TC10723.0VCT713 [MICROCHIP]

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass; 50毫安和百毫安CMOS LDO,具有关断,错误输出和VREF旁路
TC10723.0VCT713
型号: TC10723.0VCT713
厂家: MICROCHIP    MICROCHIP
描述:

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
50毫安和百毫安CMOS LDO,具有关断,错误输出和VREF旁路

文件: 总22页 (文件大小:712K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1072/TC1073  
50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass  
Features:  
General Description  
• 50 µA Ground Current for Longer Battery Life  
• Very Low Dropout Voltage  
The TC1072 and TC1073 are high accuracy (typically  
±0.5%) CMOS upgrades for older (bipolar) low dropout  
regulators. Designed specifically for battery-operated  
systems, the devices’ CMOS construction eliminates  
wasted ground current, significantly extending battery  
life. Total supply current is typically 50 µA at full load  
(20 to 60 times lower than in bipolar regulators).  
• Choice of 50 mA (TC1072) and 100 mA (TC1073)  
Output  
• High Output Voltage Accuracy  
• Standard or Custom Output Voltages  
• Power-Saving Shutdown Mode  
The devices’ key features include ultra low noise  
operation (plus optional Bypass input); very low  
dropout voltage (typically 85 mV, TC1072 and 180 mV,  
TC1073 at full load) and fast response to step changes  
in load. An error output (ERROR) is asserted when the  
devices are out-of-regulation (due to a low input  
voltage or excessive output current). ERROR can be  
used as a low battery warning or as a processor  
RESET signal (with the addition of an external RC  
network). Supply current is reduced to 0.5 µA (max)  
and both VOUT and ERROR are disabled when the  
shutdown input is low. The devices incorporate both  
overtemperature and overcurrent protection.  
• ERROR Output Can Be Used as a Low Battery  
Detector or Processor Reset Generator  
• Bypass Input for Ultra Quiet Operation  
• Overcurrent and Overtemperature Protection  
• Space-Saving 6-Pin SOT-23 Package  
• Pin Compatible Upgrades for Bipolar Regulators  
• Standard Output Voltage Options:  
- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V,  
3.3V, 3.6V, 4.0V, 5.0V  
• Other output voltages are available. Please  
contact Microchip Technology Inc. for details.  
The TC1072 and TC1073 are stable with an output  
capacitor of only 1 µF and have a maximum output  
current of 50 mA, and 100 mA, respectively. For higher  
output current versions, please see the TC1185,  
TC1186, TC1187 (IOUT = 150 mA) and TC1107,  
TC1108 and TC1173 (IOUT = 300 mA) data sheets.  
Applications:  
• Battery Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
• Cellular/GSM/PHS Phones  
• Linear Post-Regulators for SMPS  
• Pagers  
Package Type  
6-Pin SOT-23  
VOUT Bypass ERROR  
Typical Application Circuit  
5
6
4
R
P
1
2
6
5
V
V
V
V
OUT  
IN  
IN  
OUT  
+
TC1072  
TC1073  
1 µF  
GND  
Bypass  
C
3
1
BYPASS  
470 pF  
2
VIN  
GND SHDN  
3
4
ERROR  
SHDN  
ERROR  
Shutdown Control  
(from Power Control Logic)  
© 2007 Microchip Technology Inc.  
DS21354D-page 1  
TC1072/TC1073  
Note: Stresses above those listed under "Absolute  
Maximum Ratings" may cause permanent damage to  
the device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
Input Voltage .........................................................6.5V  
Output Voltage...........................(-0.3V) to (VIN + 0.3V)  
Power Dissipation................Internally Limited (Note 6)  
Maximum Voltage on Any Pin ........VIN +0.3V to -0.3V  
Operating Temperature Range...... -40°C < TJ < 125°C  
Storage Temperature..........................-65°C to +150°C  
TC1072/TC1073 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, VIN = VOUT + 1V, IL = 0.1 mA, CL = 3.3 μF, SHDN > VIH, TA = +25°C.  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Symbol  
