RE46C800 [MICROCHIP]

Carbon Monoxide Detector Companion IC; 一氧化碳检测仪配套IC
RE46C800
型号: RE46C800
厂家: MICROCHIP    MICROCHIP
描述:

Carbon Monoxide Detector Companion IC
一氧化碳检测仪配套IC

文件: 总24页 (文件大小:562K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RE46C800  
Carbon Monoxide Detector Companion IC  
Features:  
Description:  
• Low Quiescent Current  
• Operation from 2V or 12V  
• 9.8V Boost Regulator  
• Horn Driver  
The RE46C800 is a low-power CMOS carbon monoxide  
detector companion IC. The RE46C800 provides all of  
the analog, interface, and power management functions  
for a microcontroller-based CO or toxic gas detector. It  
is intended for use in both 3V and 9V battery or battery-  
backed applications. It features a boost regulator and  
horn driver circuit suitable for driving a piezoelectric  
horn, a 3.3V regulator for microcontroller voltage  
regulation, an LED driver, an operational amplifier and  
an IO for communication with interconnected units.  
• LED Driver  
• 3.3V Regulated Voltage for Microcontroller  
Operation  
• Internal Operational Amplifiers:  
- ±1 mV Input Offset Voltage  
- Rail-to-rail Input and Output  
- 10 kHz Gain Bandwidth Product  
- Unity Gain Stable  
Package Types  
RE46C800  
SSOP  
• Bidirectional Alarm Interconnect  
INP  
1
20  
HRNEN  
HB  
Applications:  
19  
18  
2
3
INN  
• CO Detector  
VREF  
HS  
Toxic Gas Detector  
• Heat Detector  
4
5
17  
16  
OPOUT  
9VDET  
VDD  
FEED  
VSS  
6
7
15  
14  
LX  
ACDET  
LEDPWR  
VBST  
LEDEN  
8
13  
12  
IO1  
IO2  
9
VREG  
10  
11  
IODIR  
2013 Microchip Technology Inc.  
DS25172A-page 1  
RE46C800  
Functional Block Diagram  
VDDS  
LX (15)  
HRNEN (20)  
BOOST  
9VDET (5)  
PWM  
CONTROL  
VBST  
DISABLE  
HB (19)  
LEVEL  
I_LIMIT  
SHIFTER  
ACDET (7)  
HS (18)  
VREG  
VDD (6)  
SUPPLY  
SELECT  
FEED (17)  
VBST (13)  
VDDS  
ERROR  
AMPLIFIER  
VDDS  
REFERENCE  
VOLTAGE  
VREG (12)  
VREF  
GENERATOR  
VREG  
VREF (3)  
OV  
Protection  
INP (1)  
INN (2)  
OPOUT (4)  
LEDEN (8)  
VBST  
LEDPWR (14)  
IO1 (9)  
IODIR (11)  
IO2 (10)  
INTERCONNECT  
VSS (16)  
DS25172A-page 2  
2013 Microchip Technology Inc.  
RE46C800  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
VDD............................................................................................................................................................... -0.3V to 5.5V  
ESD HBM................................................................................................................................................................1500V  
ESD MM....................................................................................................................................................................150V  
VBST, LX ........................................................................................................................................................ -0.3V to 13V  
Input Voltage Range Except ACDET, 9VDET, FEED, IO1 ..................................................... VIN1 = – .3V to VREG + .3V  
ACDET, 9VDET Input Voltage Range .....................................................................................VIN2 = – .3V to VBST + .3V  
FEED Input Voltage Range ...........................................................................................................VINFD = -10V to + 22V  
IO1 Input Voltage Range....................................................................................................................VINIO1 = -.3 to +15V  
Input Current except FEED............................................................................................................................. IIN = 10 mA  
