TC1185-5.0VCT713-VAO [MICROCHIP]

Fixed Positive LDO Regulator, 5V, 0.4V Dropout, CMOS, PDSO5;
TC1185-5.0VCT713-VAO
型号: TC1185-5.0VCT713-VAO
厂家: MICROCHIP    MICROCHIP
描述:

Fixed Positive LDO Regulator, 5V, 0.4V Dropout, CMOS, PDSO5

光电二极管 输出元件 调节器
文件: 总22页 (文件大小:690K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1014/TC1015/TC1185  
50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown  
and Reference Bypass  
• Low Supply Current (50 µA, typical)  
• Low Dropout Voltage  
The TC1014/TC1015/TC1185 are high accuracy  
(typically ±0.5%) CMOS upgrades for older (bipolar)  
Low Dropout Regulators (LDOs) such as the LP2980.  
Designed specifically for battery-operated systems, the  
devices’ CMOS construction eliminates wasted ground  
current, significantly extending battery life. Total supply  
current is typically 50 µA at full load (20 to 60 times  
lower than in bipolar regulators).  
• Choice of 50 mA (TC1014), 100 mA (TC1015)  
and 150 mA (TC1185) Output  
• High Output Voltage Accuracy  
• Standard or Custom Output Voltages  
• Power-Saving Shutdown Mode  
• Reference Bypass Input for Ultra Low-Noise  
Operation  
The devices’ key features include ultra low-noise  
operation (plus optional Bypass input), fast response to  
step changes in load, and very low dropout voltage,  
typically 85 mV (TC1014), 180 mV (TC1015), and  
270 mV (TC1185) at full-load. Supply current is  
reduced to 0.5 µA (max) and VOUT falls to zero when  
the shutdown input is low. The devices incorporate both  
overtemperature and overcurrent protection.  
• Overcurrent and Overtemperature Protection  
• Space-Saving 5-Pin SOT-23 Package  
• Pin-Compatible Upgrades for Bipolar Regulators  
• Standard Output Voltage Options:  
- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V,  
3.3V, 3.6V, 4.0V, 5.0V  
The TC1014/TC1015/TC1185 are stable with an output  
capacitor of only 1 µF and have a maximum output  
current of 50 mA, 100 mA and 150 mA, respectively.  
For higher output current regulators, please see the  
TC1107 (DS21356), TC1108 (DS21357), TC1173  
(DS21362) (IOUT = 300 mA) data sheets.  
Applications:  
• Battery-Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
Package Type  
• Cellular/GSM/PHS Phones  
• Linear Post-Regulator for SMPS  
• Pagers  
5-Pin SOT-23  
VOUT  
5
Bypass  
4
Typical Application  
1
5
VIN  
VIN  
VOUT  
VOUT  
TC1014  
TC1015  
TC1185  
+
TC1014  
TC1015  
TC1185  
1 µF  
2
3
GND  
1
2
3
VIN  
GND SHDN  
4
SHDN  
Bypass  
470 pF  
Reference  
Bypass Cap  
(Optional)  
Shutdown Control  
(from Power Control Logic)  
© 2007 Microchip Technology Inc.  
DS21335E-page 1  
TC1014/TC1015/TC1185  
Notice: Stresses above those listed under "Absolute  
Maximum Ratings" may cause permanent damage to  
the device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
Input Voltage .........................................................6.5V  
Output Voltage........................... (-0.3V) to (VIN + 0.3V)  
Power Dissipation................Internally Limited (Note 7)  
Maximum Voltage on Any Pin ........VIN +0.3V to -0.3V  
Operating Temperature Range...... -40°C < TJ < 125°C  
Storage Temperature..........................-65°C to +150°C  
TC1014/TC1015/TC1185 ELECTRICAL SPECIFICATIONS  
Electrical Specifications: VIN = VR + 1V, IL = 100 µA, CL = 1.0 µF, SHDN > VIH, TA = +25°C, unless otherwise noted.  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Parameter  
Symbol  
Min  
2.7  
Typ  
Max  
6.0  
Units  
Device  
Test Conditions  
Note 1  
Input Operating Voltage  
Maximum Output Current  
V
VIN  
50  
100  
150  
mA  
TC1014  
TC1015  
TC1185  
IOUTMAX  
Output Voltage  
V
– 2.5%  
V
±0.5%  
V + 2.5%  
R
V
Note 2  
Note 3  
VOUT  
R
R
V
Temperature Coefficient  
20  
40  
ppm/°C  
TCVOUT  
OUT  
Line Regulation  
Load Regulation  
0.05  
0c.35  
%
%
(V + 1V) V 6V  
ΔVOUT  
ΔVIN  
/
/
R
IN  
0.5  
0.5  
2
3
TC1014; TC1015 I = 0.1 mA to I  
L
ΔVOUT  
VOUT  
OUTMAX  
OUTMAX  
TC1185  
I = 0.1 mA to I  
L
(Note 4)  
Dropout Voltage  
2
65  
85  
180  
270  
120  
250  
400  
mV  
I = 100 µA  
VIN-VOUT  
L
I = 20 mA  
L
I = 50 mA  
L
TC1015; TC1185 I = 100 mA  
L
TC1185  
I = 150 mA (Note 5)  
L
Supply Current (Note 8)  
50  
0.05  
64  
80  
0.5  
µA  
µA  
dB  
SHDN = V , I = 0  
IIN  
IH  
L
Shutdown Supply Current  
SHDN = 0V  
IINSD  
PSRR  
Power Supply Rejection  
Ratio  
F
1 kHz  
RE  
Output Short Circuit Current  
Thermal Regulation  
300  
450  
mA  
V
= 0V  
IOUTSC  
OUT  
0.04  
V/W  
Notes 6, 7  
ΔVOUT  
ΔPD  
/
Thermal Shutdown Die  
Temperature  
160  
10  
°C  
°C  
.
TSD  
Thermal Shutdown  
Hysteresis  
ΔTSD  
Note 1:  
The minimum V has to meet two conditions: V 2.7V and V V + V  
IN  
IN  
IN  
R
DROPOUT  
2:  
3:  
V
is the regulator output voltage setting. For example: V = 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
R
R
6
TC V  
= (VOUTMAX – VOUTMIN)x 10  
OUT  
V
x ΔT  
OUT  
4:  
Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
5:  
6:  
7:  
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V  
differential.  
Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load  
or line regulation effects. Specifications are for a current pulse equal to ILMAX at V = 6V for T = 10 ms.  
IN  
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the  
thermal resistance from junction-to-air (i.e., T , T , θ ). Exceeding the maximum allowable power dissipation causes the device to  
A
J
JA  
initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.  
8:  
Apply for Junction Temperatures of -40°C to +85°C.  
DS21335E-page 2  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
TC1014/TC1015/TC1185 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Specifications: VIN = VR + 1V, IL = 100 µA, CL = 1.0 µF, SHDN > VIH, TA = +25°C, unless otherwise noted.  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Parameter  
Output Noise  
Symbol  
Min  
Typ  
Max  
Units  
Device  
Test Conditions  
I = I  
eN  
600  
nV/Hz  
,
OUTMAX  
L
F = 10 kHz  
470 pF from Bypass  
to GND  
SHDN Input High Threshold  
SHDN Input Low Threshold  
45  
%V  
V
= 2.5V to 6.5V  
= 2.5V to 6.5V  
VIH  
VIL  
IN  
IN  
IN  
15  
%V  
V
IN  
Note 1:  
The minimum V has to meet two conditions: V 2.7V and V V + V  
DROPOUT  
.
IN  
IN  
IN  
R
2:  
3:  
V
is the regulator output voltage setting. For example: V = 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V, 3.6V, 4.0V, 5.0V.  
R
R
6
TC V  
= (VOUTMAX – VOUTMIN)x 10  
OUT  
V
x ΔT  
OUT  
4:  
Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range  
from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal  
regulation specification.  
5:  
6:  
7:  
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V  
differential.  
Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load  
or line regulation effects. Specifications are for a current pulse equal to ILMAX at V = 6V for T = 10 ms.  
IN  
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the  
thermal resistance from junction-to-air (i.e., T , T , θ ). Exceeding the maximum allowable power dissipation causes the device to  
A
J
JA  
initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.  
8:  
Apply for Junction Temperatures of -40°C to +85°C.  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: VIN = VR + 1V, IL = 100 µA, CL = 1.0 µF, SHDN > VIH, TA = +25°C, unless otherwise noted.  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Parameters  
Temperature Ranges:  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances:  
Thermal Resistance, 5L-SOT-23  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
256  
°C/W  
© 2007 Microchip Technology Inc.  
DS21335E-page 3  
TC1014/TC1015/TC1185  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Dropout Voltage vs. Temperature  
Dropout Voltage vs. Temperature  
0.100  
0.090  
0.080  
0.070  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
0.020  
0.018  
0.016  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0.000  
V
I
= 3.3V  
= 10mA  
V
I
= 3.3V  
= 50mA  
OUT  
LOAD  
OUT  
LOAD  
C
C
= 1µF  
IN  
C
= 1µF  
IN  
= 1µF  
OUT  
C
= 1µF  
OUT  
-40  
-20  
0
20  
50  
C)  
70  
125  
-40  
-20  
0
20  
50  
C)  
70  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
FIGURE 2-1:  
Dropout Voltage vs.  
FIGURE 2-4:  
Dropout Voltage vs.  
Temperature.  