VIN  
IOUTMAX  
Parameter  
Min  
2.7  
Typ  
Max  
6.0  
Units  
Test Conditions  
Note 9  
Input Operating Voltage  
Maximum Output Current  
V
50  
100  
mA  
mA  
TC1072  
TC1073  
VOUT  
Output Voltage  
VR  
VR ±0.5% VR + 2.5%  
V
Note 1  
2.5%  
TCVOUT  
VOUT Temperature Coefficient  
20  
40  
ppm/°C Note 2  
ΔVOUT/ΔVIN Line Regulation  
ΔVOUT/VOUT Load Regulation  
0.05  
0.5  
0.35  
2.0  
%
%
(VR + 1V) VIN 6V  
IL = 0.1 mA to IOUTMAX  
(Note 3)  
VIN-VOUT  
Dropout Voltage  
2
65  
85  
180  
120  
250  
mV  
IL = 0.1 mA  
IL = 20 mA  
IL = 50 mA  
IL = 100 mA (Note 4),  
TC1073  
IIN  
Supply Current  
50  
0.05  
64  
80  
0.5  
µA  
µA  
SHDN = VIH, IL = 0 (Note 8)  
SHDN = 0V  
IINSD  
PSRR  
IOUTSC  
ΔVOUT/ΔPD  
TSD  
Shutdown Supply Current  
Power Supply Rejection Ratio  
Output Short Circuit Current  
Thermal Regulation  
dB  
FRE 1 kHz  
300  
0.04  
160  
10  
450  
mA  
V/W  
°C  
VOUT = 0V  
Notes 5, 6  
Thermal Shutdown Die Temperature  
Thermal Shutdown Hysteresis  
Output Noise  
ΔTSD  
eN  
°C  
260  
nV/Hz IL = IOUTMAX  
470 pF from Bypass to GND  
Note 1:  
2:  
V is the regulator output voltage setting. For example: V = 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
R R  
6
TC V  
= (VOUTMAX – VOUTMIN) x 10  
OUT  
V
x ΔT  
OUT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value.  
5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or  
line regulation effects. Specifications are for a current pulse equal to ILMAX at V = 6V for T = 10 ms.  
IN  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the  
thermal resistance from junction-to-air (i.e., T , T , θ ). Exceeding the maximum allowable power dissipation causes the device to initiate  
A
J
JA  
thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.  
7: Hysteresis voltage is referenced by V .  
R
8: Apply for Junction Temperatures of -40°C to +85°C.  
9:  
The minimum V has to justify the conditions = V V + V  
and V 2.7V for I = 0.1 mA to I  
.
OUTMAX  
IN  
IN  
R
DROPOUT  
IN  
L
DS21354D-page 2  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
TC1072/TC1073 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, VIN = VOUT + 1V, IL = 0.1 mA, CL = 3.3 μF, SHDN > VIH, TA = +25°C.  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Test Conditions  
SHDN Input  
VIH  
VIL  
SHDN Input High Threshold  
SHDN Input Low Threshold  
45  
%VIN  
%VIN  
VIN = 2.5V to 6.5V  
15  
VIN = 2.5V to 6.5V  
ERROR Open Drain Output  
VINMIN Minimum VIN Operating Voltage  
VOL  
1.0  
400  
V
Output Logic Low Voltage  
ERROR Threshold Voltage  
ERROR Positive Hysteresis  
VOUT to ERROR Delay  
mV  
V
1 mA Flows to ERROR  
See Figure 4-2  
Note 7  
VTH  
0.95 x VR  
50  
VHYS  
tDELAY  
mV  
ms  
2.5  
Vout falling from VR to  
VR-10%  
Note 1:  
2:  
V is the regulator output voltage setting. For example: V = 2.5V, 2.7V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
R R  
6
TC V  
= (VOUTMAX – VOUTMIN) x 10  
OUT  
V
x ΔT  
OUT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value.  
5: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or  
line regulation effects. Specifications are for a current pulse equal to ILMAX at V = 6V for T = 10 ms.  
IN  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the  
thermal resistance from junction-to-air (i.e., T , T , θ ). Exceeding the maximum allowable power dissipation causes the device to initiate  
A
J
JA  
thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.  
7: Hysteresis voltage is referenced by V .  
R
8: Apply for Junction Temperatures of -40°C to +85°C.  
9:  
The minimum V has to justify the conditions = V V + V  
and V 2.7V for I = 0.1 mA to I  
.
OUTMAX  
IN  
IN  
R
DROPOUT  
IN  
L
© 2007 Microchip Technology Inc.  
DS21354D-page 3  