Operating Temperature.....................................................................................................................TA = -10C to +60C  
Storage Temperature ..................................................................................................................TSTG = -55C to +125C  
Maximum Junction Temperature....................................................................................................................TJ = +15C  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in  
the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS – RE46C800  
Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C, VDD = 3V, VSS= 0V, CREG = 10 µF,  
CBST = 10 µF, 9VDET low, ACDET low. (Note 1) (Note 2) (Note 3)  
Test  
Pin  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating  
Supply Voltage  
VDD  
6
2
6
5
V
V
VBST  
13  
12  
Operating, 9V operation,  
9VDET or ACDET high  
Standby Supply Current IDDSTBY1  
IDDSTBY2  
13.6  
5.8  
µA Inputs low; No loads, boost  
regulator running (Note 4)  
9.3  
µA Inputs low; No loads, boost  
regulator disabled, 9V opera-  
tion, VBST = 9V, 9VDET high  
Quiescent Supply  
Current  
IDDQ  
IVOQ  
6
6.8  
3.6  
10.3  
5.2  
µA Inputs low; No loads;  
VBST = 5V; VLX = 0.5V  
Quiescent IVO  
13  
µA Inputs low; No loads;  
VBST = 5V; VLX = 0.5V  
Note 1: Wherever a specific V  
value is listed under test conditions, the V  
is forced externally with the inductor  
BST  
BST  
disconnected and the boost regulator is NOT running.  
2: Typical values are for design information only.  
3: The limits shown are 100% tested at 25°C only. Test limits are guard-banded based on temperature characterization to  
warrant compliance at temperature extremes.  
4: The Standby Supply Current I  
specified above can be approximated as follows:  
DDSTBY1  
I
= I  
+ I  
DDQ IND  
DDSTBY1  
Where  
I
= average current into V supply  
DDQ DD  
I
= average inductor current = V  
* IVOQ/(V * Efficiency)  
BST IN  
IND  
V
= V = 3V  
DD  
IN  
2013 Microchip Technology Inc.  
DS25172A-page 3  
RE46C800  
DC ELECTRICAL CHARACTERISTICS – RE46C800 (CONTINUED)  
Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C, VDD = 3V, VSS= 0V, CREG = 10 µF,  
CBST = 10 µF, 9VDET low, ACDET low. (Note 1) (Note 2) (Note 3)  
Test  
Pin  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Leakage Low  
Input Leakage High  
IIL  
1, 5, 7,  
8, 10,  
11, 20  
-100  
nA INP, 9VDET, ACDET, LEDEN,  
IO2, IODIR, HRNEN Inputs  
VIN = VSS  
IILOP  
IILF  
2
-15  
-200  
-50  
pA INN input, VIN = VSS  
17  
µA FEED = -10V, VBST = 10V  
IIH1  
1, 8,  
10, 11,  
20  
100  
nA INP, LEDEN, IO2, IODIR,  
HRNEN Inputs VIN = VREG  
IIH2  
5, 7  
100  
nA 9VDET, ACDET Inputs,  
VIN = VBST, VBST = 10V.  
IIHOP  
IIHF  
2
20  
200  
50  
1
pA INN input, VIN = VREG  
17  
µA FEED = +22V; VBST = 10V  
Output Off Leakage  
High  
IIHOZ  
14, 15  
µA LEDEN = VSS, LEDPWR,  
LX = VBST = 10V  
Input Voltage Low  
Input Voltage High  
Output Voltage Low  
VIL1  
8, 10,  
11, 20  
1
V
LEDEN, IO2, IODIR, HRNEN  
Inputs  
VIL2  
VIL3  
VILF  
7
5
7
4
V
V
V
V
ACDET Input, VBST = 10V  
9VDET Input, VBST = 10V  
FEED Input; VBST = 10V  
17  
9
3
VILIO  
1
0.8  
Falling edge of IO1 input,  
IODIR = VSS  
VIH1  
8, 10, VREG -.7  
11, 20  
V
LEDEN, IO2, IODIR, HRNEN  
Inputs  
VIH2  
VIH3  
VIHF  
7
5
8.2  
6
V
V
V
V
ACDET Input, VBST = 10V  
9VDET Input, VBST = 10V  
FEED Input; VBST = 10V  
17  
9
7
VIHIO  
1
2
Rising edge of IO1 input,  
IODIR = VSS  
VOL1  
18, 19  
0.5  
V
HS or HB; IOUT = 16 mA;  
VDD = 3V; VBST = 10V,  
HRNEN = VSS  
VOL2  
14  
10  
0.5  
0.5  
V
V
LEDPWR; IOUT = 10 mA;  
VBST = 10V  
VOLIO2  
IO2 output, IOUT = 100 µA,  
IODIR = VSS  
Note 1: Wherever a specific V  
value is listed under test conditions, the V  
is forced externally with the inductor  
BST  
BST  
disconnected and the boost regulator is NOT running.  
2: Typical values are for design information only.  
3: The limits shown are 100% tested at 25°C only. Test limits are guard-banded based on temperature characterization to  
warrant compliance at temperature extremes.  
4: The Standby Supply Current I  
specified above can be approximated as follows:  
DDSTBY1  
I
= I  
+ I  
DDQ IND  
DDSTBY1  
Where  
I
= average current into V supply  
DDQ DD  
I
= average inductor current = V  
* IVOQ/(V * Efficiency)  
BST IN  
IND  
V
= V = 3V  
DD  
IN  
DS25172A-page 4  
2013 Microchip Technology Inc.  
RE46C800  
DC ELECTRICAL CHARACTERISTICS – RE46C800 (CONTINUED)  
Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C, VDD = 3V, VSS= 0V, CREG = 10 µF,  
CBST = 10 µF, 9VDET low, ACDET low. (Note 1) (Note 2) (Note 3)  
Test  
Pin  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Output Voltage High  
VOH1  
18, 19  
9.5  
V
HS or HB; IOUT = -16 mA;  
VBST = 10V; HRNEN = VREG  
VOHIO1  
VOHIO2  
9
3
V
V
IO1, IOUT = -4 mA,  
IODIR = VIH1, IO2 = VIH1  
10  
VREG -.5  
IO2, IOUT = -100 µA,  
IODIR = VSS, IO1 = VIHIO1  
Reference Voltage  
VREF  
VVO1  
3
9
300  
9.8  
mV  
V
VBST Output Voltage  
13  
10.6  
VDD = 3V; HRNEN = VREG  
IOUT = 10 mA  
;
VVO2  
VEFF1  
VEFF2  
13  
3.6  
4
4.4  
V
%
%
V
VDD = 3V; HRNEN = VSS;  
I
OUT=10 mA  
VBST Efficiency  
85  
75  
ILOAD=10 mA; VDD =3V;  
HRNEN = VSS  
ILOAD = 100 µA; VDD = 3V;  
HRNEN = VSS  
VREG Voltage  
VREG  
12  
12  
3.2  
3.3  
30  
3.4  
50  
IOUT < 20 mA  
VREG Load Regulation  
VREGLD  
mV IOUT = 0 to 20 mA;  
HRNEN = VREG  
Brown-out Threshold  
VOBVT  
13  
13  
3.2  
3.6  
4
V
Falling edge of VBST  
VBST-to-Brown-out  
Margin  
VOBVTM  
100  
400  
mV VVO2 - VOBVT  
Brown-out Pull Down  
IBT  
12  
12  
20  
40  
4
mA VBST = 3.0V; VREG = 2.0V  
V
VREG Over Voltage  
Clamp  
VCL  
3.75  
4.25  
IO1 Output Current  
IO1IH1  
IO1IH2  
9
9
9
9
9
25  
-4  
-5  
60  
150  
µA IODIR = VSS, IO1 = 1V  
µA IODIR = VSS, IO1 = 15V  
IO1IOH1  
IO1IOH2  
IO1IOL1  
mA IODIR, IO2 = VIH1, IO1 = 3V  
mA IODIR, IO2 = VIH1, IO1 = VSS  
mA IO Dump Current,  
-5  
-16  
10  
IODIR = VIH1, IO2 = VSS  
,
IO1 = 1V  
IO1 Hysteresis  
Op Amp  
VHYSTIO1  
9
150  
mV IODIR = VSS  
Input Offset Voltage  
VOS  
4
-1  
1
mV VCM = 0.3V  
V
Common Mode Input  
Range  
VCMR  
1, 2  
VSS  
VREG  
Note 1: Wherever a specific V  
value is listed under test conditions, the V  
is forced externally with the inductor  
BST  
BST  
disconnected and the boost regulator is NOT running.  
2: Typical values are for design information only.  
3: The limits shown are 100% tested at 25°C only. Test limits are guard-banded based on temperature characterization to  
warrant compliance at temperature extremes.  
4: The Standby Supply Current I  
specified above can be approximated as follows:  
DDSTBY1  
I
= I  
+ I  
DDQ IND  
DDSTBY1  
Where  
I
= average current into V supply  
DDQ DD  
I
= average inductor current = V  
* IVOQ/(V * Efficiency)  
BST IN  
IND  
V
= V = 3V  
DD  
IN  
2013 Microchip Technology Inc.  
DS25172A-page 5  
RE46C800  
DC ELECTRICAL CHARACTERISTICS – RE46C800 (CONTINUED)  
Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C, VDD = 3V, VSS= 0V, CREG = 10 µF,  
CBST = 10 µF, 9VDET low, ACDET low. (Note 1) (Note 2) (Note 3)  
Test  
Pin  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Common Mode  
Rejection Ratio  
CMRR  
1, 2, 4  
80  
dB VREG = 3.3V, VCM = -0.3V to  
3.3V  
DC Open-Loop Gain  
(large signal)  
AOL  
VOL, VOH  
ISC  
4
4
4
VSS +10  
115  
dB RL = 50 k, VOUT = 0.3V to  
VREG - 0.3V  
Maximum Output  
Voltage Swing  
VREG -10 mV RL = 50 k, 0.5V input  
overdrive  
Output Short Circuit  
Current  
20  
mA VREG = 3.3V  
Note 1: Wherever a specific V  
value is listed under test conditions, the V  
is forced externally with the inductor  
BST  
BST  
disconnected and the boost regulator is NOT running.  
2: Typical values are for design information only.  
3: The limits shown are 100% tested at 25°C only. Test limits are guard-banded based on temperature characterization to  
warrant compliance at temperature extremes.  
4: The Standby Supply Current I  
specified above can be approximated as follows:  
DDSTBY1  
I
= I  
+ I  
DDQ IND  
DDSTBY1  
Where  
I
= average current into V supply  
DDQ DD  
I
= average inductor current = V  
* IVOQ/(V * Efficiency)  
BST IN  
IND  
V
= V = 3V  
DD  
IN  
DS25172A-page 6  
2013 Microchip Technology Inc.  
RE46C800  
AC ELECTRICAL CHARACTERISTICS  
Unless otherwise indicated, all parameters apply at TA = -10°C to +60°C, VDD = 3V, VSS= 0V, CREG = 10 µF,  
CVBST = 10 µF.  
Parameter  
Symbol Test Pin  
Min.  
Typ.  
Max.  
Units  
Conditions  
OP Amp AC Response  
Gain Bandwidth  
Product  
GBWP  
4
10  
kHz  
Slew Rate  
SR  
PM  
4
4
3
V/ms  
°
Phase margin  
Op Amp Noise  
65  
G = +1V/V  
Input Voltage  
Noise  
Eni  
eni  
ini  
1, 2  
1, 2  
1, 2  
5
µVP-P f = 0.1 Hz to 10 kHz  
Input Voltage  
Noise Density  
170  
0.6  
nV/ f = 1 kHz  
Hz  
Input Current  
Noise Density  
fA/ f = 1 kHz  
Hz  
Note 1: Wherever a specific V  
value is listed under test conditions, the V  
is forced externally with the inductor  
BST  
BST  
disconnected and the boost regulator is NOT running.  
2: Typical values are for design information only.  
3: The limits shown are 100% tested at 25°C only. Test limits are guard-banded based on temperature characterization to  
warrant compliance at temperature extremes.  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VDD = 3V, VSS= 0V  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 20L-SSOP  
TA  
-10  
-55  
60  
°C  
°C  
TSTG  
125  
JA  
87.3  
°C/W  
2013 Microchip Technology Inc.  
DS25172A-page 7  
RE46C800  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
RE46C800  
PIN FUNCTION TABLE  
Symbol  
Description  
SSOP  
1
2
3
4
5
6
7
8
INP  
INN  
Non-inverting input of the op amp.  
Inverting input of the op amp.  
VREF  
Voltage reference for CO biasing and detection circuitry.  
Output of the op amp.  
OPOUT  
9VDET  
VDD  
Logic input used to disable the boost regulator.  
Low-voltage supply input.  
ACDET  
LEDEN  
AC power detect pin.  
Logic input used to enable the LED driver. Input is designed to interface with  
circuitry supplied by VREG, so input voltage levels will scale with the VREG  
voltage.  
9
IO1  
Logic bidirectional pin used for connection to remote units. This pin has an  
internal pull-down device. If used as an output, high level is VVO1.  
10  
11  
12  
13  
IO2  
IODIR  
VREG  
VBST  
Bidirectional pin used to send and receive IO1 interconnect signal status.  
Logic input used to select IO direction.  
Regulated output voltage. Nominal output is 3.3V.  
Boost regulator output, typically output voltage is 4V or 9.8V. Also used as  
the high-voltage supply input.  
14  
15  
LEDPWR  
LX  
Open drain NMOS output used to drive a visible LED.  
Open drain NMOS output used to drive the boost regulator inductor. The  
