TC1072-3.3VCH [MICROCHIP]

3.3 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, SOT-23A, 6 PIN;
TC1072-3.3VCH
型号: TC1072-3.3VCH
厂家: MICROCHIP    MICROCHIP
描述:

3.3 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, SOT-23A, 6 PIN

光电二极管 输出元件 调节器
文件: 总20页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1072/TC1073  
50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass  
Features:  
Device Selection Table  
Junction  
Temp. Range  
• Zero Ground Current for Longer Battery Life  
• Very Low Dropout Voltage  
Part Number  
Package  
TC1072-xxVCH 6-Pin SOT-23A -40°C to +125°C  
TC1073-xxVCH 6-Pin SOT-23A -40°C to +125°C  
• Choice of 50 mA (TC1072) and 100 mA (TC1073)  
Output  
• High Output Voltage Accuracy  
• Standard or Custom Output Voltages  
• Power-Saving Shutdown Mode  
Note:  
xx indicates output voltages.  
Available Output Voltages: 2.5, 2.7, 2.8, 2.85, 3.0, 3.3,  
3.6, 4.0, 5.0.  
• ERROR Output Can Be Used as a Low Battery  
Detector or Processor Reset Generator  
Other output voltages are available. Please contact  
Microchip Technology Inc. for details.  
• Bypass Input for Ultra Quiet Operation  
• Over Current and Over Temperature Protection  
• Space-Saving 6-Pin SOT-23A Package  
• Pin Compatible Upgrades for Bipolar Regulators  
Package Type  
6-Pin SOT-23A  
V
Bypass  
5
OUT  
ERROR  
4
Applications:  
6
• Battery Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
TC1072  
TC1073  
1
2
3
• Cellular/GSM/PHS Phones  
• Linear Post-Regulators for SMPS  
• Pagers  
V
GND SHDN  
IN  
NOTE: 6-Pin SOT-23A is equivalent to the EIAJ (SC-74A)  
© 2006 Microchip Technology Inc.  
DS21354C-page 1  
TC1072/TC1073  
General Description  
Typical Application  
The TC1072 and TC1073 are high accuracy (typically  
±0.5%) CMOS upgrades for older (bipolar) low dropout  
regulators. Designed specifically for battery-operated  
systems, the devices’ CMOS construction eliminates  
wasted ground current, significantly extending battery  
life. Total supply current is typically 50 μA at full load (20  
to 60 times lower than in bipolar regulators).  
R
P
1
6
5
V
V
V
V
OUT  
IN  
IN  
OUT  
+
TC1072  
TC1073  
1 μF  
2
3
GND  
Bypass  
The devices’ key features include ultra low noise  
operation (plus optional Bypass input); very low  
dropout voltage (typically 85 mV, TC1072 and 180 mV,  
TC1073 at full load) and fast response to step changes  
in load. An error output (ERROR) is asserted when the  
devices are out-of-regulation (due to a low input  
voltage or excessive output current). ERROR can be  
used as a low battery warning or as a processor  
RESET signal (with the addition of an external RC  
network). Supply current is reduced to 0.5 μA (max)  
C
BYPASS  
470 pF  
4
ERROR  
SHDN  
ERROR  
and both V  
and ERROR are disabled when the  
OUT  
Shutdown Control  
(from Power Control Logic)  
shutdown input is low. The devices incorporate both  
over-temperature and over-current protection.  
The TC1072 and TC1073 are stable with an output  
capacitor of only 1 μF and have a maximum output  
current of 50 mA, and 100 mA, respectively. For higher  
output current versions, please see the TC1185,  
TC1186, TC1187 (IOUT = 150 mA) and TC1107,  
TC1108 and TC1173 (IOUT = 300 mA) data sheets.  
DS21354C-page 2  
© 2006 Microchip Technology Inc.  
TC1072/TC1073  
*Stresses above those listed under "Absolute Maxi-  
mum Ratings" may cause permanent damage to the  
device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Input Voltage .........................................................6.5V  
Output Voltage .......................... (-0.3V) to (VIN + 0.3V)  