Temperature.  
Dropout Voltage vs. Temperature  
Dropout Voltage vs. Temperature  
0.200  
0.300  
V
V
I
= 3.3V  
= 100mA  
OUT  
LOAD  
= 3.3V  
= 150mA  
0.180  
0.160  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
OUT  
LOAD  
I
0.250  
0.200  
0.150  
0.100  
0.050  
0.000  
C
C
= 1µF  
IN  
C
C
= 1µF  
IN  
OUT  
= 1µF  
OUT  
= 1µF  
-40  
-20  
0
20  
50  
C)  
70  
125  
-40  
-20  
0
20  
50  
C)  
70  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
FIGURE 2-2:  
Dropout Voltage vs.  
FIGURE 2-5:  
Dropout Voltage vs.  
Temperature.  
Temperature.  
Ground Current vs. V  
Ground Current vs. V  
IN  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
I
= 3.3V  
= 100mA  
OUT  
V
I
= 3.3V  
= 10mA  
OUT  
LOAD  
LOAD  
C
C
= 1µF  
IN  
C
C
= 1µF  
= 1µF  
= 1µF  
IN  
OUT  
OUT  
1.5  
2.5  
3.5  
4
4.5  
5.5 6 6.5 7 7.5  
0 0.5  
1
2
3
5
1
1.5  
2
2.5  
3
5
5.5 6 6.5 7 7.5  
0
0.5  
3.5 4 4.5  
V
(V)  
IN  
V
(V)  
IN  
FIGURE 2-3:  
Ground Current vs. Input  
FIGURE 2-6:  
Voltage (V ).  
Ground Current vs. Input  
Voltage (V ).  
IN  
IN  
DS21335E-page 4  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Ground Current vs. V  
IN  
V
vs. V  
IN  
OUT  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3
V
I
= 3.3V  
= 0  
V
= 3.3V  
= 150mA  
OUT  
LOAD  
OUT  
I
LOAD  
2.5  
2
1.5  
1
C
C
= 1µF  
= 1µF  
IN  
OUT  
0.5  
0
C
C
= 1µF  
= 1µF  
IN  
OUT  
0.5  
1.5  
3.5  
4
5
5.5  
6
6.5 7  
0
1
2
2.5  
3
4.5  
1.5  
2
2.5  
3
0 0.5  
1
3.5 4 4.5 5 5.5 6 6.5 7 7.5  
V (V)  
IN  
V
(V)  
IN  
FIGURE 2-7:  
Ground Current vs. Input  
FIGURE 2-10:  
Input Voltage (V ).  
Output Voltage (V  
) vs.  
OUT  
Voltage (V ).  
IN  
IN  
Output Voltage vs. Temperature  
V
vs. V  
IN  
OUT  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.5  
V
V
I
= 3.3V  
= 10mA  
= 3.3V  
OUT  
LOAD  
OUT  
I
= 100mA  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
LOAD  
C
C
= 1µF  
IN  
= 1µF  
OUT  
C
C
= 1µF  
= 1µF  
IN  
OUT  
V
= 4.3V  
IN  
0
0.5  
1
1.5  
2
2.5  
3
V
3.5  
4
4.5  
5
5.5  
6
6.5 7  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
(V)  
IN  
TEMPERATURE (  
°
FIGURE 2-8:  
Input Voltage (V ).  
Output Voltage (V  
) vs.  
FIGURE 2-11:  
Temperature.  
Output Voltage (V  
) vs.  
OUT  
OUT  
IN  
Output Voltage vs. Temperature  
3.290  
3.288  
3.286  
3.284  
3.282  
3.280  
3.278  
3.276  
3.274  
V
I
= 3.3V  
= 150mA  
OUT  
LOAD  
C
C
= 1µF  
IN  
= 1µF  
OUT  
V
= 4.3V  
IN  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
TEMPERATURE (  
°
FIGURE 2-9:  
Output Voltage (V  
) vs.  
OUT  
Temperature.  
© 2007 Microchip Technology Inc.  
DS21335E-page 5  
TC1014/TC1015/TC1185  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Output Voltage vs. Temperature  
Output Voltage vs. Temperature  
4.994  
4.992  
4.990  
4.988  
4.986  
4.984  
4.982  
4.980  
4.978  
4.976  
4.974  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
V
= 5V  
= 150mA  
OUT  
V
= 5V  
= 10mA  
OUT  
I
LOAD  
I
LOAD  
C
C
V
= 1µF  
= 1µF  
= 6V  
C
C
V
= 1µF  
= 1µF  
= 6V  
IN  
OUT  
IN  
OUT  
IN  
IN  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
FIGURE 2-12:  
Output Voltage (V  
) vs.  
FIGURE 2-14:  
Output Voltage (V  
) vs.  
OUT  
OUT  
Temperature.  
Temperature.  
Temperature vs. Quiescent Current  
Temperature vs. Quiescent Current  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
I
= 5V  
OUT  
V
I
= 5V  
OUT  
= 10mA  
LOAD  
= 150mA  
LOAD  
C
C
V
= 1μF  
IN  
C
C
V
= 1µF  
IN  
= 1μF  
OUT  
= 1µF  
OUT  
IN  
= 6V  
IN  
= 6V  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
-40  
-20  
-10  
0
20  
40  
C)  
85  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
FIGURE 2-13:  
I
vs. Temperature.  
FIGURE 2-15:  
I
vs. Temperature.  
GND  
GND  
Output Noise vs. Frequency  
Stability Region vs. Load Current  
Power Supply Rejection Ratio  
1000  
-30  
-35  
10.0  
1.0  
C
= 1μF  
OUT  
to 10  
I
= 10mA  
= 4V  
R
C
C
C
= 50Ω  
OUT  
LOAD  
= 1  
IN  
μ
F
V
V
V
μ
F
IN  
DC  
IN  
OUT  
= 100mV  
= 3V  
= 1  
μF  
-40  
-45  
p-p  
AC  
100  
10  
1
= 0  
OUT  
BYP  
C
C
= 0  
IN  
OUT  
= 1μF  
-50  
-55  
Stable Region  
-60  
-65  
-70  
-75  
-80  
0.1  
0.0  
0.1  
0.01  
0.01K 0.1K  
10  
1K  
10K 100K 1000K  
0
20 30 40 50 60 70 80 90 100  
LOAD CURRENT (mA)  
0.1K  
1K  
10K  
1000K  
100K  
0.01K  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 2-16:  
AC Characteristics.  
DS21335E-page 6  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Measure Rise Time of 3.3V LDO Without Bypass Capacitor  
Conditions: C = 1μF, C = 1μF, C = 0pF, I = 100mA  
Measure Rise Time of 3.3V LDO With Bypass Capacitor  
Conditions: C = 1μF, C = 1μF, C = 470pF, I = 100mA  
IN OUT BYP LOAD  
IN OUT BYP LOAD  
V
= 4.3V, Temp = 25°C, Rise Time = 184μS  
V
= 4.3V, Temp = 25°C, Rise Time = 448μS  
IN  
IN  
V
V
SHD
SHDN  
V
V
OU
OUT  
FIGURE 2-17:  
Measure Rise Time of 3.3V  
FIGURE 2-19:  
Measure Rise Time of 3.3V  
with Bypass Capacitor.  
without Bypass Capacitor.  
Measure Fall Time of 3.3V LDO With Bypass Capacitor  
Measure Fall Time of 3.3V LDO Without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 470pF, I = 50mA  
LOAD  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I = 100mA  
LOAD  
V
= 4.3V, Temp = 25°C, Fall Time = 100μS  
V
= 4.3V, Temp = 25°C, Fall Time = 52μS  
IN  
IN  
V
V
SHDN  
SHDN  
V
V
OUT  
OUT  
FIGURE 2-18:  
Measure Fall Time of 3.3V  
FIGURE 2-20:  
Measure Fall Time of 3.3V  
with Bypass Capacitor.  
without Bypass Capacitor.  
© 2007 Microchip Technology Inc.  
DS21335E-page 7  
TC1014/TC1015/TC1185  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Measure Rise Time of 5.0V LDO With Bypass Capacitor  
Conditions: C = 1μF, C = 1μF, C = 470pF, I = 100mA  
Measure Rise Time of 5.0V LDO Without Bypass Capacitor  
Conditions: C = 1μF, C = 1μF, C = 0pF, I = 100mA  
IN OUT BYP LOAD  
IN OUT BYP LOAD  
V
= 6V, Temp = 25°C, Rise Time = 390μS  
V
= 6V, Temp = 25°C, Rise Time = 192μS  
IN  
IN  
V
V
SHDN  
SHDN  
V
V
OUT  
OUT  
FIGURE 2-21:  
Measure Rise Time of 5.0V  
FIGURE 2-23:  
Measure Rise Time of 5.0V  
with Bypass Capacitor.  
without Bypass Capacitor.  
Measure Fall Time of 5.0V LDO With Bypass Capacitor  
Measure Fall Time of 5.0V LDO Without Bypass Capacitor  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 470pF, I  
LOAD  
= 50mA  
Conditions: C = 1μF, C  
IN OUT  
= 1μF, C  
BYP  
= 0pF, I = 100mA  
LOAD  
V
= 6V, Temp = 25°C, Fall Time = 167μS  
V
= 6V, Temp = 25°C, Fall Time = 88μS  
IN  
IN  
V
V
SHDN  
SHDN  
V
V
OUT  
OUT  
FIGURE 2-22:  
Measure Fall Time of 5.0V  
FIGURE 2-24:  
Measure Fall Time of 5.0V  
with Bypass Capacitor.  
without Bypass Capacitor.  
DS21335E-page 8  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Load Regulation of 3.3V LDO  
Load Regulation of 3.3V LDO  
Conditions: C = 1μF, C = 2.2μF, C = 470pF,  
IN OUT BYP  
Conditions: C = 1μF, C  
IN OUT  
= 2.2μF, C  
BYP  
= 470pF,  
V
= V + 0.25V, Temp = 25°C  
V
= V + 0.25V, Temp = 25°C  
IN  
OUT  
IN  
OUT  
I
= 50mA switched in at 10kHz, V  
is AC coupled  
OUT  
I
= 100mA switched in at 10kHz, V  
is AC coupled  
OUT  
LOAD  
LOAD  
I
I
LOAD  
LOAD  
V
V
OUT  
OUT  
FIGURE 2-25:  
Load Regulation of 3.3V  
FIGURE 2-27:  
Load Regulation of 3.3V  
LDO.  
LDO.  
Load Regulation of 3.3V LDO  
Conditions: C = 1μF, C = 2.2μF, C  
Line Regulation of 3.3V LDO  
Conditions: V = 4V, + 1V Squarewave @2.5kHz  
= 470pF,  
IN OUT BYP  
IN  
V
= V + 0.25V, Temp = 25°C  
IN  
OUT  
I
= 150mA switched in at 10kHz, V  
is AC coupled  
OUT  
LOAD  
I
V
LOAD  
IN  
V
OUT  
V
OUT  
C
I
= 0μF, C  
OUT  
LOAD  
= 1μF, C  
IN  
= 470pF,  
IN  
BYP  
are AC coupled  
OUT  
= 100mA, V & V  
FIGURE 2-26:  
Load Regulation of 3.3V  
FIGURE 2-28:  
Load Regulation of 3.3V  
LDO.  
LDO.  
© 2007 Microchip Technology Inc.  
DS21335E-page 9  
TC1014/TC1015/TC1185  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
Note: Unless otherwise specified, all parts are measured at temperature = +25°C.  
Thermal Shutdown Response of 5.0V LDO  
Conditions: V = 6V, C = 0μF, C = 1μF  
Line Regulation of 5.0V LDO  
Conditions: V = 6V, + 1V Squarewave @2.5kHz  
IN IN  
OUT  
IN  
V
IN  
V
OUT  
V
OUT  
ILOAD was increased until temperature of die reached about 160°C, at  
which time integrated thermal protection circuitry shuts the regulator  
off when die temperature exceeds approximately 160°C. The regulator  
remains off until die temperature drops to approximately 150°C.  
FIGURE 2-29:  
Line Regulation of 5.0V  
FIGURE 2-30:  
Thermal Shutdown  
LDO.  
Response of 5.0V LDO.  
DS21335E-page 10  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Symbol  
Pin No.  
(5-Pin SOT-23)  
Description  
1
2
3
VIN  
Unregulated supply input.  
Ground terminal.  
GND  
SHDN  
Shutdown control input. The regulator is fully enabled when a logic high is applied to  
this input. The regulator enters shutdown when a logic low is applied to this input.  
During shutdown, output voltage falls to zero and supply current is reduced to  
0.5 µA (maximum).  
4
5
Bypass  
VOUT  
Reference bypass input. Connecting a 470 pF to this input further reduces output  
noise.  
Regulated voltage output.  
3.1  
Input Voltage (VIN)  
3.3  
Shutdown (SHDN)  
Connect the V pin to the unregulated source  
The Shutdown input is used to turn the LDO on  
and off. When the SHDN pin is at a logic high  
level, the LDO output is enabled. When the  
SHDN pin is pulled to a logic low, the LDO output  
is disabled. When disabled, the quiescent current  
used by the LDO is less than 0.5 µA max.  
IN  
voltage. Like all low dropout linear regulators, low  
source impedance is necessary for the stable  
operation of the LDO. The amount of capacitance  
required to ensure low source impedance will  
depend on the proximity of the input source  
capacitors or battery type. For most applications,  
1.0 µF of capacitance will ensure stable operation  
of the LDO circuit. The type of capacitor used can  
be ceramic, tantalum or aluminum electrolytic.  
The low Effective Series Resistance (ESR) char-  
acteristics of the ceramic will yield better noise  
and Power Supply Ripple Rejection (PSRR)  
performance at high frequency.  
3.4  
Bypass  
Connecting a low-value ceramic capacitor to the  
Bypass pin will further reduce output voltage  
noise and improve the PSRR performance of the  
LDO. While smaller and larger values can be  
used, these affect the speed at which the LDO  
output voltage rises when the input power is  
applied. The larger the bypass capacitor, the  
slower the output voltage will rise.  
3.2  
Ground Terminal (GND)  
Connect the ground pin to the input voltage  
return. For the optimal noise and PSRR  
performance, the GND pin of the LDO should be  
tied to a quiet circuit ground. For applications  
have switching or noisy inputs tie the GND pin to  
the return of the output capacitor. Ground planes  
help lower inductance and voltage spikes caused  
by fast transient load currents and are  
recommended for applications that are subjected  
to fast load transients.  
3.5  
Output Voltage (VOUT  
)
Connect the output load to V  
connect one side of the LDO output capacitor as  
close as possible to the V pin.  
of the LDO. Also  
OUT  
OUT  
© 2007 Microchip Technology Inc.  
DS21335E-page 11  
TC1014/TC1015/TC1185  
4.1  
Bypass Input  
4.0  
DETAILED DESCRIPTION  
A 470 pF capacitor connected from the Bypass input to  
ground reduces noise present on the internal  
reference, which in turn, significantly reduces output  
noise. If output noise is not a concern, this input may be  
left unconnected. Larger capacitor values may be  
used, but results in a longer time period to rated output  
voltage when power is initially applied.  
The TC1014, TC1015 and TC1185 are precision fixed  
output voltage regulators (if an adjustable version is  
needed, see the TC1070, TC1071 and TC1187 data  
sheet (DS21353). Unlike bipolar regulators, the  
TC1014, TC1015 and TC1185 supply current does not  
increase with load current. In addition, the LDOs’ out-  
put voltage is stable using 1 µF of capacitance over the  
entire specified input voltage range and output current  
range.  
4.2  
Output Capacitor  
Figure 4-1 shows a typical application circuit. The  
regulator is enabled anytime the shutdown input  
(SHDN) is at or above VIH, and disabled when SHDN is  
at or below VIL. SHDN may be controlled by a CMOS  
logic gate or I/O port of a microcontroller. If the SHDN  
input is not required, it should be connected directly to  
the input supply. While in shutdown, the supply current  
decreases to 0.05 µA (typical) and VOUT falls to zero  
volts.  
A 1 µF (min) capacitor from VOUT to ground is required.  
The output capacitor should have an effective series  
resistance greater than 0.1Ω and less than 5Ω. A 1 µF  
capacitor should be connected from VIN to GND if there  
is more than 10 inches of wire between the regulator  
and the AC filter capacitor, or if a battery is used as the  
power source. Aluminum electrolytic or tantalum  
capacitor types can be used. (Since many aluminum  
electrolytic capacitors freeze at approximately -30°C,  
solid tantalums are recommended for applications  
operating below -25°C.) When operating from sources  
other than batteries, supply-noise rejection and  
transient response can be improved by increasing the  
value of the input and output capacitors and employing  
passive filtering techniques.  
VIN  
VOUT  
VOUT  
+
1 µF  
+
1 µF  
TC1014  
TC1015  
TC1185  
+
Battery  
GND  
4.3  
Input Capacitor  
A 1 µF capacitor should be connected from VIN to GND  
if there is more than 10 inches of wire between the  
regulator and this AC filter capacitor, or if a battery is  
used as the power source. Aluminum electrolytic or  
tantalum capacitors can be used (since many  
SHDN  
Bypass  
470 pF  
Reference  
Bypass Cap  
(Optional)  
aluminum  
electrolytic  
capacitors  
freeze  
at  
approximately -30°C, solid tantalum is recommended  
for applications operating below -25°C). When  
operating from sources other than batteries, supply-  
noise rejection and transient response can be  
improved by increasing the value of the input and  
output capacitors and employing passive filtering  
techniques.  
Shutdown Control  
(to CMOS Logic or Tie  
to VIN if unused)  
FIGURE 4-1:  
Typical Application Circuit.  
DS21335E-page 12  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
Equation 5-1 can be used in conjunction with  
Equation 5-2 to ensure regulator thermal operation is  
within limits. For example:  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
Given:  
Integrated thermal protection circuitry shuts the  
regulator off when die temperature exceeds 160°C.  
The regulator remains off until the die temperature  
drops to approximately 150°C.  
VINMAX  
VOUTMIN  
ILOADMAX  
TJMAX  
=
=
=
=
=
3.0V +10%  
2.7V – 2.5%  
40 mA  
125°C  
5.2  
Power Dissipation  
TAMAX  
55°C  
The amount of power the regulator dissipates is  
primarily a function of input and output voltage, and  
output current. The following equation is used to  
calculate worst-case actual power dissipation:  
Find:  
1. Actual power dissipation  
2. Maximum allowable dissipation  
Actual power dissipation:  
EQUATION 5-1:  
PD (VINMAX – VOUTMIN)ILOADMAX  
= [(3.0 x 1.1) – (2.7 x .975)]40 x 10–3  
= 26.7 mW  
PD ≈ (VINMAX VOUTMIN)ILOADMAX  
Where:  
PD = Worst-case actual power  
dissipation  
Maximum allowable power dissipation:  
(TJMAX TAMAX  
PDMAX = -------------------------------------------  
θJA  
)
VINMAX = Maximum voltage on VIN  
VOUTMIN = Minimum regulator output voltage  
ILOADMAX = Maximum output (load) current  
(125 55)  
= -------------------------  
220  
= 318 mW  
The  
maximum  
allowable  
power  
dissipation  
(Equation 5-2) is a function of the maximum ambient  
temperature (TAMAX), the maximum allowable die  
temperature (TJMAX) and the thermal resistance from  
junction-to-air (θJA). The 5-pin SOT-23 package has a  
In this example, the TC1014 dissipates a maximum of  
26.7 mW below the allowable limit of 318 mW. In a  
similar manner, Equation 5-1 and Equation 5-2 can be  
used to calculate maximum current and/or input  
voltage limits.  
θJA of approximately 220°C/Watt.  
EQUATION 5-2:  
5.3  
Layout Considerations  
(TJMAX TAMAX  
)
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads, and wide power  
supply bus lines combine to lower θJA and therefore  
increase the maximum allowable power dissipation  
limit.  
PDMAX = -------------------------------------------  
θJA  
Where all terms are previously defined.  
© 2007 Microchip Technology Inc.  
DS21335E-page 13  
TC1014/TC1015/TC1185  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
TABLE 6-1:  
PART NUMBER CODE AND  
TEMPERATURE RANGE  
TC1014  
Code  
TC1015  
Code  
TC1185  
Code  
(V)  
1.8  
2.5  
2.6  
2.7  
2.8  
2.85  
3.0  
3.3  
3.6  
4.0  
5.0  
AY  
A1  
NB  
A2  
AZ  
A8  
A3  
A5  
A9  
A0  
A7  
BY  
B1  
BT  
B2  
BZ  
B8  
B3  
B5  
B9  
B0  
B7  
NY  
N1  
NT  
N2  
NZ  
N8  
N3  
N5  
N9  
N0  
N7  
1 2 3 4  
c&d represents part number code + temperature  
range and voltage  
represents year and 2-month period code  
e
represents lot ID number  
f
6.2  
Taping Form  
User Direction of Feed  
Device  
Marking  
W, Width of  
Carrier Tape  
PIN 1  
PIN 1  
P,Pitch  
Standard Reel Component  
Orientation  
Reverse Reel Component  
Orientation  
Carrier Tape, Number of Components per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
7 in  
5-Pin SOT-23  
8 mm  
4 mm  
3000  
DS21335E-page 14  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
5-Lead Plastic Small Outline Transistor (OT) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Lead Pitch  
N
e
5
0.95 BSC  
Outside Lead Pitch  
Overall Height  
e1  
A
1.90 BSC  
0.90  
0.89  
0.00  
2.20  
1.30  
2.70  
0.10  
0.35  
0°  
1.45  
1.30  
0.15  
3.20  
1.80  
3.10  
0.60  
0.80  
30°  
Molded Package Thickness  
Standoff  
A2  
A1  
E
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
Footprint  
L1  
φ
Foot Angle  
Lead Thickness  
Lead Width  
c
0.08  
0.20  
0.26  
0.51  
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-091B  
© 2007 Microchip Technology Inc.  
DS21335E-page 15  
TC1014/TC1015/TC1185  
NOTES:  
DS21335E-page 16  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
APPENDIX A: REVISION HISTORY  
Revision E (February 2007)  
Section 1.0 “Electrical characteristics”:  
Changed Dropout Voltage from mA to µA.  
• Updated “Product Identification System”,  
page 19.  
• Updated Section 6.0 “Packaging Information”.  
Revision D (April 2006)  
• Removed “ERROR is open circuited” from SHDN  
pin description in Pin Function Table.  
• Added verbiage for pinout descriptions in Pin  
Function Table.  
• Replaced verbiage in first paragraph of Section  
4.0 Detailed Description.  
• Added Section 4.3 Input Capacitor  
Revision C (January 2006)  
• Changed TR suffix to 713 suffix in Taping Form in  
Package Marking Section  
Revision B (May 2002)  
• Converted Telcom data sheet to Microchip  
standard for Analog Handbook  
Revision A (February 2001)  
• Original Release of this Document under Telcom.  
© 2007 Microchip Technology Inc.  
DS21335E-page 17  
TC1014/TC1015/TC1185  
NOTES:  
DS21335E-page 18  
© 2007 Microchip Technology Inc.  
TC1014/TC1015/TC1185  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X.X  
X
XXXXX  
a) TC1014-1.8VCT713: 1.8V, 5LD SOT-23,  
Tape and Reel.  
Output  
Voltage  
Temperature  
Range  
Package  
b) TC1014-2.85VCT713: 2.85V, 5LD SOT-23,  
Tape and Reel.  
c) TC1014-3.3VCT713: 3.3V, 5LD SOT-23,  
Tape and Reel.  
Device:  
TC1014: 50 mA LDO with Shutdown and V  
TC1015: 100 mA LDO with Shutdown and V  
TC1185: 150 mA LDO with Shutdown and V  
Bypass  
Bypass  
REF  
REF  
Bypass  
REF  
a) TC1015-1.8VCT713: 1.8V, 5LD SOT-23,  
Tape and Reel.  
Output Voltage:  
1.8  
2.5  
2.6  
2.7  
2.8  
=
=
=
=
=
1.8V  
2.5V  
2.6V  
2.7V  
2.8V  
b) TC1015-2.85VCT713: 2.85V, 5LD SOT-23,  
Tape and Reel.  
c) TC1015-3.0VCT713: 3.0V, 5LD SOT-23,  
Tape and Reel.  
2.85 = 2.85V  
3.0  
3.3  
3.6  
4.0  
5.0  
=
=
=
=
=
3.0V  
3.3V  
3.6V  
4.0V  
5.0V  
a) TC1185-1.8VCT713: 1.8V, 5LD SOT-23,  
Tape and Reel.  
b) TC1185-2.8VCT713: 2.8V, 5LD SOT-23,  
Tape and Reel.  
Temperature Range:  
Package:  
V
=
-40° C to +125° C  
CT713 = Plastic Small Outline Transistor (SOT-23),  
5-lead, Tape and Reel  
© 2007 Microchip Technology Inc.  
DS21335E-page 19  
TC1014/TC1015/TC1185  
NOTES:  
DS21335E-page 20  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS21335E-page 21  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21335E-page 22  
© 2007 Microchip Technology Inc.  

