RE46C180E16FA [MICROCHIP]

CMOS Programmable Ionization Smoke Detector ASIC with Interconnect, Timer Mode and Alarm Memory;
RE46C180E16FA
型号: RE46C180E16FA
厂家: MICROCHIP    MICROCHIP
描述:

CMOS Programmable Ionization Smoke Detector ASIC with Interconnect, Timer Mode and Alarm Memory

文件: 总58页 (文件大小:1882K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RE46C180  
CMOS Programmable Ionization Smoke Detector ASIC with  
Interconnect, Timer Mode and Alarm Memory  
Features  
Description  
• 6V to 12V Operation  
The RE46C180 is a next generation low-power, CMOS  
ionization-type, smoke detector IC. With minimal exter-  
nal components, this circuit will provide all the required  
features for an ionization-type smoke detector.  
• Low-Quiescent Current Consumption  
• Programmable Standby Sensitivity  
• Programmable HUSH Sensitivity  
• Programmable Hysteresis  
An on-chip oscillator strobes power to the smoke  
detection circuitry for 5 ms every 10 seconds to keep  
the standby current to a minimum.  
• Programmable Chamber Voltage for Push-to-Test  
(PTT) and Chamber Test  
A check for a Low Battery condition is performed every  
80s and an ionization chamber test is performed once  
every 320s when in Standby. The temporal horn pattern  
complies with the National Fire Protection Association  
NFPA 72® National Fire Alarm and Signaling Code® for  
emergency evacuation signals.  
• Programmable ±150 mV Low Battery Set Point  
• Internal Ionization Chamber Test  
• Internal Low Battery Test  
• Internal Power-on Reset and Power-up Low  
Battery Test  
• Alarm Memory  
An interconnect pin allows multiple detectors to be con-  
nected, such that when one unit alarms, all units will  
sound. A charge dump feature quickly discharges the  
interconnect line when exiting a Local Alarm condition.  
The interconnect input is also digitally filtered.  
• Auto Alarm Locate  
• Horn Synchronization  
• IO Filter and Charge Dump  
• Smart Interconnect  
An internal 9 minute or 80s timer can be used for a  
Reduced Sensitivity mode.  
• Interconnect up to 40 Detectors  
• ±5% All Internal Oscillator  
An alarm memory feature allows the user to determine  
whether the unit has previously entered a Local Alarm  
condition.  
• 9 Minute or 80 Second Timer for Sensitivity  
Control  
Temporal or Continuous Horn Pattern  
• Guard Outputs for Ion Detector Input  
• ±0.75 pA Detect Input Current  
Utilizing low-power CMOS technology, the RE46C180  
is designed for use in smoke detectors that comply with  
the Standard for Single and Multiple Station Smoke  
Alarms, UL217 and the Standard for Smoke Detectors  
for Fire Alarm Systems, UL268.  
• 10-year End-of-Life Indication  
Package Types  
RE46C180  
PDIP, SOIC  
TEST  
IO  
1
16 GUARD2  
DETECT  
GUARD1  
T3  
2
3
15  
14  
GLED  
CHAMBER  
4
5
6
13  
12  
11  
RLED  
VDD  
T2  
HS  
7
8
10  
9
TESTOUT  
HB  
FEED  
VSS  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 1  
RE46C180  
Functional Block Diagram  
DS20002275C-page 2  
2011-2021 Microchip Technology Inc.  
RE46C180  
Typical Application  
TEST and HUSH  
To Other  
Units  
R5  
100  
C3  
10 µF  
RE46C180  
TEST  
IO  
16  
1
2
3
GUARD2  
DETECT 15  
14  
Gled  
Rled  
GLED  
GUARD1  
R2  
390  
R1  
390  
T3 13  
4 CHAMBER  
12  
T2  
5
6
7
RLED  
11  
+
-
VDD  
HS  
9V  
Battery  
1 µF  
C2  
TESTOUT  
HB  
10  
9
FEED  
VSS  
8
R4  
220K  
R3  
1.5M  
C1  
.001 µF  
Note 1: R3, R4 and C1 are typical values, and may be adjusted to maximize sound pressure.  
2: C2 should be located as close as possible to the device power pins.  
3: Route the pin 8 PC board trace away from pin 4 to avoid coupling.  
4: No internal reverse battery protection. External reverse battery protection circuitry required.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 3  
RE46C180  
† Notice: Stresses above those listed under “Maximum  
ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at these or any other conditions above those  
indicated in the operation listings of this specification is  
not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
1.1  
Absolute Maximum Ratings†  
VDD.................................................................................12.5V  
Input Voltage Range Except FEED, IO.......... V = -.3V to V +.3V  
IN DD  
FEED Input Voltage Range..................... VINFD =-10 to +22V  
IO Input Voltage Range................................. VIO1= -.3 to 15V  
Input Current except FEED...................................IIN = 10 mA  
Operating Temperature ............................... TA = -10 to +60°C  
Storage Temperature ........................... TSTG = -55 to +125°C  
Maximum Junction Temperature............................TJ = +150°  
DC ELECTRICAL CHARACTERISTICS  
DC Electrical Characteristics: Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C,  
DD = 9V, VSS = 0V (Note 1)  
V
Test  
Pin  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Supply Voltage  
Supply Current  
VDD  
IDD1  
IDD2  
6
6
6
6
3.8  
12  
5.3  
6
V
Operating  
µA  
µA  
Operating, RLED off, GLED off  
Operating, VDD = 12V,  
RLED off, GLED off  
IDD3  
IDD4  
6
6
9.6  
13.9  
30  
µA  
µA  
Operating, RLED off,  
GLED off, Smoke check  
21.4  
Operating, RLED off, GLED off,  
Low Battery check  
Input Voltage High  
Input Voltage Low  
Input Leakage Low  
VIH1  
VIH2  
VIH3  
VIH4  
VIL1  
8
2
6
3
V
V
V
V
V
V
V
No Local Alarm, IO as an input  
No Local Alarm, IO as an input  
1
5.6  
5.6  
12  
8
2.8  
1
VIL2  
2
VIL3  
1
3.4  
3.4  
-0.75  
VIL4  
12  
15  
ILDET1  
pA  
pA  
VDD = 9V, DETECT = VSS  
,
,
0-40% RH, TA = +25°C  
ILDET2  
15  
-1.5  
VDD = 9V, DETECT = VSS  
85% RH, TA = +25°C (Note 2)  
ILFD1  
ILFD2  
8
8
-50  
µA  
nA  
FEED = -10V  
-100  
FEED = VSS  
Note 1: Production tested at room temperature with temperature guard banded limits.  
2: Sample test only.  
3: Not 100% production tested.  
4: Same limit range at each programmable step, see Table 4-1.  
DS20002275C-page 4  
2011-2021 Microchip Technology Inc.  
RE46C180  
DC ELECTRICAL CHARACTERISTICS (CONTINUED)  
DC Electrical Characteristics: Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C,  
DD = 9V, VSS = 0V (Note 1)  
V
Test  
Pin  
Parameter  
Symbol  
IHDET1  
IHDET2  
Min  
Typ  
Max  
Units  
Conditions  
Input Leakage High  
15  
0.75  
pA  
VDD = 9V, DETECT = VDD  
0–40% RH, TA = +25°C  
,
,
15  
1.5  
pA  
VDD = 9V, DETECT = VDD  
85% RH, TA = +25°C (Note 2)  
IHFD1  
IHFD2  
IIOL2  
8
8
50  
100  
150  
1
µA  
nA  
µA  
µA  
FEED = 22V  
FEED = VDD  
2
No Alarm, VIO = 15V  
Output Off Leakage High  
Input Pull Down Current  
IIOHZ  
3, 5  
Outputs Off,  
V
RLED = 9V, VGLED = 9V  
IPD1  
IPD2  
1
12  
20  
0.4  
6.3  
25  
-4  
50  
0.8  
80  
1.3  
µA  
mA  
V
TEST = 9V  
T2 = 9V  
Output High Voltage  
Output Low Voltage  
VOH1  
VOL1  
VOL3  
IIOL1  
10,11  
10,11  
3, 5  
2
IOH = -16 mA, VDD = 7.2V  
IOL = 16 mA, VDD = 7.2V  
IOL = 10 mA, VDD = 7.2V  
No Alarm, VIO = VDD -2V  
Alarm, VIO = 4V or VIO = 0V  
0.9  
1
V
V
Output Current  
60  
-16  
µA  
mA  
mA  
IIOH1  
IIODMP  
2
2
5
At conclusion of Local Alarm  
or PTT, VIO = 1V  
Low Battery Voltage  
VLB  
6
6.75  
7.05  
7.35  
7.65  
-50  
-50  
-50  
2
6.9  
7.2  
7.5  
7.8  
7.05  
7.35  
7.65  
7.95  
50  
V
V
LBTR[2:1] = 1 0  
LBTR[2:1] = 1 1  
V
LBTR[2:1] = 0 0  
V
LBTR[2:1] = 0 1  
Offset Voltage  
VGOS1  
VGOS2  
VGOS3  
VCM1  
14,15  
15,16  
15  
mV  
mV  
mV  
V
Guard amplifier  
50  
Guard amplifier  
50  
Smoke comparator  
Guard amplifier (Note 3)  
Smoke comparator (Note 3)  
Guard amplifier outputs (Note 3)  
Common Mode Voltage  
Output Impedance  
14,15  
15  
VDD–.5  
VDD–2  
VCM2  
0.5  
V
ZOUT  
14,16  
4
10  
4.5  
k  
V
Chamber Voltage in  
PTT/Chamber Test  
VCHAMBER  
4.49  
4.51  
User programmable  
(2.1V to 6.75V) (Note 4)  
Hysteresis  
VHYS  
13  
140  
150  
160  
mV  
No Alarm to Alarm condition,  
user programmable  
(50 to 225 mV) (Note 4)  
Note 1: Production tested at room temperature with temperature guard banded limits.  
2: Sample test only.  
3: Not 100% production tested.  
4: Same limit range at each programmable step, see Table 4-1.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 5  
RE46C180  
AC ELECTRICAL CHARACTERISTICS  
AC Electrical Characteristics: Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C,  
VDD = 9V, VSS = 0V.  
Test  
Pin  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Time Base  
Internal Oscillator Period  
Internal Clock Period  
RLED Indicator  
On Time  
TPOSC  
TPCLK  
7
593  
9.5  
625  
10  
657  
µs  
Test mode (Note 1)  
Operating  
10.5  
ms  
TON1  
5
5
5
5
9.5  
304  
0.95  
9.5  
10  
320  
1
10.5  
336  
ms  
s
Operating  
Period  
TPLED1  
TPLED2  
TPLED3  
Standby  
1.05  
10.5  
s
Local alarm  
10  
s
HUSH mode, No Local Alarm  
GLED Indicator  
Period  
TPLED4  
TPLED5  
TOFLED1  
TOFLED2  
TAMTO  
3
3
3
3
3
38  
237  
0.95  
36  
40  
250  
1
42  
263  
1.05  
40  
s
ms  
s
Alarm Memory Indication  
GLED period, No Alarm,  
no PTT  
Alarm Memory Indication  
GLED period upon PTT,  
AMLEDEn = 1  
Off Time  
Alarm Memory Indication  
GLED off time between  
pulses  
38  
s
Alarm Memory Indication  
GLED off time between pulse  
trains (3x)  
Alarm Memory Indication  
Timeout Period  
22.8  
45.6  
0
24  
48  
0
25.2  
50.4  
0
Hour AMTO[2:1] = 0 0  
Hour AMTO[2:1] = 0 1  
Hour AMTO[2:1] = 1 0,  
No Alarm Memory Indication  
AMTO[2:1] = 1 1,  
Alarm Memory Indication  
never times out, as long as  
Alarm Memory Latch is set  
Smoke Check  
Smoke Check Time  
Smoke Check Period  
TSCT  
TPER0  
TPER1  
4.7  
9.5  
5
10  
1
5.3  
ms  
s
Operating  
10.5  
1.05  
