TC1303B-AE1EMFTR [MICROCHIP]

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output; ,500 mA同步降压稳压器, + 300毫安LDO与电源就绪输出
TC1303B-AE1EMFTR
型号: TC1303B-AE1EMFTR
厂家: MICROCHIP    MICROCHIP
描述:

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
,500 mA同步降压稳压器, + 300毫安LDO与电源就绪输出

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总30页 (文件大小:581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1303B  
500 mA Synchronous Buck Regulator,  
+ 300 mA LDO with Power-Good Output  
Features  
Description  
• Dual-Output Regulator (500 mA Buck Regulator  
and 300 mA Low-Dropout Regulator)  
The TC1303B combines a 500 mA synchronous buck  
regulator and 300 mA Low-Dropout Regulator (LDO)  
with a power-good monitor to provide a highly  
integrated solution for devices that require multiple  
supply voltages. The unique combination of an  
integrated buck switching regulator and low-dropout  
linear regulator provides the lowest system cost for  
dual-output voltage applications that require one lower  
processor core voltage and one higher bias voltage.  
• Power-Good Output with 300 ms Delay  
Total Device Quiescent Current = 65 µA, Typ.  
• Independent Shutdown for Buck and LDO  
Outputs  
• Both Outputs Internally Compensated  
• Synchronous Buck Regulator:  
- Over 90% Typical Efficiency  
The 500 mA synchronous buck regulator switches at a  
fixed frequency of 2.0 MHz when the load is heavy  
providing a low noise, small-size solution. When the  
load on the buck output is reduced to light levels, it  
changes operation to a Pulse Frequency Modulation  
(PFM) mode to minimize quiescent current draw from  
the battery. No intervention is necessary for smooth  
transition from one mode to another.  
- 2.0 MHz Fixed Frequency PWM  
(Heavy Load)  
- Low Output Noise  
- Automatic PWM to PFM mode transition  
- Adjustable (0.8V to 4.5V) and Standard Fixed  
Output Voltages (0.8V, 1.2V, 1.5V, 1.8V, 2.5V,  
3.3V)  
The LDO provides a 300 mA auxiliary output that  
requires a single 1 µF ceramic output capacitor,  
minimizing board area and cost. The typical dropout  
voltage for the LDO output is 137 mV for a 200 mA  
load.  
• Low-Dropout Regulator:  
- Low-Dropout Voltage = 137 mV Typ. @  
200 mA  
- Standard Fixed Output Voltages  
(1.5V, 1.8V, 2.5V, 3.3V)  
For the TC1303B, the power-good output logic level is  
based on the regulation of the LDO output only. The  
buck regulator can be turned on and off without affecting  
the power-good signal.  
• Power-Good Function:  
- Monitors LDO Output Function (TC1303B)  
- 300 ms Delay Used for Processor Reset  
• Small 10-pin 3X3 DFN or MSOP Package  
Options  
The TC1303B is available in either the 10-pin DFN or  
MSOP package.  
• Operating Junction Temperature Range:  
- -40°C to +125°C  
Additional protection features include: UVLO,  
overtemperature and overcurrent protection on both  
outputs.  
• Undervoltage Lockout (UVLO)  
• Output Short Circuit Protection  
• Overtemperature Protection  
For a complete listing of TC1303B standard parts, con-  
sult your Microchip representative.  
Applications  
Package Type  
• Cellular Phones  
10-Lead DFN  
10-Lead MSOP  
• Portable Computers  
• USB Powered Devices  
• Handheld Medical Instruments  
• Organizers and PDAs  
P
10  
9
SHDN2  
1
2
3
4
5
P
GND  
SHDN2  
1
2
3
4
5
10  
9
GND  
V
L
V
L
IN2  
X
IN2  
X
V
V
8
IN1  
V
OUT2  
OUT2  
V
IN1  
8
7
SHDN1  
PG  
7
SHDN1  
PG  
V
/V  
A
6
FB1 OUT1  
GND  
A
6
GND  
V
/V  
FB1 OUT1  
© 2005 Microchip Technology Inc.  
DS21949A-page 1  
TC1303B  
Functional Block Diagram  
Undervoltage Lockout  
(UVLO)  
UVLO  
VREF  
Synchronous BUCK Regulator  
VIN1  
PDRV  
VIN2  
LX  
Driver  
Control  
SHDN1  
NDRV  
PGND  
PGND  
PGND  
AGND  
VOUT1/VFB1  
PG  
TC1303B  
PG Generator with Delay  
VREF  
UVLO  
VOUT2  
LDO  
SHDN2  
AGND  
DS21949A-page 2  
© 2005 Microchip Technology Inc.  
TC1303B  
Typical Application Circuits  
TC1303B  
Fixed Output Application  
10-Lead MSOP  
4.7µH  
V
IN  
V
V
V
L
8
2
7
1
4
9
10  
6
IN1  
IN2  
OUT1  
X
2.7V to 4.2V  
1.5V @ 500 mA  
4.7 µF  
4.7 µF  
P
GND  
V
V
SHDN1  
SHDN2  
PG  
OUT1  
OUT2  
V
3
OUT2  
1 µF  
2.5V @ 300 mA  
A
GND  
5
Processor  
RESET  
TC1303B  
Adjustable Output Application  
10-Lead DFN  
4.7 µH  
V
OUT1  
Input  
Voltage  
4.5V to 5.5V  
8
9
V
V
L
X
IN1  
2.1V @  
500 mA  
4.7 µF  
1 µF  
4.7 µF  
P
GND 10  
2
7
1
4
200 kΩ 4.99 kΩ  
IN2  
V
OUT1  
OUT2  
6
3
SHDN1  
SHDN2  
*Optional  
Capacitor  
V
OUT2  
1.0 µF  
V
33 pF  
3.3V @  
300 mA  
V
IN2  
121 kΩ  
A
GND  
PG  
5
Note  
Processor  
RESET  
Note: Connect DFN package exposed pad to AGND  
.
© 2005 Microchip Technology Inc.  
DS21949A-page 3  
TC1303B  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VIN - AGND ......................................................................6.0V  
All Other I/O .............................. (A - 0.3V) to (V + 0.3V)  
GND  
IN  
L to P  
.............................................. -0.3V to (V + 0.3V)  
X
GND  
IN  
P
to A  
...................................................-0.3V to +0.3V  
GND  
GND  
Output Short Circuit Current .................................Continuous  
Power Dissipation (Note 7)..........................Internally Limited  
Storage temperature .....................................-65°C to +150°C  
Ambient Temp. with Power Applied.................-40°C to +85°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD protection on all pins (HBM) ....................................... 3 kV  
DC CHARACTERISTICS  
Electrical Characteristics: V =V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1µF, L = 4.7 µH, V  
(ADJ) = 1.8V,  
IN1  
IN2  
OUT1  
IN  
OUT2  
OUT1  
I
= 100 ma, I  
= 0.1 mA T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C.  
