TC1313-1D1EMF [MICROCHIP]

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10;
TC1313-1D1EMF
型号: TC1313-1D1EMF
厂家: MICROCHIP    MICROCHIP
描述:

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10

开关 光电二极管 输出元件
文件: 总32页 (文件大小:590K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1313  
500 mA Synchronous Buck Regulator,  
+ 300 mA LDO  
Features  
Description  
• Dual-Output Regulator (500 mA Buck Regulator  
and 300 mA Low-Dropout Regulator (LDO))  
The TC1313 device combines a 500 mA synchronous  
buck regulator and 300 mA Low-Dropout Regulator  
(LDO) to provide a highly integrated solution for  
devices that require multiple supply voltages. The  
unique combination of an integrated buck switching  
regulator and low-dropout linear regulator provides the  
lowest system cost for dual-output voltage applications  
that require one lower processor core voltage and one  
higher bias voltage.  
Total Device Quiescent Current = 57 µA (Typical)  
• Independent Shutdown for Buck and LDO  
Outputs  
• Both Outputs Internally Compensated  
• Synchronous Buck Regulator:  
- Over 90% Typical Efficiency  
- 2.0 MHz Fixed-Frequency PWM  
(Heavy Load)  
The 500 mA synchronous buck regulator switches at a  
fixed frequency of 2.0 MHz when the load is heavy,  
providing a low-noise, small-size solution. When the  
load on the buck output is reduced to light levels, it  
changes operation to a Pulse Frequency Modulation  
(PFM) mode to minimize quiescent current draw from  
the battery. No intervention is necessary for smooth  
transition from one mode to another.  
- Low Output Noise  
- Automatic PWM-to-PFM mode transition  
- Adjustable (0.8V to 4.5V) and Standard  
Fixed-Output Voltages (0.8V, 1.2V, 1.5V,  
1.8V, 2.5V, 3.3V)  
• Low-Dropout Regulator:  
The LDO provides a 300 mA auxiliary output that  
requires a single 1 µF ceramic output capacitor,  
minimizing board area and cost. The typical dropout  
voltage for the LDO output is 137 mV for a 200 mA  
load.  
- Low-Dropout Voltage = 137 mV Typical @  
200 mA  
- Standard Fixed-Output Voltages  
(1.5V, 1.8V, 2.5V, 3.3V)  
• Small 10-pin 3x3 DFN or MSOP Package Options  
• Operating Junction Temperature Range:  
- -40°C to +125°C  
The TC1313 device is available in either the 10-pin DFN  
or MSOP package.  
Additional protection features include: UVLO,  
overtemperature and overcurrent protection on both  
outputs.  
• Undervoltage Lockout (UVLO)  
• Output Short Circuit Protection  
• Overtemperature Protection  
For a complete listing of TC1313 standard parts,  
consult your Microchip representative.  
Applications  
Package Type  
• Cellular Phones  
10-Lead DFN *  
• Portable Computers  
• USB-Powered Devices  
• Handheld Medical Instruments  
• Organizers and PDAs  
SHDN2  
P
L
1
2
10  
9
GND  
V
IN2  
X
EP  
11  
V
V
IN1  
3
4
5
8
OUT2  
NC  
SHDN1  
7
6
V
/V  
A
FB1 OUT1  
GND  
10-Lead MSOP  
P
10  
SHDN2  
1
2
3
4
5
GND  
V
9
L
IN2  
X
V
V
8
IN1  
OUT2  
7
SHDN1  
NC  
V
/V  
A
6
FB1 OUT1  
GND  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2009 Microchip Technology Inc.  
DS21974B-page 1  
TC1313  
Functional Block Diagram  
Undervoltage Lockout  
(UVLO)  
UVLO  
VREF  
Synchronous Buck Regulator  
VIN1  
PDRV  
VIN2  
LX  
Driver  
Control  
SHDN1  
NDRV  
PGND  
PGND  
PGND  
AGND  
VOUT1/VFB1  
VREF  
UVLO  
VOUT2  
LDO  
SHDN2  
AGND  
DS21974B-page 2  
© 2009 Microchip Technology Inc.  
TC1313  
Typical Application Circuits  
TC1313  
Fixed-Output Application  
10-Lead MSOP  
4.7 µH  
VIN  
VIN1  
VOUT1  
1.5V @ 500 mA  
LX  
PGND  
VOUT1  
VOUT2  
AGND  
8
2
7
1
4
9
10  
6
2.7V to 4.2V  
4.7 µF  
4.7 µF  
VIN2  
SHDN1  
SHDN2  
NC  
VOUT2  
2.5V @ 300 mA  
3
1 µF  
5
TC1313  
Adjustable-Output Application  
10-Lead DFN  
4.7 µH  
VOUT1  
V
L
IN1  
X
Input  
8
2
7
9
10  
6
Voltage  
2.1V @  
500 mA  
P
4.7 µF  
V
GND  
IN2  
4.7 µF  
4.5V to 5.5V  
200 k  
4.99 kΩ  
EP  
11  
V
OUT1  
SHDN1  
VOUT2  
*Optional  
Capacitor  
33 pF  
V
A
OUT2  
SHDN2  
NC  
1.0 µF  
3
5
1
4
3.3V @  
300 mA  
121 kΩ  
VIN2  
1 µF  
GND  
Note  
Note: Connect DFN package exposed pad to AGND  
.
© 2009 Microchip Technology Inc.  
DS21974B-page 3  
TC1313  
NOTES:  
DS21974B-page 4  
© 2009 Microchip Technology Inc.  
TC1313  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
IN - AGND......................................................................6.0V  
All Other I/O ...............................(AGND - 0.3V) to (VIN + 0.3V)  
LX to PGND...............................................-0.3V to (VIN + 0.3V)  
P
GND to AGND ..................................................-0.3V to +0.3V  
Output Short Circuit Current ................................Continuous  
Power Dissipation (Note 7)..........................Internally Limited  
Storage temperature .....................................-65°C to +150°C  
Ambient Temp. with Power Applied ................-40°C to +85°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD protection on all pins (HBM) ....................................... 3 kV  
DC CHARACTERISTICS  
Electrical Characteristics: VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1µF, L = 4.7 µH, VOUT1 (ADJ) = 1.8V,  
OUT1 = 100 ma, IOUT2 = 0.1 mA TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
I
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input/Output Characteristics  
Input Voltage  
VIN  
2.7  
500  
300  
5.5  
1
V
Note 1, Note 2, Note 8  
Note 1  
Maximum Output Current  
Maximum Output Current  
IOUT1_MAX  
IOUT2_MAX  
IIN_SHDN  
mA  
mA  
µA  
Note 1  
Shutdown Current  
0.05  
SHDN1 = SHDN2 = GND  
Combined VIN1 and VIN2 Current  
Operating IQ  
IQ  
57  
100  
µA  
SHDN1 = SHDN2 = VIN2  
IOUT1 = 0 mA, IOUT2 = 0 mA  
Synchronous Buck IQ  
LDO IQ  
38  
44  
µA  
µA  
SHDN1 = VIN, SHDN2 = GND  
SHDN1 = GND, SHDN2 = VIN2  
Shutdown/UVLO/Thermal Shutdown Characteristics  
SHDN1,SHDN2,  
Logic Input Voltage Low  
VIL  
VIH  
IIN  
15  
%VIN  
%VIN  
µA  
VIN1 = VIN2 = 2.7V to 5.5V  
VIN1 = VIN2 = 2.7V to 5.5V  
SHDN1,SHDN2,  
Logic Input Voltage High  
45  
SHDN1,SHDN2,  
Input Leakage Current  
-1.0  
±0.01  
1.0  
VIN1 = VIN2 = 2.7V to 5.5V  
SHDNX = GND  
SHDNY = VIN  
Thermal Shutdown  
TSHD  
TSHD-HYS  
UVLO  
165  
10  
°C  
°C  
V
Note 6, Note 7  
Thermal Shutdown Hysteresis  
Undervoltage Lockout  
2.4  
2.55  
2.7  
VIN1 Falling  
(VOUT1 and VOUT2  
)
Undervoltage Lockout Hysteresis UVLO-HYS  
200  
mV  
Note 1: The Minimum VIN has to meet two conditions: VIN 2.7V and VIN VRX + VDROPOUT, VRX = VR1 or VR2  
2: RX is the regulator output voltage setting.  
3: TCVOUT2 = ((VOUT2max – VOUT2min) * 106)/(VOUT2 * DT).  
.
V
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the LX pin to VIN, and from LX to PGND. In cases where  
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
VIN1 and VIN2 are supplied by the same input source.  
© 2009 Microchip Technology Inc.  
DS21974B-page 5  
TC1313  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1µF, L = 4.7 µH, VOUT1 (ADJ) = 1.8V,  
I
OUT1 = 100 ma, IOUT2 = 0.1 mA TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
Parameters  
Sym  
)
Min  
Typ  
Max  
Units  
Conditions  
Synchronous Buck Regulator (VOUT1  
Adjustable Output Voltage Range  
Adjustable Reference Feedback  
VOUT1  
VFB1  
0.8  
4.5  
V
V
0.78  
0.8  
0.82  
Voltage (VFB1  
Feedback Input Bias Current  
(IFB1  
Output Voltage Tolerance Fixed  
(VOUT1  
Line Regulation (VOUT1  
)
IVFB1  
-2.5  
-1.5  
±0.3  
0.2  
+2.5  
nA  
%
)
VOUT1  
Note 2  
)
)
VLINE-REG  
VLOAD-REG  
VIN – VOUT1  
%/V  
%
VIN = VR+1V to 5.5V,  
LOAD = 100 mA  
I
Load Regulation (VOUT1  
Dropout Voltage VOUT1  
)
0.2  
VIN = VR + 1.5V, ILOAD = 100 mA to  
500 mA (Note 1)  
280  
mV  
IOUT1 = 500 mA, VOUT1 = 3.3V  
(Note 5)  
Internal Oscillator Frequency  
Start Up Time  
FOSC  
TSS  
1.6  
2.0  
0.5  
2.4  
MHz  
ms  
TR = 10% to 90%  
IP = 100 mA  
RDSon P-Channel  
RDSon-P  
RDSon-N  
ILX  
450  
450  
±0.01  
mΩ  
mΩ  
μA  
RDSon N-Channel  
IN = 100 mA  
LX Pin Leakage Current  
-1.0  
1.0  
SHDN = 0V, VIN = 5.5V, LX = 0V,  
L
X = 5.5V  
Positive Current Limit Threshold  
+ILX(MAX)  
700  
mA  
%
LDO Output (VOUT2  
)
Output Voltage Tolerance (VOUT2  
Temperature Coefficient  
Line Regulation  
)
VOUT2  
-2.5  
±0.3  
25  
+2.5  
Note 2  
TCVOUT  
ppm/°C Note 3  
ΔVOUT2  
ΔVIN  
/
/
/
-0.2  
±0.02  
+0.2  
%/V  
(VR+1V) VIN 5.5V  
Load Regulation, VOUT2 2.5V  
Load Regulation, VOUT2 < 2.5V  
Dropout Voltage VOUT2 > 2.5V  
ΔVOUT2  
IOUT2  
-0.75  
-0.90  
0.1  
0.1  
+0.75  
+0.90  
%
IOUT2 = 0.1 mA to 300 mA (Note 4)  
IOUT2 = 0.1 mA to 300 mA (Note 4)  
IOUT2 = 200 mA (Note 5)  
ΔVOUT2  
%
IOUT2  
VIN – VOUT2  
137  
205  
62  
300  
500  
mV  
I
OUT2 = 300 mA  
Power Supply Rejection Ratio  
Output Noise  
PSRR  
eN  
dB  
f = 100 Hz, IOUT1 = IOUT2 = 50 mA,  
CIN = 0 µF  
½
1.8  
µV/(Hz)  
f = 1 kHz, IOUT2 = 50 mA,  
SHDN1 = GND  
Note 1: The Minimum VIN has to meet two conditions: VIN 2.7V and VIN VRX + VDROPOUT, VRX = VR1 or VR2  
2: RX is the regulator output voltage setting.  
3: TCVOUT2 = ((VOUT2max – VOUT2min) * 106)/(VOUT2 * DT).  
.
V
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the LX pin to VIN, and from LX to PGND. In cases where  
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
VIN1 and VIN2 are supplied by the same input source.  
DS21974B-page 6  
© 2009 Microchip Technology Inc.  
TC1313  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1µF, L = 4.7 µH, VOUT1 (ADJ) = 1.8V,  
OUT1 = 100 ma, IOUT2 = 0.1 mA TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
I
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
RLOAD2 1Ω  
Output Short Circuit Current  
(Average)  
IOUTsc2  
240  
mA  
Wake-Up Time  
(From SHDN2 mode), (VOUT2  
tWK  
tS  
31  
100  
µs  
µs  
IOUT1 = IOUT2 = 50 mA  
IOUT1 = IOUT2 = 50 mA  
)
)
Settling Time  
(From SHDN2 mode), (VOUT2  
100  
Note 1: The Minimum VIN has to meet two conditions: VIN 2.7V and VIN VRX + VDROPOUT, VRX = VR1 or VR2  
2: RX is the regulator output voltage setting.  
3: TCVOUT2 = ((VOUT2max – VOUT2min) * 106)/(VOUT2 * DT).  
.
V
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. TA, TJ, θJA). Exceeding the maximum allowable power  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the LX pin to VIN, and from LX to PGND. In cases where  
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
VIN1 and VIN2 are supplied by the same input source.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VIN = +2.7V to +5.5V  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Junction Temperature Range  
Storage Temperature Range  
TJ  
TA  
TJ  
-40  
-65  
+125  
+150  
+150  
°C  
°C  
°C  
Steady state  
Transient  
Maximum Junction Temperature  
Thermal Package Resistances  
Thermal Resistance, 10L-DFN  
θJA  
41  
°C/W Typical 4-layer board with Internal  
Ground Plane and 2 Vias in Thermal  
Pad  
Thermal Resistance, 10L-MSOP  
θJA  
113  
°C/W Typical 4-layer board with Internal  
Ground Plane  
© 2009 Microchip Technology Inc.  
DS21974B-page 7  
TC1313  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1 µF, L = 4.7 µH,  
OUT1 (ADJ) = 1.8V, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C. TA = +25°C. Adjustable or fixed-  
output voltage options can be used to generate the Typical Performance Characteristics.  
V
66  
64  
62  
60  
58  
56  
54  
52  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SHDN1 = VIN2  
SHDN2 = VIN2  
SHDN1 = VIN2  
SHDN2 = AGND  
IOUT1 = 100 mA  
VIN = 5.5V  
IOUT1 = 250 mA  
IOUT1 = 500 mA  
VIN = 4.2V  
VIN = 3.6V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-1:  
I Switcher and LDO  
FIGURE 2-4:  
V
Output Efficiency vs.  
OUT1  
Q
Current vs. Ambient Temperature.  
Input Voltage (V  
= 1.2V).  
OUT1  
40  
100  
95  
90  
85  
80  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN = 5.5V  
38  
36  
34  
32  
30  
VIN = 4.2V  
VIN1 = 3.6V  
VIN = 3.6V  
VIN1 = 4.2V  
75  
VIN1 = 3.0V  
70  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
IOUT1 (A)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Ambient Temperature.  
I Switcher Current vs.  
FIGURE 2-5:  
(V  
V
Output Efficiency vs.  
OUT1  
Q
I
= 1.2V).  
OUT1  
OUT1  
100  
95  
90  
85  
80  
75  
70  
65  
60  
50  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = AGND  
SHDN2 = VIN2  
48  
IOUT1 = 100 mA  
IOUT1 = 250 mA  
VIN = 5.5V  
46  
44  
42  
VIN = 4.2V  
IOUT1 = 500 mA  
VIN = 3.6V  
40  
38  
36  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-3:  
I LDO Current vs. Ambient  
FIGURE 2-6:  
V
Output Efficiency vs.  
OUT1  
Q
Temperature.  
Input Voltage (V  
= 1.8V).  
OUT1  
DS21974B-page 8  
© 2009 Microchip Technology Inc.  
TC1313  
Note: Unless otherwise indicated, VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1 µF, L = 4.7 µH,  
OUT1 (ADJ) = 1.8V, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C. TA = +25°C. Adjustable or fixed-  
output voltage options can be used to generate the Typical Performance Characteristics.  
V
1.21  
1.206  
1.202  
1.198  
1.194  
1.19  
100  
95  
90  
85  
80  
75  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN = 3.0V  
VIN1 = 3.6V  
VIN = 4.2V  
VIN = 3.6V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
0.005  
0.104  
0.104  
0.104  
0.203  
0.302  
0.302  
0.302  
0.401  
0.5  
I
OUT1 (A)  
I
OUT1 (A)  
FIGURE 2-7:  
(V  
V
Output Efficiency vs.  
FIGURE 2-10:  
(V = 1.2V).  
V
vs. I  
OUT1 OUT1  
OUT1  
I
= 1.8V).  
OUT1  
OUT1  
OUT1  
100  
96  
92  
88  
84  
80  
1.82  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 3.6V  
IOUT1 = 100 mA  
1.815  
1.81  
1.805  
1.8  
IOUT1 = 250 mA  
IOUT1 = 500 mA  
1.795  
1.79  
0.005  
0.203  
0.401  
0.5  
3.60  
3.92  
4.23  
4.55  
4.87  
5.18  
5.50  
IOUT1 (A)  
Input Voltage (V)  
FIGURE 2-8:  
Input Voltage (V  
V
Output Efficiency vs.  
FIGURE 2-11:  
(V = 1.8V).  
V
vs. I  
OUT1 OUT1  
OUT1  
= 3.3V).  
OUT1  
OUT1  
VIN1 = 3.6V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
3.4  
SHDN1 = VIN2  
SHDN2 = AGND  
3.36  
3.32  
3.28  
3.24  
3.2  
VIN1 = 4.2V  
VIN1 = 4.2V  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 5.5V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
0.005  
0.203  
IOUT1 (A)  
0.401  
0.5  
IOUT1 (A)  
FIGURE 2-9:  
(V  
V
Output Efficiency vs.  
FIGURE 2-12:  
(V = 3.3V).  
V
vs. I  
OUT1 OUT1  
OUT1  
I
= 3.3V).  
OUT1  
OUT1  
OUT1  
© 2009 Microchip Technology Inc.  
DS21974B-page 9  
TC1313  
Note: Unless otherwise indicated, VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1 µF, L = 4.7 µH,  
V
OUT1 (ADJ) = 1.8V, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C. TA = +25°C. Adjustable or fixed-  
output voltage options can be used to generate the Typical Performance Characteristics.  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 3.6V  
P-Channel  
N-Channel  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-13:  
V
Switching Frequency  
FIGURE 2-16:  
V
Switch Resistance  
OUT1  
OUT1  
vs. Input Voltage.  
vs. Input Voltage.  
0.70  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 3.6V  
0.65  
0.60  
0.55  
0.50  
0.45  
P-Channel  
N-Channel  
SHDN1 = VIN2  
SHDN2 = AGND  
0.40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-14:  
V
Switching Frequency  
FIGURE 2-17:  
V
Switch Resistance  
OUT1  
OUT1  
vs. Ambient Temperature.  
vs. Ambient Temperature.  
0.820  
0.4  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
0.35  
0.815  
VIN1 = 3.6V  
0.810  
0.805  
0.800  
0.795  
0.790  
0.3  
0.25  
0.2  
VOUT1 = 3.3V  
IOUT1 = 500 mA  
0.15  
0.1  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-15:  
V
Adjustable Feedback  
FIGURE 2-18:  
V
Dropout Voltage vs.  
OUT1  
OUT1  
Voltage vs. Ambient Temperature.  
Ambient Temperature.  
DS21974B-page 10  
© 2009 Microchip Technology Inc.  
TC1313  
Note: Unless otherwise indicated, VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1 µF, L = 4.7 µH,  
OUT1 (ADJ) = 1.8V, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C. TA = +25°C. Adjustable or fixed-  
V
output voltage options can be used to generate the Typical Performance Characteristics.  
1.802  
IOUT2 = 150 mA  
SHDN1 = AGND  
SHDN2 = VIN2  
1.800  
1.798  
1.796  
1.794  
1.792  
TA = + 85°C  
TA = + 25°C  
TA = - 40°C  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
FIGURE 2-19:  
V
and V  
Heavy  
FIGURE 2-22:  
V
Output Voltage vs.  
OUT2  
OUT1  
OUT2  
Load Switching Waveforms vs. Time.  
Input Voltage (V  
= 1.8V).  
OUT2  
2.508  
SHDN1 = AGND  
SHDN2 = VIN2  
IOUT2 = 150 mA  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
TA = + 85°C  
TA = + 25°C  
TA = - 40°C  
3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
Input Voltage (V)  
FIGURE 2-20:  
V
and V  
Light  
FIGURE 2-23:  
V
Output Voltage vs.  
OUT2  
OUT1  
OUT2  
Load Switching Waveforms vs. Time.  
Input Voltage (V  
= 2.5V).  
OUT2  
IOUT2 = 150 mA  
1.492  
3.298  
SHDN1 = AGND  
SHDN2 = VIN2  
IOUT2 = 150 mA  
TA = + 85°C  
1.49  
3.297  
3.296  
3.295  
3.294  
3.293  
3.292  
TA = + 85°C  
1.488  
TA = + 25°C  
SHDN1 = AGND  
SHDN2 = VIN2  
TA = + 25°C  
TA = - 40°C  
1.486  
1.484  
1.482  
TA = - 40°C  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
3.60  
3.92  
4.23  
4.55  
4.87  
5.18  
5.50  
Input Voltage (V)  
FIGURE 2-21:  
V
Output Voltage vs.  
FIGURE 2-24:  
V
Output Voltage vs.  
OUT2  
OUT2  
Input Voltage (V  
= 1.5V).  
Input Voltage (V  
= 3.3V).  
OUT2  
OUT2  
© 2009 Microchip Technology Inc.  
DS21974B-page 11  
TC1313  
Note: Unless otherwise indicated, VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1 µF, L = 4.7 µH,  