TC1072/TC1073  
2.0  
TYPICAL CHARACTERISTICS CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Dropout Voltage vs. Temperature (V  
= 10mA  
= 3.3V)  
OUT  
Dropout Voltage vs. Temperature (V  
= 3.3V)  
OUT  
0.020  
0.018  
0.016  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0.000  
0.100  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
I
LOAD  
I
= 50mA  
LOAD  
C
C
= 1μF  
IN  
OUT  
C
C
= 1μF  
IN  
OUT  
= 1μF  
= 1μF  
-40  
-20  
0
20  
50  
70  
125  
-40  
-20  
0
20  
50  
70  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Dropout Voltage vs. Temperature (V  
OUT  
= 3.3V)  
Dropout Voltage vs. Temperature (V  
= 3.3V)  
0.200  
0.180  
0.160  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
OUT  
0.300  
0.250  
0.200  
0.150  
0.100  
0.050  
0.000  
I
= 100mA  
LOAD  
I
= 150mA  
LOAD  
C
C
= 1μF  
C
C
= 1μF  
IN  
OUT  
IN  
OUT  
= 1μF  
= 1μF  
-40  
-20  
0
20  
50  
70  
125  
-40  
-20  
0
20  
50  
70  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Ground Current vs. V (V  
IN OUT  
= 3.3V)  
Ground Current vs. V (V  
IN OUT  
= 3.3V)  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 100mA  
LOAD  
I
= 10mA  
LOAD  
80  
70  
60  
50  
40  
30  
20  
10  
0
C
C
= 1μF  
= 1μF  
IN  
C
C
= 1μF  
OUT  
IN  
= 1μF  
OUT  
0 0.5 1 1.5  
2
2.5  
3
3.5 4 4.5  
(V)  
5 5.5 6 6.5 7 7.5  
0
0.5 1 1.5  
2
2.5  
3
3.5 4 4.5  
(V)  
5 5.5 6 6.5 7 7.5  
V
IN  
V
IN  
DS21354D-page 4  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
V
vs.  
V
(V = 3.3V)  
OUT  
IN OUT  
Ground Current vs. V (V  
IN OUT  
= 3.3V)  
3.5  
3
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 0  
LOAD  
I
= 150mA  
LOAD  
2.5  
2
1.5  
1
C
OUT  
= 1μF  
0.5  
0
IN  
C
C
= 1μF  
IN  
OUT  
C
= 1μF  
= 1μF  
0 0.5 1 1.5  
2
2.5  
3
3.5 4 4.5 5 5.5 6 6.5 7 7.5  
0
0.5 1 1.5  
2
2.5  
3
3.5  
(V)  
4
4.5  
5
5.5  
6
6.5  
7
V
V
(V)  
(V  
IN  
V
IN  
V
vs.  
= 3.3V)  
Output Voltage vs. Temperature (V  
= 3.3V)  
OUT  
IN OUT  
OUT  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
I
= 100mA  
I
= 10mA  
LOAD  
LOAD  
C
C
V
= 1μF  
IN  
OUT  
IN  
= 1μF  
C
C
= 1μF  
IN  
OUT  
= 4.3V  
= 1μF  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
(V)  
4
4.5  
5
5.5  
6
6.5  
7
-40  
-20  
-10  
0
20  
40  
85  
125  
V
TEMPERATURE (°C)  
IN  
Output Voltage vs. Temperature (V  
= 3.3V)  
OUT  
3.290  
3.288  
3.286  
3.284  
3.282  
3.280  
3.278  
3.276  
3.274  
I
= 150mA  
LOAD  
C
C
V
= 1μF  
IN  
OUT  
IN  
= 1μF  
= 4.3V  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
© 2007 Microchip Technology Inc.  
DS21354D-page 5  
TC1072/TC1073  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Output Voltage vs. Temperature (V  
= 10mA  
= 5V)  
Output Voltage vs. Temperature (V  
= 150mA  
= 5V)  
OUT  
OUT  
4.994  
4.992  
4.990  
4.988  
4.986  
4.984  
4.982  
4.980  
4.978  
4.976  
4.974  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
I
I
LOAD  
LOAD  
V
C
C
= 6V  
V
C
C
= 6V  
IN  
IN  
IN  
IN  
= 1μF  
= 1μF  
= 1μF  
= 1μF  
OUT  
OUT  
-40  
-20  
-10  
0
20  
40  
85  
125  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Temperature vs. Quiescent Current (V  
OUT  
= 5V)  
Temperature vs. Quiescent Current (V  
OUT  
= 5V)  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 150mA  
LOAD  
I
= 10mA  
70  
60  
50  
40  
30  
20  
10  
0
LOAD  
V
C
C
= 6V  
IN  
= 1μF  
IN  
OUT  
V
= 6V  
IN  
IN  
= 1μF  
C
= 1μF  
C
= 1μF  
OUT  
-40  
-20  
-10  
0
20  
40  
85  
125  
-40  
-20  
-10  
0
20  
40  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Output Noise vs. Frequency  
Stability Region vs. Load Current  
= 1μF  
Power Supply Rejection Ratio  
= 10mA  
1000  
-30  
10.0  
1.0  
C
I
OUT  
to 10μF  
OUT  
R
C
C
C
= 50Ω  
LOAD  
= 1μF  
IN  
-35  
-40  
-45  
V
V
V
= 4V  
IN  
IN  
OUT  
IN  
OUT  
DC  
AC  
OUT  
= 100mV  
= 3V  
p-p  
= 1μF  
= 0  
100  
10  
1
BYP  
C
C
= 0  
= 1μF  
-50  
-55  
Stable Region  
-60  
-65  
-70  
-75  
-80  
0.1  
0.0  
0.1  
0.01  
0.1K  
1K  
10K  
1000K  
100K  
0.01K  
0.01K 0.1K  
10  
1K  
10K 100K 1000K  
0
20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DS21354D-page 6  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Measure Rise Time of 3.3V LDO with Bypass Capacitor  
Measure Rise Time of 3.3V LDO without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 470pF, I = 100mA  
LOAD  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I = 100mA  
LOAD  
V
= 4.3V, Temp = 25°C, Rise Time = 448μS  
IN  
V
= 4.3V, Temp = 25°C, Rise Time = 184μS  
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
Measure Fall Time of 3.3V LDO with Bypass Capacitor  
Measure Fall Time of 3.3V LDO without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 470pF, I = 50mA  
LOAD  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I = 100mA  
LOAD  
V
= 4.3V, Temp = 25°C, Fall Time = 100μS  
IN  
V
= 4.3V, Temp = 25°C, Fall Time = 52μS  
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
© 2007 Microchip Technology Inc.  
DS21354D-page 7  
TC1072/TC1073  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Measure Rise Time of 5.0V LDO with Bypass Capacitor  
Measure Rise Time of 5.0V LDO without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 470pF, I = 100mA  
LOAD  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I = 100mA  
LOAD  
V
= 6V, Temp = 25°C, Rise Time = 390μS  
IN  
V
= 6V, Temp = 25°C, Rise Time = 192μS  
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
Measure Fall Time of 5.0V LDO with Bypass Capacitor  
Measure Fall Time of 5.0V LDO without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 470pF, I = 50mA  
LOAD  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I = 100mA  
LOAD  
V
= 6V, Temp = 25°C, Fall Time = 167μS  
IN  
V
= 6V, Temp = 25°C, Fall Time = 88μS  
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
DS21354D-page 8  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Load Regulation of 3.3V LDO  
Load Regulation of 3.3V LDO  
Conditions: C = 1μF, C  
= 2.2μF, C = 470pF,  
BYP  
Conditions: C = 1μF, C  
= 2.2μF, C = 470pF,  
BYP  
IN  
OUT  
+ 0.25V, Temp = 25°C  
OUT  
IN  
OUT  
+ 0.25V, Temp = 25°C  
OUT  
V
= V  
V
= V  
IN  
IN  
I
= 100mA switched in at 10kHz, V  
is AC coupled  
OUT  
I
= 50mA switched in at 10kHz, V is AC coupled  
OUT  
LOAD  
LOAD  
I
I
LOAD  
LOAD  
V
V
OUT  
OUT  
Line Regulation of 3.3V LDO  
Load Regulation of 3.3V LDO  
Conditions: V = 4V, + 1V Squarewave @ 2.5kHz  
IN  
Conditions: C = 1μF, C  
IN OUT  
= 2.2μF, C = 470pF,  
BYP  
V
= V + 0.25V, Temp = 25°C  
IN  
OUT  
I
= 150mA switched in at 10kHz, V  
is AC coupled  
OUT  
LOAD  
V
IN  
I
LOAD  
V
OUT  
V
OUT  
C
I
= 0μF, C  
LOAD  
= 1μF, C  
IN  
= 470pF,  
IN  
OUT  
BYP  
are AC coupled  
OUT  
= 100mA, V & V  
© 2007 Microchip Technology Inc.  
DS21354D-page 9  
TC1072/TC1073  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Line Regulation of 5.0V LDO  
Thermal Shutdown Response of 5.0V LDO  
Conditions: V = 6V, + 1V Squarewave @ 2.5kHz  
IN  
Conditions: V = 6V, C = 0μF, C  
IN IN  
= 1μF  
OUT  
V
IN  
V
OUT  
V
OUT  
C
I
= 0μF, C  
LOAD  
= 1μF, C  
IN OUT  
= 470pF,  
are AC coupled  
IN  
OUT BYP  
= 100mA, V & V  
ILOAD was increased until temperature of die reached about 160°C, at  
which time integrated thermal protection circuitry shuts the regulator  
off when die temperature exceeds approximately 160°C. The regulator  
remains off until die temperature drops to approximately 150°C.  
DS21354D-page 10  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Symbol  
Pin No.  
(6-Pin SOT-23)  
Description  
1
2
3
4
5
6
VIN  
Unregulated supply input.  
GND  
Ground terminal.  
SHDN  
ERROR  
Bypass  
VOUT  
Shutdown control input.  
Out-of-Regulation Flag. (Open drain output).  
Reference bypass input.  
Regulated voltage output.  
3.1  
Input Voltage Supply (VIN)  
3.4  
Out-Of-Regulation Flag (ERROR)  
Connect unregulated input supply to the VIN pin. If  
there is a large distance between the input supply and  
the LDO regulator, some input capacitance is  
necessary for proper operation. A 1 µF capacitor  
connected from VIN to ground is recommended for  
most applications.  
ERROR goes low when VOUT is out-of-tolerance by  
approximately – 5%.  
3.5  
Reference Bypass Input (Bypass)  
Connecting a 470 pF to this input further reduces  
output noise.  
3.2  
Ground (GND)  
3.6  
Regulated Voltage Output (VOUT)  
Connect the unregulated input supply ground return to  
GND. Also connect the negative side of the 1 µF typical  
input decoupling capacitor close to GND and the  
negative side of the output capacitor COUT to GND.  
Connect the output load to VOUT of the LDO. Also  
connect the positive side of the LDO output capacitor  
as close as possible to the VOUT pin.  
3.3  
Shutdown Control Input (SHDN)  
The regulator is fully enabled when a logic-high is  
applied to SHDN. The regulator enters shutdown when  
a logic-low is applied to SHDN. During shutdown,  
output voltage falls to zero, ERROR is open-circuited  
and supply current is reduced to 0.5 µA (maximum).  
© 2007 Microchip Technology Inc.  
DS21354D-page 11  
TC1072/TC1073  
4.0  
DETAILED DESCRIPTION  
The TC1072 and TC1073 are precision fixed output  
voltage regulators. (If an adjustable version is desired,  
please see the TC1070/TC1071/TC1187 data sheet.)  
Unlike bipolar regulators, the TC1072 and TC1073’s  
supply current does not increase with load current. In  
addition, VOUT remains stable and within regulation  
over the entire 0 mA to IOUTMAX load current range, (an  
important consideration in RTC and CMOS RAM  
battery back-up applications).  
V
OUT  
HYSTERESIS (V )  
H
V
TH  
t
DELAY  
ERROR  
V
IH  
V
OL  
Figure 4-1 shows a typical application circuit. The  
regulator is enabled any time the shutdown input  
(SHDN) is at or above VIH, and shutdown (disabled)  
when SHDN is at or below VIL. SHDN may be  
controlled by a CMOS logic gate, or I/O port of a  
microcontroller. If the SHDN input is not required, it  
should be connected directly to the input supply. While  
in shutdown, supply current decreases to 0.05 µA  
(typical), VOUT falls to zero volts, and ERROR is open-  
circuited.  
FIGURE 4-2:  
Error Output Operation.  
4.2  
Output Capacitor  
A 1 µF (minimum) capacitor from VOUT to ground is  
recommended. The output capacitor should have an  
effective series resistance greater than 0.1Ω and less  
than 5.0Ω, and a resonant frequency above 1 MHz. A  
1 µF capacitor should be connected from VIN to GND if  
there is more than 10 inches of wire between the  
regulator and the AC filter capacitor, or if a battery is  
used as the power source. Aluminum electrolytic or  
tantalum capacitor types can be used. (Since many  
V
V
V
OUT  
IN  
OUT  
+
1 μF  
+
+
TC1072  
TC1073  
1 μF  
C1  
Battery  
aluminum  
approximately  
electrolytic  
-30°C,  
capacitors  
freeze  
at  
are  
GND  
Bypass  
solid tantalums  
C3, 470 pF  
recommended for applications operating below -25°C.)  
When operating from sources other than batteries,  
supply-noise rejection and transient response can be  
improved by increasing the value of the input and  
output capacitors and employing passive filtering  
techniques.  
V+  
SHDN  
ERROR  
R1  
1M  
Shutdown Control  
(to CMOS Logic or Tie  
to V if unused)  
IN  
C2 Required Only  
if ERROR is used as a  
Processor RESET Signal  
(See Text)  
BATTLOW  
or RESET  
0.2 μF  
C2  
4.3  
Bypass Input  
A 470 pF capacitor connected from the Bypass input to  
ground reduces noise present on the internal  
reference, which in turn significantly reduces output  
noise. If output noise is not a concern, this input may be  
left unconnected. Larger capacitor values may be  
used, but results in a longer time period to rated output  
voltage when power is initially applied.  
FIGURE 4-1:  
Typical Application Circuit.  
4.1  
ERROR Open-Drain Output  
ERROR is driven low whenever VOUT falls out of  
regulation by more than –5% (typical). This condition  
may be caused by low input voltage, output current  
limiting, or thermal limiting. The ERROR output voltage  
value (e.g. ERROR = VOL at 4.75V (typical) for a 5.0V  
regulator and 2.85V (typical) for a 3.0V regulator).  
ERROR output operation is shown in Figure 4-2.  
Note that ERROR is active tDELAY (typically, 2.5 µs)  
after VOUT falls to VTH, and inactive when VOUT rises  
above VTH by VHYS  
.
As shown in Figure 4-1, ERROR can be used as a  
battery low flag, or as a processor RESET signal (with  
the addition of timing capacitor C2). R1 x C2 should be  
chosen to maintain ERROR below VIH of the processor  
RESET input for at least 200 ms to allow time for the  
system to stabilize. Pull-up resistor R1 can be tied to  
VOUT, VIN or any other voltage less than (VIN + 0.3V).  
DS21354D-page 12  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
Equation 5-1 can be used in conjunction with  
Equation 5-2 to ensure regulator thermal operation is  
within limits. For example:  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
Given:  
Integrated thermal protection circuitry shuts the  
regulator off when die temperature exceeds 160°C.  
The regulator remains off until the die temperature  
drops to approximately 150°C.  
VINMAX  
VOUTMIN  
ILOADMAX  
TJMAX  
= 3.0V ±5%  
= 2.7V – 2.5%  
= 40 mA  
= 125°C  
5.2  
Power Dissipation  
TAMAX  
= 55°C  
The amount of power the regulator dissipates is  
primarily a function of input and output voltage, and  
output current. The following equation is used to  
calculate worst-case actual power dissipation:  
Find: 1. Actual power dissipation  
2. Maximum allowable dissipation  
Actual power dissipation:  
PD (VINMAX – VOUTMIN)ILOADMAX  
= [(3.0 x 1.05) – (2.7 x 0.975)] x 40 x 10–3  
= 20.7 mW  
EQUATION 5-1:  
PD (VINMAX – VOUTMIN)ILOADMAX  
Maximum allowable power dissipation:  
Where:  
PD = Worst-case actual power dissipation  
PDMAX = (TJMAX – TAMAX  
)
= Maximum voltage on VIN  
VINMAX  
θJA  
= (125 – 55)  
220  
VOUTMIN = Minimum regulator output voltage  
ILOADMAX = Maximum output (load) current  
= 318 mW  
The  
maximum  
allowable  
power  
dissipation  
In this example, the TC1072 dissipates a maximum of  
20.7 mW; below the allowable limit of 318 mW. In a  
similar manner, Equation 5-1 and Equation 5-2 can be  
used to calculate maximum current and/or input  
voltage limits.  
(Equation 5-2) is a function of the maximum ambient  
temperature (TAMAX), the maximum allowable die tem-  
perature (TJMAX) and the thermal resistance from junc-  
tion-to-air (θJA). The 6-Pin SOT-23 package has a θJA  
of approximately 220°C/Watt.  
5.3  
Layout Considerations  
EQUATION 5-2:  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads, and wide power  
supply bus lines combine to lower θJA and therefore  
increase the maximum allowable power dissipation  
limit.  
PDMAX = (TJMAX – TAMAX  
)
θJA  
where all terms are previously defined.  
© 2007 Microchip Technology Inc.  
DS21354D-page 13  
TC1072/TC1073  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
1
2