Power Dissipation ...............Internally Limited (Note 6)  
Maximum Voltage on Any Pin ........VIN +0.3V to -0.3V  
Operating Temperature Range ..... -40°C < TJ < 125°C  
Storage Temperature .........................-65°C to +150°C  
TABLE 1-1:  
TC1072/TC1073 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: V = V  
+ 1V, I = 0.1 mA, C = 3.3 μF, SHDN > V , T = 25°C, unless otherwise noted. Boldface  
IN  
OUT  
L
L
IH  
A
type specifications apply for junction temperatures of -40°C to +125°C.  
Symbol  
Parameter  
Min  
2.7  
Typ  
Max  
6.0  
Units  
Test Conditions  
Note 9  
V
Input Operating Voltage  
Maximum Output Current  
V
IN  
I
50  
100  
mA  
mA  
TC1072  
TC1073  
OUTMAX  
V
Output Voltage  
V
V
±0.5%  
V + 2.5%  
R
V
Note 1  
OUT  
R
R
2.5%  
TCV  
V
Temperature Coefficient  
20  
40  
ppm/°C Note 2  
OUT  
OUT  
ΔV  
/ΔV  
Line Regulation  
Load Regulation  
0.05  
0.5  
0.35  
2.0  
%
%
(V + 1V) V 6V  
R IN  
OUT  
IN  
ΔV  
/V  
I = 0.1 mA to I  
OUT OUT  
L
OUTMAX  
(Note 3)  
V
-V  
Dropout Voltage  
2
65  
85  
180  
120  
250  
mV  
I = 0.1 mA  
L
IN OUT  
I = 20 mA  
L
I = 50 mA  
L
I = 100 mA (Note 4),  
L
TC1073  
I
Supply Current  
50  
0.05  
64  
80  
0.5  
μA  
μA  
SHDN = V , I = 0 (Note 8)  
IN  
IH  
L
I
Shutdown Supply Current  
Power Supply Rejection Ratio  
Output Short Circuit Current  
Thermal Regulation  
SHDN = 0V  
F 1 kHz  
RE  
INSD  
PSRR  
dB  
I
300  
0.04  
160  
10  
450  
mA  
V/W  
°C  
V
= 0V  
OUT  
OUTSC  
ΔV  
/ΔP  
Notes 5, 6  
OUT  
D
T
Thermal Shutdown Die Temperature  
Thermal Shutdown Hysteresis  
Output Noise  
SD  
ΔT  
°C  
SD  
eN  
260  
nV/Hz I = I  
L OUTMAX  
470 pF from Bypass to GND  
SHDN Input  
V
SHDN Input High Threshold  
45  
%V  
V
= 2.5V to 6.5V  
IH  
IN  
IN  
Note 1: VR is the regulator output voltage setting. For example: VR = 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
TC VOUT = (VOUTMAX – VOUTMIN) x 106  
2:  
VOUT x ΔT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value.  
5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or  
line regulation effects. Specifications are for a current pulse equal to ILMAX at VIN = 6V for T = 10 msec.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the  
thermal resistance from junction-to-air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power dissipation causes the device to initiate  
thermal shutdown. Please see Section 4.0 “Thermal Considerations” for more details.  
7: Hysteresis voltage is referenced by VR.  
8: Apply for Junction Temperatures of -40°C to +85°C.  
9:  
The minimum VIN has to justify the conditions = VIN VR + VDROPOUT and VIN 2.7V for IL = 0.1 mA to IOUTMAX.  
© 2006 Microchip Technology Inc.  
DS21354C-page 3  
TC1072/TC1073  
TABLE 1-1:  
TC1072/TC1073 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: V = V  
+ 1V, I = 0.1 mA, C = 3.3 μF, SHDN > V , T = 25°C, unless otherwise noted. Boldface  
IN  
OUT  
L
L
IH  
A
type specifications apply for junction temperatures of -40°C to +125°C.  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Test Conditions  
V
SHDN Input Low Threshold  
15  
%V  
V = 2.5V to 6.5V  
IN  
IL  
IN  
ERROR Open Drain Output  
V
V
V
V
Minimum V Operating Voltage  
1.0  
400  
V
INMIN  
IN  
Output Logic Low Voltage  
ERROR Threshold Voltage  
ERROR Positive Hysteresis  
mV  
1 mA Flows to ERROR  
See Figure 3-2  
Note 7  
OL  
0.95 x V  
V
TH  
R
50  
mV  
HYS  
Note 1: VR is the regulator output voltage setting. For example: VR = 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
TC VOUT = (VOUTMAX – VOUTMIN) x 106  
2:  