Standby, No Alarm  
0.95  
s
Standby, after one valid  
smoke sample and before  
entering Local Alarm, no PTT  
TPER2  
TPER3  
TPCT1  
237  
0.95  
304  
250  
1
263  
1.05  
336  
ms  
s
Standby, upon start of PTT  
and before entering Local  
Alarm  
Local Alarm (after three con-  
secutive valid smoke  
samples) or Remote Alarm  
Chamber Test Period  
320  
s
Operating  
Note 1: TPOSC is 100% production tested. All other timing is verified by functional testing.  
2: See timing diagram for CO alarm horn pattern.  
3: See timing diagram for smoke alarm temporal and non-temporal horn pattern.  
4: See timing diagram for horn synchronization and Auto Alarm Locate (AAL).  
DS20002275C-page 6  
2011-2021 Microchip Technology Inc.  
RE46C180  
AC ELECTRICAL CHARACTERISTICS (CONTINUED)  
AC Electrical Characteristics: Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C,  
VDD = 9V, VSS = 0V.  
Test  
Pin  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Low Battery  
Low Battery Check  
Period  
TPLB1  
TPLB2  
76  
80  
84  
s
s
Standby, No Alarm,  
No Low Battery  
304  
320  
336  
Standby, No Alarm, Low  
Battery  
Horn Operation  
Horn Delay  
THDLY1  
THDLY2  
10, 11  
10, 11  
475  
380  
500  
400  
525  
420  
ms  
ms  
From Local Alarm to Horn  
Active, temporal horn pattern  
From Local Alarm to Horn  
Active, continuous horn  
pattern  
Horn Period  
THPER1 10, 11  
THPER2 10, 11  
THPER3 10, 11  
38  
38  
40  
40  
42  
42  
s
s
Low Battery, No Alarm  
Chamber Failure, No Alarm  
237  
250  
263  
ms  
Alarm Memory Indication  
upon PTT, AMHCEn=1  
THPER4 10, 11  
5.5  
9.5  
5.8  
10  
6.1  
s
CO Alarm horn period  
(Note 2)  
Horn On Time  
THON1  
10, 11  
10.5  
ms  
1. Low Battery, No Alarm  
2. Chamber Failure  
3. Alarm Memory  
Indication upon PTT,  
AMHCEn = 1  
THON2  
THON3  
10, 11  
10, 11  
475  
332  
500  
350  
525  
368  
ms  
ms  
Smoke Alarm, temporal horn  
pattern (Note 3)  
Smoke Alarm, continuous  
horn pattern (Note 3)  
THON4  
THOF1  
10, 11  
10, 11  
95  
100  
500  
105  
525  
ms  
ms  
CO Alarm, COEn = 1  
Horn Off Time  
475  
Smoke Alarm, temporal horn  
pattern (Note 3)  
THOF2  
THOF3  
THOF4  
THOF5  
THOF6  
10, 11  
10, 11  
10, 11  
10, 11  
10, 11  
1.43  
143  
37  
1.5  
150  
39  
1.58  
158  
41  
s
Smoke Alarm, temporal horn  
pattern (Note 3)  
ms  
s
Smoke Alarm, continuous  
horn pattern (Note 3)  
Chamber Fail horn off time  
between pulse trains (3x)  
465  
95  
490  
100  
515  
105  
ms  
ms  
Chamber Fail horn off time  
between pulses  
CO Alarm horn off time  
between pulses,  
COEn = 1 (Note 2)  
THOF7  
10, 11  
4.8  
5.1  
5.4  
s
CO alarm horn off time  
between pulse trains,  
COEn = 1 (Note 2)  
Note 1: TPOSC is 100% production tested. All other timing is verified by functional testing.  
2: See timing diagram for CO alarm horn pattern.  
3: See timing diagram for smoke alarm temporal and non-temporal horn pattern.  
4: See timing diagram for horn synchronization and Auto Alarm Locate (AAL).  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 7  
RE46C180  
AC ELECTRICAL CHARACTERISTICS (CONTINUED)  
AC Electrical Characteristics: Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C,  
VDD = 9V, VSS = 0V.  
Test  
Pin  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Interconnect  
IO Active Delay  
TIODLY1  
2
2
2
3.5  
3.1  
3.7  
3.3  
3.9  
3.5  
851  
s
s
From start of Local Alarm  
to IO Active. SyncEn = 1  
From start of Local Alarm  
to IO Active. SyncEn = 0  
Remote Smoke Alarm  
Delay  
TIODLY2  
769  
810  
ms  
No Local Alarm,  
from IO Active to Alarm,  
temporal horn pattern  
TIODLY3  
2
299  
315  
331  
ms  
No Local Alarm,  
from IO Active to alarm,  
continuous horn pattern  
IO Filter for Remote  
Smoke Alarm  
TIOFILT  
TIOPW1  
TIOTO1  
2
2
2
2
37  
291  
290  
5.4  
ms  
ms  
s
IO pulse-width to be filtered  
IO as input, no Local Alarm  
IO Pulse On Time  
for CO Alarm  
No Local Alarm, 2 valid  
pulses required for CO  
IO Pulse Off Time  
for CO Alarm  
IO = Low  
IO Dump  
TIODMP1  
475  
500  
525  
ms  
At conclusion of Local Alarm  
or PTT  
Horn Synchronization  
IO Pulse Period  
TPIO1  
TONIO  
TIODMP2  
TIODLY4  
2
2
2
2
3.8  
3.41  
95  
4
4.2  
3.77  
105  
315  
s
Local Alarm, temporal horn  
pattern, SyncEn =1 (Note 4)  
IO Pulse On Time  
3.59  
100  
300  
s
Local Alarm, temporal horn  
pattern, SyncEn =1 (Note 4)  
Horn Sync IO Dump  
ms  
ms  
Local Alarm,  
SyncEn =1 (Note 4)  
Horn Sync IO Dump  
Delay  
285  
Local Alarm,  
SyncEn =1 (Note 4)  
Auto Alarm Locate (AAL)  
IO Cycle Period  
TPIO2  
2
2
15.2  
4.19  
16  
16.8  
4.63  
s
s
Local Alarm, temporal horn  
pattern, SyncEn =1,  
NoAAL = 0 (Note 4)  
IO Cycle Off Time  
TOFIO  
4.41  
Local Alarm, temporal horn  
pattern, SyncEn = 1,  
No AAL = 0, IO off time  
between IO pulse trains (3x)  
(Note 4)  
HUSH Timer Operation  
HUSH Timer Period  
TTPER  
8.5  
76  
9
9.5  
84  
min  
s
No Alarm, ShrtTO = 0  
No Alarm, ShrtTO = 1  
80  
EOL  
End-of-Life Age Sample  
TEOL  
346  
364  
382  
Hours Standby, EOLEn = 1  
Note 1:  
TPOSC is 100% production tested. All other timing is verified by functional testing.  
2: See timing diagram for CO alarm horn pattern.  
3: See timing diagram for smoke alarm temporal and non-temporal horn pattern.  
4: See timing diagram for horn synchronization and Auto Alarm Locate (AAL).  
DS20002275C-page 8  
2011-2021 Microchip Technology Inc.  
RE46C180  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 9V, VSS = 0V  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
TA  
-10  
-55  
+60  
°C  
°C  
TSTG  
+125  
Thermal Package Resistances  
Thermal Resistance, 16L-PDIP  
Thermal Resistance, 16L-SOIC (150 mil.)  
θJA  
θJA  
70  
°C/W  
°C/W  
86.1  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 9  
RE46C180  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Symbol  
RE46C180  
PDIP, SOIC  
Function  
1
TEST  
IO  
This input is used to invoke Push-to-Test, Timer mode and Alarm Memory  
Indication. This input has an internal pull-down.  
2
This bidirectional pin provides the capability to interconnect many detectors  
in a single system. This pin has an internal pull-down device and a charge  
dump device.  
3
4
5
GLED  
CHAMBER  
RLED  
Open drain NMOS output, used to drive a visible LED to provide visual  
indication of an Alarm Memory condition.  
Connect to the ionization smoke chamber. This pin provides power to the  
chamber  
Open drain NMOS output, used to drive a visible LED. This pin provides the  
load current for the Low Battery test, and is a visual indicator for alarm and  
HUSH mode.  
6
7
VDD  
Connect to the positive supply voltage  
TESTOUT  
This output is an indicator of the internal IO dump signal. This pin is also  
used for Test modes.  
8
FEED  
Usually connected to the feedback electrode through a current limiting  
resistor. If not used, this pin must be connected to VDD or VSS  
.
9
VSS  
HB  
HS  
Connect to the negative supply voltage.  
10  
11  
This pin is connected to the metal electrode of a piezoelectric transducer.  
This pin is a complementary output to HB, connected to the ceramic  
electrode of the piezoelectric transducer.  
12  
13  
14  
T2  
T3  
Test input to invoke Test modes. This pin has an internal pull-down.  
Test output for Test modes.  
GUARD1  
Output of the guard amplifier. This allows for measurement of the DETECT  
input without loading the ionization chamber.  
15  
16  
DETECT  
GUARD2  
Connect to the CEV of the ionization smoke chamber.  
Output of the guard amplifier. This allows for measurement of the DETECT  
input without loading the ionization chamber.  
DS20002275C-page 10  
2011-2021 Microchip Technology Inc.  
RE46C180  
3.3  
Supervisory Tests  
3.0  
3.1  
DEVICE DESCRIPTIONS  
Standby Internal Timing  
Once every 80s, the status of the battery voltage is  
checked by comparing a fraction of the VDD voltage to  
an internal reference. In each period of 320s, the bat-  
tery is checked four times. Of these four battery  
checks, three are unloaded and one is loaded with  
RLED enabled, which provides a battery load. Low bat-  
tery status is latched at the end of the 10 ms RLED  
pulse.  
The internal oscillator is manufactured to ±5% toler-  
ance. The oscillator period, TPOSC, is 625 µs. The inter-  
nal clock period, TPCLK, of 10 ms is derived from the  
internal oscillator period.  
In Standby, once every 10s, the smoke detection cir-  
cuitry is powered on for 5 ms. At the conclusion of the  
5 ms, the status of the smoke comparator is latched. If  
a Smoke condition is present, the period to the next  
detection decreases and additional checks are made.  
If the Low Battery test fails, the horn will chirp for 10 ms  
every 40s, and will continue to chirp until the next  
loaded Low Battery check is passed. The unloaded  
Low Battery checks are skipped in Low Battery  
condition.  
In Standby, once every 80s, the Low Battery detection  
circuitry is powered on for 10 ms. At the conclusion of  
the 10 ms, the status of the Low Battery comparator is  
latched. RLED is enabled for 10 ms every 320s to  
provide a battery load in the loaded battery test.  
As a user programmable option, a Low Battery Hush  
mode can be selected. If a Low Battery condition  
exists, upon release of PTT, the unit will enter the Low  
Battery Hush mode, and the 10 ms horn chirp will be  
silenced for 8 hours. At the conclusion of the 8 hours  
the audible indication will resume, if the Low Battery  
condition still exists  
In Standby, once every 320s, the chamber test circuitry  
is powered on for 5 ms. At the conclusion of the 5 ms,  
