TC2015-3.0VCTTR [MICROCHIP]

50 mA, 100 mA, 150 mA CMOS LDOs with Shutdown and Reference Bypass; 50毫安100毫安, 150毫安CMOS LDO,具有关断和参考旁路
TC2015-3.0VCTTR
型号: TC2015-3.0VCTTR
厂家: MICROCHIP    MICROCHIP
描述:

50 mA, 100 mA, 150 mA CMOS LDOs with Shutdown and Reference Bypass
50毫安100毫安, 150毫安CMOS LDO,具有关断和参考旁路

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总20页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC2014/2015/2185  
50 mA, 100 mA, 150 mA CMOS LDOs with  
Shutdown and Reference Bypass  
Features  
General Description  
• Low Supply Current: 80 µA (Max)  
The TC2014, TC2015 and TC2185 are high-accuracy  
(typically ±0.4%) CMOS upgrades for bipolar Low  
Drop-out Regulators (LDOs), such as the LP2980.  
Total supply current is typically 55 µA; 20 to 60 times  
lower than in bipolar regulators.  
• Low Dropout Voltage: 140 mV (Typ.) @ 150 mA  
• High-Output Voltage Accuracy: ±0.4% (Typ.)  
• Standard or Custom Output Voltages  
• Power-Saving Shutdown Mode  
The key features of the device include low noise oper-  
ation (plus bypass reference), low dropout voltage  
– typically 45 mV for the TC2014, 90 mV for the  
TC2015, and 140 mV for the TC2185, at full load – and  
fast response to step changes in load. Supply current  
is reduced to 0.5 µA (max) and VOUT falls to zero when  
the shutdown input is low. These devices also  
• Reference Bypass Input for Ultra Low-Noise  
Operation  
• Fast Shutdown Response Time: 60 µsec (Typ.)  
• Overcurrent and Overtemperature Protection  
• Space-Saving 5-Pin SOT-23A Package  
• Pin-Compatible Upgrades for Bipolar Regulators  
incorporate  
protection.  
overcurrent and  
overtemperature  
• Wide Operating Temperature Range:  
-40°C to +125°C  
The TC2014, TC2015 and TC2185 are stable with an  
output capacitor of 1 µF and have maximum output  
currents of 50 mA, 100 mA and 150 mA, respectively.  
For higher-output current versions, see the TC1107  
(DS21356), TC1108 (DS21357) and TC1173  
(DS21362) (IOUT = 300 mA) data sheets.  
• Standard Output Voltage Options:  
- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V,  
3.3V, 5.0V  
Applications  
• Battery-Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
Typical Application  
1
5
V
V
V
V
OUT  
IN  
OUT  
IN  
• Cellular/GSM/PHS Phones  
• Linear Post-Regulator for SMPS  
• Pagers  
+
+
1 µF  
1 µF  
Related Literature  
2
TC2014  
TC2015  
TC2185  
GND  
• Application Notes: AN765, AN766, AN776 and  
AN792  
Package Type  
5-Pin SOT-23A  
3
4
Bypass  
SHDN  
V
Bypass  
4
OUT  
0.01 µF  
Reference  
Bypass Cap  
(Optional)  
5
TC2014  
TC2015  
TC2185  
Shutdown Control  
(from Power Control Logic)  
2
1
3
V
GND SHDN  
IN  
2001-2012 Microchip Technology Inc.  
DS21662F-page 1  
TC2014/2015/2185  
Notice: Stresses above those listed under "Absolute  
Maximum Ratings" may cause permanent damage to  
the device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage ................................................................... 7.0V  
Output Voltage ....................................... (– 0.3) to (V + 0.3)  
IN  
Operating Temperature ......................... – 40°C < T < 125°C  
J
Storage Temperature.................................. – 65°C to +150°C  
Maximum Voltage on Any Pin ................ V +0.3V to – 0.3V  
IN  
Maximum Junction Temperature.................................. 150°C  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, V = V + 1V, I = 100 µA, C  
= 3.3 µF, SHDN > V , T = +25°C.  
IH A  
IN  
R
L
OUT  
BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Operating Voltage  
V
2.7  
50  
6.0  
V
Note 1  
IN  
Maximum Output  
Current  
I
mA  
TC2014  
TC2015  
TC2185  
Note 2  
OUTMAX  
100  
150  
– 2.0%  
Output Voltage  
V
V
V
± 0.4%  
20  
V
R
+ 2.0%  
V
OUT  
R
R
V
Temperature  
TCV  
ppm/°C Note 3  
OUT  
OUT  
Coefficient  
40  
Line Regulation  
V  
/V  
0.05  
0.33  
0.43  
2
0.5  
+1.0  
+2.0  
%
%
(V + 1V) < V < 6V  
R IN  
OUT  
IN  
Load Regulation  
(Note 4)  
V  
/V  
-1.0  
-2.0  
TC2014;TC2015: I = 0.1 mA to I  
L OUTMAX  
OUT OUT  
TC2185: I = 0.1 mA to I  
(Note 4)  
L
OUTMAX  
Dropout Voltage  
V
– V  
mV  
Note 5  
I = 100 µA  
L
IN  
OUT  
45  
70  
I = 50 mA  
L
90  
140  
210  
80  
TC2015; TC2185 I = 100 mA  
L
140  
55  
TC2185  
SHDN = V , I = 0  
I = 150 mA  
L
Supply Current  
I
µA  
µA  
IN  
IH  
L
Shutdown Supply  
Current  
I
0.05  
0.5  
SHDN = 0V  
F 1 kHz, Cbypass = 0.01 µF  
= 0V  
INSD  
Power Supply  
Rejection Ratio  
PSRR  
55  
dB  
Output Short Circuit  
Current  
I
160  
300  
mA  
V
OUT  
OUTSC  
Note 1: The minimum V has to meet two conditions: V = 2.7V and V = V + V .  
DROPOUT  
IN  
IN  
IN  
R
2:  
3:  
V
is the regulator output voltage setting. For example: V = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
R
R
6  
VOUTMAX VOUTMIN  10  
TCVOUT  
=
---------------------------------------------------------------------------  
VOUT  T  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the Thermal Regulation specification.  
5: Dropout Voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal  
value.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to I  
at V = 6V for T = 10 ms.  
MAX  
IN  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction-to-air (i.e. T , T , ).  
A
J
JA  
8: Time required for V  
to reach 95% of V (output voltage setting), after V  
is switched from 0 to V .  
OUT  
R
SHDN IN  
DS21662F-page 2  
2001-2012 Microchip Technology Inc.  
TC2014/2015/2185  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, V = V + 1V, I = 100 µA, C  
= 3.3 µF, SHDN > V , T = +25°C.  
IH A  
IN  
R
L
OUT  
BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.  
Parameters  
Sym  
/P  
Min  
Typ  
Max  
Units  
Conditions  
Note 6, Note 7  
Thermal Regulation  
V  
0.04  
160  
V/W  
°C  
OUT  
D
Thermal Shutdown Die  
Temperature  
T
SD  
Output Noise  
eN  
200  
60  
nV/Hz I = I  
, F = 10 kHz  
OUTMAX  
L
470 pF from Bypass to GND  
Response Time  
(from Shutdown Mode)  
(Note 8)  
T
µs  
V
IN  
= 4V, I = 30 mA,  
R
L
C
= 1 µF, C  
= 10 µF  
OUT  
IN  
SHDN Input  
SHDN Input High  
Threshold  
V
60  
%V  
%V  
V
V
= 2.5V to 6.0V  
= 2.5V to 6.0V  
IH  
IN  
IN  
SHDN Input Low  
Threshold  
V
15  
IL  
IN  
IN  
Note 1: The minimum V has to meet two conditions: V = 2.7V and V = V + V .  
DROPOUT  
IN  
IN  
IN  
R
2:  
3:  
V
is the regulator output voltage setting. For example: V = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
R
R
6  
VOUTMAX VOUTMIN  10  
TCVOUT  
=
---------------------------------------------------------------------------  
VOUT  T  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the Thermal Regulation specification.  
5: Dropout Voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal  
value.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to I  
at V = 6V for T = 10 ms.  
MAX  
IN  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction-to-air (i.e. T , T , ).  
A
J
JA  
8: Time required for V  
to reach 95% of V (output voltage setting), after V  
is switched from 0 to V .  
OUT  
R
SHDN IN  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, V = +2.7V to +6.0V and V = GND.  
DD  
SS  
Parameters  
Temperature Ranges:  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances:  
Thermal Resistance, 5L-SOT-23  
T
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
A
T
A
T
A
255  
°C/W  
JA  
2001-2012 Microchip Technology Inc.  
DS21662F-page 3  
TC2014/2015/2185  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
63.0  
60.0  
57.0  
54.0  
51.0  
48.0  
45.0  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
VIN = 2.8V  
VIN = 6.0V  
VR = 1.8V  
OUT = 3.3 µF  
C
VIN = 6.0V  
VIN = 2.8V  
VR = 1.8V  
COUT = 3.3 µF  
I
L = 150 mA  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-1:  
Supply Current vs. Junction  
FIGURE 2-4:  
Output Voltage vs. Junction  
Temperature.  
Temperature.  
0.8  
0.6  
0.4  
0.2  
0
1.82  
1.815  
1.81  
TA = -45°C  
TA = +25°C  
TA = +25°C  
TA = -45°C  
1.805  
1.8  
TA = +125°C  
TA = +125°C  
-0.2  
1.795  
1.79  
VR = 1.8V  
OUT = 3.3 µF  
L = 150 mA  
VR = 1.8V  
OUT = 3.3 µF  
IL = 150 mA  
-0.4  
-0.6  
-0.8  
C
I
C
1.785  
2.8 3.2 3.6  
4
4.4 4.8 5.2 5.6  
6
2.8 3.2 3.6  
4
4.4 4.8 5.2 5.6  
6
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-2:  
Load Regulation vs. Supply  
FIGURE 2-5:  
Output Voltage vs. Supply  
Voltage.  
Voltage.  
1.810  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
VR = 1.8V  
VR = 1.8V  
OUT = 3.3 µF  
IL = 0.1 mA  
C
OUT = 3.3 μF  
C
VIN = 2.8V  
VIN = 6.0V  
IL = 150 mA  
IL = 100 mA  
1.805  
1.800  
1.795  
1.790  
IL = 50 mA  
IL = 20 mA  
Note: Dropout Voltage is not  
a tested parameter for 1.8V.  
0.05  
0.00  
VIN(min) 2.7V  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-3:  
Output Voltage vs. Junction  
FIGURE 2-6:  
Dropout Voltage vs.  
Temperature.  
Junction Temperature.  
DS21662F-page 4  
2001-2012 Microchip Technology Inc.  
TC2014/2015/2185  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
60.0  
58.0  
56.0  
54.0  
52.0  
50.0  
48.0  
46.0  
44.0  
2.705  
2.700  
2.695  
2.690  
2.685  
2.680  
2.675  
2.670  
2.665  
VR = 2.7V  
OUT = 3.3 µF  
VIN = 3.7V  
VIN = 6.0V  
C
VIN = 6.0V  
VIN = 2.8V  
VR = 2.7V  
OUT = 3.3 µF  
IL = 150 mA  
C
Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-7:  
Supply Current vs. Junction  
FIGURE 2-10:  
Output Voltage vs. Junction  
Temperature.  
Temperature.  
0.5  
0.3  
2.705  
2.7  
TA = +25°C  
TA = -45°C  
TA = -45°C  
TA = +25°C  
2.695  
2.69  
2.685  
2.68  
0.1  
-0.1  
TA = +125°C  
VR = 2.7V  
COUT = 3.3 µF  
VR = 2.7V  
COUT = 3.3 µF  
IL = 150 mA  
2.675  
2.67  
-0.3  
-0.5  
TA = +125°C  
IL = 150 mA  
2.665  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
5.8  
3.7  
4
4.3 4.6 4.9 5.2 5.5 5.8  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-8:  
Load Regulation vs. Supply  
FIGURE 2-11:  
Output Voltage vs. Supply  
Voltage.  
Voltage.  
2.690  
2.688  
2.686  
2.684  
2.682  
2.680  
2.678  
2.676  
0.160  
VR = 2.7V  
OUT = 3.3 µF  
IL = 150 mA  
VIN = 6.0V  
C
0.120  
0.080  
0.040  
0.000  
VIN = 3.7V  
IL = 100 mA  
IL = 50 mA  
IL = 20 mA  
VR = 2.7V  
2.674  
2.672  
2.670  
C
OUT = 3.3 µF  
IL = 0.1 mA  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-9:  
Output Voltage vs. Junction  
FIGURE 2-12:  
Dropout Voltage vs.  
Temperature.  
Junction Temperature.  
2001-2012 Microchip Technology Inc.  
DS21662F-page 5  
TC2014/2015/2185  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
60  
57  
54  
51  
48  
45  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
VR = 5.0V  
OUT = 3.3 µF  
C
VIN = 6.0V  
IL = 150 mA  
IL = 100 mA  
IL = 50 mA  
VR = 5.0V  
COUT = 3.3 µF  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-13:  
Supply Current vs. Junction  
FIGURE 2-16:  
Dropout Voltage vs.  
Temperature.  
Junction Temperature.  
V
V
C
= 3.8V  
= 2.8V  
= 1 µF Ceramic  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
IN  
OUT  
IN  
IL = 150 mA  
C
= 1 µF Ceramic  
OUT  
Frequency = 1 kHz  
V
OUT  
100mV/DIV  
IL = 100 mA  
IL = 0.1 mA  
VR = 5.0V  
OUT = 3.3 µF  
VIN = 6.0V  
4.95  
4.94  
4.93  
C
Load Current  
150mA  
Load  
100mA  
Junction Temperature (°C)  
FIGURE 2-14:  
Output Voltage vs. Junction  
FIGURE 2-17:  
Load Transient Response.  
Temperature.  
(COUT = 1 µF).  
V
V
C
C
= 3.0V  
= 2.8V  
= 1 μF Ceramic  
IN  
OUT  
IN  
0.40  
IL = 150 mA  
0.30  
0.20  
= 10 μF Ceramic  
OUT  
Frequency = 10 kHz  
0.10  
100mV / DIV  
V
OUT  
IL = 100 mA  
IL = 50 mA  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
VR = 5.0V  
OUT = 3.3 µF  
VIN = 6.0 V  
C
Load Current  
150mA  
Load  
100mA  
Junction Temperature (°C)  
FIGURE 2-15:  
Load Regulation vs.  
FIGURE 2-18:  
Load Transient Response.  
Junction Temperature.  
(COUT = 10 µF).  
DS21662F-page 6  
2001-2012 Microchip Technology Inc.  
TC2014/2015/2185  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
FIGURE 2-19:  
Line Transient Response.  
FIGURE 2-22:  
Wake-Up Response.  
(COUT = 1 µF).  
0
VIN = 4.0V  
COUT = 1µF Ceramic  
V
OUT  
V
V
INAC = 100 mV  
OUTDC = 3.0V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
C
BYPASS = 0.01 µF Ceramic  
100mV/DIV  
150mA  
IOUT = 150 mA  
IOUT = 100 mA  
IOUT = 50 mA  
100mA  
V
V
= 3.105V  
IN  
= 3.006V  
OUT  
C
C
R
= 1 μF Ceramic  
IN  
10  
100  
1k  
10k  
100k  
1M  
= 10 μF Ceramic  
OUT  
LOAD  
= 20 Ω  
Frequency (Hz)  
FIGURE 2-20:  
Load Transient Response in  
FIGURE 2-23:  
PSRR vs. Frequency  
Dropout. (COUT = 10 µF).  
(COUT = 1 µF Ceramic).  
0
VIN = 4.0V  
COUT = 10 µF Ceramic  
CBYPASS = 0.01 µF Ceramic  
V
INAC = 100 mV  
OUTDC = 3.0V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
V
IOUT = 150 mA  
IOUT = 100 mA  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
FIGURE 2-21:  
Shutdown Delay Time.  
FIGURE 2-24:  
PSRR vs. Frequency  
(COUT = 10 µF Ceramic).  
2001-2012 Microchip Technology Inc.  
DS21662F-page 7  
TC2014/2015/2185  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
VIN = 4.0V  
VIN = 4.0V  
VINAC = 100 mV  
COUT = 10 µF Tantalum  
IOUT = 150 mA  
VOUTDC = 3.0V  
IOUT = 100 µA  
CBYPASS = 470 pF  
VOUTDC = 3.0V  
1
CBYPASS = 0 µF  
0.1  
COUT = 10 µF  
COUT = 1 µF  
CBYPASS = 0.01 µF  
0.10  
10  
100  
1k  
10k  
100k  
1M  
0.001  
100  
1k  
10k  
100k  
1M  
10  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-25:  
PSRR vs. Frequency  
FIGURE 2-26:  
Output Noise vs. Frequency.  
(COUT = 10 µF Tantalum).  
DS21662F-page 8  
2001-2012 Microchip Technology Inc.  
TC2014/2015/2185  
3.3  
Shutdown Control Input (SHDN)  
3.0  
PIN DESCRIPTIONS  
The regulator is fully enabled when a logic-high is  
applied to SHDN. The regulator enters shutdown when  
a logic-low is applied to this input. During shutdown, the  
output voltage falls to zero and the supply current is  
reduced to 0.5 µA (max).  
The descriptions of the pins are described in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
Symbol  
Description  
1
2
3
4
5
VIN  
Unregulated supply input  
Ground terminal  
3.4  
Reference Bypass Input (Bypass)  
GND  
Connecting a low-value ceramic capacitor to Bypass  
will further reduce output voltage noise and improve the  
Power Supply Ripple Rejection (PSRR) performance  
of the LDO. Typical values from 470 pF to 0.01 µF are  
suggested. While smaller and larger values can be  
used, these affect the speed at which the LDO output  
voltage rises when input power is applied. The larger  
the bypass capacitor, the slower the output voltage will  
rise.  
SHDN  
Bypass  
VOUT  
Shutdown control input  
Reference bypass input  
Regulated voltage output  
3.1  
Unregulated Supply Input (V )  
IN  
Connect the unregulated input supply to the VIN pin. If  
there is a large distance between the input supply and  
the LDO regulator, some input capacitance is neces-  
sary for proper operation. A 1 µF capacitor, connected  
from VIN to ground, is recommended for most  
applications.  
3.5  
Regulated Voltage Output (V  
)
OUT  
Connect the output load to VOUT of the LDO. Also con-  
nect one side of the LDO output de-coupling capacitor  
as close as possible to the VOUT pin.  
3.2  
Ground Terminal (GND)  
Connect the unregulated input supply ground return to  
GND. Also connect one side of the 1 µF typical input  
decoupling capacitor close to this pin and one side of  
the output capacitor COUT to this pin.  
2001-2012 Microchip Technology Inc.  
DS21662F-page 9  
TC2014/2015/2185  
4.1  
Bypass Input  
4.0  
DETAILED DESCRIPTION  
A 0.01 µF ceramic capacitor, connected from the  
Bypass input to ground, reduces noise present on the  
internal reference, which, in turn, significantly reduces  
output noise. If output noise is not a concern, this input  
may be left unconnected. Larger capacitor values may  
be used, but the result is a longer time period to rated  
output voltage when power is initially applied.  
The TC2014, TC2015 and TC2185 are precision fixed-  
output voltage regulators (if an adjustable version is  
needed, see the TC1070, TC1071 and TC1187  
(DS21353) data sheet). Unlike bipolar regulators, the  
TC2014, TC2015 and TC2185 supply current does not  
increase with load current. In addition, the LDO’s out-  
put voltage is stable using 1 µF of ceramic or tantalum  
capacitance over the entire specified input voltage  
range and output current range.  
4.2  
Output Capacitor  
Figure 4-1 shows a typical application circuit. The reg-  
ulator is enabled anytime the shutdown input (SHDN)  
is at or above VIH, and disabled (shutdown) when  
SHDN is at or below VIL. SHDN may be controlled by a  
CMOS logic gate or I/O port of a microcontroller. If the  
SHDN input is not required, it should be connected  
directly to the input supply. While in shutdown, the  
supply current decreases to 0.05 µA (typical) and VOUT  
falls to zero volts.  
A 1 µF (min) capacitor from VOUT to ground is required.  
The output capacitor should have an Effective Series  
Resistance (ESR) of 0.01to 5for VOUT 2.5V, and  
0.05. to 5for VOUT < 2.5V. Ceramic, tantalum or alu-  
minum electrolytic capacitors can be used. When using  
ceramic capacitors, X5R and X7R dielectric material  
are recommended due to their stable tolerance over  
temperature. However, other dielectrics can be used as  
long as the minimum output capacitance is maintained.  
4.3  
Input Capacitor  
1
5
V
V
V
OUT  
IN  
OUT  
A 1 µF capacitor should be connected from VIN to GND  
if there is more than 10 inches of wire between the reg-  
ulator and this AC filter capacitor, or if a battery is used  
as the power source. Aluminum electrolytic or tantalum  
capacitors can be used (since many aluminum electro-  
lytic capacitors freeze at approximately -30°C, solid  
tantalum are recommended for applications operating  
below -25°C). When operating from sources other than  
batteries, supply-noise rejection and transient  
response can be improved by increasing the value of  
the input and output capacitors and employing passive  
filtering techniques.  
+
+
+
1 µF  
1 µF  
Battery  
2
TC2014  
TC2015  
TC2185  
GND  
3
4
SHDN  
Bypass  
0.01 µF  
Reference  
Bypass Cap  
(Optional)  
Shutdown Control  
(from Power Control Logic)  
FIGURE 4-1:  
Typical Application Circuit.  
DS21662F-page 10  
2001-2012 Microchip Technology Inc.  
TC2014/2015/2185  
The PD equation can be used in conjunction with the  
PDMAX equation to ensure that regulator thermal  
operation is within limits. For example:  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
Given:  
Integrated thermal protection circuitry shuts the regula-  
tor off when the die temperature exceeds approxi-  
mately 160°C. The regulator remains off until the die  
temperature cools to approximatley 150°C.  
VINMAX  
= 3.0V +10%  
VOUTMIN = 2.7V – 2.5%  
ILOADMAX = 40 mA  
TJMAX  
TAMAX  
= +125°C  
= +55°C  
5.2  
Power Dissipation  
The amount of power the regulator dissipates is primar-  
ily a function of input voltage, output voltage and output  
current.  
Find:  
1. Actual power dissipation  
The following equation is used to calculate worst-case  
power dissipation.  
2. Maximum allowable dissipation  
EQUATION 5-1:  
Actual power dissipation:  
P
 VINMAX VOUTMINILMAX  
D
PD = VINMAX VOUTMINILMAX  
Where:  
PD  
= 3.0 1.12.7 0.97540 103  
= 26.7mW  
= Worst-case actual power dissipation  
VINMAX = Maximum voltage on VIN  
VOUTMIN = Minimum regulator output voltage  
Maximum allowable power dissipation:  
ILMAX  
= Maximum output (load) current  
TJMAX TAMAX  
PDMAX  
=
--------------------------------------  
JA  
The maximum allowable power dissipation (PDMAX) is  
a function of the maximum ambient temperature  
(T  
AMAX), the maximum allowable die temperature  
125 55  
= --------------------  
220  
(TJMAX) (+125°C) and the thermal resistance from junc-  
tion-to-air (JA). The 5-Pin SOT-23A package has a JA  
of approximately 220°C/Watt when mounted on a  
typical two-layer FR4 dielectric copper-clad PC board.  
= 318mW  
In this example, the TC2014 dissipates a maximum of  
only 26.7 mW; far below the allowable limit of 318 mW.  
In a similar manner, the PD and PDMAX equations can  
be used to calculate maximum current and/or input  
voltage limits.  
EQUATION 5-2:  
TJMAX TAMAX  
PDMAX  
=
--------------------------------------  
JA  
5.3  
Layout Considerations  
Where all terms are previously defined.  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads and wide power  
supply bus lines combine to lower JA and, therefore,  
increase the maximum allowable power dissipation  
limit.  
2001-2012 Microchip Technology Inc.  
DS21662F-page 11  
TC2014/2015/2185  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
TABLE 6-1:  
(V)  
PART NUMBER CODE AND  
TEMPERATURE RANGE  
TC2014  
TC2015  
TC2185  
1.8  
2.5  
2.6  
2.7  
2.8  
2.85  
3.0  
3.3  
5.0  
PA  
PB  
PH  
PC  
PD  
PE  
PF  
PG  
PJ  
RA  
RB  
RH  
RC  
RD  
RE  
RF  
RG  
RJ  
UA  
UB  
UH  
UC  
UD  
UE  
UF  
UG  
UJ  
  
&represents part number code + temperature  
range and voltage  
represents year and 2-month period code  
represents lot ID number  
6.2  
Taping Form  
Component Taping Orientation for 5-Pin SOT-23A (EIAJ SC-74A) Devices  
User Direction of Feed  
Device  
Marking  
W
PIN 1  
P
Standard Reel Component Orientation  
for 713 Suffix Device  
(Mark Right Side Up)  
Carrier Tape, Number of Components Per Reel and Reel Size:  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
7 in.  
5-Pin SOT-23A  
8 mm  
4 mm  
3000  
DS21662F-page 12  
2001-2012 Microchip Technology Inc.  
TC2014/2015/2185  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located  
at http://www.microchip.com/packaging  
E
E1  
p
B
p1  
D
n
1
c
A
A2  
L
A1  
Units  
INCHES  
*
MILLIMETERS  
NOM  
5
Dimension Limits  
MIN  
NOM  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
.038  
0.95  
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
A
A2  
A1  
E
.035  
.057  
0.90  
1.18  
1.45  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Molded Package Thickness  
Standoff  
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.10  
0.08  
Overall Width  
2.80  
Molded Package Width  
Overall Length  
E1  
D
1.63  
2.95  
Foot Length  
L
f
0.45  
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
5
5
10  
10  
b
10  
0
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
2001-2012 Microchip Technology Inc.  
DS21662F-page 13  
TC2014/2015/2185  
NOTES:  
DS21662F-page 14  
2001-2012 Microchip Technology Inc.  
TC2014/2015/2185  
APPENDIX A: REVISION HISTORY  
Revision F (December 2012)  
• Added a note to each package outline drawing.  
Revision E (May 2006)  
• Page 1: Added overtemperature to bullet for over-  
current protection in features and general descrip-  
tion verbiage.  
• Page 3: Added Thermal Shutdown die Tempera-  
ture to electrical characteristics table.  
• Page 3: Added Thermal Characteristics Table.  
• Page 5: Added new section 5.1 and new ver-  
biage.  
• Page 13: Updated package outline drawing.  
Revision D (November 2004)  
• Page 2: Changed Absolute Maximum Ratings  
from 6.5V to 7.0V.  
• Packaging Information: Added package codes for  
2.6V and 5.0V options.  
• Product Identification System: Added 2.6V and  
5.0V to Output voltage options.  
Revision C (December 2002)  
• Numerous changes  
Revision B (May 2002)  
• Numerous changes  
Revision A (May 2001)  
• Original Release of this Document.  
2001-2012 Microchip Technology Inc.  
DS21662F-page 15  
TC2014/2015/2185  
NOTES:  
DS21662F-page 16  
2001-2012 Microchip Technology Inc.  
TC2014/2015/2185  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-XX  
X
XXXX  
a)  
b)  
c)  
TC2014-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Output  
Voltage  
Temperature  
Range  
Package  
Tape and Reel.  
TC2014-2.85VCTTR: 5LD SOT-23-A, 2.85V,  
Tape and Reel.  
TC2014-3.3VCTTR: 5LD SOT-23-A, 3.3V,  
Tape and Reel.  
Device:  
TC2014: 50 mA LDO with Shutdown and VREF Bypass  
TC2015: 100 mA LDO with Shutdown and VREF Bypass  
TC2185: 150 mA LDO with Shutdown and VREF Bypass  
a)  
b)  
c)  
TC2015-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Tape and Reel.  
Output Voltage:  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
=
=
=
=
=
=
=
=
=
1.8V  
2.5V  
2.6V  
2.7V  
2.8V  
2.85V  
3.0V  
3.3V  
5.0V  
TC2015-2.85VCTTR: 5LD SOT-23-A, 2.85V,  
Tape and Reel.  
TC2015-3.0VCTTR: 5LD SOT-23-A, 3.0V,  
Tape and Reel.  
a)  
b)  
TC2185-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Tape and Reel.  
TC2185-2.8VCTTR: 5LD SOT-23-A, 2.8V,  
Tape and Reel.  
Temperature Range:  
Package:  
V
=
-40°C to +125°C  
CTTR  
=
Plastic Small Outline Transistor (SOT-23),  
5-lead, Tape and Reel  
2001-2012 Microchip Technology Inc.  
DS21662F-page 17  
TC2014/2015/2185  
NOTES:  
DS21662F-page 18  
2001-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2001-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620768884  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2001-2012 Microchip Technology Inc.  
DS21662F-page 19  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/12  
DS21662F-page 20  
2001-2012 Microchip Technology Inc.  

相关型号:

TC2015-3.3VCTTR

3.3 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, PLASTIC, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2015-5.0VCTTR

5 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, PLASTIC, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC20152802DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20152803DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20152804DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20152805DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20152807DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC2015280FDH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20162802DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1600V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20162804DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1600V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20162805DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1600V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20162807DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1600V V(RRM), 1 Element, TC2, 3 PIN
POWEREX