TC1185-2.85VCT [MICROCHIP]

2.85 V FIXED POSITIVE LDO REGULATOR, 0.4 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN;
TC1185-2.85VCT
型号: TC1185-2.85VCT
厂家: MICROCHIP    MICROCHIP
描述:

2.85 V FIXED POSITIVE LDO REGULATOR, 0.4 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN

光电二极管 输出元件 调节器
文件: 总20页 (文件大小:558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1014/TC1015/TC1185  
50mA, 100mA and 150mA CMOS LDOs with Shutdown and Reference Bypass  
Features  
Device Selection Table  
• Extremely Low Supply Current (50µA, Typ.)  
• Very Low Dropout Voltage  
Junction  
Temp. Range  
Part Number  
Package  
• Choice of 50mA (TC1014), 100mA (TC1015) and  
150mA (TC1016) Output  
TC1014-xxVCT 5-Pin SOT-23A -40°C to +125°C  
TC1015-xxVCT 5-Pin SOT-23A -40°C to +125°C  
TC1185-xxVCT 5-Pin SOT-23A -40°C to +125°C  
• High Output Voltage Accuracy  
• Standard or Custom Output Voltages  
• Power Saving Shutdown Mode  
NOTE: xx indicates output voltages. Available output  
voltages: 1.8, 2.5, 2.6, 2.7, 2.8, 2.85, 3.0, 3.3, 3.6, 4.0, 5.0.  
• Reference Bypass Input for Ultra Low-Noise  
Operation  
Other output voltages are available. Please contact Microchip  
Technology Inc. for details.  
• Over Current and Over Temperature Protection  
• Space-Saving 5-Pin SOT-23A Package  
Package Type  
• Pin Compatible Upgrades for Bipolar Regulators  
5-Pin SOT-23A  
Applications  
V
Bypass  
OUT  
5
• Battery Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
4
TC1014  
TC1015  
TC1185  
• Cellular/GSM/PHS Phones  
• Linear Post-Regulator for SMPS  
• Pagers  
1
2
3
V
GND SHDN  
IN  
NOTE: 5-Pin SOT-23A is equivalent to the EIAJ (SC-74A)  
2002 Microchip Technology Inc.  
DS21335B-page 1  
TC1014/TC1015/TC1185  
General Description  
Typical Application  
The TC1014/TC1015/TC1185 are high accuracy  
(typically ±0.5%) CMOS upgrades for older (bipolar)  
low dropout regulators such as the LP2980. Designed  
specifically for battery-operated systems, the devices’  
CMOS construction eliminates wasted ground current,  
significantly extending battery life. Total supply current  
is typically 50µA at full load (20 to 60 times lower than  
in bipolar regulators).  
1
5
V
V
V
V
OUT  
IN  
IN  
OUT  
+
TC1014  
TC1015  
TC1185  
1µF  
2
3
GND  
The devices’ key features include ultra low noise oper-  
ation (plus optional Bypass input), fast response to step  
changes in load, and very low dropout voltage –  
typically 85mV (TC1014); 180mV (TC1015); and  
270mV (TC1185) at full load. Supply current is reduced  
4
SHDN  
Bypass  
470pF  
Reference  
Bypass Cap  
(Optional)  
to 0.5µA (max) and V  
falls to zero when the  
OUT  
shutdown input is low. The devices incorporate both  
over-temperature and over-current protection.  
Shutdown Control  
(from Power Control Logic)  
The TC1014/TC1015/TC1185 are stable with an output  
capacitor of only 1µF and have a maximum output  
current of 50mA, 100mA and 150mA, respectively. For  
higher output current regulators, please see the  
TC1107/TC1108/TC1173 (I  
= 300mA) data sheets.  
OUT  
DS21335B-page 2  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device  
at these or any other conditions above those indicated in the  
operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Input Voltage......................................................... 6.5V  
Output Voltage...........................(-0.3V) to (V + 0.3V)  
IN  
Power Dissipation............... Internally Limited (Note 7)  
Maximum Voltage on Any Pin .........V +0.3V to -0.3V  
IN  
Operating Temperature Range......-40°C < T < 125°C  
J
Storage Temperature......................... -65°C to +150°C  
TC1014/TC1015/TC1185 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: VIN = VR + 1V, IL = 100µA, CL = 3.3µF, SHDN > VIH, TA = 25°C, unless otherwise noted. Boldface type  
specifications apply for junction temperatures of -40°C to +125°C.  
Symbol  
Parameter  
Min  
2.7  
Typ  
Max  
6.0  
Units  
Device  
Test Conditions  
Note 1  
V
Input Operating Voltage  
Maximum Output Current  
V
IN  
I
50  
100  
150  
mA  
TC1014  
TC1015  
TC1185  
OUTMAX  
V
Output Voltage  
V
– 2.5%  
V
±0.5%  
V + 2.5%  
R
V
Note 2  
Note 3  
OUT  
R
R
TCV  
V
Temperature Coefficient  
20  
40  
ppm/°C  
OUT  
OUT  
V  
/V  
Line Regulation  
Load Regulation  
0.05  
0.35  
%
%
(V + 1V) V 6V  
OUT  
IN  
R
IN  
V  
/V  
0.5  
0.5  
2
3
TC1014; TC1015  
TC1185  
I
I
= 0.1mA to I  
= 0.1mA to I  
OUT OUT  
L
L
OUTMAX  
OUTMAX  
(Note 4)  
V
-V  
Dropout Voltage  
2
65  
85  
180  
270  
120  
250  
400  
mV  
I
I
I
I
I
= 100µA  
IN OUT  
L
L
L
L
L
= 20mA  
= 50mA  
= 100mA  
TC1015; TC1185  
TC1185  
= 150mA (Note 5)  
I
I
Supply Current (Note 8)  
Shutdown Supply Current  
50  
0.05  
64  
80  
0.5  
µA  
µA  
dB  
SHDN = V , I = 0  
IH L  
IN  
INSD  
SHDN = 0V  
1kHz  
PSRR  
Power Supply Rejection  
Ratio  
F
RE  
I
Output Short Circuit Current  
Thermal Regulation  
300  
0.04  
160  
450  
mA  
V/W  
°C  
V
= 0V  
OUTSC  
OUT  
V  
/P  
Notes 6, 7  
OUT  
D
T
Thermal Shutdown Die  
Temperature  
SD  
T  
Thermal Shutdown  
Hysteresis  
10  
°C  
SD  
eN  
Output Noise  
600  
nV/Hz  
I = IOUTMAX, F = 10kHz  
L
470pF from Bypass  
to GND  
Note 1: The minimum VIN has to meet two conditions: VIN 2.7V and VIN VR + VDROPOUT  
.
2:  
3:  
VR is the regulator output voltage setting. For example: VR = 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
TC VOUT = (VOUTMAX – VOUTMIN)x 106  
VOUT x T  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 1.0mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V  
differential.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or  
line regulation effects. Specifications are for a current pulse equal to ILMAX at VIN = 6V for T = 10 msec.  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the  
thermal resistance from junction-to-air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power dissipation causes the device to initiate  
thermal shutdown. Please see Section 4.0 Thermal Considerations for more details.  
8: Apply for Junction Temperatures of -40°C to +85°C.  
2002 Microchip Technology Inc.  
DS21335B-page 3  
TC1014/TC1015/TC1185  
TC1014/TC1015/TC1185 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: VIN = VR + 1V, IL = 100µA, CL = 3.3µF, SHDN > VIH, TA = 25°C, unless otherwise noted. Boldface type  
specifications apply for junction temperatures of -40°C to +125°C.  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Test Conditions  
SHDN Input  
V
SHDN Input High Threshold  
SHDN Input Low Threshold  
45  
%V  
IN  
V
V
= 2.5V to 6.5V  
= 2.5V to 6.5V  
IH  
IN  
V
15  
%V  
IN  
IL  
IN  
Note 1: The minimum VIN has to meet two conditions: VIN 2.7V and VIN VR + VDROPOUT  
.
2:  
3:  
VR is the regulator output voltage setting. For example: VR = 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
TC VOUT = (VOUTMAX – VOUTMIN)x 106  
VOUT x T  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 1.0mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V  
differential.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or  
line regulation effects. Specifications are for a current pulse equal to ILMAX at VIN = 6V for T = 10 msec.  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the  
thermal resistance from junction-to-air (i.e., TA, TJ, θJA). Exceeding the maximum allowable power dissipation causes the device to initiate  