the status of the chamber test is latched. See  
Section 3.3 “Supervisory Tests” for details.  
In addition, every 320s, a background chamber test is  
performed by internally lowering the CHAMBER volt-  
age to a pre-determined level (user programmable) for  
3.7s. This will emulate a Smoke condition. At the end of  
this 3.7s period, the smoke detection circuitry is pow-  
ered on for 5 ms, and the Smoke condition is detected.  
3.2  
Smoke Detection Circuitry  
The collection electrode voltage (CEV) of the ionization  
chamber is compared to the stored reference voltage at  
the conclusion of the 5 ms smoke sample period. After  
the first Smoke condition is detected, the smoke detec-  
tion rate increases to once every 1s. Three consecutive  
smoke detections will cause the device to go into Local  
Alarm, and the horn circuit and IO will be active. RLED  
will turn on for 10 ms at 1 Hz rate.  
If two consecutive chamber tests failed to detect a sim-  
ulated Smoke condition, the chamber fail latch is set  
and the failure warning is generated. The horn will chirp  
three times every 40s. Each chirp is 10 ms long and  
three chirps are spaced at a 0.5s interval. The chamber  
fail warning chirp is separated from the Low Battery  
warning chirp by about 20s.  
In Local Alarm, the smoke reference voltage (smoke  
sensitivity) is internally increased to provide alarm  
hysteresis.  
The horn will continue this pattern until the chamber fail  
latch is reset. The chamber fail latch resets when any  
one of the followings is active:  
There are three separate smoke sensitivity settings (all  
user programmable):  
• Two consecutive chamber tests pass  
• Local smoke alarm  
• Standby sensitivity  
• Local alarm (hysteresis) sensitivity  
• HUSH sensitivity  
• PTT smoke alarm  
After the chamber test is completed, the CHAMBER  
voltage goes back to its normal standby level.  
During PTT, the standby smoke sensitivity is used in  
smoke detection; but the CHAMBER voltage is user  
programmable.  
Chamber test is performed approximately 140s after  
the loaded Low Battery test.  
The guard amplifier and outputs are always active, and  
will be within 50 mV of the DETECT input to reduce  
surface leakage. The guard outputs also allow for  
measurement of the DETECT input without loading the  
ionization chamber.  
In a Local Alarm, PTT Alarm or Remote Alarm condi-  
tion, the chamber test is not performed, and the Low  
Battery chirping is prohibited.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 11  
RE46C180  
greater than 37 ms and within 5.4s, a CO Alarm condi-  
tion is detected, and the CO temporal horn pattern will  
sound. The CO temporal pattern will sound at least two  
times, if a CO Alarm condition is detected.  
3.4  
Push-to-Test (PTT)  
PTT is an event when TEST is activated (VIH3).  
Release of PTT is an event when TEST is deactivated  
(VIL3). PTT has different functions for different circum-  
stances. In Standby, PTT tests the unit. Upon start of  
PTT, the CHAMBER voltage is lowered to a pre-deter-  
mined level (user programmable) to emulate a Smoke  
condition. The smoke detection rate increases to once  
every 250 ms. After three consecutive smoke detec-  
tions, the unit will go into a Local Alarm condition. In  
alarm, the smoke detection rate decreases to once  
every 1s. Upon release of PTT, the unit is immediately  
reset out of Local Alarm, and the horn is silenced. The  
chamber voltage goes back to the normal standby  
level, and the detection rate goes back to once every  
10s.  
3.6  
Reduced Sensitivity Mode  
(HUSH Mode)  
Upon release of PTT, the unit may or may not go into a  
HUSH mode, depending on the user’s selection.  
If the hush-in-alarm-only option is selected, then only  
the release of PTT in a Local Alarm condition can initi-  
ate a HUSH mode. Upon release of PTT, the unit is  
immediately reset out of alarm, and the horn is  
silenced.  
If the hush-in-alarm-only option is not selected, then  
anytime a release of PTT occurs, the HUSH mode is  
initiated.  
When the unit exits a Local Alarm condition, the alarm  
memory latch is set. PTT will activate the alarm mem-  
ory indication if the alarm memory latch is set and if the  
alarm memory indication function has been enabled. If  
the alarm memory indication function has not been  
enabled and the alarm memory latch is set, PTT will  
test the unit as described above. The release of PTT  
will always reset the alarm memory latch.  
In HUSH mode, the smoke sensitivity is lowered to a  
pre-determined level, which is user programmable.  
RLED is turned on for 10 ms every 10s.  
The HUSH mode period is user programmable – it can  
be either 9 minutes or 80s. After this period times out,  
the unit goes back to its standby sensitivity.  
In Standby and Low Battery conditions, PTT tests the  
unit and RLED will be constantly enabled. This allows  
the user to easily identify the low battery unit without  
waiting for 40s to hear a horn chirp. Upon release of  
PTT, RLED goes back to normal standby pulse rate.  
The Low Battery HUSH mode is then activated, if this  
function is enabled.  
If the unit is currently in a HUSH mode, then PTT will  
test the unit with the standby sensitivity. Upon release  
of PTT, a new HUSH mode will be initiated.  
As another user-programmable option, HUSH mode  
can be terminated earlier by a smart hush function.  
This function allows the HUSH mode to be canceled by  
either a high smoke alarm, or a remote smoke alarm.  
High smoke alarm is the local smoke alarm caused by  
a smoke level that exceeds the reduced sensitivity  
level.  
3.5  
Interconnect Operation  
The bidirectional IO pin allows the interconnection of  
multiple detectors. In a Local Alarm condition, this pin  
is driven high 3.7s after a Local Alarm condition is  
sensed through a constant current source. Shorting  
this output to ground will not cause excessive current.  
The IO is ignored as input during a Local Alarm.  
3.7  
Alarm Memory  
Alarm memory is a user-programmable option. If a unit  
has entered a Local Alarm, when exiting that Local  
Alarm, the alarm memory latch is set. The GLED can  
be used to visually identify any unit that had previously  
been in a Local Alarm condition. The GLED is pulsed  
on three times every 40s. Each GLED pulse is 10 ms  
long and 1s spaced from the next pulse. This alarm  
memory indication period can be 0, 24, 48 hours or no  
limit, depending on the user’s selection.  
The IO also has an NMOS discharge device that is  
active for 0.5s after the conclusion of any type of Local  
Alarm. This device helps to quickly discharge any  
capacitance associated with the interconnect line.  
If a remote active high signal is detected, the device  
goes into Remote Alarm and the horn will be active.  
RLED will be off, indicating a Remote Alarm condition.  
Internal protection circuitry allows the signaling unit to  
have higher supply voltage than the signaled unit, with-  
out excessive current draw.  
The user will be able to identify a unit with an active  
alarm memory anytime by PTT. Upon start of PTT, the  
alarm memory indication will be activated. Depending  
on the user’s selection, it can be 4 Hz horn chirp, 4 Hz  
GLED pulse, or both. Upon release of PTT, the alarm  
memory latch will be reset.  
The interconnect input has a 291 ms maximum digital  
filter. This allows for interconnection to other types of  
alarms (CO, for example) that may have a pulsed  
interconnect signal.  
Anytime a release of PTT occurs, the alarm memory  
latch will be reset. The initial visual GLED indication is  
not displayed if a Low Battery condition exists.  
As a user-programmable option, the smart intercon-  
nect (smart IO) function can be selected. If the IO input  
is pulsed high twice with a nominal pulse on time  
DS20002275C-page 12  
2011-2021 Microchip Technology Inc.  
RE46C180  
3.8  
End-of-Life (EOL) Indicator  
3.11 Auto Alarm Locate  
The EOL indicator is a user-programmable function. If  
the EOL indicator function is enabled, then approxi-  
mately every 15 days of continuous operation, TEOL,  
the circuit will read an age count stored in EEPROM,  
and will increment this age. After 10 years of operation,  
an audible indication will be given to signal that the unit  
should be replaced. The EOL indicator is the same as  
the chamber test failure warning.  
Auto Alarm Locate (AAL) is also a user-programmable  
function. To use AAL, the horn synchronization has to  
be selected first. The purpose of AAL is to let users  
quickly find the local alarm units just by listening. The  
local alarm units will sound the temporal pattern without  
interruption. The remote alarm units will sound the pat-  
tern with interruption. Every four temporal patterns  
(or 16s), the remote units are kept silenced for one pat-  
tern (or 4s).  
3.9  
Tone Pattern  
The originating unit conducts the IO cycling. Every four  
temporal patterns the IO is driven low for one temporal  
pattern. In the remaining three temporal patterns, the  
IO is still pulsing to keep the horn synchronized.  
The smoke alarm tone pattern can be either a temporal  
pattern, or a continuous pattern, depending on the  
user’s selection. The temporal horn pattern supports  
the NFPA 72® National Fire Alarm and Signaling  
Code® for emergency evacuation signals. The  
continuous pattern is a 70% duty cycle continuous  
pattern.  
The RLED of the origination unit and other local smoke  
units will be turned on 10 ms every 1s. The RLED of the  
remote smoke units will be off.  
If a CO alarm is detected through the IO, the unit will  
sound the CO tone pattern. The CO tone pattern con-  
sists of 4 horn beeps in every 5.8s. Each horn beep is  
100ms long and separated by 100ms.  
3.10 Horn Synchronization  
The horn synchronization function is programmable by  
the user.  
In an interconnected system, if one unit goes into Local  
Alarm, other units will also go into Remote Alarm. The  
IO line is driven high by the origination local smoke unit,  
and stays high during the alarm.  
If the Horn Synchronization function is enabled, at the  
end of every temporal horn pattern and when the horn  
is off, the origination unit will drive IO low, then high  
again. This periodic IO pulsing high and low will cause  
the remote smoke units to go into and out of the  
Remote Alarm repeatedly. Each time a unit goes into a  
Remote Alarm, its timing is reset. The horn sound of all  
remote smoke units will be synchronized with the horn  
sound of the origination unit.  
A protection circuit ensures that the unit which goes  
into Local Alarm first will be the controlling unit that con-  
trols the horn synchronization. The units that go later  
into Local Alarm will not drive the IO line. This prevents  
bus contention problem.  
This function works with the temporal tone pattern only.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 13  
RE46C180  
NOTES:  
DS20002275C-page 14  
2011-2021 Microchip Technology Inc.  
RE46C180  
4.0  
USER PROGRAMMING MODES  
TABLE 4-2:  
STANDBY SENSITIVITY (VSTD  
)
PROGRAMMING  
CONFIGURATION  
AT VDD = 9V  
Tables 4-1 to 4-6 show the parameters for user smoke  
calibration.  
TABLE 4-1:  
PARAMETRIC  
VSTD Register STTR [5:1] Configuration Values  
STTR5 STTR4 STTR3 STTR2 STTR1 VSTD  
PROGRAMMING  
Parametric  
Programming  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
4.5V  
4.6V  
4.7V  
4.8V  
4.9V  
5.0V  
5.1V  
5.2V  
5.3V  
5.4V  
5.5V  
5.6V  
5.7V  
5.8V  
5.9V  
6.0V  
2.9V  
3.0V  
3.1V  
3.2V  
3.3V  
3.4V  
3.5V  
3.6V  
3.7V  
3.8V  
3.9V  
4.0V  
4.1V  
4.2V  
4.3V  
4.4V  
Range  
Standby Smoke  
Sensitivity (VSTD  
2.9 6.0V (Note 1) 100 mV  
)
(Note 1)  
Hysteresis (VHYS  
)
+50 +225 mV  
25 mV  
(Note 2)  
(Note 2)  
HUSH Smoke  
Sensitivity (VHSH  
-1600 mV-100 mV 100 mV  
)
(Note 3)  
(Note 3)  
CHAMBERVoltage  
at PTT/Chamber  
Test (VCHAMBER  
2.10 6.75V  
150 mV  
(Note 4)  
(Note 4)  
)
Note 1: VSTD listed is based on VDD = 9V. The  
actual range is (29/90)VDD (60/90)VDD  
resolution is VDD/90.  
,
2:  
3:  
4:  
VHYS is a positive offset from VSTD. The  
listed value is based on VDD = 9V. The  
actual range is +(0.5/90)VDD +(2.25/  
90)VDD, resolution is (0.25/90)VDD  
HSH is a negative offset from VSTD. The  
listed value is based on VDD = 9V. The  
actual range is –(16/90)VDD  
–(1/90)VDD, resolution is VDD/90  
.
V
V
V
CHAMBER listed value is based on  
DD = 9V. Actual range is (21/90)VDD  
.
(67.5/90)VDD, resolution is (1.5/90)VDD  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 15  
RE46C180  
TABLE 4-3:  
HYSTERESIS (VHYS  
)
TABLE 4-5:  
CHAMBER VOLTAGE  
(VCHAMBER) PROGRAMMING  
CONFIGURATION  
PROGRAMMING  
CONFIGURATION  
AT VDD = 9V  
AT VDD = 9V  
VHYS Register HYTR[3:1]  
VCHAMBER Register PTTR[5:1]  
Configuration  
Values  
VHYS  
Values  
Configuration  
HYTR3  
HYTR2  
HYTR1  
VCHAMBER  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
150 mV  
175 mV  
200 mV  
225 mV  
50 mV  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
4.50V  
4.65V  
4.80V  
4.95V  
5.10V  
5.25V  
5.40V  
5.55V  
5.70V  
5.85V  
6.00V  
6.15V  
6.30V  
6.45V  
6.60V  
6.75V  
2.10V  
2.25V  
2.40V  
2.55V  
2.70V  
2.85V  
3.00V  
3.15V  
3.30V  
3.45V  
3.60V  
3.75V  
3.90V  
4.05V  
4.20V  
4.35V  
75 mV  
100 mV  
125 mV  
TABLE 4-4:  
HUSH SENSITIVITY (VHSH  
PROGRAMMING  
CONFIGURATION  
AT VDD = 9V  
)
VHSH Register TMTR[4:1]  
Configuration  
Values  
VHSH  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VSTD – 800 mV  
VSTD – 700 mV  
VSTD – 600 mV  
VSTD – 500 mV  
VSTD – 400 mV  
VSTD – 300 mV  
VSTD – 200 mV  
VSTD – 100 mV  
VSTD – 1600 mV  
VSTD – 1500 mV  
VSTD – 1400 mV  
VSTD – 1300 mV  
VSTD – 1200 mV  
VSTD – 1100 mV  
VSTD – 1000 mV  
VSTD – 900 mV  
DS20002275C-page 16  
2011-2021 Microchip Technology Inc.  
RE46C180  
4.1  
Calibration and Programming  
Procedures  
TABLE 4-6:  
FEATURE PROGRAMMING  
Features  
Options  
Sixteen separate programming and Test modes are  
available for user customization. The T2 input is used  
to enter these modes and step through them. To enter  
these modes, after power-up, T2 must be driven to VDD  
and held at that level. To step through the modes, the  
TEST input must first be driven to VDD. T2 is then  
clocked. TEST has to be high when clocking T2. Any-  
time T2 and TEST are both driven to low, the unit will  
come out of these modes and go back to the normal  
operation mode. FEED and IO are re-configured to  
become Test mode inputs. A T2 clock occurs when it  
switches from VSS to VDD. The Test mode functions are  
outlined in the Table 4-7.  
Low Battery Detection Selection  
6.9V  
7.2V  
7.5V  
7.8V  
10 Year End-of-Life Indicator  
Enable/Disable  
Enable/Disable  
Smart IO with CO  
Alarm Sensing  
Auto Alarm Locate  
Horn Synchronization  
Low Battery Hush  
Enable/Disable  
Enable/Disable  
Enable/Disable  
Enable/Disable  
Alarm Memory Indicator at PTT:  
Horn Chirping  
Alarm Memory Indicator at PTT:  
GLED Flashing  
Enable/Disable  
Alarm Memory Indicator at  
Standby Time Out Period  
0/24/48 hr or no  
limit  
Alarm Memory  
HUSH Time Out Period  
Smart HUSH  
Enable/Disable  
9 minutes or 80s  
Enable/Disable  
Enable/Disable  
Enable/Disable  
HUSH In Alarm Only  
HUSH  
Tone Select  
Temporal  
or Continuous  
TABLE 4-7:  
TEST MODE FUNCTIONS  
T2  
Clock  
Mode  
Descriptions  
Normal Operation  
TEST  
T2  
FEED  
IO  
T3  
TESTOUT  
M0  
Note 1  
0
1
2
3
4
PTT/HUSH  
0
FEED  
IO  
Not Used  
IO Dump  
Note 2  
TM0 Speedup Mode  
PTT/HUSH  
VDD  
CLK  
IO  
Not Used  
IO Dump  
Note 2  
TM1 Load Timer for Spill  
EOL Timer Clock VDD  
HUSH/LB HUSH  
Timer Clock  
Alarm Mem Not Used  
Timer Clock  
Not Used  
Not Used  
Not Used  
TM2 User Feature  
Programming  
ProgData  
VDD  
VDD  
ProgClk  
ProgEn  
Not Used  
TM3 Horn Test/LED On;  
IO High/Low  
HornEnB  
Note 3  
IOHi En  
IO Dump EnB  
HB/HS En  
Note 4  
LEDEn  
Not Used  
TM4 Standby Sen Set  
TM5 Hyst Sen Set  
5
6
SmkCompEnB  
T3EnB  
VDD  
VDD  
CalClk  
ReadReg  
ReadReg  
VSEN  
VSEN  
SmkCompOut  
Note 5  
SmkCompEnB  
T3EnB  
CalClk  
SmkCompOut  
Note 5  
Note 1: After power-up, the unit is in M0, the normal operation mode. When in M0, if T2 is driven to VDD, the unit  
will enter TM0.  
2: In M0 and TM0, the digital output TESTOUT is driven by the internal IO dump signal.  
3: In TM3, if TEST = VSS, the horn is turned on. IO is in weak pull-down; If TEST = VDD, the horn is off. FEED  
controls IO and HB/HS.  
4: Valid when TEST = VDD  
;
5: SmkCompOut – digital comparator output (high if DETECT < VSEN; low if DETECT > VSEN).  
6: LBCompOut – digital comparator output (high if VDD < LB trip point; low if VDD > LB trip point).  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 17  
RE46C180  
TABLE 4-7:  
TEST MODE FUNCTIONS (CONTINUED)  
T2  
Clock  
Mode  
Descriptions  
TEST  
T2  
FEED  
IO  
T3  
TESTOUT  
TM6 HUSH Sen Set  
7
SmkCompEnB  
T3EnB  
VDD  
CalClk  
ReadReg  
VSEN  
SmkCompOut  
Note 5  
TM7 PTT/Chamber Test  
Set  
8
SmkCompEnB  
T3EnB  
VDD  
VDD  
CalClk  
ReadReg  
ProgEn  
VSEN  
SmkCompOut  
Note 5  
TM8 Program Calibration  
TM9 Not Used  
9
Not Used  
Not Used  
Not Used  
Not Used  
10  
11  
TM10 Serial Read/Write  
Calibration  
ProgData  
VDD  
ProgClk  
ProgEn  
Not Used  
Serial Out  
TM11 Not Used  
12  
13  
TM12 Standby Sen Check  
SmkCompEnB  
T3EnB  
VDD  
VDD  
VDD  
VDD  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
VSEN  
VSEN  
VSEN  
VSEN  
SmkCompOut  
Note 5  
TM13 Hyst Sen Check  
TM14 HUSH Sen Check  
14  
15  
16  
SmkCompEnB  
T3EnB  
SmkCompOut  
Note 5  
SmkCompEnB  
T3EnB  
SmkCompOut  
Note 5  
TM15 PTT/Chamber Test  
CHAMBER Voltage  
Check  
SmkCompEnB  
T3EnB  
SmkCompOut  
Note 5  
TM16 Not Used  
TM17 LB Test  
17  
18  
Not Used  
ProgData  
VDD  
VDD  
Not Used  
ProgClk  
LB Test En Not Used  
RLED En  
LBCompOut  
Note 6  
TM18 Serial Read/Write  
Feature and  
19  
ProgEn  
Not Used  
Serial Out  
Calibration  
TM19 User EE Lock Bit  
20  
LockSetEn  
VDD  
Not used  
ProgEn  
Not Used  
Lock Out  
Note 1: After power-up, the unit is in M0, the normal operation mode. When in M0, if T2 is driven to VDD, the unit  
will enter TM0.  
2: In M0 and TM0, the digital output TESTOUT is driven by the internal IO dump signal.  
3: In TM3, if TEST = VSS, the horn is turned on. IO is in weak pull-down; If TEST = VDD, the horn is off. FEED  
controls IO and HB/HS.  
4: Valid when TEST = VDD  
;
5: SmkCompOut – digital comparator output (high if DETECT < VSEN; low if DETECT > VSEN).  
6: LBCompOut – digital comparator output (high if VDD < LB trip point; low if VDD > LB trip point).  
DS20002275C-page 18  
2011-2021 Microchip Technology Inc.  
RE46C180  
+ V1  
-
9V  
Battery  
RE46C180  
TEST GUARD2  
2 IO  
Monitor TESTOUT,  
T3 and CHAMBER  
1
16  
R1 R2  
1k  
1k  
DETECT  
GUARD1  
15  
14  
13  
12  
GLED  
3
CHAMBER  
4
5
6
T3  
T2  
RLED  
VDD  
11  
10  
9
HS  
TESTOUT  
FEED  
7
8
HB  
VSS  
V2 V3 V4  
V5 V6  
FIGURE 4-1:  
Nominal Application Circuit for Programming.  
4. Apply four clock pulses to the T2 input (VDD to  
VSS and back to VDD) to enter in TM4 mode.  