&
= part number code + threshold voltage  
(two-digit code)  
TC1072  
Code  
TC1073  
Code  
(V)  
1.8  
2.5  
2.6  
2.7  
2.8  
EY  
E1  
ET  
E2  
EZ  
E8  
E3  
E4  
E9  
E0  
E6  
FY  
F1  
FT  
F2  
FZ  
F8  
F3  
F4  
F9  
F0  
F6  
2.85  
3.0  
3.3  
3.6  
4.0  
5.0  
3
4
represents year and quarter code  
represents production lot ID code  
6.2  
Taping Form  
User Direction of Feed  
Device  
Marking  
W, Width of  
Carrier Tape  
PIN 1  
PIN 1  
P,Pitch  
Standard Reel Component  
Orientation  
Reverse Reel Component  
Orientation  
Carrier Tape, Number of Components per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
6-Pin SOT-23  
8 mm  
4 mm  
3000  
7 in  
DS21354D-page 14  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
6-Lead Plastic Small Outline Transistor (CH) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
4
N
E
E1  
PIN 1 ID BY  
LASER MARK  
1
2
3
e
e1  
D
c
A
φ
A2  
L
A1  
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
6
0.95 BSC  
Outside Lead Pitch  
Overall Height  
e1  
A
1.90 BSC  
0.90  
0.89  
0.00  
2.20  
1.30  
2.70  
0.10  
0.35  
0°  
1.45  
1.30  
0.15  
3.20  
1.80  
3.10  
0.60  
0.80  
30°  
Molded Package Thickness  
Standoff  
A2  
A1  
E
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
Footprint  
L1  
φ
Foot Angle  
Lead Thickness  
Lead Width  
c
0.08  
0.20  
0.26  
0.51  
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-028B  
© 2007 Microchip Technology Inc.  
DS21354D-page 15  
TC1072/TC1073  
NOTES:  
DS21354D-page 16  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
APPENDIX A: REVISION HISTORY  
Revision D (February 2007)  
Page 1: Ground current changed to 50 µA.  
• Package type changed from SOT-23A to SOT-23.  
• Added voltage options.  
• TDELAY added to Table 1-1.  
Section 3.0 “Pin Descriptions”: Added pin  
descriptions.  
Section 4.1 “ERROR Open-Drain Output”:  
Defined tDELAY  
.
• Changed Figure 4-2.  
• Updated Packaging Information.  
Revision C (January 2006)  
• Undocumented changes.  
Revision B (May 2002)  
• Undocumented changes.  
Revision A (March 2002)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS21354D-page 17  
TC1072/TC1073  
NOTES:  
DS21354D-page 18  
© 2007 Microchip Technology Inc.  
TC1072/TC1073  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X.X  
X
XXXXX  
Examples:  
Threshold Temperature Package  
Voltage  
a)  
b)  
c)  
d)  
e)  
f)  
g)  
h)  
i)  
TC1072-1.8VCH713: 1.8V  
Range  
TC1072-2.5VCH713 2.5V  
TC1072-2.6VCH713 2.6V  
TC1072-2.7VCH713 2.7V  
TC1072-2.8VCH713 2.8V  
TC1072-2.85VCH713 2.85V  
TC1072-3.0VCH713 3.0V  
TC1072-3.3VCH713 3.3V  
TC1072-3.6VCH713 3.6V  
TC1072-4.0VCH713 4.0V  
TC1072-5.0VCH713 5.0V  
Device  
TC1072: CMOS LDO with Shutdown, ERROR Output & V  
REF  
REF  
Bypass  
TC1073: CMOS LDO with Shutdown, ERROR Output & V  
Bypass  
j)  
k)  
Threshold voltage  
(typical)  
1.8  
2.5  
2.6  
2.7  
2.8  
2.85  
3.0  
3.3  
3.6  
4.0  
5.0  
=
=
=
=
=
=
=
=
=
=
=
1.8V  
2.5V  
2.6V  
2.7V  
2.8V  
2.85V  
3.0V  
3.3V  
3.6V  
4.0V  
5.0V  
a)  
b)  
c)  
d)  
e)  
f)  
g)  
h)  
i)  
TC1073-1.8VCH713: 1.8V  
TC1073-2.5VCH713 2.5V  
TC1073-2.6VCH713 2.6V  
TC1073-2.7VCH713 2.7V  
TC1073-2.8VCH713 2.8V  
TC1073-2.85VCH713 2.85V  
TC1073-3.0VCH713 3.0V  
TC1073-3.3VCH713 3.3V  
TC1073-3.6VCH713 3.6V  
TC1073-4.0VCH713 4.0V  
TC1073-5.0VCH713 5.0V  
j)  
k)  
Temperature Range  
Package  
V
= -40° C to +125° C  
CH713 = Plastic small outline transistor (CH) SOT-23,  
6 lead, (tape and reel).  
© 2007 Microchip Technology Inc.  
DS21354D-page 19  
TC1072/TC1073  
NOTES:  
DS21354D-page 20  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS21354D-page 21  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21354D-page 22  
© 2007 Microchip Technology Inc.  

相关型号:

TC10723.3VCT713

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC10723.6VCT713

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC107230ECH713

3 V FIXED POSITIVE LDO REGULATOR, 0.25 V DROPOUT, PDSO6, EIAJ, SC-74, SOT-23A, 6 PIN
MICROCHIP

TC107233ECH

Fixed Positive LDO Regulator, 3.3V, 0.25V Dropout, CMOS, PDSO6, SOT-23A, 6 PIN
MICROCHIP

TC107233ECH723

Fixed Positive LDO Regulator, 3.3V, 0.25V Dropout, CMOS, PDSO6, SOT-23A, 6 PIN
MICROCHIP

TC10724.0VCT713

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC10725.0VCT713

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC1072_07

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC1073

50mA and 100mA CMOS LDOs with Shutdown, ERROR Output and VREF Bypass
MICROCHIP

TC1073

9.2 - 10.2 GHz 26 dBm MMIC
TRANSCOM

TC1073-1.8VCH713

1.8 V FIXED POSITIVE LDO REGULATOR, 0.25 V DROPOUT, PDSO6, PLASTIC, SOT-23, 6 PIN
MICROCHIP

TC1073-2.5VCH

2.5 V FIXED POSITIVE LDO REGULATOR, 0.25 V DROPOUT, PDSO6, SC-74A, SOT-23A, 6 PIN
MICROCHIP