thermal shutdown. Please see Section 4.0 Thermal Considerations for more details.  
8: Apply for Junction Temperatures of -40°C to +85°C.  
DS21335B-page 4  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin No.  
(5-Pin SOT-23A)  
Symbol  
Description  
1
2
3
VIN  
Unregulated supply input.  
Ground terminal.  
GND  
SHDN  
Shutdown control input. The regulator is fully enabled when a logic high is applied to this input.  
The regulator enters shutdown when a logic low is applied to this input. During shutdown,  
output voltage falls to zero, ERROR is open circuited and supply current is reduced to 0.5µA  
(max).  
4
5
Bypass  
VOUT  
Reference bypass input. Connecting a 470pF to this input further reduces output noise.  
Regulated voltage output.  
2002 Microchip Technology Inc.  
DS21335B-page 5  
TC1014/TC1015/TC1185  
3.1  
Bypass Input  
3.0  
DETAILED DESCRIPTION  
A 470pF capacitor connected from the Bypass input to  
ground reduces noise present on the internal  
reference, which in turn significantly reduces output  
noise. If output noise is not a concern, this input may be  
left unconnected. Larger capacitor values may be  
used, but results in a longer time period to rated output  
voltage when power is initially applied.  
The TC1014/TC1015/TC1185 are precision fixed  
output voltage regulators. (If an adjustable version is  
desired, please see the TC1070/TC1071/TC1187 data  
sheet.) Unlike bipolar regulators, the TC1014/TC1015/  
TC1185 supply current does not increase with load  
current. In addition, V  
remains stable and within  
OUT  
regulation over the entire 0mA to I  
operating  
OUTMAX  
load current ranges (an important consideration in RTC  
and CMOS RAM battery back-up applications).  
3.2  
Output Capacitor  
Figure 3-1 shows a typical application circuit. The  
regulator is enabled any time the shutdown input  
A 1µF (min) capacitor from V  
to ground is required.  
The output capacitor should have an effective series  
OUT  
(SHDN) is at or above V , and shutdown (disabled)  
resistance greater than 0.1and less than 5. A 1µF  
IH  
when SHDN is at or below V . SHDN may be  
capacitor should be connected from V to GND if there  
IL  
IN  
controlled by a CMOS logic gate, or I/O port of a  
microcontroller. If the SHDN input is not required, it  
should be connected directly to the input supply. While  
in shutdown, supply current decreases to 0.05µA  
is more than 10 inches of wire between the regulator  
and the AC filter capacitor, or if a battery is used as the  
power source. Aluminum electrolytic or tantalum  
capacitor types can be used. (Since many aluminum  
electrolytic capacitors freeze at approximately -30°C,  
solid tantalums are recommended for applications  
operating below -25°C.) When operating from sources  
other than batteries, supply-noise rejection and  
transient response can be improved by increasing the  
value of the input and output capacitors and employing  
passive filtering techniques.  
(typical), V  
falls to zero volts.  
OUT  
FIGURE 3-1:  
TYPICAL APPLICATION  
CIRCUIT  
V
V
V
OUT  
IN  
OUT  
+
1µF  
+
TC1014  
TC1015  
TC1185  
+
1µF  
Battery  
GND  
SHDN  
Bypass  
470pF  
Reference  
Bypass Cap  
(Optional)  
Shutdown Control  
(to CMOS Logic or Tie  
to V if unused)  
IN  
DS21335B-page 6  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
Equation 4-1 can be used in conjunction with Equation  
4-2 to ensure regulator thermal operation is within  
limits. For example:  
4.0  
4.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
Given:  
Integrated thermal protection circuitry shuts the  
regulator off when die temperature exceeds 160°C.  
The regulator remains off until the die temperature  
drops to approximately 150°C.  
V
= 3.0V +10%  
= 2.7V – 2.5%  
INMAX  
V
OUTMIN  
ILOADMAX = 40mA  
T
JMAX  
= 125°C  
= 55°C  
4.2  
Power Dissipation  
T
AMAX  
The amount of power the regulator dissipates is  
primarily a function of input and output voltage, and  
output current. The following equation is used to  
calculate worst case actual power dissipation:  
Find: 1. Actual power dissipation  
2. Maximum allowable dissipation  
Actual power dissipation:  
P
(VINMAX – VOUTMIN)I  
LOADMAX  
D
EQUATION 4-1:  
–3  
= [(3.0 x 1.1) – (2.7 x .975)]40 x 10  
= 26.7mW  
P
(VINMAX – VOUTMIN)I  
LOADMAX  
D
Where:  
Maximum allowable power dissipation:  
MAX = (T MAX – T  
P
= Worst case actual power dissipation  
D
P
)
AMAX  
D
J
= Maximum voltage on V  
V
IN  
INMAX  
θ
JA  
V
= Minimum regulator output voltage  
= Maximum output (load) current  
OUTMIN  
= (125 – 55)  
220  
I
LOADMAX  
The maximum allowable power dissipation (Equation  
4-2) is a function of the maximum ambient temperature  
= 318mW  
In this example, the TC1014 dissipates a maximum of  
26.7mW; below the allowable limit of 318mW. In a  
similar manner, Equation 4-1 and Equation 4-2 can be  
used to calculate maximum current and/or input  
voltage limits.  
(T MAX), the maximum allowable die temperature  
A
(TJMAX) and the thermal resistance from junction-to-air  
(θ ). The 5-Pin SOT-23A package has a θ  
of  
JA  
JA  
approximately 220°C/Watt.  
EQUATION 4-2:  
4.3  
Layout Considerations  
P
DMAX = (TJMAX – T  
)
AMAX  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads, and wide power  
θ
JA  
Where all terms are previously defined.  
supply bus lines combine to lower θ and therefore  
JA  
increase the maximum allowable power dissipation  
limit.  
2002 Microchip Technology Inc.  
DS21335B-page 7  
TC1014/TC1015/TC1185  
5.0  
TYPICAL CHARACTERISTICS  
(Unless Otherwise Specified, All Parts Are Measured At Temperature = 25°C)  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Dropout Voltage vs. Temperature  
Dropout Voltage vs. Temperature  
0.100  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
0.020  
0.018  
0.016  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0.000  
V
I
= 3.3V  
= 10mA  
V
I
= 3.3V  
= 50mA  
OUT  
LOAD  
OUT  
LOAD  
C
C
= 1µF  
IN  
C
C
= 1µF  
= 1µF  
IN  
OUT  
= 1µF  
OUT  
-40  
-20  
0
20  
50  
C)  
70  
125  
-40  
-20  
0
20  
50  
C)  
70  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
Dropout Voltage vs. Temperature  
Dropout Voltage vs. Temperature  
0.200  
0.180  
0.160  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
0.300  
0.250  
0.200  
0.150  
0.100  
0.050  
0.000  
V
I
= 3.3V  
= 100mA  
OUT  
LOAD  
V
I
= 3.3V  
= 150mA  
OUT  
LOAD  
C
C
= 1µF  
IN  
C
C
= 1µF  
IN  
OUT  
= 1µF  
OUT  
= 1µF  
-40  
-20  
0
20  
50  
C)  
70  
125  
-40  
-20  
0
20  
50  
C)  
70  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
Ground Current vs. V  
Ground Current vs. V  
IN  
V
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
= 3.3V  
= 100mA  
V
I
= 3.3V  
= 10mA  
OUT  
OUT  
LOAD  
I
LOAD  
C
C
= 1µF  
= 1µF  
IN  
C
C
= 1µF  
= 1µF  
IN  
OUT  
OUT  
2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5  
0 0.5 1 1.5  
2
1
1.5  
2
2.5  
3
5
5.5 6 6.5 7 7.5  
0
0.5  
3.5 4 4.5  
V
(V)  
IN  
V
(V)  
IN  
DS21335B-page 8  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
(Unless Otherwise Specified, All Parts Are Measured At Temperature = 25°C)  
V
vs. V  
IN  
Ground Current vs. V  
OUT  
IN  
3.5  
3
80  
70  
60  
50  
40  
30  
20  
10  
0
V
I
= 3.3V  
= 0  
OUT  
LOAD  
V
= 3.3V  
= 150mA  
OUT  
I
LOAD  
2.5  
2
1.5  
1
C
C
= 1µF  
= 1µF  
IN  
OUT  
0.5  
0
C
C
= 1µF  
= 1µF  
IN  
OUT  
0 0.5 1 1.5  
2
2.5  
3
3.5 4 4.5 5 5.5 6 6.5 7 7.5  
3.5  
5
5.5  
6.5 7  
0
0.5 1 1.5  
2
2.5  
3
4
4.5  
6
V
(V)  
IN  
V
(V)  
IN  
V
vs. V  
IN  
OUT  
Output Voltage vs. Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
V
= 3.3V  
OUT  
I
= 100mA  
V
I
= 3.3V  
= 10mA  
OUT  
LOAD  
LOAD  
C
C
= 1µF  
IN  
C
C
= 1µF  
= 1µF  
IN  
OUT  
= 1µF  
OUT  
V
= 4.3V  
IN  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
V
(V)  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
IN  
TEMPERATURE (  
°
Output Voltage vs. Temperature  
3.290  
3.288  
3.286  
3.284  
3.282  
3.280  
3.278  
3.276  
3.274  
V
I
= 3.3V  
= 150mA  
OUT  
LOAD  
C
C
= 1µF  
IN  
= 1µF  
OUT  
V
= 4.3V  
IN  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
TEMPERATURE (  
°
2002 Microchip Technology Inc.  
DS21335B-page 9  
TC1014/TC1015/TC1185  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
(Unless Otherwise Specified, All Parts Are Measured At Temperature = 25°C)  
Output Voltage vs. Temperature  
Output Voltage vs. Temperature  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
4.994  
4.992  
4.990  
4.988  
4.986  
4.984  
4.982  
4.980  
4.978  
4.976  
4.974  
V
= 5V  
= 150mA  
OUT  
V
= 5V  
= 10mA  
OUT  
I
LOAD  
I
LOAD  
C
C
V
= 1µF  
= 1µF  
= 6V  
IN  
OUT  
C
C
V
= 1µF  
= 1µF  
= 6V  
IN  
OUT  
IN  
IN  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
Temperature vs. Quiescent Current  
Temperature vs. Quiescent Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
I
= 5V  
OUT  
V
I
= 5V  
OUT  
= 150mA  
LOAD  
= 10mA  
LOAD  
C
C
V
= 1µF  
IN  
= 1µF  
OUT  
C
C
V
= 1µF  
= 6V  
IN  
IN  
= 1µF  
OUT  
IN  
= 6V  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
TEMPERATURE (  
°
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
TEMPERATURE (  
°
Output Noise vs. Frequency  
Stability Region vs. Load Current  
Power Supply Rejection Ratio  
1000  
-30  
-35  
10.0  
1.0  
C
= 1µF  
OUT  
to 10  
I
= 10mA  
= 4V  
R
C
C
C
= 50Ω  
OUT  
LOAD  
= 1  
IN  
µ
F
V
V
V
µ
F
IN  
DC  
IN  
OUT  
= 100mV  
= 3V  
= 1  
µ
F
-40  
-45  
p-p  
AC  
100  
10  
1
= 0  
OUT  
BYP  
C
C
= 0  
IN  
OUT  
= 1µF  
-50  
-55  
Stable Region  
-60  
-65  
-70  
-75  
-80  
0.1  
0.0  
0.1  
0.01  
0.01K 0.1K  
10  
1K  
10K 100K 1000K  
0
20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0.1K  
1K  
10K  
1000K  
100K  
0.01K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DS21335B-page 10  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
Measure Rise Time of 3.3V LDO Without Bypass Capacitor  
Conditions: C = 1µF, C = 1µF, C = 0pF, I = 100mA  
Measure Rise Time of 3.3V LDO With Bypass Capacitor  
Conditions: C = 1µF, C = 1µF, C = 470pF, I = 100mA  
IN OUT  
BYP  
LOAD  
IN OUT BYP LOAD  
V
= 4.3V, Temp = 25°C, Rise Time = 184µS  
V
= 4.3V, Temp = 25°C, Rise Time = 448µS  
IN  
IN  
V
V
SHD
SHDN  
V
V
OUT  
OU
Measure Fall Time of 3.3V LDO Without Bypass Capacitor  
Conditions: C = 1µF, C = 1µF, C = 0pF, I = 100mA  
Measure Fall Time of 3.3V LDO With Bypass Capacitor  
Conditions: C = 1µF, C = 1µF, C = 470pF, I = 50mA  
IN OUT BYP LOAD  
IN OUT  
BYP  
LOAD  
V
= 4.3V, Temp = 25°C, Fall Time = 52µS  
V
= 4.3V, Temp = 25°C, Fall Time = 100µS  
IN  
IN  
V
SHDN  
V
SHDN  
V
OUT  
V
OUT  
2002 Microchip Technology Inc.  
DS21335B-page 11  
TC1014/TC1015/TC1185  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
Measure Rise Time of 5.0V LDO With Bypass Capacitor  
Conditions: C = 1µF, C = 1µF, C = 470pF, I = 100mA  
Measure Rise Time of 5.0V LDO Without Bypass Capacitor  
Conditions: C = 1µF, C = 1µF, C = 0pF, I = 100mA  
IN OUT  
BYP  
LOAD  
IN OUT LOAD  
BYP  
V
= 6V, Temp = 25°C, Rise Time = 390µS  
V
= 6V, Temp = 25°C, Rise Time = 192µS  
IN  
IN  
V
V
SHDN  
SHDN  
V
V
OUT  
OUT  
Measure Fall Time of 5.0V LDO With Bypass Capacitor  
Conditions: C = 1µF, C = 1µF, C = 470pF, I = 50mA  
Measure Fall Time of 5.0V LDO Without Bypass Capacitor  
Conditions: C = 1µF, C = 1µF, C = 0pF, I = 100mA  
IN OUT  
BYP  
LOAD  
IN OUT BYP LOAD  
V
= 6V, Temp = 25°C, Fall Time = 167µS  
V
= 6V, Temp = 25°C, Fall Time = 88µS  
IN  
IN  
V
V
SHDN  
SHDN  
V
V
OUT  
OUT  
DS21335B-page 12  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
Load Regulation of 3.3V LDO  
Load Regulation of 3.3V LDO  
Conditions: C = 1µF, C  
= 2.2µF, C = 470pF,  
BYP  
Conditions: C = 1µF, C  
= 2.2µF, C = 470pF,  
BYP  
IN  
OUT  
+ 0.25V, Temp = 25°C  
OUT  
IN  
OUT  
+ 0.25V, Temp = 25°C  
OUT  
V
= V  
V
= V  
IN  
IN  
I
= 50mA switched in at 10kHz, V is AC coupled  
OUT  
I
= 100mA switched in at 10kHz, V is AC coupled  
OUT  
LOAD  
LOAD  
I
I
LOAD  
LOAD  
V
V
OUT  
OUT  
Load Regulation of 3.3V LDO  
Conditions: C = 1µF, C = 2.2µF, C  
Line Regulation of 3.3V LDO  
Conditions: V = 4V, + 1V Squarewave @2.5kHz  
= 470pF,  
IN OUT BYP  
IN  
V
= V + 0.25V, Temp = 25°C  
IN  
OUT  
I
= 150mA switched in at 10kHz, V is AC coupled  
OUT  
LOAD  
V
I
IN  
LOAD  
V
OUT  
V
OUT  
C
I
= 0µF, C  
LOAD  
= 1µF, C  
IN  
= 470pF,  
IN  
OUT  
BYP  
are AC coupled  
OUT  
= 100mA, V & V  
2002 Microchip Technology Inc.  
DS21335B-page 13  
TC1014/TC1015/TC1185  
5.0  
TYPICAL CHARACTERISTICS (CONTINUED)  
Line Regulation of 5.0V LDO  
Thermal Shutdown Response of 5.0V LDO  
Conditions: V = 6V, C = 0µF, C = 1µF  
Conditions: V = 6V, + 1V Squarewave @2.5kHz  
IN  
IN IN  
OUT  
V
IN  
V
V
OUT  
OUT  
ILOAD was increased until temperature of die reached about 160  
which time integrated thermal protection circuitry shuts the regulator  
off when die temperature exceeds approximately 160 C. The regulator  
remains off until die temperature drops to approximately 150 C.  
°C, at  
°
°
DS21335B-page 14  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
“1” & “2” = part number code + temperature range and  
voltage  
TC1014  
Code  
TC1015  
Code  
TC1185  
Code  
(V)  
1.8  
2.5  
2.6  
2.7  
2.8  
2.85  
3.0  
3.3  
3.6  
4.0  
5.0  
AY  
A1  
NB  
A2  
AZ  
A8  
A3  
A5  
A9  
A0  
A7  
BY  
B1  
BT  
B2  
BZ  
B8  
B3  
B5  
B9  
B0  
B7  
NY  
N1  
NT  
N2  
NZ  
N8  
N3  
N5  
N9  
N0  
N7  
“3” represents date code  
“4” represents lot ID number  
6.2  
Taping Form  
Component Taping Orientation for 5-Pin SOT-23A (EIAJ SC-74A) Devices  
User Direction of Feed  
Device  
Marking  
W
PIN 1  
P
Standard Reel Component Orientation  
TR Suffix Device  
(Mark Right Side Up)  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
5-Pin SOT-23A  
8 mm  
4 mm  
3000  
7 in  
2002 Microchip Technology Inc.  
DS21335B-page 15  
TC1014/TC1015/TC1185  
6.3  
Package Dimensions  
SOT-23A-5  
.075 (1.90)  
REF.  
.071 (1.80)  
.059 (1.50)  
.122 (3.10)  
.098 (2.50)  
.020 (0.50)  
.012 (0.30)  
PIN 1  
.037 (0.95)  
REF.  
.122 (3.10)  
.106 (2.70)  
.057 (1.45)  
.035 (0.90)  
.010 (0.25)  
.004 (0.09)  
10° MAX.  
.006 (0.15)  
.000 (0.00)  
.024 (0.60)  
.004 (0.10)  
Dimensions: inches (mm)  
DS21335B-page 16  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21335B-page17  
TC1014/TC1015/TC1185  
NOTES:  
DS21335B-page18  
2002 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21335B-page 19  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
China - Hong Kong SAR  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
05/01/02  
DS21335B-page 20  
2002 Microchip Technology Inc.  

相关型号:

TC1185-2.85VCT713

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and Reference Bypass
MICROCHIP

TC1185-2.85VCTRT

2.85 V FIXED POSITIVE LDO REGULATOR, 0.4 V DROPOUT, PDSO5, EIAJ, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC1185-2.85VCTTR

2.85 V FIXED POSITIVE LDO REGULATOR, 0.4 V DROPOUT, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC1185-2.8VCT713

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and Reference Bypass
MICROCHIP

TC1185-2.95VCT713

150MA LDO WITH SHUTDOWN &amp; V REF BYPASS, -40C to +125C, 5-SOT-23, T/R
MICROCHIP

TC1185-3.0VCT

暂无描述
MICROCHIP

TC1185-3.0VCT713

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and Reference Bypass
MICROCHIP

TC1185-3.0VCTRT

3 V FIXED POSITIVE LDO REGULATOR, 0.4 V DROPOUT, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC1185-3.3VCT

暂无描述
MICROCHIP

TC1185-3.3VCT713

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and Reference Bypass
MICROCHIP

TC1185-3.3VCT813

3.3 V FIXED POSITIVE LDO REGULATOR, 0.4 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC1185-3.3VCTTR

3.3 V FIXED POSITIVE LDO REGULATOR, 0.4 V DROPOUT, PDSO5, SOT-23A, 5 PIN
MICROCHIP