V
OUT1 (ADJ) = 1.8V, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C. TA = +25°C. Adjustable or fixed-  
output voltage options can be used to generate the Typical Performance Characteristics.  
0.1  
0.0  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
VIN2 = 3.6V  
SHDN1 = AGND  
SHDN2 = VIN2  
SHDN1 = AGND  
SHDN2 = VIN2  
VOUT2 = 3.3V  
IOUT2 = 300 mA  
IOUT2 = 200 mA  
-0.1  
-0.2  
-0.3  
-0.4  
VOUT2 = 2.6V  
VOUT2 = 1.5V  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-25:  
V
Dropout Voltage vs.  
FIGURE 2-28:  
V
Load Regulation vs.  
OUT2  
OUT2  
Ambient Temperature (V  
= 2.5V).  
Ambient Temperature.  
OUT2  
0.3  
0
SHDN1 = AGND  
SHDN2 = VIN2  
SHDN1 = GND  
-10  
V
OUT2 = 1.5V  
COUT2 = 1.0 µF  
I
OUT2 = 30 mA  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
CIN = 0 µF  
0.2  
0.1  
0.0  
IOUT2 = 300 mA  
COUT2 = 4.7 µF  
IOUT2 = 200 mA  
0.01  
0.1  
1
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Frequency (kHz)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Ambient Temperature (V  
V
Dropout Voltage vs.  
FIGURE 2-29:  
Rejection vs. Frequency.  
V
Power Supply Ripple  
OUT2  
OUT2  
OUT2  
= 3.3V).  
SHDN1 = AGND  
SHDN2 = VIN2  
10  
0.005  
0.000  
SHDN1 = AGND  
SHDN2 = VIN2  
VOUT2 = 3.3V  
-0.005  
-0.010  
-0.015  
-0.020  
-0.025  
-0.030  
-0.035  
IOUT2 = 100 µA  
1
VOUT2 = 2.5V  
0.1  
VIN = 3.6V  
VOUT2 = 1.5V  
VOUT2 = 2.5V  
I
OUT2 = 50 mA  
0.01  
0.01  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0.1  
1
10  
100  
1000 10000  
Ambient Temperature (°C)  
Frequency (kHz)  
FIGURE 2-27:  
V
Line Regulation vs.  
FIGURE 2-30:  
V
Noise vs. Frequency.  
OUT2  
OUT2  
Ambient Temperature.  
DS21974B-page 12  
© 2009 Microchip Technology Inc.  
TC1313  
Note: Unless otherwise indicated, VIN1 = VIN2 = SHDN1,2 = 3.6V, COUT1 = CIN = 4.7 µF, COUT2 = 1 µF, L = 4.7 µH,  
OUT1 (ADJ) = 1.8V, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C. TA = +25°C. Adjustable or fixed-  
output voltage options can be used to generate the Typical Performance Characteristics.  
V
FIGURE 2-31:  
vs. Time.  
V
V
V
Load Step Response  
FIGURE 2-34:  
Waveforms.  
V
and V Startup  
OUT2  
OUT1  
OUT2  
OUT1  
OUT1  
FIGURE 2-32:  
vs. Time.  
Load Step Response  
FIGURE 2-35:  
Waveforms.  
V
and V  
Shutdown  
OUT2  
OUT1  
FIGURE 2-33:  
and V  
Line Step  
OUT2  
Response vs. Time.  
© 2009 Microchip Technology Inc.  
DS21974B-page 13  
TC1313  
NOTES:  
DS21974B-page 14  
© 2009 Microchip Technology Inc.  
TC1313  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin  
PIN FUNCTION TABLE  
DFN  
MSOP  
Function  
1
2
3
4
5
SHDN2  
VIN2  
SHDN2  
VIN2  
Active Low Shutdown Input for LDO Output Pin  
Analog Input Supply Voltage Pin  
LDO Output Voltage Pin  
VOUT2  
NC  
VOUT2  
NC  
No Connect  
AGND  
AGND  
Analog Ground Pin  
6
VFB / VOUT1  
VFB / VOUT1 Buck Feedback Voltage (Adjustable Version)/Buck Output Voltage (Fixed  
Version) Pin  
7
8
SHDN1  
VIN1  
LX  
SHDN1  
VIN1  
LX  
Active Low Shutdown Input for Buck Regulator Output Pin  
Buck Regulator Input Voltage Pin  
9
Buck Inductor Output Pin  
10  
11  
PGND  
EP  
PGND  
Power Ground Pin  
Exposed Pad. It is a thermal path to remove heat from the device. Electri-  
cally, this pad is at ground potential and should be connected to AGND  
.
3.1  
LDO Shutdown Input Pin (SHDN2)  
3.7  
Buck Regulator Shutdown Input  
Pin (SHDN1)  
SHDN2 is a logic-level input used to turn the LDO  
regulator on and off. A logic-high (> 45% of VIN) will  
enable the regulator output. A logic-low (< 15% of VIN)  
will ensure that the output is turned off.  
SHDN1 is a logic-level input used to turn the buck  
regulator on and off. A logic-high (> 45% of VIN) will  
enable the regulator output. A logic-low (< 15% of VIN)  
will ensure that the output is turned off.  
3.2  
LDO Input Voltage Pin (VIN2)  
3.8  
Buck Regulator Input Voltage Pin  
(VIN1  
VIN2 is a LDO power-input supply pin. Connect  
variable-input voltage source to VIN2. Connect VIN1 and  
VIN2 together with board traces as short as possible.  
VIN2 provides the input voltage for the LDO regulator.  
An additional capacitor can be added to lower the LDO  
regulator input ripple voltage.  
)
VIN1 is the buck regulator power-input supply pin.  
Connect a variable-input voltage source to VIN1  
Connect VIN1 and VIN2 together with board traces as  
short as possible.  
.
3.3  
LDO Output Voltage Pin (VOUT2)  
3.9  
Buck Inductor Output Pin (LX)  
VOUT2 is a regulated LDO output voltage pin. Connect  
a 1 µF or larger capacitor to VOUT2 and AGND for proper  
operation.  
Connect LX directly to the buck inductor. This pin  
carries large signal-level current; all connections  
should be made as short as possible.  
3.4  
No Connect Pin (NC)  
3.10 Power Ground Pin (PGND  
)
No connection.  
Connect all large-signal level ground returns to PGND  
.
These large-signal level ground traces should have a  
small loop area and length to prevent coupling of  
switching noise to sensitive traces. Please see the  
physical layout information supplied in Section 5.0  
3.5  
Analog Ground Pin (AGND)  
AGND is the analog ground connection. Tie AGND to the  
analog portion of the ground plane (AGND). See the  
physical layout information in Section 5.0 “Application  
Circuits/Issues” for grounding recommendations.  
“Application  
Circuits/Issues” for  
grounding  
recommendations.  
3.6  
Buck Regulator Output Sense Pin  
(VFB/VOUT1  
3.11 Exposed Pad (EP)  
)
For the DFN package, connect the EP to AGND with  
vias into the AGND plane.  
For VOUT1 adjustable-output voltage options, connect  
the center of the output voltage divider to the VFB pin.  
For fixed-output voltage options, connect the output of  
the buck regulator to this pin (VOUT1).  
© 2009 Microchip Technology Inc.  
DS21974B-page 15  
TC1313  
NOTES:  
DS21974B-page 16  
© 2009 Microchip Technology Inc.  
TC1313  
4.2.1  
FIXED-FREQUENCY PWM MODE  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
While operating in Pulse Width Modulation (PWM)  
mode, the TC1313 buck regulator switches at a fixed  
2.0 MHz frequency. The PWM mode is suited for higher  
load current operation, maintaining low output noise  
and high conversion efficiency. PFM to PWM mode  
transition is initiated for any of the following conditions.  
The TC1313 combines a 500 mA synchronous buck  
regulator with a 300 mA LDO. This unique combination  
provides a small, low-cost solution for applications that  
require two or more voltage rails. The buck regulator  
can deliver high-output current over a wide range of  
input-to-output voltage ratios while maintaining high  
efficiency. This is typically used for the lower-voltage,  
higher-current processor core. The LDO is a minimal  
parts-count solution (single-output capacitor), providing  
a regulated voltage for an auxiliary rail. The typical LDO  
dropout voltage (137 mV @ 200 mA) allows the use of  
very low input-to-output LDO differential voltages,  
minimizing the power loss internal to the LDO pass  
transistor. Integrated features include independent  
• Continuous inductor current is sensed  
• Inductor peak current exceeds 100 mA  
• The buck regulator output voltage has dropped  
out of regulation (step load has occurred)  
The typical PFM-to-PWM threshold is 80 mA.  
4.2.2  
PFM MODE  
PFM mode is entered when the output load on the buck  
regulator is very light. Once detected, the converter  
enters the PFM mode automatically and begins to skip  
pulses to minimize unnecessary quiescent current  
draw by reducing the number of switching cycles per  
second. The typical quiescent current for the switching  
regulator is less than 38 µA. The transition from PWM  
to PFM mode occurs when discontinuous inductor  
current is sensed, or the peak inductor current is less  
than 60 mA (typ.). The typical PWM to PFM mode  
threshold is 30 mA. For low input-to-output differential  
voltages, the PWM to PFM mode threshold can be low  
due to the lack of ripple current. It is recommended that  
VIN1 be one volt greater than VOUT1 for PWM to PFM  
transitions.  
shutdown  
overtemperature shutdown.  
inputs,  
UVLO,  
overcurrent  
and  
4.2  
Synchronous Buck Regulator  
The synchronous buck regulator is capable of supply-  
ing a 500 mA continuous output current over a wide  
range of input and output voltages. The output voltage  
range is from 0.8V (min) to 4.5V (max). The regulator  
operates in three different modes and automatically  
selects the most efficient mode of operation. During  
heavy load conditions, the TC1313 buck converter  
operates at a high, fixed frequency (2.0 MHz) using  
current mode control. This minimizes output ripple and  
noise (less than 8 mV peak-to-peak ripple) while main-  
taining high efficiency (typically > 90%). For standby or  
light-load applications, the buck regulator will automat-  
ically switch to a power-saving Pulse Frequency  
Modulation (PFM) mode. This minimizes the quiescent  
current draw on the battery while keeping the buck  
output voltage in regulation. The typical buck PFM  
mode current is 38 µA. The buck regulator is capable of  
operating at 100% duty cycle, minimizing the voltage  
drop from input to output for wide-input, battery-  
powered applications. For fixed-output voltage applica-  
tions, the feedback divider and control loop compensa-  
tion components are integrated, eliminating the need  
for external components. The buck regulator output is  
protected against overcurrent, short circuit and over-  
temperature. While shut down, the synchronous buck  
N-channel and P-channel switches are off, so the LX  
pin is in a high-impedance state (this allows for  
connecting a source on the output of the buck regulator  
as long as its voltage does not exceed the input  
voltage).  
4.3  
Low-Dropout Regulator (LDO)  
The LDO output is a 300 mA low-dropout linear  
regulator that provides a regulated output voltage with  
a single 1 µF external capacitor. The output voltage is  
available in fixed options only, ranging from 1.5V to  
3.3V. The LDO is stable using ceramic output  
capacitors that inherently provide lower output noise  
and reduce the size and cost of the regulator solution.  
The quiescent current consumed by the LDO output is  
typically less than 43.7 µA, with a typical dropout  
voltage of 137 mV at 200 mA. The LDO output is  
protected against overcurrent and overtemperature.  
While operating in Dropout mode, the LDO quiescent  
current will increase, minimizing the necessary voltage  
differential needed for the LDO output to maintain  
regulation. The LDO output is protected against over-  
current and overtemperature.  
4.4  
Soft Start  
Both outputs of the TC1313 are controlled during  
startup. Less than 1% of VOUT1 or VOUT2 overshoot is  
observed during start-up from VIN rising above the  
UVLO voltage; or SHDN1 or SHDN2 being enabled.  
© 2009 Microchip Technology Inc.  
DS21974B-page 17  
TC1313  
4.5  
Overtemperature Protection  
The TC1313 has an integrated overtemperature  
protection circuit that monitors the device junction  
temperature and shuts the device off if the junction  
temperature exceeds the typical 165°C threshold. If the  
overtemperature threshold is reached, the soft start is  
reset so that, once the junction temperature cools to  
approximately 155°C, the device will automatically  
restart.  
DS21974B-page 18  
© 2009 Microchip Technology Inc.  
TC1313  
An additional VIN2 capacitor can be added to reduce  
high-frequency noise on the LDO input-voltage pin  
(VIN2). This additional capacitor (1 µF) is not necessary  
for typical applications.  
5.0  
5.1  
APPLICATION CIRCUITS/  
ISSUES  
Typical Applications  
5.4  
Input and Output Capacitor  
Selection  
The TC1313 500 mA buck regulator + 300 mA LDO  
operates over a wide input-voltage range (2.7V to 5.5V)  
and is ideal for single-cell Li-Ion battery-powered  
applications, USB-powered applications, three-cell  
NiMH or NiCd applications and 3V to 5V regulated  
input applications. The 10-pin MSOP and 3x3 DFN  
packages provide a small footprint with minimal exter-  
nal components.  
As with all buck-derived dc-dc switching regulators, the  
input current is pulled from the source in pulses. This  
places a burden on the TC1313 input filter capacitor. In  
most applications,  
a
minimum of 4.7 µF is  
recommended on VIN1 (buck regulator input-voltage  
pin). In applications that have high source impedance,  
or have long leads (10 inches) connecting to the input  
source, additional capacitance should be used. The  
capacitor type can be electrolytic (aluminum, tantalum,  
POSCAP, OSCON) or ceramic. For most portable  
electronic applications, ceramic capacitors are  
preferred due to their small size and low cost.  
5.2  
Fixed-Output Application  
A typical VOUT1 fixed-output voltage application is  
shown in “Typical Application Circuits”. A 4.7 µF  
VIN1 ceramic input capacitor, 4.7 µF VOUT1 ceramic  
capacitor, 1.0 µF ceramic VOUT2 capacitor and 4.7 µH  
inductor make up the entire external component  
solution for this dual-output application. No external  
dividers or compensation components are necessary.  
For this application, the input-voltage range is 2.7V to  
4.2V, VOUT1 = 1.5V at 500 mA, while VOUT2 = 2.5V at  
300 mA.  
For applications that require very low noise on the LDO  
output, an additional capacitor (typically 1 µF) can be  
added to the VIN2 pin (LDO input voltage pin).  
Low ESR electrolytic or ceramic can be used for the  
buck regulator output capacitor. Again, ceramic is  
recommended because of its physical attributes and  
cost. For most applications, a 4.7 µF is recommended.  
Refer to Table 5-1 for recommended values. Larger  
capacitors (up to 22 µF) can be used. There are some  
advantages in load step performance when using  
larger value capacitors. Ceramic materials, X7R and  
X5R, have low temperature coefficients and are well  
within the acceptable ESR range required.  
5.3  
Adjustable-Output Application  
A typical VOUT1 adjustable-output application is also  
shown in “Typical Application Circuits”. For this  
application, the buck regulator output voltage is adjust-  
able by using two external resistors as a voltage  
divider. For adjustable-output voltages, it is recom-  
mended that the top resistor divider value be 200 kΩ.  
The bottom resistor divider can be calculated using the  
following formula:  
TABLE 5-1:  
TC1313 RECOMMENDED  
CAPACITOR VALUES  
C (VIN1  
)
C (VIN2  
)
COUT1  
COUT2  
EQUATION 5-1:  
Min  
4.7 µF  
none  
none  
none  
4.7 µF  
22 µF  
1 µF  
VFB  
--------------------------------  
RBOT = RTOP  
×
Max  
10 µF  
VOUT1 VFB  
Example:  
RTOP = 200 kΩ  
VOUT1 = 2.1V  
VFB = 0.8V  
RBOT = 200 kΩ x (0.8V/(2.1V – 0.8V))  
RBOT = 123 kΩ (Standard Value = 121 kΩ)  
For adjustable output applications, an additional R-C  
compensation is necessary for the buck regulator  
control loop stability. Recommended values are:  
RCOMP = 4.99 kΩ  
CCOMP = 33 pF  
© 2009 Microchip Technology Inc.  
DS21974B-page 19  
TC1313  
TABLE 5-2:  
TC1313 RECOMMENDED  
INDUCTOR VALUES  
5.5  
Inductor Selection  
For most applications,  
a
4.7 µH inductor is  
DCR  
Ω
(max)  
recommended to minimize noise. There are many  
different magnetic core materials and package options  
to select from. That decision is based on size, cost and  
acceptable radiated energy levels. Toroid and shielded  
ferrite pot cores will have low radiated energy but tend  
to be larger and more expensive. With a typical  
2.0 MHz switching frequency, the inductor ripple  
current can be calculated based on the following  
formulas.  
Part  
Number (µH)  
Value  
MAX  
IDC (A)  
Size  
WxLxH (mm)  
Coiltronics®  
SD10  
SD10  
2.2  
3.3  
4.7  
0.091 1.35 5.2, 5.2, 1.0 max.  
0.108 1.24 5.2, 5.2, 1.0 max.  
0.154 1.04 5.2, 5.2, 1.0 max.  
SD10  
Coiltronics  
SD12  
2.2  
3.3  
4.7  
0.075 1.80 5.2, 5.2, 1.2 max.  
0.104 1.42 5.2, 5.2, 1.2 max.  
0.118 1.29 5.2, 5.2, 1.2 max.  
EQUATION 5-2:  
SD12  
VOUT  
DutyCycle = -------------  
VIN  
SD12  
Sumida Corporation®  
CMD411 2.2  
CMD411 3.3  
CMD411 4.7  
Coilcraft®  
0.116 0.950 4.4, 5.8, 1.2 max.  
Duty cycle represents the percentage of switch-on  
time.  
0.174 0.770 4.4, 5.8, 1.2 max.  
0.216 0.750 4.4, 5.8, 1.2 max.  
EQUATION 5-3:  
1
FSW  
1008PS 4.7  
1812PS 4.7  
0.35  
0.11  
1.0 3.8, 3.8, 2.74 max.  
1.15 5.9, 5.0, 3.81 max.  
---------  
TON = DutyCycle ×  
Where:  
FSW  
5.6  
Thermal Calculations  
=
Switching Frequency  
5.6.1  
BUCK REGULATOR OUTPUT  
The inductor ac ripple current can be calculated using  
the following relationship:  
(V  
)
OUT1  
The TC1313 is available in two different 10-pin  
packages (MSOP and 3x3 DFN). By calculating the  
power dissipation and applying the package thermal  
resistance, (θJA), the junction temperature is estimated.  
The maximum continuous junction temperature rating  
for the TC1313 is +125°C.  
EQUATION 5-4:  
ΔIL  
--------  
VL = L ×  
Δt  
Where:  
VL  
=
=
voltage across the inductor  
(VIN – VOUT  
on-time of P-channel MOSFET  
To quickly estimate the internal power dissipation for  
the switching buck regulator, an empirical calculation  
using measured efficiency can be used. Given the  
measured efficiency (Section 2.0 “Typical Perfor-  
mance Curves”), the internal power dissipation is  
estimated below.  
)
Δt  
Solving for ΔIL = yields:  
EQUATION 5-5:  
ΔIL  
EQUATION 5-6:  
VL  
-----  
L
VOUT1 × IOUT1  
=
× Δt  
-------------------------------------  
(VOUT1 × IOUT1) = PDissipation  
Efficiency  
When considering inductor ratings, the maximum DC  
current rating of the inductor should be at least equal to  
the maximum buck regulator load current (IOUT1), plus  
one half of the peak-to-peak inductor ripple current (1/  
2 * ΔIL). The inductor DC resistance can add to the  
buck converter I2R losses. A rating of less than 200 mΩ  
is recommended. Overall efficiency will be improved by  
using lower DC resistance inductors.  
The first term is equal to the input power (definition of  
efficiency, POUT/PIN = Efficiency). The second term is  
equal to the delivered power. The difference is internal  
power dissipation. This estimate assumes that most of  
the power lost is internal to the TC1313. There is some  
percentage of power lost in the buck inductor, with very  
little loss in the input and output capacitors.  
DS21974B-page 20  
© 2009 Microchip Technology Inc.  
TC1313  
For example, for a 3.6V input, 1.8V output with a load  
of 400 mA, the efficiency taken from Figure 2-7 is  
approximately 84%. The internal power dissipation is  
approximately 137 mW.  
minimize trace length. The CIN1 and COUT1 capacitor  
returns are connected closely together at the PGND  
plane. The LDO optional input capacitor (CIN2) and  
LDO output capacitor COUT2 are returned to the AGND  
plane. The analog ground plane and power ground  
plane are connected at one point (shown near L1). All  
other signals (SHDN1, SHDN2, feedback in the  
adjustable output case) should be referenced to AGND  
and have the AGND plane underneath them.  
5.6.2  
LDO OUTPUT (V  
)
OUT2  
The internal power dissipation within the TC1313 LDO  
is a function of input voltage, output voltage and output  
current. The following equation can be used to  
calculate the internal power dissipation for the LDO.  
- Via  
AGND to PGND  
EQUATION 5-7:  
PLDO = (VIN(MAX) VOUT2(MIN)) × IOUT2(MAX)  
+VOUT1  
* CIN2 Optional  
Where:  
COUT1  
L1  
AGND  
PGND  
CIN2  
PLDO = LDO Pass device internal power  
dissipation  
VIN(MAX) = Maximum input voltage  
1
2
3
4
5
10  
9
CIN1  
+VIN2  
VOUT(MIN) = LDO minimum output voltage  
+VIN1  
8
+VOUT2  
7
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package’s maximum  
internal power dissipation.  
COUT2  
6
TC1313  
PGND Plane  
AGND  
AGND Plane  
FIGURE 5-1:  
Component Placement,  
Fixed-Output 10-Pin MSOP.  
5.6.3  
LDO POWER DISSIPATION  
EXAMPLE  
There will be some difference in layout for the 10-pin  
DFN package due to the thermal pad. A typical fixed-  
output DFN layout is shown below. For the DFN layout,  
the VIN1 to VIN2 connection is routed on the bottom of  
the board around the TC1313 thermal pad.  
Input Voltage  
V
IN = 5V ±10%  
LDO Output Voltage and Current  
- Via  
VOUT = 3.3V  
+VOUT1  
AGND to PGND  
I
OUT = 300 mA  
* CIN2 Optional  
Internal Power Dissipation  
COUT1  
L1  
PLDO(MAX) = (VIN(MAX) – VOUT2(MIN)) x IOUT2(MAX)  
AGND  
PGND  
PLDO = (5.5V) – (0.975 x 3.3V))  
x 300 mA  
CIN2  
1
2
3
4
5
10  
9
PGND  
PLDO = 684.8 mW  
+VIN2  
CIN1  
8
+VOUT2  
5.7  
PCB Layout Information  
+VIN1  
7
COUT2  
Some basic design guidelines should be used when  
physically placing the TC1313 on a Printed Circuit  
Board (PCB). The TC1313 has two ground pins,  
identified as AGND (analog ground) and PGND (power  
ground). By separating grounds, it is possible to  
minimize the switching frequency noise on the LDO  
output. The first priority, while placing external  
components on the board, is the input capacitor (CIN1).  
Wiring should be short and wide; the input current for  
the TC1313 can be as high as 800 mA. The next  
priority would be the buck regulator output capacitor  
6
TC1313  
AGND  
PGND Plane  
A
GND Plane  
FIGURE 5-2:  
Component Placement,  
Fixed-Output 10-Pin DFN.  
(COUT1) and inductor (L1). All three of these  
components are placed near their respective pins to  
© 2009 Microchip Technology Inc.  
DS21974B-page 21  
TC1313  
5.8  
Design Example  
VOUT1 = 2.0V @ 500 mA  
VOUT2 = 3.3V @ 300 mA  
VIN = 5V ±10%  
L = 4.7 µH  
Calculate PWM mode inductor ripple current  
Nominal Duty  
Cycle = 2.0V/5.0V = 40%  
P-channel  
Switch-on time = 0.40 x 1/(2 MHz) = 200 ns  
VL = (VIN-VOUT1) = 3V  
ΔIL = (VL/L) x TON = 128 mA  
Peak inductor current:  
IL(PK) = IOUT1+1/2ΔIL = 564 mA  
Switcher power loss:  
Use efficiency estimate for 1.8V from Figure 2-7  
Efficiency = 84%, PDISS1 = 190 mW  
Resistor Divider:  
RTOP = 200 kΩ  
RBOT = 133 kΩ  
LDO Output:  
PDISS2 = (VIN(MAX)  
VOUT2(MIN)) x IOUT2(MAX)  
PDISS2 = (5.5V – (0.975) x 3.3V) x 300 mA  
PDISS2 = 684.8 mW  
Total  
Dissipation = 190 mW + 685 mW = 875 mW  
Junction Temp Rise and Maximum Ambient  
Operating Temperature Calculations  
10-Pin MSOP (4-Layer Board with internal Planes)  
RθJA = 113° C/Watt  
Junction Temp.  
Rise = 875 mW x 113° C/Watt = 98.9°C  
Max. Ambient  
Temperature = 125°C - 98.9°C  
Max. Ambient  
Temperature = 26.1°C  
10-Pin DFN  
RθJA = 41° C/Watt (4-Layer Board with  
internal planes and 2 vias)  
Junction Temp.  
Rise = 875 mW x 41° C/Watt = 35.9°C  
Max. Ambient  
Temperature = 125°C - 35.9°C  
Max. Ambient  
Temperature = 89.1°C  
This is above the +85°C max. ambient temperature.  
DS21974B-page 22  
© 2009 Microchip Technology Inc.  
TC1313  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead MSOP  
Example:  
10-Lead DFN  
Example:  
— 5 = TC1313  
XXXX  
YYWW  
NNN  
51H0  
0527  
256  
XXXXXX  
YWWNNN  
51H0E  
527256  
— 1 = 1.375V VOUT1  
— H = 2.6V VOUT2  
— 0 = Default  
Second letter represents VOUT1 configuration:  
Third letter represents VOUT2 configuration:  
Code VOUT1 Code VOUT1 Code VOUT1  
Code VOUT2 Code VOUT2 Code VOUT2  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
J
K
L
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
S
T
1.5V  
1.4V  
1.3V  
1.2V  
1.1V  
1.0V  
0.9V  
Adj  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
J
K
L
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
S
T
1.5V  
U
V
W
X
Y
Z
U
V
W
X
Y
Z
M
N
O
P
Q
R
M
N
O
P
Q
R
1
1.375V  
Fourth letter represents +50 mV Increments:  
Code  
Code  
0
1
Default  
2
3
+50 mV to V2  
+50 mV to V1  
+50 mV to V1  
and V2  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS21974B-page 23  
TC1313  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢐꢘꢇMꢇꢙꢚꢙꢚꢁꢛꢜꢇ  ꢇ!ꢓꢆ"ꢇ#ꢎꢐꢒ$  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
ꢓꢏ  
,
ꢚꢁ:ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
ꢏꢁ+.  
+ꢁꢚꢚꢅ/ꢕ0  
ꢀꢁ.:  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
ꢏꢁꢏꢚ  
ꢏꢁꢒ:  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢝ%ꢌꢝ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
,ꢏ  
(
5
ꢀꢁꢒꢚ  
ꢚꢁꢀ:  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁꢜ.  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
<
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢚ>+/  
DS21974B-page 24  
© 2009 Microchip Technology Inc.  
TC1313  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢗꢌꢍ&ꢓꢇ' ꢅꢉꢉꢇ(ꢏꢋꢉꢌ)ꢄꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖ*ꢒꢘꢇ#ꢗ'(ꢈ$  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
A
A2  
φ
L
A1  
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁꢜ.  
ꢚꢁꢚꢚ  
M
ꢚꢁ:.  
ꢀꢁꢀꢚ  
ꢚꢁꢛ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
M
ꢒꢁꢛꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
ꢚꢁ>ꢚ  
5
ꢚꢁꢒꢚ  
ꢚꢁ:ꢚ  
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢀ  
ꢚꢁꢛ.ꢅꢘ,2  
M
ꢚꢞ  
:ꢞ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
(
ꢚꢁꢚ:  
ꢚꢁꢀ.  
M
M
ꢚꢁꢏ+  
ꢚꢁ++  
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢝꢚꢏꢀ/  
© 2009 Microchip Technology Inc.  
DS21974B-page 25  
TC1313  
NOTES:  
DS21974B-page 26  
© 2009 Microchip Technology Inc.  
TC1313  
APPENDIX A: REVISION HISTORY  
Revision B (January 2009)  
The following is the list of modifications:  
1. Added the new DFN package information.  
Revision A (November 2005)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS21974B-page 23  
TC1313  
NOTES:  
DS21974B-page 24  
© 2009 Microchip Technology Inc.  
TC1313  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
TC1313  
X
X
X
X
XX  
XX  
a)  
TC1313-1H0EMF:  
1.375V, 2.6V, Default,  
10LD DFN pkg.  
1.375V, 2.6V, Default,  
10LD MSOP pkg.  
1.375V, 1.8V, Default,  
10LD DFN pkg.  
1.375V, 1.8V, Default,  
10LD MSOP pkg.  
3.0V, 2.7V, Default,  
10LD DFN pkg.  
VOUT1 VOUT2  
+50 mV  
Increments  
Temp Package Tube  
Range  
or  
Tape &  
Reel  
b)  
c)  
d)  
e)  
f)  
TC1313-1H0EUN:  
TC1313-1P0EMF:  
TC1313-1P0EUN:  
TC1313-DG0EMF:  
TC1313-RD1EMF:  
TC1313-ZS0EUN:  
Device:  
Options  
TC1313: PWM/LDO combo.  
1.65V, 3.0V,  
10LD DFN pkg.  
Adj., 1.5V, Default,  
10LD MSOP pkg.  
Code  
V
Code  
V
Code  
+50 mV  
OUT1  
OUT2  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
1.5V  
1.4V  
1.3V  
1.2V  
1.1V  
1.0V  
0.9V  
Adjustable  
1.375V  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
1.5V  
0
1
2
3
Default  
V1 + 50 mV  
V2 + 50 mV  
V1 and V2  
+ 50 mV  
g)  
h)  
TC1313-1H0EMFTR: 1.375V, 2.6V, Default,  
10LD DFN pkg  
Tape and Reel.  
i)  
TC1313-1H0EUNTR: 1.375V, 2.6V, Default,  
10LD MSOP pkg  
Tape and Reel.  
j)  
TC1313-1P0EMFTR: 1.375V, 1.8V, Default,  
10LD DFN pkg  
J
K
L
J
K
L
Tape and Reel.  
k)  
l)  
TC1313-1P0EUNTR: 1.375V, 1.8V, Default,  
10LD MSOP pkg  
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Tape and Reel.  
TC1313-DG0EMFTR: 3.0V, 2.7V, Default,  
10LD DFN pkg  
Tape and Reel.  
m) TC1313-RD1EMFTR: 1.65V, 3.0V,  
10LD DFN pkg  
Tape and Reel.  
n)  
TC1313-ZS0EUNTR: Adj., 1.5V, Default,  
10LD MSOP pkg  
Tape and Reel.  
1
1
* Contact Factory for Alternate Output Voltage and Reset  
Voltage Configurations.  
Temperature  
Range:  
E
= -40°C to +85°C  
Package:  
MF  
UN  
=
=
Dual Flat, No Lead (3x3 mm body), 10-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
Tube or  
Tape and Reel:  
Blank  
TR  
=
=
Tube  
Tape and Reel  
© 2009 Microchip Technology Inc.  
DS21974B-page 25  
TC1313  
NOTES:  
DS21974B-page 26  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS21974B-page 27  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-238813S0  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS21974B-page 28  
© 2009 Microchip Technology Inc.  

相关型号:

TC1313-1D1EMFTR

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1D1EUN

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, PLASTIC, MSOP-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1D2EMF

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1D2EMFTR

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1D2EUNTR

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, PLASTIC, MSOP-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1D3EUN

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, PLASTIC, MSOP-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1E0EUN

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, PLASTIC, MSOP-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1E2EMFTR

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1E2EUNTR

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, PLASTIC, MSOP-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1E3EMF

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, 0.90 MM HEIGHT, PLASTIC, DFN-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1E3EUN

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, PLASTIC, MSOP-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

TC1313-1E3EUNTR

0.5 A SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO10, PLASTIC, MSOP-10

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP