SY100EP196VTG-TR [MICROCHIP]

ACTIVE DELAY LINE, COMPLEMENTARY OUTPUT, PQFP32;
SY100EP196VTG-TR
型号: SY100EP196VTG-TR
厂家: MICROCHIP    MICROCHIP
描述:

ACTIVE DELAY LINE, COMPLEMENTARY OUTPUT, PQFP32

输出元件 逻辑集成电路 延迟线
文件: 总18页 (文件大小:193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ECLPro®
SY100EP196V  
3.3V/5V 2.5GHz PROGRAMMABLE  
DELAY CHIP WITH  
FINE TUNE CONTROL  
FEATURES  
Pin-for-pin, plug-in compatible to the ON  
Semiconductor MC100EP196  
ECL Pro®  
Maximum frequency > 2.5GHz  
Programmable range: 2.2ns to 12.2ns  
10ps increments  
DESCRIPTION  
The SY100EP196V is a programmable delay line, varying  
the time a logic signal takes to traverse from IN to Q. This  
delay can vary from about 2.2ns to about 12.2ns. The input  
can be PECL, LVPECL, NECL, or LVNECL.  
The delay varies in discrete steps based on a control  
word presented to SY100EP196V. The 10-bit width of this  
latched control register allows for delay increments of  
approximately 10ps. In addition, delay may be varied  
continuously in about a 30ps range by setting the voltage at  
the FTUNE pin.  
30ps fine tuning range  
PECL mode operating range: V = 3.0V to 5.5V  
CC  
with V = 0V  
EE  
NECL mode operating range: V = 0V  
CC  
with V = –3.0V to –5.5V  
EE  
Open input default state  
Safety clamp on inputs  
A logic high on the /EN pin will force Q to logic low  
D[0:10] can accept either ECL, CMOS, or TTL inputs  
An eleventh control bit allows the cascading of multiple  
SY100EP196V devices, for a wider delay range. Each  
additional SY100EP196V effectively doubles the delay range  
available.  
V output reference voltage  
BB  
Available in a 32-pin TQFP package  
For maximum flexibility, the control register interface  
accepts CMOS or TTL level signals, as well as the input  
level at the IN± pins.  
All support documentation can be found on Micrel’s web  
site at www.micrel.com.  
CROSS REFERENCE TABLE  
APPLICATIONS  
Clock de-skewing  
Timing adjustment  
Aperture centering  
Micrel Semiconductor  
SY100EP196VTI  
ON Semiconductor  
MC100EP196FA  
SY100EP196VTITR  
MC100EP196FAR2  
TYPICAL PERFORMANCE  
TYPICAL APPLICATIONS CIRCUIT  
Delay vs. Tap  
12000  
Data Signal  
of Unknown Phase  
D
Q+  
10000  
8000  
6000  
4000  
2000  
0
Flip-Flop  
SY100EP196V  
CLOCK+  
IN  
Q
CK  
Q–  
/IN  
CLOCK–  
Fine Tune Voltage  
FTUNE /Q  
D[9:0]  
CONTROL  
LOGIC  
0
200 400 600 800 1000 1200  
TAP (DIGITAL WORD)  
ECL Pro is a registered trademark of Micrel, Inc.  
Rev.: B  
Amendment:/0  
M0644-012704  
1
Issue Date: January 2004  
ECL Pro®  
SY100EP196V  
Micrel  
PACKAGE/ORDERING INFORMATION  
Ordering Information  
Package Operating  
Package  
Marking  
32 31 30 29 28 27 26 25  
Part Number  
Type  
T32-1  
T32-1  
Range  
VEE  
D0  
VCC  
Q
/Q  
VCC  
VCC  
FTUNE  
D8  
D9  
D10  
IN  
1
2
3
4
5
6
24  
23  
22  
21  
20  
19  
SY100EP196VTI  
SY100EP196VTITR  
Industrial  
Industrial  
SY100EP196V  
SY100EP196V  
(1)  
/IN  
Note:  
1. Tape and Reel.  
VBB  
VEF  
VCF  
7
8
18  
17  
9 10 11 12 13 14 15 16  
32-Pin TQFP (T32-1)  
FUNCTIONAL BLOCK DIAGRAM  
M0644-012704  
2
ECL Pro®  
Micrel  
SY100EP196V  
PIN DESCRIPTION  
Pin Number  
Pin Name  
Pin Function  
23, 25, 26, 27, 29,  
30, 31, 32, 1, 2  
D[0:9]  
CMOS, ECL, or TTL Select Inputs: These digital control signals adjust the amount of  
delay from IN to Q. Please refer to the AC Electrical Table(page 3) and Table 7 (page  
17) for delay values. Figure 9 shows how to interface these inputs to various logic family  
standards. These inputs default to logic low when left unconnected. Bit 0 is the least  
significant bit, and bit 9 is the most significant bit.  
3
D[10]  
CMOS, ECL, or TTL Select Input: This input latches just like D[0:9] does. It drives the  
CASCADE, /CASCADE differential pair. Use only when cascading two or more  
SY100EP196V to extend the range of delays required.  
4, 5  
6
IN, /IN  
VBB  
ECL Input: This is the signal to be delayed. If this input pair is left unconnected, this is  
equivalent to a logic low input.  
Voltage Output Reference: When using a single-ended logic source for IN and /IN,  
connect the unused input of the differential pair to this pin. This pin can also re-bias AC-  
coupled inputs to IN and /IN. When used, de-couple this pin to VCC through an 0.01µF  
capacitor. Limit current sinking or sourcing to 0.5mA or less.  
7
VEF  
Voltage Output: Connect this pin to VCF when the D inputs are ECL. Refer to the Digital  
Control Logic Standardsection of the Functional Descriptionto interface the D inputs to  
CMOS or TTL.  
8
9, 24, 28  
10  
VCF  
VEE  
LEN  
Voltage Input: The voltage at this pin sets the logic transition threshold for the D inputs.  
Most Negative Supply. Supply ground for PECL systems.  
ECL Control Input: When logic low, the D inputs flow through. Any changes to the D inputs  
reflect in the delay between IN, /IN and Q, /Q. When logic high, the logic values at D are  
latched, and these latched bits determine the delay.  
11  
12  
SETMIN  
SETMAX  
ECL Control Input: When logic high, the contents of the D register are reset. This sets the  
delay to the minimum possible, equivalent to D[0:9] being set to 0000000000. When logic  
low, the value of the D register, or the logic value of SETMAX determines the delay from  
IN, /IN to Q, /Q. This input defaults to logic low when left unconnected.  
ECL Control Input: When logic high and SETMIN is logic low, the contents of the D  
register are set high, and the delay is set to one step greater than the maximum possible  
with D[0:9] set to 1111111111. When logic low, the value of the D register, or the logic  
value of SETMIN determines the delay from IN, /IN to Q, /Q. This input defaults to logic  
low when left unconnected.  
13, 18, 19, 22  
14, 15  
VCC  
Most Positive Supply: Supply ground for NECL systems. Bypass to VEE with 0.1µF and  
0.01µF low ESR capacitors.  
CASCADE,  
100k ECL Outputs: These outputs are used when cascading two or more SY100EP196V  
to /CASCADE extend the delay range required. Refer to Table 7 (page 17) for delay  
values.  
16  
/EN  
ECL Control Input: When set active low, Q, /Q are a delayed version of IN, /IN. When set  
inactive high, IN, /IN are gated such that Q, /Q become a differential logic low. This input  
defaults to logic low when left unconnected.  
17  
FTUNE  
Q, /Q  
Voltage Control Input: By varying the voltage at this pin from VCC through VEE, the delay  
may be fine tuned by approximately ±15ps.  
20, 21  
100k ECL Outputs: This signal pair is the delayed version of IN, /IN.  
M0644-012704  
3
ECL Pro®  
SY100EP196V  
Micrel  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (V  
)
Supply Voltage (V  
)
CC  
CC  
PECL Mode (V =0V)............................. 0.5V to +6.0V  
PECL Mode (V =0V)............................. +3.0V to +5.5V  
EE  
EE  
Supply Voltage (V  
)
Supply Voltage (V  
)
EE  
EE  
NECL Mode (V =0V) ............................ +0.5V to 6.0V  
NECL Mode (V =0V) ............................ 3.0V to 5.5V  
CC  
CC  
Any Input Voltage (V )  
Ambient Temperature (T ) ......................... 40°C to +85°C  
IN  
A
PECL Mode .......................................0.5V to V +0.5V  
Package Thermal Resistance  
CC  
NECL Mode....................................... +0.5V to V 0.5V  
TQFP-32 (θ  
)
EE  
JA  
ECL Output Current (I  
)
Still-air .............................................................50°C/W  
500lfpm............................................................42°C/W  
OUT  
Continuous .............................................................50mA  
Surge....................................................................100mA  
TQFP-32 (θ ).....................................................20°C/W  
JC  
I
Sink/Source Current ..........................................±0.5mA  
BB  
Lead Temperature (soldering, 10 sec.) ................... +300°C  
Storage Temperature (T ) ....................... 65°C to +150°C  
S
(3)  
ESD Rating ........................................................... >1.5kV  
DC ELECTRICAL CHARACTERISTICS  
TA = 40°C to +85°C  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VCC  
Power Supply Voltage (PECL)  
3.0  
4.5  
3.3  
5.0  
3.6  
5.5  
V
V
VEE  
Power Supply Voltage (NECL)  
Power Supply Current(4)  
3.6  
5.5  
3.3  
5.0  
3.0  
4.5  
V
V
IEE  
No Load, Over Supply Voltage  
150  
175  
mA  
Notes:  
1. Permanent device damage may occur if Absolute Maximum Ratingsare exceeded. This is a stress rating only and functional operation is not  
implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to Absolute Maximum Ratingconditions for  
extended periods may affect device reliability.  
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.  
3. Devices are ESD sensitive. Handling precautions recommended.  
4. Required 500lfpm air flow when using +5V or 5V power supply.  
M0644-012704  
4
ECL Pro®  
Micrel  
SY100EP196V  
(100kEP) LVPECL DC ELECTRICAL CHARACTERISTICS  
VCC = 3.3V, VEE = 0V; TA = 40°C to +85°C(5, 6)  
Symbol  
VOH  
Parameter  
Condition  
Min  
2155  
1355  
Typ  
2280  
1480  
Max  
2405  
1605  
Units  
mV  
Output HIGH Voltage  
Output LOW Voltage  
Figures 2, 3, 6  
Figures 2, 3, 6  
Figures 1, 4  
VOL  
mV  
VIH  
Input HIGH Voltage  
PECL  
CMOS  
TTL  
2075  
1815  
2000  
2420  
mV  
mV  
mV  
VIL  
Input LOW Voltage  
Figures 1, 4  
PECL  
CMOS  
TTL  
1355  
1675  
1485  
800  
mV  
mV  
mV  
VBB  
Output Voltage Reference  
Input Select Voltage  
Mode Connection  
1775  
1610  
1900  
2.0  
1875  
1720  
2000  
1975  
1825  
2100  
3.3  
mV  
mV  
mV  
V
VCF  
VEF  
VIHCMR  
Input HIGH Voltage Common  
Mode Range(7)  
Figure 5  
IIH  
IIL  
Input HIGH Current  
150  
µA  
Input LOW Current  
IN  
/IN  
0.5  
150  
µA  
µA  
Notes:  
5. Device is guaranteed to meet the DC specifications, shown in the table above, after thermal equilibrium has been established. The device is tested in  
a socket such that transverse airflow of 500lfpm is maintained.  
6. Input and output parameters vary 1:1 with V . V can vary +0.3V to 2.2V.  
CC  
EE  
7.  
V
maximum varies 1:1 with V . The V  
range is referenced to the most positive side of the differential input signal.  
IHCMR  
IHCMR  
CC  
M0644-012704  
5
ECL Pro®  
SY100EP196V  
Micrel  
(100kEP) PECL DC ELECTRICAL CHARACTERISTICS  
VCC = 5.0V, VEE = 0V; TA = 40°C to +85°C(8, 9)  
Symbol  
VOH  
Parameter  
Condition  
Min  
3855  
3055  
Typ  
3980  
3180  
Max  
4105  
3305  
Units  
mV  
Output HIGH Voltage  
Output LOW Voltage  
Figures 2, 3, 6  
Figures 2, 3, 6  
Figures 1, 4  
VOL  
mV  
VIH  
Input HIGH Voltage  
PECL  
CMOS  
TTL  
3775  
2750  
2000  
4120  
mV  
mV  
mV  
VIL  
Input LOW Voltage  
Figures 1, 4  
Figure 5  
PECL  
CMOS  
TTL  
3055  
3375  
2250  
800  
mV  
mV  
mV  
VBB  
Output Voltage Reference  
3475  
2.0  
3575  
3675  
5.0  
mV  
V
VIHCMR  
Input HIGH Voltage Common  
Mode Range(10)  
IIH  
IIL  
Input HIGH Current  
150  
µA  
Input LOW Current  
IN  
/IN  
0.5  
150  
µA  
µA  
(100kEP) NECL DC ELECTRICAL CHARACTERISTICS  
VCC = 0V, VEE = 5.5V to 3.0V; TA = 40°C to +85°C(8)  
Symbol  
VOH  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
mV  
mV  
mV  
mV  
mV  
V
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage NECL  
Input LOW Voltage NECL  
Output Voltage Reference  
Figures 2, 3  
Figures 2, 3  
Figures 1, 4  
Figures 1, 4  
1145 1020 895  
1945 1820 1695  
VOL  
VIH  
1225  
1945  
880  
VIL  
1625  
VBB  
1525 1425 1325  
VIHCMR  
Input HIGH Voltage Common  
Mode Range(11)  
Figure 5  
VEE+2.0  
0.0  
IIH  
IIL  
Input HIGH Current  
150  
µA  
Input LOW Current  
IN  
/IN  
0.5  
150  
µA  
µA  
Notes:  
8. Device is guaranteed to meet the DC specifications, shown in the table above, after thermal equilibrium has been established. The device is tested in  
a socket such that transverse airflow of 500lfpm is maintained.  
9. Input and output parameters vary 1:1 with V . V can vary +2.0V to 0.5V.  
CC  
EE  
10. V  
11. V  
maximum varies 1:1 with V . The V  
range is referenced to the most positive side of the differential input signal.  
IHCMR  
IHCMR  
CC  
IHCMR  
IHCMR  
minimum varies 1:1 with V . The V  
range is referenced to the most positive side of the differential input signal.  
EE  
M0644-012704  
6
ECL Pro®  
Micrel  
SY100EP196V  
AC ELECTRICAL CHARACTERISTICS  
VCC = 3.0 to 5.5V, VEE = 0V or VCC = 0V, VEE = 3.0 to 5.5V; TA = 40°C to +85°C(12, 13)  
TA = 40°C  
Typ  
TA = +25°C  
Typ  
TA = +85°C  
Typ  
Symbol  
fMAX  
Parameter  
Maximum Frequency(14)  
Propagation Delay  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
2.5  
2.5  
2.5  
GHz  
tPD  
IN to Q; D[0-10]=0  
1650  
2000  
2450  
1800  
2050  
2600  
1950  
2250  
2750  
ps  
ps  
ps  
ps  
IN to Q; D[0-10]=1023  
/EN to Q: D[0-10]=0  
D10 to CASCADE  
9500 11500 13500 9800 12200 14000 10600 13300 15800  
1600  
300  
2150  
420  
2600  
500  
1800  
325  
2300  
450  
2800  
550  
2000  
325  
2500  
525  
3000  
625  
tRANGE  
Programmable Range  
tPD(max)-tPD(min)  
7850  
9450  
8200 10000  
8850 10950  
ps  
t  
Step Delay(15)  
D0 High  
D1 High  
D2 High  
D3 High  
D4 High  
D5 High  
D6 High  
D7 High  
D8 High  
D9 High  
9
25  
42  
75  
142  
296  
532  
1080  
2100  
4250  
10  
26  
42  
10  
27  
43  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
80  
81  
143  
300  
540  
1095  
2150  
4300  
150  
310  
565  
1140  
2250  
4500  
Lin  
Linearity(16)  
±10  
±10  
±10  
%LSB  
tSKEW  
Duty Cycle Skew(17)  
tPHL-tPLH  
25  
ps  
tS  
Setup Time  
D to LEN  
200  
300  
300  
0
140  
150  
200  
300  
300  
0
160  
170  
200  
300  
300  
0
180  
180  
ps  
ps  
ps  
D to IN(18)  
/EN to IN(19)  
tH  
tR  
Hold Time  
LEN to D  
200  
400  
60  
250  
200  
400  
100  
280  
200  
400  
80  
300  
ps  
ps  
IN to /EN(20)  
Release Time  
/EN to IN(21)  
SETMAX to LEN  
SETMIN to LEN  
500  
250  
200  
ps  
ps  
ps  
400  
350  
200  
275  
400  
350  
400  
350  
300  
335  
Cycle-to-Cycle Jitter(22)  
0.2  
< 1  
0.2  
< 1  
0.2  
< 1  
psrms  
mV  
tJIT  
VPP  
Input Voltage Swing (Differential)  
150  
800  
1200  
150  
800  
1200  
150  
800  
1200  
tr  
tf  
Output Rise/Fall Time  
20% to 80% (Q)  
180  
180  
250  
250  
210  
210  
300  
300  
230  
230  
325  
325  
ps  
ps  
20% to 80% (CASCADE)  
Notes:  
12. AC characteristics are guaranteed by design and characterization.  
13. Measured using 750mV source, 50% duty cycle clock source.  
14. Refer to Typical Operating Characteristicsfor output swing performance.  
15. The delays of the individual bits are cumulative.  
16. Linearity is the deviation from the ideal delay.  
17. Duty cycle skew guaranteed only for differential operation measured from the crosspoint of the input edge to the crosspoint of the corresponding  
output edge.  
18. Setup time defines the amount of time prior to an edge on IN, /IN that the D[0:9] bits must be set to guarantee the new delay will occur for that edge.  
19. Setup time is the minimum that /EN must be asserted prior to the next transition of IN, /IN to prevent an output response greater than ±75mV to that  
IN, /IN transition.  
20. Hold time is the minimum time that /EN must remain asserted after a negative going IN or a positive going /IN to prevent an output response greater  
than ±75mV to that IN, /IN transition.  
21. Release time is the minimum time that /EN must be deasserted prior to the next IN, /IN transition to ensure an output response that meets the  
specified IN to Q propagation delay and transition times.  
22. This is the amount of generated jitter added to an otherwise jitter free clock signal, going from IN, /IN to Q, /Q, where the clock may be any frequency  
between 0.0 and 2.5GHz.  
M0644-012704  
7
ECL Pro®  
SY100EP196V  
Micrel  
TYPICAL OPERATING CHARACTERISTICS  
Supply Current  
vs. Temperature  
Q, /Q Output Swing  
vs. Frequency  
Propagation Delay  
vs. FTUNE Voltage  
800  
700  
600  
500  
400  
300  
200  
100  
0
15  
10  
5
180  
160  
140  
120  
100  
80  
VCC = 5.5V  
VCC = 3.3V  
VCC = 3.0V  
VCC = 5.0V  
0
-5  
-10  
-15  
-20  
-25  
60  
40  
25  
40  
20  
85  
0
0
500 1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
-40 -20  
0
20 40 60 80 100  
FTUNE VOLTAGE (V)  
TEMPERATURE (°C)  
M0644-012704  
8
ECL Pro®  
Micrel  
SY100EP196V  
VCC  
Q, CASCADE  
/Q, /CASCADE  
SY100EP196V  
Figure 2. Emitter Output Structure  
Figure 1a. Differential Input Structure  
VCC  
SY100EP196V  
Q
/Q  
/EN  
LEN  
SETMIN  
SETMAX  
D[0:10]  
VOH  
CASCADE  
/CASCADE  
VBB  
VOL  
0V  
Figure 3a. Output Levels, PECL, LVPECL  
75k  
0V  
VOH  
Q
/Q  
VOL  
CASCADE  
/CASCADE  
Figure 1b. Single-Ended Input Structure  
Figure 3b. Output Levels, NECL  
M0644-012704  
9
ECL Pro®  
SY100EP196V  
Micrel  
VCC  
VIH(MAX)  
0V  
VIH(MAX)  
Invalid  
Invalid  
Logic High  
Invalid  
Logic High  
Invalid  
VIH(MIN)  
VIL(MAX)  
VIH(MIN)  
VIL(MAX)  
Logic Low  
Logic Low  
VIL(MIN)  
0V  
VIL(MIN)  
VEE  
Invalid  
Invalid  
Figure 4a. Input Levels, PECL  
Figure 4c. Input Levels, NECL  
IN  
VIHCMR  
Invalid  
VCC  
/IN  
Logic High  
Invalid  
0V  
VIH(MIN)  
VIL(MAX)  
Figure 5a. Input Common Mode, PECL, LVPECL  
Logic Low  
0V  
Invalid  
0V  
IN  
VIHCMR  
Figure 4b. Input Levels, CMOS, TTL  
/IN  
VIHCMR  
Figure 5b. Input Common Mode, NECL  
M0644-012704  
10  
ECL Pro®  
Micrel  
SY100EP196V  
TERMINATING PECL  
+3.3V  
R1  
R1  
+3.3V  
130Ω  
130Ω  
+3.3V  
ZO = 50Ω  
ZO = 50Ω  
R2  
82Ω  
R2  
82Ω  
Vt = VCC 2V  
Figure 6a. Parallel TerminationThevenin Equivalent  
Note:  
1. For +5.0V systems: R1 = 82, R2 = 130.  
+3.3V  
+3.3V  
Z = 50  
Z = 50Ω  
50Ω  
50Ω  
Source  
Destination  
C1 (optional)  
0.01µF  
50Ω  
R
b
Figure 6b. Three-Resistor Y-Termination”  
Notes:  
1. Power-saving alternative to Thevenin termination.  
2. Place termination resistors as close to destination inputs as possible.  
3. R resistor sets the DC bias voltage, equal to V . For +3.3V systems R = 46to 50. For +5V systems, R = 110.  
b
t
b
b
+3.3V  
+3.3V  
R1  
130  
R1  
130Ω  
+3.3V  
+3.3V  
Q
ZO = 50Ω  
50Ω  
/Q  
VBB  
Vt = VCC 2V  
0.01µF  
+3.3V  
R2  
82Ω  
R2  
82Ω  
Figure 6c. Terminating Unused I/O  
Notes:  
1. Unused output (/Q) must be terminated to balance the output.  
2. Micrel's differential I/O logic devices include a V reference pin .  
BB  
3. Connect unused input through 50to V . Bypass with a 0.01µF capacitor to V , not GND, as PECL is referenced to V .  
CC  
BB  
CC  
M0644-012704  
11  
ECL Pro®  
SY100EP196V  
Micrel  
VCC +3.3V  
D[0:10]  
VCC  
LVPECL  
Signals  
0.01µF  
PECL  
Output  
IN  
VCF  
VEF  
/IN  
SY100EP196V  
VBB  
VEE 0V  
SY100EP196V  
Figure 9b. Connecting LVPECL Signals  
to the D Inputs  
Figure 7a. Interfacing to a  
Single-Ended PECL Signal  
VCC +3.3V or +5.0V  
VCC  
0.01µF  
CMOS  
D[0:10]  
Inputs  
IN  
NC VCF  
PECL  
/IN  
Output  
NC VEF  
SY100EP196V  
VBB  
SY100EP196V  
VEE 0V  
Figure 7b. Interfacing to and Inverting  
a Single-Ended PECL Signal  
Figure 9c. Connecting CMOS Signals  
to the D Inputs  
Note: V and V are not connected  
CF  
EF  
IN  
VCC +3.3V  
VCC  
0.01µF  
/IN  
50  
50  
VBB  
TTL  
Inputs  
D[0:10]  
VCF  
SY100EP196V  
Figure 8. Re-Biasing an AC-Coupled Signal  
NC VEF  
1.5k  
SY100EP196V  
VCC +5.0V  
0V  
VEE 0V  
PECL  
D[0:10]  
Signals  
Figure 9d. Connecting TTL Signals  
to the D Inputs with V = 3.3V  
CC  
VCF  
VCC +5.0V  
VEF  
SY100EP196V  
TTL  
D[0:10]  
Inputs  
VEE 0V  
Figure 9a. Connecting PECL Signals  
to the D Inputs  
VCF  
NC VEF  
500  
SY100EP196V  
0V  
VEE 0V  
Figure 9e. Connecting TTL Signals  
to the D Inputs with V = 5.0V  
CC  
M0644-012704  
12  
ECL Pro®  
Micrel  
SY100EP196V  
FUNCTIONAL DESCRIPTION  
SY100EP196V is a programmable delay line, varying the Digital Control Logic Standard  
delay of a PECL or NECL input signal by any amount between  
about 2.2ns and 12.2ns. A 10-bit digital control register affords  
delay steps of approximately 10ps.  
SY100EP196V implements the delay using a multiplexer  
chain and a set of fixed delay elements. Under digital control,  
various subsets of the delay elements are included in the  
signal chain. To simplify interfacing, the 10-bit digital delay  
control word interfaces to PECL, CMOS, or TTL interface  
standards.  
When used in systems where V  
connects to ground,  
EE  
SY100EP196V may interface either to PECL, CMOS, or TTL  
on its D[0:10] inputs. To this end, the VCF pin sets the  
threshold at which the D inputs switch between logic low and  
logic high.  
As shown in Table 3, connecting V  
to V  
sets the  
CF  
EF  
threshold to PECL (if V is 5V) or LVPECL (if V is 3.3V).  
CC  
CC  
Leaving V  
and V open yields a threshold suitable for  
CF  
EF  
detecting CMOS output logic levels. Leaving V open and  
EF  
Since multiplexers must appear in the delay path,  
SY100EP196V has a minimum delay of about 2.2ns. Delays  
below this value are not possible. In addition, when cascading  
multiple SY100EP196V to extend the delay range, the  
minimum delay is about 2.2ns times the number of  
SY100EP196V in cascade. An eleventh control bit, D[10],  
along with the CASCADE and /CASCADE outputs and the  
SETMIN and SETMAX inputs, simplifies the task of cascading.  
connecting V to a 1.5V source allows the D inputs to accept  
TTL signals.  
CF  
Logic Standard  
ECL, PECL  
CMOS  
VCF Connects To  
VEF  
No Connect  
1.5V Source  
TTL  
Signal Path Logic Standard  
Table 3. Digital Control Standard Truth Table  
The signal path, from IN, /IN to Q, /Q, interfaces to PECL,  
LVPECL, or NECL signals, as shown in Table 6. The choice  
of signal path logic standard may limit possible choices for  
the delay control inputs, D.  
If a 1.5V source is not available, connecting V to V  
CF  
EE  
through an appropriate resistor will bias V at about 1.5V.  
CF  
The value of this resistor depends on the V  
indicated in Table 4.  
supply, as  
CC  
Input Enable  
The /EN input gates the signal at IN, /IN. When disabled,  
the input is effectively gated out, just as if a logic low was  
being provided to SY100EP196V.  
VCC  
3.3V  
5.0V  
Resistor Value  
1.5kΩ  
500Ω  
/EN  
L
Value at Q, /Q  
IN, /IN Delayed  
Table 4. Resistor Values for TTL Input  
Cascade Logic  
H
Logic Low Delayed  
SY100EP196V is designed to ease cascading multiple  
devices in order to achieve a greater delay range. The SETMIN  
and SETMAX pins accomplish this, as set out in the  
applications section below. SETMIN and SETMAX override  
the delay by changing the value in the D latch register. Table  
5 lists the action of these pins.  
Table 1. /EN Truth Table  
Digital Control Latch  
SY100EP196V can capture the digital delay control word  
into its internal 11-bit latch, 10 bits for D[0:9], and an extra bit  
for the D[10] cascade control. The LEN input controls the  
action of this latch, as per Table 2.  
Note that the LEN input is always PECL, LVPECL, or  
NECL, the same as the IN, /IN signal pair. The 11-bit delay  
control word, however, may also be CMOS or TTL.  
SETMIN  
SETMAX  
Nominal Delay (ps)  
As per D Latch  
2200 + 10 × 1024  
2200  
L
L
L
H
L
H
H
LEN  
L
Latch Action  
Pass Through D[0:10]  
Latch D[0:10]  
H
Not Allowed  
H
Table 5. SETMIN and SETMAX Action  
Table 2. LEN Truth Table  
The nominal delay value is based on the binary value in  
D[0:9], where D[0] is the least significant bit, and D[9] is the  
most significant bit. This delay from IN, /IN to Q, /Q is about:  
t = 2200 +10 × value D 9:0 + delay FTUNE ,ps  
(
)
[
]
)
(
M0644-012704  
13  
ECL Pro®  
SY100EP196V  
Micrel  
Fine Tune Control  
In addition to the digital delay control, the FTUNE input  
permits a continuous variation in delay. Though it may be  
set to any voltage between V and V , most of the delay  
Typical Operating Characteristics.For convenience, a V  
CC  
of 3.3V is assumed. Typically, the FTUNE input will be fed  
by a DAC whose purpose is to provide extremely fine delay  
under digital control.  
CC  
EE  
EE  
variation occurs between V  
and V + 1.5V. Refer to  
EE  
Signal Path Logic Standard  
VCC  
VEE  
0V  
Delay Control Input Choices  
PECL, CMOS, TTL  
LVPECL, CMOS, TTL  
NECL  
PECL  
LVPECL  
NECL  
+4.5V to +5.5V  
+3.0V to +3.6V  
0V  
0V  
3.0 to 5.5V  
Table 6. Signal Path Logic Standard  
M0644-012704  
14  
ECL Pro®  
Micrel  
SY100EP196V  
APPLICATIONS INFORMATION  
For best performance, use good high frequency layout Setting D Input Logic Thresholds  
techniques, filter V supplies, and keep ground connections  
short. Use multiple vias where possible. Also, use controlled  
impedance transmission lines to interface with the  
SY100EP196V data inputs and outputs.  
CC  
As explained earlier, in all designs where the  
SY100EP196V V supply is at zero volts, the D inputs  
may accommodate CMOS and TTL level signals, as well as  
EE  
PECL or LVPECL. Figures 9 show how to connect V and  
CF  
V
Supply  
V
for all possible cases.  
BB  
EF  
The VBB pin is an internally generated supply, and is Cascading  
available for use only by the SY100EP196V. When unused,  
this pin should be left unconnected. The two common uses  
Two or more SY100EP196V may be cascaded, in order  
to extend the range of delays permitted. Each additional  
SY100EP196V adds about 2200ps to the minimum delay,  
and adds another 10240ps to the delay range.  
Internal cascade circuitry has been included in the  
SY100EP196V. Using this internal circuitry, SY100EP196V  
may be cascaded without any external gating.  
Examples of cascading 2, 3, or 4 SY100EP196V appear  
in Figures 10. Table 7 lists the nominal delay for all the  
cases that appear in Figures 10.  
for V are to handle a single-ended PECL input, and to re-  
BB  
bias inputs for AC-coupling applications.  
If IN, /IN is driven by a single-ended output, V is used  
BB  
to bias the unused input. Please refer to Figures 9. The  
PECL signal driving SY100EP196V may optionally be  
inverted in this case.  
When the signal is AC-coupled, V is used, as shown  
BB  
in Figure 10, to re-bias IN, /IN. This ensures that  
SY100EP196V inputs are within its acceptable common  
mode range.  
In all cases, V  
current sinking or sourcing must be  
BB  
limited to 0.5mA or less.  
Control Word (11bits)  
DAC  
SY100EP196V  
SY100EP196V  
C[10]  
FTUNE  
D[10]  
FTUNE  
C[9:0]  
D[9:0]  
IN  
#2  
#1  
IN  
/IN  
Q
/Q  
Q
/IN  
/Q  
SETMIN  
SETMAX  
/CASCADE  
CASCADE  
Figure 10a. Cascading Two SY100EP196V  
Control Word (12bits)  
DAC  
SY100EP196V  
SY100EP196V  
SY100EP196V  
C[11]  
C[10]  
D[10]  
FTUNE  
D[10]  
D[9:0]  
IN  
FTUNE  
C[9:0]  
#3  
#2  
#1  
IN  
/IN  
Q
/Q  
IN  
Q
Q
/IN  
/Q  
/IN  
/Q  
SETMIN  
/CASCADE  
SETMIN  
SETMAX  
/CASCADE  
SETMAX  
CASCADE  
CASCADE  
Figure 10b. Cascading Three SY100EP196V  
15  
M0644-012704  
ECL Pro®  
SY100EP196V  
Micrel  
Control Word (12bits)  
DAC  
SY100EP196V  
SY100EP196V  
SY100EP196V  
SY100EP196V  
C[11]  
C[10]  
D[10]  
FTUNE  
D[10]  
D[9:0]  
IN  
FTUNE  
C[9:0]  
IN  
/IN  
Q
/Q  
IN  
/IN  
Q
/Q  
IN  
Q
Q
/IN  
/Q  
/IN  
/Q  
SETMIN  
/CASCADE  
SETMIN  
SETMAX  
SETMIN  
SETMAX  
/CASCADE  
SETMAX  
CASCADE  
CASCADE  
Figure 10c. Cascading Four SY100EP196V  
RELATED PRODUCT AND SUPPORT DOCUMENTATION  
Part Number  
Function  
Data Sheet Link  
SY100EP195VTI 3.3V/5V 2.5GHz Programmable Delay Chip http://www.micrel.com/product-info/products/sy100ep195v.shtml  
SY55856UHI  
M0644-012704  
2.5V/3.3V 2.5GHz Differential 2-Channel  
Precision CML Delay Line  
http://www.micrel.com/product-info/products/sy55856u.shtml  
16  
ECL Pro®  
Micrel  
SY100EP196V  
Control Inputs  
Nominal Delay (ps)  
D[11]  
D[10]  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
D[9:0]  
One Chip  
2,200  
2,210  
2,220  
2,240  
2,280  
2,360  
2,520  
2,840  
3,480  
4,760  
7,320  
12,430  
Two Chips  
Three Chips  
6,600  
Four Chips  
8,800  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0000000000  
0000000001  
0000000010  
0000000100  
0000001000  
0000010000  
0000100000  
0001000000  
0010000000  
0100000000  
1000000000  
1111111111  
0000000000  
0000000001  
0000000010  
0000000100  
0000001000  
0000010000  
0000100000  
0001000000  
0010000000  
0100000000  
1000000000  
1111111111  
0000000000  
0000000001  
0000000010  
0000000100  
0000001000  
0000010000  
0000100000  
0001000000  
0010000000  
0100000000  
1000000000  
1111111111  
0000000000  
0000000001  
0000000010  
0000000100  
0000001000  
0000010000  
0000100000  
0001000000  
0010000000  
0100000000  
1000000000  
1111111111  
4,400  
4,410  
6,610  
8,810  
4,420  
6,620  
8,820  
4,440  
6,640  
8,840  
4,480  
6,680  
8,880  
4,560  
6,760  
8,960  
4,720  
6,920  
9,120  
5,040  
7,240  
9,440  
5,680  
7,880  
10,080  
11,360  
13,920  
19,030  
19,040  
19,050  
19,060  
19,080  
19,120  
19,200  
19,360  
19,680  
20,320  
21,600  
24,160  
29,270  
29,280  
29,290  
29,300  
29,320  
29,360  
29,440  
29,600  
29,920  
30,560  
31,840  
34,400  
39,510  
39,520  
39,530  
39,540  
39,560  
39,600  
39,680  
39,840  
40,160  
40,800  
42,080  
44,640  
49,750  
6,960  
9,160  
9,520  
11,720  
16,830  
16,840  
16,850  
16,860  
16,880  
16,920  
17,000  
17,160  
17,480  
18,120  
19,400  
21,960  
27,070  
27,080  
27,090  
27,100  
27,120  
27,160  
27,240  
27,400  
27,720  
28,360  
29,640  
32,200  
37,310  
27,080  
27,090  
27,100  
27,120  
27,160  
27,240  
27,400  
27,720  
28,360  
29,640  
32,200  
37,310  
14,630  
14,640  
14,650  
14,660  
14,680  
14,720  
14,800  
14,960  
15,280  
15,920  
17,200  
19,760  
24,870  
Table 7. List of Nominal Delay Values for Cascaded SY100EP196V  
17  
M0644-012704  
ECL Pro®  
SY100EP196V  
Micrel  
32 LEAD TQFP (T32-1)  
Rev. 01  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchasers  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchasers own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Incorporated.  
M0644-012704  
18  

相关型号:

SY100EP196VTGTR

3.3V/5V 2.5GHz PROGRAMMABLE DELAY WITH FINE TUNE CONTROL
MICREL

SY100EP196VTI

3.3V/5V 2.5GHz PROGRAMMABLE DELAY WITH FINE TUNE CONTROL
MICREL

SY100EP196VTITR

3.3V/5V 2.5GHz PROGRAMMABLE DELAY WITH FINE TUNE CONTROL
MICREL

SY100EP196V_0607

3.3V/5V 2.5GHz PROGRAMMABLE DELAY WITH FINE TUNE CONTROL
MICREL

SY100EP210U

2.5V/3.3V DUAL 1:5 DIFFERENTIAL LVECL/LVPECL/HSTL CLOCK DRIVER
MICREL

SY100EP210UTC

2.5V/3.3V DUAL 1:5 DIFFERENTIAL LVECL/LVPECL/HSTL CLOCK DRIVER
MICREL

SY100EP210UTCTR

2.5V/3.3V DUAL 1:5 DIFFERENTIAL LVECL/LVPECL/HSTL CLOCK DRIVER
MICREL

SY100EP210UTG

2.5V/3.3V DUAL 1:5 DIFFERENTIAL LVECL/LVPECL/HSTL CLOCK DRIVER
MICREL

SY100EP210UTGTR

2.5V/3.3V DUAL 1:5 DIFFERENTIAL LVECL/LVPECL/HSTL CLOCK DRIVER
MICREL

SY100EP210UTI

TEN DISTRIBUTED-OUTPUT CLOCK DRIVER|ECL100|TQFP|32PIN|PLASTIC
ETC

SY100EP210UTITR

Low Skew Clock Driver, 100E Series, 5 True Output(s), 0 Inverted Output(s), ECL, PQFP32, TQFP-32
MICREL
ETC