TC1300R-2.5VUATR [MICROCHIP]

2.5 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8;
TC1300R-2.5VUATR
型号: TC1300R-2.5VUATR
厂家: MICROCHIP    MICROCHIP
描述:

2.5 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8

光电二极管
文件: 总18页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1300  
300 mA CMOS LDO with Shutdown, Bypass and  
Independent Delayed Reset Function  
Features  
General Description  
• LDO with Integrated Microcontroller Reset  
Monitor Functionality  
The TC1300 combines a low dropout regulator and a  
microcontroller reset monitor in an 8-Pin MSOP pack-  
age. Total supply current is 80 µA (typical), 20 to 60  
times lower than bipolar regulators.  
• Low Input Supply Current (80 µA, typical)  
• Very Low Dropout Voltage  
The TC1300 has a precise output with a typical accu-  
racy of ±0.5%. Other key features include low noise  
operation, low dropout voltage and internal feed-  
forward compensation for fast response to step  
changes in load. The TC1300 has both over-tempera-  
ture and over-current protection. When the shutdown  
control (SHDN) is low, the regulator output voltage falls  
to zero, RESET output remains valid and supply cur-  
rent is reduced to 30 µA (typical). The TC1300 is rated  
for 300 mA of output current and stable with a 1 µF out-  
put capacitor.  
• 10 µsec (typ.) Wake-Up Time from SHDN  
• 300 mA Output Current  
• Standard or Custom Output and Detected  
Voltages  
• Power-Saving Shutdown Mode  
• Bypass Input for Quiet Operation  
• Separate Input for Detected Voltage  
• 140 msec Minimum RESET Output Duration  
• Space-Saving MSOP Package  
• Specified Junction Temperature Range:  
-40°C to +125°C  
An active-low RESET is asserted when the detected  
voltage (VDET) falls below the reset voltage threshold.  
The RESET output remains low for 300 msec (typical)  
after VDET rises above reset threshold. The TC1300  
also has a fast wake-up response time (10 µsec.,  
typical) when released from shutdown.  
Applications  
• Battery-Operated Systems  
• Portable Computers  
• Medical Instruments  
• Pagers  
• Cellular / GSM / PHS Phones  
Typical Application Circuit  
Related Literature  
8
7
1
VDET  
VDET  
RESET  
RESET  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765.  
2
VIN  
VOUT  
VOUT  
C2  
1 µF  
C1  
1 µF  
• AN766, “Pin-Compatible CMOS Upgrades to  
Bipolar LDOs”, DS00766.  
TC1300  
6
5
3
4
NC  
GND  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792.  
Battery  
SHDN  
Bypass  
CBYPASS  
470 pF  
(Optional)  
Package Type  
Shutdown Control  
(from Power  
Control Logic)  
MSOP  
1
2
3
4
8
7
VDET  
VIN  
RESET  
VOUT  
TC1300VUA  
6 NC  
SHDN  
GND  
Bypass  
5
2001-2012 Microchip Technology Inc.  
DS21385D-page 1  
TC1300  
1.0  
ELECTRICAL  
CHARACTERISTICS  
PIN DESCRIPTIONS  
Pin  
Description  
Absolute Maximum Ratings*  
RESET RESET output remains low while V  
is  
DET  
below the reset voltage threshold and for  
Input Voltage ....................................................................6.5V  
300 msec after V  
old.  
rises above reset thesh-  
DET  
Output Voltage ................................. (V - 0.3) to (V + 0.3)  
SS  
IN  
Power Dissipation ......................... Internally Limited (Note 6)  
V
Regulated Voltage Output  
Ground Terminal  
OUT  
Operating Junction Temperature, TJ ....... – 40°C < T < 150°C  
Maximum Junction Temperature, Tj..............................150°C  
Storage Temperature...................................65°C to +150°C  
J
GND  
Bypass  
Reference Bypass Input. Connecting an  
optional 470 pF to this input further reduces  
output noise.  
Maximum Voltage on Any Pin ............. (V -0.3) to (V +0.3)  
SS  
IN  
*Notice: Stresses above those listed under “maximum rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
SHDN  
Shutdown Control Input. The regulator is fully  
enabled when a logic high is applied to this  
input. The regulator enters shutdown when a  
logic low is applied to this input. During shut-  
down, regulator output voltage falls to zero,  
RESET output remains valid and supply cur-  
rent is reduced to 30 µA (typ.).  
NC  
No connect  
V
Power Supply Input  
IN  
V
Detected Input Voltage. V  
connected together.  
and V can be  
DET IN  
DET  
ELECTRICAL CHARACTERISTICS  
V
= V  
+ 1V, I = 0.1 mA, C = 3.3 µF, SHDN > V , T = 25°C, unless otherwise noted. BOLDFACE type specifications apply  
IN  
OUT L L IH A  
for junction temperature (Note 8) of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Operating Voltage  
Maximum Output Current  
Output Voltage  
V
2.7  
6.0  
V
mA  
V
Note 7  
Note 1  
IN  
IOUT  
MAX  
300  
V
- 2.5%  
V
± 0.5%  
+ 2.5%  
OUT  
R
V
V
R
R
V
Temperature Coefficient  
V  
/T  
OUT  
25  
0.02  
0.5  
0.35  
2.0  
ppm/°C Note 2  
OUT  
Line Regulation  
Load Regulation  
V  
V  
/V  
%
%
(V + 1V) < V < 6V  
R IN  
OUT  
IN  
/V  
I = 0.1 mA to IOUTMAX, Note 3  
L
OUT OUT  
Note 1:  
2:  
V
is the regulator output voltage setting.  
R
6
V  
V  
  10  
OUTMAX  
-------------------------------------------------------------------------------------  
 T  
OUTMIN  
TCV  
=
OUT  
V
OUT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value  
measured at a 1V differential.  
5: Thermal Regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to I  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
at V = 6V for t = 10 msec.  
L
IN  
MAX  
perature and the thermal resistance from junction-to-air (i.e. T , T , ). Exceeding the maximum allowable power dissi-  
A
J
JA  
pation causes the device to initiate thermal shutdown. Please see Section 4.0, “Thermal Considerations”, of this data  
sheet for more details.  
7: The minimum V has to meet two conditions: V 2.7V and V (V + V ).  
IN  
IN  
IN  
R
DROPOUT  
8: The junction temperature of the device is approximated by soaking the device under test at an ambient temperature  
equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature  
over the ambient temperature is not significant.  
DS21385D-page 2  
2001-2012 Microchip Technology Inc.  
TC1300  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
V
= V  
+ 1V, I = 0.1 mA, C = 3.3 µF, SHDN > V , T = 25°C, unless otherwise noted. BOLDFACE type specifications apply  
OUT L L IH A  
IN  
for junction temperature (Note 8) of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
I = 0.1 mA  
Dropout Voltage (Note 4)  
V
V
1
30  
mV  
IN – OUT  
L
70  
210  
130  
390  
I = 100 mA  
I = 300 mA  
L
L
Supply Current  
I
I
80  
30  
160  
60  
µA  
µA  
dB  
mA  
SHDN = V  
IH  
SS1  
Shutdown Supply Current  
Power Supply Rejection Ratio  
Output Short Circuit Current  
Thermal Regulation  
SHDN = 0V  
SS2  
PSRR  
60  
f 1 kHz, C  
= 1 nF  
BYPASS  
I
800  
0.04  
900  
1200  
V
= 0V  
OUT  
OUT  
OUT  
SC  
V  
/P  
%/W Note 5  
D
Output Noise  
eN  
nV/Hz f < 1 kHz, C  
= 1 µF,  
OUT  
R
C
= 50   
LOAD  
= 1 nF  
BYPASS  
Wake-Up Time  
(from Shutdown Mode)  
t
10  
50  
20  
µsec  
µsec  
C
C
= 1 µF, V = 5V,  
IN  
WK  
IN  
= 4.7 µF, I = 30 mA,  
OUT  
L
See Figure 3-2  
Settling Time  
(from Shutdown Mode)  
ts  
C
C
= 1 µF, V = 5V  
IN  
IN  
= 4.7 µF  
OUT  
I = 30 mA, See Figure 3-2  
L
Thermal Shutdown Die  
Temperature  
T
150  
°C  
°C  
SD  
Thermal Shutdown Hysteresis  
T
10  
HYS  
Thermal Resistance Junction to  
Case  
RthetaJA  
200  
°C/Watt EIA/JEDEC JESD51-751-7 4-  
Layer Board  
SHDN Input High Threshold  
SHDN Input Low Threshold  
V
45  
%V  
V
V
= 2.5V to 6.0V  
= 2.5V to 6.0V  
IH  
IN  
IN  
IN  
IN  
V
15  
%V  
IL  
Note 1:  
2:  
V
is the regulator output voltage setting.  
R
6
V  
V  
  10  
OUTMAX  
-------------------------------------------------------------------------------------  
 T  
OUTMIN  
TCV  
=
OUT  
V
OUT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value  
measured at a 1V differential.  
5: Thermal Regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to I  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
at V = 6V for t = 10 msec.  
L
IN  
MAX  
perature and the thermal resistance from junction-to-air (i.e. T , T , ). Exceeding the maximum allowable power dissi-  
A
J
JA  
pation causes the device to initiate thermal shutdown. Please see Section 4.0, “Thermal Considerations”, of this data  
sheet for more details.  
7: The minimum V has to meet two conditions: V 2.7V and V (V + V ).  
IN  
IN  
IN  
R
DROPOUT  
8: The junction temperature of the device is approximated by soaking the device under test at an ambient temperature  
equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature  
over the ambient temperature is not significant.  
2001-2012 Microchip Technology Inc.  
DS21385D-page 3  
TC1300  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
V
= V  
+ 1V, I = 0.1 mA, C = 3.3 µF, SHDN > V , T = 25°C, unless otherwise noted. BOLDFACE type specifications apply  
IN  
OUT L L IH A  
for junction temperature (Note 8) of -40°C to +125°C.  
Parameters Sym  
RESET Output  
Min  
Typ  
Max  
Units  
Conditions  
Voltage Range  
V
1.0  
1.2  
6.0  
6.0  
V
V
T
= 0°C to +70°C  
= – 40°C to +125°C  
DET  
A
T
A
Reset Threshold  
V
2.59  
2.63  
2.66  
TC1300R-XX, T = +25°C  
TH  
A
2.55  
2.70  
TC1300R-XX,  
T = – 40°C to +125°C  
A
2.36  
2.40  
2.43  
TC1300Y-XX, T = +25°C  
A
2.32  
2.47  
TC1300Y-XX,  
T = – 40°C to +125°C  
A
Reset Threshold Tempco  
VTH / T  
30  
160  
300  
ppm/°C  
µsec  
msec  
V
V
to Reset Delay  
t
t
V
V
= V to (V – 100 mV)  
DET TH TH  
DET  
RPD  
RPU  
Reset Active Timeout Period  
RESET Output Voltage Low  
140  
560  
0.3  
V
= V min,  
OL  
DET  
TH  
I
= 1.2 mA  
SINK  
RESET Output Voltage High  
V
0.8 V  
V
V
> V max,  
DET TH  
OH  
DET  
I
= 500 µA  
SOURCE  
Note 1:  
2:  
V
is the regulator output voltage setting.  
R
6
V  
V  
  10  
OUTMAX  
-------------------------------------------------------------------------------------  
 T  
OUTMIN  
TCV  
=
OUT  
V
OUT  
3: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value  
measured at a 1V differential.  
5: Thermal Regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to I  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
at V = 6V for t = 10 msec.  
L
IN  
MAX  
perature and the thermal resistance from junction-to-air (i.e. T , T , ). Exceeding the maximum allowable power dissi-  
A
J
JA  
pation causes the device to initiate thermal shutdown. Please see Section 4.0, “Thermal Considerations”, of this data  
sheet for more details.  
7: The minimum V has to meet two conditions: V 2.7V and V (V + V ).  
IN  
IN  
IN  
R
DROPOUT  
8: The junction temperature of the device is approximated by soaking the device under test at an ambient temperature  
equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature  
over the ambient temperature is not significant.  
DS21385D-page 4  
2001-2012 Microchip Technology Inc.  
TC1300  
2.0  
TYPICAL CHARACTERISTICS  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Junction temperature (TJ) is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
Ambient temperature is not significant.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
VOUT = 3.0V  
VIN = 3.5V to 6.0V  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-1:  
Line Regulation vs.  
FIGURE 2-4:  
Reset Active Time-out  
Temperature.  
Period vs. Temperature.  
10.00  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
RLOAD = 50 Ohms  
OUT = 1 µF  
VIN = VOUT + 1V  
VOUT = 5.0V  
VOUT = 3.0V  
C
1.00  
0.10  
0.01  
VOUT = 2.5V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1
10  
100  
1000  
0.01  
0.10  
Junction Temperature (°C)  
Frequency (kHz)  
FIGURE 2-2:  
Supply Current vs.  
FIGURE 2-5:  
Output Noise vs. Frequency.  
Temperature.  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
VOUT = 2.5V  
TJ = -40°C  
TJ = +125°C  
TJ = +25°C  
VIN = VOUT + 1V  
IOUT = 100 µA  
OUT = 2.5V  
V
0.00  
0
100  
200  
300  
400  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Load Current (mA)  
Junction Temperature (°C)  
FIGURE 2-6:  
Dropout Voltage vs. Load  
FIGURE 2-3:  
Normalized VOUT vs.  
Current (2.5V).  
Temperature.  
2001-2012 Microchip Technology Inc.  
DS21385D-page 5  
TC1300  
2.0 TYPICAL CHARACTERISTICS (CON’T)  
Junction temperature (TJ) is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
Ambient temperature is not significant.  
60  
45  
30  
15  
0
0.3  
0.25  
0.2  
VIN = 3.8V  
OUT = 2.8V  
VOUT = 5.0V  
V
TJ = -40°C  
TJ = +125°C  
I
OUT = 50 mA  
C
C
C
OUT = 10 μF  
OUTesr = 0.25  
BYPASS = 0 μF  
0.15  
0.1  
TJ = +25°C  
0.05  
0
1k  
10k  
100k  
1M  
10  
100  
0
100  
200  
300  
400  
Frequency (Hz)  
Load Current (mA)  
FIGURE 2-7:  
Power Supply Rejection  
FIGURE 2-10:  
Dropout Voltage vs. Load  
Ratio vs. Frequency.  
Current (5.0V).  
2.6330  
2.6325  
2.6320  
2.6315  
2.6310  
2.6305  
2.6300  
2.6295  
2.6290  
2.6285  
2.6280  
2.6275  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-8:  
Reset Voltage Threshold vs.  
FIGURE 2-11:  
Wake-Up Response Time.  
Junction Temperature.  
300  
250  
200  
150  
100  
50  
0.90  
0.80  
0.70  
0.60  
0.50  
VIN = VOUT + 1V  
10 mV Overdrive  
100 mV Overdrive  
VOUT = 3.0V  
VOUT = 2.5V  
VOUT = 5.0V  
0.40  
0.30  
0.20  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-12:  
VDET to Reset Delay vs.  
FIGURE 2-9:  
Load Regulation vs.  
Temperature.  
Temperature.  
DS21385D-page 6  
2001-2012 Microchip Technology Inc.  
TC1300  
2.0 TYPICAL CHARACTERISTICS (CON’T)  
Junction temperature (TJ) is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
Ambient temperature is not significant.  
FIGURE 2-13:  
Load Transient Response  
FIGURE 2-16:  
Line Transient Response  
1 µF Output Capacitor.  
10 µF Output Capacitor.  
0.30  
VDET = VTH - 20 mV  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
ISINK = 3.2 mA  
ISINK = 1.2 mA  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-14:  
Line Transient Response  
FIGURE 2-17:  
RESET Output Voltage Low  
1 µF Output Capacitor.  
vs. Junction Temperature.  
3.960  
3.950  
3.940  
3.930  
3.920  
3.910  
ISOURCE = 500 µA  
ISOURCE = 800 µA  
3.900  
VDET = 4.0V  
3.890  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
FIGURE 2-15:  
Load Transient Response  
FIGURE 2-18:  
RESET Output Voltage High  
10 µF Output Capacitor.  
vs. Junction Temperature.  
2001-2012 Microchip Technology Inc.  
DS21385D-page 7  
TC1300  
TC1300, the selected output capacitor equivalent  
series resistance (ESR) range is 0.1 ohms to 5 ohms  
when using 1 µF of output capacitance, and 0.01 ohms  
to 5 ohms when using 10 µF of output capacitance.  
Because of the ESR requirement, tantalum and alumi-  
num electrolytic capacitors are recommended. Alumi-  
num electrolytic capacitors are not recommended for  
operation at temperatures below -25°C. When operat-  
ing from sources other than batteries, rejection and  
transient responses can be improved by increasing the  
value of the input and output capacitors and employing  
passive filtering techniques.  
3.0  
DETAILED DESCRIPTION  
The TC1300 is a combination of a fixed output, low  
dropout  
regulator  
and  
a
microcontroller  
monitor/RESET. Unlike bipolar regulators, the TC1300  
supply current does not increase with load current. In  
addition, VOUT remains stable and within regulation  
over the entire specified operating load range (0 mA to  
300 mA) and operating input voltage range (2.7V to  
6.0V).  
Figure 3-1 shows a typical application circuit. The reg-  
ulator is enabled any time the shutdown input (SHDN)  
is above VIH. The regulator is shutdown (disabled)  
when SHDN is at or below VIL. SHDN may be con-  
trolled by a CMOS logic gate or an I/O port of a micro-  
controller. If the SHDN input is not required, it should be  
connected directly to the input supply. While in shut-  
down, supply current decreases to 30 µA (typical),  
VOUT falls to zero and RESET remains valid.  
3.3  
Bypass Input (Optional)  
An optional 470 pF capacitor connected from the  
Bypass input to ground reduces noise present on the  
internal reference, which in turn significantly reduces  
output noise and improves PSRR performance. This  
input may be left unconnected. Larger capacitor values  
may be used, but results in a longer time period to rated  
output voltage when power is initially applied.  
3.1  
RESET Output  
The RESET output is driven active-low within 160 µsec  
of VDET falling through the reset voltage threshold.  
RESET is maintained active for a minimum of  
140 msec after VDET rises above the reset threshold.  
The TC1300 has an active-low RESET output. The out-  
put of the TC1300 is valid down to VDET = 1V and is  
optimized to reject fast transient glitches on the VDET  
line.  
3.4  
Turn On Response  
The turn-on response is defined as two separate  
response categories, Wake-Up Time (tWK) and Settling  
Time (tS).  
The TC1300 has a fast Wake-Up Time (10 µsec typi-  
cal) when released from shutdown. See Figure 3-2 for  
the Wake-Up Time designated as tWK. The Wake-Up  
Time is defined as the time it takes for the output to rise  
to 2% of the VOUT value after being released from  
shutdown.  
8
7
1
2
Microcontroller  
RESET  
VDET  
VDET  
RESET  
VOUT  
The total turn-on response is defined as the Settling  
Time (tS) (see Figure 3-2). Settling Time (inclusive with  
VIN  
VOUT  
C
C
2
1
TC1300  
1 µF  
1 µF  
t
WK) is defined as the condition when the output is  
6
5
3
4
NC  
GND  
within 2% of its fully enabled value (50 µsec typical)  
when released from shutdown. The settling time of the  
output voltage is dependent on load conditions and  
output capacitance on VOUT (RC response).  
Battery  
SHDN  
Bypass  
CBYPASS  
470 pF  
(Optional)  
Shutdown Control  
(from Power  
Control Logic)  
VIH  
VIL  
tS  
SHDN  
VOUT  
FIGURE 3-1:  
Typical Application Circuit.  
98%  
2%  
3.2 Output Capacitor  
tWK  
A 1 µF (min) capacitor from VOUT to ground is required.  
A 1 µF capacitor should also be connected from VIN to  
GND if there is more than 10 inches of wire between  
the regulator and the AC filter capacitor, or if a battery  
is used as the power source. As with all low dropout  
regulators, a minimum output capacitance is required  
to stabilize the output voltage. For the TC1300, a mini-  
mum of 1 µF of output capacitance is enough to stabi-  
lize the device over the entire operating load and line  
range. The selected output capacitor plays an impor-  
tant role is compensating the LDO regulator. For the  
FIGURE 3-2:  
Wake-Up Response Time.  
DS21385D-page 8  
2001-2012 Microchip Technology Inc.  
TC1300  
The worst case actual power dissipation equation can  
be used in conjunction with the LDO maximum allow-  
able power dissipation equation to ensure regulator  
thermal operation is within limits. For example:  
4.0  
4.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
Integrated thermal protection circuitry shuts the regula-  
tor off when the die temperature exceeds 150°C. The  
regulator remains off until the die temperature drops to  
approximately 140°C.  
Given:  
VINMAX  
VOUTMIN  
ILOADMAX  
TJMAX  
=
=
=
=
=
=
4.1V  
3.0V -2.5%  
200 mA  
125°C  
4.2  
Power Dissipation  
The amount of power the regulator dissipates is primar-  
ily a function of input and output voltage, and output  
current. The following equation is used to calculate  
worst case actual power dissipation:  
TAMAX  
JA  
55°C  
200°C/W  
Find:  
EQUATION  
EQUATION:  
ACTUAL POWER  
DISSIPATION  
PD  VINMAX VOUTMINILOADMAX  
PD  VINMAX VOUTMINILOADMAX  
= 4.13.0 .975200 103  
Where:  
PD = worst case actual power dissipation  
= 220 mW  
VINMAX = maximum voltage on VIN  
VOUTMIN = minimum regulator output voltage  
ILOADMAX = maximum output (load) current  
EQUATION:  
MAXIMUM ALLOWABLE  
POWER DISSIPATION  
The maximum allowable power dissipation, PDMAX, is a  
function of the maximum ambient temperature (TAMAX),  
the maximum recommended die temperature (125°C)  
and the thermal resistance from junction-to-air (JA).  
The MSOP-8 package has a JA of approximately  
200°C/Watt when mounted on a FR4 dielectric copper  
clad PC board.  
TJMAX TAMAX  
PDMAX  
=
=
-------------------------------------------  
JA  
125 55  
-------------------------  
200  
= 350 mW  
In this example, the TC1300 dissipates a maximum of  
only 220 mW; below the allowable limit of 350 mW. In a  
similar manner, the maximum actual power dissipation  
equation and the maximum allowable power dissipa-  
tion equation can be used to calculate maximum cur-  
rent and/or input voltage limits. For example, the  
maximum allowable VIN is found by substituting the  
maximum allowable power dissipation of 350 mW into  
the actual power dissipation equation, from which  
VINMAX = 4.97V.  
EQUATION  
TJMAX TAMAX  
PDMAX  
=
-------------------------------------------  
JA  
4.3  
Layout Considerations  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads and wide power  
supply bus lines combine to lower JA and, therefore,  
increase the maximum allowable power dissipation  
limit.  
2001-2012 Microchip Technology Inc.  
DS21385D-page 9  
TC1300  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
1300RA  
YWWNNN  
Marking Code  
(XXXXXX)  
Part Number  
TC1300R - 2.5VUA  
TC1300Y - 2.7VUA  
TC1300R - 2.8VUA  
TC1300R - 2.85VUA  
TC1300R - 3.0VUA  
TC1300R - 3.3VUA  
1300RA  
1300YF  
1300RB  
1300RC  
1300RD  
1300RE  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS21385D-page 10  
2001-2012 Microchip Technology Inc.  
TC1300  
5.2  
Package Dimensions  
Component Taping Orientation for 8-Pin MSOP Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size:  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
8-Pin MSOP  
12 mm  
8 mm  
2500  
13 in.  
2001-2012 Microchip Technology Inc.  
DS21385D-page 11  
TC1300  
8-Lead Plastic Micro Small Outline Package (UA) (MSOP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
p
E1  
D
2
B
n
1
A2  
A
A1  
c
(F)  
L
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
NOM  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026  
0.65  
Overall Height  
A
A2  
A1  
E
.044  
1.18  
Molded Package Thickness  
Standoff  
.030  
.034  
.038  
.006  
.200  
.122  
.122  
.028  
.039  
0.76  
0.05  
0.86  
0.97  
0.15  
.5.08  
3.10  
3.10  
0.70  
1.00  
§
.002  
.184  
.114  
.114  
.016  
.035  
Overall Width  
.193  
.118  
.118  
.022  
.037  
4.90  
3.00  
3.00  
0.55  
0.95  
4.67  
2.90  
2.90  
0.40  
0.90  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
Footprint (Reference)  
Foot Angle  
F
0
6
0
6
c
Lead Thickness  
Lead Width  
.004  
.010  
.006  
.012  
.008  
.016  
0.10  
0.25  
0.15  
0.30  
0.20  
0.40  
B
Mold Draft Angle Top  
Mold Draft Angle Bottom  
7
7
7
7
*Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
Drawing No. C04-111  
DS21385D-page 12  
2001-2012 Microchip Technology Inc.  
TC1300  
6.0  
REVISION HISTORY  
Revision D (November 2010)  
Added a note to each package outline drawing.  
2001-2012 Microchip Technology Inc.  
DS21385D-page 13  
TC1300  
NOTES:  
DS21385D-page 14  
2001-2012 Microchip Technology Inc.  
TC1300  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
-X.X  
X
/XX  
Examples:  
Output  
Voltages  
Temperature  
Range  
Package  
a)  
TC1300R-2.5VUA: 300mA CMOS LDO w/  
Shutdown, Bypass Independent Delayed  
&
Reset, 2.5V output voltage, 2.63V RESET  
Threshold.  
b)  
c)  
TC1300R-2.8VUA: 300mA CMOS LDO w/Shut-  
down, Bypass & Independent Delayed Reset,  
2.8V output voltage, 2.63V RESET Threshold.  
TC1300R-2.85VUA: 300mA CMOS LDO w/  
Shutdown, Bypass & Independent Delayed  
Reset, 2.85V output voltage, 2.63V RESET  
Threshold.  
Device:  
TC1300X-X.XXXX:  
300mA CMOS LDO w/Shutdown,  
Bypass & Independent Delayed  
Reset  
TC1300X-X.XXXXTR: 300mA CMOS LDO w/Shutdown,  
Bypass & Independent Delayed  
Reset (Tape and Reel)  
d)  
e)  
f)  
TC1300R-3.0VUA: 300mA CMOS LDO w/Shut-  
down, Bypass & Independent Delayed Reset,  
3.0V output voltage, 2.63V RESET Threshold.  
TC1300R-3.3VUA: 300mA CMOS LDO w/Shut-  
down, Bypass & Independent Delayed Reset,  
3.3V output voltage, 2.63V RESET Threshold.  
TC1300R-2.85VUATR: 300mA CMOS LDO w/  
Shutdown, Bypass & Independent Delayed  
Reset, 2.85V output voltage, 2.63V RESET  
Threshold, tape and reel.  
Output Voltages:  
2.5V  
2.7V  
2.8V  
2.85V  
3.0V  
3.3V  
=
=
=
=
=
=
2.5  
2.7  
2.8  
2.85  
3.0  
3.3  
RESET Threshold  
Voltages:  
-
2.4V = Y  
-
2.63V = R  
Temperature Range:  
Package:  
V
=
-40°C to +125°C  
g)  
TC1300Y-2.7VUA: 300mA CMOS LDO w/ Shut-  
down, Bypass & independant Delayed Reset,  
2.7V output voltage, 2.4V RESET Threshold.  
UA  
=
Micro Small Outline Package (MSOP), 8-lead  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2001-2012 Microchip Technology Inc.  
DS21385D-page15  
TC1300  
NOTES:  
DS21385D-page 16  
2001-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2001-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620767832  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2001-2012 Microchip Technology Inc.  
DS21385D-page 17  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/27/12  
DS21385D-page 18  
2001-2012 Microchip Technology Inc.  

相关型号:

TC1300R-2.7VUATR

IC CMOS LDO 2.7V 300MA 8-MSOP
MICROCHIP

TC1300R-2.85VUA

2.8 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300R-2.85VUATR

2.8 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300R-2.8VUATR

2.8 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300R-2.8VUATRAAA

2.8 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300R-3.0VUA

3 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300R-3.0VUATRAAB

3 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300R-3.3VUA

3.3 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300R-3.3VUATR

3.3 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300VUA

300 mA CMOS LDO with Shutdown, Bypass and Independent Delayed Reset Function
MICROCHIP

TC1300Y-2.7VUA

2.7 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP

TC1300Y-2.7VUATR

2.7 V FIXED POSITIVE LDO REGULATOR, 0.39 V DROPOUT, PDSO8, PLASTIC, MSOP-8
MICROCHIP