This initiates the Calibration mode for the normal  
sensitivity setting. Drive TEST from VDD to VSS  
to turn on the smoke comparator and enable the  
T3 switch. The standby smoke sensitivity VSEN  
will appear at T3. The smoke comparator output  
will appear at TESTOUT. Clock FEED to  
increase or decrease the VSEN levels as  
needed. The IO input is pulsed low-to-high to  
save the result.  
4.2  
Smoke Calibration  
A separate calibration mode is entered for each mea-  
surement mode (Normal, Hysteresis, HUSH and PTT/  
Chamber Test) so that independent limits can be set for  
each.  
In all calibration modes the VSEN voltage, which rep-  
resents the smoke sensitivity level, can be accessed at  
T3 output. The SmkCompOut output voltage is the  
result of the comparison of DETECT and VSEN, and  
can be accessed at TESTOUT output. The FEED input  
can be clocked to cycle through the available smoke  
sensitivity levels. Once the desired smoke sensitivity  
level is reached, the IO input is pulsed low to high to  
store the result.  
5. Drive TEST from VSS to VDD and hold at VDD  
.
Apply another clock pulse to the T2 input, to  
enter in TM5 mode. This initiates the Calibration  
mode for the hysteresis setting. Drive TEST  
from VDD to VSS to turn on the smoke compara-  
tor and enable the T3 switch. The local alarm  
smoke sensitivity VSEN will appear at T3. The  
smoke comparator output will appear at  
TESTOUT. Clock FEED to increase or decrease  
the VSEN levels as needed. The IO input is  
pulsed low-to-high to save the result.  
The detailed procedure is described in the following  
steps:  
1. Power-up with the bias condition shown in  
Figure 4-1. At power-up:  
TEST = IO = FEED = T2 = VSS  
,
DETECT = VDD. Now in mode M0.  
2. Drive T2 input from VSS to VDD and hold at VDD  
to enter TM0.  
3. Drive TEST from VSS to VDD and hold at VDD  
.
2011-2021 Microchip Technology Inc.  
DS20002275C-page 19  
RE46C180  
6. Drive TEST from VSS to VDD and hold at VDD  
.
Apply another clock pulse to the T2 input, to  
enter in TM6 mode. This initiates the calibration  
mode for the HUSH sensitivity setting. Drive  
TEST from VDD to VSS to turn on the smoke  
comparator and enable the T3 switch. The  
HUSH smoke sensitivity VSEN will appear at T3.  
The smoke comparator output will appear at  
TESTOUT. Clock FEED to increase or decrease  
the VSEN levels as needed. The IO input is  
pulsed low-to-high to save the result  
7. Drive TEST from VSS to VDD and hold at VDD  
.
Apply another clock pulse to the T2 input to  
enter in TM7 mode. This initiates the calibration  
mode for the CHAMBER voltage at PTT/Cham-  
ber Test. Drive TEST from VDD to VSS to turn on  
the smoke comparator and enable the T3  
switch. The standby smoke sensitivity VSEN will  
appear at T3. The smoke comparator output will  
appear at TESTOUT. Clock FEED to increase or  
decrease the CHAMBER voltages as needed.  
The IO input is pulsed low-to-high to save the  
result.  
8. Drive TEST from VSS to VDD and hold at VDD  
.
Apply another clock pulse to the T2 input to  
enter in TM8 mode. Pulse IO to save all results  
into memory. Before this step, no settings are  
stored into memory. Power-down the part to  
take effect.  
DS20002275C-page 20  
2011-2021 Microchip Technology Inc.  
RE46C180  
FIGURE 4-2:  
Timing Diagram for Smoke Calibration (Mode TM4 ~ TM8).  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 21  
RE46C180  
4.3  
Serial Read/Write Calibration  
As an alternative to the steps in Section 4.2, Smoke  
Calibration, the sensitivity settings can be entered  
directly from a Serial Read/Write Calibration mode (if  
the system has been well characterized).  
To enter this mode, follow these steps:  
1. Power-up with the bias condition shown in  
Figure 4-1 to enter M0. At power-up:  
TEST = IO = FEED = T2 = VSS  
,
DETECT = VDD  
,
2. Drive T2 input from VSS to VDD and hold at VDD  
to enter TM0.  
3. Drive TEST from VSS to VDD and hold at VDD  
.
4. Apply 10 clock pulses to the T2 input (VDD to  
VSS and back to VDD) to enter in TM10 mode.  
This enables the Serial Read/Write Calibration  
mode.  
5. TEST now acts as a data input (High = VDD  
,
Low = VSS). FEED acts as the clock input  
(High = VDD, Low = VSS). Clock in the sensitivity  
settings.  
The data sequence should be as follows:  
5 bit  
3 bit  
4 bit  
5 bit  
Standby Sensitivity (LSB first)  
Hysteresis (LSB first)  
HUSH Sensitivity (LSB first)  
CHAMBER voltage in PTT/Chamber  
Test (LSB first)  
6. After all 17 bits have been entered, pulse IO to  
store into the EEPROM memory. Power-down  
the part to take effect.  
DS20002275C-page 22  
2011-2021 Microchip Technology Inc.  
RE46C180  
REGISTER 4-1:  
CALIBRATION CONFIGURATION REGISTER  
W-x  
PTTR5  
bit 17  
W-x  
PTTR4  
bit 16  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
PTTR3  
PTTR2  
PTTR1  
TMTR4  
TMTR3  
TMTR2  
TMTR1  
bit 8  
W-x  
HYTR3  
bit 8  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
HYTR2  
HYTR1  
STTR5  
STTR4  
STTR3  
STTR2  
STTR1  
bit 1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 17  
bit 16  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
PTTR5: MSB (See Table 4-5)  
PTTR4: 4SB  
PTTR3: 3SB  
PTTR2: 2SB  
PTTR1: LSB  
TMTR4: MSB (See Table 4-4)  
TMTR3: 3SB  
TMTR2: 2SB  
TMTR1: LSB  
bit 8  
HYTR3: MSB (See Table 4-3)  
HYTR2: 2SB  
bit 7  
bit 6  
HYTR1: LSB  
bit 5  
STTR5: MSB (See Table 4-2)  
STTR4: 4SB  
bit 4  
bit 3  
STTR3: 3SB  
bit 2  
STTR2: 2SB  
bit 1  
STTR1: LSB  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 23  
RE46C180  
FIGURE 4-3:  
Timing Diagram for Mode TM10.  
DS20002275C-page 24  
2011-2021 Microchip Technology Inc.  
RE46C180  
3. Drive TEST from VSS to VDD and hold at VDD  
4. Apply two clock pulses to the T2 input (VDD to  
SS and then back to VDD) to enter in TM2.  
.
4.4  
User Feature Selections  
User feature selections can be clocked in serially using  
TEST as data input, and FEED, as a clock input, then  
stored in the internal EEPROM.  
V
5. Using TEST as data and FEED as clock, shift in  
values of 18 bits as selected from Register 4-2.  
The detailed steps are as follows:  
6. After shifting in data, pull IO input to VDD, then  
VSS (minimum pulse-width of 10 ms) to store  
shift register contents in the memory.  
1. Power-up with the bias condition shown in  
Figure 4-1. At power-up:  
7. If any changes are required, power-down the  
part and return to Step 1. All bit values must be  
reentered.  
TEST = IO = FEED = T2 = VSS  
DETECT = VDD. Now in mode M0.  
,
2. Drive T2 input from VSS to VDD and hold at VDD  
to enter TM0.  
REGISTER 4-2:  
USER FEATURE CONFIGURATION REGISTER  
U
W-x  
LBTR2  
bit 18  
bit 17  
W-x  
LBTR1  
bit 16  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
EOLEn  
COEn  
NoAAL  
SyncEn  
LBHshEn  
AMHCEn  
AMLEDEn  
bit 8  
W-x  
AMTO2  
bit 8  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
AMTO1  
AMEn  
ShrTO  
SmrtH  
HIAO  
HushEnB  
TSEL  
bit 1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 18  
bit 17  
bit 16  
Unimplemented: Read as ‘x’  
LBTR2: MSB  
LBTR1: LSB  
00 =7.5V  
01 =7.8V  
10 =6.9V  
11 =7.2V  
bit 15  
bit 14  
bit 13  
bit 12  
EOLEn: End-of-Life Indicator Enable Bit  
1= Enable  
0= Disable  
COEn: CO Alarm Function (Smart IO) Enable Bit  
1= Enable  
0= Disable  
NoAAL: Auto Alarm Locate Disable Bit  
1= AAL is Disabled  
0= AAL is Enabled  
SyncEn: Horn Synchronization Enable Bit  
1= Enable  
0= Disable  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 25  
RE46C180  
REGISTER 4-2:  
USER FEATURE CONFIGURATION REGISTER (CONTINUED)  
bit 11  
bit 10  
bit 9  
LBHshEn: Low Battery Hush Enable Bit  
1= Enable  
0= Disable  
AMHCEn: Alarm Memory PTT Indicator Horn Chirp Enable Bit  
1= Enable  
0= Disable  
AMLEDEn: Alarm Memory PTT Indicator LED Flashing Enable Bit  
1= Enable  
0= Disable  
bit 8  
bit 7  
AMTO2: MSB  
AMTO1: LSB  
00=24 Hours Timeout  
01=48 Hours Timeout  
10=0 Hour Timeout  
11=Never Timeout  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
AMEn: Alarm Memory Enable Bit  
1= Enable  
0= Disable  
ShrTO: HUSH Timer Time Out Select Bit  
1= 80 seconds  
0= 9 minutes  
SmrtH: Smart HUSH Bit  
1= Enable (Hush is canceled by either high smoke, or remote smoke)  
0= Disable (Hush is never canceled until timeout)  
HIAO: HUSH-in-Alarm -Only Bit  
1= Enable (Hush is activated upon release of PTT during local smoke only)  
0= Disable (Hush is activated upon release of PTT at anytime)  
HushEnB: HUSH Enable Bit  
1= Enable (Hush is disabled)  
0= Disable (Hush is enabled)  
TSEL: Tone Select Bit  
1= Continuous Tone Pattern  
0= Temporal Tone Pattern  
The minimum pulse-width for FEED is 10 µs, while the  
minimum pulse-width for TEST is 100 µs.  
Alarm Memory PTT Indicator Horn  
Chirp Enable  
=
=
=
Yes  
Alarm Memory PTT Indicator LED  
Flashing Enable  
No  
For example, for the following options, the sequence  
would be:  
Alarm memory LED indicator time  
out  
24 hours  
Data  
Bit  
X
1
0
1
1
1
1
0
1
Alarm Memory Enable  
HUSH time out  
Smart HUSH  
=
=
=
=
=
=
Yes  
18 17 16 15 14 13 12 11 10  
9 minutes  
No  
Data  
Bit  
0
0
0
1
0
0
4
=
=
=
=
=
=
1
0
0
9
8
7
6
5
3
2
1
Hush in alarm only  
Hush Enable  
Yes  
Low battery Trip Point  
End of Life Enable  
CO Enable  
6.9V  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Tone Select  
Temporal  
Auto Alarm Locate Disable  
Horn Synchronization Enable  
Low Battery Hush Enable  
DS20002275C-page 26  
2011-2021 Microchip Technology Inc.  
RE46C180  
FIGURE 4-4:  
Timing Diagram for Mode TM2.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 27  
