTPTRH<23:16>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7-0 BDTPTRH<23:16>: BDT Base Address bits  
This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting  
location of the BDT in system memory.  
The 32-bit BDT base address is 512-byte aligned.  
REGISTER 11-19: U1BDTP3: USB BDT PAGE 3 REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BDTPTRU<31:24>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7-0 BDTPTRU<31:24>: BDT Base Address bits  
This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location  
of the BDT in system memory.  
The 32-bit BDT base address is 512-byte aligned.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 163  
PIC32MX330/350/370/430/450/470  
REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
UASUSPND  
UTEYE  
UOEMON  
USBSIDL  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
UTEYE: USB Eye-Pattern Test Enable bit  
1= Eye-Pattern Test enabled  
0= Eye-Pattern Test disabled  
bit 6  
UOEMON: USB OE Monitor Enable bit  
1= OE signal active; it indicates intervals during which the D+/D- lines are driving  
0= OE signal inactive  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
USBSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 3-1  
bit 0  
Unimplemented: Read as ‘0’  
UASUSPND: Automatic Suspend Enable bit  
1= USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit  
(U1PWRC<1>) in Register 11-5.  
0= USB module does not automatically suspend upon entry to Sleep mode. Software must use the  
USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock  
DS60001185B-page 164  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER  
Bit Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LSPD  
R/W-0  
RETRYDIS  
U-0  
R/W-0  
R/W-0  
R/W-0  
EPTXEN  
R/W-0  
EPSTALL  
R/W-0  
EPHSHK  
EPCONDIS EPRXEN  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-8 Unimplemented: Read as ‘0’  
bit 7  
LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)  
1= Direct connection to a low-speed device enabled  
0= Direct connection to a low-speed device disabled; hub required with PRE_PID  
bit 6  
RETRYDIS: Retry Disable bit (Host mode and U1EP0 only)  
1= Retry NAK’d transactions disabled  
0= Retry NAK’d transactions enabled; retry done in hardware  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EPCONDIS: Bidirectional Endpoint Control bit  
If EPTXEN = 1and EPRXEN = 1:  
1= Disable Endpoint n from Control transfers; only TX and RX transfers allowed  
0= Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed  
Otherwise, this bit is ignored.  
bit 3  
bit 2  
bit 1  
bit 0  
EPRXEN: Endpoint Receive Enable bit  
1= Endpoint n receive enabled  
0= Endpoint n receive disabled  
EPTXEN: Endpoint Transmit Enable bit  
1= Endpoint n transmit enabled  
0= Endpoint n transmit disabled  
EPSTALL: Endpoint Stall Status bit  
1= Endpoint n was stalled  
0= Endpoint n was not stalled  
EPHSHK: Endpoint Handshake Enable bit  
1= Endpoint Handshake enabled  
0= Endpoint Handshake disabled (typically used for isochronous endpoints)  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 165  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 166  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
General purpose I/O pins are the simplest of peripher-  
als. They allow the PIC® MCU to monitor and control  
12.0 I/O PORTS  
other devices. To add flexibility and functionality, some  
pins are multiplexed with alternate function(s). These  
functions depend on which peripheral features are on  
the device. In general, when a peripheral is functioning,  
that pin may not be used as a general purpose I/O pin.  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 12. “I/O  
Ports” (DS60001120) in the “PIC32  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
Following are some of the key features of this module:  
• Individual output pin open-drain enable/disable  
• Individual input pin weak pull-up and pull-down  
• Monitor selective inputs and generate interrupt  
when change in pin state is detected  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Operation during CPU Sleep and Idle modes  
• Fast bit manipulation using CLR, SET and INV  
registers  
Figure 12-1 illustrates a block diagram of a typical  
multiplexed I/O port.  
FIGURE 12-1:  
BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE  
Peripheral Module  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
PIO Module  
RD ODC  
Data Bus  
SYSCLK  
D
Q
ODC  
CK  
EN  
Q
WR ODC  
RD TRIS  
1
0
I/O Cell  
0
1
D
D
Q
Q
1
0
TRIS  
LAT  
CK  
EN  
WR TRIS  
Output Multiplexers  
Q
Q
I/O Pin  
CK  
EN  
WR LAT  
WR PORT  
RD LAT  
1
0
RD PORT  
Q
Q
D
Q
Q
D
Sleep  
CK  
CK  
SYSCLK  
Synchronization  
Peripheral Input  
R
Peripheral Input Buffer  
Legend:  
Note:  
R = Peripheral input buffer types may vary. Refer to Table 1-1 for peripheral details.  
This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The actual structure  
for any specific port/peripheral combination may be different than it is shown here.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 167  
PIC32MX330/350/370/430/450/470  
12.1.3  
I/O PORT WRITE/READ TIMING  
12.1 Parallel I/O (PIO) Ports  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be an NOP.  
All port pins have ten registers directly associated with  
their operation as digital I/O. The data direction register  
(TRISx) determines whether the pin is an input or an  
output. If the data direction bit is a ‘1’, then the pin is an  
input. All port pins are defined as inputs after a Reset.  
Reads from the latch (LATx) read the latch. Writes to  
the latch write the latch. Reads from the port (PORTx)  
read the port pins, while writes to the port pins write the  
latch.  
12.1.4  
INPUT CHANGE NOTIFICATION  
The input change notification function of the I/O ports  
allows the PIC32MX330/350/370/430/450/470 devices  
to generate interrupt requests to the processor in  
response to a change-of-state on selected input pins.  
This feature can detect input change-of-states even in  
Sleep mode, when the clocks are disabled. Every I/O  
port pin can be selected (enabled) for generating an  
interrupt request on a change-of-state.  
12.1.1  
OPEN-DRAIN CONFIGURATION  
In addition to the PORTx, LATx, and TRISx registers for  
data control, some port pins can also be individually  
configured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits con-  
figures the corresponding pin to act as an open-drain  
output.  
Five control registers are associated with the CN func-  
tionality of each I/O port. The CNENx registers contain  
the CN interrupt enable control bits for each of the input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
The open-drain feature allows the generation of out-  
puts higher than VDD (e.g., 5V) on any desired 5V-tol-  
erant pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
The CNSTATx register indicates whether a change  
occurred on the corresponding pin since the last read  
of the PORTx bit.  
Each I/O pin also has a weak pull-up and every I/O  
pin has a weak pull-down connected to it. The pull-  
ups act as a current source or sink source connected  
to the pin, and eliminate the need for external  
resistors when push-button or keypad devices are  
connected. The pull-ups and pull-downs are enabled  
separately using the CNPUx and the CNPDx  
registers, which contain the control bits for each of the  
pins. Setting any of the control bits enables the weak  
pull-ups and/or pull-downs for the corresponding pins.  
See the “Pin Diagrams” section for the available pins  
and their functionality.  
12.1.2  
CONFIGURING ANALOG AND  
DIGITAL PORT PINS  
The ANSELx register controls the operation of the  
analog port pins. The port pins that are to function as  
analog inputs must have their corresponding ANSEL  
and TRIS bits set. In order to use port pins for I/O  
functionality with digital modules, such as Timers,  
UARTs, etc., the corresponding ANSELx bit must be  
cleared.  
Note:  
Pull-ups and pull-downs on change notifi-  
cation pins should always be disabled  
when the port pin is configured as a digital  
output.  
The ANSELx register has a default value of 0xFFFF;  
therefore, all pins that share analog functions are  
analog (not digital) by default.  
An additional control register (CNCONx) is shown in  
Register 12-3.  
If the TRIS bit is cleared (output) while the ANSELx bit  
is set, the digital output level (VOH or VOL) is converted  
by an analog peripheral, such as the ADC module or  
Comparator module.  
12.2 CLR, SET, and INV Registers  
Every I/O module register has a corresponding CLR  
(clear), SET (set) and INV (invert) register designed to  
provide fast atomic bit manipulations. As the name of  
the register implies, a value written to a SET, CLR or  
INV register effectively performs the implied operation,  
but only on the corresponding base register and only  
bits specified as ‘1’ are modified. Bits specified as ‘0’  
are not modified.  
When the PORT register is read, all pins configured as  
analog input channels are read as cleared (a low level).  
Pins configured as digital inputs do not convert an  
analog input. Analog levels on any pin defined as a  
digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Reading SET, CLR and INV registers returns undefined  
values. To see the affects of a write operation to a SET,  
CLR or INV register, the base register must be read.  
DS60001185B-page 168  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
When a remappable peripheral is active on a given I/O  
pin, it takes priority over all other digital I/O and digital  
communication peripherals associated with the pin.  
Priority is given regardless of the type of peripheral that  
is mapped. Remappable peripherals never take priority  
over any analog functions associated with the pin.  
12.3 Peripheral Pin Select  
A major challenge in general purpose devices is provid-  
ing the largest possible set of peripheral features while  
minimizing the conflict of features on I/O pins. The chal-  
lenge is even greater on low pin-count devices. In an  
application where more than one peripheral needs to  
be assigned to a single pin, inconvenient workarounds  
in application code or a complete redesign may be the  
only option.  
12.3.3  
CONTROLLING PERIPHERAL PIN  
SELECT  
Peripheral pin select features are controlled through  
two sets of SFRs: one to map peripheral inputs, and  
one to map outputs. Because they are separately con-  
trolled, a particular peripheral’s input and output (if the  
peripheral has both) can be placed on any selectable  
function pin without constraint.  
Peripheral pin select configuration provides an  
alternative to these choices by enabling peripheral set  
selection and their placement on a wide range of I/O  
pins. By increasing the pinout options available on a  
particular device, users can better tailor the device to  
their entire application, rather than trimming the  
application to fit the device.  
The association of a peripheral to a peripheral-select-  
able pin is handled in two different ways, depending on  
whether an input or output is being mapped.  
The peripheral pin select configuration feature oper-  
ates over a fixed subset of digital I/O pins. Users may  
independently map the input and/or output of most dig-  
ital peripherals to these I/O pins. Peripheral pin select  
is performed in software and generally does not require  
the device to be reprogrammed. Hardware safeguards  
are included that prevent accidental or spurious  
changes to the peripheral mapping once it has been  
established.  
12.3.4  
INPUT MAPPING  
The inputs of the peripheral pin select options are  
mapped on the basis of the peripheral. That is, a control  
register associated with a peripheral dictates the pin it  
will be mapped to. The [pin name]R registers, where [pin  
name] refers to the peripheral pins listed in Table 12-1,  
are used to configure peripheral input mapping (see  
Register 12-1). Each register contains sets of 4 bit  
fields. Programming these bit fields with an appropriate  
value maps the RPn pin with the corresponding value to  
that peripheral. For any given device, the valid range of  
values for any bit field is shown in Table 12-1.  
12.3.1  
AVAILABLE PINS  
The number of available pins is dependent on the  
particular device and its pin count. Pins that support the  
peripheral pin select feature include the designation  
“RPn” in their full pin designation, where “RP”  
designates a remappable peripheral and “n” is the  
remappable port number.  
For example, Figure 12-2 illustrates the remappable  
pin selection for the U1RX input.  
FIGURE 12-2:  
REMAPPABLE INPUT  
EXAMPLE FOR U1RX  
12.3.2  
AVAILABLE PERIPHERALS  
The peripherals managed by the peripheral pin select  
are all digital-only peripherals. These include general  
serial communications (UART and SPI), general pur-  
pose timer clock inputs, timer-related peripherals (input  
capture and output compare) and interrupt-on-change  
inputs.  
U1RXR<3:0>  
0
RPA2  
RPB6  
RPA4  
1
In comparison, some digital-only peripheral modules  
are never included in the peripheral pin select feature.  
This is because the peripheral’s function requires spe-  
cial I/O circuitry on a specific port and cannot be easily  
connected to multiple pins. These modules include I2C  
among others. A similar requirement excludes all mod-  
ules with analog inputs, such as the Analog-to-Digital  
Converter (ADC).  
U1RX input  
to peripheral  
2
n
A key difference between remappable and non-remap-  
pable peripherals is that remappable peripherals are  
not associated with a default I/O pin. The peripheral  
must always be assigned to a specific I/O pin before it  
can be used. In contrast, non-remappable peripherals  
are always available on a default pin, assuming that the  
peripheral is active and not conflicting with another  
peripheral.  
RPn  
Note:  
For input only, peripheral pin select functionality  
does not have priority over TRISx settings.  
Therefore, when configuring RPn pin for input,  
the corresponding bit in the TRISx register must  
also be configured for input (set to ‘1’).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 169  
PIC32MX330/350/370/430/450/470  
TABLE 12-1: INPUT PIN SELECTION  
[pin name]R Value to  
RPn Pin Selection  
Peripheral Pin  
[pin name]R SFR  
[pin name]R bits  
0000= RPD2  
0001= RPG8  
0010= RPF4  
0011= RPD10  
0100= RPF1  
0101= RPB9  
INT3  
T2CK  
IC3  
INT3R  
T2CKR  
IC3R  
INT3R<3:0>  
T2CKR<3:0>  
IC3R<3:0>  
0110= RPB10  
0111= RPC14  
1000= RPB5  
1001= Reserved  
1010= RPC1(3)  
1011= RPD14(3)  
1100= RPG1(3)  
1101= RPA14(3)  
1110= Reserved  
1111= RPF2(1)  
U1RX  
U2RX  
U5CTS  
U1RXR  
U2RXR  
U5CTSR  
U1RXR<3:0>  
U2RXR<3:0>  
U5CTSR<3:0>  
REFCLKI  
REFCLKIR  
REFCLKIR<3:0>  
0000= RPD3  
0001= RPG7  
0010= RPF5  
0011= RPD11  
0100= RPF0  
INT4  
T5CK  
IC4  
INT4R  
T5CKR  
IC4R  
INT4R<3:0>  
T5CKR<3:0>  
IC4R<3:0>  
0101= RPB1  
0110= RPE5  
0111= RPC13  
1000= RPB3  
U3RX  
U4CTS  
SDI1  
U3RXR  
U4CTSR  
SDI1R  
U3RXR<3:0>  
U4CTSR<3:0>  
SDI1R<3:0>  
1001= Reserved  
1010= RPC4(3)  
1011= RPD15(3)  
1100= RPG0(3)  
1101= RPA15(3)  
1110= RPF2(1)  
1111= RPF7(2)  
SDI2  
SDI2R  
SDI2R<3:0>  
0000= RPD9  
0001= RPG6  
0010= RPB8  
0011= RPB15  
0100= RPD4  
0101= RPB0  
INT2  
T4CK  
IC2  
INT2R  
T4CKR  
IC2R  
INT2R<3:0>  
T4CKR<3:0>  
IC2R<3:0>  
0110= RPE3  
0111= RPB7  
IC5  
IC5R  
IC5R<3:0>  
1000= Reserved  
1001= RPF12(3)  
1010= RPD12(3)  
1011= RPF8(3)  
1100= RPC3(3)  
1101= RPE9(3)  
1110= Reserved  
1111= RPB2  
U1CTS  
U2CTS  
U1CTSR  
U2CTSR  
U2CTSR<3:0>  
U2CTSR<3:0>  
SS1  
SS1R  
SS1R<3:0>  
Note 1: This selection is not available on 64-pin USB devices.  
2: This selection is only available on 100-pin General Purpose devices.  
3: This selection is not available on 64-pin USB and General Purpose devices.  
DS60001185B-page 170  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 12-1: INPUT PIN SELECTION (CONTINUED)  
[pin name]R Value to  
RPn Pin Selection  
Peripheral Pin  
[pin name]R SFR  
[pin name]R bits  
0000= RPD1  
0001= RPG9  
0010= RPB14  
0011= RPD0  
0100= RPD8  
0101= RPB6  
INT1  
T3CK  
IC1  
INT1R  
T3CKR  
IC1R  
INT1R<3:0>  
T3CKR<3:0>  
IC1R<3:0>  
0110= RPD5  
0111= RPB2  
U3CTS  
U4RX  
U5RX  
SS2  
U3CTSR  
U4RXR  
U5RXR  
SS2R  
U3CTSR<3:0>  
U4RXR<3:0>  
U5RXR<3:0>  
SS2R<3:0>  
1000= RPF3(2)  
1001= RPF13(3)  
1010= Reserved  
1011= RPF2(1)  
1100= RPC2  
1101= RPE8(3)  
1110= Reserved  
1111= Reserved  
OCFA  
OCFAR  
OCFAR<3:0>  
Note 1: This selection is not available on 64-pin USB devices.  
2: This selection is only available on 100-pin General Purpose devices.  
3: This selection is not available on 64-pin USB and General Purpose devices.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 171  
PIC32MX330/350/370/430/450/470  
12.3.5  
OUTPUT MAPPING  
12.3.6.1  
Control Register Lock  
In contrast to inputs, the outputs of the peripheral pin  
select options are mapped on the basis of the pin. In  
this case, a control register associated with a  
particular pin dictates the peripheral output to be  
mapped. The RPnR registers (Register 12-2) are  
used to control output mapping. Like the [pin name]R  
registers, each register contains sets of 4 bit fields.  
The value of the bit field corresponds to one of the  
peripherals, and that peripheral’s output is mapped  
to the pin (see Table 12-2 and Figure 12-3).  
Under normal operation, writes to the RPnR and [pin  
name]R registers are not allowed. Attempted writes  
appear to execute normally, but the contents of the  
registers remain unchanged. To change these regis-  
ters, they must be unlocked in hardware. The regis-  
ter lock is controlled by the IOLOCK Configuration bit  
(CFGCON<13>). Setting IOLOCK prevents writes to  
the control registers; clearing IOLOCK allows writes.  
To set or clear the IOLOCK bit, an unlock sequence  
must be executed. Refer to Section 6. “Oscillator”  
(DS60001112) in the “PIC32 Family Reference  
Manual” for details.  
A null output is associated with the output register reset  
value of ‘0’. This is done to ensure that remappable  
outputs remain disconnected from all output pins by  
default.  
12.3.6.2  
Configuration Bit Select Lock  
As an additional level of safety, the device can be  
configured to prevent more than one write session to  
the RPnR and [pin name]R registers. The IOL1WAY  
Configuration bit (DEVCFG3<29>) blocks the IOLOCK  
bit from being cleared after it has been set once. If  
IOLOCK remains set, the register unlock procedure  
does not execute, and the peripheral pin select control  
registers cannot be written to. The only way to clear the  
bit and re-enable peripheral remapping is to perform a  
device Reset.  
FIGURE 12-3:  
EXAMPLE OF  
MULTIPLEXING OF  
REMAPPABLE OUTPUT  
FOR RPA0  
RPA0R<3:0>  
Default  
U1TX Output  
0
1
2
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session.  
U1RTS Output  
RPA0  
Output Data  
14  
15  
12.3.6  
CONTROLLING CONFIGURATION  
CHANGES  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. PIC32 devices include two features to  
prevent alterations to the peripheral map:  
• Control register lock sequence  
• Configuration bit select lock  
DS60001185B-page 172  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 12-2: OUTPUT PIN SELECTION  
RPnR Value to Peripheral  
Selection  
RPn Port Pin  
RPnR SFR  
RPnR bits  
Group 1 Selections  
0000= No Connect  
0001= U3TX  
RPD2  
RPG8  
RPD2R  
RPG8R  
RPF4R  
RPD10R  
RPF1R  
RPB9R  
RPB10R  
RPC14R  
RPB5R  
RPC1R  
RPD14R  
RPG1R  
RPA14R  
RPD3R  
RPG7R  
RPF5R  
RPD11R  
RPF0R  
RPB1R  
RPE5R  
RPC13R  
RPB3R  
RPF3R  
RPC4R  
RPD15R  
RPG0R  
RPA15R  
RPD2R<3:0>  
RPG8R<3:0>  
RPF4R<3:0>  
RPD10R<3:0>  
RPF1R<3:0>  
RPB9R<3:0>  
RPB10R<3:0>  
RPC14R<3:0>  
RPB5R<3:0>  
RPC1R<3:0>  
RPD14R<3:0>  
RPG1R<3:0>  
RPA14R<3:0>  
RPD3R<3:0>  
RPG7R<3:0>  
RPF5R<3:0>  
RPD11R<3:0>  
RPF0R<3:0>  
RPB1R<3:0>  
RPE5R<3:0>  
RPC13R<3:0>  
RPB3R<3:0>  
RPF3R<3:0>  
RPC4R<3:0>  
RPD15R<3:0>  
RPG0R<3:0>  
RPA15R<3:0>  
0010= U4RTS  
0011= Reserved  
0100= Reserved  
0101= Reserved  
0110= SDO2  
0111= Reserved  
1000= Reserved  
1001= Reserved  
1010= Reserved  
1011= OC3  
RPF4  
RPD10  
RPF1  
RPB9  
RPB10  
RPC14  
RPB5  
RPC1(4)  
RPD14(5)  
RPG1(4)  
RPA14(4)  
RPD3  
1100= Reserved  
1101= C2OUT  
1110= Reserved  
1111= Reserved  
0000= No Connect  
0001= U2TX  
RPG7  
0010= Reserved  
0011= U1TX  
RPF5  
RPD11  
RPF0  
0100= U5RTS  
0101= Reserved  
0110= SDO2  
RPB1  
0111= Reserved  
1000= SDO1  
RPE5  
RPC13  
1001= Reserved  
1010= Reserved  
1011= OC4  
RPB3  
RPF3(2)  
RPC4(4)  
RPD15(5)  
RPG0(4)  
RPA15(4)  
1100= Reserved  
1101= Reserved  
1110= Reserved  
1111= Reserved  
Note 1: This selection is not available on USB devices.  
2: This selection is only available on 64-pin General Purpose devices.  
3: This selection is only available on 100-pin General Purpose devices.  
4: This selection is only available on 100-pin USB and General Purpose devices.  
5: This selection is not available on 64-pin USB devices.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 173  
PIC32MX330/350/370/430/450/470  
TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)  
RPnR Value to Peripheral  
Selection  
RPn Port Pin  
RPnR SFR  
RPnR bits  
0000= No Connect  
RPD9  
RPG6  
RPD9R  
RPG6R  
RPB8R  
RPB15R  
RPD4R  
RPB0R  
RPE3R  
RPB7R  
RPB2R  
RPF12R  
RPD12R  
RPF8R  
RPC3R  
RPE9R  
RPD1R  
RPG9R  
RPB14R  
RPD0R  
RPD8R  
RPB6R  
RPD5R  
RPF3R  
RPF6R  
RPF13R  
RPC2R  
RPE8R  
RPF2R  
RPD9R<3:0>  
RPG6R<3:0>  
RPB8R<3:0>  
RPB15R<3:0>  
RPD4R<3:0>  
RPB0R<3:0>  
RPE3R<3:0>  
RPB7R<3:0>  
RPB2R<3:0>  
RPF12R<3:0>  
RPD12R<3:0>  
RPF8R<3:0>  
RPC3R<3:0>  
RPE9R<3:0>  
RPD1R<3:0>  
RPG9R<3:0>  
RPB14R<3:0>  
RPD0R<3:0>  
RPD8R<3:0>  
RPB6R<3:0>  
RPD5R<3:0>  
RPF3R<3:0>  
RPF6R<3:0>  
RPF13R<3:0>  
RPC2R<3:0>  
RPE8R<3:0>  
RPF2R<3:0>  
0001= U3RTS  
0010= U4TX  
RPB8  
0011= REFCLKO  
0100= U5TX  
RPB15  
RPD4  
0101= Reserved  
0110= Reserved  
0111= SS1  
RPB0  
RPE3  
1000= SDO1  
RPB7  
1001= Reserved  
1010= Reserved  
1011= OC5  
RPB2  
RPF12(4)  
RPD12(4)  
RPF8(5)  
RPC3(4)  
RPE9(4)  
RPD1  
1100= Reserved  
1101= C1OUT  
1110= Reserved  
1111= Reserved  
0000= No Connect  
0001= U2RTS  
0010= Reserved  
0011= U1RTS  
0100= U5TX  
0101= Reserved  
0110= SS2  
0111= Reserved  
1000= SDO1  
RPG9  
RPB14  
RPD0  
RPD8  
RPB6  
RPD5  
RPF3(3)  
RPF6(1)  
RPF13(4)  
RPC2(4)  
RPE8(4)  
RPF2(5)  
1001= Reserved  
1010= Reserved  
1011= OC2  
1100= OC1  
1101= Reserved  
1110= Reserved  
1111= Reserved  
Note 1: This selection is not available on USB devices.  
2: This selection is only available on 64-pin General Purpose devices.  
3: This selection is only available on 100-pin General Purpose devices.  
4: This selection is only available on 100-pin USB and General Purpose devices.  
5: This selection is not available on 64-pin USB devices.  
DS60001185B-page 174  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
12.4 Control Registers  
REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER  
Bit Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
[pin name]R<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-4 Unimplemented: Read as ‘0’  
bit 3-0 [pin name]R<3:0>: Peripheral Pin Select Input bits  
Where [pin name] refers to the pins that are used to configure peripheral input mapping. See Table 12-1 for  
input pin selection values.  
Note:  
Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.  
REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER  
Bit Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RPnR<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-4 Unimplemented: Read as ‘0’  
bit 3-0 RPnR<3:0>: Peripheral Pin Select Output bits  
See Table 12-2 for output pin selection values.  
Note:  
Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 175  
PIC32MX330/350/370/430/450/470  
REGISTER 12-3: CNCONx: CHANGE NOTICE CONTROL FOR PORTx REGISTER (x = A – G)  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON  
U-0  
U-0  
R/W-0  
SIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: Change Notice (CN) Control ON bit  
1= CN is enabled  
0= CN is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Control bit  
1= CPU Idle Mode halts CN operation  
0= CPU Idle does not affect CN operation  
bit 12-0 Unimplemented: Read as ‘0’  
DS60001185B-page 176  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
This family of PIC32 devices features one synchronous/  
asynchronous 16-bit timer that can operate as a free-run-  
13.0 TIMER1  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 14. “Timers”  
(DS60001105) in the “PIC32 Family  
Reference Manual”, which is available  
ning interval timer for various timing applications and  
counting external events. This timer can also be used  
with the Low-Power Secondary Oscillator (SOSC) for  
Real-Time Clock (RTC) applications. The following  
modes are supported:  
• Synchronous Internal Timer  
• Synchronous Internal Gated Timer  
• Synchronous External Timer  
• Asynchronous External Timer  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
13.1 Additional Supported Features  
• Selectable clock prescaler  
• Timer operation during CPU Idle and Sleep mode  
• Fast bit manipulation using CLR, SET and INV  
registers  
• Asynchronous mode can be used with the SOSC  
to function as a Real-Time Clock (RTC)  
FIGURE 13-1:  
TIMER1 BLOCK DIAGRAM  
PR1  
Equal  
16-bit Comparator  
TSYNC  
1
0
Sync  
TMR1  
Reset  
0
T1IF  
Event Flag  
1
Q
Q
D
TGATE  
TCS  
TGATE  
ON  
SOSCO/T1CK  
x1  
Prescaler  
SOSCEN(1)  
Gate  
Sync  
10  
00  
1, 8, 64, 256  
SOSCI  
PBCLK  
2
TCKPS<1:0>  
Note 1: The default state of the SOSCEN bit (OSCCON<1>) during a device Reset is controlled by the FSOSCEN bit  
in Configuration Word, DEVCFG1.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 177  
PIC32MX330/350/370/430/450/470  
13.2 Control Register  
REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1)  
R/W-0  
TGATE  
U-0  
R/W-0  
SIDL  
R/W-0  
R/W-0  
TWDIS  
R/W-0  
R-0  
U-0  
U-0  
U-0  
TWIP  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
TCKPS<1:0>  
TSYNC  
TCS  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: Timer On bit(1)  
1= Timer is enabled  
0= Timer is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit  
1= Discontinue operation when device enters Idle mode  
0= Continue operation even in Idle mode  
bit 12  
bit 11  
TWDIS: Asynchronous Timer Write Disable bit  
1= Writes to TMR1 are ignored until pending write operation completes  
0= Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)  
TWIP: Asynchronous Timer Write in Progress bit  
In Asynchronous Timer mode:  
1= Asynchronous write to TMR1 register in progress  
0= Asynchronous write to TMR1 register complete  
In Synchronous Timer mode:  
This bit is read as ‘0’.  
bit 10-8 Unimplemented: Read as ‘0’  
bit 7  
TGATE: Timer Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-4  
TCKPS<1:0>: Timer Input Clock Prescale Select bits  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3  
Unimplemented: Read as ‘0’  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
DS60001185B-page 178  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)  
bit 2  
TSYNC: Timer External Clock Input Synchronization Selection bit  
When TCS = 1:  
1= External clock input is synchronized  
0= External clock input is not synchronized  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer Clock Source Select bit  
1= External clock from TxCKI pin  
0= Internal peripheral clock  
Unimplemented: Read as ‘0’  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 179  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 180  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Two 32-bit synchronous timers are available by  
combining Timer2 with Timer3 and Timer4 with Timer5.  
14.0 TIMER2/3, TIMER4/5  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 14.  
“Timers” (DS60001105) of the “PIC32  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
The 32-bit timers can operate in three modes:  
• Synchronous internal 32-bit timer  
• Synchronous internal 32-bit gated timer  
• Synchronous external 32-bit timer  
Note:  
In this chapter, references to registers,  
TxCON, TMRx and PRx, use ‘x’ to repre-  
sent Timer2 through 5 in 16-bit modes. In  
32-bit modes, ‘x’ represents Timer2 or 4;  
‘y’ represents Timer3 or 5.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
14.1 Additional Supported Features  
• Selectable clock prescaler  
• Timers operational during CPU idle  
• Time base for Input Capture and Output Compare  
modules (Timer2 and Timer3 only)  
This family of PIC32 devices features four synchronous  
16-bit timers (default) that can operate as a free-  
running interval timer for various timing applications  
and counting external events. The following modes are  
supported:  
• ADC event trigger (Timer3 only)  
• Fast bit manipulation using CLR, SET and INV  
registers  
• Synchronous internal 16-bit timer  
• Synchronous internal 16-bit gated timer  
• Synchronous external 16-bit timer  
FIGURE 14-1:  
TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT)  
Sync  
TMRx  
ADC Event Trigger(1)  
Comparator x 16  
PRx  
Equal  
Reset  
0
1
TxIF Event Flag  
TGATE  
TCS  
Q
Q
D
TGATE  
ON  
TxCK  
x1  
Prescaler  
1, 2, 4, 8, 16,  
32, 64, 256  
Gate  
Sync  
10  
PBCLK  
00  
3
TCKPS  
Note 1:  
The ADC event trigger is available on Timer3 only.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 181  
PIC32MX330/350/370/430/450/470  
(1)  
FIGURE 14-2:  
TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)  
Reset  
TMRy  
TMRx  
Sync  
LS Half Word  
MS Half Word  
ADC Event Trigger(2)  
32-bit Comparator  
Equal  
PRy  
PRx  
0
1
TyIF Event Flag  
Q
Q
D
TGATE  
TCS  
TGATE  
ON  
TxCK  
x1  
Prescaler  
1, 2, 4, 8, 16,  
32, 64, 256  
Gate  
Sync  
10  
00  
PBCLK  
3
TCKPS  
Note 1:  
2:  
In this diagram, the use of ‘x’ in registers, TxCON, TMRx, PRx and TxCK, refers to either Timer2 or Timer4; the use of ‘y’ in registers,  
TyCON, TMRy, PRy, TyIF, refers to either Timer3 or Timer5.  
ADC event trigger is available only on the Timer2/3 pair.  
DS60001185B-page 182  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
14.2 Control Register  
REGISTER 14-1: TXCON: TYPE B TIMER CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1,3)  
R/W-0  
TGATE(3)  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SIDL(4)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(2)  
U-0  
R/W-0  
TCS(3)  
U-0  
TCKPS<2:0>(3)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: Timer On bit(1,3)  
1= Module is enabled  
0= Module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit(4)  
1= Discontinue operation when device enters Idle mode  
0= Continue operation even in Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
TGATE: Timer Gated Time Accumulation Enable bit(3)  
When TCS = 1:  
This bit is ignored and is read as ‘0’.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 6-4  
TCKPS<2:0>: Timer Input Clock Prescale Select bits(3)  
111= 1:256 prescale value  
110= 1:64 prescale value  
101= 1:32 prescale value  
100= 1:16 prescale value  
011= 1:8 prescale value  
010= 1:4 prescale value  
001= 1:2 prescale value  
000= 1:1 prescale value  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: This bit is available only on even numbered timers (Timer2 and Timer4).  
3: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, and Tim-  
er5). All timer functions are set through the even numbered timers.  
4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer  
in Idle mode.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 183  
PIC32MX330/350/370/430/450/470  
REGISTER 14-1: TXCON: TYPE B TIMER CONTROL REGISTER (CONTINUED)  
bit 3  
T32: 32-Bit Timer Mode Select bit(2)  
1= Odd numbered and even numbered timers form a 32-bit timer  
0= Odd numbered and even numbered timers form a separate 16-bit timer  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer Clock Source Select bit(3)  
1= External clock from TxCK pin  
0= Internal peripheral clock  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: This bit is available only on even numbered timers (Timer2 and Timer4).  
3: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, and Tim-  
er5). All timer functions are set through the even numbered timers.  
4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer  
in Idle mode.  
DS60001185B-page 184  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
• Simple capture event modes  
15.0 INPUT CAPTURE  
- Capture timer value on every falling edge of  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 15. “Input  
Capture” (DS60001122) of the “PIC32  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
input at ICx pin  
- Capture timer value on every rising edge of  
input at ICx pin  
• Capture timer value on every edge (rising and  
falling)  
• Capture timer value on every edge (rising and  
falling), specified edge first.  
• Prescaler capture event modes  
- Capture timer value on every 4th rising  
edge of input at ICx pin  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
- Capture timer value on every 16th rising  
edge of input at ICx pin  
Each input capture channel can select between one of  
two 16-bit timers (Timer2 or Timer3) for the time base,  
or two 16-bit timers (Timer2 and Timer3) together to  
form a 32-bit timer. The selected timer can use either  
an internal or external clock.  
The Input Capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
Other operational features include:  
The Input Capture module captures the 16-bit or 32-bit  
value of the selected Time Base registers when an  
event occurs at the ICx pin. The following events cause  
capture events:  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
• Interrupt on input capture event  
• 4-word FIFO buffer for capture values  
Interrupt optionally generated after 1, 2, 3 or 4  
buffer locations are filled  
• Input capture can also be used to provide  
additional sources of external interrupts  
FIGURE 15-1:  
INPUT CAPTURE BLOCK DIAGRAM  
ICM<2:0>  
FEDGE  
Specified/Every  
Edge Mode  
110  
Prescaler Mode  
(16th Rising Edge)  
101  
100  
TMR2 TMR3  
C32/ICTMR  
Prescaler Mode  
(4th Rising Edge)  
To CPU  
CaptureEvent  
FIFO CONTROL  
ICxBUF  
011  
010  
001  
Rising Edge Mode  
Falling Edge Mode  
ICx pin  
FIFO  
ICI<1:0>  
/N  
ICM<2:0>  
Edge Detection  
Mode  
Set Flag ICxIF  
(In IFSx Register)  
Sleep/Idle  
Wake-up Mode  
001  
111  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 185  
PIC32MX330/350/370/430/450/470  
15.1 Control Register  
REGISTER 15-1: ICXCON: INPUT CAPTURE ‘X’ CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1)  
R/W-0  
ICTMR  
U-0  
R/W-0  
SIDL  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
FEDGE  
R/W-0  
ICM<2:0>  
R/W-0  
C32  
R/W-0  
R/W-0  
R-0  
R-0  
R/W-0  
ICI<1:0>  
ICOV  
ICBNE  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit  
P = Programmable bit  
-n = Bit Value at POR: (‘0’, ‘1’, x = unknown)  
r = Reserved bit  
bit 31-16  
bit 15  
Unimplemented: Read as ‘0’  
ON: Input Capture Module Enable bit(1)  
1= Module enabled  
0= Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Control bit  
1= Halt in CPU Idle mode  
0= Continue to operate in CPU Idle mode  
bit 12-10  
bit 9  
Unimplemented: Read as ‘0’  
FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)  
1= Capture rising edge first  
0= Capture falling edge first  
bit 8  
C32: 32-bit Capture Select bit  
1= 32-bit timer resource capture  
0= 16-bit timer resource capture  
bit 7  
ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is ‘1’)  
0= Timer3 is the counter source for capture  
1= Timer2 is the counter source for capture  
bit 6-5  
ICI<1:0>: Interrupt Control bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
bit 3  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
ICBNE: Input Capture Buffer Not Empty Status bit (read-only)  
1= Input capture buffer is not empty; at least one more capture value can be read  
0= Input capture buffer is empty  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
DS60001185B-page 186  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 15-1: ICXCON: INPUT CAPTURE ‘X’ CONTROL REGISTER (CONTINUED)  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111= Interrupt-Only mode (only supported while in Sleep mode or Idle mode)  
110= Simple Capture Event mode – every edge, specified edge first and every edge thereafter  
101= Prescaled Capture Event mode – every sixteenth rising edge  
100= Prescaled Capture Event mode – every fourth rising edge  
011= Simple Capture Event mode – every rising edge  
010= Simple Capture Event mode – every falling edge  
001= Edge Detect mode – every edge (rising and falling)  
000= Input Capture module is disabled  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 187  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 188  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The Output Compare module (OCMP) is used to gen-  
erate a single pulse or a train of pulses in response to  
16.0 OUTPUT COMPARE  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 16. “Output  
Compare” (DS60001111) in the “PIC32  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
selected time base events. For all modes of operation,  
the OCMP module compares the values stored in the  
OCxR and/or the OCxRS registers to the value in the  
selected timer. When a match occurs, the OCMP  
module generates an event based on the selected  
mode of operation.  
The following are some of the key features:  
• Multiple Output Compare Modules in a device  
• Programmable interrupt generation on compare  
event  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Single and Dual Compare modes  
• Single and continuous output pulse generation  
• Pulse-Width Modulation (PWM) mode  
• Hardware-based PWM Fault detection and  
automatic output disable  
• Programmable selection of 16-bit or 32-bit time  
bases  
• Can operate from either of two available 16-bit  
time bases or a single 32-bit time base  
FIGURE 16-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
(1)  
OCxIF  
(1)  
OCxRS  
Output  
Logic  
(1)  
S
R
Q
(1)  
OCxR  
OCx  
Output Enable  
Logic  
Output  
Enable  
3
OCM<2:0>  
Mode Select  
(2)  
OCFA or OCFB  
Comparator  
0
1
0
OCTSEL  
1
16  
16  
Timer2  
Rollover  
Timer3  
Timer3  
Rollover  
Timer2  
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels,  
1 through 5.  
2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 189  
PIC32MX330/350/370/430/450/470  
16.1 Control Register  
REGISTER 16-1: OCxCON: OUTPUT COMPARE ‘x’ CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1)  
U-0  
U-0  
R/W-0  
SIDL  
R/W-0  
OC32  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OCFLT(2)  
OCTSEL  
OCM<2:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: Output Compare Peripheral On bit(1)  
1= Output Compare peripheral is enabled  
0= Output Compare peripheral is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit  
1= Discontinue operation when CPU enters Idle mode  
0= Continue operation in Idle mode  
bit 12-6 Unimplemented: Read as ‘0’  
bit 5  
OC32: 32-bit Compare Mode bit  
1= OCxR<31:0> and/or OCxRS<31:0> are used for comparisions to the 32-bit timer source  
0= OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source  
bit 4  
OCFLT: PWM Fault Condition Status bit(2)  
1= PWM Fault condition has occurred (cleared in HW only)  
0= No PWM Fault condition has occurred  
bit 3  
OCTSEL: Output Compare Timer Select bit  
1= Timer3 is the clock source for this OCMP module  
0= Timer2 is the clock source for this OCMP module  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx; Fault pin enabled  
110= PWM mode on OCx; Fault pin disabled  
101= Initialize OCx pin low; generate continuous output pulses on OCx pin  
100= Initialize OCx pin low; generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high; compare event forces OCx pin low  
001= Initialize OCx pin low; compare event forces OCx pin high  
000= Output compare peripheral is disabled but continues to draw current  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: This bit is only used when OCM<2:0> = ‘111’. It is read as ‘0’ in all other modes.  
DS60001185B-page 190  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The SPI module is a synchronous serial interface that  
is useful for communicating with external peripherals  
and other microcontroller devices. These peripheral  
devices may be Serial EEPROMs, Shift registers, dis-  
play drivers, Analog-to-Digital Converters (ADC), etc.  
The PIC32 SPI module is compatible with Motorola®  
SPI and SIOP interfaces.  
17.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
Note 1: This data sheet summarizes the  
features of the PIC32MX330/350/370/  
430/450/470 family of devices. It is not  
intended to be  
a
comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Some of the key features of the SPI module are:  
• Master and Slave modes support  
• Four different clock formats  
• Enhanced Framed SPI protocol support  
• User-configurable 8-bit, 16-bit and 32-bit data width  
• Separate SPI FIFO buffers for receive and transmit  
Section  
23.  
“Serial  
Peripheral  
Interface (SPI)” (DS60001106) in the  
“PIC32 Family Reference Manual”,  
which is available from the Microchip  
web site (www.microchip.com/PIC32).  
- FIFO buffers act as 4/8/16-level deep FIFOs  
based on 32/16/8-bit data width  
• Programmable interrupt event on every 8-bit,   
16-bit and 32-bit data transfer  
• Operation during CPU Sleep and Idle mode  
• Audio Codec Support:  
- I2S protocol  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
- Left-justified  
- Right-justified  
- PCM  
FIGURE 17-1:  
SPI MODULE BLOCK DIAGRAM  
Internal  
Data Bus  
SPIxBUF  
Read  
Write  
FIFOs Share Address SPIxBUF  
SPIxRXB FIFO  
SPIxTXB FIFO  
Transmit  
Receive  
SPIxSR  
SDIx  
bit 0  
SDOx  
MCLKSEL  
Shift  
Control  
Slave Select  
Clock  
Control  
Edge  
Select  
and Frame  
Sync Control  
SSx/FSYNC  
SCKx  
REFCLK  
Baud Rate  
Generator  
PBCLK  
Note: Access SPIxTXB and SPIxRXB FIFOs via SPIxBUF register.  
MSTEN  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 191  
PIC32MX330/350/370/430/450/470  
17.1 Control Registers  
REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
R/W-0  
FRMEN  
R/W-0  
MCLKSEL(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MSSEN  
U-0  
R/W-0  
FRMSYPW  
U-0  
R/W-0  
R/W-0  
FRMCNT<2:0>  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
FRMSYNC FRMPOL  
U-0  
U-0  
U-0  
R/W-0  
ENHBUF(2)  
R/W-0  
CKE(3)  
R/W-0  
U-0  
R/W-0  
R/W-0  
SPIFE  
R/W-0  
R/W-0  
SIDL  
R/W-0  
MSTEN  
R/W-0  
ON(1)  
R/W-0  
R/W-0  
CKP(4)  
DISSDO  
R/W-0  
MODE32  
R/W-0  
MODE16  
R/W-0  
SMP  
R/W-0  
SSEN  
DISSDI  
STXISEL<1:0>  
SRXISEL<1:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31  
bit 30  
bit 29  
bit 28  
FRMEN: Framed SPI Support bit  
1= Framed SPI support is enabled (SSx pin used as FSYNC input/output)  
0= Framed SPI support is disabled  
FRMSYNC: Frame Sync Pulse Direction Control on SSx pin bit (Framed SPI mode only)  
1= Frame sync pulse input (Slave mode)  
0= Frame sync pulse output (Master mode)  
FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)  
1= Frame pulse is active-high  
0= Frame pulse is active-low  
MSSEN: Master Mode Slave Select Enable bit  
1= Slave select SPI support enabled. The SS pin is automatically driven during transmission in   
Master mode. Polarity is determined by the FRMPOL bit.  
0= Slave select SPI support is disabled.  
bit 27  
FRMSYPW: Frame Sync Pulse Width bit  
1= Frame sync pulse is one character wide  
0= Frame sync pulse is one clock wide  
bit 26-24 FRMCNT<2:0>: Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per  
pulse. This bit is only valid in FRAMED_SYNC mode.  
111= Reserved; do not use  
110= Reserved; do not use  
101= Generate a frame sync pulse on every 32 data characters  
100= Generate a frame sync pulse on every 16 data characters  
011= Generate a frame sync pulse on every 8 data characters  
010= Generate a frame sync pulse on every 4 data characters  
001= Generate a frame sync pulse on every 2 data characters  
000= Generate a frame sync pulse on every data character  
bit 23  
MCLKSEL: Master Clock Enable bit(2)  
1= REFCLK is used by the Baud Rate Generator  
0= PBCLK is used by the Baud Rate Generator  
Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in  
the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: This bit can only be written when the ON bit = 0.  
3: This bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed SPI  
mode (FRMEN = 1).  
4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ‘1’, regardless of the actual value  
of CKP.  
DS60001185B-page 192  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)  
bit 22-18 Unimplemented: Read as ‘0’  
bit 17  
bit 16  
bit 15  
SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)  
1= Frame synchronization pulse coincides with the first bit clock  
0= Frame synchronization pulse precedes the first bit clock  
ENHBUF: Enhanced Buffer Enable bit(2)  
1= Enhanced Buffer mode is enabled  
0= Enhanced Buffer mode is disabled  
ON: SPI Peripheral On bit(1)  
1= SPI Peripheral is enabled  
0= SPI Peripheral is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit  
1= Discontinue operation when CPU enters in Idle mode  
0= Continue operation in Idle mode  
bit 12  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by the module. Pin is controlled by associated PORT register  
0= SDOx pin is controlled by the module  
bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits  
When AUDEN = 1:  
MODE32  
MODE16  
Communication  
1
1
0
0
1
0
1
0
24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame  
32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame  
16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame  
16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame  
When AUDEN = 0:  
MODE32  
MODE16  
Communication  
32-bit  
16-bit  
1
0
0
x
1
0
8-bit  
bit 9  
SMP: SPI Data Input Sample Phase bit  
Master mode (MSTEN = 1):  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode (MSTEN = 0):  
SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.  
bit 8  
bit 7  
bit 6  
CKE: SPI Clock Edge Select bit(3)  
1= Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)  
0= Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)  
SSEN: Slave Select Enable (Slave mode) bit  
1= SSx pin used for Slave mode  
0= SSx pin not used for Slave mode, pin controlled by port function.  
CKP: Clock Polarity Select bit(4)  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in  
the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: This bit can only be written when the ON bit = 0.  
3: This bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed SPI  
mode (FRMEN = 1).  
4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ‘1’, regardless of the actual value  
of CKP.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 193  
PIC32MX330/350/370/430/450/470  
REGISTER 17-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)  
bit 5  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
bit 4  
DISSDI: Disable SDI bit  
1= SDI pin is not used by the SPI module (pin is controlled by PORT function)  
0= SDI pin is controlled by the SPI module  
bit 3-2  
STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits  
11= Interrupt is generated when the buffer is not full (has one or more empty elements)  
10= Interrupt is generated when the buffer is empty by one-half or more  
01= Interrupt is generated when the buffer is completely empty  
00= Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are   
complete  
bit 1-0  
SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits  
11= Interrupt is generated when the buffer is full  
10= Interrupt is generated when the buffer is full by one-half or more  
01= Interrupt is generated when the buffer is not empty  
00= Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)  
Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in  
the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: This bit can only be written when the ON bit = 0.  
3: This bit is not used in the Framed SPI mode. The user should program this bit to ‘0’ for the Framed SPI  
mode (FRMEN = 1).  
4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to ‘1’, regardless of the actual value  
of CKP.  
DS60001185B-page 194  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 17-2: SPIxCON2: SPI CONTROL REGISTER 2  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4  
27/19/11/3  
26/18/10/2 25/17/9/1 24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SPISGNEXT  
R/W-0  
AUDEN(1)  
FRMERREN  
U-0  
SPIROVEN  
R/W-0  
AUDMONO(1,2)  
SPITUREN IGNROV IGNTUR  
U-0  
U-0  
U-0  
R/W-0  
AUDMOD<1:0>(1,2)  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit  
1= Data from RX FIFO is sign extended  
0= Data from RX FIFO is not sign extened  
bit 14-13 Unimplemented: Read as ‘0’  
bit 12  
bit 11  
bit 10  
bit 9  
FRMERREN: Enable Interrupt Events via FRMERR bit  
1= Frame Error overflow generates error events  
0= Frame Error does not generate error events  
SPIROVEN: Enable Interrupt Events via SPIROV bit  
1= Receive overflow generates error events  
0= Receive overflow does not generate error events  
SPITUREN: Enable Interrupt Events via SPITUR bit  
1= Transmit Underrun Generates Error Events  
0= Transmit Underrun Does Not Generates Error Events  
IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)  
1= A ROV is not a critical error; during ROV data in the fifo is not overwritten by receive data  
0= A ROV is a critical error which stop SPI operation  
bit 8  
IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)  
1= A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty  
0= A TUR is a critical error which stop SPI operation  
bit 7  
AUDEN: Enable Audio CODEC Support bit(1)  
1= Audio protocol enabled  
0= Audio protocol disabled  
bit 6-5  
bit 3  
Unimplemented: Read as ‘0’  
AUDMONO: Transmit Audio Data Format bit(1,2)  
1= Audio data is mono (Each data word is transmitted on both left and right channels)  
0= Audio data is stereo  
bit 2  
Unimplemented: Read as ‘0’  
AUDMOD<1:0>: Audio Protocol Mode bit(1,2)  
bit 1-0  
11= PCM/DSP mode  
10= Right Justified mode  
01= Left Justified mode  
00= I2S mode  
Note 1: This bit can only be written when the ON bit = 0.  
2: This bit is only valid for AUDEN = 1.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 195  
PIC32MX330/350/370/430/450/470  
REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
31:24  
23:16  
15:8  
7:0  
RXBUFELM<4:0>  
U-0  
U-0  
U-0  
R-0  
R-0  
TXBUFELM<4:0>  
U-0  
U-0  
U-0  
R/C-0, HS  
U-0  
U-0  
R-0  
FRMERR SPIBUSY  
SPITUR  
R-0  
R-0  
R/W-0  
R-0  
U-0  
R-1  
U-0  
R-0  
SRMT  
SPIROV  
SPIRBE  
SPITBE  
SPITBF  
SPIRBF  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 31-29 Unimplemented: Read as ‘0’  
bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (valid only when ENHBUF = 1)  
bit 23-21 Unimplemented: Read as ‘0’  
bit 20-16 TXBUFELM<4:0>: Transmit Buffer Element Count bits (valid only when ENHBUF = 1)  
bit 15-13 Unimplemented: Read as ‘0’  
bit 12  
FRMERR: SPI Frame Error status bit  
1= Frame error detected  
0= No Frame error detected  
This bit is only valid when FRMEN = 1.  
bit 11  
SPIBUSY: SPI Activity Status bit  
1= SPI peripheral is currently busy with some transactions  
0= SPI peripheral is currently idle  
bit 10-9 Unimplemented: Read as ‘0’  
bit 8  
SPITUR: Transmit Under Run bit  
1= Transmit buffer has encountered an underrun condition  
0= Transmit buffer has no underrun condition  
This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling  
the module.  
bit 7  
bit 6  
SRMT: Shift Register Empty bit (valid only when ENHBUF = 1)  
1= When SPI module shift register is empty  
0= When SPI module shift register is not empty  
SPIROV: Receive Overflow Flag bit  
1= A new data is completely received and discarded. The user software has not read the previous data in  
the SPIxBUF register.  
0= No overflow has occurred  
This bit is set in hardware; can only be cleared (= 0) in software.  
bit 5  
bit 4  
SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1)  
1= RX FIFO is empty (CRPTR = SWPTR)  
0= RX FIFO is not empty (CRPTR SWPTR)  
Unimplemented: Read as ‘0’  
DS60001185B-page 196  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 17-3: SPIxSTAT: SPI STATUS REGISTER (CONTINUED)  
bit 3  
SPITBE: SPI Transmit Buffer Empty Status bit  
1= Transmit buffer, SPIxTXB is empty  
0= Transmit buffer, SPIxTXB is not empty  
Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR.  
Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.  
Unimplemented: Read as ‘0’  
bit 2  
bit 1  
SPITBF: SPI Transmit Buffer Full Status bit  
1= Transmit not yet started, SPITXB is full  
0= Transmit buffer is not full  
Standard Buffer Mode:  
Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB.  
Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.  
Enhanced Buffer Mode:  
Set when CWPTR + 1 = SRPTR; cleared otherwise  
SPIRBF: SPI Receive Buffer Full Status bit  
bit 0  
1= Receive buffer, SPIxRXB is full  
0= Receive buffer, SPIxRXB is not full  
Standard Buffer Mode:  
Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.  
Enhanced Buffer Mode:  
Set when SWPTR + 1 = CRPTR; cleared otherwise  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 197  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 198  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The I2C module provides complete hardware support  
for both Slave and Multi-Master modes of the I2C serial  
communication standard. Figure 18-1 illustrates the  
I2C module block diagram.  
Each I2C module has a 2-pin interface: the SCLx pin is  
clock and the SDAx pin is data.  
18.0 INTER-INTEGRATED  
2
CIRCUIT™ (I C™)  
Note 1: This data sheet summarizes the  
features of the PIC32MX330/350/370/  
430/450/470 family of devices. It is not  
intended to be  
a
comprehensive  
Each I2C module offers the following key features:  
• I2C interface supporting both master and slave  
operation  
• I2C Slave mode supports 7-bit and 10-bit addressing  
• I2C Master mode supports 7-bit and 10-bit  
addressing  
• I2C port allows bidirectional transfers between  
master and slaves  
• Serial clock synchronization for the I2C port can  
be used as a handshake mechanism to suspend  
and resume serial transfer (SCLREL control)  
• I2C supports multi-master operation; detects bus  
collision and arbitrates accordingly  
reference source. To complement the  
information in this data sheet, refer to  
Section 24. “Inter-Integrated Circuit™  
(I2C™)” (DS60001116) in the “PIC32  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Provides support for address bit masking  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 199  
PIC32MX330/350/370/430/450/470  
2
FIGURE 18-1:  
I C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
PBCLK  
I2CxBRG  
DS60001185B-page 200  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
18.1 Control Registers  
2
REGISTER 18-1: I2CXCON: I C™ CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1)  
R/W-0  
GCEN  
U-0  
R/W-0  
SIDL  
R/W-0  
ACKDT  
R/W-1, HC  
SCLREL  
R/W-0, HC  
ACKEN  
R/W-0  
STRICT  
R/W-0, HC  
RCEN  
R/W-0  
A10M  
R/W-0, HC  
PEN  
R/W-0  
DISSLW  
R/W-0, HC  
RSEN  
R/W-0  
SMEN  
R/W-0, HC  
SEN  
R/W-0  
STREN  
Legend:  
HC = Cleared in Hardware  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: I2C Enable bit(1)  
1= Enables the I2C module and configures the SDA and SCL pins as serial port pins  
0= Disables the I2C module; all I2C pins are controlled by PORT functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear at  
beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
STRICT: Strict I2C Reserved Address Rule Enable bit  
1= Strict reserved addressing is enforced. Device does not respond to reserved address space or generate  
addresses in reserved address space.  
0= Strict I2C Reserved Address Rule not enabled  
bit 10  
bit 9  
bit 8  
A10M: 10-bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
SMEN: SMBus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMBus specification  
0= Disable SMBus input thresholds  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 201  
PIC32MX330/350/370/430/450/470  
2
REGISTER 18-1: I2CXCON: I C™ CONTROL REGISTER (CONTINUED)  
bit 7  
bit 6  
bit 5  
bit 4  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CxRSR  
(module is enabled for reception)  
0= General call address disabled  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that is transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit   
(when operating as I2C master, applicable during master receive)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.   
Hardware clear at end of master Acknowledge sequence.  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of   
master Repeated Start sequence.  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.  
0= Start condition not in progress  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
DS60001185B-page 202  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
2
REGISTER 18-2: I2CXSTAT: I C™ STATUS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0, HSC  
ACKSTAT  
R/C-0, HS  
IWCOL  
R-0, HSC  
TRSTAT  
R/C-0, HS  
I2COV  
U-0  
U-0  
U-0  
R/C-0, HS  
BCL  
R-0, HSC  
R_W  
R-0, HSC  
GCSTAT  
R-0, HSC  
RBF  
R-0, HSC  
ADD10  
R-0, HSC  
TBF  
R-0, HSC  
R/C-0, HSC  
P
R/C-0, HSC  
S
D_A  
Legend:  
HS = Set in hardware  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware set/cleared  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared C = Clearable bit  
R = Readable bit  
-n = Value at POR  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ACKSTAT: Acknowledge Status bit   
(when operating as I2C™ master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
bit 14  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11 Unimplemented: Read as ‘0’  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by reception of slave byte.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 203  
PIC32MX330/350/370/430/450/470  
2
REGISTER 18-2: I2CXSTAT: I C™ STATUS REGISTER (CONTINUED)  
bit 4  
bit 3  
bit 2  
bit 1  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software   
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
DS60001185B-page 204  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The primary features of the UART module are:  
19.0 UNIVERSAL ASYNCHRONOUS  
• Full-duplex, 8-bit or 9-bit data transmission  
• Even, Odd or No Parity options (for 8-bit data)  
• One or two Stop bits  
RECEIVER TRANSMITTER  
(UART)  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 21.  
“Universal Asynchronous Receiver  
Transmitter (UART)” (DS60001107) in  
the “PIC32 Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
• Hardware auto-baud feature  
• Hardware flow control option  
• Fully integrated Baud Rate Generator (BRG) with  
16-bit prescaler  
• Baud rates ranging from 76 bps to 20 Mbps at  
80 MHz  
• 8-level deep First-In-First-Out (FIFO) transmit  
data buffer  
• 8-level deep FIFO receive data buffer  
• Parity, framing and buffer overrun error detection  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Support for interrupt-only on address detect   
(9th bit = 1)  
• Separate transmit and receive interrupts  
• Loopback mode for diagnostic support  
• LIN Protocol support  
• IrDA encoder and decoder with 16x baud clock  
output for external IrDA encoder/decoder support  
The UART module is one of the serial I/O modules  
available in PIC32MX330/350/370/430/450/470 family  
devices. The UART is a full-duplex, asynchronous  
communication channel that communicates with  
peripheral devices and personal computers through  
protocols, such as RS-232, RS-485, LIN and IrDA®.  
The module also supports the hardware flow control  
option, with UxCTS and UxRTS pins, and also includes  
an IrDA encoder and decoder.  
Figure 19-1 illustrates a simplified block diagram of the  
UART.  
FIGURE 19-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
UxRTS/BCLKx  
UxCTS  
Hardware Flow Control  
UARTx Receiver  
UxRX  
UxTX  
UARTx Transmitter  
Note:  
Not all pins are available for all UART modules. Refer to the device-specific pin diagram for more information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 205  
PIC32MX330/350/370/430/450/470  
19.1 Control Registers  
REGISTER 19-1: UxMODE: UARTx MODE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1)  
R/W-0  
WAKE  
U-0  
R/W-0  
SIDL  
R/W-0  
ABAUD  
R/W-0  
IREN  
R/W-0  
RXINV  
R/W-0  
RTSMD  
R/W-0  
BRGH  
U-0  
R/W-0  
R/W-0  
UEN<1:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
PDSEL<1:0>  
STSEL  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: UARTx Enable bit(1)  
1= UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN   
control bits  
0= UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx  
registers; UARTx power consumption is minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit  
1= Discontinue operation when device enters Idle mode  
0= Continue operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA Encoder and Decoder Enable bit  
1= IrDA is enabled  
0= IrDA is disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin is in Simplex mode  
0= UxRTS pin is in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11= UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits  
in the PORTx register  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits  
in the PORTx register  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by  
corresponding bits in the PORTx register  
bit 7  
bit 6  
WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit  
1= Wake-up enabled  
0= Wake-up disabled  
LPBACK: UARTx Loopback Mode Select bit  
1= Loopback mode is enabled  
0= Loopback mode is disabled  
Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
DS60001185B-page 206  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 5  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of Sync character (0x55);  
cleared by hardware upon completion  
0= Baud rate measurement disabled or completed  
bit 4  
RXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= High-Speed mode – 4x baud clock enabled  
0= Standard Speed mode – 16x baud clock enabled  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Selection bit  
1= 2 Stop bits  
0= 1 Stop bit  
Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 207  
PIC32MX330/350/370/430/450/470  
REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ADM_EN  
R/W-0  
31:24  
23:16  
15:8  
7:0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADDR<7:0>  
R/W-0  
R/W-0  
R/W-0  
UTXINV  
R/W-0  
R/W-0  
URXEN  
R-1  
R/W-0  
UTXBRK  
R-0  
R/W-0  
UTXEN  
R-0  
R-0  
R-1  
TRMT  
R-0  
UTXISEL<1:0>  
UTXBF  
R/W-0  
R/W-0  
R/W-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-25 Unimplemented: Read as ‘0’  
bit 24 ADM_EN: Automatic Address Detect Mode Enable bit  
1= Automatic Address Detect mode is enabled  
0= Automatic Address Detect mode is disabled  
bit 23-16 ADDR<7:0>: Automatic Address Mask bits  
When the ADM_EN bit is ‘1’, this value defines the address character to use for automatic address  
detection.  
bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits  
11= Reserved, do not use  
10= Interrupt is generated and asserted while the transmit buffer is empty  
01= Interrupt is generated and asserted when all characters have been transmitted  
00= Interrupt is generated and asserted while the transmit buffer contains at least one empty space  
bit 13  
UTXINV: Transmit Polarity Inversion bit  
If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is ‘0’):  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is ‘1’):  
1= IrDA encoded UxTX Idle state is ‘1’  
0= IrDA encoded UxTX Idle state is ‘0’  
bit 12  
bit 11  
URXEN: Receiver Enable bit  
1= UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)  
0= UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by port.  
UTXBRK: Transmit Break bit  
1= Send Break on next transmission. Start bit followed by twelve ‘0’ bits, followed by Stop bit; cleared by  
hardware upon completion  
0= Break transmission is disabled or completed  
bit 10  
UTXEN: Transmit Enable bit  
1= UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)  
0= UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is con-  
trolled by port.  
bit 9  
bit 8  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
TRMT: Transmit Shift Register is Empty bit (read-only)  
1= Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer  
DS60001185B-page 208  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bit  
11= Reserved; do not use  
10= Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters)  
01= Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters)  
00= Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect  
0= Address Detect mode is disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Data is being received  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit.  
This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit  
resets the receiver buffer and RSR to empty state.  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed  
bit 0  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 209  
PIC32MX330/350/370/430/450/470  
19.2 Timing Diagrams  
Figure 19-2 and Figure 19-3 illustrate typical receive  
and transmit timing for the UART module.  
FIGURE 19-2:  
UART RECEPTION  
Char 1  
Char 2-4  
Char 11-13  
Char 5-10  
Read to  
UxRXREG  
Start 1  
Stop Start 2  
Stop 4  
Start 5  
Stop 10 Start 11  
Stop 13  
UxRX  
RIDLE  
Cleared by  
Software  
OERR  
Cleared by  
Software  
UxRXIF  
URXISEL = 00  
Cleared by  
Software  
UxRXIF  
URXISEL = 01  
UxRXIF  
URXISEL = 10  
FIGURE 19-3:  
TRANSMISSION (8-BIT OR 9-BIT DATA)  
8 into TxBUF  
Write to  
UxTXREG  
TSR  
Pull from Buffer  
Stop  
BCLK/16  
(Shift Clock)  
UxTX  
Start  
Bit 0  
Bit 1  
Start  
Bit 1  
UxTXIF  
UTXISEL = 00  
UxTXIF  
UTXISEL = 01  
UxTXIF  
UTXISEL = 10  
DS60001185B-page 210  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Key features of the PMP module include:  
20.0 PARALLEL MASTER PORT  
• 8-bit,16-bit interface  
(PMP)  
• Up to 16 programmable address lines  
• Up to two Chip Select lines  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 13. “Parallel  
Master Port (PMP)” (DS60001128) in  
the “PIC32 Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com/PIC32).  
• Programmable strobe options  
- Individual read and write strobes, or  
- Read/write strobe with enable strobe  
• Address auto-increment/auto-decrement  
• Programmable address/data multiplexing  
• Programmable polarity on control signals  
• Parallel Slave Port support  
- Legacy addressable  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
- Address support  
- 4-byte deep auto-incrementing buffer  
• Programmable Wait states  
• Operate during CPU Sleep and Idle modes  
• Fast bit manipulation using CLR, SET and INV  
registers  
The PMP is a parallel 8-bit/16-bit input/output module  
specifically designed to communicate with a wide  
variety of parallel devices, such as communications  
peripherals, LCDs, external memory devices and  
microcontrollers. Because the interface to parallel  
peripherals varies significantly, the PMP module is  
highly configurable.  
• Freeze option for in-circuit debugging  
Note:  
On 64-pin devices, data pins PMD<15:8>  
are not available in 16-bit Master modes.  
FIGURE 20-1:  
PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES  
Address Bus  
Data Bus  
Control Lines  
PMA<0>  
PMALL  
Parallel  
Master Port  
PMA<1>  
PMALH  
Flash  
EEPROM  
Up to 16-bit Address  
PMA<13:2>  
SRAM  
PMA<14>  
PMCS1  
PMA<15>  
PMCS2  
PMRD  
PMRD/PMWR  
PMWR  
PMENB  
FIFO  
Buffer  
Microcontroller  
LCD  
PMD<7:0>  
PMD<15:8>  
(1)  
8-bit/16-bit Data (with or without multiplexed addressing)  
Note:  
On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 211  
PIC32MX330/350/370/430/450/470  
20.1  
Control Registers  
REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER  
Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ON(1)  
R/W-0  
U-0  
R/W-0  
SIDL  
R/W-0  
ALP(2)  
R/W-0  
PMPTTL  
U-0  
R/W-0  
PTWREN  
R/W-0  
WRSP  
R/W-0  
PTRDEN  
R/W-0  
RDSP  
R/W-0  
ADRMUX<1:0>  
R/W-0  
CS2P(2)  
R/W-0  
CS1P(2)  
CSF<1:0>(2)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: Parallel Master Port Enable bit(1)  
1= PMP enabled  
0= PMP disabled, no off-chip access performed  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits  
11= Lower 8 bits of address are multiplexed on PMD<15:0> pins; upper 8 bits are not used  
10= All 16 bits of address are multiplexed on PMD<15:0> pins  
01= Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<10:8> and  
PMA<14>  
00= Address and data appear on separate pins  
bit 10  
bit 9  
PMPTTL: PMP Module TTL Input Buffer Select bit  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt Trigger input buffer  
PTWREN: Write Enable Strobe Port Enable bit  
1= PMWR/PMENB port enabled  
0= PMWR/PMENB port disabled  
bit 8  
PTRDEN: Read/Write Strobe Port Enable bit  
1= PMRD/PMWR port enabled  
0= PMRD/PMWR port disabled  
bit 7-6  
CSF<1:0>: Chip Select Function bits(2)  
11= Reserved  
10= PMCS1 function as Chip Select  
01= PMCS1 functions as address bit 14  
00= PMCS1 function as address bit 14  
bit 5  
ALP: Address Latch Polarity bit(2)  
1= Active-high (PMALL and PMALH)  
0= Active-low (PMALL and PMALH)  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON control bit.  
2: These bits have no effect when their corresponding pins are used as address lines.  
DS60001185B-page 212  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 20-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)  
bit 4  
CS2P: Chip Select 0 Polarity bit(2)  
1= Active-high (PMCS2)  
0= Active-low (PMCS2)  
bit 3  
CS1P: Chip Select 0 Polarity bit(2)  
1= Active-high (PMCS1)  
0= Active-low (PMCS1)  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WRSP: Write Strobe Polarity bit  
For Slave Modes and Master mode 2 (PMMODE<9:8> = 00,01,10):  
1= Write strobe active-high (PMWR)  
0= Write strobe active-low (PMWR)  
For Master mode 1 (PMMODE<9:8> = 11):  
1= Enable strobe active-high (PMENB)  
0= Enable strobe active-low (PMENB)  
bit 0  
RDSP: Read Strobe Polarity bit  
For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):  
1= Read Strobe active-high (PMRD)  
0= Read Strobe active-low (PMRD)  
For Master mode 1 (PMMODE<9:8> = 11):  
1= Read/write strobe active-high (PMRD/PMWR)  
0= Read/write strobe active-low (PMRD/PMWR)  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON control bit.  
2: These bits have no effect when their corresponding pins are used as address lines.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 213  
PIC32MX330/350/370/430/450/470  
REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
BUSY  
R/W-0  
WAITB<1:0>(1)  
IRQM<1:0>  
INCM<1:0>  
MODE<1:0>  
R/W-0  
R/W-0  
R/W-0  
WAITM<3:0>(1)  
R/W-0  
R/W-0  
R/W-0  
WAITE<1:0>(1)  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
BUSY: Busy bit (Master mode only)  
1= Port is busy  
0= Port is not busy  
bit 14-13 IRQM<1:0>: Interrupt Request Mode bits  
11= Reserved, do not use  
10= Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode)  
or on a read or write operation when PMA<1:0> =11(Addressable Slave mode only)  
01= Interrupt generated at the end of the read/write cycle  
00= No Interrupt generated  
bit 12-11 INCM<1:0>: Increment Mode bits  
11= Slave mode read and write buffers auto-increment (PMMODE<1:0> = 00only)  
10= Decrement ADDR<10:2> and ADDR<14> by 1 every read/write cycle(2)  
01= Increment ADDR<10:2> and ADDR<14> by 1 every read/write cycle(2)  
00= No increment or decrement of address  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
MODE<1:0>: Parallel Port Mode Select bits  
11= Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMA<x:0>, and PMD<15:0>)  
10= Master mode 2 (PMCS1, PMRD, PMWR, PMA<x:0>, and PMD<15:0>)  
01= Enhanced Slave mode, control signals (PMRD, PMWR, PMCS1, PMD<15:0>, and PMA<1:0>)  
00= Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1, and PMD<15:0>)  
bit 7-6  
WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits(1)  
11= Data wait of 4 TPB; multiplexed address phase of 4 TPB  
10= Data wait of 3 TPB; multiplexed address phase of 3 TPB  
01= Data wait of 2 TPB; multiplexed address phase of 2 TPB  
00= Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)  
Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a  
write operation; WAITB = 1TPBCLK cycle, WAITE = 0TPBCLK cycles for a read operation.  
2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.  
DS60001185B-page 214  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 20-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)  
bit 5-2  
WAITM<3:0>: Data Read/Write Strobe Wait States bits(1)  
1111= Wait of 16 TPB  
0001= Wait of 2 TPB  
0000= Wait of 1 TPB (default)  
bit 1-0  
WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits(1)  
11= Wait of 4 TPB  
10= Wait of 3 TPB  
01= Wait of 2 TPB  
00= Wait of 1 TPB (default)  
For Read operations:  
11= Wait of 3 TPB  
10= Wait of 2 TPB  
01= Wait of 1 TPB  
00= Wait of 0 TPB (default)  
Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a  
write operation; WAITB = 1TPBCLK cycle, WAITE = 0TPBCLK cycles for a read operation.  
2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 215  
PIC32MX330/350/370/430/450/470  
REGISTER 20-3: PMADDR: PARALLEL PORT ADDRESS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CS2  
R/W-0  
R/W-0  
CS1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
15:8  
7:0  
ADDR<13:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADDR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-15 Unimplemented: Read as ‘0’  
bit 14  
CS2: Chip Select 2 bit  
1= Chip Select 2 is active  
0= Chip Select 2 is inactive (pin functions as PMA<14>)  
bit 14  
CS1: Chip Select 1 bit  
1= Chip Select 1 is active  
0= Chip Select 1 is inactive (pin functions as PMA<14>)  
bit 13-0 ADDR<13:0>: Destination Address bits  
DS60001185B-page 216  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 20-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER  
Bit Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
Bit  
Bit  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PTEN14  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PTEN<10:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-15 Unimplemented: Read as ‘0’  
bit 15-14 PTEN14: PMCS1 Strobe Enable bits  
1= PMA14 functions as either PMA14 or PMCS1(1)  
0= PMA14 functions as port I/O  
bit 13-11 Unimplemented: Read as ‘0’  
bit 10-2 PTEN<10:2>: PMP Address Port Enable bits  
1= PMA<10:2> function as PMP address lines  
0= PMA<10:2> function as port I/O  
bit 1-0  
PTEN<1:0>: PMALH/PMALL Strobe Enable bits  
1= PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL(2)  
0= PMA1 and PMA0 pads functions as port I/O  
Note 1: The use of this pin as PMA14 or CS1 is selected by the CSF<1:0> bits in the PMCON register.  
2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode  
selected by bits ADRMUX<1:0> in the PMCON register.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 217  
PIC32MX330/350/370/430/450/470  
REGISTER 20-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R/W-0, HSC  
IBOV  
R/W-0, HSC  
OBUF  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
IBF  
R-1  
IB3F  
R-1  
IB2F  
R-1  
IB1F  
R-1  
IB0F  
R-1  
U-0  
U-0  
OBE  
OB3E  
OB2E  
OB1E  
OB0E  
Legend:  
HSC = Set by Hardware; Cleared by Software  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
IBF: Input Buffer Full Status bit  
1= All writable input buffer registers are full  
0= Some or all of the writable input buffer registers are empty  
bit 14  
IBOV: Input Buffer Overflow Status bit  
1= A write attempt to a full input byte buffer occurred (must be cleared in software)  
0= No overflow occurred  
bit 13-12 Unimplemented: Read as ‘0’  
bit 11-8 IBxF: Input Buffer ‘x’ Status Full bits  
1= Input Buffer contains data that has not been read (reading buffer will clear this bit)  
0= Input Buffer does not contain any unread data  
bit 7  
bit 6  
OBE: Output Buffer Empty Status bit  
1= All readable output buffer registers are empty  
0= Some or all of the readable output buffer registers are full  
OBUF: Output Buffer Underflow Status bit  
1= A read occurred from an empty output byte buffer (must be cleared in software)  
0= No underflow occurred  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
OBxE: Output Buffer ‘x’ Status Empty bits  
1= Output buffer is empty (writing data to the buffer will clear this bit)  
0= Output buffer contains data that has not been transmitted  
DS60001185B-page 218  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Some of the key features of this module include:  
21.0 REAL-TIME CLOCK AND  
• Time: hours, minutes and seconds  
• 24-hour format (military time)  
CALENDAR (RTCC)  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 29. “Real-  
Time Clock and Calendar (RTCC)”  
(DS60001125) in the “PIC32 Family  
Reference Manual”, which is available  
• Visibility of one-half second period  
• Provides calendar: Weekday, date, month and  
year  
• Alarm intervals are configurable for half of a  
second, one second, 10 seconds, one minute, 10  
minutes, one hour, one day, one week, one month  
and one year  
• Alarm repeat with decrementing counter  
• Alarm with indefinite repeat: Chime  
Year range: 2000 to 2099  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Leap year correction  
• BCD format for smaller firmware overhead  
• Optimized for long-term battery operation  
• Fractional second synchronization  
• User calibration of the clock crystal frequency with  
auto-adjust  
The PIC32 RTCC module is intended for applications in  
which accurate time must be maintained for extended  
periods of time with minimal or no CPU intervention.  
Low-power optimization provides extended battery  
lifetime while keeping track of time.  
• Calibration range: 0.66 seconds error per month  
• Calibrates up to 260 ppm of crystal error  
• Requirements: External 32.768 kHz clock crystal  
• Alarm pulse or seconds clock output on   
RTCC pin  
FIGURE 21-1:  
RTCC BLOCK DIAGRAM  
CAL<9:0>  
32.768 kHz Input  
from Secondary  
Oscillator (SOSC)  
RTCC Prescalers  
0.5s  
RTCTIME  
HR, MIN, SEC  
RTCVAL  
RTCC Timer  
Alarm  
RTCDATE  
YEAR, MONTH, DAY, WDAY  
Event  
Comparator  
ALRMTIME  
HR, MIN, SEC  
Compare Registers  
with Masks  
ALRMVAL  
ALRMDATE  
MONTH, DAY, WDAY  
Repeat Counter  
Set RTCC Flag  
0
RTCC Interrupt Logic  
Alarm Pulse  
1
RTCC  
Seconds Pulse  
RTSECSEL  
RTCOE  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 219  
PIC32MX330/350/370/430/450/470  
21.1 Control Registers  
REGISTER 21-1: RTCCON: RTC CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1 24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
R/W-0  
CAL<9:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CAL<7:0>  
U-0  
R/W-0  
ON(1,2)  
R/W-0  
U-0  
R/W-0  
SIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R/W-0  
R-0  
R-0  
R/W-0  
RTSECSEL(3) RTCCLKON  
RTCWREN(4) RTCSYNC HALFSEC(5) RTCOE  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 31-26 Unimplemented: Read as ‘0’  
bit 25-16 CAL<9:0>: RTC Drift Calibration bits, which contain a signed 10-bit integer value  
0111111111= Maximum positive adjustment, adds 511 RTC clock pulses every one minute  
0000000001= Minimum positive adjustment, adds 1 RTC clock pulse every one minute  
0000000000= No adjustment  
1111111111= Minimum negative adjustment, subtracts 1 RTC clock pulse every one minute  
1000000000= Minimum negative adjustment, subtracts 512 clock pulses every one minute  
ON: RTCC On bit(1,2)  
bit 15  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit  
1= Disables the PBCLK to the RTCC when CPU enters in Idle mode  
0= Continue normal operation in Idle mode  
bit 12-8 Unimplemented: Read as ‘0’  
bit 7  
RTSECSEL: RTCC Seconds Clock Output Select bit(3)  
1= RTCC Seconds Clock is selected for the RTCC pin  
0= RTCC Alarm Pulse is selected for the RTCC pin  
bit 6  
RTCCLKON: RTCC Clock Enable Status bit  
1= RTCC Clock is actively running  
0= RTCC Clock is not running  
bit 5-4  
Unimplemented: Read as ‘0’  
Note 1: The ON bit is only writable when RTCWREN = 1.  
2: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
3: Requires RTCOE = 1(RTCCON<0>) for the output to be active.  
4: The RTCWREN bit can be set only when the write sequence is enabled.  
5: This bit is read-only. It is cleared to ‘0’ on a write to the seconds bit fields (RTCTIME<14:8>).  
Note:  
This register is reset only on a Power-on Reset (POR).  
DS60001185B-page 220  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 21-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)  
bit 3  
RTCWREN: RTC Value Registers Write Enable bit(4)  
1= RTC Value registers can be written to by the user  
0= RTC Value registers are locked out from being written to by the user  
bit 2  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read  
If the register is read twice and results in the same data, the data can be assumed to be valid  
0= RTC Value registers can be read without concern about a rollover ripple  
bit 1  
bit 0  
HALFSEC: Half-Second Status bit(5)  
1= Second half period of a second  
0= First half period of a second  
RTCOE: RTCC Output Enable bit  
1= RTCC clock output enabled – clock presented onto an I/O  
0= RTCC clock output disabled  
Note 1: The ON bit is only writable when RTCWREN = 1.  
2: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
3: Requires RTCOE = 1(RTCCON<0>) for the output to be active.  
4: The RTCWREN bit can be set only when the write sequence is enabled.  
5: This bit is read-only. It is cleared to ‘0’ on a write to the seconds bit fields (RTCTIME<14:8>).  
Note:  
This register is reset only on a Power-on Reset (POR).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 221  
PIC32MX330/350/370/430/450/470  
REGISTER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5  
28/20/12/4  
27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R-0  
R/W-0  
R/W-0  
AMASK<3:0>(3)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PIV(2)  
R/W-0  
ALRMEN(1,2) CHIME(2)  
ALRMSYNC(3)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ARPT<7:0>(3)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
bit 14  
bit 13  
bit 12  
ALRMEN: Alarm Enable bit(1,2)  
1 = Alarm is enabled  
0 = Alarm is disabled  
CHIME: Chime Enable bit(2)  
1= Chime is enabled – ARPT<7:0> is allowed to rollover from 0x00 to 0xFF  
0= Chime is disabled – ARPT<7:0> stops once it reaches 0x00  
PIV: Alarm Pulse Initial Value bit(2)  
When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse.  
When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.  
ALRMSYNC: Alarm Sync bit(3)  
1= ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read.   
The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple  
bits may be changing, which are then synchronized to the PB clock domain  
0= ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC  
clocks away from a half-second rollover  
bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits(3)  
0000= Every half-second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29, once every four years)  
1010= Reserved; do not use  
1011= Reserved; do not use  
11xx= Reserved; do not use  
Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00and  
CHIME = 0.  
2: This field should not be written when the RTCC ON bit = ‘1’ (RTCCON<15>) and ALRMSYNC = 1.  
3: This assumes a CPU read will execute in less than 32 PBCLKs.  
Note:  
This register is reset only on a Power-on Reset (POR).  
DS60001185B-page 222  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 21-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)  
bit 7-0  
ARPT<7:0>: Alarm Repeat Counter Value bits(3)  
11111111= Alarm will trigger 256 times  
00000000= Alarm will trigger one time  
The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.  
Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00and  
CHIME = 0.  
2: This field should not be written when the RTCC ON bit = ‘1’ (RTCCON<15>) and ALRMSYNC = 1.  
3: This assumes a CPU read will execute in less than 32 PBCLKs.  
Note:  
This register is reset only on a Power-on Reset (POR).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 223  
PIC32MX330/350/370/430/450/470  
REGISTER 21-3: RTCTIME: RTC TIME VALUE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
23:16  
15:8  
7:0  
HR10<3:0>  
HR01<3:0>  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MIN10<3:0>  
MIN01<3:0>  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEC10<3:0>  
SEC01<3:0>  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits; contains a value from 0 to 2  
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9  
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5  
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9  
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5  
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9  
bit 7-0  
Unimplemented: Read as ‘0’  
Note:  
This register is only writable when RTCWREN = 1(RTCCON<3>).  
DS60001185B-page 224  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 21-4: RTCDATE: RTC DATE VALUE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
23:16  
15:8  
7:0  
YEAR10<3:0>  
YEAR01<3:0>  
R/W-x  
R/W-x  
MONTH10<3:0>  
MONTH01<3:0>  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAY10<3:0>  
DAY01<3:0>  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
WDAY01<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits  
bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit  
bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1  
bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9  
bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3  
bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6  
Note:  
This register is only writable when RTCWREN = 1(RTCCON<3>).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 225  
PIC32MX330/350/370/430/450/470  
REGISTER 21-5: ALRMTIME: ALARM TIME VALUE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
31:24  
23:16  
15:8  
7:0  
HR10<3:0>  
HR01<3:0>  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MIN10<3:0>  
MIN01<3:0>  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEC10<3:0>  
SEC01<3:0>  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10 digits; contains a value from 0 to 2  
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1 digit; contains a value from 0 to 9  
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10 digits; contains a value from 0 to 5  
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1 digit; contains a value from 0 to 9  
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10 digits; contains a value from 0 to 5  
bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1 digit; contains a value from 0 to 9  
bit 7-0  
Unimplemented: Read as ‘0’  
DS60001185B-page 226  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 21-6: ALRMDATE: ALARM DATE VALUE REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5  
28/20/12/4  
27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MONTH10<3:0>  
MONTH01<3:0>  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAY10<1:0>  
DAY01<3:0>  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
WDAY01<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-24 Unimplemented: Read as ‘0’  
bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1  
bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9  
bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3  
bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 227  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 228  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The 10-bit Analog-to-Digital Converter (ADC) includes  
the following features:  
22.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
• Successive Approximation Register (SAR)  
conversion  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 17. “10-bit  
Analog-to-Digital Converter (ADC)”  
(DS60001104) in the “PIC32 Family  
Reference Manual”, which is available  
• Up to 1 Msps conversion speed  
• Up to 28 analog input pins  
• External voltage reference input pins  
• One unipolar, differential Sample and Hold  
Amplifier (SHA)  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• 16-word conversion result buffer  
• Selectable buffer fill modes  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
• Eight conversion result format options  
• Operation during CPU Sleep and Idle modes  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A block diagram of the 10-bit ADC is illustrated in  
Figure 22-1. The 10-bit ADC has up to 28 analog input  
pins, designated AN0-AN27. In addition, there are two  
analog input pins for external voltage reference  
connections. These voltage reference inputs may be  
shared with other analog input pins and may be  
common to other analog module references.  
FIGURE 22-1:  
ADC1 MODULE BLOCK DIAGRAM  
(1)  
VREF+  
(1)  
VREF-  
(3)  
AVDD  
AVSS  
CTMUI  
AN0  
AN27  
VCFG<2:0>  
(3)  
IVREF  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
(2)  
(4)  
CTMUT  
Open  
VREFH  
VREFL  
S&H  
Channel  
Scan  
+
-
CH0SB<4:0>  
SAR ADC  
CH0SA<4:0>  
CSCNA  
AN1  
ADC1BUFE  
ADC1BUFF  
VREFL  
CH0NA CH0NB  
Alternate  
Input Selection  
Note 1: VREF+ and VREF- inputs can be multiplexed with other analog inputs.  
2: Connected to the CTMU module. See Section 25.0 “Charge Time Measurement Unit (CTMU)” for more  
information.  
3: See Section 24.0 “Comparator Voltage Reference (CVREF)” for more information.  
4: This selection is only used with CTMU capacitive and time measurement.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 229  
PIC32MX330/350/370/430/450/470  
FIGURE 22-2:  
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
ADRC  
FRC(1)  
Div 2  
1
0
TAD  
ADCS<7:0>  
8
ADC Conversion  
Clock Multiplier  
(2)  
TPB  
2, 4,..., 512  
Note 1: See Section 30.0 “Electrical Characteristics” for the exact FRC clock value.  
2: Refer to Figure 8-1 in Section 8.0 “Oscillator Configuration” for more information.  
DS60001185B-page 230  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
22.1  
Control Registers  
REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1 24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ON(1)  
R/W-0  
R/W-0  
SIDL  
R/W-0  
R/W-0  
R/W-0  
FORM<2:0>  
R/W-0, HSC  
SAMP(2)  
U-0  
R/W-0  
R/C-0, HSC  
DONE(3)  
SSRC<2:0>  
CLRASAM  
ASAM  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: ADC Operating Mode bit(1)  
1= ADC module is operating  
0= ADC module is not operating  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11 Unimplemented: Read as ‘0’  
bit 10-8 FORM<2:0>: Data Output Format bits  
011= Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)  
010= Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)  
001= Signed Integer 16-bit (DOUT = 0000 0000 0000 0000 ssss sssd dddd dddd)  
000= Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)  
111= Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000)  
110= Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000 0000)  
101= Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd)  
100= Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)  
bit 7-5  
SSRC<2:0>: Conversion Trigger Source Select bits  
111= Internal counter ends sampling and starts conversion (auto convert)  
110= Reserved  
101= Reserved  
100= Reserved  
011= CTMU ends sampling and starts conversion  
010= Timer 3 period match ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing SAMP bit ends sampling and starts conversion  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: If ASAM = 0, software can write a ‘1’ to start sampling. This bit is automatically set by hardware if  
ASAM = 1. If SSRC = 0, software can write a ‘0’ to end sampling and start conversion. If SSRC 0’, this  
bit is automatically cleared by hardware to end sampling and start conversion.  
3: This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can  
write a ‘0’ to clear this bit (a write of ‘1’ is not allowed). Clearing this bit does not affect any operation  
already in progress. This bit is automatically cleared by hardware at the start of a new conversion.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 231  
PIC32MX330/350/370/430/450/470  
REGISTER 22-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)  
bit 4  
CLRASAM: Stop Conversion Sequence bit (when the first ADC interrupt is generated)  
1= Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the  
ADC interrupt is generated.  
0= Normal operation, buffer contents will be overwritten by the next conversion sequence  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
ASAM: ADC Sample Auto-Start bit  
1= Sampling begins immediately after last conversion completes; SAMP bit is automatically set.  
0= Sampling begins when SAMP bit is set  
bit 1  
bit 0  
SAMP: ADC Sample Enable bit(2)  
1= The ADC sample and hold amplifier is sampling  
0= The ADC sample/hold amplifier is holding  
When ASAM = 0, writing ‘1’ to this bit starts sampling.  
When SSRC = 000, writing ‘0’ to this bit will end sampling and start conversion.  
DONE: Analog-to-Digital Conversion Status bit(3)  
1= Analog-to-digital conversion is done  
0= Analog-to-digital conversion is not done or has not started  
Clearing this bit will not affect any operation in progress.  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: If ASAM = 0, software can write a ‘1’ to start sampling. This bit is automatically set by hardware if  
ASAM = 1. If SSRC = 0, software can write a ‘0’ to end sampling and start conversion. If SSRC 0’, this  
bit is automatically cleared by hardware to end sampling and start conversion.  
3: This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can  
write a ‘0’ to clear this bit (a write of ‘1’ is not allowed). Clearing this bit does not affect any operation  
already in progress. This bit is automatically cleared by hardware at the start of a new conversion.  
DS60001185B-page 232  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 22-2: AD1CON2: ADC CONTROL REGISTER 2  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1 24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
OFFCAL  
R/W-0  
R/W-0  
CSCNA  
R/W-0  
VCFG<2:0>  
U-0  
R/W-0  
R/W-0  
R-0  
R/W-0  
R/W-0  
BUFS  
SMPI<3:0>  
BUFM  
ALTS  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits  
VREFH  
VREFL  
000  
001  
010  
011  
1xx  
AVDD  
External VREF+ pin  
AVDD  
AVss  
AVSS  
External VREF- pin  
External VREF- pin  
AVSS  
External VREF+ pin  
AVDD  
bit 12  
OFFCAL: Input Offset Calibration Mode Select bit  
1= Enable Offset Calibration mode  
Positive and negative inputs of the sample and hold amplifier are connected to VREFL  
0= Disable Offset Calibration mode  
The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Input Scan Select bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
BUFS: Buffer Fill Status bit  
Only valid when BUFM = 1.  
1= ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7  
0= ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits  
1111= Interrupts at the completion of conversion for each 16th sample/convert sequence  
1110= Interrupts at the completion of conversion for each 15th sample/convert sequence  
0001= Interrupts at the completion of conversion for each 2nd sample/convert sequence  
0000= Interrupts at the completion of conversion for each sample/convert sequence  
bit 1  
bit 0  
BUFM: ADC Result Buffer Mode Select bit  
1= Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8  
0= Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and   
Sample A input multiplexer settings for all subsequent samples  
0= Always use Sample A input multiplexer settings  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 233  
PIC32MX330/350/370/430/450/470  
REGISTER 22-3: AD1CON3: ADC CONTROL REGISTER 3  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1 24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ADRC  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SAMC<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS<7:0>(2)  
R/W-0  
R/W  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15 ADRC: ADC Conversion Clock Source bit  
1= Clock derived from FRC  
0= Clock derived from Peripheral Bus Clock (PBCLK)  
bit 14-13 Unimplemented: Read as ‘0’  
bit 12-8 SAMC<4:0>: Auto-Sample Time bits(1)  
11111=31 TAD  
00001=1TAD  
00000=0TAD (Not allowed)  
bit 7-0  
ADCS<7:0>: ADC Conversion Clock Select bits(2)  
11111111=TPB • 2 • (ADCS<7:0> + 1) = 512 • TPB = TAD  
00000001=TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD  
00000000=TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD  
Note 1: This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.  
2: This bit is not used if the ADRC bit (AD1CON3<15>) = 1.  
DS60001185B-page 234  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 22-4: AD1CHS: ADC INPUT SELECT REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1 24/16/8/0  
R/W-0  
CH0NB  
R/W-0  
CH0NA  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
CH0SB<4:0>  
U-0  
U-0  
R/W-0  
CH0SA<4:0>  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31  
CH0NB: Negative Input Select bit for Sample B  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREFL  
bit 30-29 Unimplemented: Read as ‘0’  
bit 28-24 CH0SB<4:0>: Positive Input Select bits for Sample B  
11110= Channel 0 positive input is Open(1)  
11101= Channel 0 positive input is CTMU temperature sensor (CTMUT)(2)  
(3)  
11100= Channel 0 positive input is IVREF  
11011= Channel 0 positive input is AN27  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
bit 23  
CH0NA: Negative Input Select bit for Sample A Multiplexer Setting(3)  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREFL  
bit 22-21 Unimplemented: Read as ‘0’  
bit 20-16 CH0SA<4:0>: Positive Input Select bits for Sample A Multiplexer Setting  
11110= Channel 0 positive input is Open(1)  
11101= Channel 0 positive input is CTMU temperature sensor (CTMUT)(2)  
(3)  
11100= Channel 0 positive input is IVREF  
11011= Channel 0 positive input is AN27  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
bit 15-0  
Unimplemented: Read as ‘0’  
Note 1: This selection is only used with CTMU capacitive and time measurement.  
2: See Section 25.0 “Charge Time Measurement Unit (CTMU)” for more information.  
3: See Section 24.0 “Comparator Voltage Reference (CVREF)” for more information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 235  
PIC32MX330/350/370/430/450/470  
REGISTER 22-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
R/W-0  
CSSL30  
R/W-0  
R/W-0  
CSSL29  
R/W-0  
R/W-0  
CSSL28  
R/W-0  
R/W-0  
CSSL27  
R/W-0  
R/W-0  
CSSL26  
R/W-0  
R/W-0  
CSSL25  
R/W-0  
R/W-0  
CSSL24  
R/W-0  
31:24  
23:16  
15:8  
7:0  
R/W-0  
CSSL23  
R/W-0  
CSSL21  
R/W-0  
CSSL21  
R/W-0  
CSSL20  
R/W-0  
CSSL19  
R/W-0  
CSSL18  
R/W-0  
CSSL17  
R/W-0  
CSSL16  
R/W-0  
CSSL15  
R/W-0  
CSSL14  
R/W-0  
CSSL13  
R/W-0  
CSSL12  
R/W-0  
CSSL11  
R/W-0  
CSSL10  
R/W-0  
CSSL9  
R/W-0  
CSSL8  
R/W-0  
CSSL7  
CSSL6  
CSSL5  
CSSL4  
CSSL3  
CSSL2  
CSSL1  
CSSL0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15-0 CSSL<30:0>: ADC Input Pin Scan Selection bits(1,2)  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: CSSL = ANx, where x = 0-27; CSSL30 selects Vss for scan; CSSL29 selects CTMU input for scan;  
CSSL28 selects IVREF for scan.  
2: On devices with less than 28 analog inputs, all CSSLx bits can be selected; however, inputs selected for  
scan without a corresponding input on the device will convert to VREFL.  
DS60001185B-page 236  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The Analog Comparator module contains two compar-  
ators that can be configured in a variety of ways.  
23.0  
COMPARATOR  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to Section 19.  
“Comparator” (DS60001110) in the  
“PIC32 Family Reference Manual”, which  
is available from the Microchip web site  
(www.microchip.com/PIC32).  
Following are some of the key features of this module:  
• Selectable inputs available include:  
- Analog inputs multiplexed with I/O pins  
- On-chip internal absolute voltage reference  
(IVREF)  
- Comparator voltage reference (CVREF)  
• Outputs can be Inverted  
• Selectable interrupt generation  
A block diagram of the comparator module is provided  
in Figure 23-1.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
FIGURE 23-1:  
COMPARATOR BLOCK DIAGRAM  
CCH<1:0>  
C1INB  
C1INC  
C1IND  
COE  
CMP1  
C1OUT  
CREF  
CMSTAT<C1OUT>  
CM1CON<COUT>  
CPOL  
C1INA  
CCH<1:0>  
To CTMU module  
(Pulse Generator)  
C2INB  
C2INC  
C2IND  
COE  
CMP2  
C2OUT  
CREF  
CMSTAT<C2OUT>  
CM2CON<COUT>  
CPOL  
C2INA  
(1)  
CVREF  
IVREF (1.2V)  
Note 1: Internally connected. See Section 24.0 “Comparator Voltage Reference (CVREF)” for more information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 237  
PIC32MX330/350/370/430/450/470  
23.1  
Control Registers  
REGISTER 23-1: CMXCON: COMPARATOR CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R/W-0  
ON(1)  
R/W-1  
R/W-0  
COE  
R/W-1  
R/W-0  
CPOL(2)  
U-0  
U-0  
R/W-0  
R/W-1  
COUT  
R/W-1  
U-0  
U-0  
EVPOL<1:0>  
CREF  
CCH<1:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: Comparator ON bit(1)  
1= Module is enabled. Setting this bit does not affect the other bits in this register  
0= Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this  
register  
bit 14  
bit 13  
COE: Comparator Output Enable bit  
1= Comparator output is driven on the output CxOUT pin  
0= Comparator output is not driven on the output CxOUT pin  
CPOL: Comparator Output Inversion bit(2)  
1= Output is inverted  
0= Output is not inverted  
bit 12-9 Unimplemented: Read as ‘0’  
bit 8  
COUT: Comparator Output bit  
1= Output of the Comparator is a ‘1’  
0= Output of the Comparator is a ‘0’  
bit 7-6  
EVPOL<1:0>: Interrupt Event Polarity Select bits  
11= Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output  
10= Comparator interrupt is generated on a high-to-low transition of the comparator output  
01= Comparator interrupt is generated on a low-to-high transition of the comparator output  
00= Comparator interrupt generation is disabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CREF: Comparator Positive Input Configure bit  
1= Comparator non-inverting input is connected to the internal CVREF  
0= Comparator non-inverting input is connected to the CXINA pin  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
CCH<1:0>: Comparator Negative Input Select bits for Comparator  
11= Comparator inverting input is connected to the IVREF  
10= Comparator inverting input is connected to the CxIND pin  
01= Comparator inverting input is connected to the CxINC pin  
00= Comparator inverting input is connected to the CxINB pin  
Note 1: When using the 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an  
interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.  
DS60001185B-page 238  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 23-2: CMSTAT: COMPARATOR STATUS REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
C2OUT  
C1OUT  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-14 Unimplemented: Read as ‘0’  
bit 13 SIDL: Stop in IDLE Control bit  
1= All Comparator modules are disabled in IDLE mode  
0= All Comparator modules continue to operate in the IDLE mode  
bit 12-2 Unimplemented: Read as ‘0’  
bit 1  
C2OUT: Comparator Output bit  
1= Output of Comparator 2 is a ‘1’  
0= Output of Comparator 2 is a ‘0’  
bit 0  
C1OUT: Comparator Output bit  
1= Output of Comparator 1 is a ‘1’  
0= Output of Comparator 1 is a ‘0’  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 239  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 240  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
The CVREF module is a 16-tap, resistor ladder network  
24.0 COMPARATOR VOLTAGE  
that provides a selectable reference voltage. Although  
its primary purpose is to provide a reference for the  
analog comparators, it also may be used independently  
of them.  
REFERENCE (CVREF)  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 20. “Comparator  
A block diagram of the module is illustrated in  
Figure 24-1. The resistor ladder is segmented to  
provide two ranges of voltage reference values and has  
a power-down function to conserve power when the  
reference is not being used. The module’s supply refer-  
ence can be provided from either device VDD/VSS or an  
external voltage reference. The CVREF output is avail-  
able for the comparators and typically available for pin  
output.  
Voltage  
Reference  
(CVREF)”  
(DS60001109) in the “PIC32 Family  
Reference Manual”, which is available  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The CVREF module has the following features:  
• High and low range selection  
• Sixteen output levels available for each range  
• Internally connected to comparators to conserve  
device pins  
• Output can be connected to a pin  
FIGURE 24-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
CVRSS = 0  
VREF+  
AVDD  
CVRSRC  
8R  
CVREF  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREFOUT  
CVRCON<CVROE>  
R
R
R
CVRR  
VREF-  
AVSS  
8R  
CVRSS = 1  
CVRSS = 0  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 241  
PIC32MX330/350/370/430/450/470  
24.1 Control Register  
REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CVROE  
CVRR  
CVRSS  
CVR<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: Comparator Voltage Reference On bit(1)  
1= Module is enabled  
Setting this bit does not affect other bits in the register.  
0= Module is disabled and does not consume current.   
Clearing this bit does not affect the other bits in the register.  
bit 14-7 Unimplemented: Read as ‘0’  
bit 6  
CVROE: CVREFOUT Enable bit  
1= Voltage level is output on CVREFOUT pin  
0= Voltage level is disconnected from CVREFOUT pin  
bit 5  
CVRR: CVREF Range Selection bit  
1= 0 to 0.67 CVRSRC, with CVRSRC/24 step size  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size  
bit 4  
CVRSS: CVREF Source Selection bit  
1= Comparator voltage reference source, CVRSRC = (VREF+) – (VREF-)  
0= Comparator voltage reference source, CVRSRC = AVDD – AVSS  
bit 3-0  
CVR<3:0>: CVREF Value Selection 0 CVR<3:0> 15 bits  
When CVRR = 1:  
CVREF = (CVR<3:0>/24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)  
Note 1: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s SFRs in the  
SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
DS60001185B-page 242  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
on-chip analog modules, the CTMU can be used for  
high resolution time measurement, measure capaci-  
tance, measure relative changes in capacitance or  
generate output pulses with a specific time delay. The  
CTMU is ideal for interfacing with capacitive-based  
sensors.  
25.0 CHARGE TIME  
MEASUREMENT UNIT (CTMU)  
Note 1: This data sheet summarizes the fea-  
tures of the PIC32MX330/350/370/430/  
450/470 family of devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to  
Section 37. “Charge Time Measure-  
ment Unit (CTMU)” (DS60001167) in  
the “PIC32 Family Reference Manual”,  
which is available from the Microchip  
web site (www.microchip.com).  
The CTMU module includes the following key features:  
• Up to 13 channels available for capacitive or time  
measurement input  
• On-chip precision current source  
• 16-edge input trigger sources  
• Selection of edge or level-sensitive inputs  
• Polarity control for each edge source  
• Control of edge sequence  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Control of response to edges  
• High precision time measurement  
• Time delay of external or internal signal asynchro-  
nous to system clock  
• Integrated temperature sensing diode  
• Control of current source during auto-sampling  
• Four current source ranges  
The Charge Time Measurement Unit (CTMU) is a flex-  
ible analog module that has a configurable current  
source with a digital configuration circuit built around it.  
The CTMU can be used for differential time measure-  
ment between pulse sources and can be used for gen-  
erating an asynchronous pulse. By working with other  
• Time measurement resolution of one nanosecond  
A block diagram of the CTMU is shown in Figure 25-1.  
FIGURE 25-1:  
CTMU BLOCK DIAGRAM  
CTMUCON1 or CTMUCON2  
CTMUICON  
ITRIM<5:0>  
IRNG<1:0>  
Current Source  
CTED1  
Edge  
Control  
Logic  
ADC  
Trigger  
CTMU  
Control  
Logic  
EDG1STAT  
EDG2STAT  
TGEN  
CTED13  
Current  
Control  
Timer1  
OC1  
IC1-IC3  
Pulse  
Generator  
CTMUP  
CTPLS  
CMP1-CMP2  
PBCLK  
CTMUI  
(To ADC S&H capacitor)  
CTMUT  
(To ADC)  
C2INB  
Temperature  
Sensor  
CDelay  
Comparator 2  
External capacitor  
for pulse generation  
Current Control Selection  
TGEN  
EDG1STAT, EDG2STAT  
CTMUT  
0
0
1
1
EDG1STAT = EDG2STAT  
EDG1STAT EDG2STAT  
EDG1STAT EDG2STAT  
EDG1STAT = EDG2STAT  
CTMUI  
CTMUP  
No Connect  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 243  
PIC32MX330/350/370/430/450/470  
25.1 Control Register  
REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER  
Bit  
Range  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
25/17/9/1  
Bit  
24/16/8/0  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
31:24  
23:16  
15:8  
7:0  
EDG1MOD EDG1POL  
EDG1SEL<3:0>  
R/W-0  
EDG2STAT EDG1STAT  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U-0  
R/W-0  
CTTRIG  
R/W-0  
EDG2MOD EDG2POL  
EDG2SEL<3:0>  
R/W-0  
R/W-0  
ON  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CTMUSIDL TGEN(1)  
EDGEN EDGSEQEN IDISSEN(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ITRIM<5:0>  
IRNG<1:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31  
EDG1MOD: Edge1 Edge Sampling Select bit  
1= Input is edge-sensitive  
0= Input is level-sensitive  
bit 30  
EDG1POL: Edge 1 Polarity Select bit  
1= Edge1 programmed for a positive edge response  
0= Edge1 programmed for a negative edge response  
bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits  
1111= C3OUT pin is selected  
1110= C2OUT pin is selected  
1101= C1OUT pin is selected  
1100= IC3 Capture Event is selected  
1011= IC2 Capture Event is selected  
1010= IC1 Capture Event is selected  
1001= CTED8 pin is selected  
1000= CTED7 pin is selected  
0111= CTED6 pin is selected  
0110= CTED5 pin is selected  
0101= CTED4 pin is selected  
0100= CTED3 pin is selected  
0011= CTED1 pin is selected  
0010= CTED2 pin is selected  
0001= OC1 Compare Event is selected  
0000= Timer1 Event is selected  
bit 25  
EDG2STAT: Edge2 Status bit  
Indicates the status of Edge2 and can be written to control edge source  
1= Edge2 has occurred  
0= Edge2 has not occurred  
Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<2:0> bits must be set to ‘1110’ to select  
C2OUT.  
2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion  
cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor  
before conducting the measurement. The IDISSEN bit, when set to ‘1’, performs this function. The ADC  
module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor  
array.  
3: Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 “Electrical  
Characteristics” for current values.  
4: This bit setting is not available for the CTMU temperature diode.  
DS60001185B-page 244  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)  
bit 24  
EDG1STAT: Edge1 Status bit  
Indicates the status of Edge1 and can be written to control edge source  
1= Edge1 has occurred  
0= Edge1 has not occurred  
bit 23  
bit 22  
EDG2MOD: Edge2 Edge Sampling Select bit  
1= Input is edge-sensitive  
0= Input is level-sensitive  
EDG2POL: Edge 2 Polarity Select bit  
1= Edge2 programmed for a positive edge response  
0= Edge2 programmed for a negative edge response  
bit 21-18 EDG2SEL<3:0>: Edge 2 Source Select bits  
1111= C3OUT pin is selected  
1110= C2OUT pin is selected  
1101= C1OUT pin is selected  
1100= PBCLK clock is selected  
1011= IC3 Capture Event is selected  
1010= IC2 Capture Event is selected  
1001= IC1 Capture Event is selected  
1000= CTED13 pin is selected  
0111= CTED12 pin is selected  
0110= CTED11 pin is selected  
0101= CTED10 pin is selected  
0100= CTED9 pin is selected  
0011= CTED1 pin is selected  
0010= CTED2 pin is selected  
0001= OC1 Compare Event is selected  
0000= Timer1 Event is selected  
bit 17-16 Unimplemented: Read as ‘0’  
bit 15  
ON: ON Enable bit  
1= Module is enabled  
0= Module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CTMUSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
TGEN: Time Generation Enable bit(1)  
1= Enables edge delay generation  
0= Disables edge delay generation  
EDGEN: Edge Enable bit  
1= Edges are not blocked  
0= Edges are blocked  
Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<2:0> bits must be set to ‘1110’ to select  
C2OUT.  
2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion  
cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor  
before conducting the measurement. The IDISSEN bit, when set to ‘1’, performs this function. The ADC  
module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor  
array.  
3: Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 “Electrical  
Characteristics” for current values.  
4: This bit setting is not available for the CTMU temperature diode.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 245  
PIC32MX330/350/370/430/450/470  
REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)  
bit 10  
EDGSEQEN: Edge Sequence Enable bit  
1= Edge1 must occur before Edge2 can occur  
0= No edge sequence is needed  
bit 9  
IDISSEN: Analog Current Source Control bit(2)  
1= Analog current source output is grounded  
0= Analog current source output is not grounded  
bit 8  
CTTRIG: Trigger Control bit  
1= Trigger output is enabled  
0= Trigger output is disabled  
bit 7-2  
ITRIM<5:0>: Current Source Trim bits  
011111= Maximum positive change from nominal current  
011110  
000001= Minimum positive change from nominal current  
000000= Nominal current output specified by IRNG<1:0>  
111111= Minimum negative change from nominal current  
100010  
100001= Maximum negative change from nominal current  
bit 1-0  
IRNG<1:0>: Current Range Select bits(3)  
11= 100 times base current  
10= 10 times base current  
01= Base current level  
00= 1000 times base current(4)  
Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<2:0> bits must be set to ‘1110’ to select  
C2OUT.  
2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion  
cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor  
before conducting the measurement. The IDISSEN bit, when set to ‘1’, performs this function. The ADC  
module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor  
array.  
3: Refer to the CTMU Current Source Specifications (Table 30-41) in Section 30.0 “Electrical  
Characteristics” for current values.  
4: This bit setting is not available for the CTMU temperature diode.  
DS60001185B-page 246  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
• LPRC Idle mode: the system clock is derived from  
26.0 POWER-SAVING FEATURES  
the LPRC. Peripherals continue to operate, but  
can optionally be individually disabled. This is the  
lowest power mode for the device with a clock  
running.  
Note 1: This data sheet summarizes the features  
of the PIC32MX330/350/370/430/450/  
470 family of devices. It is not intended to  
be a comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 10. “Power-  
Saving Features” (DS60001130) in the  
PIC32 Family Reference Manual”, which  
is available from the Microchip web site  
(www.microchip.com/PIC32).  
• Sleep mode: the CPU, the system clock source  
and any peripherals that operate from the system  
clock source are Halted. Some peripherals can  
operate in Sleep using specific clock sources.  
This is the lowest power mode for the device.  
26.3 Power-Saving Operation  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Peripherals and the CPU can be Halted or disabled to  
further reduce power consumption.  
26.3.1  
SLEEP MODE  
Sleep mode has the lowest power consumption of the  
device power-saving operating modes. The CPU and  
most peripherals are Halted. Select peripherals can  
continue to operate in Sleep mode and can be used to  
wake the device from Sleep. See the individual  
peripheral module sections for descriptions of  
behavior in Sleep.  
This section describes power-saving features for the  
PIC32MX330/350/370/430/450/470. The PIC32 devices  
offer a total of nine methods and modes, organized into  
two categories, that allow the user to balance power  
consumption with device performance. In all of the  
methods and modes described in this section, power-  
saving is controlled by software.  
Sleep mode includes the following characteristics:  
• The CPU is Halted.  
26.1 Power Saving with CPU Running  
• The system clock source is typically shutdown.  
See Section 26.3.3 “Peripheral Bus Scaling  
Method” for specific information.  
When the CPU is running, power consumption can be  
controlled by reducing the CPU clock frequency,  
lowering the PBCLK and by individually disabling  
modules. These methods are grouped into the  
following categories:  
• There can be a wake-up delay based on the  
oscillator selection.  
• The Fail-Safe Clock Monitor (FSCM) does not  
operate during Sleep mode.  
• FRC Run mode: the CPU is clocked from the FRC  
clock source with or without postscalers.  
• The BOR circuit remains operative during Sleep  
mode.  
• LPRC Run mode: the CPU is clocked from the  
LPRC clock source.  
• The WDT, if enabled, is not automatically cleared  
prior to entering Sleep mode.  
• SOSC Run mode: the CPU is clocked from the  
SOSC clock source.  
• Some peripherals can continue to operate at  
limited functionality in Sleep mode. These  
peripherals include I/O pins that detect a change  
in the input signal, WDT, ADC, UART and  
peripherals that use an external clock input or the  
internal LPRC oscillator (e.g., RTCC, Timer1 and  
Input Capture).  
In addition, the Peripheral Bus Scaling mode is available  
where peripherals are clocked at the programmable  
fraction of the CPU clock (SYSCLK).  
26.2 CPU Halted Methods  
The device supports two power-saving modes, Sleep  
and Idle, both of which Halt the clock to the CPU. These  
modes operate with all clock sources, as listed below:  
• I/O pins continue to sink or source current in the  
same manner as they do when the device is not in  
Sleep.  
• POSC Idle mode: the system clock is derived from  
the POSC. The system clock source continues to  
operate. Peripherals continue to operate, but can  
optionally be individually disabled.  
• The USB module can override the disabling of the  
Posc or FRC. Refer to the USB section for  
specific details.  
• Modules can be individually disabled by software  
prior to entering Sleep in order to further reduce  
consumption.  
• FRC Idle mode: the system clock is derived from  
the FRC with or without postscalers. Peripherals  
continue to operate, but can optionally be  
individually disabled.  
• SOSC Idle mode: the system clock is derived from  
the SOSC. Peripherals continue to operate, but  
can optionally be individually disabled.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 247  
PIC32MX330/350/370/430/450/470  
The processor will exit, or ‘wake-up’, from Sleep on one  
of the following events:  
The device enters Idle mode when the SLPEN bit  
(OSCCON<4>) is clear and a WAIT instruction is  
executed.  
• On any interrupt from an enabled source that is  
operating in Sleep. The interrupt priority must be  
greater than the current CPU priority.  
The processor will wake or exit from Idle mode on the  
following events:  
• On any form of device Reset.  
• On a WDT time-out.  
• On any interrupt event for which the interrupt  
source is enabled. The priority of the interrupt  
event must be greater than the current priority of  
the CPU. If the priority of the interrupt event is  
lower than or equal to current priority of the CPU,  
the CPU will remain Halted and the device will  
remain in Idle mode.  
If the interrupt priority is lower than or equal to the  
current priority, the CPU will remain Halted, but the  
PBCLK will start running and the device will enter into  
Idle mode.  
• On any form of device Reset  
• On a WDT time-out interrupt  
26.3.2  
IDLE MODE  
In Idle mode, the CPU is Halted but the System Clock  
(SYSCLK) source is still enabled. This allows peripher-  
als to continue operation when the CPU is Halted.  
Peripherals can be individually configured to Halt when  
entering Idle by setting their respective SIDL bit.  
Latency, when exiting Idle mode, is very low due to the  
CPU oscillator source remaining active.  
26.3.3  
PERIPHERAL BUS SCALING  
METHOD  
Most of the peripherals on the device are clocked using  
the PBCLK. The peripheral bus can be scaled relative to  
the SYSCLK to minimize the dynamic power consumed  
by the peripherals. The PBCLK divisor is controlled by  
PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to  
PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals  
using PBCLK are affected when the divisor is changed.  
Peripherals such as the USB, Interrupt Controller, DMA,  
and the bus matrix are clocked directly from SYSCLK.  
As a result, they are not affected by PBCLK divisor  
changes.  
Note 1: Changing the PBCLK divider ratio  
requires recalculation of peripheral tim-  
ing. For example, assume the UART is  
configured for 9600 baud with a PB clock  
ratio of 1:1 and a POSC of 8 MHz. When  
the PB clock divisor of 1:2 is used, the  
input frequency to the baud clock is cut in  
half; therefore, the baud rate is reduced  
to 1/2 its former value. Due to numeric  
truncation in calculations (such as the  
baud rate divisor), the actual baud rate  
may be a tiny percentage different than  
expected. For this reason, any timing cal-  
culation required for a peripheral should  
be performed with the new PB clock fre-  
quency instead of scaling the previous  
value based on a change in the PB divisor  
ratio.  
Changing the PBCLK divisor affects:  
• The CPU to peripheral access latency. The CPU  
has to wait for next PBCLK edge for a read to  
complete. In 1:8 mode, this results in a latency of  
one to seven SYSCLKs.  
• The power consumption of the peripherals. Power  
consumption is directly proportional to the fre-  
quency at which the peripherals are clocked. The  
greater the divisor, the lower the power consumed  
by the peripherals.  
2: Oscillator start-up and PLL lock delays  
are applied when switching to a clock  
source that was disabled and that uses a  
crystal and/or the PLL. For example,  
assume the clock source is switched from  
POSC to LPRC just prior to entering Sleep  
in order to save power. No oscillator start-  
up delay would be applied when exiting  
Idle. However, when switching back to  
POSC, the appropriate PLL and/or  
oscillator start-up/lock delays would be  
applied.  
To minimize dynamic power, the PB divisor should be  
chosen to run the peripherals at the lowest frequency  
that provides acceptable system performance. When  
selecting a PBCLK divider, peripheral clock require-  
ments, such as baud rate accuracy, should be taken  
into account. For example, the UART peripheral may  
not be able to achieve all baud rate values at some  
PBCLK divider depending on the SYSCLK value.  
DS60001185B-page 248  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
To disable a peripheral, the associated PMDx bit must  
26.4 Peripheral Module Disable  
be set to ‘1’. To enable a peripheral, the associated  
PMDx bit must be cleared (default). See Table 26-1 for  
more information.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers do not have effect and read  
values are invalid.  
Note:  
Disabling a peripheral module while it’s  
ON bit is set, may result in undefined  
behavior. The ON bit for the associated  
peripheral module must be cleared prior to  
disable a module via the PMDx bits.  
TABLE 26-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS  
Peripheral(1)  
PMDx bit Name(1)  
Register Name and Bit Location  
ADC1  
CTMU  
AD1MD  
CTMUMD  
CVRMD  
CMP1MD  
CMP2MD  
IC1MD  
IC2MD  
IC3MD  
IC4MD  
IC5MD  
OC1MD  
OC2MD  
OC3MD  
OC4MD  
OC5MD  
T1MD  
PMD1<0>  
PMD1<8>  
PMD1<12>  
PMD2<0>  
PMD2<1>  
PMD3<0>  
PMD3<1>  
PMD3<2>  
PMD3<3>  
PMD3<4>  
PMD3<16>  
PMD3<17>  
PMD3<18>  
PMD3<19>  
PMD3<20>  
PMD4<0>  
PMD4<1>  
PMD4<2>  
PMD4<3>  
PMD4<4>  
PMD5<0>  
PMD5<1>  
PMD5<2>  
PMD5<3>  
PMD5<4>  
PMD5<8>  
PMD5<9>  
PMD5<16>  
PMD5<17>  
PMD5<24>  
PMD6<0>  
PMD6<1>  
PMD6<16>  
Comparator Voltage Reference  
Comparator 1  
Comparator 2  
Input Capture 1  
Input Capture 2  
Input Capture 3  
Input Capture 4  
Input Capture 5  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
Timer1  
Timer2  
T2MD  
Timer3  
T3MD  
Timer4  
T4MD  
Timer5  
T5MD  
UART1  
U1MD  
UART2  
U2MD  
UART3  
U3MD  
UART4  
U4MD  
UART5  
U5MD  
SPI1  
SPI1MD  
SPI2MD  
I2C1MD  
I2C2MD  
USBMD  
RTCCMD  
REFOMD  
PMPMD  
SPI2  
I2C1  
I2C2  
USB(2)  
RTCC  
Reference Clock Output  
PMP  
Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: “PIC32MX330/350/  
370/430/450/470 Controller Family Features” for the lists of available peripherals.  
2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 249  
PIC32MX330/350/370/430/450/470  
26.4.1  
CONTROLLING CONFIGURATION  
CHANGES  
Because peripherals can be disabled during run time,  
some restrictions on disabling peripherals are needed  
to prevent accidental configuration changes. PIC32  
devices include two features to prevent alterations to  
enabled or disabled peripherals:  
• Control register lock sequence  
• Configuration bit select lock  
26.4.1.1  
Control Register Lock  
Under normal operation, writes to the PMDx registers  
are not allowed. Attempted writes appear to execute  
normally, but the contents of the registers remain  
unchanged. To change these registers, they must be  
unlocked in hardware. The register lock is controlled by  
the PMDLOCK Configuration bit (CFGCON<12>). Set-  
ting PMDLOCK prevents writes to the control registers;   
clearing PMDLOCK allows writes.  
To set or clear PMDLOCK, an unlock sequence must  
be executed. Refer to Section 6. “Oscillator”  
(DS60001112) in the “PIC32 Family Reference  
Manual” for details.  
26.4.1.2  
Configuration Bit Select Lock  
As an additional level of safety, the device can be  
configured to prevent more than one write session to  
the PMDx registers. The PMDL1WAY Configuration bit  
(DEVCFG3<28>) blocks the PMDLOCK bit from being  
cleared after it has been set once. If PMDLOCK  
remains set, the register unlock procedure does not  
execute, and the peripheral pin select control registers  
cannot be written to. The only way to clear the bit and  
re-enable PMD functionality is to perform a device  
Reset.  
DS60001185B-page 250  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
27.1 Configuration Bits  
27.0 SPECIAL FEATURES  
The Configuration bits can be programmed using the  
following registers to select various device  
configurations.  
Note 1: This data sheet summarizes the  
features of the PIC32MX330/350/370/  
430/450/470 family of devices. However,  
it is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 9. “Watchdog Timer and  
DEVCFG0: Device Configuration Word 0  
DEVCFG1: Device Configuration Word 1  
DEVCFG2: Device Configuration Word 2  
DEVCFG3: Device Configuration Word 3  
CFGCON: Configuration Control Register  
Power-up  
Section  
Timer”  
32.  
(DS60001114),  
“Configuration”  
(DS60001124)  
“Programming  
and  
and  
Section  
Diagnostics”  
33.  
In addition, the DEVID register (Register 27-6)  
provides device and revision information.  
(DS60001129) in the “PIC32 Family  
Reference Manual”, which are available  
from  
the  
Microchip  
web  
site  
(www.microchip.com/PIC32).  
PIC32MX330/350/370/430/450/470 devices include  
several features intended to maximize application flex-  
ibility and reliability and minimize cost through elimina-  
tion of external components. These are:  
• Flexible device configuration  
• Watchdog Timer (WDT)  
• Joint Test Action Group (JTAG) interface  
• In-Circuit Serial Programming™ (ICSP™)  
REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
r-0  
r-1  
r-1  
r-1  
r-1  
r-1  
R/P  
CP  
r-1  
r-1  
r-1  
r-1  
R/P  
BWP  
R/P  
31:24  
23:16  
15:8  
7:0  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
PWP<7:0>  
r-1  
r-1  
r-1  
r-1  
PWP<3:0>  
r-1  
r-1  
r-1  
R/P  
R/P  
R/P  
JTAGEN(1)  
R/P  
R/P  
ICESEL<1:0>  
DEBUG<1:0>  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 31  
bit 30-29 Reserved: Write ‘1’  
bit 28 CP: Code-Protect bit  
Reserved: Write ‘0’  
Prevents boot and program Flash memory from being read or modified by an external pro-  
gramming device.  
1= Protection is disabled  
0= Protection is enabled  
bit 27-25 Reserved: Write ‘1’  
Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 251  
PIC32MX330/350/370/430/450/470  
REGISTER 27-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)  
bit 24  
BWP: Boot Flash Write-Protect bit  
Prevents boot Flash memory from being modified during code execution.  
1= Boot Flash is writable  
0= Boot Flash is not writable  
bit 23-20 Reserved: Write ‘1’  
bit 19-12 PWP<7:0>: Program Flash Write-Protect bits  
Prevents selected program Flash memory pages from being modified during code execution. The PWP bits  
represent the one’s compliment of the number of write protected program Flash memory pages.  
11111111= Disabled  
11111110= 0xBD00_0FFF  
11111101= 0xBD00_1FFF  
11111100= 0xBD00_2FFF  
11111011= 0xBD00_3FFF  
11111010= 0xBD00_4FFF  
11111001= 0xBD00_5FFF  
11111000= 0xBD00_6FFF  
11110111= 0xBD00_7FFF  
11110110= 0xBD00_8FFF  
11110101= 0xBD00_9FFF  
11110100= 0xBD00_AFFF  
11110011= 0xBD00_BFFF  
11110010= 0xBD00_CFFF  
11110001= 0xBD00_DFFF  
11110000= 0xBD00_EFFF  
11101111= 0xBD00_FFFF  
.
.
.
01111111= 0xBD07_FFFF  
bit 11-5 Reserved: Write ‘1’  
bit 4-3  
ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits  
11= PGEC1/PGED1 pair is used  
10= PGEC2/PGED2 pair is used  
01= PGEC3/PGED3 pair is used  
00= Reserved  
bit 2  
JTAGEN: JTAG Enable bit(1)  
1= JTAG is enabled  
0= JTAG is disabled  
bit 1-0  
DEBUG<1:0>: Background Debugger Enable bits (forced to ‘11’ if code-protect is enabled)  
1x= Debugger is disabled  
0x= Debugger is enabled  
Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.  
DS60001185B-page 252  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 27-2: DEVCFG1: DEVICE CONFIGURATION WORD 1  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
R/P  
R/P  
31:24  
23:16  
15:8  
7:0  
R/P  
FWDTWINSZ<1:0>  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
FWDTEN  
R/P  
WINDIS  
R/P  
R/P  
WDTPS<4:0>  
R/P  
R/P  
r-1  
r-1  
R/P  
R/P  
FCKSM<1:0>  
FPBDIV<1:0>  
OSCIOFNC  
R/P  
POSCMOD<1:0>  
R/P  
r-1  
R/P  
r-1  
R/P  
R/P  
IESO  
FSOSCEN  
FNOSC<2:0>  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-26 Reserved: Write ‘1’  
bit 25-24 FWDTWINSZ: Watchdog Timer Window Size bits  
11= Window size is 25%  
10= Window size is 37.5%  
01= Window size is 50%  
00= Window size is 75%  
bit 23  
bit 22  
bit 21  
FWDTEN: Watchdog Timer Enable bit  
1= Watchdog Timer is enabled and cannot be disabled by software  
0= Watchdog Timer is not enabled; it can be enabled in software  
WINDIS: Watchdog Timer Window Enable bit  
1= Watchdog Timer is in non-Window mode  
0= Watchdog Timer is in Window mode  
Reserved: Write ‘1’  
bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits  
10100= 1:1048576  
10011= 1:524288  
10010= 1:262144  
10001= 1:131072  
10000= 1:65536  
01111= 1:32768  
01110= 1:16384  
01101= 1:8192  
01100= 1:4096  
01011= 1:2048  
01010= 1:1024  
01001= 1:512  
01000= 1:256  
00111= 1:128  
00110= 1:64  
00101= 1:32  
00100= 1:16  
00011= 1:8  
00010= 1:4  
00001= 1:2  
00000= 1:1  
All other combinations not shown result in operation = 10100  
Note 1: Do not disable the POSC (POSCMOD = 11) when using this oscillator source.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 253  
PIC32MX330/350/370/430/450/470  
REGISTER 27-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)  
bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits  
11= PBCLK is SYSCLK divided by 8  
10= PBCLK is SYSCLK divided by 4  
01= PBCLK is SYSCLK divided by 2  
00= PBCLK is SYSCLK divided by 1  
bit 11  
bit 10  
Reserved: Write ‘1’  
OSCIOFNC: CLKO Enable Configuration bit  
1= CLKO output disabled  
0= CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the  
External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11or 00)  
bit 9-8  
bit 7  
POSCMOD<1:0>: Primary Oscillator Configuration bits  
11= Primary Oscillator disabled  
10= HS Oscillator mode selected  
01= XT Oscillator mode selected  
00= External Clock mode selected  
IESO: Internal External Switchover bit  
1= Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)  
0= Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)  
bit 6  
bit 5  
Reserved: Write ‘1’  
FSOSCEN: Secondary Oscillator Enable bit  
1= Enable Secondary Oscillator  
0= Disable Secondary Oscillator  
bit 4-3  
bit 2-0  
Reserved: Write ‘1’  
FNOSC<2:0>: Oscillator Selection bits  
111= Fast RC Oscillator with divide-by-N (FRCDIV)  
110= FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator (POSC) with PLL module (XT+PLL, HS+PLL, EC+PLL)  
010= Primary Oscillator (XT, HS, EC)(1)  
001= Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)  
000= Fast RC Oscillator (FRC)  
Note 1: Do not disable the POSC (POSCMOD = 11) when using this oscillator source.  
DS60001185B-page 254  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 27-3: DEVCFG2: DEVICE CONFIGURATION WORD 2  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
r-1  
31:24  
23:16  
15:8  
7:0  
R/P  
r-1  
r-1  
r-1  
r-1  
R/P  
R/P  
FPLLODIV<2:0>  
R/P  
UPLLIDIV<2:0>(1)  
R/P  
R/P  
UPLLEN(1)  
r-1  
r-1  
r-1  
R/P  
R/P  
R/P  
R/P  
R/P  
r-1  
R/P-1  
R/P-1  
FPLLMUL<2:0>  
FPLLIDIV<2:0>  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 31-19 Reserved: Write ‘1’  
bit 18-16 FPLLODIV<2:0>: Default PLL Output Divisor bits  
111= PLL output divided by 256  
110= PLL output divided by 64  
101= PLL output divided by 32  
100= PLL output divided by 16  
011= PLL output divided by 8  
010= PLL output divided by 4  
001= PLL output divided by 2  
000= PLL output divided by 1  
bit 15  
UPLLEN: USB PLL Enable bit(1)  
1= Disable and bypass USB PLL  
0= Enable USB PLL  
bit 14-11 Reserved: Write ‘1’  
bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits(1)  
111= 12x divider  
110= 10x divider  
101= 6x divider  
100= 5x divider  
011= 4x divider  
010= 3x divider  
010= 3x divider  
001= 2x divider  
000= 1x divider  
bit 7  
Reserved: Write ‘1’  
bit 6-4  
FPLLMUL<2:0>: PLL Multiplier bits  
111= 24x multiplier  
110= 21x multiplier  
101= 20x multiplier  
100= 19x multiplier  
011= 18x multiplier  
010= 17x multiplier  
001= 16x multiplier  
000= 15x multiplier  
bit 3  
Reserved: Write ‘1’  
Note 1: This bit is available on PIC32MX4XX devices only.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 255  
PIC32MX330/350/370/430/450/470  
REGISTER 27-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)  
bit 2-0  
FPLLIDIV<2:0>: PLL Input Divider bits  
111= 12x divider  
110= 10x divider  
101= 6x divider  
100= 5x divider  
011= 4x divider  
010= 3x divider  
001= 2x divider  
000= 1x divider  
Note 1: This bit is available on PIC32MX4XX devices only.  
DS60001185B-page 256  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 27-4: DEVCFG3: DEVICE CONFIGURATION WORD 3  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7  
30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0  
R/P  
R/P  
R/P  
R/P  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
FVBUSONIO FUSBIDIO IOL1WAY PMDL1WAY  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P  
R/P  
FSRSSEL<2:0>  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
USERID<15:8>  
R/P  
R/P  
R/P  
R/P  
R/P  
R/P  
USERID<7:0>  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 31  
bit 30  
bit 29  
bit 28  
FVBUSONIO: USB VBUS_ON Selection bit  
1= VBUSON pin is controlled by the USB module  
0= VBUSON pin is controlled by the port function  
FUSBIDIO: USB USBID Selection bit  
1= USBID pin is controlled by the USB module  
0= USBID pin is controlled by the port function  
IOL1WAY: Peripheral Pin Select Configuration bit  
1= Allow only one reconfiguration  
0= Allow multiple reconfigurations  
PMDL1WAY: Peripheral Module Disable Configuration bit  
1= Allow only one reconfiguration  
0= Allow multiple reconfigurations  
bit 27-19 Unimplemented: Read as ‘0’  
bit 18-16 FSRSSEL<2:0>: Shadow Register Set Priority Select bit  
These bits assign an interrupt priority to a shadow register.  
111= Shadow register set used with interrupt priority 7  
110= Shadow register set used with interrupt priority 6  
101= Shadow register set used with interrupt priority 5  
100= Shadow register set used with interrupt priority 4  
011= Shadow register set used with interrupt priority 3  
010= Shadow register set used with interrupt priority 2  
001= Shadow register set used with interrupt priority 1  
000= Shadow register set used with interrupt priority 0  
bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 257  
PIC32MX330/350/370/430/450/470  
REGISTER 27-5: CFGCON: CONFIGURATION CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5  
28/20/12/4  
27/19/11/3 26/18/10/2 25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
IOLOCK(1) PMDLOCK(1)  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
U-0  
R/W-1  
JTAGEN  
TROEN  
TDOEN  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-14 Unimplemented: Read as ‘0’  
bit 13  
IOLOCK: Peripheral Pin Select Lock bit(1)  
1= Peripheral Pin Select is locked. Writes to PPS registers is not allowed.  
0= Peripheral Pin Select is not locked. Writes to PPS registers is allowed.  
bit 12  
PMDLOCK: Peripheral Module Disable bit(1)  
1= Peripheral module is locked. Writes to PMD registers is not allowed.  
0= Peripheral module is not locked. Writes to PMD registers is allowed.  
bit 11-4 Unimplemented: Read as ‘0’  
bit 3  
JTAGEN: JTAG Port Enable bit  
1= Enable the JTAG port  
0= Disable the JTAG port  
bit 2  
TROEN: Trace Output Enable bit  
1= Enable trace outputs and start trace clock (trace probe must be present)  
0= Disable trace outputs and stop trace clock  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TDOEN: TDO Enable for 2-Wire JTAG  
1= 2-wire JTAG protocol uses TDO  
0= 2-wire JTAG protocol does not use TDO  
Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. “Oscillator”  
(DS60001112) in the “PIC32 Family Reference Manual” for details.  
DS60001185B-page 258  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 27-6: DEVID: DEVICE AND REVISION ID REGISTER  
Bit Bit Bit Bit Bit Bit  
Range 31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3  
Bit  
26/18/10/2  
Bit  
Bit  
25/17/9/1 24/16/8/0  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
31:24  
23:16  
15:8  
7:0  
VER<3:0>(1)  
DEVID<27:24>(1)  
R
R
R
R
R
R
R
R
R
R
R
DEVID<23:16>(1)  
R
R
DEVID<15:8>(1)  
R
R
DEVID<7:0>(1)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 31-28 VER<3:0>: Revision Identifier bits(1)  
bit 27-0 DEVID<27:0>: Device ID(1)  
Note 1: See the “PIC32 Flash Programming Specification” (DS60001145) for a list of Revision and Device ID values.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 259  
PIC32MX330/350/370/430/450/470  
The following are some of the key features of the WDT  
module:  
27.2 Watchdog Timer (WDT)  
This section describes the operation of the WDT and  
Power-up Timer of the PIC32MX330/350/370/430/450/  
470.  
• Configuration or software controlled  
• User-configurable time-out period  
• Can wake the device from Sleep or Idle  
The WDT, when enabled, operates from the internal  
Low-Power Oscillator (LPRC) clock source and can be  
used to detect system software malfunctions by reset-  
ting the device if the WDT is not cleared periodically in  
software. Various WDT time-out periods can be  
selected using the WDT postscaler. The WDT can also  
be used to wake the device from Sleep or Idle mode.  
FIGURE 27-1:  
WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM  
PWRT Enable  
WDT Enable  
LPRC  
Control  
PWRT Enable  
1:64 Output  
PWRT  
LPRC  
Oscillator  
1
Clock  
25-bit Counter  
25  
WDTCLR = 1  
WDT Enable  
Wake  
Device Reset  
NMI (Wake-up)  
0
1
WDT Counter Reset  
WDT Enable  
Reset Event  
Power Save  
Decoder  
FWDTPS<4:0> (DEVCFG1<20:16>)  
DS60001185B-page 260  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
REGISTER 27-7: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Bit  
Range  
31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2  
25/17/9/1  
24/16/8/0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
31:24  
23:16  
15:8  
7:0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
ON(1,2)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-y  
R-y  
R-y  
R-y  
R-y  
R/W-0  
R/W-0  
SWDTPS<4:0>  
WDTWINEN WDTCLR  
x = Bit is unknown  
Legend:  
y = Values set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
bit 31-16 Unimplemented: Read as ‘0’  
bit 15  
ON: Watchdog Timer Enable bit(1,2)  
1= Enables the WDT if it is not enabled by the device configuration  
0= Disable the WDT if it was enabled in software  
bit 14-7 Unimplemented: Read as ‘0’  
bit 6-2  
SWDTPS<4:0>: Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits  
On reset, these bits are set to the values of the WDTPS <4:0> of Configuration bits.  
bit 1  
WDTWINEN: Watchdog Timer Window Enable bit  
1= Enable windowed Watchdog Timer  
0= Disable windowed Watchdog Timer  
bit 0  
WDTCLR: Watchdog Timer Reset bit  
1= Writing a ‘1’ will clear the WDT  
0= Software cannot force this bit to a ‘0’  
Note 1: A read of this bit results in a ‘1’ if the Watchdog Timer is enabled by the device configuration or software.  
2: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in  
the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 261  
PIC32MX330/350/370/430/450/470  
27.3 On-Chip Voltage Regulator  
27.4 Programming and Diagnostics  
PIC32MX330/350/370/430/450/470 devices provide a  
complete range of programming and diagnostic fea-  
tures that can increase the flexibility of any application  
using them. These features allow system designers to  
include:  
All PIC32MX330/350/370/430/450/470 devices’ core  
and digital logic are designed to operate at a nominal  
1.8V. To simplify system designs, most devices in the  
PIC32MX330/350/370/430/450/470 family incorporate  
an on-chip regulator providing the required core logic  
voltage from VDD.  
• Simplified field programmability using two-wire   
In-Circuit Serial Programming™ (ICSP™)  
interfaces  
A low-ESR capacitor (such as tantalum) must be  
connected to the VCAP pin (see Figure 27-2). This  
helps to maintain the stability of the regulator. The  
recommended value for the filter capacitor is provided  
in Section 30.1 “DC Characteristics”.  
• Debugging using ICSP  
• Programming and debugging capabilities using  
the EJTAG extension of JTAG  
Note:  
It is important that the low-ESR capacitor  
is placed as close as possible to the VCAP  
pin.  
• JTAG boundary scan testing for device and board  
diagnostics  
PIC32 devices incorporate two programming and diag-  
nostic modules, and a trace controller, that provide a  
range of functions to the application developer.  
27.3.1  
HIGH VOLTAGE DETECT (HVD)  
The HVD module monitors the core voltage at the VCAP  
pin. If a voltage above the required level is detected on  
VCAP, the I/O pins are disabled and the device is held  
in Reset as long as the HVD condition persists. See  
parameter HV10 (VHVD) in Table 30-11 in Section 30.1  
“DC Characteristics” for more information.  
FIGURE 27-3:  
BLOCK DIAGRAM OF  
PROGRAMMING,  
DEBUGGING AND TRACE  
PORTS  
27.3.2  
ON-CHIP REGULATOR AND POR  
PGEC1  
PGED1  
It takes a fixed delay for the on-chip regulator to generate  
an output. During this time, designated as TPU, code  
execution is disabled. TPU is applied every time the  
device resumes operation after any power-down,  
including Sleep mode.  
ICSP™  
Controller  
PGEC3  
PGED3  
27.3.3  
ON-CHIP REGULATOR AND BOR  
PIC32MX330/350/370/430/450/470 devices also have  
a simple brown-out capability. If the voltage supplied to  
the regulator is inadequate to maintain a regulated  
level, the regulator Reset circuitry will generate a  
Brown-out Reset. This event is captured by the BOR  
flag bit (RCON<1>). The brown-out voltage levels are  
specific in Section 30.1 “DC Characteristics”.  
ICESEL  
TDI  
TDO  
TCK  
TMS  
JTAG  
Core  
Controller  
FIGURE 27-2:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
JTAGEN DEBUG<1:0>  
3.3V(1)  
TRCLK  
TRD0  
TRD1  
TRD2  
TRD3  
PIC32  
VDD  
Instruction Trace  
Controller  
VCAP  
VSS  
(2,3)  
CEFC  
(10 F typ)  
DEBUG<1:0>  
Note 1: These are typical operating voltages. Refer to  
Section 30.1 “DC Characteristics” for the full  
operating ranges of VDD.  
2: It is important that the low-ESR capacitor is  
placed as close as possible to the VCAP pin.  
3: The typical voltage on the VCAP pin is 1.8V.  
DS60001185B-page 262  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
28.0 INSTRUCTION SET  
The PIC32MX330/350/370/430/450/470 family instruc-  
tion set complies with the MIPS32® Release 2 instruc-  
tion set architecture. The PIC32 device family does not  
support the following features:  
• Core extend instructions  
• Coprocessor 1 instructions  
• Coprocessor 2 instructions  
Note:  
Refer to “MIPS32® Architecture for  
Programmers Volume II: The MIPS32®  
Instruction Set” at www.mips.com for  
more information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 263  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 264  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
29.1 MPLAB Integrated Development  
Environment Software  
29.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as   
- MPLAB ICD 3  
IAR C Compilers  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 265  
PIC32MX330/350/370/430/450/470  
29.2 MPLAB C Compilers for Various  
Device Families  
29.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
29.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
29.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
29.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline   
assembly code  
• Conditional assembly for multi-purpose   
source files  
• Directives that allow complete control over the  
assembly process  
DS60001185B-page 266  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
29.7 MPLAB SIM Software Simulator  
29.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
29.10 PICkit 3 In-Circuit Debugger/  
Programmer and   
29.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 267  
PIC32MX330/350/370/430/450/470  
29.11 PICkit 2 Development  
Programmer/Debugger and   
PICkit 2 Debug Express  
29.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
29.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS60001185B-page 268  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
30.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the PIC32MX330/350/370/430/450/470 electrical characteristics. Additional  
information will be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC32MX330/350/370/430/450/470 devices are listed below. Exposure to these  
maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these  
or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.  
Absolute Maximum Ratings  
(See Note 1)  
Ambient temperature under bias.............................................................................................................-40°C to +105°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant, with respect to VSS (Note 3)......................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 2.3V (Note 3)........................................ -0.3V to +6.0V  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V (Note 3)........................................ -0.3V to +3.6V  
Voltage on D+ or D- pin with respect to VUSB3V3 ..................................................................... -0.3V to (VUSB3V3 + 0.3V)  
Voltage on VBUS with respect to VSS ....................................................................................................... -0.3V to +5.5V  
Maximum current out of VSS pin(s).......................................................................................................................200 mA  
Maximum current into VDD pin(s) (Note 2)............................................................................................................200 mA  
Maximum output current sourced/sunk by any 4x I/O pin.......................................................................................15 mA  
Maximum output current sourced/sunk by any 8x I/O pin.......................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................150 mA  
Maximum current sourced by all ports (Note 2)....................................................................................................150 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions,  
above those indicated in the operation listings of this specification, is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).  
3: See the Pin Diagramssection for the 5V tolerant pins.  
4: All specifications in this section are Preliminary, with the exception of the Power-Down Current for  
PIC32MX350/450 devices, which are Advance Information (see Table 30-7).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 269  
PIC32MX330/350/370/430/450/470  
30.1 DC Characteristics  
TABLE 30-1: OPERATING MIPS VS. VOLTAGE  
Max. Frequency  
VDD Range  
(in Volts)  
Temp. Range  
(in °C)  
Characteristic  
PIC32MX330/350/370/430/450/470  
DC5  
2.3-3.6V(1)  
2.3-3.6V(1)  
-40°C to +85°C  
-40°C to +105°C  
80 MHz  
80 MHz  
DC5b  
Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device  
Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to  
parameter BO10 in Table 30-10 for VBORMIN values.  
TABLE 30-2: THERMAL OPERATING CONDITIONS  
Rating  
Industrial Temperature Devices  
Symbol  
Min.  
Typical  
Max.  
Unit  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
V-temp Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+105  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD – S IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristics  
Symbol Typical  
Max.  
Unit  
Notes  
Package Thermal Resistance, 64-pin QFN (9x9x0.9 mm)  
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)  
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)  
Package Thermal Resistance, 124-pin VTLA  
JA  
JA  
JA  
JA  
JA  
28  
47  
43  
43  
21  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
DS60001185B-page 270  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
DC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Typical  
Max. Units  
Conditions  
Operating Voltage  
DC10  
DC12  
VDD  
VDR  
Supply Voltage  
2.3  
3.6  
V
V
RAM Data Retention Voltage  
(Note 1)  
1.75  
DC16  
DC17  
VPOR  
SVDD  
VDD Start Voltage  
to Ensure Internal   
Power-on Reset Signal  
1.75  
2.1  
V
VDD Rise Rate  
0.00005  
0.115 V/s  
to Ensure Internal  
Power-on Reset Signal  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 271  
PIC32MX330/350/370/430/450/470  
TABLE 30-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.3V to 3.6V  
DC CHARACTERIS-  
TICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
Parameter  
Typical(3) Maximum  
Units  
Conditions  
No.  
Operating Current (IDD)(1,2)  
DC20  
DC21  
DC22  
DC23  
DC24  
DC25  
DC26  
2.5  
6
4
mA  
mA  
mA  
mA  
mA  
mA  
µA  
4 MHz  
9
10 MHz (Note 4)  
20 MHz (Note 4)  
40 MHz (Note 4)  
60 MHz (Note 4)  
80 MHz  
11  
17  
32  
45  
60  
21  
30  
40  
100  
+25ºC, 3.3V  
LPRC (31 kHz) (Note 4)  
Note 1: A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors,  
such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code  
execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate,  
oscillator type, as well as temperature, can have an impact on the current consumption.  
2: The test conditions for IDD measurements are as follows:  
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by  
external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)  
• OSC2/CLKO is configured as an I/O input pin  
• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8  
• CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait  
states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1  
• No peripheral modules are operating (ON bit = 0), but the associated PMD bit is clear  
• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD  
• CPU executing while(1)statement from Flash  
• RTCC and JTAG are disabled  
3: Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated.  
Parameters are for design guidance only and are not tested.  
4: This parameter is characterized, but not tested in manufacturing.  
DS60001185B-page 272  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
DC CHARACTERISTICS  
Parameter  
Typical(2)  
No.  
Maximum  
Units  
Conditions  
Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)  
DC30a  
DC31a  
DC32a  
DC33a  
DC34a  
DC34b  
DC37a  
DC37b  
DC37c  
1
3
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
4 MHz  
5
10 MHz (Note 3)  
20 MHz (Note 3)  
40 MHz (Note 3)  
60 MHz (Note 3)  
80 MHz  
5
7
8
13  
18  
24  
11  
15  
100  
250  
380  
-40°C  
+25°C  
+85°C  
LPRC (31 kHz)  
(Note 3)  
3.3V  
Note 1: The test conditions for IIDLE measurements are as follows:  
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by  
external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)  
• OSC2/CLKO is configured as an I/O input pin  
• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8  
• CPU is in Idle mode (CPU core is halted), program Flash memory Wait states = 7, Program Cache  
and Prefetch are disabled and SRAM data memory Wait states = 1  
• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared  
• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD  
• RTCC and JTAG are disabled  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
3: This parameter is characterized, but not tested in manufacturing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 273  
PIC32MX330/350/370/430/450/470  
TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
DC CHARACTER-  
ISTICS  
Param.  
No.  
Typical(2) Maximum Units  
Conditions  
PIC32MX330/430 Devices Only  
Power-Down Current (IPD) (Note 1)  
DC40k  
DC40l  
12  
21  
16  
28  
A  
A  
A  
µA  
-40°C  
+25°C  
+85°C  
+105ºC  
Base Power-Down Current  
DC40n  
DC40m  
128  
261  
167  
419  
Module Differential Current  
DC41e  
DC42e  
DC43d  
6.7  
A  
A  
A  
3V  
3V  
3V  
Watchdog Timer Current: IWDT (Note 3)  
RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3)  
ADC: IADC (Notes 3,4)  
29.1  
1000  
PIC32MX350/450 Devices Only (Note 5)  
Power-Down Current (IPD) (Note 1)  
DC40k  
DC40l  
12  
26  
19  
42  
A  
A  
A  
µA  
-40°C  
+25°C  
+85°C  
+105ºC  
Base Power-Down Current  
DC40n  
DC40m  
220  
468  
352  
749  
Module Differential Current  
DC41e  
DC42e  
DC43d  
6.7  
A  
A  
A  
3V  
3V  
3V  
Watchdog Timer Current: IWDT (Note 3)  
RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3)  
ADC: IADC (Notes 3,4)  
29.1  
1000  
Note 1: The test conditions for IPD measurements are as follows:  
• Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by  
external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)  
• OSC2/CLKO is configured as an I/O input pin  
• USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8  
• CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are dis-  
abled and SRAM data memory Wait states = 1  
• No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set  
• WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD  
• RTCC and JTAG are disabled  
• Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)  
2: Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
3: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.  
5: The Power-Down Current specifications for PIC32MX350/450 devices is Advance Information.  
DS60001185B-page 274  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise  
stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
Param.  
No.  
Symb.  
Characteristics  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
Input Low Voltage  
I/O Pins with PMP  
I/O Pins  
VIL  
DI10  
VSS  
VSS  
VSS  
0.15 VDD  
0.2 VDD  
0.3 VDD  
V
V
V
DI18  
DI19  
SDAx, SCLx  
SMBus disabled   
(Note 4)  
SDAx, SCLx  
VSS  
0.8  
V
SMBus enabled   
(Note 4)  
Input High Voltage  
VIH  
DI20  
I/O Pins not 5V-tolerant(5)  
0.65 VDD  
VDD  
5.5  
V
V
(Note 4,6)  
(Note 4,6)  
I/O Pins 5V-tolerant with  
PMP(5)  
I/O Pins 5V-tolerant(5)  
0.25 VDD + 0.8V  
0.65 VDD  
0.65 VDD  
5.5  
5.5  
V
V
DI28  
DI29  
SDAx, SCLx  
SMBus disabled   
(Note 4,6)  
SDAx, SCLx  
2.1  
5.5  
V
SMBus enabled,   
2.3V VPIN 5.5   
(Note 4,6)  
DI30  
DI31  
ICNPU Change Notification   
50  
250  
50  
400  
A VDD = 3.3V, VPIN = VSS  
Pull-up Current  
(Note 6)  
ICNPD Change Notification   
µA VDD = 3.3V, VPIN = VDD  
Pull-down Current(4)  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: This parameter is characterized, but not tested in manufacturing.  
5: See the “Pin Diagrams” section for the 5V tolerant pins.  
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the user-  
selectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32  
device are guaranteed to be recognized only as a logic “high” internally to the PIC32 device, provided  
that the external load does not exceed the minimum value of ICNPU. For External “input” logic inputs that  
require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use  
an external pull-up resistor rather than the internal pull-ups of the PIC32 device.  
7: VIL source < (VSS - 0.3). Characterized but not tested.  
8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.  
9: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any  
“positive” input injection current.  
10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD  
+ 0.3) or VIL source < (VSS - 0.3)).  
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the “absolute instantaneous” sum of the input injection currents from all pins do not exceed the spec-  
ified limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) /  
RS). RS = Resistance between input source voltage and device pin. If (VSS - 0.3) VSOURCE (VDD +  
0.3), injection current = 0.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 275  
PIC32MX330/350/370/430/450/470  
TABLE 30-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise  
stated)  
Operating temperature  
DC CHARACTERISTICS  
-40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
Param.  
No.  
Symb.  
Characteristics  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
Input Leakage Current  
(Note 3)  
IIL  
DI50  
I/O Ports  
+1  
+1  
A VSS VPIN VDD,  
Pin at high-impedance  
DI51  
Analog Input Pins  
A VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR(2)  
OSC1  
+1  
+1  
A VSS VPIN VDD  
A VSS VPIN VDD,   
XT and HS modes  
Pins with Analog functions.  
Exceptions: [N/A] = 0 mA  
max  
Digital 5V tolerant desig-  
mA nated pins. Exceptions:   
[N/A] = 0 mA max  
Input Low Injection  
Current  
DI60a IICL  
0
-5(7,10)  
Digital non-5V tolerant desig-  
nated pins. Exceptions:   
[N/A] = 0 mA max  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: This parameter is characterized, but not tested in manufacturing.  
5: See the “Pin Diagrams” section for the 5V tolerant pins.  
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the user-  
selectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32  
device are guaranteed to be recognized only as a logic “high” internally to the PIC32 device, provided  
that the external load does not exceed the minimum value of ICNPU. For External “input” logic inputs that  
require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use  
an external pull-up resistor rather than the internal pull-ups of the PIC32 device.  
7: VIL source < (VSS - 0.3). Characterized but not tested.  
8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.  
9: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any  
“positive” input injection current.  
10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD  
+ 0.3) or VIL source < (VSS - 0.3)).  
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the “absolute instantaneous” sum of the input injection currents from all pins do not exceed the spec-  
ified limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) /  
RS). RS = Resistance between input source voltage and device pin. If (VSS - 0.3) VSOURCE (VDD +  
0.3), injection current = 0.  
DS60001185B-page 276  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise  
stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
Param.  
No.  
Symb.  
Characteristics  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
Pins with Analog functions.  
Exceptions: [SOSCI] = 0 mA  
max.  
Digital 5V tolerant desig-  
Input High Injection  
Current  
nated pins (VIH < 5.5V)(9)  
Exceptions: [All] = 0 mA  
max.  
.
DI60b IICH  
0
+5(8,9,10) mA  
Digital non-5V tolerant desig-  
nated pins. Exceptions:   
[N/A] = 0 mA max.  
DI60c IICT Total Input Injection  
Current (sum of all I/O  
-20(11)  
+20(11)  
mA Absolute instantaneous sum  
of all ± input injection cur-  
rents from all I/O pins  
and control pins)  
( | IICL + | IICH | )  IICT  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: This parameter is characterized, but not tested in manufacturing.  
5: See the “Pin Diagrams” section for the 5V tolerant pins.  
6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the user-  
selectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32  
device are guaranteed to be recognized only as a logic “high” internally to the PIC32 device, provided  
that the external load does not exceed the minimum value of ICNPU. For External “input” logic inputs that  
require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use  
an external pull-up resistor rather than the internal pull-ups of the PIC32 device.  
7: VIL source < (VSS - 0.3). Characterized but not tested.  
8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.  
9: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any  
“positive” input injection current.  
10: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD  
+ 0.3) or VIL source < (VSS - 0.3)).  
11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the “absolute instantaneous” sum of the input injection currents from all pins do not exceed the spec-  
ified limit. If Note 7, IICL = (((Vss - 0.3) - VIL source) / Rs). If Note 8, IICH = ((IICH source - (VDD + 0.3)) /  
RS). RS = Resistance between input source voltage and device pin. If (VSS - 0.3) VSOURCE (VDD +  
0.3), injection current = 0.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 277  
PIC32MX330/350/370/430/450/470  
TABLE 30-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
DC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param. Symbol  
Characteristic  
Min.  
Typ. Max. Units  
Conditions  
Output Low Voltage  
I/O Pins:  
IOL 9 mA, VDD = 3.3V  
4x Sink Driver Pins - All I/O  
output pins not defined as 8x  
Sink Driver pins  
0.4  
0.4  
V
V
V
V
V
DO10 VOL  
Output Low Voltage  
I/O Pins:  
8x Sink Driver Pins - RC15,  
RD2, RD10, RF6, RG6  
IOL 15 mA, VDD = 3.3V  
IOH -10 mA, VDD = 3.3V  
IOH -15 mA, VDD = 3.3V  
Output High Voltage  
I/O Pins:  
4x Source Driver Pins - All I/O  
output pins not defined as 8x  
Source Driver pins  
2.4  
DO20 VOH  
Output High Voltage  
I/O Pins:  
8x Source Driver Pins - RC15,  
RD2, RD10, RF6, RG6  
2.4  
1.5(1)  
2.0(1)  
IOH -14 mA, VDD = 3.3V  
IOH -12 mA, VDD = 3.3V  
Output High Voltage  
I/O Pins:  
4x Source Driver Pins - All I/O  
output pins not defined as 8x  
Sink Driver pins  
3.0(1)  
IOH -7 mA, VDD = 3.3V  
DO20A VOH1  
1.5(1)  
2.0(1)  
3.0(1)  
IOH -22 mA, VDD = 3.3V  
IOH -18 mA, VDD = 3.3V  
IOH -10 mA, VDD = 3.3V  
Output High Voltage  
I/O Pins:  
8x Source Driver Pins - RC15,  
RD2, RD10, RF6, RG6  
V
Note 1: Parameters are characterized, but not tested.  
DS60001185B-page 278  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-10: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
DC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Min.(1) Typical Max. Units  
2.0 2.3  
Conditions  
VBOR  
BOR Event on VDD transition  
high-to-low  
V
BO10  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
TABLE 30-11: ELECTRICAL CHARACTERISTICS: HVD  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
DC CHARACTERISTICS  
Param.  
Symbol  
No.(1)  
Characteristics  
Min. Typical Max. Units  
2.5  
Conditions  
VHVD  
High Voltage Detect on VCAP  
pin  
V
HV10  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 279  
PIC32MX330/350/370/430/450/470  
TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
DC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Min. Typical(1) Max. Units  
Conditions  
Program Flash Memory(3)  
Cell Endurance  
D130  
D131  
D132  
D134  
EP  
20,000  
2.3  
3.6  
3.6  
E/W  
V
VPR  
VDD for Read  
VPEW  
TRETD  
VDD for Erase or Write  
Characteristic Retention  
2.3  
V
20  
Year Provided no other specifications  
are violated  
D135  
IDDP  
Supply Current during  
Programming  
10  
mA  
TWW  
TRW  
TPE  
TCE  
Word Write Cycle Time  
Row Write Cycle Time(2)  
Page Erase Cycle Time  
Chip Erase Cycle Time  
44  
2.8  
22  
86  
3.3  
59  
3.8  
29  
µs  
ms  
ms  
ms  
D136  
D137  
116  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: The minimum SYSCLK for row programming is 8 MHz. Care should be taken to minimize bus activities  
during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads  
are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default  
Arbitration mode is mode 1 (CPU has lowest priority).  
3: Refer to the “PIC32 Flash Programming Specification” (DS60001145) for operating conditions during  
programming and erase cycles.  
TABLE 30-13: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATE  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
DC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Required Flash Wait States  
SYSCLK  
Units  
Conditions  
0 Wait State  
1 Wait State  
2 Wait States  
0-30  
31-60  
61-80  
MHz  
MHz  
MHz  
DS60001185B-page 280  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-14: COMPARATOR SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
DC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Input Offset Voltage  
Min. Typical Max.  
Units  
Comments  
D300  
VIOFF  
0
±7.5  
±25  
VDD  
mV  
AVDD = VDD,  
AVSS = VSS  
D301  
VICM  
Input Common Mode Voltage  
V
AVDD = VDD,  
AVSS = VSS  
(Note 2)  
D302  
D303  
CMRR  
TRESP  
Common Mode Rejection Ratio  
Response Time  
55  
dB  
ns  
Max VICM = (VDD - 1)V  
(Note 2)  
150  
400  
AVDD = VDD,  
AVSS = VSS  
(Notes 1,2)  
D304  
ON2OV  
Comparator Enabled to Output  
Valid  
10  
s  
Comparator module is  
configured before setting  
the comparator ON bit  
(Note 2)  
D305  
D312  
IVREF  
TSET  
Internal Voltage Reference  
1.14  
1.2  
1.26  
10  
V
Internal Voltage Reference  
µs  
Setting time (Note 3)  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions   
from VSS to VDD.  
2: These parameters are characterized but not tested.  
3: Settling time measured while CVRR = 1and CVR<3:0> transitions from ‘0000’ to ‘1111’. This parameter is  
characterized, but not tested in manufacturing.  
TABLE 30-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
DC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
Characteristics  
Min. Typical Max. Units  
10  
Comments  
D321  
CEFC  
External Filter Capacitor Value  
8
F Capacitor must be low series  
resistance (1 ohm). Typical  
voltage on the VCAP pin is  
1.8V.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 281  
PIC32MX330/350/370/430/450/470  
30.2 AC Characteristics and Timing  
Parameters  
The information contained in this section defines  
PIC32MX330/350/370/430/450/470 AC characteristics  
and timing parameters.  
FIGURE 30-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
Load Condition 2 – for OSC2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins  
50 pF for OSC2 pin (EC mode)  
VSS  
TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
Characteristics  
Min. Typical(1) Max. Units  
Conditions  
In XT and HS modes when an  
DO50  
COSCO  
OSC2 pin  
15  
pF external crystal is used to drive  
OSC1  
DO56  
DO58  
CIO  
CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
FIGURE 30-2:  
EXTERNAL CLOCK TIMING  
OS30  
OS31  
OS20  
OSC1  
OS31  
OS30  
DS60001185B-page 282  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Typical(1)  
Max.  
Units  
Conditions  
OS10  
FOSC  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
4
80  
80  
MHz EC (Note 4)  
MHz ECPLL (Note 3)  
OS11  
OS12  
Oscillator Crystal Frequency  
3
4
10  
10  
MHz XT (Note 4)  
MHz XTPLL  
(Notes 3,4)  
OS13  
OS14  
10  
10  
25  
25  
MHz HS (Note 5)  
MHz HSPLL  
(Notes 3,4)  
OS15  
OS20  
32  
32.768  
100  
kHz SOSC (Note 4)  
TOSC  
TOSC = 1/FOSC = TCY (Note 2)  
See parameter  
OS10 for FOSC  
value  
OS30  
OS31  
OS40  
TOSL,  
TOSH  
External Clock In (OSC1)  
High or Low Time  
0.45 x TOSC  
0.05 x TOSC  
ns  
ns  
EC (Note 4)  
TOSR,  
TOSF  
External Clock In (OSC1)  
Rise or Fall Time  
EC (Note 4)  
TOST  
Oscillator Start-up Timer Period  
(Only applies to HS, HSPLL,  
XT, XTPLL and SOSC Clock  
Oscillator modes)  
1024  
TOSC (Note 4)  
OS41  
OS42  
TFSCM  
GM  
Primary Clock Fail Safe   
Time-out Period  
2
ms (Note 4)  
External Oscillator  
Transconductance  
12  
mA/V VDD = 3.3V,  
TA = +25°C  
(Note 4)  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not  
tested.  
2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device  
executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min.” values with an  
external clock applied to the OSC1/CLKI pin.  
3: PLL input requirements: 4 MHZ FPLLIN 5 MHZ (use PLL prescaler to reduce FOSC). This parameter is  
characterized, but tested at 10 MHz only at manufacturing.  
4: This parameter is characterized, but not tested in manufacturing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 283  
PIC32MX330/350/370/430/450/470  
TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
Characteristics(1)  
Min.  
Typical  
Max. Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled   
Oscillator (VCO) Input   
Frequency Range  
3.92  
5
MHz ECPLL, HSPLL, XTPLL,  
FRCPLL modes  
OS51  
FSYS  
On-Chip VCO System   
60  
120  
MHz  
Frequency  
OS52  
OS53  
TLOCK  
DCLK  
PLL Start-up Time (Lock Time)  
CLKO Stability(2)  
(Period Jitter or Cumulative)  
2
ms  
%
-0.25  
+0.25  
Measured over 100 ms  
period  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for  
individual time-bases on communication clocks, use the following formula:  
DCLK  
EffectiveJitter = --------------------------------------------------------------  
SYSCLK  
---------------------------------------------------------  
CommunicationClock  
For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:  
DCLK  
DCLK  
EffectiveJitter = ------------- = -------------  
1.41  
40  
-----  
20  
TABLE 30-19: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
Param.  
Characteristics  
Min. Typical Max.  
Units  
Conditions  
No.  
Internal FRC Accuracy @ 8.00 MHz(1)  
F20b FRC -0.9  
+0.9  
%
Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.  
TABLE 30-20: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
Characteristics  
Min. Typical Max.  
Units  
Conditions  
No.  
LPRC @ 31.25 kHz(1)  
F21 LPRC  
Note 1: Change of LPRC frequency as VDD changes.  
-15  
+15  
%
DS60001185B-page 284  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 30-3:  
I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
DO31  
DO32  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-21: I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(2)  
Min.  
Typical(1)  
Max.  
Units  
Conditions  
DO31  
TIOR  
Port Output Rise Time  
Port Output Fall Time  
10  
2
5
5
15  
10  
15  
10  
ns  
ns  
VDD < 2.5V  
VDD > 2.5V  
VDD < 2.5V  
VDD > 2.5V  
DO32  
TIOF  
5
ns  
5
ns  
DI35  
DI40  
TINP  
INTx Pin High or Low Time  
ns  
TRBP  
CNx High or Low Time (input)  
TSYSCLK  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: This parameter is characterized, but not tested in manufacturing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 285  
PIC32MX330/350/370/430/450/470  
FIGURE 30-4:  
POWER-ON RESET TIMING CHARACTERISTICS  
Internal Voltage Regulator Enabled  
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)  
VDD  
VPOR  
(TSYSDLY)  
SY02  
Power-up Sequence  
(Note 2)  
CPU Starts Fetching Code  
SY00  
(TPU)  
(Note 1)  
Internal Voltage Regulator Enabled  
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)  
VDD  
VPOR  
(TSYSDLY)  
SY02  
Power-up Sequence  
(Note 2)  
CPU Starts Fetching Code  
SY00  
(TPU)  
SY10  
(TOST)  
(Note 1)  
Note 1: The power-up period will be extended if the power-up sequence completes before the device exits from BOR  
(VDD < VDDMIN).  
2: Includes interval voltage regulator stabilization delay.  
DS60001185B-page 286  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 30-5:  
EXTERNAL RESET TIMING CHARACTERISTICS  
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)  
MCLR  
TMCLR  
(SY20)  
BOR  
TBOR  
(SY30)  
(TSYSDLY)  
SY02  
Reset Sequence  
CPU Starts Fetching Code  
Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC)  
(TSYSDLY)  
SY02  
Reset Sequence  
CPU Starts Fetching Code  
TOST  
(SY10)  
TABLE 30-22: RESETS TIMING  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typical(2)  
Max.  
Units  
Conditions  
SY00  
TPU  
Power-up Period  
Internal Voltage Regulator Enabled  
TSYSDLY System Delay Period:  
Time Required to Reload Device  
400  
600  
s  
SY02  
s +  
8 SYSCLK  
cycles  
Configuration Fuses plus SYSCLK  
Delay before First instruction is  
Fetched.  
SY20  
SY30  
TMCLR  
TBOR  
MCLR Pulse Width (low)  
BOR Pulse Width (low)  
2
1
s  
s  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 287  
PIC32MX330/350/370/430/450/470  
FIGURE 30-6:  
TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 30-1 for load conditions.  
(1)  
TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(2)  
Min.  
Typical Max. Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCKSynchronous,[(12.5 ns or 1 TPB)/N]  
ns Must also meet  
parameter TA15  
High Time with prescaler  
+ 25 ns  
10  
Asynchronous,  
ns  
with prescaler  
TxCK  
Synchronous,[(12.5 ns or 1 TPB)/N]  
ns Must also meet  
parameter TA15  
Low Time  
with prescaler  
+ 25 ns  
Asynchronous,  
10  
ns  
with prescaler  
TxCK  
Synchronous,  
[(Greater of 25 ns or  
2 TPB)/N] + 30 ns  
ns VDD > 2.7V  
ns VDD < 2.7V  
Input Period with prescaler  
[(Greater of 25 ns or  
2 TPB)/N] + 50 ns  
Asynchronous,  
with prescaler  
20  
50  
32  
ns VDD > 2.7V  
(Note 3)  
ns VDD < 2.7V  
(Note 3)  
OS60 FT1  
SOSC1/T1CK Oscillator  
Input Frequency Range  
(oscillator enabled by setting  
TCS bit (T1CON<1>))  
100 kHz  
TA20  
TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer   
Increment  
1
TPB  
Note 1: Timer1 is a Type A.  
2: This parameter is characterized, but not tested in manufacturing.  
3: N = Prescale Value (1, 8, 64, 256).  
DS60001185B-page 288  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Max. Units  
Conditions  
TB10 TTXH  
TB11 TTXL  
TB15 TTXP  
TxCK  
High Time prescaler  
Synchronous, with [(12.5 ns or 1 TPB)/N]  
+ 25 ns  
ns Must also meet N = prescale  
parameter  
TB15  
value   
(1, 2, 4, 8,  
16, 32, 64,  
256)  
TxCK  
Low Time prescaler  
Synchronous, with [(12.5 ns or 1 TPB)/N]  
+ 25 ns  
ns Must also meet  
parameter  
TB15  
TxCK  
Input  
Period  
Synchronous, with [(Greater of [(25 ns or  
1
ns VDD > 2.7V  
ns VDD < 2.7V  
prescaler  
2 TPB)/N] + 30 ns  
[(Greater of [(25 ns or  
2 TPB)/N] + 50 ns  
TB20 TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer Increment  
TPB  
Note 1: These parameters are characterized, but not tested in manufacturing.  
FIGURE 30-7:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
Characteristics(1)  
Min.  
Max. Units  
Conditions  
IC10  
TCCL  
ICx Input Low Time  
[(12.5 ns or 1 TPB)/N]  
+ 25 ns  
ns  
ns  
ns  
Must also  
meet  
parameter  
IC15.  
N = prescale  
value (1, 4, 16)  
IC11  
IC15  
TCCH  
ICx Input High Time  
[(12.5 ns or 1 TPB)/N]  
+ 25 ns  
Must also  
meet  
parameter  
IC15.  
TCCP  
ICx Input Period  
[(25 ns or 2 TPB)/N]  
+ 50 ns  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 289  
PIC32MX330/350/370/430/450/470  
FIGURE 30-8:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM mode)  
OC10  
OC11  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
No.  
Symbol  
Characteristics(1)  
Min.  
Typical(2)  
Max.  
Units  
Conditions  
OC10  
OC11  
TCCF  
TCCR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter DO32  
See parameter DO31  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
FIGURE 30-9:  
OCx/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA/OCFB  
OC15  
OCx  
Note: Refer to Figure 30-1 for load conditions.  
OCx is tri-stated  
TABLE 30-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristics(1)  
Min  
Typical(2)  
Max  
Units  
Conditions  
OC15  
OC20  
TFD  
Fault Input to PWM I/O Change  
Fault Input Pulse Width  
50  
ns  
ns  
TFLT  
50  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
DS60001185B-page 290  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 30-10:  
SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb In  
SP40  
LSb In  
Bit 14 - - - -1  
SP41  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typical(2) Max. Units  
Conditions  
SCKx Output Low Time   
(Note 3)  
SP10  
SP11  
SP20  
SP21  
SP30  
SP31  
SP35  
TSCL  
TSCH  
TSCF  
TSCR  
TDOF  
TDOR  
TSCK/2  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx Output High Time   
(Note 3)  
TSCK/2  
SCKx Output Fall Time   
(Note 4)  
See parameter DO32  
See parameter DO31  
See parameter DO32  
See parameter DO31  
SCKx Output Rise Time   
(Note 4)  
SDOx Data Output Fall Time   
(Note 4)  
SDOx Data Output Rise Time   
(Note 4)  
TSCH2DOV,SDOx Data Output Valid after  
TSCL2DOV SCKx Edge  
10  
ns  
ns  
ns  
VDD > 2.7V  
VDD < 2.7V  
15  
20  
SP40  
SP41  
TDIV2SCH,Setup Time of SDIx Data Input  
TDIV2SCL  
TSCH2DIL,Hold Time of SDIx Data Input  
TSCL2DIL to SCKx Edge  
Note 1: These parameters are characterized, but not tested in manufacturing.  
to SCKx Edge  
ns  
10  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 291  
PIC32MX330/350/370/430/450/470  
FIGURE 30-11:  
SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
SP20  
LSb  
MSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
TSCL  
Characteristics(1)  
Min.  
Typ.(2)  
Max.  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
SCKx Output Low Time (Note 3) TSCK/2  
SCKx Output High Time (Note 3) TSCK/2  
ns  
ns  
TSCH  
TSCF  
TSCR  
TDOF  
SCKx Output Fall Time (Note 4)  
SCKx Output Rise Time (Note 4)  
ns See parameter DO32  
ns See parameter DO31  
ns See parameter DO32  
SDOx Data Output Fall Time   
(Note 4)  
SP31  
SP35  
TDOR  
SDOx Data Output Rise Time   
(Note 4)  
ns See parameter DO31  
TSCH2DOV, SDOx Data Output Valid after  
TSCL2DOV SCKx Edge  
15  
15  
20  
ns  
ns  
ns  
VDD > 2.7V  
VDD < 2.7V  
SP36  
SP40  
TDOV2SC, SDOx Data Output Setup to  
TDOV2SCL First SCKx Edge  
TDIV2SCH, Setup Time of SDIx Data Input to  
TDIV2SCL SCKx Edge  
15  
20  
15  
20  
ns  
ns  
ns  
ns  
VDD > 2.7V  
VDD < 2.7V  
VDD > 2.7V  
VDD < 2.7V  
SP41  
TSCH2DIL, Hold Time of SDIx Data Input  
TSCL2DIL  
to SCKx Edge  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS60001185B-page 292  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 30-12:  
SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP35  
MSb  
LSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SP31  
TSCL  
TSCH  
TSCF  
TSCR  
TDOF  
TDOR  
SCKx Input Low Time (Note 3)  
SCKx Input High Time (Note 3)  
SCKx Input Fall Time  
TSCK/2  
TSCK/2  
15  
20  
ns  
ns  
ns See parameter DO32  
ns See parameter DO31  
ns See parameter DO32  
ns See parameter DO31  
ns VDD > 2.7V  
SCKx Input Rise Time  
SDOx Data Output Fall Time (Note 4)  
SDOx Data Output Rise Time (Note 4)  
SP35 TSCH2DOV, SDOx Data Output Valid after  
TSCL2DOV SCKx Edge  
ns VDD < 2.7V  
SP40 TDIV2SCH, Setup Time of SDIx Data Input  
10  
ns  
ns  
ns  
ns  
ns  
TDIV2SCL to SCKx Edge  
SP41 TSCH2DIL, Hold Time of SDIx Data Input  
10  
175  
25  
TSCL2DIL to SCKx Edge  
SP50 TSSL2SCH, SSx to SCKx or SCKx Input  
TSSL2SCL  
SP51 TSSH2DOZ SSx to SDOx Output   
High-Impedance (Note 3)  
5
SP52  
TSCH2SSH SSx after SCKx Edge  
TSCL2SSH  
TSCK + 20  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for SCKx is 40 ns.  
4: Assumes 50 pF load on all SPIx pins.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 293  
PIC32MX330/350/370/430/450/470  
FIGURE 30-13:  
SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
MSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
TSCL  
Characteristics(1)  
Min.  
Typical(2) Max. Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKx Input Low Time (Note 3)  
SCKx Input High Time (Note 3)  
SCKx Input Fall Time  
TSCK/2  
TSCK/2  
5
10  
10  
ns  
ns  
ns  
ns  
TSCH  
TSCF  
TSCR  
TDOF  
SCKx Input Rise Time  
5
SDOx Data Output Fall Time   
ns See parameter DO32  
(Note 4)  
SP31  
SP35  
TDOR  
SDOx Data Output Rise Time   
(Note 4)  
ns See parameter DO31  
TSCH2DOV, SDOx Data Output Valid after  
TSCL2DOV SCKx Edge  
10  
20  
30  
ns VDD > 2.7V  
ns VDD < 2.7V  
SP40  
SP41  
SP50  
TDIV2SCH, Setup Time of SDIx Data Input  
TDIV2SCL to SCKx Edge  
ns  
ns  
ns  
TSCH2DIL, Hold Time of SDIx Data Input  
TSCL2DIL  
10  
to SCKx Edge  
TSSL2SCH, SSx to SCKx or SCKx Input  
175  
TSSL2SCL  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for SCKx is 40 ns.  
4: Assumes 50 pF load on all SPIx pins.  
DS60001185B-page 294  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
Characteristics(1)  
Min.  
Typical(2) Max. Units  
Conditions  
SP51  
TSSH2DOZ SSx to SDOX Output  
High-Impedance   
5
25  
ns  
(Note 4)  
SP52  
SP60  
TSCH2SSH SSx after SCKx Edge  
TSCL2SSH  
TSCK +  
20  
ns  
ns  
TSSL2DOV SDOx Data Output Valid after  
25  
SSx Edge  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for SCKx is 40 ns.  
4: Assumes 50 pF load on all SPIx pins.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 295  
PIC32MX330/350/370/430/450/470  
FIGURE 30-14:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 30-1 for load conditions.  
FIGURE 30-15:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 30-1 for load conditions.  
DS60001185B-page 296  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Min.(1)  
Max.  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
1 MHz mode   
(Note 2)  
THI:SCL Clock High Time 100 kHz mode  
400 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
1 MHz mode   
(Note 2)  
TF:SCL  
TR:SCL  
SDAx and SCLx100 kHz mode  
20 + 0.1 CB  
300  
300  
100  
ns  
ns  
ns  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode   
(Note 2)  
SDAx and SCLx100 kHz mode  
20 + 0.1 CB  
1000  
300  
ns  
ns  
ns  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode   
(Note 2)  
300  
TSU:DAT Data Input  
100 kHz mode  
400 kHz mode  
250  
100  
100  
ns  
ns  
ns  
Setup Time  
1 MHz mode   
(Note 2)  
THD:DAT Data Input  
100 kHz mode  
400 kHz mode  
0
0
0
s  
s  
s  
Hold Time  
0.9  
0.3  
1 MHz mode   
(Note 2)  
TSU:STA Start Condition100 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode  
1 MHz mode   
(Note 2)  
THD:STA Start Condition 100 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
After this period, the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode  
1 MHz mode   
(Note 2)  
TSU:STO Stop Condition 100 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
s  
s  
s  
Setup Time  
400 kHz mode  
1 MHz mode   
(Note 2)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
TPB * (BRG + 2)  
ns  
ns  
ns  
1 MHz mode   
(Note 2)  
Note 1: BRG is the value of the I2C™ Baud Rate Generator.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: The typical value for this parameter is 104 ns.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 297  
PIC32MX330/350/370/430/450/470  
TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
Characteristics  
Min.(1)  
Max.  
Units  
Conditions  
IM40  
TAA:SCL Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
3500  
1000  
350  
ns  
ns  
ns  
1 MHz mode   
(Note 2)  
IM45  
TBF:SDA Bus Free Time 100 kHz mode  
400 kHz mode  
4.7  
1.3  
0.5  
s  
s  
s  
The amount of time the  
bus must be free  
before a new  
1 MHz mode   
(Note 2)  
transmission can start  
IM50  
IM51  
CB  
Bus Capacitive Loading  
Pulse Gobbler Delay  
400  
312  
pF  
ns  
TPGD  
52  
See Note 3  
Note 1: BRG is the value of the I2C™ Baud Rate Generator.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: The typical value for this parameter is 104 ns.  
DS60001185B-page 298  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 30-16:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 30-1 for load conditions.  
FIGURE 30-17:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
Note: Refer to Figure 30-1 for load conditions.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 299  
PIC32MX330/350/370/430/450/470  
TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Max. Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
s  
s  
s  
s  
s  
s  
PBCLK must operate at a  
minimum of 800 kHz  
1.3  
0.5  
4.0  
0.6  
0.5  
PBCLK must operate at a  
minimum of 3.2 MHz  
1 MHz mode   
(Note 1)  
IS11  
THI:SCL  
Clock High Time 100 kHz mode  
400 kHz mode  
PBCLK must operate at a  
minimum of 800 kHz  
PBCLK must operate at a  
minimum of 3.2 MHz  
1 MHz mode   
(Note 1)  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
TF:SCL  
TR:SCL  
SDAx and SCLx100 kHz mode  
20 + 0.1 CB  
300  
300  
100  
ns  
ns  
ns  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode   
(Note 1)  
SDAx and SCLx100 kHz mode  
20 + 0.1 CB  
1000  
300  
ns  
ns  
ns  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode   
(Note 1)  
300  
TSU:DAT Data Input  
100 kHz mode  
400 kHz mode  
250  
100  
100  
ns  
ns  
ns  
Setup Time  
1 MHz mode   
(Note 1)  
THD:DAT Data Input  
100 kHz mode  
400 kHz mode  
0
0
0
ns  
s  
s  
Hold Time  
0.9  
0.3  
1 MHz mode   
(Note 1)  
TSU:STA Start Condition  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
ns  
ns  
Only relevant for Repeated  
Start condition  
Setup Time  
1 MHz mode   
(Note 1)  
250  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
1 MHz mode   
(Note 1)  
250  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
4000  
600  
ns  
ns  
ns  
1 MHz mode   
600  
(Note 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
DS60001185B-page 300  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
AC CHARACTERISTICS  
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
Characteristics  
Min.  
Max. Units  
Conditions  
IS34  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
4000  
600  
ns  
ns  
ns  
1 MHz mode   
250  
(Note 1)  
IS40  
IS45  
IS50  
TAA:SCL  
Output Valid from 100 kHz mode  
0
0
0
3500  
1000  
350  
ns  
ns  
ns  
Clock  
400 kHz mode  
1 MHz mode   
(Note 1)  
TBF:SDA Bus Free Time  
100 kHz mode  
400 kHz mode  
4.7  
1.3  
0.5  
s  
s  
s  
The amount of time the bus  
must be free before a new  
transmission can start  
1 MHz mode   
(Note 1)  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 301  
PIC32MX330/350/370/430/450/470  
TABLE 30-34: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS(5)  
Param.  
Symbol  
Characteristics  
Min.  
Typical  
Max.  
Units  
Conditions  
No.  
Device Supply  
AD01  
AVDD  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 2.5  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
AD02  
AVSS  
VSS  
VSS + 0.3  
Reference Inputs  
AD05  
AD05a  
AD06  
AD07  
VREFH  
Reference Voltage High AVSS + 2.0  
2.5  
AVDD  
3.6  
V
V
V
V
(Note 1)  
VREFH = AVDD (Note 3)  
(Note 1)  
VREFL  
VREF  
Reference Voltage Low  
AVSS  
2.0  
VREFH – 2.0  
AVDD  
Absolute Reference  
(Note 3)  
Voltage (VREFH – VREFL)  
AD08  
IREF  
Current Drain  
250  
400  
3
A ADC operating  
A ADC off  
Analog Input  
AD12 VINH-VINL Full-Scale Input Span  
VREFL  
VREFH  
V
V
AD13  
VINL  
Absolute VINL Input  
Voltage  
AVSS – 0.3  
AVDD/2  
AD14  
AD15  
VIN  
Absolute Input Voltage  
Leakage Current  
AVSS – 0.3  
AVDD + 0.3  
V
+/- 0.001 +/-0.610  
A VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.3V  
Source Impedance = 10 k  
AD17  
RIN  
Recommended  
5K  
(Note 1)  
Impedance of Analog  
Voltage Source  
ADC Accuracy – Measurements with External VREF+/VREF-  
AD20c Nr  
Resolution  
10 data bits  
bits  
AD21c INL  
Integral Nonlinearity  
> -1  
> -1  
< 1  
< 1  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.3V  
AD22c DNL  
Differential Nonlinearity  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.3V  
(Note 2)  
AD23c GERR  
AD24n EOFF  
Gain Error  
> -1  
> -1  
< 1  
< 1  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.3V  
Offset Error  
Monotonicity  
LSb VINL = AVSS = 0V,   
AVDD = 3.3V  
AD25c  
Guaranteed  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: With no missing codes.  
3: These parameters are characterized, but not tested in manufacturing.  
4: Characterized with a 1 kHz sine wave.  
5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device  
Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to  
parameter BO10 in Table 30-10 for VBORMIN values.  
DS60001185B-page 302  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-34: ADC MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 2.5V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS(5)  
Param.  
Symbol  
Characteristics  
Min.  
Typical  
Max.  
Units  
Conditions  
No.  
ADC Accuracy – Measurements with Internal VREF+/VREF-  
AD20d Nr  
Resolution  
10 data bits  
bits (Note 3)  
AD21d INL  
Integral Nonlinearity  
> -1  
> -1  
> -4  
> -2  
< 1  
< 1  
< 4  
< 2  
LSb VINL = AVSS = 0V,   
AVDD = 2.5V to 3.6V   
(Note 3)  
AD22d DNL  
AD23d GERR  
AD24d EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = 0V,   
AVDD = 2.5V to 3.6V  
(Notes 2,3)  
LSb VINL = AVSS = 0V,   
AVDD = 2.5V to 3.6V  
(Note 3)  
Offset Error  
LSb VINL = AVSS = 0V,   
AVDD = 2.5V to 3.6V  
(Note 3)  
AD25d  
Monotonicity  
Guaranteed  
Dynamic Performance  
AD31b SINAD  
Signal to Noise and   
Distortion  
55  
9
58  
dB (Notes 3,4)  
bits (Notes 3,4)  
AD34b ENOB  
Effective Number of Bits  
9.5  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: With no missing codes.  
3: These parameters are characterized, but not tested in manufacturing.  
4: Characterized with a 1 kHz sine wave.  
5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device  
Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to  
parameter BO10 in Table 30-10 for VBORMIN values.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 303  
PIC32MX330/350/370/430/450/470  
TABLE 30-35: 10-BIT CONVERSION RATE PARAMETERS  
Standard Operating Conditions: 2.5V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS(2)  
Sampling  
Time  
TAD  
Min.  
RS  
Max.  
ADC Input  
ADC Speed  
VDD  
ADC Channels Configuration  
Min.  
AN0-AN14 1 Msps to 400 65 ns  
ksps(1)  
132 ns  
5003.0V to 3.6V  
VREF- VREF+  
CHX  
SHA  
ANx  
ADC  
Up to 400 ksps 200 ns 200 ns 5.0 k2.5V to 3.6V  
VREF- VREF+  
or  
or  
AVSS AVDD  
CHX  
SHA  
ANx  
ADC  
ANx or VREF-  
AN15-AN27 400 ksps(1)  
154 ns 1000 ns 5003.0V to 3.6V  
VREF- VREF+  
CHX  
SHA  
ANx  
ADC  
Note 1: External VREF- and VREF+ pins must be used for correct operation.  
2: These parameters are characterized, but not tested in manufacturing.  
DS60001185B-page 304  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-36: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics  
Min.  
Typical(1) Max.  
Units  
Conditions  
Clock Parameters  
AD50  
TAD  
ADC Clock Period(2)  
65  
ns  
See Table 30-35  
Conversion Rate  
AD55  
AD56  
TCONV  
FCNV  
Conversion Time  
12 TAD  
1000  
400  
Throughput Rate   
ksps AVDD = 3.0V to 3.6V  
ksps AVDD = 2.5V to 3.6V  
(Sampling Speed)(4)  
AD57  
TSAMP  
Sample Time  
1 TAD  
TSAMP must be 132 ns  
Timing Parameters  
AD60  
TPCS  
Conversion Start from Sample  
1.0 TAD  
Auto-Convert Trigger  
(SSRC<2:0> = 111)  
not selected  
Trigger(3)  
AD61  
AD62  
AD63  
TPSS  
TCSS  
TDPU  
Sample Start from Setting  
Sample (SAMP) bit  
0.5 TAD  
0.5 TAD  
1.5 TAD  
s  
Conversion Completion to  
Sample Start (ASAM = 1)(3)  
2
Time to Stabilize Analog Stage   
from ADC Off to ADC On(3)  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
3: Characterized by design but not tested.  
4: Refer to Table 30-35 for detailed conditions.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 305  
PIC32MX330/350/370/430/450/470  
FIGURE 30-18:  
ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING  
CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
AD55  
CONV  
ADxIF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
8
5
6
7
8
– Software sets ADxCON. SAMP to start sampling.  
1
2
– Sampling starts after discharge period. TSAMP is described in Section 17. “10-bit Analog-to-Digital Converter (ADC)”  
(DS60001104) in the “PIC32 Family Reference Manual”.  
– Software clears ADxCON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 9.  
3
4
5
6
7
8
– Convert bit 8.  
– Convert bit 0.  
– One TAD for end of conversion.  
DS60001185B-page 306  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 30-19:  
ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS  
(ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Execution  
Set ADON  
SAMP  
ch0_dischrg  
ch0_samp  
eoc  
TSAMP  
TSAMP  
AD55  
AD55  
TCONV  
CONV  
ADxIF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
3
4
5
6
8
3
4
– Software sets ADxCON. ADON to start AD operation.  
– Sampling starts after discharge period.  
TSAMP is described in Section 17. “10-bit Analog-to-Digital  
Converter (ADC)” (DS60001104) in the  
– Convert bit 0.  
1
2
5
6
7
8
– One TAD for end of conversion.  
– Begin conversion of next channel.  
– Sample for time specified by SAMC<4:0>.  
“PIC32 Family Reference Manual”  
– Convert bit 9.  
– Convert bit 8.  
3
4
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 307  
PIC32MX330/350/370/430/450/470  
FIGURE 30-20:  
PARALLEL SLAVE PORT TIMING  
CS  
PS5  
RD  
PS6  
WR  
PS4  
PS7  
PMD<7:0>  
PS1  
PS3  
PS2  
TABLE 30-37: PARALLEL SLAVE PORT REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Para  
Symbol  
m.No.  
Characteristics(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
PS1 TdtV2wr Data In Valid before WR or CS  
Inactive (setup time)  
20  
ns  
H
PS2 TwrH2dt WR or CS Inactive to Data-In  
Invalid (hold time)  
40  
0
60  
10  
ns  
ns  
ns  
I
PS3 TrdL2dt RD and CS Active to Data-Out  
Valid  
V
PS4 TrdH2dtI RD Activeor CS Inactive to  
Data-Out Invalid  
PS5 Tcs  
CS Active Time  
WR Active Time  
RD Active Time  
TPB + 40  
TPB + 25  
TPB + 25  
ns  
ns  
ns  
PS6  
PS7  
TWR  
TRD  
Note 1: These parameters are characterized, but not tested in manufacturing.  
DS60001185B-page 308  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 30-21:  
PARALLEL MASTER PORT READ TIMING DIAGRAM  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
PB Clock  
PM4  
Address  
PMA<13:18>  
PMD<7:0>  
PM6  
Data  
Address<7:0>
PM2  
PM7  
PM3  
PMRD  
PM5  
PMWR  
PM1  
PMALL/PMALH  
PMCS<2:1>  
TABLE 30-38: PARALLEL MASTER PORT READ TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
PM1  
PM2  
TLAT  
PMALL/PMALH Pulse Width  
1 TPB  
2 TPB  
TADSU  
Address Out Valid to PMALL/  
PMALH Invalid (address setup  
time)  
PM3  
PM4  
TADHOLD PMALL/PMALH Invalid to  
Address Out Invalid (address  
hold time)  
5
1 TPB  
ns  
TAHOLD  
PMRD Inactive to Address Out  
Invalid  
(address hold time)  
PM5  
PM6  
TRD  
PMRD Pulse Width  
1 TPB  
ns  
TDSU  
PMRD or PMENB Active to Data  
In Valid (data setup time)  
15  
PM7  
TDHOLD PMRD or PMENB Inactive to  
Data In Invalid (data hold time)  
80  
ns  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 309  
PIC32MX330/350/370/430/450/470  
FIGURE 30-22:  
PARALLEL MASTER PORT WRITE TIMING DIAGRAM  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
TPB  
PB Clock  
Address  
PMA<13:18>  
PM2 + PM3  
Address<7:0>  
PMD<7:0>  
Data  
PM12  
PM13  
PMRD  
PMWR  
PM11  
PM1  
PMALL/PMALH  
PMCS<2:1>  
TABLE 30-39: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
PMWR Pulse Width  
Min.  
Typ.  
Max.  
Units  
Conditions  
PM11  
TWR  
1 TPB  
2 TPB  
PM12 TDVSU  
Data Out Valid before PMWR or  
PMENB goes Inactive (data setup  
time)  
PM13 TDVHOLD PMWR or PMEMB Invalid to Data  
Out Invalid (data hold time)  
1 TPB  
Note 1: These parameters are characterized, but not tested in manufacturing.  
DS60001185B-page 310  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
TABLE 30-40: OTG ELECTRICAL SPECIFICATIONS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristics(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
USB313 VUSB3V3 USB Voltage  
3.0  
3.6  
V
Voltage on VUSB3V3  
must be in this range  
for proper USB  
operation  
USB315 VILUSB  
USB316 VIHUSB  
USB318 VDIFS  
Input Low Voltage for USB Buffer  
2.0  
0.8  
V
V
V
Input High Voltage for USB Buffer  
Differential Input Sensitivity  
0.2  
The difference  
between D+ and D-  
must exceed this value  
while VCM is met  
USB319 VCM  
USB320 ZOUT  
USB321 VOL  
Differential Common Mode Range  
Driver Output Impedance  
Voltage Output Low  
0.8  
28.0  
0.0  
2.5  
44.0  
0.3  
V
V
14.25 kload  
connected to 3.6V  
USB322 VOH  
Voltage Output High  
2.8  
3.6  
V
14.25 kload  
connected to ground  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 311  
PIC32MX330/350/370/430/450/470  
TABLE 30-41: CTMU CURRENT SOURCE SPECIFICATIONS  
DC CHARACTERISTICS  
Standard Operating Conditions:2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +105°C for V-temp  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
CTMU CURRENT SOURCE  
CTMUI1  
CTMUI2  
CTMUI3  
CTMUI4  
IOUT1  
IOUT2  
IOUT3  
IOUT4  
Base Range(1)  
10x Range(1)  
100x Range(1)  
1000x Range(1)  
0.55  
5.5  
µA CTMUICON<9:8> = 01  
µA CTMUICON<9:8> = 10  
µA CTMUICON<9:8> = 11  
µA CTMUICON<9:8> = 00  
55  
550  
0.598  
CTMUFV1 VF  
Temperature Diode Forward  
Voltage(1,2)  
V
V
V
TA = +25ºC,   
CTMUICON<9:8> = 01  
0.658  
0.721  
TA = +25ºC,   
CTMUICON<9:8> = 10  
TA = +25ºC,   
CTMUICON<9:8> = 11  
CTMUFV2 VFVR  
Temperature Diode Rate of  
Change(1,2)  
-1.92  
-1.74  
-1.56  
mV/ºC CTMUICON<9:8> = 01  
mV/ºC CTMUICON<9:8> = 10  
mV/ºC CTMUICON<9:8> = 11  
Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).  
2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following  
conditions:  
VREF+ = AVDD = 3.3V  
ADC module configured for conversion speed of 500 ksps  
All PMD bits are cleared (PMDx = 0)  
Executing a while(1)statement  
Device operating from the FRC with no PLL  
DS60001185B-page 312  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
FIGURE 30-23:  
EJTAG TIMING CHARACTERISTICS  
TTCKeye  
TTCKhigh  
TTCKlow  
Trf  
TCK  
Trf  
TMS  
TDI  
Trf  
TTsetup TThold  
Trf  
TDO  
TRST*  
TTRST*low  
TTDOout  
TTDOzstate  
Undefined  
Defined  
Trf  
TABLE 30-42: EJTAG TIMING REQUIREMENTS  
AC CHARACTERISTICS  
Standard Operating Conditions: 2.3V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial   
-40°C TA +105°C for V-temp  
Param.  
No.  
Symbol  
Description(1)  
TCK Cycle Time  
Min.  
Max. Units  
Conditions  
EJ1  
TTCKCYC  
TTCKHIGH  
TTCKLOW  
TTSETUP  
25  
10  
10  
5
ns  
ns  
ns  
ns  
EJ2  
EJ3  
EJ4  
TCK High Time  
TCK Low Time  
TAP Signals Setup Time Before  
Rising TCK  
EJ5  
EJ6  
EJ7  
TTHOLD  
TAP Signals Hold Time After  
Rising TCK  
3
5
ns  
ns  
ns  
TTDOOUT  
TDO Output Delay Time from  
Falling TCK  
TTDOZSTATE TDO 3-State Delay Time from  
Falling TCK  
5
EJ8  
EJ9  
TTRSTLOW  
TRF  
TRST Low Time  
25  
ns  
ns  
TAP Signals Rise/Fall Time, All  
Input and Output  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 313  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 314  
Preliminary  
2012-2013 Microchip Technology Inc.  
31.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS  
Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes  
only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating  
range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
FIGURE 31-1:  
VOH – 4x DRIVER PINS  
FIGURE 31-3:  
VOL – 4x DRIVER PINS  
3.3V  
3.3V  
Absolute Maximum  
Absolute Maximum  
FIGURE 31-2:  
VOH – 8x DRIVER PINS  
FIGURE 31-4:  
VOL – 8x DRIVER PINS  
3.3V  
3.3V  
Absolute Maximum  
Absolute Maximum  
FIGURE 31-5:  
TYPICAL IPD CURRENT @ VDD = 3.3V  
PIC32MX330/430 DEVICES  
FIGURE 31-7:  
TYPICAL IIDLE CURRENT @ VDD = 3.3V  
PIC32MX330/430 DEVICES  
FIGURE 31-6:  
TYPICAL IPD CURRENT @ VDD = 3.3V  
PIC32MX350/450 DEVICES  
FIGURE 31-8:  
TYPICAL IIDLE CURRENT @ VDD = 3.3V  
PIC32MX350/450 DEVICES  
FIGURE 31-9:  
TYPICAL IDD CURRENT @ VDD = 3.3V  
PIC32MX330/430 DEVICES  
FIGURE 31-11:  
TYPICAL FRC FREQUENCY @ VDD = 3.3V  
FIGURE 31-10:  
TYPICAL IDD CURRENT @ VDD = 3.3V  
PIC32MX350/450 DEVICES  
FIGURE 31-12:  
TYPICAL LPRC FREQUENCY @ VDD = 3.3V  
FIGURE 31-13:  
TYPICAL CTMU TEMPERATURE DIODE  
FORWARD VOLTAGE  
VF = 0.721  
VF = 0.658  
VF = 0.598  
PIC32MX330/350/370/430/450/470  
32.0 PACKAGING INFORMATION  
32.1 Package Marking Information  
64-Lead TQFP (10x10x1 mm)  
Example  
PIC32MX330F  
064H-I/PT  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
e
3
0510017  
100-Lead TQFP (14x14x1 mm)  
Example  
PIC32MX330F  
064L-I/PF  
0510017  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
e
3
100-Lead TQFP (12x12x1 mm)  
Example  
PIC32MX330F  
064L-I/PT  
0510017  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (
*
e
3
can be found on the outer packaging for this package.  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 319  
PIC32MX330/350/370/430/450/470  
32.1 Package Marking Information (Continued)  
64-Lead QFN (9x9x0.9 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC32MX330F  
064H-I/MR  
e
3
0510017  
124-Lead VTLA (9x9x0.9 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC32MX430F  
064l-I/TL  
e
3
0510017  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (
*
e
3
can be found on the outer packaging for this package.  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS60001185B-page 320  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
32.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
c
NOTE 2  
α
A
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 321  
PIC32MX330/350/370/430/450/470  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS60001185B-page 322  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢓꢗꢇMꢇꢘꢁꢚꢘꢁꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
e
E1  
E
b
N
α
NOTE 1  
1 23  
NOTE 2  
A
φ
c
A2  
A1  
β
L1  
L
6ꢄꢃ&!  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
89ꢒ  
ꢒꢚ8  
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
8
ꢀꢓꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
ꢖꢎ  
ꢖꢀ  
7
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢀꢁꢓꢓ  
M
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀ;ꢁꢓꢓꢅ1ꢗ+  
ꢀ;ꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢀꢀꢓ1  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 323  
PIC32MX330/350/370/430/450/470  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS60001185B-page 324  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘ#ꢚꢘ#ꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
e
E
E1  
N
b
123  
NOTE 2  
NOTE 1  
c
α
A
φ
L
A1  
β
A2  
L1  
6ꢄꢃ&!  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
89ꢒ  
ꢒꢚ8  
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
8
ꢀꢓꢓ  
ꢓꢁꢔꢓꢅ1ꢗ+  
M
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
ꢖꢎ  
ꢖꢀ  
7
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢀꢁꢓꢓ  
M
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢐ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢐ  
ꢀꢐꢝ  
)
ꢓꢁꢀ@  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢀꢓꢓ1  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 325  
PIC32MX330/350/370/430/450/470  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS60001185B-page 326  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 327  
PIC32MX330/350/370/430/450/470  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS60001185B-page 328  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 329  
PIC32MX330/350/370/430/450/470  
DS60001185B-page 330  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 331  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 332  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
APPENDIX A: REVISION HISTORY  
Revision A (July 2012)  
This is the initial released version of the document.  
Revision B (April 2013)  
Note:  
The status of this data sheet was updated  
to Preliminary; however, any electrical  
specifications listed for PIC32MX370/470  
devices is to be considered Advance  
Information and is marked accordingly.  
This revision includes the following updates, as shown  
in Table A-1.  
TABLE A-1:  
MAJOR SECTION UPDATES  
Section  
Update Description  
“32-bit Microcontrollers (up to 512 SRAM was changed from 32 KB to 64 KB.  
KB Flash and 128 KB SRAM) with  
Audio/Graphics/Touch (HMI), USB,  
and Advanced Analog”  
Data Memory (KB) was changed from 32 to 64 for the following devices (see  
Table 1):  
• PIC32MX350F256H  
• PIC32MX350F256L  
• PIC32MX450F256H  
• PIC32MX450F256L  
The following devices were added:  
• PIC32MX370F512H  
• PIC32MX370F512L  
• PIC32MX470F512H  
• PIC32MX470F512L  
4.0 “Memory Organization”  
The Memory Map for Devices with 256 KB of Program Memory was updated  
(see Figure 4-3).  
The Memory Map for Devices with 512 KB of Program Memory was added  
(see Figure 4-4).  
7.0 “Interrupt Controller”  
Updated the Interrupt IRQ, Vector and Bit Locations (see Table 7-1).  
20.0 “Parallel Master Port (PMP)”  
Added the CS2 bit and updated the ADDR bits in the Parallel Port Address  
register (see Register 20-3).  
27.0 “Special Features”  
Updated the PWP bit in the Device Configuration Word 3 register (see  
Register 27-4).  
30.0 “Electrical Characteristics”  
Note 2 in the DC Characteristics: Operating Current (IDD) were updated (see  
Table 30-5).  
Note 1 in the DC Characteristics: Idle Current (IIDLE) were updated (see  
Table 30-6).  
Note 1 in the DC Characteristics: Power-down Current (IPD) were updated  
(see Table 30-7).  
Updated Program Memory values for parameters D135 (TWW), D136 (TRW),  
and D137 (TPE and TCE) (see Table 30-12).  
31.0 “DC and AC Device  
Characteristics Graphs”  
New IDD, IIDLE, and IPD current graphs were added for PIC32MX330/430  
devices and PIC32MX350/450 devices.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 333  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 334  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
INDEX  
CPU Module ................................................................. 27, 33  
CTMU  
Registers .................................................................. 244  
Customer Change Notification Service............................. 339  
Customer Notification Service .......................................... 339  
Customer Support............................................................. 339  
A
AC Characteristics ............................................................ 282  
10-Bit Conversion Rate Parameters ......................... 304  
ADC Specifications ................................................... 302  
Analog-to-Digital Conversion Requirements............. 305  
EJTAG Timing Requirements ................................... 313  
Internal FRC Accuracy.............................................. 284  
Internal RC Accuracy................................................ 284  
OTG Electrical Specifications ................................... 311  
Parallel Master Port Read Requirements ................. 309  
Parallel Master Port Write......................................... 310  
Parallel Master Port Write Requirements.................. 310  
Parallel Slave Port Requirements............................. 308  
PLL Clock Timing...................................................... 284  
Analog-to-Digital Converter (ADC).................................... 229  
Assembler  
D
DC and AC Characteristics  
Graphs and Tables................................................... 315  
DC Characteristics............................................................ 270  
I/O Pin Input Specifications ...................................... 275  
I/O Pin Output Specifications.................................... 278  
Idle Current (IIDLE).................................................... 273  
Power-Down Current (IPD)........................................ 274  
Program Memory...................................................... 280  
Temperature and Voltage Specifications.................. 271  
Development Support....................................................... 265  
Direct Memory Access (DMA) Controller.......................... 129  
MPASM Assembler................................................... 266  
B
Block Diagrams  
E
ADC Module.............................................................. 229  
Comparator I/O Operating Modes............................. 237  
Comparator Voltage Reference ................................ 241  
Connections for On-Chip Voltage Regulator............. 262  
CPU ............................................................................ 33  
CTMU Configurations  
Electrical Characteristics .................................................. 269  
AC............................................................................. 282  
Errata.................................................................................. 15  
External Clock  
Timer1 Timing Requirements ................................... 288  
Timer2, 3, 4, 5 Timing Requirements ....................... 289  
Timing Requirements ............................................... 283  
Time Measurement........................................... 243  
DMA.......................................................................... 129  
I2C Circuit ................................................................. 200  
Input Capture ............................................................ 185  
Interrupt Controller.................................................... 101  
JTAG Programming, Debugging and Trace Ports .... 262  
Output Compare Module........................................... 189  
PMP Pinout and Connections to External Devices... 211  
Prefetch Module........................................................ 119  
Reset System.............................................................. 97  
RTCC........................................................................ 219  
SPI Module ............................................................... 191  
Timer1....................................................................... 177  
Timer2/3/4/5 (16-Bit)................................................. 181  
Typical Multiplexed Port Structure ............................ 167  
UART ........................................................................ 205  
WDT and Power-up Timer ........................................ 260  
Brown-out Reset (BOR)  
F
Flash Program Memory ...................................................... 93  
RTSP Operation ......................................................... 93  
H
High Voltage Detect (HVD)................................. 98, 262, 279  
I
I/O Ports ........................................................................... 167  
Parallel I/O (PIO) ...................................................... 168  
Write/Read Timing.................................................... 168  
Input Change Notification ................................................. 168  
Instruction Set................................................................... 263  
Inter-Integrated Circuit (I2C .............................................. 199  
Internal Voltage Reference Specifications........................ 281  
Internet Address ............................................................... 339  
Interrupt Controller............................................................ 101  
IRG, Vector and Bit Location.................................... 102  
and On-Chip Voltage Regulator................................ 262  
C
M
C Compilers  
MPLAB C18 .............................................................. 266  
Charge Time Measurement Unit. See CTMU.  
Clock Diagram .................................................................. 110  
Comparator  
Specifications............................................................ 281  
Comparator Module .......................................................... 237  
Comparator Voltage Reference (CVref............................. 241  
Configuration Bit ............................................................... 251  
Configuring Analog Port Pins............................................ 168  
CPU  
Memory Maps  
Devices with 128 KB of Program Memory.................. 39  
Devices with 256 KB of Program Memory.................. 40  
Devices with 512 KB of Program Memory.................. 41  
Devices with 64 KB of Program Memory.................... 38  
Memory Organization ......................................................... 37  
Layout......................................................................... 37  
Microchip Internet Web Site.............................................. 339  
MPLAB ASM30 Assembler, Linker, Librarian................... 266  
MPLAB Integrated Development Environment Software.. 265  
MPLAB PM3 Device Programmer .................................... 268  
MPLAB REAL ICE In-Circuit Emulator System ................ 267  
MPLINK Object Linker/MPLIB Object Librarian................ 266  
Architecture Overview................................................. 34  
Coprocessor 0 Registers ............................................ 35  
Core Exception Types................................................. 36  
EJTAG Debug Support ............................................... 36  
Power Management.................................................... 36  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 335  
PIC32MX330/350/370/430/450/470  
ALRMDATESET (ALRMDATE Set).......................... 227  
O
ALRMTIME (Alarm Time Value) ............................... 226  
ALRMTIMECLR (ALRMTIME Clear) ........................ 227  
ALRMTIMEINV (ALRMTIME Invert) ......................... 227  
ALRMTIMESET (ALRMTIME Set)............................ 227  
BMXBOOTSZ (Boot Flash (IFM) Size ........................ 92  
BMXCON (Bus Matrix Configuration) ......................... 87  
BMXDKPBA (Data RAM Kernel Program   
Base Address).................................................... 88  
BMXDRMSZ (Data RAM Size Register)..................... 91  
BMXDUDBA (Data RAM User Data Base Address)... 89  
BMXDUPBA (Data RAM User Program   
Oscillator Configuration.....................................................109  
Output Compare................................................................189  
P
Packaging .........................................................................319  
Details.......................................................................321  
Marking .....................................................................319  
Parallel Master Port (PMP) ...............................................211  
PIC32 Family USB Interface Diagram...............................146  
Pinout I/O Descriptions (table) ............................................18  
Power-on Reset (POR)  
Base Address).................................................... 90  
BMXPFMSZ (Program Flash (PFM) Size).................. 92  
BMXPUPBA (Program Flash (PFM) User Program   
Base Address).................................................... 91  
CHEACC (Cache Access) ........................................ 121  
CHECON (Cache Control)........................................ 120  
CHEHIT (Cache Hit Statistics).................................. 126  
CHELRU (Cache LRU)............................................. 125  
CHEMIS (Cache Miss Statistics) .............................. 126  
CHEMSK (Cache TAG Mask)................................... 123  
CHETAG (Cache TAG)............................................. 122  
CHEW0 (Cache Word 0) .......................................... 123  
CHEW1 (Cache Word 1) .......................................... 124  
CHEW2 (Cache Word 2) .......................................... 124  
CHEW3 (Cache Word 3) .......................................... 125  
CM1CON (Comparator 1 Control) ............................ 238  
CMSTAT (Comparator Control Register).................. 239  
CNCONx (Change Notice Control for PORTx)......... 176  
CTMUCON (CTMU Control)..................................... 244  
CVRCON (Comparator Voltage Reference Control) 242  
DCHxCON (DMA Channel x Control)....................... 135  
DCHxCPTR (DMA Channel x Cell Pointer) .............. 142  
DCHxCSIZ (DMA Channel x Cell-Size).................... 142  
DCHxDAT (DMA Channel x Pattern Data) ............... 143  
DCHxDPTR (Channel x Destination Pointer) ........... 141  
DCHxDSA (DMA Channel x Destination   
Start Address)................................................... 139  
DCHxDSIZ (DMA Channel x Destination Size) ........ 140  
DCHxECON (DMA Channel x Event Control) .......... 136  
DCHxINT (DMA Channel x Interrupt Control)........... 137  
DCHxSPTR (DMA Channel x Source Pointer) ......... 141  
DCHxSSA (DMA Channel x Source Start Address) . 139  
DCHxSSIZ (DMA Channel x Source Size) ............... 140  
DCRCCON (DMA CRC Control)............................... 132  
DCRCDATA (DMA CRC Data)................................. 134  
DCRCXOR (DMA CRCXOR Enable) ....................... 134  
DEVCFG0 (Device Configuration Word 0................. 251  
DEVCFG1 (Device Configuration Word 1................. 253  
DEVCFG2 (Device Configuration Word 2................. 255  
DEVCFG3 (Device Configuration Word 3................. 257  
DEVID (Device and Revision ID).............................. 259  
DMAADDR (DMA Address)...................................... 131  
DMAADDR (DMR Address)...................................... 131  
DMACON (DMA Controller Control) ......................... 130  
DMASTAT (DMA Status).......................................... 131  
I2CxCON (I2C Control)............................................. 201  
I2CxSTAT (I2C Status)............................................. 203  
ICxCON (Input Capture x Control)............................ 186  
IFSx (Interrupt Flag Status) ...................................... 106  
INTCON (Interrupt Control)....................................... 104  
INTSTAT (Interrupt Status)....................................... 105  
IPCx (Interrupt Priority Control) ................................ 107  
IPTMR Interrupt Proximity Timer)............................. 105  
and On-Chip Voltage Regulator................................262  
Power-Saving Features.....................................................247  
CPU Halted Methods ................................................247  
Operation ..................................................................247  
with CPU Running.....................................................247  
Prefetch Cache .................................................................119  
R
Reader Response .............................................................340  
Real-Time Clock and Calendar (RTCC)............................219  
Register Map  
ADC ............................................................................52  
Bus Matrix...................................................................42  
Comparator.................................................................58  
Comparator Voltage Reference ..................................58  
CTMU..........................................................................83  
Device and Revision ID Summary ..............................61  
Device Configuration Word Summary.........................61  
DMA Channel 0-3 .......................................................55  
DMA CRC ...................................................................54  
DMA Global.................................................................54  
Flash Controller...........................................................59  
I2C1 and I2C2.............................................................48  
Input Capture 1-5........................................................46  
Interrupt.......................................................................43  
Output Compare1-5 ....................................................47  
Parallel Master Port ....................................................81  
Peripheral Pin Select Input .........................................76  
Peripheral Pin Select Output.......................................78  
PORTA........................................................................62  
PORTB........................................................................63  
PORTC .................................................................64, 65  
PORTD .................................................................66, 67  
PORTE..................................................................68, 69  
PORTF......................................................70, 71, 72, 73  
PORTG .................................................................74, 75  
Prefetch.......................................................................82  
RTCC..........................................................................83  
SPI1 and SPI2 ............................................................51  
System Control ...........................................................60  
Timer1-5......................................................................45  
UART1-5.....................................................................49  
USB.............................................................................84  
Registers  
[pin name]R (Peripheral Pin Select Input).................175  
AD1CHS (ADC Input Select) ....................................235  
AD1CON1 (A/D Control 1)........................................227  
AD1CON1 (ADC Control 1) ..............................227, 231  
AD1CON2 (ADC Control 2) ......................................233  
AD1CON3 (ADC Control 3) ......................................234  
AD1CSSL (ADC Input Scan Select) .........................236  
ALRMDATE (Alarm Date Value)...............................227  
ALRMDATECLR (ALRMDATE Clear).......................227  
DS60001185B-page 336  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
NVMADDR (Flash Address) ....................................... 95  
T
NVMCON (Programming Control) .............................. 94  
NVMDATA (Flash Program Data)............................... 96  
NVMKEY (Programming Unlock)................................ 95  
NVMSRCADDR (Source Data Address)..................... 96  
OCxCON (Output Compare x Control) ..................... 190  
OSCCON (Oscillator Control) ................................... 111  
PFABT (Prefetch Cache Abort Statistics) ................. 127  
PMADDR (Parallel Port Address) ............................. 216  
PMAEN (Parallel Port Pin Enable)............................ 217  
PMCON (Parallel Port Control)................................. 212  
PMMODE (Parallel Port Mode)................................. 214  
PMSTAT (Parallel Port Status (Slave Modes Only).. 218  
REFOCON (Reference Oscillator Control) ............... 115  
REFOTRIM (Reference Oscillator Trim)................... 117  
RPnR (Peripheral Pin Select Output)........................ 175  
RSWRST (Software Reset) ........................................ 99  
RTCCON (RTC Control) ........................................... 220  
RTCDATE (RTC Date Value) ................................... 225  
RTCTIME (RTC Time Value).................................... 224  
SPIxCON (SPI Control)............................................. 192  
SPIxCON2 (SPI Control 2)........................................ 195  
SPIxSTAT (SPI Status)............................................. 196  
T1CON (Type A Timer Control) ................................ 178  
TxCON (Type B Timer Control) ................................ 183  
U1ADDR (USB Address) .......................................... 160  
U1BDTP1 (USB BDT Page 1) .................................. 162  
U1BDTP2 (USB BDT Page 2) .................................. 163  
U1BDTP3 (USB BDT Page 3) .................................. 163  
U1CNFG1 (USB Configuration 1)............................. 164  
U1CON (USB Control).............................................. 158  
U1EIE (USB Error Interrupt Enable) ......................... 156  
U1EIR (USB Error Interrupt Status).......................... 154  
U1EP0-U1EP15 (USB Endpoint Control) ................. 165  
U1FRMH (USB Frame Number High)....................... 161  
U1FRML (USB Frame Number Low)........................ 160  
U1IE (USB Interrupt Enable)..................................... 153  
U1IR (USB Interrupt)................................................. 152  
U1OTGCON (USB OTG Control) ............................. 150  
U1OTGIE (USB OTG Interrupt Enable).................... 148  
U1OTGIR (USB OTG Interrupt Status)..................... 147  
U1OTGSTAT (USB OTG Status).............................. 149  
U1PWRC (USB Power Control)................................ 151  
U1SOF (USB SOF Threshold).................................. 162  
U1STAT (USB Status) .............................................. 157  
U1TOK (USB Token) ................................................ 161  
WDTCON (Watchdog Timer Control) ....................... 261  
Resets................................................................................. 97  
Revision History................................................................ 333  
RTCALRM (RTC ALARM Control).................................... 222  
Timer1 Module.................................................................. 177  
Timer2/3, Timer4/5 Modules............................................. 181  
Timing Diagrams  
10-Bit Analog-to-Digital Conversion   
(ASAM = 0, SSRC<2:0> = 000)........................ 306  
10-Bit Analog-to-Digital Conversion (ASAM = 1,   
SSRC<2:0> = 111, SAMC<4:0> = 00001) ....... 307  
EJTAG...................................................................... 313  
External Clock .......................................................... 282  
I/O Characteristics.................................................... 285  
I2Cx Bus Data (Master Mode).................................. 296  
I2Cx Bus Data (Slave Mode).................................... 299  
I2Cx Bus Start/Stop Bits (Master Mode)................... 296  
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 299  
Input Capture (CAPx) ............................................... 289  
OCx/PWM................................................................. 290  
Output Compare (OCx) ............................................ 290  
Parallel Master Port Read ........................................ 309  
Parallel Master Port Write......................................... 310  
Parallel Slave Port.................................................... 308  
SPIx Master Mode (CKE = 0) ................................... 291  
SPIx Master Mode (CKE = 1) ................................... 292  
SPIx Slave Mode (CKE = 0)..................................... 293  
SPIx Slave Mode (CKE = 1)..................................... 294  
Timer1, 2, 3, 4, 5 External Clock .............................. 288  
UART Reception....................................................... 210  
UART Transmission (8-bit or 9-bit Data) .................. 210  
Timing Requirements  
CLKO and I/O........................................................... 285  
Timing Specifications  
I2Cx Bus Data Requirements (Master Mode)........... 297  
I2Cx Bus Data Requirements (Slave Mode)............. 300  
Input Capture Requirements .................................... 289  
Output Compare Requirements................................ 290  
Simple OCx/PWM Mode Requirements ................... 290  
SPIx Master Mode (CKE = 0) Requirements............ 291  
SPIx Master Mode (CKE = 1) Requirements............ 292  
SPIx Slave Mode (CKE = 1) Requirements.............. 294  
SPIx Slave Mode Requirements (CKE = 0).............. 293  
U
UART................................................................................ 205  
USB On-The-Go (OTG).................................................... 145  
V
VCAP pin............................................................................ 262  
Voltage Regulator (On-Chip) ............................................ 262  
W
Watchdog Timer (WDT).................................................... 260  
WWW Address ................................................................. 339  
WWW, On-Line Support ..................................................... 15  
S
Serial Peripheral Interface (SPI) ....................................... 191  
Software Simulator (MPLAB SIM)..................................... 267  
Special Features............................................................... 251  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 337  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 338  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQs), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 339  
PIC32MX330/350/370/430/450/470  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC32MX330/350/370/430/450/470  
DS60001185B  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS60001185B-page 340  
Preliminary  
2012-2013 Microchip Technology Inc.  
PIC32MX330/350/370/430/450/470  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Example:  
PIC32 MX 3XX F 064 H T - 80 I / PT - XXX  
PIC32MX330F064H-80I/PT:  
General purpose PIC32,   
32-bit RISC MCU,   
64 KB program memory,   
64-pin, Industrial temperature,  
TQFP package.  
Microchip Brand  
Architecture  
Product Groups  
Flash Memory Family  
Program Memory Size (KB)  
Pin Count  
Tape and Reel Flag (if applicable)  
Speed  
Temperature Range  
Package  
Pattern  
Flash Memory Family  
Architecture  
MX = 32-bit RISC MCU core  
Product Groups  
3XX = General purpose microcontroller family  
4XX = General purpose microcontroller family  
Flash Memory Family  
F
= Flash program memory  
Program Memory Size 064 = 6 4KB  
128 = 128KB  
256 = 256KB  
512 = 512KB  
Pin Count  
H
L
= 64-pin  
= 100-pin  
Speed  
80 = 80 MHz  
Temperature Range  
I
V
= -40°C to +85°C (Industrial)  
= -40°C to +105°C (V-Temp)  
Package  
Pattern  
PT = 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack)  
PT = 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack)  
PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack)  
MR = 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat)  
TL = 124-Lead (9x9x0.9 mm) VTLA (Very Thin Leadless Array)  
Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)  
ES = Engineering Sample  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 341  
PIC32MX330/350/370/430/450/470  
NOTES:  
DS60001185B-page 342  
Preliminary  
2012-2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2012-2013, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62077-154-9  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2012-2013 Microchip Technology Inc.  
Preliminary  
DS60001185B-page 343  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS60001185B-page 344  
Preliminary  
2012-2013 Microchip Technology Inc.  

相关型号:

PIC32MX450F128H

32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog
MICROCHIP

PIC32MX450F128L

32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog
MICROCHIP

PIC32MX450F256H

32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog
MICROCHIP

PIC32MX450F256L

32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog
MICROCHIP

PIC32MX460F256L

High-Performance, General Purpose and USB, 32-bit Flash Microcontrollers
MICROCHIP

PIC32MX460F256L-80I/PT

32-BIT, FLASH, 80 MHz, RISC MICROCONTROLLER, PQFP100, 12 X 12 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-100
MICROCHIP

PIC32MX460F256L-80V/PT

IC MCU 32BIT 256KB FLASH 100TQFP
MICROCHIP

PIC32MX460F512L

High-Performance, General Purpose and USB, 32-bit Flash Microcontrollers
MICROCHIP

PIC32MX460F512L-80I/PT

32-BIT, FLASH, 80 MHz, RISC MICROCONTROLLER, PQFP100, 12 X 12 MM, 1 MM HEIGHT, LEAD FREE, PLASTIC, TQFP-100
MICROCHIP

PIC32MX460F512L-I/PT

PIC32MX460F512L-I/PT
MICROCHIP

PIC32MX470

32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog
MICROCHIP

PIC32MX470F512H

32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/Touch (HMI), USB, and Advanced Analog
MICROCHIP