VOUT x ΔT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value.  
5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or  
line regulation effects. Specifications are for a current pulse equal to ILMAX at VIN = 6V for T = 10 msec.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the  
thermal resistance from junction-to-air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power dissipation causes the device to initiate  
thermal shutdown. Please see Section 4.0 “Thermal Considerations” for more details.  
7: Hysteresis voltage is referenced by VR.  
8: Apply for Junction Temperatures of -40°C to +85°C.  
9:  
The minimum VIN has to justify the conditions = VIN VR + VDROPOUT and VIN 2.7V for IL = 0.1 mA to IOUTMAX  
.
DS21354C-page 4  
© 2006 Microchip Technology Inc.  
TC1072/TC1073  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Symbol  
Pin No.  
(6-Pin SOT-23A)  
Description  
1
2
3
VIN  
Unregulated supply input.  
Ground terminal.  
GND  
SHDN  
Shutdown control input. The regulator is fully enabled when a logic high is applied  
to this input. The regulator enters shutdown when a logic low is applied to this  
input. During shutdown, output voltage falls to zero and supply current is reduced  
to 0.05 μA (typical).  
4
5
6
ERROR  
Bypass  
VOUT  
Out-of-Regulation Flag. (Open drain output). This output goes low when VOUT is  
out-of-tolerance by approximately – 5%.  
Reference bypass input. Connecting a 470 pF to this input further reduces output  
noise.  
Regulated voltage output.  
© 2006 Microchip Technology Inc.  
DS21354C-page 5  
TC1072/TC1073  
3.0  
DETAILED DESCRIPTION  
The TC1072 and TC1073 are precision fixed output  
voltage regulators. (If an adjustable version is desired,  
please see the TC1070/TC1071/TC1187 data sheet.)  
Unlike bipolar regulators, the TC1072 and TC1073’s  
supply current does not increase with load current. In  
addition, VOUT remains stable and within regulation  
over the entire 0 mA to IOUTMAX load current range, (an  
important consideration in RTC and CMOS RAM  
battery back-up applications).  
V
OUT  
HYSTERESIS (V  
)
H
V
TH  
ERROR  
V
IH  
V
OL  
Figure 3-1 shows a typical application circuit. The  
regulator is enabled any time the shutdown input  
(SHDN) is at or above VIH, and shutdown (disabled)  
when SHDN is at or below VIL. SHDN may be  
controlled by a CMOS logic gate, or I/O port of a  
microcontroller. If the SHDN input is not required, it  
should be connected directly to the input supply. While  
in shutdown, supply current decreases to 0.05 μA  
(typical), VOUT falls to zero volts, and ERROR is open-  
circuited.  
FIGURE 3-2:  
Error Output Operation  
3.2  
Output Capacitor  
A 1 μF (min) capacitor from VOUT to ground is  
recommended. The output capacitor should have an  
effective series resistance greater than 0.1Ω and less  
than 5.0Ω, and a resonant frequency above 1 MHz. A  
1 μF capacitor should be connected from VIN to GND  
if there is more than 10 inches of wire between the  
regulator and the AC filter capacitor, or if a battery is  
used as the power source. Aluminum electrolytic or  
tantalum capacitor types can be used. (Since many  
aluminum electrolytic capacitors freeze at approxi-  
mately -30°C, solid tantalums are recommended for  
applications operating below -25°C.) When operating  
from sources other than batteries, supply-noise  
rejection and transient response can be improved by  
increasing the value of the input and output capacitors  
and employing passive filtering techniques.  
V
V
V
OUT  
IN  
OUT  
+
1 μF  
+
+
TC1072  
TC1073  
1 μF  
C1  
Battery  
GND  
Bypass  