RE46C180  
4.5  
Sensitivity Verification  
After all sensitivity levels and CHAMBER voltage at  
PTT/Chamber Test have been entered and stored into  
the memory, additional Test modes are available to ver-  
ify if the sensitivities are functioning as expected.  
Table 4-8 describes several verification tests.  
TABLE 4-8:  
SENSITIVITY VERIFICATION DESCRIPTION  
Sensitivity  
Test Description  
Standby Sensitivity Clock T2 to Mode TM12 (12 clocks). With appropriate smoke level in the chamber, pull TEST  
to VSS and hold for at least 1 ms. The TESTOUT output will indicate the detection status  
(High = smoke detected).  
Hysteresis  
Clock T2 to Mode TM13 (13 clocks). Pulse TEST and monitor TESTOUT.  
Clock T2 to Mode TM14 (14 clocks). Pulse TEST and monitor TESTOUT.  
HUSH Sensitivity  
CHAMBERvoltageat Clock T2 to Mode TM15 (15 clocks). Pulse TEST and monitor TESTOUT.  
PTT/Chamber Test  
DS20002275C-page 28  
2011-2021 Microchip Technology Inc.  
RE46C180  
FIGURE 4-5:  
Timing Diagram for Sensitivity Verification in Mode TM12 ~ TM15.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 29  
RE46C180  
5. TEST now acts as a data input (High = VDD  
,
4.6  
Serial Read/Write Calibration and  
User Features  
Low = VSS). FEED acts as the clock input  
(High = VDD, Low = VSS). Clock in the sensitivity  
settings. The data sequence should be as  
follows:  
As an alternative to the steps in Section 4.2, Smoke  
Calibration and Section 4.4, User Feature Selec-  
tions, the sensitivity settings and user feature selec-  
tions can be entered directly from a Serial Read/Write  
Calibration mode.  
D1 ~ D18  
User Features (18 bits, LSB first)  
Calibration (17 bits, LSB First)  
D19 ~ D35  
6. After all 35 bits have been entered, pulse IO to  
store into the EEPROM memory.  
To enter this mode, follow these steps:  
1. Power-up with the bias condition shown in  
Figure 4-1 to enter M0. At power-up:  
7. Use test mode TM19 to set the lock bit to  
unlocked. This will insure TM18 can be used to  
read back the data to verify the TM18 write com-  
pleted properly.  
TEST = IO = FEED = T2 = VSS  
,
DETECT = VDD  
.
2. Drive T2 input from VSS to VDD and hold at VDD  
to enter TM0.  
3. Drive TEST from VSS to VDD and hold at VDD  
.
4. Apply 18 clock pulses to the T2 input (VDD to  
VSS and then back to VDD) to enter in TM18  
mode. This enables the Serial Read/Write  
Calibration and User Features modes.  
REGISTER 4-3:  
SERIAL READ/WRITE REGISTER  
W-x  
PTTR5  
bit 35  
W-x  
W-x  
PTTR4  
PTTR3  
bit 33  
W-x  
PTTR2  
bit 32  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
PTTR1  
TMTR4  
TMTR3  
TMTR2  
TMTR1  
HYTR3  
HYTR2  
bit 25  
W-x  
HYTR1  
bit 24  
W-x  
W-x  
W-x  
W-x  
W-x  
U
W-x  
STTR5  
STTR4  
STTR3  
STTR2  
STTR1  
LBTR2  
bit 17  
W-x  
LBTR1  
bit 16  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
EOLEn  
COEn  
NoAAL  
SyncEn  
LBHshEn  
AMHCEn  
AMLEDEn  
bit 8  
W-x  
AMTO2  
bit 8  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
AMTO1  
AMEn  
ShrTO  
SmrtH  
HIAO  
HushEnB  
TSEL  
bit 1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 35  
bit 34  
bit 33  
PTTR5: MSB (See Table 4-5)  
PTTR4: 4SB  
PTTR3: 3SB  
DS20002275C-page 30  
2011-2021 Microchip Technology Inc.  
RE46C180  
REGISTER 4-3:  
SERIAL READ/WRITE REGISTER (CONTINUED)  
bit 32  
bit 31  
bit 30  
bit 29  
bit 28  
bit 27  
bit 26  
bit 25  
bit 24  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
PTTR2: 2SB  
PTTR1: LSB  
TMTR4: MSB (See Table 4-4)  
TMTR3: 3SB  
TMTR2: 2SB  
TMTR1: LSB  
HYTR3: MSB (See Table 4-3)  
HYTR2: 2SB  
HYTR1: LSB  
STTR5: MSB (See Table 4-2)  
STTR4: 4SB  
STTR3: 3SB  
STTR2: 2SB  
STTR1: LSB  
Unimplemented: Read as ‘x’  
LBTR2: MSB  
LBTR1: LSB  
00 =7.5V  
01 =7.8V  
10 =6.9V  
11 =7.2V  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
EOLEn: End-of-Life Indicator Enable Bit  
1= Enable  
0= Disable  
COEn: CO Alarm Function (Smart IO) Enable Bit  
1= Enable  
0= Disable  
NoAAL: Auto Alarm Locate Disable Bit  
1= AAL is Disabled  
0= AAL is Enabled  
SyncEn: Horn Synchronization Enable Bit  
1= Enable  
0= Disable  
LBHshEn: Low Battery Hush Enable Bit  
1= Enable  
0= Disable  
AMHCEn: Alarm Memory PTT Indicator Horn Chirp Enable Bit  
1= Enable  
0= Disable  
AMLEDEn: Alarm Memory PTT Indicator LED Flashing Enable Bit  
1= Enable  
0= Disable  
bit 8  
bit 7  
AMTO2: MSB  
AMTO1: LSB  
00=24 Hours Timeout  
01=48 Hours Timeout  
10=0 Hours Timeout  
11=Never Timeout  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 31  
RE46C180  
REGISTER 4-3:  
SERIAL READ/WRITE REGISTER (CONTINUED)  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
AMEn: Alarm Memory Enable Bit  
1= Enable  
0= Disable  
ShrTO: HUSH Timer Time Out Select Bit  
1= 80 seconds  
0= 9 minutes  
SmrtH: Smart HUSH Bit  
1= Enable (Hush is canceled by either high smoke, or remote smoke)  
0= Disable (Hush is never canceled until timeout)  
HIAO: HUSH-in-Alarm-Only Bit  
1= Enable (Hush is activated upon release of PTT during local smoke only)  
0= Disable (Hush is activated upon release of PTT at anytime)  
HushEnB: HUSH Enable Bit  
1= Enable (Hush is disabled)  
0= Disable (Hush is enabled)  
TSEL: Tone Select Bit  
1= Continuous Tone Pattern  
0= Temporal Tone Pattern  
DS20002275C-page 32  
2011-2021 Microchip Technology Inc.  
RE46C180  
FIGURE 4-6:  
Timing Diagram for Serial Read/Write Calibration and User Features in Mode TM18.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 33  
RE46C180  
4.7  
Horn Test  
Test mode TM3 allows the horn to be enabled  
indefinitely for audibility testing.  
To enter this mode, follow the next steps:  
1. Power-up with the bias condition shown in  
Figure 4-1 to enter M0. At power-up:  
TEST = IO = FEED = T2 = VSS  
,
DETECT = VDD  
.
2. Drive T2 input from VSS to VDD and hold at VDD  
to enter TM0.  
3. Drive TEST from VSS to VDD and hold at VDD  
.
4. Apply three clock pulses to the T2 input (VDD to  
VSS and then back to VDD) to enter in TM3  
mode.  
5. Drive TEST from VDD to VSS to enable the horn.  
VDD  
Horn Enabled  
TEST  
VSS  
Min T1 = 20 µs  
VDD  
T2  
VSS  
Min TSETUP1 = 10 µs  
Min PW1 = 10 µs  
MODE  
M0  
TM0  
TM1  
TM2  
TM3  
FIGURE 4-7:  
Timing Diagram for Horn Test in Mode TM3.  
DS20002275C-page 34  
2011-2021 Microchip Technology Inc.  
RE46C180  
4.8  
Low Battery Test  
Test mode TM17 allows the low battery trip point to be  
tested. To enter this mode, follow these steps:  
1. Power-up with the bias condition shown in  
Figure 4-1 to enter M0. At power-up:  
TEST = IO = FEED = T2 = VSS  
,
DETECT = VDD  
.
2. Drive T2 input from VSS to VDD and hold at VDD  
to enter TM0.  
3. Drive TEST from VSS to VDD and hold at VDD  
.
4. Apply 17 clock pulses to the T2 input (VDD to  
VSS and then back to VDD) to enter in TM17  
mode.  
5. Drive IO from VSS to VDD to enable the low  
battery testing and turn on the RLED. Sweep  
VDD from high to low and monitor TESTOUT  
output. The TESTOUT output will indicate the  
Low Battery status (High = Low Battery  
detected).  
VDD  
TEST  
VSS  
VDD  
T2  
VSS  
Min TSETUP1 = 10 µs  
VDD  
Min TPW1 = 10 µs  
Min T1 = 20 µs  
Low Battery Test Enabled  
IO  
VSS  
9V  
VDD  
7.5V  
6V  
VDD  
VSS  
TESTOUT  
MODE  
M0  
TM0  
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
TM16  
TM17  
Note: Assume the 7.5V low battery trip point is selected.  
FIGURE 4-8:  
Timing Diagram for Low Battery Test in Mode TM17.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 35  
RE46C180  
4.9  
User Lock Bit Programming  
Test mode TM19 allows users to program the user  
EE lock bit. Once the user EE lock bit is set, the pro-  
grammed user EE data can not be changed unless the  
lock bit is reset.  
To enter this mode, follow these steps:  
1. Power-up with the bias condition shown in  
Figure 4-1 to enter M0. At power-up:  
TEST = IO = FEED = T2 = VSS  
,
DETECT = VDD  
.
2. Drive T2 input from VSS to VDD and hold at VDD  
to enter TM0.  
3. Drive TEST from VSS to VDD and hold at VDD  
.
4. Apply 19 clock pulses to the T2 input (VDD to  
VSS and then back to VDD) to enter in TM19  
mode.  
5. Hold TEST at VDD and pulse IO once to set the  
lock bit and store into the EEPROM memory.  
6. To reset the lock bit from Step 5, drive TEST to  
VSS and pulse IO once.  
To set user EE lock bit  
VDD  
TEST  
T2  
VSS  
VDD  
VSS  
Min TSETUP1 = 10 µs  
Min TPW1 = 10 µs  
Min T1 = 20 µs  
Min PW2 = 10 ms  
VDD  
VSS  
IO  
MODE  
M0  
TM0  
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
TM18  
TM19  
To reset user EE lock bit  
VDD  
VSS  
VDD  
VSS  
TEST  
T2  
Min TSETUP1 = 10 µs  
VDD  
VSS  
Min TPW1 = 10 µs  
Min T1 = 20 µs  
Min PW2 = 10 ms  
IO  
MODE  
M0  
TM0  
TM1  
TM2  
TM3  
TM4  
TM5  
TM6  
TM18  
TM19  
FIGURE 4-9:  
Timing Diagram for User Lock Bit Programming in Mode TM19  
DS20002275C-page 36  
2011-2021 Microchip Technology Inc.  
RE46C180  
5.0  
5.1  
APPLICATION NOTES  
Standby Current Calculation  
A calculation of the standby current is shown in  
Table 5-1, based on the following conditions:  
VDD  
=
=
9V  
LED current in loaded  
battery check  
10 mA  
EOLEn  
=
1
TABLE 5-1:  
STANDBY CURRENT CALCULATION  
IDD Component  
Current (µA)  
Duration (s)  
Period (s)  
Factor  
Average Current (µA)  
Fixed IDD  
3.8  
9.6  
Always  
0.005  
0.01  
Always  
10  
1
3.8  
Smoke Check  
0.0005  
0.00013  
0.0048  
0.0028  
Low Battery Check  
(unloaded)  
21.4  
80  
Low Battery Check  
(loaded)  
10000  
9.6  
0.01  
0.005  
3.7  
320  
320  
3.10E-05  
1.60E-05  
0.012  
0.31  
Chamber Test  
(smoke check)  
0.00015  
0.038  
Chamber Test  