inductor should be connected from this pin to the positive supply through a  
low resistance path.  
16  
17  
VSS  
Connect to the negative supply voltage.  
FEED  
Usually connected to the feedback electrode of the piezoelectric horn  
through a current limiting resistor. If not used, this pin must be connected to  
VSS  
.
18  
HS  
HS is a complementary output to HB and connects to the ceramic electrode  
(S) of the piezoelectric transducer.  
19  
20  
HB  
This pin is connected to the metal electrode (B) of a piezoelectric transducer.  
HRNEN  
Logic input for horn enable designed to interface with circuitry supplied by  
VREG. Input voltage levels will scale with the VREG voltage.  
DS25172A-page 8  
2013 Microchip Technology Inc.  
RE46C800  
Table 3-1 shows the truth table for the power  
management system.  
3.0  
3.1  
DEVICE DESCRIPTION  
Introduction  
TABLE 3-1:  
POWER MANAGEMENT  
SYSTEM  
The RE46C800 provides the necessary analog  
functions to build a microcontroller-based CO or toxic  
gas detector. This includes an op amp and voltage  
reference for the electrochemical sensor, a voltage  
regulator for the microcontroller, an LED driver, a horn  
driver, a detector interconnect function, a boost regula-  
tor for 3V operation, a power management system that  
allows operation from 3V, 9V or AC derived power. The  
power management system provides the capability for  
AC power with battery backup. The RE46C800  
provides a simple means for the microcontroller to  
control the operation of the CO detector and provide  
the necessary signaling functions during an alarm  
condition.  
Internal  
9VDET ACDET  
Boost Regulator  
Supply  
0
0
1
1
0
1
0
1
VDD  
Enabled  
VREG Enabled  
VREG Disabled  
VREG Disabled  
3.4  
Boost Regulator  
The boost regulator only operates in low-voltage  
applications. The boost regulator is a fixed off time  
boost regulator with peak current limiting. In low-boost  
operation the peak current is nominally 0.6A. In high-  
boost operation the peak current is nominally 1.2A. The  
boost regulator normally operates in Low-Boost mode,  
which provides a nominal 4V output voltage on the  
VBST pin. In High-Boost mode, the boost regulator  
provides a nominal 9.8V on the VBST pin. The boost  
regulator can be placed in High-Boost mode with  
HORNEN, LEDEN, or IODIR and IO2 both asserted  
high.  
3.2  
CO Sensor Circuit  
The RE46C800 provides a low offset op amp and  
reference voltage, VREF for two terminal  
,
a
electrochemical CO or toxic gas sensor. The unity gain  
stable op amp provides rail-to-rail inputs and output.  
The op amp output is monitored by the microcontroller  
to determine the CO concentration. This uncommitted  
op amp can be used for other purposes such as  
temperature sensing.  
The brown-out threshold voltage is the VBST voltage at  
which the voltage regulator and the horn will be  
disabled. When the VBST voltage falls below the brown-  
out threshold voltage of 3.6V, VREG will be disabled and  
pulled to VSS with a nominal 40 mA current. When the  
boost voltage rises above the brown-out threshold  
voltage, VREG is enabled.  
3.3  
Power Management System  
The power management system allows the RE46C800  
to be powered from a 3V or 9V battery or AC power. AC  
power is supplied as a DC voltage derived from an AC  
power supply. This DC voltage is diode connected to  
the VBST pin of the RE46C800. AC supplied power and  
a 9V battery can both be diode connected to the VBST  
pin.  
3.5  
Voltage Regulator  
The voltage regulator provides a nominal 3.3V output  