C3, 470 pF  
V+  
SHDN  
ERROR  
R1  
1M  
Shutdown Control  
(to CMOS Logic or Tie  
to V if unused)  
IN  
C2 Required Only  
if ERROR is used as a  
Processor RESET Signal  
(See Text)  
BATTLOW  
or RESET  
3.3  
Bypass Input  
0.2 μF  
C2  
A 470 pF capacitor connected from the Bypass input to  
ground reduces noise present on the internal  
reference, which in turn significantly reduces output  
noise. If output noise is not a concern, this input may be  
left unconnected. Larger capacitor values may be  
used, but results in a longer time period to rated output  
voltage when power is initially applied.  
FIGURE 3-1:  
Typical Application Circuit  
3.1  
ERROR Open Drain Output  
ERROR is driven low whenever VOUT falls out of  
regulation by more than – 5% (typical). This condition  
may be caused by low input voltage, output current  
limiting, or thermal limiting. The ERROR output voltage  
value (e.g. ERROR = VOL at 4.75V (typ.) for a 5.0V  
regulator and 2.85V (typ.) for a 3.0V regulator).  
ERROR output operation is shown in Figure 3-2.  
Note that ERROR is active when VOUT falls to VTH, and  
inactive when VOUT rises above VTH by VHYS  
.
As shown in Figure 3-1, ERROR can be used as a  
battery low flag, or as a processor RESET signal (with  
the addition of timing capacitor C2). R1 x C2 should be  
chosen to maintain ERROR below VIH of the processor  
RESET input for at least 200 msec to allow time for the  
system to stabilize. Pull-up resistor R1 can be tied to  
VOUT, VIN or any other voltage less than (VIN + 0.3V).  
DS21354C-page 6  
© 2006 Microchip Technology Inc.  
TC1072/TC1073  
Equation 4-1 can be used in conjunction with Equation  
4-2 to ensure regulator thermal operation is within  
limits. For example:  
4.0  
4.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
Given:  
Integrated thermal protection circuitry shuts the  
regulator off when die temperature exceeds 160°C.  
The regulator remains off until the die temperature  
drops to approximately 150°C.  
VINMAX  
= 3.0V ±5%  
VOUTMIN = 2.7V – 2.5%  
ILOADMAX = 40 mA  
TJMAX  
TAMAX  
= 125°C  
= 55°C  
4.2  
Power Dissipation  
The amount of power the regulator dissipates is  
primarily a function of input and output voltage, and  
output current. The following equation is used to  
calculate worst-case actual power dissipation:  
Find: 1. Actual power dissipation  
2. Maximum allowable dissipation  
Actual power dissipation:  
PD (VINMAX – VOUTMIN)ILOADMAX  
= [(3.0 x 1.05) – (2.7 x .975)]40 x 10–3  
= 20.7 mW  
EQUATION 4-1:  
PD (VINMAX – VOUTMIN)ILOADMAX  
Maximum allowable power dissipation:  
Where:  
PD = Worst-case actual power dissipation  
PDMAX = (TJMAX – TAMAX  
)
= Maximum voltage on VIN  
VINMAX  
θJA  
VOUTMIN = Minimum regulator output voltage  
ILOADMAX = Maximum output (load) current  
= (125 – 55)  
220  
= 318 mW  
The maximum allowable power dissipation (Equation  
4-2) is a function of the maximum ambient temperature  
(TAMAX), the maximum allowable die temperature  
(TJMAX) and the thermal resistance from junction-to-air  
(θJA). The 6-Pin SOT-23A package has a θJA of  
approximately 220°C/Watt.  
In this example, the TC1072 dissipates a maximum of  
20.7 mW; below the allowable limit of 318 mW. In a  
similar manner, Equation 4-1 and Equation 4-2 can be  
used to calculate maximum current and/or input  
voltage limits.  
4.3  
Layout Considerations  
EQUATION 4-2:  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads, and wide power  
supply bus lines combine to lower θJA and therefore  
increase the maximum allowable power dissipation  
limit.  