(chamber low)  
3.2  
320  
End-of-Life  
(reading EE and counting)  
35  
0.14  
0.01  
1310400  
1310400  
1.10E-07  
7.40E-09  
3.74E-06  
7.63E-07  
End-of-Life (writing EE)  
100  
Total  
4.16  
5.1.1  
FIXED IDD  
5.1.6  
CHAMBER TEST (CHAMBER LOW)  
The fixed IDD is the current from the constantly active  
internal oscillator, bias circuit and guard amplifier.  
The current drawn to pull the chamber low when the  
chamber test is performed.  
5.1.2  
SMOKE CHECK  
5.1.7  
END-OF-LIFE  
(READING EE AND COUNTING)  
The current draw from the smoke detection circuitry  
during the 5 ms smoke check period.  
The current drawn to read EOL bits from EE and then  
increase by 1.  
5.1.3  
LOW BATTERY CHECK  
(UNLOADED)  
5.1.8  
END-OF-LIFE (WRITING EE)  
The current drawn by the low battery detection circuitry  
during the 10 ms unloaded low battery check period.  
The current drawn to write EOL bits back to EE.  
5.1.9  
TOTAL CURRENT  
5.1.4  
LOW BATTERY CHECK (LOADED)  
The average total current drawn in Standby  
The current drawn by the RLED during the 10 ms  
loaded low battery check period.  
5.1.5  
CHAMBER TEST (SMOKE CHECK)  
The current drawn by the smoke detection circuitry  
during the 5 ms smoke check period, while the cham-  
ber is pulled low.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 37  
RE46C180  
5.2  
FUNCTIONAL TIMING DIAGRAMS  
Figures 5-1 to 5-8 show the timing diagrams for the  
smoke detector functions described in Section 3.0,  
Device Descriptions.  
FIGURE 5-1:  
Timing Diagram – Standby, No Alarm.  
DS20002275C-page 38  
2011-2021 Microchip Technology Inc.  
RE46C180  
FIGURE 5-2:  
Timing Diagram – Low Battery Test Failure and Chamber Test Failure.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 39  
RE46C180  
FIGURE 5-3:  
Timing Diagram – From Standby to Local Smoke and Push-To-Test.  
DS20002275C-page 40  
2011-2021 Microchip Technology Inc.  
RE46C180  
FIGURE 5-4:  
Timing Diagram – Local Smoke Alarm.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 41  
RE46C180  
FIGURE 5-5:  
Timing Diagram – IO Smoke Alarm.  
DS20002275C-page 42  
2011-2021 Microchip Technology Inc.  
RE46C180  
FIGURE 5-6:  
Timing Diagram – Alarm Memory and HUSH Timer.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 43  
RE46C180  
FIGURE 5-7:  
Timing Diagram – CO Alarm.  
DS20002275C-page 44  
2011-2021 Microchip Technology Inc.  
RE46C180  
FIGURE 5-8:  
Timing Diagram – Horn Synchronization and AAL.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 45  
RE46C180  
NOTES:  
DS20002275C-page 46  
2011-2021 Microchip Technology Inc.  
RE46C180  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
16-Lead PDIP (300 mil)  
Example  
RE46C180-V/P e  
3
1123256  
16-Lead Narrow SOIC (3.90 mm)  
Example  
RE46C180  
e
3
V/SL  
1123256  
Legend:XX...XCustomer-specific information  
YYear code (last digit of calendar year)  
YYYear code (last 2 digits of calendar year)  
WWWeek code (week of January 1 is week ‘01’)  
NNNAlphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
*This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e
3
)
Note:In the event the full Microchip part number cannot be marked on one line, it will be  
carried over to the next line, thus limiting the number of available characters for cus-  
tomer-specific information.  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 47  
RE46C180  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  .ꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅ#ꢉꢖ/ꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅ#ꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅ$ꢃꢖꢐꢕꢖꢘꢃ#ꢅꢂꢉꢖ/ꢉꢛꢃꢄꢛꢅꢚ#ꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏ#,00ꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃ#ꢁꢖꢕꢑ0#ꢉꢖ/ꢉꢛꢃꢄꢛ  
N
NOTE 1  
E1  
1
2
3
D
E
A
A2  
L
c
A1  
b1  
e
eB  
b
1ꢄꢃꢏꢇ  
!ꢃꢑꢌꢄꢇꢃꢕꢄꢅ5ꢃꢑꢃꢏꢇ  
23ꢜ4ꢝꢚ  
36$  
ꢀ8  
ꢁꢀ%%ꢅ+ꢚꢜ  
M
$23  
$(7  
3ꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
3
(
-#ꢅꢏꢕꢅꢚꢌꢉꢏꢃꢄꢛꢅꢂꢊꢉꢄꢌ  
M
ꢁꢙꢀ%  
ꢁꢀ:*  
M
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ-ꢘꢃꢖ/ꢄꢌꢇꢇ  
+ꢉꢇꢌꢅꢏꢕꢅꢚꢌꢉꢏꢃꢄꢛꢅꢂꢊꢉꢄꢌ  
ꢚꢘꢕꢈꢊꢋꢌꢐꢅꢏꢕꢅꢚꢘꢕꢈꢊꢋꢌꢐꢅ;ꢃꢋꢏꢘ  
$ꢕꢊꢋꢌꢋꢅꢂꢉꢖ/ꢉꢛꢌꢅ;ꢃꢋꢏꢘ  
6ꢆꢌꢐꢉꢊꢊꢅ5ꢌꢄꢛꢏꢘ  
-ꢃ#ꢅꢏꢕꢅꢚꢌꢉꢏꢃꢄꢛꢅꢂꢊꢉꢄꢌ  
5ꢌꢉꢋꢅ-ꢘꢃꢖ/ꢄꢌꢇꢇ  
1##ꢌꢐꢅ5ꢌꢉꢋꢅ;ꢃꢋꢏꢘ  
(ꢙ  
(ꢀ  
ꢝꢀ  
!
5
ꢔꢀ  
ꢌ+  
ꢁꢀꢀ*  
ꢁ%ꢀ*  
ꢁꢙ:%  
ꢁꢙ'%  
ꢁ= *  
ꢁꢀꢀ*  
ꢁ%%<  
ꢁ%'*  
ꢁ%ꢀ'  
M
ꢁꢀ %  
M
ꢁ ꢀ%  
ꢁꢙ*%  
ꢁ=**  
ꢁꢀ %  
ꢁ%ꢀ%  
ꢁ%8%  
ꢁ%ꢀ<  
M
ꢁ ꢙ*  
ꢁꢙ<%  
ꢁ==*  
ꢁꢀ*%  
ꢁ%ꢀ*  
ꢁ%=%  
ꢁ%ꢙꢙ  
ꢁ' %  
5ꢕꢗꢌꢐꢅ5ꢌꢉꢋꢅ;ꢃꢋꢏꢘ  
6ꢆꢌꢐꢉꢊꢊꢅ>ꢕꢗꢅꢚ#ꢉꢖꢃꢄꢛꢅꢅ"  
ꢜꢘꢋꢄꢊ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ "ꢅꢚꢃꢛꢄꢃꢎꢃꢖꢉꢄꢏꢅꢜꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
 ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅ!ꢅꢉꢄꢋꢅꢝꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅ#ꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅ$ꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅ#ꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢁ%ꢀ%&ꢅ#ꢌꢐꢅꢇꢃꢋꢌꢁ  
'ꢁ !ꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅ#ꢌꢐꢅ(ꢚ$ꢝꢅ)ꢀ'ꢁ*$ꢁ  
+ꢚꢜ, +ꢉꢇꢃꢖꢅ!ꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅ-ꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
$ꢃꢖꢐꢕꢖꢘꢃ# -ꢖꢘꢄꢕꢊꢕꢛꢒ !ꢐꢉꢗꢃꢄꢛ ꢜ%'?%ꢀ=+  
DS20002275C-page 48  
2011-2021 Microchip Technology Inc.  
RE46C180  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 49  
RE46C180  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002275C-page 50  
2011-2021 Microchip Technology Inc.  
RE46C180  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 51  
RE46C180  
NOTES:  
DS20002275C-page 52  
2011-2021 Microchip Technology Inc.  
RE46C180  
APPENDIX A: REVISION HISTORY  
Revision A (August 2011)  
Original release of this document.  
Revision B (March 2019)  
• Updated Section 6.0 “Packaging Information”  
• Updated Section “Product Identification  
System”.  
Revision C (June 2021)  
• Updated Table 4-8  
• Updated Section 4.2, Smoke Calibration  
• Updated Section 4.3, Serial Read/Write  
Calibration  
• Updated Section 4.6, Serial Read/Write Calibra-  
tion and User Features  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 53  
RE46C180  
NOTES:  
DS20002275C-page 54  
2011-2021 Microchip Technology Inc.  
RE46C180  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
XX  
PART NO.  
Device  
X
Examples:  
a)  
RE46C180E16FA:  
RE46C180S16F:  
RE46C180S16TF:  
16LD PDIP Package  
16LD SOIC Package  
16LD SOIC Package,  
Tape and Reel  
Number  
of Pins  
Package  
b)  
c)  
Device  
RE46C180: CMOS Programmable Ionization Smoke  
Detector ASIC  
RE46C180T: CMOS Programmable Ionization Smoke  
Detector ASIC (Tape and Reel, SOIC only)  
Package  
E
S
=
=
Plastic Dual In-Line, 150 mil. Body, 16-Lead  
(PDIP)  
Small Plastic Outline - Narrow, 3.90 mm Body,  
16-Lead (SOIC)  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 55  
RE46C180  
NOTES:  
DS20002275C-page 56  
2011-2021 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip  
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications  
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished  
without violating Microchip's intellectual property rights.  
Microchip is willing to work with any customer who is concerned about the integrity of its code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are  
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection  
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or  
other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication is provided for the sole  
purpose of designing with and using Microchip products. Infor-  
mation regarding device applications and the like is provided  
only for your convenience and may be superseded by updates.  
It is your responsibility to ensure that your application meets  
with your specifications.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions  
Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight  
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,  
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-  
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTALOR CONSEQUEN-  
TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND  
WHATSOEVER RELATED TO THE INFORMATION OR ITS  
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION. Use of Microchip devices in life sup-  
port and/or safety applications is entirely at the buyer's risk, and  
the buyer agrees to defend, indemnify and hold harmless  
Microchip from any and all damages, claims, suits, or expenses  
resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights  
unless otherwise stated.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,  
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,  
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, Espresso T1S,  
EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP,  
INICnet, Intelligent Paralleling, Inter-Chip Connectivity,  
JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi,  
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK,  
NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,  
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,  
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O,  
simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI,  
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total  
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,  
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011-2021, Microchip Technology Incorporated, All Rights  
Reserved.  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
ISBN: 978-1-5224-8333-5  
2011-2021 Microchip Technology Inc.  
DS20002275C-page 57  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20002275C-page 58  
2011-2021 Microchip Technology Inc.  
02/28/20  

相关型号:

RE46C180S16F

SPECIALTY ANALOG CIRCUIT, PDSO16, 3.90 MM, LEAD FREE, PLASTIC, SOIC-16
MICROCHIP

RE46C180S16TF

CMOS Programmable Ionization Smoke Detector ASIC with Interconnect, Timer Mode and Alarm Memory
MICROCHIP

RE46C190

CMOS Low Voltage Photoelectric Smoke Detector ASIC with Interconnect
MICROCHIP

RE46C190S16F

CMOS Low Voltage Photoelectric Smoke Detector ASIC with Interconnect and Timer Mode
MICROCHIP

RE46C190S16TF

SPECIALTY ANALOG CIRCUIT, PDSO16, 3.90 MM, LEAD FREE, PLASTIC, NSOIC-16
MICROCHIP

RE46C200S14F

Analog Circuit, 1 Func, CMOS, PDSO14
MICROCHIP

RE46C311

Low-Input Leakage, Rail-to-Rail Input/Output Op Amps
MICROCHIP

RE46C311E8F

Low-Input Leakage, Rail-to-Rail Input/Output Op Amps
MICROCHIP

RE46C311S8F

Low-Input Leakage, Rail-to-Rail Input/Output Op Amps
MICROCHIP

RE46C311S8TF

Low-Input Leakage, Rail-to-Rail Input/Output Op Amps
MICROCHIP

RE46C312

Low-Input Leakage, Rail-to-Rail Input/Output Op Amps
MICROCHIP

RE46C312E8F

Low-Input Leakage, Rail-to-Rail Input/Output Op Amps
MICROCHIP