at the VREG pin and is intended to power a microcon-  
troller. In normal operation, the regulator will source  
current up to 20 mA, but the current sinking capability  
is typically under 1 µA. The voltage regulator is pow-  
ered from the VBST pin. In low-voltage applications the  
regulator is powered by the boost regulator and the  
regulator load current is part of the boost regulator load  
current. An overvoltage clamp is intended to limit the  
voltage at VREG if it is pulled up by an external source  
to greater than 4V. When the boost regulator experi-  
ences a brown-out condition, the voltage regulator will  
For low-voltage systems the battery is connected to the  
VDD pin. When only a low-voltage battery is available,  
the internal circuitry is powered from VDD. When a 9V  
battery or AC power is available, the internal circuitry is  
powered from VREG, which is a regulated 3.3V. The  
selection of the power source for the internal circuitry is  
controlled with the ACDET pin when the 9VDET pin is  
low.  
In low-voltage systems that are also AC powered, the  
boost regulator will turn on if voltage of the AC supplied  
power drops below the specified boost regulator  
voltage. This can cause the low-voltage battery to  
discharge more rapidly than expected.  
be disabled and the VREG output will be pulled to VSS  
.
The 9VDET pin will disable the boost regulator if  
9VDET is high. For a low-voltage system, the 9VDET  
pin should be connected to VSS which will enable the  
boost regulator.  
2013 Microchip Technology Inc.  
DS25172A-page 9  
RE46C800  
3.6  
LED Driver  
3.7  
Interconnect Operation  
The LED drive circuit provides power to an LED, which  
can be used as a visual indicator by the system. The  
LED drive circuit can also be used as part of a battery  
check function in battery-powered applications. When  
LEDEN is asserted high the LED will load the VBST  
output and the microcontroller can monitor the battery  
operation under load. In low-voltage systems the boost  
regulator will be placed into high-boost operation when  
LEDEN is asserted high. The load current is set by the  
resistor in series with the LED.  
The IO circuitry provides the means for the CO detector  
to be connected to other CO detectors or smoke  
alarms. Table 3-2 below provides the truth table for the  
interconnect circuit operation. IO1 is a bidirectional pin  
that connects to other CO detectors or smoke alarms.  
IO2 is a bidirectional pin that connects to the  
microcontroller. IODIR connects to the microcontroller  
and determines when IO1 and IO2 act as an input or  
output. When IO1 is used as an output asserting a logic  
high, the IO1 output acts as current source that is  
biased from VBST. In low-voltage applications where  
the boost regulator is enabled, the boost regulator will  
operate in High-Boost mode. When IO1 is used as an  
output asserting a logic low, the IO1 output acts as  
current sink. IO2 logic levels are referenced to VREG  
.
TABLE 3-2:  
INTERCONNECT LOGIC  
TRUTH TABLE  
IO2  
IO1  
IODIR  
Input  
Output  
Input  
Output  
1
1
0
0
0
1
0
0
0
1
1
1
DS25172A-page 10  
2013 Microchip Technology Inc.  
RE46C800  
4.0  
4.1  
APPLICATION NOTES  
Boost Regulator  
The boost regulator in High-Boost mode (nominal  
VBST = 9.8V) can draw current pulses of greater than  
1A and is, therefore, very sensitive to series resistance.  
Critical components of this resistance are: the inductor  
DC resistance, the internal resistance of the battery  
and the resistance in the connections from the inductor  
to the battery, from the inductor to the LX pin, from the  
inductor through the boost capacitor, and from the VSS  
pin to the battery. In order to function properly under full  
load at VDD = 2V, the total of the inductor and intercon-  
nect resistances should not exceed 0.3. The internal  
battery resistance should be no more than 0.5and a  
low ESR capacitor of 10 µF or more should be  
connected in parallel with the battery to average the  
current draw over the boost regulator switching cycle.  
The Schottky diode and inductor should be specified  
with a maximum operating current of 1.5A or higher.  
The boost capacitor should have a low ESR.  
4.2  
Typical Applications  
A few typical applications using the RE46C800 are  
listed below:  
AC POWER  
D1  
Line  
Line  
10-12V  
DC  
Neutral  
Neutral  
ACDIS  
RE46C800  
Working  
1.5 Mȍ  
R5  
INP  
1
HRNEN  
20  
CO  
1Mȍ  
R1  
22 μF  
C1  
Sensor  
2
3
INN  
VREF  
HB 19  
220Kȍ  
R3  
1 nF  
C4  
Counter  
18  
HS  
4
17  
OPOUT  
9VDET  
VDD  
R6  
FEED  
5
16  
15  
14  
13  
12  
11  
470  
VSS  
LX  
VBAT  
3V  
100  
VBAT  
6
L1  
10 μH  
1 Mȍ  
R2  
10 μF  
7
LED  
ACDET  
LEDEN  
IO1  
LEDPWR  
D2  
R7  
1 μF  
C3  
8
100 Kȍ  
R8  
C2  
VBST  
VREG  
3.3V  
9
10  
IO1  
IO2  
10 μF  
C5  
IO1  
10 μF  
C6  
Interface with  
Interconnected Units  
IO2  
IODIR  
IO2  
If AC then VREG supplies chip VDD through an internal switch  
If no AC then VDD is supplied through the external VDD pin  
If IODIR is low, then IO1 is an input.  
If IODIR is high, then IO1 is a output.  
FIGURE 4-1:  
Typical Application: AC with 3V Battery Backup.  
2013 Microchip Technology Inc.  
DS25172A-page 11  
RE46C800  
RE46C800  
HRNEN  
Working  
CO  
1.5 Mȍ  
R5  
INP  
INN  
1
2
20  
1 Mȍ  
22 μF  
C1  
Sensor  
R1  
HB 19  
220Kȍ  
R3  
1 nF  
C4  
Counter  
3
18  
VREF  
HS  
4
17  
OPOUT  
9VDET  
VDD  
R6  
FEED  
5
16  
15  
14  
13  
12  
11  
470  
VSS  
LX  
VBAT  
100 Kȍ  
VBAT  
6
L1  
10 μH  
R2  
7
LED  
ACDET  
LEDEN  
IO1  
LEDPWR  
D2  
10 μF  
C2  
1 μF  
C3  
3V  
8
VBST  
VREG  
3.3V  
9
10  
IO1  
IO2  
10 μF  
C5  
10 μF  
C6  
Interface with  
Interconnected Units  
IO2  
IODIR  
IO2  
IO1  
If IODIR is low, then IO1 is an input.  
If IODIR is high, then IO1 is a output.  
FIGURE 4-2:  
Typical Application: 3V Battery Operation.  
AC POWER  
D1  
Line  
Line  
10-12V  
DC  
Neutral  
Neutral  
ACDIS  
RE46C800  
Working  
1.5 Mȍ  
R5  
INP  
1
HRNEN  
20  
CO  
1 Mȍ  
R1  
22 μF  
C1  
Sensor  
2
3
INN  
VREF  
HB 19  
220Kȍ  
R3  
1 nF  
C4  
Counter  
18  
HS  
4
17  
OPOUT  
9VDET  
VDD  
R6  
FEED  
VSS  
5
16  
15  
14  
13  
12  
11  
VBAT  
9V  
470 Kȍ  
D3  
6
LX  
1 Mȍ  
7
LED  
ACDET  
LEDEN  
IO1  
LEDPWR  
10 μF  
C2  
R7  
8
100 Kȍ  
R8  
VBST  
VREG  
3.3V  
9
10  
IO1  
IO2  
10 μF  
C5  
IO1  
10 μF  
C6  
Interface with  
Interconnected Units  
IO2  
IODIR  
IO2  
If IODIR is low, then IO1 is an input.  
If IODIR is high, then IO1 is a output.  
FIGURE 4-3:  
Typical Application: AC with 9V Battery Backup.  
DS25172A-page 12  
2013 Microchip Technology Inc.  
RE46C800  
RE46C800  
HRNEN  
Working  
1.5 Mȍ  
R5  
INP  
INN  
1
2
20  
CO  
1 Mȍ  
R1  
22 μF  
C1  
Sensor  
HB 19  
220Kȍ  
R3  
1 nF  
C4  
Counter  
3
18  
VREF  
HS  
4
17  
OPOUT  
9VDET  
VDD  
R6  
FEED  
5
16  
15  
14  
13  
12  
11  
470  
VSS  
LX  
VBAT  
9V  
6
7
LED  
ACDET  
LEDEN  
IO1  
LEDPWR  
10 μF  
C2  
8
VBST  
VREG  
3.3V  
9
10  
IO1  
IO2  
10 μF  
C5  
IO1  
10 μF  
C6  
Interface with  
Interconnected Units  
IO2  
IODIR  
IO2  
If IODIR is low, then IO1 is an input.  
If IODIR is high, then IO1 is a output.  
FIGURE 4-4:  
Typical Application: 9V Battery Operation.  
AC POWER  
D1  
Line  
Line  
10-12V  
DC  
Neutral  
Neutral  
ACDIS  
RE46C800  
Working  
1.5 Mȍ  
R5  
INP  
1
HRNEN  
20  
CO  
1 Mȍ  
R1  
22 μF  
C1  
Sensor  
2
3
INN  
HB 19  
220Kȍ  
R3  
1 nF  
C4  
Counter  
18  
VREF  
HS  
4
17  
OPOUT  
9VDET  
VDD  
R6  
FEED  
5
16  
15  
14  
13  
12  
11  
VSS  
LX  
470 Kȍ  
6
1 Mȍ  
7
LED  
ACDET  
LEDEN  
IO1  
LEDPWR  
R7  
8
100 Kȍ  
R8  
VBST  
VREG  
3.3V  
9
10  
IO1  
IO2  
10 μF  
10 μF  
C6  
Interface with  
Interconnected Units  
IO2  
IODIR  
C5  
IO2  
IO1  
If IODIR is low, then IO1 is an input.  
If IODIR is high, then IO1 is a output.  
FIGURE 4-5:  
Typical Application: AC only.  
2013 Microchip Technology Inc.  
DS25172A-page 13  
RE46C800  
NOTES:  
DS25172A-page 14  
2013 Microchip Technology Inc.  
RE46C800  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
20-Lead SSOP (5.30 mm)  
Example  
RE46C800  
e
3
V/SS
1308256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2013 Microchip Technology Inc.  
DS25172A-page 15  
RE46C800  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢐꢌꢑꢒꢇꢎꢓꢅꢉꢉꢇꢔꢕꢋꢉꢌꢑꢄꢇꢖꢎꢎꢗꢇMꢇꢘꢙꢚꢁꢇꢓꢓꢇꢛꢜꢆ ꢇ!ꢎꢎꢔꢈ"ꢇ  
#ꢜꢋꢄ$ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢏꢓ  
ꢓꢁ9-ꢅ.ꢖ/  
7ꢆꢉꢊꢇꢈꢈꢅ:ꢉꢃꢔꢎ%  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ=ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
1ꢌꢌ%ꢑꢊꢃꢄ%  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
M
M
ꢀꢁꢛ-  
M
ꢛꢁ<ꢓ  
-ꢁ+ꢓ  
ꢛꢁꢏꢓ  
ꢓꢁꢛ-  
ꢀꢁꢏ-ꢅꢙ*1  
M
ꢏꢁꢓꢓ  
ꢀꢁ<-  
M
<ꢁꢏꢓ  
-ꢁ9ꢓ  
ꢛꢁ-ꢓ  
ꢓꢁꢜ-  
ꢕꢏ  
ꢕꢀ  
*
*ꢀ  
5
5ꢀ  
ꢀꢁ9-  
ꢓꢁꢓ-  
ꢛꢁꢗꢓ  
-ꢁꢓꢓ  
9ꢁꢜꢓ  
ꢓꢁ--  
ꢓꢁꢓꢜ  
ꢓꢝ  
ꢓꢁꢏ-  
<ꢝ  
ꢗꢝ  
5ꢉꢇ"ꢅ=ꢃ"%ꢎ  
(
ꢓꢁꢏꢏ  
M
ꢓꢁ+<  
#ꢜꢋꢄꢊ$  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢏꢓꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ,ꢀꢗꢁ-ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢓꢛꢏ.  
DS25172A-page 16  
2013 Microchip Technology Inc.  
RE46C800  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2013 Microchip Technology Inc.  
DS25172A-page 17  
RE46C800  
NOTES:  
DS25172A-page 18  
2013 Microchip Technology Inc.  
RE46C800  
APPENDIX A: REVISION HISTORY  
Revision A (March 2013)  
• Initial Release of this Document.  
2013 Microchip Technology Inc.  
DS25172A-page 19  
RE46C800  
NOTES:  
DS25172A-page 20  
2013 Microchip Technology Inc.  
RE46C800  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
X
Examples:  
X
a)  
b)  
RE46C800SS20F: 20LD SSOP package  
RE46C800SS20TF: 20LD SSOP package  
Tape and Reel  
Package  
Number  
of Pins  
Lead Free/  
Tape and Reel  
Device:  
RE46C800  
CMOS Carbon Monoxide Detector IC  
RE46C800T CMOS Carbon Monoxide Detector IC  
(Tape and Reel)  
Package:  
SS20 = Plastic Shrink Small Outline - Narrow, 5.33 mm Body,  
20-Lead (SSOP)  
2013 Microchip Technology Inc.  
DS25172A-page 21  
RE46C800  
NOTES:  
DS25172A-page 22  
2013 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2013, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620771143  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2013 Microchip Technology Inc.  
DS25172A-page 23  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS25172A-page 24  
2013 Microchip Technology Inc.  

相关型号:

RE473-L

NOISE SUPPRESSION CAPACITOR
OKAYA

RE474-L

NOISE SUPPRESSION CAPACITOR
OKAYA

RE48AMH13MW

Multi-Delay Relay,
SCHNEIDER

RE48AML12MW

Multi-Delay Relay,
SCHNEIDER

RE500.5W100RBC2P

RE High Precision Low TCR Resistors
TOKEN

RE500.5W100RBC3P

RE High Precision Low TCR Resistors
TOKEN

RE500.5W100RBC5P

RE High Precision Low TCR Resistors
TOKEN

RE500.5W100RBC6P

RE High Precision Low TCR Resistors
TOKEN

RE500.5W100RCC2P

RE High Precision Low TCR Resistors
TOKEN