相关型号:

TC1186

50mA, 100mA and 150mA CMOS LDOs with Shutdown and ERROR Output
MICROCHIP

TC1186-1.8VCT

50mA, 100mA and 150mA CMOS LDOs with Shutdown and ERROR Output
MICROCHIP

TC1186-1.8VCT713

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and ERROR Output
MICROCHIP

TC1186-2.5VCHTR

2.5 V FIXED POSITIVE LDO REGULATOR, 0.4 V DROPOUT, PDSO5, EIAJ, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC1186-2.5VCT

50mA, 100mA and 150mA CMOS LDOs with Shutdown and ERROR Output
MICROCHIP

TC1186-2.5VCT713

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and ERROR Output
MICROCHIP

TC1186-2.5VCTTR

暂无描述
MICROCHIP

TC1186-2.6VCT713

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and ERROR Output
MICROCHIP

TC1186-2.7VCH

Fixed Positive LDO Regulator, 2.7V, 0.4V Dropout, CMOS, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC1186-2.7VCHTR

Fixed Positive LDO Regulator, 2.7V, 0.4V Dropout, CMOS, PDSO5, SOT-23A, 5 PIN
MICROCHIP

TC1186-2.7VCT

50mA, 100mA and 150mA CMOS LDOs with Shutdown and ERROR Output
MICROCHIP

TC1186-2.7VCT713

50 mA, 100 mA and 150 mA CMOS LDOs with Shutdown and ERROR Output
MICROCHIP