OUT1  
OUT2 A A  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input/Output Characteristics  
Input Voltage  
V
2.7  
500  
300  
5.5  
1
V
Note 1, Note 2, Note 8  
Note 1  
IN  
Maximum Output Current  
Maximum Output Current  
Shutdown Current  
I
I
mA  
mA  
µA  
OUT1_MAX  
OUT2_MAX  
Note 1  
I
0.05  
SHDN1 = SHDN2 = GND  
IN_SHDN  
Combined V  
and V  
Current  
IN2  
IN1  
TC1303B Operating I  
I
65.0  
110  
µA  
SHDN1 = SHDN2 = V  
IN2  
Q
Q
I
= 0 mA, I  
= 0 mA  
OUT1  
OUT2  
Synchronous Buck I  
38  
46  
µA  
µA  
SHDN1 = V , SHDN2 = GND  
IN  
Q
LDO I + Voltage Monitor I  
SHDN1 = GND, SHDN2 = V  
IN2  
Q
Q
Shutdown/UVLO/Thermal Shutdown Characteristics  
SHDN1,SHDN2,  
Logic Input Voltage Low  
V
15  
%V  
V
V
V
=V  
=V  
=V  
= 2.7V to 5.5V  
= 2.7V to 5.5V  
= 2.7V to 5.5V  
IL  
IH  
IN  
IN  
IN1  
IN1  
IN1  
IN2  
IN2  
IN2  
SHDN1,SHDN2,  
Logic Input Voltage High  
V
45  
%V  
IN  
SHDN1,SHDN2,  
I
-1.0  
±0.01  
1.0  
µA  
Input Leakage Current  
SHDNX = GND  
SHDNY = V  
IN  
Thermal Shutdown  
T
165  
10  
°C  
°C  
V
Note 6, Note 7  
SHD  
Thermal Shutdown Hysteresis  
T
SHD-HYS  
Undervoltage Lockout  
UVLO  
2.4  
2.55  
2.7  
V
Falling  
IN1  
(V  
and V  
)
OUT1  
OUT2  
Undervoltage Lockout Hysteresis UVLO-HYS  
200  
mV  
Note 1: The Minimum V has to meet two conditions: V 2.7V and V V + V  
V
= V or V  
.
R2  
IN  
IN  
IN  
RX  
DROPOUT, RX  
R1  
2:  
V
is the regulator output voltage setting.  
RX  
6
3: TCV  
= ((V  
– V  
) * 10 )/(V  
* D ).  
OUT2 T  
OUT2  
OUT2max  
OUT2min  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input to output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the L pin to V , and from L to P . In cases where  
GND  
X
IN  
X
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
V
and V  
are supplied by the same input source.  
IN2  
IN1  
DS21949A-page 4  
© 2005 Microchip Technology Inc.  
TC1303B  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: V =V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1µF, L = 4.7 µH, V  
(ADJ) = 1.8V,  
IN1  
IN2  
OUT1  
IN  
OUT2  
OUT1  
I
= 100 ma, I  
= 0.1 mA T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C.  
OUT1  
OUT2 A A  
Parameters  
Sym  
)
Min  
Typ  
Max  
Units  
Conditions  
Synchronous Buck Regulator (V  
Adjustable Output Voltage Range  
Adjustable Reference Feedback  
OUT1  
V
0.8  
4.5  
V
V
OUT1  
V
0.78  
0.8  
0.82  
FB1  
Voltage (V  
)
FB1  
Feedback Input Bias Current  
(I  
I
-2.5  
-1.5  
±0.3  
0.2  
+2.5  
nA  
%
VFB1  
)
FB1  
Output Voltage Tolerance Fixed  
(V  
V
Note 2  
OUT1  
)
OUT1  
Line Regulation (V  
)
V
%/V  
%
V
=V +1V to 5.5V,  
OUT1  
LINE-REG  
IN  
R
I
= 100 mA  
LOAD  
Load Regulation (V  
)
V
0.2  
V
= V + 1.5V, I  
= 100 mA to  
OUT1  
OUT1  
LOAD-REG  
IN  
R
LOAD  
500 mA (Note 1)  
Dropout Voltage V  
V
– V  
280  
mV  
I
= 500 mA, V  
= 3.3V  
OUT1  
IN  
OUT1  
OUT1  
(Note 5)  
Internal Oscillator Frequency  
Start Up Time  
F
1.6  
2.0  
0.5  
2.4  
MHz  
ms  
OSC  
T
T = 10% to 90%  
R
SS  
R
R
L
P-CHANNEL  
N-CHANNEL  
R
450  
450  
±0.01  
650  
650  
1.0  
mΩ  
mΩ  
μA  
I =100 mA  
DSon  
DSon  
DSon-P  
DSon-N  
P
R
I =100 mA  
N
Pin Leakage Current  
I
-1.0  
SHDN = 0V, V = 5.5V, L = 0V,  
IN X  
X
LX  
L
= 5.5V  
X
Positive Current Limit Threshold  
LDO Output (V  
+I  
700  
mA  
%
LX(MAX)  
)
OUT2  
Output Voltage Tolerance (V  
Temperature Coefficient  
Line Regulation  
)
V
-2.5  
±0.3  
25  
+2.5  
Note 2  
OUT2  
OUT2  
TCV  
ppm/°C Note 3  
OUT  
ΔV  
/
-0.2  
±0.02  
+0.2  
%/V  
(V +1V) V 5.5V  
OUT2  
R
IN  
ΔV  
IN  
Load Regulation, V  
Load Regulation, V  
2.5V  
ΔV  
I
/
/
-0.75  
-0.90  
0.1  
0.1  
+0.75  
+0.90  
%
I
I
= 0.1 mA to 300 mA (Note 4)  
= 0.1 mA to 300 mA (Note 4)  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
< 2.5V  
> 2.5V  
ΔV  
%
OUT2  
OUT2  
OUT2  
I
Dropout Voltage V  
V
– V  
137  
205  
300  
500  
mV  
I
I
= 200 mA (Note 5)  
= 300 mA  
IN  
OUT2  
OUT2  
OUT2  
Power Supply Rejection Ratio  
Output Noise  
PSRR  
eN  
62  
1.8  
240  
dB  
f 100 Hz, I  
= I  
= 50 mA,  
OUT2  
OUT1  
C
= 0 µF  
IN  
½
µV/(Hz)  
mA  
f 1 kHz, I  
= 50 mA,  
OUT2  
SHDN1 = GND  
R 1Ω  
LOAD2  
Output Short Circuit Current  
(Average)  
I
OUTsc2  
Note 1: The Minimum V has to meet two conditions: V 2.7V and V V + V  
V
= V or V  
.
R2  
IN  
IN  
IN  
RX  
DROPOUT, RX  
R1  
2:  
V
is the regulator output voltage setting.  
RX  
6
3: TCV  
= ((V  
– V  
) * 10 )/(V  
* D ).  
OUT2 T  
OUT2  
OUT2max  
OUT2min  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input to output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the L pin to V , and from L to P . In cases where  
GND  
X
IN  
X
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
V
and V  
are supplied by the same input source.  
IN2  
IN1  
© 2005 Microchip Technology Inc.  
DS21949A-page 5  
TC1303B  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: V =V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1µF, L = 4.7 µH, V  
(ADJ) = 1.8V,  
IN1  
IN2  
OUT1  
IN  
OUT2  
OUT1  
I
= 100 ma, I  
= 0.1 mA T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C.  
OUT1  
OUT2 A A  
Parameters  
Wake-Up Time (From SHDN2  
mode), (V  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
t
31  
100  
µs  
I
I
= I  
= I  
= 50 mA  
WK  
OUT1  
OUT2  
)
OUT2  
Settling Time (From SHDN2  
mode), (V  
t
100  
µs  
= 50 mA  
S
OUT1  
OUT2  
)
OUT2  
Power-Good  
Voltage Range PG  
V
1.0  
5.5  
V
T = 0°C to +70°C  
A
PG  
1.2  
5.5  
T = -40°C to +85°C  
A
V
2.7 I  
= 100 µA  
SINK  
IN  
PG Threshold High  
V
89  
94  
92  
2
96  
% of  
On Rising V  
or V  
OUT1 OUT2  
TH_H  
(V  
or V  
)
V
V
= V  
or V  
OUT1  
OUT2  
OUTX  
OUTX  
OUT1 OUT2  
PG Threshold Low  
(V or V  
V
% of  
On Falling V  
or V  
OUT1 OUT2  
TH_L  
)
V
V
= V  
or V  
OUT1  
OUT2  
OUTX  
OUTX  
OUT1  
OUT2  
PG Threshold Hysteresis  
(V and V  
V
% of  
V
OUTX  
V
= V  
or V  
OUT2  
TH_HYS  
OUTX  
OUT1  
)
OUT1  
OUT2  
PG Threshold Tempco  
PG Delay  
ΔV /ΔT  
30  
ppm/°C  
TH  
t
165  
µs  
V
or V  
= (V + 100 mV)  
RPD  
OUT1  
OUT2 TH  
to (V - 100 mV)  
TH  
PG Active Time-out Period  
PG Output Voltage Low  
PG Output Voltage High  
t
140  
262  
560  
0.2  
ms  
V
to V  
or V  
= V - 100 mV  
OUT2 TH  
RPU  
OUT1  
100 mV,  
TH +  
I
= 1.2 mA  
SINK  
PG_V  
PG_V  
V
V
V
orV  
= V - 100 mV  
OUT2 TH ,  
OL  
OUT1  
I
I
= 1.2 mA V  
= 100 µA, 1.0V < V  
> 2.7V  
PG  
PG  
IN2  
< 2.7V  
IN2  
0.9* V  
V
V
V
or V  
= V + 100 mV  
OH  
OUT2  
OUT1  
OUT2  
OUT2  
OUT2 TH  
1.8V, I = - 500 µA  
< 1.8V,I = - 300 µA  
PG  
PG  
Note 1: The Minimum V has to meet two conditions: V 2.7V and V V + V  
V
= V or V  
.
R2  
IN  
IN  
IN  
RX  
DROPOUT, RX  
R1  
2:  
V
is the regulator output voltage setting.  
RX  
6
3: TCV  
= ((V  
– V  
) * 10 )/(V  
* D ).  
OUT2 T  
OUT2  
OUT2max  
OUT2min  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input to output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the L pin to V , and from L to P . In cases where  
GND  
X
IN  
X
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
V
and V  
are supplied by the same input source.  
IN2  
IN1  
DS21949A-page 6  
© 2005 Microchip Technology Inc.  
TC1303B  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VIN = +2.7V to +5.5V  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Junction Temperature  
Range  
TJ  
-40  
+125  
°C  
Steady state  
Storage Temperature Range  
Maximum Junction Temperature  
Thermal Package Resistances  
Thermal Resistance, 10L-DFN  
TA  
TJ  
-65  
+150  
+150  
°C  
°C  
Transient  
θJA  
41  
°C/W Typical 4-layer board with  
Internal Ground Plane and 2 Vias  
in Thermal Pad  
Thermal Resistance, 10L-MSOP  
θJA  
113  
°C/W Typical 4-layer board with  
Internal Ground Plane  
© 2005 Microchip Technology Inc.  
DS21949A-page 7  
TC1303B  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable or fixed  
A A A  
OUT1  
output voltage options can be used to generate the Typical Performance Characteristics.  
80  
76  
72  
68  
64  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IOUT1 = IOUT2 = 0 mA  
SHDN1 = VIN2  
SHDN2 = VIN2  
SHDN1 = VIN2  
SHDN2 = AGND  
IOUT1 = 100 mA  
VIN = 5.5V  
VIN = 4.2V  
IOUT1 = 250 mA  
IOUT1 = 500 mA  
VIN = 3.6V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-1:  
IQ Switcher and LDO  
FIGURE 2-4:  
VOUT1 Output Efficiency vs.  
Current vs. Ambient Temperature.  
Input Voltage (VOUT1 = 1.2V).  
SHDN1 = VIN2  
SHDN2 = AGND  
100  
95  
55  
IOUT1 = 0 mA  
VIN = 5.5V  
SHDN1 = VIN2  
SHDN2 = AGND  
50  
45  
90  
85  
VIN1 = 3.6V  
40  
80  
VIN1 = 4.2V  
VIN = 4.2V  
VIN = 3.6V  
35  
30  
75  
70  
VIN1 = 3.0V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
IOUT1 (A)  
Ambient Temperature (°C)  
FIGURE 2-2:  
IQ Switcher Current vs.  
FIGURE 2-5:  
VOUT1 Output Efficiency vs.  
Ambient Temperature.  
IOUT1 (VOUT1 = 1.2V).  
100  
55  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN = 5.5V  
IOUT2 = 0 mA  
95  
IOUT1 = 100 mA  
50  
45  
90  
IOUT1 = 250 mA  
85  
VIN = 4.2V  
80  
75  
70  
65  
60  
VIN = 3.6V  
IOUT1 = 500 mA  
40  
35  
30  
SHDN1 = AGND  
SHDN2 = VIN2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-3:  
IQ LDO Current vs. Ambient  
FIGURE 2-6:  
VOUT1 Output Efficiency vs.  
Temperature.  
Input Voltage (VOUT1 = 1.8V).  
DS21949A-page 8  
© 2005 Microchip Technology Inc.  
TC1303B  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable or fixed  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
1.21  
1.206  
1.202  
1.198  
1.194  
1.19  
100  
95  
90  
85  
80  
75  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN = 3.0V  
VIN1 = 3.6V  
VIN = 4.2V  
VIN = 3.6V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
I
OUT1 (A)  
IOUT1 (A)  
FIGURE 2-7:  
VOUT1 Output Efficiency vs.  
FIGURE 2-10:  
VOUT1 vs. IOUT1  
IOUT1 (VOUT1 = 1.8V).  
(VOUT1 = 1.2V).  
100  
96  
92  
88  
84  
80  
1.82  
1.815  
1.81  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 3.6V  
IOUT1 = 100 mA  
IOUT1 = 250 mA  
1.805  
1.8  
IOUT1 = 500 mA  
1.795  
1.79  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
3.60  
3.92  
4.23  
4.55  
4.87  
5.18  
5.50  
IOUT1 (A)  
Input Voltage (V)  
FIGURE 2-8:  
VOUT1 Output Efficiency vs.  
FIGURE 2-11:  
VOUT1 vs. IOUT1  
Input Voltage (VOUT1 = 3.3V).  
(VOUT1 = 1.8V).  
VIN1 = 3.6V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 4.2V  
VIN1 = 4.2V  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 5.5V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
IOUT1 (A)  
IOUT1 (A)  
FIGURE 2-9:  
VOUT1 Output Efficiency vs.  
FIGURE 2-12:  
VOUT1 vs. IOUT1  
IOUT1 (VOUT1 = 3.3V).  
(VOUT1 = 3.3V).  
© 2005 Microchip Technology Inc.  
DS21949A-page 9  
TC1303B  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
IN1  
IN2  
OUT1  
IN  
OUT2  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable or fixed  
A A A  
OUT1  
output voltage options can be used to generate the Typical Performance Characteristics.  
0.6  
0.55  
0.5  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
TA = 25 °C  
0.45  
0.4  
N-Channel  
P-Channel  
0.35  
0.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-13:  
VOUT1 Switching Frequency  
FIGURE 2-16:  
V
OUT1 Switch Resistance  
vs. Input Voltage.  
vs. Input Voltage.  
0.65  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 3.6V  
0.6  
0.55  
0.5  
P-Channel  
N-Channel  
0.45  
0.4  
0.35  
0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-14:  
VOUT1 Switching Frequency  
FIGURE 2-17:  
Buck Regulator Switch  
vs. Ambient Temperature.  
Resistance vs. Ambient Temperature.  
0.820  
0.4  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
0.35  
0.815  
VIN1 = 3.6V  
0.810  
0.805  
0.800  
0.795  
0.790  
0.3  
0.25  
0.2  
VOUT1 = 3.3V  
IOUT1 = 500 mA  
0.15  
0.1  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-15:  
VOUT1 Adjustable Feedback  
FIGURE 2-18:  
VOUT1 Dropout Voltage vs.  
Voltage vs. Ambient Temperature.  
Ambient Temperature.  
DS21949A-page 10  
2005 Microchip Technology Inc.  
TC1303B  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable or fixed  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
1.802  
IOUT2 = 150 mA  
SHDN1 = AGND  
SHDN2 = VIN2  
1.800  
1.798  
1.796  
1.794  
1.792  
TA = + 85°C  
TA = + 25°C  
TA = - 40°C  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
FIGURE 2-19:  
VOUT1 and VOUT2 Heavy  
FIGURE 2-22:  
VOUT2 Output Voltage vs.  
Load Switching Waveforms vs. Time.  
Input Voltage (VOUT2 = 1.8V).  
2.508  
SHDN1 = AGND  
SHDN2 = VIN2  
IOUT2 = 150 mA  
2.506  
TA = + 85°C  
2.504  
2.502  
2.500  
2.498  
2.496  
TA = + 25°C  
TA = - 40°C  
3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
Input Voltage (V)  
FIGURE 2-20:  
VOUT1 and VOUT2 Light  
FIGURE 2-23:  
VOUT2 Output Voltage vs.  
Load Switching Waveforms vs. Time.  
Input Voltage (VOUT2 = 2.5V).  
IOUT2 = 150 mA  
1.492  
3.298  
SHDN1 = AGND  
SHDN2 = VIN2  
IOUT2 = 150 mA  
TA = + 85°C  
1.49  
3.297  
TA = + 85°C  
3.296  
1.488  
TA = + 25°C  
3.295  
SHDN1 = AGND  
SHDN2 = VIN2  
TA = + 25°C  
1.486  
1.484  
1.482  
3.294  
TA = - 40°C  
TA = - 40°C  
3.293  
3.292  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
3.60  
3.92  
4.23  
4.55  
4.87  
5.18  
5.50  
Input Voltage (V)  
FIGURE 2-21:  
VOUT2 Output Voltage vs.  
FIGURE 2-24:  
VOUT2 Output Voltage vs.  
Input Voltage (VOUT2 = 1.5V).  
Input Voltage (VOUT2 = 3.3V).  
© 2005 Microchip Technology Inc.  
DS21949A-page 11  
TC1303B  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable or fixed  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
0.1  
0.0  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
VIN2 = 3.6V  
SHDN1 = AGND  
SHDN2 = VIN2  
SHDN1 = AGND  
SHDN2 = VIN2  
VOUT2 = 3.3V  
IOUT2 = 300 mA  
IOUT2 = 200 mA  
-0.1  
-0.2  
-0.3  
-0.4  
VOUT2 = 2.6V  
VOUT2 = 1.5V  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-25:  
VOUT2 Dropout Voltage vs.  
FIGURE 2-28:  
V
OUT2 Load Regulation vs.  
Ambient Temperature (VOUT2 = 2.5V).  
Ambient Temperature.  
0.3  
350  
325  
300  
275  
250  
225  
200  
VIN = 3.6V  
SHDN1 = AGND  
SHDN2 = VIN2  
SHDN1 = VIN2  
SHDN2 = VIN2  
0.2  
0.1  
0.0  
IOUT2 = 300 mA  
IOUT2 = 200 mA  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-26:  
VOUT2 Dropout Voltage vs.  
FIGURE 2-29:  
PG Active Delay Time-out  
Ambient Temperature (VOUT2 = 3.3V).  
vs. Ambient Temperature.  
SHDN1 = AGND  
SHDN2 = VIN2  
VOUT2 = 3.3V  
0.005  
96  
SHDN1 = VIN2  
SHDN2 = VIN2  
VIN = 3.6V  
0.000  
95  
-0.005  
IOUT2 = 100 µA  
PG Threshold Hi  
94  
93  
92  
91  
90  
-0.010  
-0.015  
-0.020  
-0.025  
-0.030  
-0.035  
VOUT2 = 2.5V  
PG Threshold Low  
VOUT2 = 1.5V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-27:  
VOUT2 Line Regulation vs.  
FIGURE 2-30:  
PG Threshold Voltage vs.  
Ambient Temperature.  
Ambient Temperature.  
DS21949A-page 12  
© 2005 Microchip Technology Inc.  
TC1303B  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable or fixed  
A A A  
OUT1  
output voltage options can be used to generate the Typical Performance Characteristics.  
10  
0.02  
SHDN1 = AGND  
SHDN2 = VIN2  
SHDN1 = VIN2  
SHDN2 = VIN2  
VIN = 3.6V  
0.018  
0.016  
0.014  
0.012  
0.01  
1
0.1  
IOL = 1.2 mA  
VIN = 3.6V  
OUT2 = 2.5V  
OUT2 = 50 mA  
V
I
0.01  
0.01  
0.1  
1
10  
100  
1000 10000  
Ambient Temperature (°C)  
Frequency (kHz)  
FIGURE 2-31:  
PG Output Voltage Level  
FIGURE 2-34:  
VOUT2 Noise vs. Frequency.  
Low vs. Ambient Temperature.  
VOUT2 = 2.8V  
3.0  
2.5  
VOUT2 = 2.5V  
2.0  
1.5  
VOUT2 = 1.5V  
1.0  
VIN = 3.6V  
0.5  
SHDN1 = VIN2  
SHDN2 = VIN2  
IOH = 500 µA  
0.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
FIGURE 2-32:  
PG Output Voltage Level  
FIGURE 2-35:  
VOUT1 Load Step Response  
High vs. Ambient Temperature.  
vs. Time.  
0
SHDN1 = GND  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
VOUT2 = 1.5V  
IOUT2 = 30 mA  
CIN = 0 µF  
COUT2 = 1.0 µF  
COUT2 = 4.7 µF  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-33:  
VOUT2 Power Supply Ripple  
FIGURE 2-36:  
VOUT2 Load Step Response  
Rejection vs. Frequency.  
vs. Time.  
© 2005 Microchip Technology Inc.  
DS21949A-page 13  
TC1303B  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable or fixed  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
FIGURE 2-37:  
VOUT1 and VOUT2 Line Step  
FIGURE 2-39:  
V
OUT1 and VOUT2 Shutdown  
Response vs. Time.  
Waveforms.  
FIGURE 2-38:  
VOUT1 and VOUT2 Startup  
FIGURE 2-40:  
Power-Good Output Timing.  
Waveforms.  
DS21949A-page 14  
© 2005 Microchip Technology Inc.  
TC1303B  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
Name  
Function  
1
2
SHDN2  
VIN2  
Active Low Shutdown Input for LDO Output Pin  
Analog Input Supply Voltage Pin  
LDO Output Voltage Pin  
3
VOUT2  
PG  
4
Power-good Output Pin  
5
AGND  
Analog Ground Pin  
6
VFB / VOUT1 Buck Feedback Voltage (Adjustable Version) / Buck Output Voltage (Fixed Version) Pin  
7
SHDN1  
VIN1  
Active Low Shutdown Input for Buck Regulator Output Pin  
Buck Regulator Input Voltage Pin  
Buck Inductor Output Pin  
8
9
LX  
10  
EP  
PGND  
Power Ground Pin  
Exposed For the DFN package, the center exposed pad is a thermal path to remove heat from the  
Pad device. Electrically this pad is at ground potential and should be connected to AGND  
.
3.1  
LDO Shutdown Input Pin (SHDN2)  
3.7  
Buck Regulator Shutdown Input  
Pin (SHDN1)  
SHDN2 is a logic level input used to turn the LDO Reg-  
ulator on and off. A logic high (> 45% of VIN), will enable  
the regulator output. A logic low (< 15% of VIN) will  
ensure that the output is turned off.  
SHDN1 is a logic level input used to turn the buck  
regulator on and off. A logic-high (> 45% of VIN), will  
enable the regulator output. A logic-low (< 15% of VIN)  
will ensure that the output is turned off.  
3.2  
LDO Input Voltage Pin (V  
)
IN2  
3.8  
Buck Regulator Input Voltage Pin  
(V  
VIN2 is a LDO power input supply pin. Connect variable  
input voltage source to VIN2. Connect VIN1 and VIN2  
together with board traces as short as possible. VIN2  
provides the input voltage for the LDO regulator. An  
additional capacitor can be added to lower the LDO  
regulator input ripple voltage.  
)
IN1  
VIN1 is the buck regulator power input supply pin.  
Connect a variable input voltage source to VIN1  
Connect VIN1 and VIN2 together with board traces as  
short as possible.  
.
3.3  
LDO Output Voltage Pin (V  
)
OUT2  
3.9  
Buck Inductor Output Pin (L )  
X
VOUT2 is a regulated LDO output voltage pin. Connect  
a 1 µF or larger capacitor to VOUT2 and AGND for proper  
operation.  
Connect LX directly to the buck inductor. This pin  
carries large signal-level current; all connections  
should be made as short as possible.  
3.4  
Power-Good Output Pin (PG)  
3.10 Power Ground Pin (P  
)
GND  
PG is an output level indicating that VOUT2 (LDO) is  
within 94% of regulation. The PG output is configured  
as a push-pull for the TC1303B.  
Connect all large-signal level ground returns to PGND  
.
These large-signal, level ground traces should have a  
small loop area and length to prevent coupling of  
switching noise to sensitive traces. Please see the  
physical layout information supplied in Section 5.0  
“Application Circuits/Issues”  
recommendations.  
3.5  
Analog Ground Pin (A  
)
GND  
AGND is the analog ground connection. Tie AGND to the  
analog portion of the ground plane (AGND). See the  
physical layout information in Section 5.0 “Application  
Circuits/Issues” for grounding recommendations.  
for  
grounding  
3.11 Exposed Pad (EP)  
3.6  
Buck Regulator Output Sense Pin  
(V /V  
For the DFN package, connect the EP to AGND with  
vias into the AGND plane.  
)
FB OUT1  
For VOUT1 adjustable output voltage options, connect  
the center of the output voltage divider to the VFB pin.  
For fixed-output voltage options, connect the output of  
the buck regulator to this pin (VOUT1).  
© 2005 Microchip Technology Inc.  
DS21949A-page 15  
TC1303B  
4.2.1  
FIXED FREQUENCY PWM MODE  
4.0  
4.1  
DETAILED DESCRIPTION  
While operating in Pulse Width Modulation (PWM)  
mode, the TC1303B buck regulator switches at a fixed  
2.0 MHz frequency. The PWM mode is suited for higher  
load current operation, maintaining low output noise  
and high conversion efficiency. PFM to PWM mode  
transition is initiated for any of the following conditions.  
Device Overview  
The TC1303B combines a 500 mA synchronous buck  
regulator with a 300 mA LDO and a power-good output.  
This unique combination provides a tiny, low-cost  
solution for applications that require two or more  
voltage rails. The buck regulator can deliver high-  
output current over a wide range of input-to-output  
voltage ratios while maintaining high efficiency. This is  
typically used for the lower-voltage, high-current  
processor core. The LDO is a minimal parts-count  
• Continuous inductor current is sensed  
• Inductor peak current exceeds 100 mA  
• The buck regulator output voltage has dropped  
out of regulation (step load has occurred)  
The typical PFM-to-PWM threshold is 80 mA.  
solution, (single-output capacitor), providing  
a
regulated voltage for an auxiliary rail. The typical LDO  
dropout voltage (137 mV @ 200 mA) allows the use of  
very low input-to-output LDO differential voltages,  
minimizing the power loss internal to the LDO pass  
transistor. A power-good output is provided, indicating  
that the LDO output is in regulation (TC1303B).  
Additional features include independent shutdown  
inputs, UVLO, overcurrent and overtemperature  
shutdown.  
4.2.2  
PFM MODE  
PFM mode is entered when the output load on the buck  
regulator is very light. Once detected, the converter  
enters the PFM mode automatically and begins to skip  
pulses to minimize unnecessary quiescent current  
draw by reducing the number of switching cycles per  
second. The typical quiescent current for the switching  
regulator is less than 35 µA. The transition from PWM  
to PFM mode occurs when discontinuous inductor  
current is sensed, or the peak inductor current is less  
than 60 mA (typ.). The typical PWM to PFM mode  
threshold is 30 mA. For low input-to-output differential  
voltages, the PWM to PFM mode threshold can be low  
due to the lack of ripple current. It is recommended that  
VIN1 be one volt greater than VOUT1 for PWM to PFM  
transitions.  
4.2  
Synchronous Buck Regulator  
The synchronous buck regulator is capable of supply-  
ing a 500 mA continuous output current over a wide  
range of input and output voltages. The output voltage  
range is from 0.8V (min) to 4.5V (max). The regulator  
operates in three different modes and automatically  
selects the most efficient mode of operation. During  
heavy load conditions, the TC1303B buck converter  
operates at a high, fixed frequency (2.0 MHz) using  
current mode control. This minimizes output ripple and  
noise (less than 8 mV peak-to-peak ripple) while main-  
taining high efficiency (typically > 90%). For standby or  
light load applications, the buck regulator will automat-  
ically switch to a power-saving Pulse Frequency  
Modulation (PFM) mode. This minimizes the quiescent  
current draw on the battery, while keeping the buck  
output voltage in regulation. The typical buck PFM  
mode current is 38 µA. The buck regulator is capable of  
operating at 100% duty cycle, minimizing the voltage  
drop from input to output for wide input battery-  
powered applications. For fixed-output voltage applica-  
tions, the feedback divider and control loop compensa-  
tion components are integrated, eliminating the need  
for external components. The buck regulator output is  
protected against overcurrent, short circuit and over-  
temperature. While shut down, the synchronous buck  
N-channel and P-channel switches are off, so the LX  
pin is in a high-impedance state (this allows for  
connecting a source on the output of the buck regulator  
as long as its voltage does not exceed the input  
voltage).  
4.3  
Low Drop Out Regulator (LDO)  
The LDO output is a 300 mA low-dropout linear regula-  
tor that provides a regulated output voltage with a  
single 1 µF external capacitor. The output voltage is  
available in fixed options only, ranging from 1.5V to  
3.3V. The LDO is stable using ceramic output capaci-  
tors that inherently provide lower output noise and  
reduce the size and cost of the regulator solution. The  
quiescent current consumed by the LDO output is  
typically less than 20 µA, with a typical dropout voltage  
of 137 mV at 200 mA. The LDO output is protected  
against overcurrent and overtemperature.  
DS21949A-page 16  
© 2005 Microchip Technology Inc.  
TC1303B  
4.4  
Power-Good  
4.5  
Soft Start  
A power-good (PG) output signal is generated based  
off of the LDO output voltage (VOUT2). A fixed delay  
time of approximately 300 ms is generated once the  
LDO output voltage is above the power-good threshold  
(typically 94% of VOUT2). As VOUT2 falls out of regula-  
Both outputs of the TC1303B are controlled during  
startup. Less than 1% of VOUT1 or VOUT2 overshoot is  
observed during startup from VIN rising above the  
UVLO voltage or SHDN1 or SHDN2 being enabled.  
4.6  
Overtemperature Protection  
tion, the falling PG threshold is typically 92% of VOUT2  
.
The PG output signal is pulled up to VOUT2 indicating  
that power is good and pulled low indicating that VOUT2  
is out of regulation. The typical quiescent current draw  
for power-good circuitry is less than 10 µA.  
The TC1303B has an integrated overtemperature  
protection circuit that monitors the device junction  
temperature and shuts the device off if the junction tem-  
perature exceeds the typical 165°C threshold. If the  
overtemperature threshold is reached, the soft start is  
reset so that once the junction temperature cools to  
approximately 155°C, the device will automatically  
restart.  
If the LDO output voltage falls below the power-good  
threshold, the power-good output will transition to the  
low state. The power-good circuitry has a 165 µs delay  
when detecting a falling output voltage. This helps to  
increase the noise immunity of the power-good output  
and avoiding false triggering of the PG signal during  
line and load transients.  
VTH_H  
VOUT2  
tRPU  
VOH  
tRPD  
PG  
VOL  
FIGURE 4-1:  
Power-Good Timing.  
© 2005 Microchip Technology Inc.  
DS21949A-page 17  
TC1303B  
An additional VIN2 capacitor can be added to reduce  
high frequency noise on the LDO input voltage pin  
(VIN2). This additional capacitor (1 µF on page 3) is not  
necessary for typical applications.  
5.0  
APPLICATION  
CIRCUITS/ISSUES  
5.1  
Typical Applications  
5.4  
Input and Output Capacitor  
Selection  
The TC1303B 500 mA buck regulator + 300 mA LDO  
with power-good operates over a wide input voltage  
range (2.7V to 5.5V) and is ideal for single-cell Li-Ion  
battery-powered applications, USB-powered applica-  
tions, three-cell NiMH or NiCd applications and 3V to  
5V regulated input applications. The 10-pin MSOP and  
3X3 DFN packages provide a small footprint with  
minimal external components.  
As with all buck-derived dc-dc switching regulators, the  
input current is pulled from the source in pulses. This  
places a burden on the TC1303B input filter capacitor.  
In most applications, a minimum of 4.7 µF is recom-  
mended on VIN1 (buck regulator input voltage pin). In  
applications that have high source impedance or have  
long leads (10 inches) connecting to the input source,  
additional capacitance should be used. The capacitor  
type can be electrolytic (aluminum, tantalum, POSCAP,  
OSCON) or ceramic. For most portable electronic  
applications, ceramic capacitors are preferred due to  
their small size and low cost.  
5.2  
Fixed Output Application  
A typical VOUT1 fixed output voltage application is  
shown in “Typical Application Circuits” on page 3. A  
4.7 µF VIN1 ceramic input capacitor, 4.7 µF VOUT1  
ceramic capacitor, 1.0 µF ceramic VOUT2 capacitor and  
4.7 µH inductor make up the entire external component  
solution for this dual-output application. No external  
dividers or compensation components are necessary.  
For this application, the input voltage range is 2.7V to  
4.2V, VOUT1 = 1.5V at 500 mA, while VOUT2 = 2.5V at  
300 mA.  
For applications that require very low noise on the LDO  
output, an additional capacitor (typically 1 µF) can be  
added to the VIN2 pin (LDO input voltage pin).  
Low ESR electrolytic or ceramic can be used for the  
buck regulator output capacitor. Again, ceramic is  
recommended because of its physical attributes and  
cost. For most applications, a 4.7 µF is recommended.  
Refer to Table 5-1 for recommended values. Larger  
capacitors (up to 22 µF) can be used. There are some  
advantages in load step performance when using  
larger value capacitors. Ceramic materials X7R and  
X5R have low temperature coefficients and are well  
within the acceptable ESR range required.  
5.3  
Adjustable Output Application  
A typical VOUT1 adjustable output application is also  
shown in “Typical Application Circuits” on page 3.  
For this application, the buck regulator output voltage is  
adjustable by using two external resistors as a voltage  
divider. For adjustable output voltages, it is recom-  
mended that the top resistor divider value be 200 kΩ.  
The bottom resistor divider can be calculated using the  
following formula:  
TABLE 5-1:  
TC1303B RECOMMENDED  
CAPACITOR VALUES  
C(VIN1  
4.7 µF  
none  
)
C(VIN2  
)
COUT1  
COUT2  
EQUATION 5-1:  
min  
none  
none  
4.7 µF  
22 µF  
1 µF  
VFB  
--------------------------------  
RBOT = RTOP  
×
max  
10 µF  
VOUT1 VFB  
Example:  
RTOP = 200 kΩ  
VOUT1 = 2.1V  
VFB = 0.8V  
RBOT = 200 kΩ x (0.8V/(2.1V – 0.8V))  
RBOT = 123 kΩ (Standard Value = 121 kΩ)  
For adjustable output applications, an additional R-C  
compensation is necessary for the buck regulator  
control loop stability. Recommended values are:  
RCOMP = 4.99 kΩ  
CCOMP = 33 pF  
DS21949A-page 18  
© 2005 Microchip Technology Inc.  
TC1303B  
TABLE 5-2:  
TC1303B RECOMMENDED  
INDUCTOR VALUES  
5.5  
Inductor Selection  
For most applications, a 4.7 µH inductor is recom-  
mended to minimize noise. There are many different  
magnetic core materials and package options to select  
from. That decision is based on size, cost and accept-  
able radiated energy levels. Toroid and shielded ferrite  
pot cores will have low radiated energy but tend to be  
larger and higher is cost. With a typical 2.0 MHz switch-  
ing frequency, the inductor ripple current can be  
calculated based on the following formulas.  
DCR  
Ω
(MAX)  
Part  
Number (µH)  
Value  
MAX  
Size  
IDC (A) WxLxH (mm)  
Coiltronics®  
SD10  
SD10  
2.2  
3.3  
4.7  
0.091 1.35 5.2, 5.2, 1.0 max.  
0.108 1.24 5.2, 5.2, 1.0 max.  
0.154 1.04 5.2, 5.2, 1.0 max.  
SD10  
Coiltronics  
SD12  
EQUATION 5-2:  
2.2  
3.3  
4.7  
0.075 1.80 5.2, 5.2, 1.2 max.  
0.104 1.42 5.2, 5.2, 1.2 max.  
0.118 1.29 5.2, 5.2, 1.2 max.  
VOUT  
SD12  
-------------  
DutyCycle =  
VIN  
SD12  
Sumida Corporation®  
Duty cycle represents the percentage of switch-on  
time.  
CMD411  
CMD411  
CMD411  
Coilcraft®  
1008PS  
2.2  
3.3  
4.7  
0.116 0.950 4.4, 5.8, 1.2 max.  
0.174 0.770 4.4, 5.8, 1.2 max.  
0.216 0.750 4.4, 5.8, 1.2 max.  
EQUATION 5-3:  
1
FSW  
---------  
TON = DutyCycle ×  
4.7  
4.7  
0.35  
0.11  
1.0 3.8,3.8,2.74 max.  
1.15 5.9,5.0, 3.81 max  
Where:  
FSW = Switching Frequency.  
1812PS  
5.6  
Thermal Calculations  
The inductor ac ripple current can be calculated using  
the following relationship:  
5.6.1  
BUCK REGULATOR OUTPUT  
(VOUT1  
)
The TC1303B is available in two different 10-pin  
packages (MSOP and 3X3 DFN). By calculating the  
power dissipation and applying the package thermal  
resistance, (θJA), the junction temperature is estimated.  
The maximum continuous junction temperature rating  
for the TC1303B is 125°C.  
EQUATION 5-4:  
ΔIL  
Δt  
--------  
VL = L ×  
Where:  
VL = voltage across the inductor (VIN – VOUT  
)
To quickly estimate the internal power dissipation for  
the switching buck regulator, an empirical calculation  
using measured efficiency can be used. Given the  
measured efficiency (Section 2.0 “Typical Perfor-  
mance Curves”), the internal power dissipation is  
estimated below.  
Δt = on-time of P-channel MOSFET  
Solving for ΔIL = yields:  
EQUATION 5-5:  
VL  
-----  
ΔIL  
=
× Δt  
EQUATION 5-6:  
L
VOUT1 × IOUT1  
Efficiency  
-------------------------------------  
(VOUT1 × IOUT1) = PDissipation  
When considering inductor ratings, the maximum DC  
current rating of the inductor should be at least equal to  
the maximum buck regulator load current (IOUT1), plus  
one half of the peak-to-peak inductor ripple current  
(1/2 * ΔIL). The inductor DC resistance can add to the  
buck converter I2R losses. A rating of less than 200 mΩ  
is recommended. Overall efficiency will be improved by  
using lower DC resistance inductors.  
The first term is equal to the input power (definition of  
efficiency, POUT/PIN = Efficiency). The second term is  
equal to the delivered power. The difference is internal  
power dissipation. This is an estimate assuming that  
most of the power lost is internal to the TC1303B.  
There is some percentage of power lost in the buck  
inductor, with very little loss in the input and output  
capacitors.  
© 2005 Microchip Technology Inc.  
DS21949A-page 19  
TC1303B  
As an example, for a 3.6V input, 1.8V output with a load  
of 400 mA, the efficiency taken from Figure 2-7 is  
approximately 84%. The internal power dissipation is  
approximately 171 mW.  
placed near their respective pins to minimize trace  
length. The CIN1 and COUT1 capacitor returns are con-  
nected closely together at the PGND plane. The LDO  
optional input capacitor (CIN2) and LDO output capaci-  
tor COUT2 are returned to the AGND plane. The analog  
ground plane and power ground plane are connected  
at one point (shown near L1). All other signals (SHDN1,  
SHDN2, feedback in the adjustable output case)  
should be referenced to AGND and have the AGND  
plane underneath them.  
5.6.2  
LDO OUTPUT (VOUT2)  
The internal power dissipation within the TC1303B  
LDO is a function of input voltage, output voltage and  
output current. The following equation can be used to  
calculate the internal power dissipation for the LDO.  
- Via  
A
to P  
GND  
EQUATION 5-7:  
GND  
PLDO = (VIN(MAX )) VOUT2(MIN)) × IOUT2(MAX ))  
+V  
OUT1  
* C  
Optional  
IN2  
Where:  
C
OUT1  
L
1
PLDO  
= LDO Pass device internal  
power dissipation  
A
GND  
P
GND  
VIN(MAX) = Maximum input voltage  
C
IN2  
1
2
3
4
5
10  
9
VOUT(MIN)= LDO minimum output voltage  
C
IN1  
+V  
IN2  
+V  
IN1  
8
+V  
OUT2  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package’s maximum  
internal power dissipation.  
7
C
OUT2  
6
TC1303B  
P
Plane  
GND  
A
GND  
A
Plane  
GND  
FIGURE 5-1:  
Fixed 10-Pin MSOP.  
Component Placement,  
5.6.3  
LDO POWER DISSIPATION  
EXAMPLE  
There will be some difference in layout for the 10-pin  
DFN package due to the thermal pad. A typical fixed-  
output DFN layout is shown below. For the DFN layout,  
the VIN1 to VIN2 connection is routed on the bottom of  
the board around the TC1303B thermal pad.  
Input Voltage  
VIN = 5V±10%  
LDO Output Voltage and Current  
VOUT = 3.3V  
- Via  
+V  
A
to P  
GND  
OUT1  
GND  
IOUT = 300 mA  
* C  
Optional  
Internal Power Dissipation  
PLDO(MAX) = (VIN(MAX) – VOUT(MIN)) x IOUT(MAX)  
IN2  
C
OUT1  
L
A
1
GND  
PLDO = (5.5V) – (0.975 x 3.3V))  
x 300 mA  
PGND  
C
IN2  
PLDO = 684.8 mW  
1
2
3
4
5
10  
9
P
GND  
+V  
IN2  
C
IN1  
5.7  
PCB Layout Information  
8
+V  
OUT2  
+V  
IN1  
7
Some basic design guidelines should be used when  
physically placing the TC1303B on a Printed Circuit  
Board (PCB). The TC1303B has two ground pins, iden-  
tified as AGND (analog ground) and PGND (power  
ground). By separating grounds, it is possible to  
minimize the switching frequency noise on the LDO  
output. The first priority, while placing external compo-  
nents on the board, is the input capacitor (CIN1). Wiring  
should be short and wide; the input current for the  
TC1303B can be as high as 800 mA. The next priority  
C
OUT2  
6
TC1303B  
A
GND  
P
Plane  
GND  
A
Plane  
GND  
FIGURE 5-2:  
Fixed 10-Pin DFN.  
Component Placement,  
would be the buck regulator output capacitor (COUT1  
)
and inductor (L1). All three of these components are  
DS21949A-page 20  
© 2005 Microchip Technology Inc.  
TC1303B  
5.8  
Design Example  
VOUT1 = 2.0V @ 500 mA  
VOUT2 = 3.3V @ 300 mA  
VIN = 5V±10%  
L = 4.7µH  
Calculate PWM mode inductor ripple current  
Nominal Duty  
Cycle = 2.0V/5.0V = 40%  
P-channel  
Switch-on time = 0.40 x 1/(2 MHz) = 200 ns  
VL = (VIN-VOUT1) = 3V  
ΔIL = (VL/L) x TON = 128 mA  
Peak inductor current:  
IL(PK) = IOUT1+1/2ΔIL = 564 mA  
Switcher power loss:  
Use efficiency estimate for 1.8V from Figure 2-7  
Efficiency = 84%, PDISS1 = 171 mW  
Resistor Divider:  
RTOP = 200 kΩ  
RBOT = 133 kΩ  
LDO Output:  
PDISS2 = (VIN(MAX)  
VOUT2(MIN)) x IOUT2(MAX)  
PDISS2 = (5.5V – (0.975) x 3.3V) x 300 mA  
PDISS2 = 684.8 mW  
Total  
Dissipation = 171 mW + 685 mW = 856 mW  
Junction Temp Rise and Maximum Ambient  
Operating Temperature Calculations  
10-Pin MSOP (4-Layer Board with internal Planes)  
RθJA = 113° C/Watt  
Junction Temp.  
Rise = 856 mW x 113° C/Watt = 96.7°C  
Max. Ambient  
Temperature = 125°C - 96.7°C  
Max. Ambient  
Temperature = 28.3°C  
10-Pin DFN  
RθJA = 41° C/Watt (4-Layer Board with  
internal planes and 2 vias)  
Junction Temp.  
Rise = 856 mW x 41° C/Watt = 35.1°C  
Max. Ambient  
Temperature = 125°C - 35.1°C  
Max. Ambient  
Temperature = 89.9°C  
This is above the 85°C max. ambient temperature.  
© 2005 Microchip Technology Inc.  
DS21949A-page 21  
TC1303B  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead MSOP*  
Example:  
10-Lead DFN  
Example:  
— 1 = TC1303B  
— 1 = 1.375VVOUT1  
— H = 2.6V VOUT2  
— 0 = Default  
XXXX  
YYWW  
NNN  
11H0  
0520  
256  
XXXXXX  
YWWNNN  
11H0/E  
520256  
* The MSOP package for this device has not  
been qualified at the time of this publication.  
Contact your Microchip sales office for  
availability.  
Third letter represents VOUT2 configuration:  
Code VOUT2 Code VOUT1 Code VOUT2  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
J
K
L
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
S
T
1.5V  
Second letter represents VOUT1 configuration:  
U
V
W
X
Y
Z
M
N
O
P
Q
R
Code VOUT1 Code VOUT1 Code VOUT1  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
J
K
L
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
S
T
1.5V  
1.4V  
1.3V  
1.2V  
1.1V  
1.0V  
0.9V  
Adj  
U
V
W
X
Y
Z
M
N
O
P
Q
R
Fourth letter represents +50 mV Increments:  
Code  
Code  
0
1
Default  
2
3
+50 mV to V2  
1
1.375V  
+50 mV to V1  
+50 mV to V1  
and V2  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS21949A-page 22  
© 2005 Microchip Technology Inc.  
TC1303B  
10-Lead Plastic Dual Flat No Lead Package (MF) 3x3x0.9 mm Body (DFN) – Saw Singulated  
p
b
E
n
L
D
D2  
EXPOSED  
METAL  
PAD  
2
1
PIN 1  
ID INDEX  
AREA  
E2  
TOP VIEW  
BOTTOM VIEW  
(NOTE 2)  
A
EXPOSED  
TIE BAR  
A3  
A1  
(NOTE 1)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
10  
MAX  
n
e
Number of Pins  
Pitch  
10  
.020 BSC  
0.50 BSC  
0.90  
Overall Height  
Standoff  
A
.031  
.035  
.001  
.008 REF.  
.039  
.002  
0.80  
1.00  
A1  
A3  
E
.000  
0.00  
0.02  
0.05  
Lead Thickness  
Overall Length  
Exposed Pad Length  
Overall Width  
Exposed Pad Width  
Lead Width  
0.20 REF.  
3.00  
.112  
.055  
.112  
.047  
.008  
.012  
.118  
--  
.124  
.096  
.124  
.069  
.015  
.020  
2.85  
1.39  
2.85  
1.20  
0.18  
0.30  
3.15  
2.45  
3.15  
1.75  
0.30  
0.50  
(Note 3)  
(Note 3)  
E2  
D
--  
.118  
--  
3.00  
D2  
b
--  
.010  
.016  
0.25  
Lead Length  
L
0.40  
*Controlling Parameter  
Notes:  
1. Package may have one or more exposed tie bars at ends.  
2. Pin 1 visual index feature may vary, but must be located within the hatched area.  
3. Exposed pad dimensions vary with paddle size.  
4. JEDEC equivalent: Not registered  
Drawing No. C04-063  
Revised 05/24/04  
© 2005 Microchip Technology Inc.  
DS21949A-page 23  
TC1303B  
10-Lead Plastic Micro Small Outline Package (UN) (MSOP*)  
E
E1  
p
D
2
1
B
n
α
A
φ
c
A2  
A1  
L
(F)  
β
L1  
Units  
Dimension Limits  
INCHES  
MILLIMETERS*  
NOM  
MIN  
NOM  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
10  
10  
.020 TYP  
0.50 TYP.  
Overall Height  
Molded Package Thickness  
Standoff  
A
A2  
A1  
E
-
-
.033  
-
.043  
-
-
1.10  
0.95  
0.15  
.030  
.037  
0.75  
0.85  
.000  
.006  
0.00  
-
Overall Width  
.193 BSC  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
3.00 BSC  
.118 BSC  
3.00 BSC  
L
.016  
.024  
.031  
0.40  
0.60  
0.80  
Footprint  
F
.037 REF  
0.95 REF  
φ
c
Foot Angle  
0°  
.003  
.006  
5°  
-
8°  
.009  
.012  
15°  
0°  
0.08  
0.15  
5°  
-
8°  
0.23  
0.30  
15°  
Lead Thickness  
Lead Width  
-
-
B
α
β
.009  
0.23  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
-
-
-
-
5°  
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-021  
* The MSOP package for the TC1303B has not been qualified at the time of this publication.  
Contact your Microchip sales office for availability.  
DS21949A-page 24  
© 2005 Microchip Technology Inc.  
TC1303B  
APPENDIX A: REVISION HISTORY  
Revision A (June 2005)  
• Original Release of this Document.  
© 2005 Microchip Technology Inc.  
DS21949A-page 25  
TC1303B  
NOTES:  
DS21949A-page 26  
© 2005 Microchip Technology Inc.  
TC1303B  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
TC1303  
X-  
X
X
X
X
XX  
XX  
a)  
b)  
c)  
TC1303B-IA0EMF:  
TC1303B-ZA0EUN:  
2.5V, 3.3V, Default,  
10LD DFN pkg.  
Adj, 3.3V, Default,  
10LD MSOP pkg.  
Type  
B
V
V
+50 mV Temp Package Tube  
or  
OUT1  
OUT2  
Increments  
Range  
Tape &  
Reel  
TC1303B-PG0EMFTR: 1.8V, 2.7V, Default,  
10LD DFN pkg.  
Tape and Reel  
Device:  
Options  
TC1303B: PWM/LDO combo with Power-Good.  
Code  
VOUT1  
Code  
VOUT2  
Code  
+50 mV  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
1.5V  
1.4V  
1.3V  
1.2V  
1.1V  
1.0V  
0.9V  
Adjustable  
1.375V  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
1.5V  
0
1
2
3
Default  
+50 mV to V1  
+50 mV to V2  
+50 mV to V1  
and V2  
J
K
L
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
1
1
* Contact Factory for Alternate Output Voltage and Reset  
Voltage Configurations.  
Temperature  
Range:  
E
= -40°C to +85°C  
Package:  
MF  
UN  
=
=
Dual Flat, No Lead (3x3 mm body), 10-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
(The MSOP package for this device has not been  
qualified at the time of this publication. Contact your  
Microchip sales office for availability.)  
Tube or  
Tape and Reel:  
Blank  
TR  
=
=
Tube  
Tape and Reel  
© 2005 Microchip Technology Inc.  
DS21949A-page 27  
TC1303B  
NOTES:  
DS21949A-page 28  
© 2005 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor,  
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,  
Smart Serial, SmartTel, Total Endurance and WiperLock are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2005 Microchip Technology Inc.  
DS21949A-page 29  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Malaysia - Penang  
Tel:011-604-646-8870  
Fax:011-604-646-5086  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 011-632-634-9065  
Fax: 011-632-634-9069  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
04/20/05  
DS21949A-page 30  
© 2005 Microchip Technology Inc.  

相关型号:

TC1303B-AE1EUN

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE1EUNTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE2EMF

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE2EMFTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE2EUN

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE2EUNTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE3EMF

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE3EMFTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE3EUN

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AE3EUNTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AF0EMF

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1303B-AF0EMFTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP