TC1301A-UWAVMFTR [MICROCHIP]

Dual LDO with Microcontroller RESET Function; 双路LDO与微控制器复位功能
TC1301A-UWAVMFTR
型号: TC1301A-UWAVMFTR
厂家: MICROCHIP    MICROCHIP
描述:

Dual LDO with Microcontroller RESET Function
双路LDO与微控制器复位功能

线性稳压器IC 调节器 电源电路 微控制器 光电二极管 输出元件
文件: 总28页 (文件大小:1006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1301A/B  
Dual LDO with Microcontroller RESET Function  
Features  
Description  
• Dual Output LDO with Microcontroller Reset  
Monitor Functionality:  
The TC1301A/B combines two Low Dropout (LDO)  
regulators and a microcontroller RESET function into a  
single 8-pin MSOP or DFN package. Both regulator  
outputs feature low dropout voltage, 104 mV  
- VOUT1 = 1.5V to 3.3V @ 300 mA  
- VOUT2 = 1.5V to 3.3V @ 150 mA  
- VRESET = 2.20V to 3.20V  
@ 300 mA for VOUT1, 150 mV @ 150 mA for VOUT2  
,
low quiescent current consumption, 58 µA each and a  
typical regulation accuracy of 0.5%. Several fixed-  
output voltage and detector voltage combinations are  
available. A reference bypass pin is available to further  
reduce output noise and improve the power supply  
rejection ratio of both LDOs.  
• Output Voltage and RESET Threshold Voltage  
Options Available (See Table 8-1)  
• Low Dropout Voltage:  
- VOUT1 = 104 mV @ 300 mA, Typical  
- VOUT2 = 150 mV @ 150 mA, Typical  
The TC1301A/B is stable over all line and load  
conditions with a minimum of 1 µF of ceramic output  
capacitance, and utilizes a unique compensation  
scheme to provide fast dynamic response to sudden  
line voltage and load current changes.  
• Low Supply Current: 116 µA, Typical  
TC1301A/B with both output voltages available  
• Reference Bypass Input for Low-Noise Operation  
• Both Output Voltages Stable with a Minimum of  
1 µF Ceramic Output Capacitor  
For the TC1301A, the microcontroller RESET function  
operates independently of both VOUT1 and VOUT2. The  
input to the RESET function is connected to the VDET  
pin.The SHDN2 pin is used to control the output of  
• Separate Input for RESET Detect Voltage  
(TC1301A)  
• Separate VOUT1 and VOUT2 SHDN pins  
(TC1301B)  
V
OUT2 only. VOUT1 will power-up and down with VIN.  
In the case of the TC1301B, the detect voltage input of  
the RESET function is connected internally to VOUT1  
• RESET Output Duration: 300 ms. Typical  
• Power-Saving Shutdown Mode of Operation  
• Wake-up from SHDN: 5.3 µs. Typical  
• Small 8-pin DFN and MSOP Package Options  
• Operating Junction Temperature Range:  
- -40°C to +125°C  
.
Both VOUT1 and VOUT2 have independent shutdown  
capability.  
Additional features include an overcurrent limit and  
overtemperature protection that, when combined,  
provide a robust design for all load fault conditions.  
• Overtemperature and Overcurrent Protection  
Applications  
Package Types  
• Cellular/GSM/PHS Phones  
• Battery-Operated Systems  
• Hand-Held Medical Instruments  
• Portable Computers/PDAs  
• Linear Post-Regulators for SMPS  
• Pagers  
8-Pin DFN/MSOP  
TC1301A  
DFN8  
MSOP8  
VDET  
VIN  
RESET 1  
8
7
6
5
1
2
3
RESET  
VOUT1  
GND  
8
7
6
5
VDET  
VIN  
VOUT1  
2
VOUT2  
VOUT2  
GND  
3
4
Related Literature  
Bypass 4  
SHDN2  
Bypass  
SHDN2  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2002  
TC1301B  
DFN8  
MSOP8  
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs”, DS00766, Microchip Technology  
Inc., 2002  
SHDN1  
VIN  
RESET 1  
8
7
6
5
1
2
3
RESET  
VOUT1  
GND  
8
7
6
5
SHDN1  
VIN  
VOUT1  
2
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., 2001  
VOUT2  
VOUT2  
GND  
3
4
Bypass 4  
SHDN2  
Bypass  
SHDN2  
© 2005 Microchip Technology Inc.  
DS21798B-page 1  
TC1301A/B  
Functional Block Diagrams  
TC1301A  
TC1301B  
LDO #1  
VOUT1  
VOUT1  
VIN  
VIN  
LDO #1  
300 mA  
SHDN1  
300 mA  
VOUT2  
VOUT2  
LDO #2  
150 mA  
LDO #2  
150 mA  
SHDN2  
SHDN2  
GND  
GND  
Bandgap  
Reference  
1.2V  
Bandgap  
Reference  
1.2V  
Bypass  
Bypass  
VDET  
RESET  
RESET  
Threshold  
Detector  
Time Delay  
300 ms typ  
VDET  
Threshold  
Detector  
Time Delay  
300 ms, typ  
Typical Application Circuits  
TC1301A  
VDET  
RESET  
8
7
6
1
System RESET  
BATTERY  
2
3
4
2.8V @ 300 mA  
VOUT1  
GND  
VIN  
COUT1  
1 µF Ceramic  
X5R  
CIN  
1 µF  
2.6V @ 150 mA  
COUT2  
VOUT2  
5
SHDN2  
2.7V  
to  
Bypass  
1 µF Ceramic  
X5R  
(Note)  
CBYPASS  
10 nF Ceramic  
4.2V  
ON/OFF Control VOUT2  
ON/OFF Control VOUT1  
8
TC1301B  
1
System RESET  
2.8V @ 300 mA  
RESET SHDN1  
2
3
7
6
BATTERY  
VOUT1  
GND  
VIN  
COUT1  
1 µF Ceramic  
X5R  
CIN  
1 µF  
2.6V @ 150 mA  
COUT2  
VOUT2  
4
5
Bypass SHDN2  
2.7V  
to  
4.2V  
1 µF Ceramic  
X5R  
ON/OFF Control VOUT2  
Note: CBYPASS is optional  
DS21798B-page 2  
© 2005 Microchip Technology Inc.  
TC1301A/B  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
...................................................................................6.5V  
DD  
Maximum Voltage on Any Pin ...... (V – 0.3) to (V + 0.3)V  
SS  
IN  
Power Dissipation ..........................Internally Limited (Note 7)  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature, T ...........................+150°C  
J
Continuous Operating Temperature Range ..-40°C to +125°C  
ESD protection on all pins, HBM, MM..................... 4 kV, 400V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, V = V +1V, I  
= I  
= 100 µA, C = 4.7 µF, C  
= C = 1 µF,  
OUT2  
IN  
R
OUT1  
OUT2  
IN  
OUT1  
C
= 10 nF, SHDN > V , T = +25°C.  
BYPASS  
IH A  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Operating Voltage  
Maximum Output Current  
Maximum Output Current  
Output Voltage Tolerance  
V
2.7  
300  
150  
6.0  
V
Note 1  
IN  
I
I
mA  
mA  
%
V
V
= 2.7V to 6.0V (Note 1)  
= 2.7V to 6.0V (Note 1)  
OUT1Max  
OUT2Max  
IN  
IN  
V
V
– 2.5 V ±0.5  
V + 2.5  
R
Note 2  
OUT  
R
R
(V  
and V  
)
OUT1  
OUT2  
Temperature Coefficient  
TCV  
-1  
25  
0.02  
0.1  
0.2  
+1  
ppm/°C Note 3  
OUT  
(V  
and V  
)
OUT1  
OUT2  
Line Regulation  
(V and V  
ΔV  
/
%/V  
%
(V +1V) V 6V  
OUT  
R
IN  
)
ΔV  
OUT1  
OUT2  
IN  
Load Regulation, V  
2.5V  
ΔV  
/
/
I
= 0.1 mA to I  
(Note 4)  
(Note 4)  
OUT  
OUT  
OUT  
OUT  
OUTX  
OUTX  
OUTMax  
(V  
and V  
)
V
OUT1  
OUT2  
Load Regulation, V  
(V and V  
< 2.5V  
ΔV  
-1.5  
0.1  
+1.5  
%
I
= 0.1 mA to I  
OUT  
OUT  
OUTMax  
)
OUT2  
V
OUT1  
Thermal Regulation  
Dropout Voltage (Note 6)  
ΔV  
/ΔP  
0.04  
%/W  
Note 5  
OUT  
D
V
V
2.7V  
2.6V  
V
– V  
– V  
104  
150  
180  
250  
mV  
mV  
I
I
= 300 mA  
OUT1  
OUT2  
IN  
OUT  
OUT  
OUT1  
V
= 150 mA  
IN  
OUT2  
Supply Current  
TC1301A  
I
103  
114  
180  
180  
µA  
µA  
SHDN2 = V , V  
= OPEN,  
DET  
IN(A)  
IN(B)  
IN  
I
= I  
= 0 mA  
OUT1  
OUT2  
TC1301B  
I
SHDN1 = SHDN2 = V ,  
IN  
I
= I  
= 0 mA  
OUT1  
OUT2  
Note 1: The minimum V has to meet two conditions: V 2.7V and V V + V  
.
IN  
IN  
IN  
R
DROPOUT  
2:  
V
is defined as the higher of the two regulator nominal output voltages (V  
or V  
).  
R
OUT1  
OUT2  
6
3: TCV  
= ((V  
- V  
) * 10 )/(V  
* ΔT).  
OUT  
OUT  
OUTmax  
OUTmin  
4: Regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
5: Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to I  
t = 10 ms.  
at V = 6V for  
IN  
LMAX  
6: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its value  
measured at a 1V differential.  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction-to-air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation causes the device to initiate thermal shutdown.  
© 2005 Microchip Technology Inc.  
DS21798B-page 3  
TC1301A/B  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, V = V +1V, I  
= I  
= 100 µA, C = 4.7 µF, C  
= C = 1 µF,  
OUT2  
IN  
R
OUT1  
OUT2  
IN  
OUT1  
C
= 10 nF, SHDN > V , T = +25°C.  
BYPASS  
IH A  
Boldface type specifications apply for junction temperatures of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
90  
Units  
Conditions  
Shutdown Supply Current  
I
I
58  
µA  
µA  
SHDN2 = GND, V  
= OPEN  
DET  
IN_SHDNA  
TC1301A  
Shutdown Supply Current  
0.1  
58  
1
SHDN1 = SHDN2 = GND  
IN_SHDNB  
TC1301B  
f 100 Hz, I  
= I  
= 50 mA,  
OUT2  
OUT1  
Power Supply Rejection Ratio  
Output Noise  
PSRR  
dB  
C
= 0 µF  
IN  
f 1 kHz, I  
= I  
= 50 mA,  
½
OUT1  
OUT2  
eN  
830  
nV/(Hz)  
C
= 0 µF  
IN  
Output Short-Circuit Current (Average)  
V
I
45  
200  
140  
15  
mA  
mA  
R
R
1Ω  
OUT1  
OUT2  
OUTsc  
OUTsc  
LOAD1  
LOAD2  
V
I
1Ω  
SHDN Input High Threshold  
SHDN Input Low Threshold  
Wake-Up Time (From SHDN  
V
%V  
%V  
V
V
V
= 2.7V to 6.0V  
= 2.7V to 6.0V  
IH  
IN  
IN  
IN  
IN  
IN  
V
IL  
= 5V, I  
= I  
= 30 mA,  
= 50 mA,  
OUT1  
OUT2  
OUT2  
t
5.3  
50  
20  
µs  
µs  
WK  
mode), (V  
)
See Figure 5-1  
OUT2  
Settling Time (From SHDN mode),  
(V  
V
IN  
= 5V, I  
= I  
OUT1  
t
S
)
See Figure 5-2  
OUT2  
Thermal Shutdown Die  
Temperature  
T
150  
10  
°C  
°C  
V
V
V
= 5V, I  
= 5V  
= I  
= 100 µA  
SD  
IN  
OUT1  
OUT2  
Thermal Shutdown Hysteresis  
Voltage Range  
T
HYS  
IN  
1.0  
1.2  
6.0  
6.0  
T = 0°C to +70°C  
A
V
DET  
T = -40°C to +125°C  
A
RESET Threshold  
V
-1.4  
-2.8  
30  
+1.4  
+2.8  
%
%
TH  
T = -40°C to +125°C  
A
RESET Threshold Tempco  
ΔV /ΔT  
ppm/°C  
µs  
TH  
V
= V to (V – 100 mV),  
TH TH  
DET  
V
RESET Delay  
t
t
180  
300  
DET  
RPD  
RPU  
See Figure 5-3  
V
= V - 100 mV to V + 100 mV,  
TH TH  
DET  
RESET Active Time-out Period  
RESET Output Voltage Low  
RESET Output Voltage High  
140  
560  
ms  
V
I
= 1.2 mA, See Figure 5-3.  
SINK  
V
= V  
, I  
= 1.2 mA,  
DET  
THmin SINK  
V
0.2  
I
= 100 µA for V < 1.8V,  
OL  
SINK  
DET  
See Figure 5-3  
0.9  
V
> V , I = 500 µA,  
THmax SOURCE  
DET  
V
V
OH  
V
See Figure 5-3  
DET  
Note 1: The minimum V has to meet two conditions: V 2.7V and V V + V  
.
IN  
IN  
IN  
R
DROPOUT  
2:  
V
is defined as the higher of the two regulator nominal output voltages (V  
or V  
).  
R
OUT1  
OUT2  
6
3: TCV  
= ((V  
- V  
) * 10 )/(V  
* ΔT).  
OUT  
OUT  
OUTmax  
OUTmin  
4: Regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
5: Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to I  
t = 10 ms.  
at V = 6V for  
IN  
LMAX  
6: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its value  
measured at a 1V differential.  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction-to-air (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation causes the device to initiate thermal shutdown.  
DS21798B-page 4  
© 2005 Microchip Technology Inc.  
TC1301A/B  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: V = +2.7V to +6.0V.  
IN  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Junction Temperature  
Range  
TA  
-40  
+125  
°C  
Steady State  
Storage Temperature Range  
Maximum Junction Temperature  
Thermal Package Resistances  
Thermal Resistance, MSOP8  
Thermal Resistance, DFN8  
TA  
TJ  
-65  
+150  
+150  
°C  
°C  
Transient  
θJA  
θJA  
208  
41  
°C/W Typical 4-Layer Board  
°C/W Typical 4-Layer Board with Vias  
© 2005 Microchip Technology Inc.  
DS21798B-page 5  
TC1301A/B  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = V +1V, I  
= I  
= 100 µA, C = 4.7 µF, C C = 1 µF (X5R or X7R),  
OUT1 = OUT2  
IN  
R
OUT1  
OUT2  
IN  
C
= 0 pF, SHDN1 = SHDN2 > V . For the TC1301A, V  
= V  
, RESET = OPEN, T = +25°C.  
BYPASS  
IH  
DET  
OUT1  
A
350  
300  
3.00  
TJ = 25°C  
TJ = 25°C  
OUT1 = IOUT2 = 0 µA  
VOUT1 Active  
TC1301B  
IOUT1 = 100 mA  
I
IOUT2 = 50 mA  
2.90  
250  
200  
150  
100  
50  
VOUT1  
2.80  
VOUT2 Active  
VOUT2 SHDN  
2.70  
VOUT2  
0
2.60  
2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0  
Input Voltage (V)  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
6
FIGURE 2-1:  
Quiescent Current vs. Input  
FIGURE 2-4:  
Output Voltage vs. Input  
Voltage.  
Voltage.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
VOUT1  
ON  
VOUT2  
OFF  
TJ = +25°C  
IOUT1 = 300 mA  
IOUT2 = 100 mA  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
6
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
Input Voltage (V)  
6
FIGURE 2-2:  
SHDN Voltage Threshold  
FIGURE 2-5:  
Output Voltage vs. Input  
vs. Input Voltage.  
Voltage.  
140  
140.0  
TC1301B  
VIN = 4.2V  
OUT1 = IOUT2 = 0 µA  
VOUT1 Active  
VR1 = 2.8V  
R2 = 2.6V  
OUT2 = 100 µA  
130  
120  
110  
100  
90  
VOUT2 Active  
I
V
I
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
TJ = +125°C  
TJ = +25°C  
VOUT2 SHDN  
TJ = - 40°C  
80  
70  
60  
50  
40  
0
50  
100  
150  
200  
250  
300  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
I
OUT1 (mA)  
Junction Temperature (°C)  
FIGURE 2-3:  
Junction Temperature.  
Quiescent Current vs.  
FIGURE 2-6:  
Current (VOUT1).  
Dropout Voltage vs. Output  
DS21798B-page 6  
© 2005 Microchip Technology Inc.  
TC1301A/B  
Note: Unless otherwise indicated, V = V +1V, I  
= I  
= 100 µA, C = 4.7 µF, C C = 1 µF (X5R or X7R),  
OUT1 = OUT2  
IN  
R
OUT1  
OUT2  
IN  
C
= 0 pF, SHDN1 = SHDN2 > V . For the TC1301A, V  
= V  
, RESET = OPEN, T = +25°C.  
BYPASS  
IH  
DET  
OUT1  
A
0.40  
140  
120  
VR1 = 2.8V  
VR2 = 2.6V  
IOUT2 = 100 µA  
VOUT2  
IOUT2 = 0.1 mA to 150 mA  
IOUT1 = 0.1 mA to 300 mA  
0.30  
0.20  
IOUT1 = 300 mA  
100  
80  
60  
40  
20  
0
VOUT1  
0.10  
0.00  
-0.10  
IOUT1 = 100 mA  
IOUT1 = 50 mA  
VR1 = 2.8V  
-0.20  
VR2 = 2.6V  
-0.30  
-0.40  
VIN = 4.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (125°C)  
Junction Temperature (°C)  
FIGURE 2-7:  
Dropout Voltage vs.  
FIGURE 2-10:  
VOUT1 and VOUT2 Load  
Junction Temperature (VOUT1).  
Regulation vs. Junction Temperature.  
180  
0.045  
VIN = 3.8V to 6.0V  
VR1 = 2.8V  
VR2 = 2.6V  
160  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
VR1 = 2.8V, IOUT1 = 100 µA  
R2 = 2.6V, IOUT2 = 100 µA  
TJ = +125°C  
TJ = +25°C  
TJ = - 40°C  
V
140  
I
OUT1 = 100 µA  
VOUT2  
120  
100  
80  
60  
40  
20  
0
VOUT1  
0
30  
60  
90  
120  
150  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
IOUT2 (mA)  
FIGURE 2-8:  
Dropout Voltage vs. Output  
FIGURE 2-11:  
VOUT1 and VOUT2 Line  
Current (VOUT2).  
Regulation vs. Junction Temperature.  
180  
2.832  
VIN = 4.2V  
VR1 = 2.8V  
IOUT2 = 150 mA  
160  
2.828  
V
R2 = 2.6V, IOUT2 = 100 µA  
IOUT1 = 300 mA  
140  
VR1 = 2.8V  
R2 = 2.6V  
IOUT1 = 100 µA  
V
IOUT1 = 100 mA  
120  
2.824  
2.820  
2.816  
2.812  
2.808  
100  
80  
IOUT2 = 50 mA  
IOUT2 = 10 mA  
60  
IOUT1 = 100 µA  
40  
20  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-9:  
Dropout Voltage vs.  
FIGURE 2-12:  
VOUT1 vs. Junction  
Junction Temperature (VOUT2).  
Temperature.  
© 2005 Microchip Technology Inc.  
DS21798B-page 7  
TC1301A/B  
Note: Unless otherwise indicated, V = V +1V, I  
= I  
= 100 µA, C = 4.7 µF, C  
C
= 1 µF (X5R or X7R),  
IN  
R
OUT1  
OUT2  
IN  
OUT1 = OUT2  
C
= 0 pF, SHDN1 = SHDN2 > V . For the TC1301A, V  
= V  
, RESET = OPEN, T = +25°C.  
BYPASS  
IH  
DET  
OUT1  
A
2.856  
2.848  
30  
VR1 = 2.8V  
VR1 = 2.8V, IOUT1 = 300 mA  
R2 = 2.6V, IOUT2 = 100 µA  
VDET = 6.0V  
VR2 = 2.6V  
V
25  
20  
15  
10  
5
VIN = 3.0V  
VDET = 4.2V  
VDET = 3.0V  
2.840  
2.832  
2.824  
2.816  
2.808  
VIN = 4.2V  
VIN = 6.0V  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-13:  
VOUT1 vs. Junction  
FIGURE 2-16:  
IDET current vs. Junction  
Temperature.  
Temperature.  
2.645  
2.640  
2.635  
2.630  
2.625  
2.620  
2.615  
400  
375  
350  
325  
300  
275  
250  
225  
200  
VIN = 4.2V  
IOUT2 = 100 µA  
VR1 = 2.8V  
VR2 = 2.6V  
VDET = 2.63V  
IOUT2 = 50 mA  
IOUT2 = 150 mA  
VIN = 4.2V  
R1 = 2.8V, IOUT1 = 100 µA  
VR2 = 2.6V  
V
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-14:  
VOUT2 vs. Junction  
FIGURE 2-17:  
RESET Active Time vs.  
Temperature.  
Junction Temperature.  
2.644  
2.6395  
2.6390  
2.6385  
2.6380  
2.6375  
2.6370  
2.6365  
2.6360  
2.6355  
VIN = 3.0V  
VIN = 6.0V  
VR1 = 2.8V, IOUT1 = 100 µA  
VR2 = 2.6V, IOUT2 = 150 mA  
2.640  
2.636  
2.632  
2.628  
2.624  
VIN = 4.2V  
VIN = 4.2V  
VR1 = 2.8V  
VR2 = 2.6V  
VDET = 2.63V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-15:  
Temperature.  
VOUT2 vs. Junction  
FIGURE 2-18:  
Temperature.  
VDET Trip Point vs. Junction  
DS21798B-page 8  
© 2005 Microchip Technology Inc.  
TC1301A/B  
Note: Unless otherwise indicated, V = V +1V, I  
= I  
= 100 µA, C = 4.7 µF, C C = 1 µF (X5R or X7R),  
OUT1 = OUT2  
IN  
R
OUT1  
OUT2  
IN  
C
= 0 pF, SHDN1 = SHDN2 > V . For the TC1301A, V  
= V  
, RESET = OPEN, T = +25°C.  
BYPASS  
IH  
DET  
OUT1  
A
10  
1
VOUT1  
VOUT2  
VIN = 4.2V  
0.1  
V
R1 = 2.8V  
R2=2.6V  
V
I
OUT1 = 150 mA  
IOUT2 100 mA  
BYPASS = 10 nF  
0.01  
=
C
0.001  
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-19:  
Power Supply Rejection  
FIGURE 2-22:  
VOUT1 and VOUT2 Noise vs.  
Ratio vs. Frequency (without bypass capacitor).  
Frequency (with bypass capacitor).  
FIGURE 2-20:  
Power Supply Rejection  
FIGURE 2-23:  
VOUT1 and VOUT2 Power-up  
Ratio vs. Frequency (with bypass capacitor).  
from Shutdown TC1301B.  
10  
VOUT2  
1
VOUT1  
VIN = 4.2V  
V
R1 = 2.8V  
R2=2.6V  
V
0.1  
I
OUT1 = 150 mA  
IOUT2 100 mA  
BYPASS = 0 nF  
=
C
0.01  
0.01  
0.1  
1
10  
100  
1000  
Frequency (KHz)  
FIGURE 2-21:  
VOUT1 and VOUT2 Noise vs.  
FIGURE 2-24:  
VOUT2 Power-up from  
Frequency (without bypass capacitor).  
Shutdown Input TC1301A.  
© 2005 Microchip Technology Inc.  
DS21798B-page 9  
TC1301A/B  
Note: Unless otherwise indicated, V = V +1V, I  
= I  
= 100 µA, C = 4.7 µF, C  
C
= 1 µF (X5R or X7R),  
IN  
R
OUT1  
OUT2  
IN  
OUT1 = OUT2  
C
= 0 pF, SHDN1 = SHDN2 > V . For the TC1301A, V  
= V  
, RESET = OPEN, T = +25°C.  
BYPASS  
IH  
DET  
OUT1 A  
FIGURE 2-25:  
from Input Voltage TC1301B.  
VOUT1 and VOUT2 Power-up  
FIGURE 2-28:  
VOUT2  
150 mA Dynamic Load Step  
.
FIGURE 2-26:  
Dynamic Line Response.  
FIGURE 2-29:  
RESET Power-Up From VIN  
TC1301B.  
FIGURE 2-27:  
VOUT1  
300 mA Dynamic Load Step  
FIGURE 2-30:  
Down.  
TC1301A RESET Power-  
.
DS21798B-page 10  
© 2005 Microchip Technology Inc.  
TC1301A/B  
Note: Unless otherwise indicated, V = V +1V, I  
= I  
= 100 µA, C = 4.7 µF, C C = 1 µF (X5R or X7R),  
OUT1 = OUT2  
IN  
R
OUT1 OUT2  
IN  
C
= 0 pF, SHDN1 = SHDN2 > V . For the TC1301A, V  
= V  
, RESET = OPEN, T = +25°C.  
BYPASS  
IH  
DET  
OUT1  
A
0.35  
0.30  
4.4  
4.2  
VR1 = 2.8V,VR2 = 2.6V  
VDET = VTH - 20 mV  
IOL = 3.2 mA  
VDET = 4.2V  
RESETISOURCE = 800 µA  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VR1 = 2.8V,VR2 = 2.6V  
DET = VTH + 20 mV  
V
IOL = 1.2 mA  
VDET = 3.0V  
RESETISOURCE = 500 µA  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-31:  
RESET Output Voltage Low  
FIGURE 2-32:  
RESET Output Voltage High  
vs. Junction Temperature.  
vs. Junction Temperature.  
© 2005 Microchip Technology Inc.  
DS21798B-page 11  
TC1301A/B  
3.0  
TC1301A PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
TC1301A PIN FUNCTION TABLE  
Name  
Pin No.  
Function  
1
RESET  
Push-pull output pin that will remain low while VDET is below the reset threshold and for  
300 ms after VDET rises above the reset threshold.  
2
3
4
VOUT1  
GND  
Regulated output voltage #1 capable of 300 mA.  
Circuit ground pin.  
Bypass  
Internal reference bypass pin. A 10 nF external capacitor can be used to further reduce  
output noise and improve PSRR performance.  
5
6
7
8
SHDN2  
VOUT2  
VIN  
Output #2 shutdown control Input.  
Regulated output voltage #2 capable of 150 mA.  
Unregulated input voltage pin.  
VDET  
Input pin for Voltage Detector (VDET).  
3.1  
RESET Output Pin  
3.5  
Output Voltage #2 Shutdown  
(SHDN2)  
The push-pull output pin is used to monitor the voltage  
on the VDET pin. If the VDET voltage is less than the  
threshold voltage, the RESET output will be held in the  
low state. As the VDET pin rises above the threshold,  
the RESET output will remain in the low state for  
300 ms and then change to the high state, indicating  
that the voltage on the VDET pin is above the threshold.  
ON/OFF control is performed by connecting SHDN2 to  
its proper level. When the input of this pin is connected  
to a voltage less than 15% of VIN, VOUT2 will be OFF. If  
this pin is connected to a voltage that is greater than  
45% of VIN, VOUT2 will be turned ON.  
3.6  
Regulated Output Voltage #2  
(V  
)
OUT2  
3.2  
Regulated Output Voltage #1  
(V  
)
Connect VOUT2 to the positive side of the VOUT2  
capacitor and load. This pin is capable of a maximum  
output current of 150 mA. VOUT2 can be turned ON and  
OFF using SHDN2.  
OUT1  
Connect VOUT1 to the positive side of the VOUT1  
capacitor and load. It is capable of 300 mA maximum  
output current. VOUT1 output is available when VIN is  
available; there is no pin to turn it OFF. See TC1301B  
if ON/OFF control of VOUT1 is desired.  
3.7  
Unregulated Input Voltage Pin  
(V )  
IN  
3.3  
Circuit Ground Pin (GND)  
Connect the unregulated input voltage source to VIN. If  
the input voltage source is located more than several  
inches away, or is a battery, a typical input capacitance  
of 1 µF to 4.7 µF is recommended.  
Connect GND to the negative side of the input and  
output capacitor. Only the LDO internal circuitry bias  
current flows out of this pin (200 µA maximum).  
3.8  
Input Pin for Voltage Detector  
(V  
3.4  
Reference Bypass Input  
)
DET  
By connecting an external 10 nF capacitor (typical) to  
the bypass input, both outputs (VOUT1 and VOUT2) will  
have less noise and improved Power Supply Ripple  
Rejection (PSRR) performance. The LDO output  
voltage start-up time will increase with the addition of  
an external bypass capacitor. By leaving this pin  
unconnected, the start-up time will be minimized.  
The voltage on the input of VDET is compared with the  
preset VDET threshold voltage. If the voltage is below  
the threshold, the RESET output will be low. If the  
voltage is above the VDET threshold, the RESET output  
will be high after the RESET time period. The IDET  
supply current is typically 9 µA at room temperature,  
with VDET = 3.8V.  
DS21798B-page 12  
© 2005 Microchip Technology Inc.  
TC1301A/B  
4.0  
TC1301B PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 4-1.  
TABLE 4-1:  
TC1301B PIN FUNCTION TABLE  
Name  
Pin No.  
Function  
1
RESET  
Push-pull output pin that will remain low while VDET is below the reset threshold and for  
300 ms after VOUT1 rises above the reset threshold  
2
3
4
VOUT1  
GND  
Regulated output voltage #1 capable of 300 mA  
Circuit ground pin  
Bypass  
Internal reference bypass pin. A 10 nF external capacitor can be used to further reduce  
output noise and improve PSRR performance  
5
6
7
8
SHDN2  
VOUT2  
VIN  
Output #2 shutdown control Input  
Regulated output voltage #2 capable of 150 mA  
Unregulated input voltage pin  
SHDN1  
Output #1 shutdown control input  
4.1  
RESET Output Pin  
4.5  
Output Voltage #2 Shutdown  
(SHDN2)  
The push-pull output pin is used to monitor the output  
voltage (VOUT1). If VOUT1 is less than the threshold volt-  
age, the RESET output will be held in the low state. As  
VOUT1 rises above the threshold, the RESET output will  
remain in the low state for 300 ms and then change to  
the high state, indicating that the voltage on VOUT1 is  
above the threshold.  
ON/OFF control is performed by connecting SHDN2 to  
its proper level. When this pin is connected to a voltage  
less than 15% of VIN, VOUT2 will be OFF. If this pin is  
connected to a voltage that is greater than 45% of VIN,  
VOUT2 will be turned ON.  
4.6  
Regulated Output Voltage #2  
(V  
4.2  
Regulated Output Voltage #1  
(V  
)
OUT2  
)
OUT1  
Connect VOUT2 to the positive side of the VOUT2  
capacitor and load. This pin is capable of a maximum  
output current of 150 mA. VOUT2 can be turned ON and  
OFF using SHDN2.  
Connect VOUT1 to the positive side of the VOUT1  
capacitor and load. It is capable of 300 mA maximum  
output current. For the TC1301B, VOUT1 can be turned  
ON and OFF using the SHDN1 input pin.  
4.7  
Unregulated Input Voltage Pin  
(V )  
4.3  
Circuit Ground Pin (GND)  
IN  
Connect GND to the negative side of the input and  
output capacitor. Only the LDO internal circuitry bias  
current flows out of this pin (200 µA maximum).  
Connect the unregulated input voltage source to VIN. If  
the input voltage source is located more than several  
inches away or is a battery, a typical minimum input  
capacitance of 1 µF and 4.7 µF is recommended.  
4.4  
Reference Bypass Input  
4.8  
Output Voltage #1 Shutdown  
(SHDN1)  
By connecting an external 10 nF capacitor (typical) to  
bypass, both outputs (VOUT1 and VOUT2) will have less  
noise and improved Power Supply Ripple Rejection  
(PSRR) performance. The LDO output voltage start-up  
time will increase with the addition of an external  
bypass capacitor. By leaving this pin unconnected, the  
start-up time will be minimized.  
ON/OFF control is performed by connecting SHDN1 to  
its proper level. When this pin is connected to a voltage  
less than 15% of VIN, VOUT1 will be OFF. If this pin is  
connected to a voltage that is greater than 45% of VIN,  
VOUT1 will be turned ON.  
© 2005 Microchip Technology Inc.  
DS21798B-page 13  
TC1301A/B  
the LDO as is practical. Larger input capacitors will help  
reduce the input impedance and further reduce any  
high-frequency noise on the input and output of the  
LDO.  
5.0  
5.1  
DETAILED DESCRIPTION  
Device Overview  
The TC1301A/B is a combination device consisting of  
one 300 mA LDO regulator with a fixed output voltage,  
5.6  
Output Capacitor  
V
OUT1 (1.5V – 3.3V), one 150 mA LDO regulator with a  
A minimum output capacitance of 1 µF for each of the  
TC1301A/B LDO outputs is necessary for stability.  
Ceramic capacitors are recommended because of their  
size, cost and environmental robustness qualities.  
Electrolytic (Tantalum or Aluminum) capacitors can be  
used on the LDO outputs as well. The Equivalent  
Series Resistance (ESR) requirements on the  
electrolytic output capacitors are between 0 and 2  
ohms. The output capacitor should be located as close  
to the LDO output as is practical. Ceramic materials,  
X7R and X5R, have low temperature coefficients and  
are well within the acceptable ESR range required. A  
typical 1 uF X5R 0805 capacitor has an ESR of 50 milli-  
ohms. Larger LDO output capacitors can be used with  
the TC1301A/B to improve dynamic performance and  
power supply ripple rejection performance. A maximum  
of 10 µF is recommended. Aluminum electrolytic  
capacitors are not recommended for low temperature  
applications of < -25°C.  
fixed output voltage, VOUT2 (1.5V – 3.3V), and a  
microcontroller voltage monitor/RESET (2.2V to 3.2V).  
For the TC1301A, the 300 mA output (VOUT1) is always  
present, independent of the level of SHDN2. The  
150 mA output (VOUT2) can be turned on/off by  
controlling the level of SHDN2.  
For the TC1301B, VOUT1 and VOUT2 each have  
independent shutdown input pins (SHDN1 and  
SHDN2) to control their respective outputs. In the case  
of the TC1301B, the voltage detect input of the  
microcontroller RESET function is internally connected  
to the VOUT1 output of the device.  
5.2  
LDO Output #1  
LDO output #1 is rated for 300 mA of output current.  
The typical dropout voltage for VOUT1 = 104 mV @  
300 mA. A 1 µF (minimum) output capacitor is needed  
for stability and should be located as close to the VOUT1  
pin and ground as possible.  
5.7  
Bypass Input  
The bypass pin is connected to the internal LDO  
reference. By adding capacitance to this pin, the LDO  
ripple rejection, input voltage transient response and  
output noise performance are all increased. A typical  
bypass capacitor between 470 pF to 10 nF is  
recommended. Larger bypass capacitors can be used,  
but results in a longer time-period for the LDO outputs  
to reach their rated output voltage when started from  
SHDN or VIN.  
5.3  
LDO Output #2  
LDO output #2 is rated for 150 mA of output current.  
The typical dropout voltage for VOUT2 = 150 mV. A 1 µF  
(minimum) capacitor is needed for stability and should  
be located as close to the VOUT2 pin and ground as  
possible.  
5.4  
RESET Output  
The RESET output is used to detect whether the level  
on the input of VDET (TC1301A) or VOUT1 (TC1301B) is  
above or below a preset threshold. If the voltage  
detected is below the preset threshold, the RESET  
output is capable of sinking 1.2 mA (VRESET < 0.2V  
maximum). Once the voltage being monitored is above  
the preset threshold, the RESET output pin will  
transition from a logic-low to a logic-high after a 300 ms  
delay. The RESET output is a push-pull configuration  
and will actively pull the RESET output up to VDET  
when not in RESET.  
5.8  
GND  
For the optimal noise and PSRR performance, the  
GND pin of the TC1301A/B should be tied to a quiet  
circuit ground. For applications that have switching or  
noisy inputs, tie the GND pin to the return of the output  
capacitor. Ground planes help lower inductance and  
voltage spikes caused by fast transient load currents  
and are recommended for applications that are  
subjected to fast load transients.  
5.9  
SHDN1/SHDN2 Operation  
The TC1301A SHDN2 pin is used to turn VOUT2 ON  
and OFF. A logic-high level on SHDN2 will enable the  
5.5  
Input Capacitor  
Low input source impedance is necessary for the two  
LDO outputs to operate properly. When operating from  
batteries or in applications with long lead length (> 10  
inches) between the input source and the LDO, some  
input capacitance is recommended. A minimum of  
1.0 µF to 4.7 µF is recommended for most applications.  
When using large capacitors on the LDO outputs,  
larger capacitance is recommended on the LDO input.  
The capacitor should be placed as close to the input of  
VOUT2 output, while a logic-low on the SHDN2 pin will  
disable the VOUT2 output. For the TC1301A, VOUT1 is  
not affected by SHDN2 and will be enabled as long as  
the input voltage is present.  
The TC1301B SHDN1 and SHDN2 pins are used to  
turn VOUT1 and VOUT2 ON and OFF. They operate  
independent of each other.  
DS21798B-page 14  
© 2005 Microchip Technology Inc.  
TC1301A/B  
5.10 TC1301A SHDN2 Timing  
5.12  
V
and RESET Operation  
DET  
VOUT1 will rise independent of the level of SHDN2 for  
the TC1301A. Figure 5-1 is used to define the wake-up  
time from shutdown (tWK) and the settling time (tS). The  
wake-up time is dependant upon the frequency of  
operation. The faster the SHDN pin is pulsed, the  
shorter the wake-up time will be.  
The TC1301A/B integrates an independent voltage  
reset monitor that can be used for low-battery input  
voltage detection or a microprocessor Power-On Reset  
(POR) function. The input voltage for the detector is  
different for the TC1301A than it is for the TC1301B.  
For the TC1301A, the input voltage to the detector is  
pin 8 (VDET). For the TC1301B, the input voltage to the  
detector is internally connected to the output of LDO #1  
(VOUT1). The detected voltage is sensed and compared  
to an internal threshold. When the voltage on the VDET  
pin is below the threshold voltage, the RESET output  
pin is low. When the voltage on the VDET pin rises  
above the voltage threshold, the RESET output will  
remain low for typically 300 ms (RESET time-out  
period). After the RESET time-out period, the RESET  
output voltage will transition from the low output state  
to the high output state if the detected voltage pin  
remains above the threshold voltage.  
VIN  
ts  
twk  
SHDN2  
VOUT1  
The RESET output will be driven low within 180 µs of  
VDET going below the RESET voltage threshold. The  
RESET output will remain valid for detected voltages  
greater than 1.2V overtemperature.  
VOUT2  
5.13 TC1301A RESET Timing  
Figure 5-3 shows the RESET timing waveforms for the  
TC1301A. This diagram is also used to define the  
RESET active time-out period (tRPU) and the VDET  
RESET delay time (tRPD).  
FIGURE 5-1:  
TC1301A Timing.  
5.11 TC1301B SHDN1 / SHDN2 Timing  
For the TC1301B, the SHDN1 input pin is used to  
control VOUT1. The SHDN2 input pin is used to control  
VOUT2, independent of the logic input on SHDN1.  
VTH  
VDET  
RESET Time  
VIN  
TRPD  
VOH  
ts  
twk  
RESET  
SHDN1  
VOUT1  
VOL  
1V  
FIGURE 5-3:  
TC1301A RESET Timing.  
SHDN2  
VOUT2  
FIGURE 5-2:  
TC1301B Timing.  
© 2005 Microchip Technology Inc.  
DS21798B-page 15  
TC1301A/B  
5.15.2  
OVERTEMPERATURE  
PROTECTION  
5.14 TC1301B RESET Timing  
The timing waveforms for the TC1301B RESET output  
are shown in Figure 5-4. Note that the RESET  
threshold input for the TC1301B is VOUT1. The VOUT1  
to RESET threshold detector connection is made  
internal in the case of the TC1301B.  
If the internal power dissipation within the TC1301A/B  
is excessive due to a faulted load or higher-than-  
specified line voltage, an internal temperature-sensing  
element will prevent the junction temperature from  
exceeding approximately 150°C. If the junction  
temperature does reach 150°C, both outputs will be  
disabled until the junction temperature cools to  
approximately 140°C. The device will resume normal  
operation. If the internal power dissipation continues to  
be excessive, the device will again shut off. The VDET  
and RESET circuit will continue to operate normally  
during an overtemperature fault condition for both the  
TC1301A and TC1301B.  
VIN  
VTH  
VOUT1  
RESET Time  
TRPD  
VOH  
RESET  
VOL  
1V  
FIGURE 5-4:  
TC1301B RESET Timing.  
5.15 Device Protection  
5.15.1 OVERCURRENT LIMIT  
In the event of a faulted output load, the maximum  
current the LDO output will permit to flow is limited  
internally for each of the TC1301A/B outputs. The peak  
current limit for VOUT1 is typically 1.1A, while the peak  
current limit for VOUT2 is typically 0.5A. During short-  
circuit operation, the average current is limited to  
200 mA for VOUT1 and 140 mA for VOUT2.The VDET  
and RESET circuit will continue to operate in the event  
of an overcurrent on either output for the TC1301A.  
The voltage detect and RESET circuit will continue to  
operate in the event of an overcurrent on VOUT1 (or  
VOUT2) for the TC1301B. In the event of an overcurrent  
on VOUT1, the RESET will detect the absence of VOUT1  
.
DS21798B-page 16  
© 2005 Microchip Technology Inc.  
TC1301A/B  
EQUATION 6-1:  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX))  
6.0  
6.1  
APPLICATION CIRCUITS/  
ISSUES  
PLDO  
= LDO Pass device internal power  
dissipation  
Typical Application  
The TC1301A/B is used for applications that require  
the integration of two LDO’s and a microcontroller  
RESET.  
VIN(MAX) = Maximum input voltage  
VOUT(MIN)= LDO minimum output voltage  
In addition to the LDO pass element power dissipation,  
there is power dissipation within the TC1301A/B as a  
result of quiescent or ground current. The power  
dissipation as a result of the ground current can be  
calculated using the following equation. The VIN pin  
quiescent current and the VDET pin current are both  
considered. The VIN current is a result of LDO  
quiescent current, while the VDET current is a result of  
the voltage detector current.  
TC1301A  
8
7
6
1
2
3
V
System RESET  
2.8V @ 300 mA  
DET  
RESET  
BATTERY  
V
V
IN  
OUT1  
1.8V  
@ 150 mA  
C
C
OUT1  
IN  
V
1 µF  
GND  
OUT2  
1 µF Ceramic  
X5R  
4
5
2.7V  
to  
4.2V  
SHDN2  
Bypass  
C
OUT2  
C
bypass  
1 µF Ceramic  
X5R  
10 nF Ceramic  
ON/OFF Control V  
OUT2  
EQUATION 6-2:  
PI(GND) = VIN(MAX) × (IVIN + IVDET  
)
ON/OFF Control V  
8
OUT1  
TC1301B  
PI(GND) = Total current in ground pin.  
IN(MAX) = Maximum input voltage.  
1
SHDN1  
System RESET  
2.8V @ 300 mA  
RESET  
V
IVIN  
BATTERY  
2
3
4
7
6
V
V
IN  
OUT2  
OUT1  
1.8V  
@ 150 mA  
= Current flowing in the VIN pin with no  
output current on either LDO output.  
= Current in the VDET pin with  
RESET loaded.  
C
C
OUT1  
IN  
V
1 µF  
GND  
1 µF Ceramic  
X5R  
5
IVDET  
SHDN2  
2.7V  
to  
4.2V  
Bypass  
C
OUT2  
1 µF Ceramic  
X5R  
ON/OFF Control V  
OUT2  
The total power dissipated within the TC1301A/B is the  
sum of the power dissipated in both of the LDO’s and  
the P(IGND) term. Because of the CMOS construction,  
the typical IGND for the TC1301A/B is 116 µA.  
Operating at a maximum of 4.2V results in a power  
dissipation of 0.5 milliWatts. For most applications, this  
is small compared to the LDO pass device power  
dissipation and can be neglected.  
FIGURE 6-1:  
TC1301A/B.  
Typical Application Circuit  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = 3X3DFN8  
Input Voltage Range = 2.7V to 4.2V  
VIN maximum = 4.2V  
The maximum continuous operating junction  
temperature specified for the TC1301A/B is 125°C. To  
estimate the internal junction temperature of the  
TC1301A/B, the total internal power dissipation is  
multiplied by the thermal resistance from junction to  
ambient (RθJA) of the device. The thermal resistance  
from junction to ambient for the 3X3DFN8 pin package  
is estimated at 41° C/W.  
VIN typical = 3.6V  
VOUT1 = 300 mA maximum  
VOUT2 = 150 mA maximum  
System RESET Load = 10 kΩ  
6.2  
6.2.1  
Power Calculations  
EQUATION 6-3:  
POWER DISSIPATION  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
The internal power dissipation within the TC1301A/B is  
a function of input voltage, output voltage, output  
current and quiescent current. The following equation  
can be used to calculate the internal power dissipation  
for each LDO.  
TJ(MAX) = Maximum continuous junction  
temperature.  
PTOTAL = Total device power dissipation.  
RθJA  
= Thermal resistance from junction-to-  
ambient.  
TAMAX = Maximum ambient temperature.  
© 2005 Microchip Technology Inc.  
DS21798B-page 17  
TC1301A/B  
The maximum power dissipation capability for a  
package can be calculated given the junction to  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package maximum  
internal power dissipation.  
Maximum Ambient Temperature  
TA(MAX) = 50°C  
Internal Power Dissipation  
Internal power dissipation is the sum of the power  
dissipation for each LDO pass device.  
PLDO1(MAX) = (VIN(MAX) - VOUT1(MIN)) x  
IOUT1(MAX)  
EQUATION 6-4:  
(TJ(MAX) TA(MAX)  
)
PLDO1 = (4.2V - (0.975 x 2.8V)) x 300 mA  
---------------------------------------------------  
=
PD(MAX)  
RθJA  
PLDO1 = 441.0 milliWatts  
PD(MAX) = Maximum device power dissipation.  
TJ(MAX) = Maximum continuous junction  
temperature.  
PLDO2 = (4.2V - (0.975 X 1.8V)) x 150 mA  
PLDO2 = 366.8 milliWatts  
PTOTAL = PLDO1 + PLDO2  
TA(MAX) = Maximum ambient temperature.  
RθJA  
= Thermal resistance from junction-to-  
ambient.  
PTOTAL= 807.8 milliWatts  
Device Junction Temperature Rise  
EQUATION 6-5:  
TJ(RISE) = PD(MAX) × RθJA  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The  
thermal resistance from junction to ambient (RθJA) is  
derived from an EIA/JEDEC standard for measuring  
thermal resistance for small surface-mount packages.  
The EIA/JEDEC specification is JESD51-7, “High  
Effective Thermal Conductivity Test Board for Leaded  
Surface Mount Packages”. The standard describes the  
test method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors such as copper area and  
thickness. Refer to AN792, “A Method To Determine  
How Much Power a SOT32 Can Dissapate in Your  
Application” (DS00792), for more information regarding  
this subject.  
TJ(RISE) = Rise in device junction temperature  
over the ambient temperature.  
PD(MAX)= Maximum device power dissipation.  
RθJA = Thermal resistance from junction-to-  
ambient.  
EQUATION 6-6:  
TJ = TJ(RISE) + TA  
TJ  
= Junction Temperature.  
TJ(RISE)= Rise in device junction temperature  
over the ambient temperature.  
TA  
= Ambient Temperature.  
TJ(RISE) = PTOTAL x RqJA  
TJRISE = 807.8 milliWatts x 41.0° C/W  
TJRISE = 33.1°C  
6.3  
Typical Application  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation as a result of ground current is small  
enough to be neglected.  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below:  
6.3.1  
POWER DISSIPATION EXAMPLE  
Package  
TJ = TJRISE + TA(MAX)  
TJ = 83.1°C  
Package Type 3X3DFN8  
=
Maximum Package Power Dissipation at 50°C  
Ambient Temperature  
Input Voltage  
VIN = 2.7V to 4.2V  
3X3DFN8 (41° C/W RθJA  
)
LDO Output Voltages and Currents  
PD(MAX) = (125°C - 50°C) / 41° C/W  
PD(MAX) = 1.83 Watts  
V
OUT1 = 2.8V  
IOUT1 = 300 mA  
VOUT2 = 1.8V  
MSOP8 (208° C/W RθJA  
)
PD(MAX) = (125°C - 50°C) / 208° C/W  
PD(MAX) = 0.360 Watts  
I
OUT2 = 150 mA  
DS21798B-page 18  
© 2005 Microchip Technology Inc.  
TC1301A/B  
7.0  
TYPICAL LAYOUT TC1301A  
FIGURE 7-4:  
DFN3X3 Top Metal Layer  
Example.  
FIGURE 7-1:  
MSOP8 Silk Screen Layer.  
Vias represent the connection to a ground plane that is  
below the wiring layer.  
When doing the physical layout for the TC1301A/B, the  
highest priority is placing the input and output  
capacitors as close to the device pins as is practical.  
Figure 7-1 above represents a typical placement of the  
components when using SMT0805 capacitors.  
8.0  
ADDITIONAL OUTPUT  
VOLTAGE AND THRESHOLD  
VOLTAGE OPTIONS  
8.1  
Output Voltage and Threshold  
Voltage Range  
Table 8-1 describes the range of output voltage options  
available for the TC1301A/B. VOUT1 and VOUT2 can be  
factory preset from 1.5V to 3.3V in 100 mV increments.  
The VDET (TC1301A) or threshold voltage (TC1301B)  
can be preset from 2.2V to 3.2V in 10 mV increments.  
FIGURE 7-2:  
MSOP8 Wiring Layer.  
TABLE 8-1:  
CUSTOM OUTPUT VOLTAGE  
AND THRESHOLD VOLTAGE  
RANGES  
A wiring example for the TC1301A is shown. The vias  
represent the connection to a ground plane that is  
below the wiring layer.  
VOUT1  
VOUT2  
VDET Threshold  
1.5V to 3.3V  
1.5V to 3.3V  
2.2V to 3.2V  
For a listing of TC1301A/B standard parts, refer to the  
Product Identification System on page 23.  
FIGURE 7-3:  
DFN3X3 Silk-Screen  
Example.  
8-lead 3X3 DFN physical layout example with bypass  
capacitor.  
© 2005 Microchip Technology Inc.  
DS21798B-page 19  
TC1301A/B  
9.0  
9.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead MSOP  
Example:  
8-Lead DFN  
Example:  
— 31A = TC1301A  
— F = 2.8V VOUT1  
— H = 2.6V VOUT2  
— A = 2.63V Reset  
XXXX  
YYWW  
NNN  
AFHA  
0435  
256  
XXXXXX  
YWWNNN  
31AFHA  
435256  
X1 represents VOUT1 configuration:  
Code VOUT1 Code VOUT1 Code VOUT1  
Xr represents the reset voltage range:  
Code  
Voltage  
Code  
Voltage  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
J
K
L
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
S
T
1.5V  
1.65V  
2.85V  
2.65V  
1.85V  
A
B
C
D
E
F
G
H
I
2.63V  
2.2V  
2.32V  
2.5V  
2.4V  
2.6V  
J
K
L
U
V
W
X
Y
Z
M
N
O
P
Q
R
M
N
O
P
Q
R
X2 represents VOUT2 configuration:  
Code VOUT2 Code VOUT1 Code VOUT2  
For a listing of TC1301A/B standard parts, refer to the  
Product Identification System on page 23.  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
J
K
L
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
S
T
1.5V  
1.65V  
2.85V  
2.65V  
1.85V  
U
V
W
X
Y
Z
M
N
O
P
Q
R
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS21798B-page 20  
© 2005 Microchip Technology Inc.  
TC1301A/B  
8-Lead Plastic Micro Small Outline Package (UA) (MSOP)  
E
E1  
p
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
8
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.033  
.037  
0.75  
0.00  
0.85  
0.95  
0.15  
.000  
-
.006  
-
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
3.00 BSC  
.118 BSC  
3.00 BSC  
L
.016  
.024  
.031  
0.40  
0.60  
0.80  
Footprint (Reference)  
Foot Angle  
F
.037 REF  
0.95 REF  
φ
c
0°  
.003  
.009  
5°  
-
.006  
.012  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
5°  
-
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
© 2005 Microchip Technology Inc.  
DS21798B-page 21  
TC1301A/B  
8-Lead Plastic Dual Flat No Lead Package (MF) 3x3x0.9 mm Body (DFN)  
D
p
b
n
L
n
E
E2  
EXPOSED  
METAL  
2
1
PIN 1  
ID INDEX  
AREA  
PAD  
D2  
BOTTOM VIEW  
TOP VIEW  
(NOTE 2)  
A
A1  
A3  
EXPOSED  
TIE BAR  
(NOTE 1)  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
NOM  
MIN  
MAX  
MIN  
MAX  
n
Number of Pins  
Pitch  
8
8
p
A
.026 BSC  
.035  
0.65 BSC  
0.90  
Overall Height  
Standoff  
.031  
.000  
.039  
0.80  
1.00  
A1  
A3  
E
.001  
.002  
0.00  
0.02  
0.05  
Contact Thickness  
Overall Length  
Exposed Pad Width  
Overall Width  
Exposed Pad Length  
Contact Width  
Contact Length  
.008 REF.  
.118 BSC  
.059  
0.20 REF.  
3.00 BSC  
1.49  
(Note 3)  
E2  
D
.053  
.063  
1.34  
1.59  
.118 BSC  
.069  
3.00 BSC  
1.75  
(Note 3)  
D2  
b
.063  
.008  
.012  
.073  
.015  
.022  
1.60  
0.20  
0.30  
1.85  
0.37  
0.55  
.010  
0.26  
L
.019  
0.48  
*Controlling Parameter  
Notes:  
1. Package may have one or more exposed tie bars at ends.  
2. Pin 1 visual index feature may vary, but must be located within the hatched area.  
3. Exposed pad dimensions vary with paddle size.  
4. JEDEC equivalent: MO-229  
Drawing No. C04-062  
Revised 05/24/04  
DS21798B-page 22  
© 2005 Microchip Technology Inc.  
TC1301A/B  
APPENDIX A: REVISION HISTORY  
Revision B (January 2005)  
The following is the list of modifications:  
1. Correct the incorrect part number options shown  
on the Product Identification System page and  
change the “standard” output voltage and reset  
voltage combinations.  
2. Added Appendix A: Revision History.  
Revision A (September 2003)  
Original data sheet release.  
© 2005 Microchip Technology Inc.  
DS21798B-page 23  
TC1301A/B  
NOTES:  
DS21798B-page 24  
© 2005 Microchip Technology Inc.  
TC1301A/B  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
TC1301  
X-  
X
X
X
X
XX  
XX  
a)  
TC1301A-ADAVUA:  
3.3, 3.0, 2.63,  
MSOP pkg.  
Type  
A/B  
V
V
Reset  
Voltage  
Temp Package  
Range  
Tube  
or  
Tape &  
Reel  
OUT1  
OUT2  
b)  
c)  
TC1301A-APAVMFTR:  
3.3 , 1.8, 2.63,  
8LD DFN pkg.  
Tape and Reel  
3.0, 2.8 , 2.63,  
MSOP pkg.  
Standard  
Configurations  
TC1301A-DFAVUATR:  
Tape and Reel  
3.0, 1.8 , 2.63,  
8LD DFN pkg.  
2.8, 3.0, 2.63,  
8LD DFN pkg.  
2.8, 2.6, 2.63,  
DFN pkg.  
1.8, 2.8, 2.32,  
MSOP pkg.  
1.5, 2.8, 2.32,  
DFN pkg.  
d)  
e)  
f)  
TC1301A-DPAVMF:  
TC1301A-FDAVMF:  
TC1301A-FHAVMF:  
TC1301A-PFCVUA:  
TC1301A-SFCVMFTR:  
Device:  
TC1301A: Dual LDO with microcontroller RESET function  
and single shutdown input.  
TC1301B: Dual LDO with microcontroller RESET function  
and dual shutdown inputs.  
g)  
h)  
Standard  
Configurations: *  
VOUT1/VOUT2/Reset  
Configuration  
Code  
TC1301A  
3.3 / 3.0 / 2.63  
3.3 / 1.8 / 2.63  
3.0 / 2.8 / 2.63  
3.0 / 1.8 / 2.63  
2.8 / 3.0 / 2.63  
2.8 / 2.6 / 2.63  
1.8 / 2.8 / 2.32  
1.5 / 2.8 / 2.32  
2.85 / 1.85 / 2.63  
ADA  
APA  
DFA  
DPA  
FDA  
FHA  
PFC  
SFC  
UWA  
Tape and Reel  
2.85, 1.85, 2.63,  
MSOP pkg.  
i)  
TC1301A-UWAVUATR:  
Tape and Reel  
a)  
b)  
TC1301B-ADAVMF:  
3.3, 3.0, 2.63,  
8LD DFN pkg.  
TC1301B-APAVMFTR:  
3.3, 1.8, 2.63,  
8LD DFN pkg.  
Tape and Reel  
3.0, 2.8, 2.63,  
MSOP pkg.  
TC1301B  
3.3 / 3.0 / 2.63  
3.3 / 1.8 / 2.63  
3.0 / 2.8 / 2.63  
3.0 / 1.8 / 2.63  
2.8 / 3.0 / 2.63  
2.8 / 2.6 / 2.63  
2.7 / 2.8 / 2.5  
ADA  
APA  
DFA  
DPA  
FDA  
FHA  
GFD  
GDD  
UWA  
c)  
d)  
TC1301B-DFAVUA:  
TC1301B-DPAVUATR:  
3.0, 1.8 ,2.63,  
MSOP pkg.  
Tape and Reel  
2.8 ,3.0, 2.63,  
8LD DFN pkg.  
2.8, 2.6 ,2.63,  
8LD DFN pkg.  
Tape and Reel  
2.7, 3.0, 2.50,  
MSOP pkg.  
2.7, 2.8, 2.5,  
8LD DFN pkg.  
2.85, 1.85, 2.63,  
MSOP pkg.  
2.7 / 3.0 / 2.50  
2.85 / 1.85 / 2.63  
e)  
f)  
TC1301B-FDAVMF:  
TC1301B-FHAVMFTR:  
* Contact Factory for Alternate Output Voltage and Reset  
Voltage Configurations.  
g)  
h)  
i)  
TC1301B-GDDVUA:  
TC1301B-GFDVMF:  
TC1301B-UWAVUATR:  
Temperature Range:  
Package:  
V
= -40°C to +125°C  
MF  
UA  
=
=
Dual Flat, No Lead (3x3 mm body), 8-lead  
Plastic Micro Small Outline (MSOP), 8-lead  
Tape and Reel  
Tube or  
Tape and Reel:  
Blank  
TR  
=
=
Tube  
Tape and Reel  
© 2005 Microchip Technology Inc.  
DS21798B-page 25  
TC1301A/B  
NOTES:  
DS21798B-page 26  
© 2005 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,  
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total  
Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2005 Microchip Technology Inc.  
DS21798B-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
10/20/04  
DS21798B-page 28  
© 2004 Microchip Technology Inc.  

相关型号:

TC1301A-UWAVUA

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301A-UWAVUATR

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301A-UWFVMF

DUAL LDO W/MICROCONTROLLER RESET FUNCTION, -40C to +125C, 8-DFN, TUBE
MICROCHIP

TC1301A_08

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301B

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301B-ADAVMF

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301B-ADAVMFTR

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301B-ADAVUA

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301B-ADAVUATR

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301B-APAVMF

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301B-APAVMFTR

Dual LDO with Microcontroller RESET Function
MICROCHIP

TC1301B-APAVUA

Dual LDO with Microcontroller RESET Function
MICROCHIP