PDMAX= (TJMAX – TAMAX  
)
θJA  
Where all terms are previously defined.  
© 2006 Microchip Technology Inc.  
DS21354C-page 7  
TC1072/TC1073  
5.0  
TYPICAL CHARACTERISTICS  
(Unless Otherwise Specified, All Parts Are Measured At Temperature = 25°C)  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Dropout Voltage vs. Temperature (V  
= 10mA  
= 3.3V)  
Dropout Voltage vs. Temperature (V  
= 3.3V)  
OUT  
OUT  
0.100  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
0.020  
0.018  
0.016  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0.000  
I
I
= 50mA  
LOAD  
LOAD  
C
C
= 1μF  
IN  
OUT  
C
C
= 1μF  
IN  
OUT  
= 1μF  
= 1μF  
-40  
-20  
0
20  
50  
70  
125  
-40  
-20  
0
20  
50  
70  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Dropout Voltage vs. Temperature (V  
= 3.3V)  
OUT  
0.200  
0.180  
0.160  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
Dropout Voltage vs. Temperature (V  
= 3.3V)  
OUT  
0.300  
0.250  
0.200  
0.150  
0.100  
0.050  
0.000  
I
= 100mA  
LOAD  
I
= 150mA  
LOAD  
C
C
= 1μF  
C
C
= 1μF  
IN  
OUT  
IN  
OUT  
= 1μF  
= 1μF  
-40  
-20  
0
20  
50  
70  
125  
-40  
-20  
0
20  
50  
70  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Ground Current vs. V (V  
= 3.3V)  
Ground Current vs. V (V  
IN OUT  
= 3.3V)  
IN OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 100mA  
I
= 10mA  
LOAD  
LOAD  
C
C
= 1μF  
= 1μF  
IN  
OUT  
C
OUT  
= 1μF  
IN  
C
= 1μF  
0 0.5 1 1.5  
2
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5  
(V)  
0
0.5 1 1.5  
2
2.5  
3
3.5 4 4.5  
(V)  
5
5.5 6 6.5 7 7.5  
V
IN  
V
IN  
DS21354C-page 8  
© 2006 Microchip Technology Inc.  
TC1072/TC1073  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
(Unless Otherwise Specified, All Parts Are Measured At Temperature = 25°C)  
Ground Current vs. V (V  
IN OUT  
= 3.3V)  
V
vs.  
V
(V = 3.3V)  
OUT  
IN OUT  
3.5  
3
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 0  
I
= 150mA  
LOAD  
LOAD  
2.5  
2
1.5  
1
C
OUT  
= 1μF  
0.5  
0
IN  
C
C
= 1μF  
IN  
OUT  
C
= 1μF  
= 1μF  
0 0.5 1 1.5  
2
2.5  
3
3.5 4 4.5  
5
5.5 6 6.5 7 7.5  
0
0.5 1 1.5  
2
2.5  
3
3.5  
(V)  
4
4.5  
5
5.5  
6
6.5  
7
V
(V)  
V
IN  
IN  
Output Voltage vs. Temperature (V  
= 3.3V)  
V
vs.  
V
(V  
= 3.3V)  
OUT  
OUT  
IN OUT  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 10mA  
I
= 100mA  
LOAD  
LOAD  
C
= 1μF  
IN  
C
= 1μF  
OUT  
C
C
= 1μF  
IN  
OUT  
V
= 4.3V  
IN  
= 1μF  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
(V)  
4
4.5  
5
5.5  
6
6.5  
7
-40  
-20  
-10  
0
20  
40  
85  
125  
V
IN  
TEMPERATURE (°C)  
Output Voltage vs. Temperature (V  
= 3.3V)  
OUT  
3.290  
3.288  
3.286  
3.284  
3.282  
3.280  
3.278  
3.276  
3.274  
I
= 150mA  
LOAD  
C
C
V
= 1μF  
IN  
OUT  
IN  
= 1μF  
= 4.3V  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
© 2006 Microchip Technology Inc.  
DS21354C-page 9  
TC1072/TC1073  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
(Unless Otherwise Specified, All Parts Are Measured At Temperature = 25°C)  
Output Voltage vs. Temperature (V  
= 10mA  
= 5V)  
Output Voltage vs. Temperature (V  
= 150mA  
= 5V)  
OUT  
OUT  
4.994  
4.992  
4.990  
4.988  
4.986  
4.984  
4.982  
4.980  
4.978  
4.976  
4.974  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
I
I
LOAD  
LOAD  
V
C
C
= 6V  
V
C
C
= 6V  
IN  
IN  
IN  
IN  
= 1μF  
= 1μF  
= 1μF  
= 1μF  
OUT  
OUT  
-40  
-20  
-10  
0
20  
40  
85  
125  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Temperature vs. Quiescent Current (V  
OUT  
= 5V)  
Temperature vs. Quiescent Current (V  
= 150mA  
= 5V)  
OUT  
70  
60  
50  
40  
30  
20  
10  
0
80  
I
= 10mA  
I
LOAD  
LOAD  
70  
60  
50  
40  
30  
20  
10  
0
V
C
C
= 6V  
IN  
IN  
= 1μF  
V
= 6V  
IN  
IN  
= 1μF  
OUT  
C
= 1μF  
C
= 1μF  
OUT  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
Output Noise vs. Frequency  
Stability Region vs. Load Current  
= 1μF  
Power Supply Rejection Ratio  
= 10mA  
1000  
-30  
-35  
10.0  
1.0  
C
I
OUT  
to 10μF  
OUT  
R
C
C
C
= 50Ω  
LOAD  
= 1μF  
IN  
V
V
V
= 4V  
IN  
IN  
OUT  
IN  
OUT  
DC  
AC  
OUT  
= 100mV  
= 3V  
-40  
-45  
p-p  
= 1μF  
= 0  
100  
10  
1
BYP  
C
C
= 0  
= 1μF  
-50  
-55  
Stable Region  
-60  
-65  
-70  
-75  
-80  
0.1  
0.0  
0.1  
0.01  
0.1K  
1K  
10K  
1000K  
100K  
0.01K  
0.01K 0.1K  
10  
1K  
10K 100K 1000K  
0
20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DS21354C-page 10  
© 2006 Microchip Technology Inc.  
TC1072/TC1073  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
Measure Rise Time of 3.3V LDO with Bypass Capacitor  
Measure Rise Time of 3.3V LDO without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 470pF, I = 100mA  
LOAD  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I = 100mA  
LOAD  
V
= 4.3V, Temp = 25°C, Rise Time = 448μS  
IN  
V
= 4.3V, Temp = 25°C, Rise Time = 184μS  
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
Measure Fall Time of 3.3V LDO with Bypass Capacitor  
Measure Fall Time of 3.3V LDO without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 470pF, I = 50mA  
LOAD  
V
= 4.3V, Temp = 25°C, Fall Time = 100μS  
IN  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I = 100mA  
LOAD  
V
= 4.3V, Temp = 25°C, Fall Time = 52μS  
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
© 2006 Microchip Technology Inc.  
DS21354C-page 11  
TC1072/TC1073  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
Measure Rise Time of 5.0V LDO with Bypass Capacitor  
Measure Rise Time of 5.0V LDO without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
= 470pF, I  
= 100mA  
LOAD  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
= 0pF, I  
= 100mA  
LOAD  
BYP  
= 6V, Temp = 25°C, Rise Time = 390μS  
BYP  
= 6V, Temp = 25°C, Rise Time = 192μS  
V
V
IN  
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
Measure Fall Time of 5.0V LDO with Bypass Capacitor  
Measure Fall Time of 5.0V LDO without Bypass Capacitor  
Conditions: C = 1μF, C  
IN  
= 1μF, C  
= 470pF, I  
= 6V, Temp = 25°C, Fall Time = 167μS  
= 50mA  
LOAD  
OUT  
BYP  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I  
= 100mA  
LOAD  
= 6V, Temp = 25°C, Fall Time = 88μS  
V
IN  
V
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
DS21354C-page 12  
© 2006 Microchip Technology Inc.  
TC1072/TC1073  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
Load Regulation of 3.3V LDO  
Load Regulation of 3.3V LDO  
Conditions: C = 1μF, C  
= 2.2μF, C = 470pF,  
BYP  
Conditions: C = 1μF, C  
IN OUT  
= 2.2μF, C  
= 470pF,  
BYP  
IN  
OUT  
+ 0.25V, Temp = 25°C  
V
= V  
V
= V + 0.25V, Temp = 25°C  
IN  
OUT  
IN  
OUT  
I
= 100mA switched in at 10kHz, V is AC coupled  
OUT  
I
= 50mA switched in at 10kHz, V is AC coupled  
OUT  
LOAD  
LOAD  
I
I
LOAD  
LOAD  
V
OUT  
V
OUT  
Line Regulation of 3.3V LDO  
Load Regulation of 3.3V LDO  
Conditions: V = 4V, + 1V Squarewave @ 2.5kHz  
IN  
Conditions: C = 1μF, C  
IN OUT  
= 2.2μF, C = 470pF,  
BYP  
V
= V + 0.25V, Temp = 25°C  
IN  
OUT  
I
= 150mA switched in at 10kHz, V is AC coupled  
OUT  
LOAD  
V
IN  
I
LOAD  
V
OUT  
V
OUT  
C
I
= 0μF, C  
OUT  
LOAD  
= 1μF, C  
IN  
= 470pF,  
IN  
BYP  
are AC coupled  
OUT  
= 100mA, V & V  
© 2006 Microchip Technology Inc.  
DS21354C-page 13  
TC1072/TC1073  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
Line Regulation of 5.0V LDO  
Thermal Shutdown Response of 5.0V LDO  
Conditions: V = 6V, + 1V Squarewave @ 2.5kHz  
IN  
Conditions: V = 6V, C = 0μF, C  
IN IN  
= 1μF  
OUT  
V
IN  
V
V
OUT  
OUT  
C
I
= 0μF, C  
LOAD  
= 1μF, C  
IN OUT  
= 470pF,  
are AC coupled  
IN  
OUT BYP  
= 100mA, V & V  
ILOAD was increased until temperature of die reached about 160°C, at  
which time integrated thermal protection circuitry shuts the regulator  
off when die temperature exceeds approximately 160°C. The regulator  
remains off until die temperature drops to approximately 150°C.  
DS21354C-page 14  
© 2006 Microchip Technology Inc.  
TC1072/TC1073  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
“1” & “2” = part number code + temperature range and  
voltage  
TC1072  
Code  
TC1073  
Code  
(V)  
2.5  
2.7  
2.8  
2.85  
3.0  
3.3  
3.6  
4.0  
5.0  
E1  
E2  
EZ  
E8  
E3  
E5  
E9  
E0  
E7  
F1  
F2  
FZ  
F8  
F3  
F5  
F9  
F0  
F7  
“3” represents year and quarter code  
“4” represents lot ID number  
6.2  
Taping Form  
Component Taping Orientation for 6-Pin SOT-23A (EIAJ SC-74) Devices  
User Direction of Feed  
Device
Marking
W
Pin 1  
P
Standard Reel Component Orientation  
For 713 Suffix Device  
(Mark Right Side Up)  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
6-Pin SOT-23A  
8 mm  
4 mm  
3000  
7 in  
© 2006 Microchip Technology Inc.  
DS21354C-page 15  
TC1072/TC1073  
6.3  
Package Dimensions  
SOT-23A-6  
.075 (1.90)  
Ref.  
.069 (1.75)  
.059 (1.50)  
.122 (3.10)  
.098 (2.50)  
.020 (0.50)  
.014 (0.35)  
.037 (0.95)  
Ref.  
.118 (3.00)  
.110 (2.80)  
.057 (1.45)  
.035 (0.90)  
.008 (0.20)  
.004 (0.09)  
10° Max.  
.006 (0.15)  
.000 (0.00)  
.024 (0.60)  
.004 (0.10)  
Dimensions: inches (mm)  
DS21354C-page 16  
© 2006 Microchip Technology Inc.  
TC1072/TC1073  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
© 2006 Microchip Technology Inc.  
DS21354C-page 17  
TC1072/TC1073  
NOTES:  
DS21354C-page 18  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor,  
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and Zena are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21354C-page 19  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Wels  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenzhen  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/31/05  
DS21354C-page 20  
© 2006 Microchip Technology Inc.  

相关型号:

TC1072-3.3VCH713

3.3 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, PLASTIC, SOT-23, 6 PIN
MICROCHIP

TC1072-3.3VCH723

3.3 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, EIAJ, SC-74A, SOT-23A, 6 PIN
MICROCHIP

TC1072-3.3VCHTR

3.3 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, SOT-23A, 6 PIN
MICROCHIP

TC1072-3.6VCH713

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC1072-3.6VCH723

Fixed Positive LDO Regulator, 3.6V, 0.12V Dropout, CMOS, PDSO6, SOT-23A, 6 PIN
MICROCHIP

TC1072-3.6VCHTR

3.6 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, SOT-23A, 6 PIN
MICROCHIP

TC1072-30VCH

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC1072-33VCH

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC1072-36VCH

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC1072-4.0VCH

4 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, SOT-23A, 6 PIN
MICROCHIP

TC1072-4.0VCH713

4 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, PLASTIC, SOT-23, 6 PIN
MICROCHIP

TC1072-4.0VCHTR

4 V FIXED POSITIVE LDO REGULATOR, 0.12 V DROPOUT, PDSO6, SOT-23A, 6 PIN
MICROCHIP