TC2054-3.0VCTTR [MICROCHIP]

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output; 50毫安100 mA和150毫安CMOS LDO,具有关断和错误输出
TC2054-3.0VCTTR
型号: TC2054-3.0VCTTR
厂家: MICROCHIP    MICROCHIP
描述:

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
50毫安100 mA和150毫安CMOS LDO,具有关断和错误输出

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总22页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC2054/2055/2186  
50 mA, 100 mA, and 150 mA CMOS LDOs  
with Shutdown and Error Output  
Features  
General Description  
• Low Supply Current (55 µA Typical) for Longer  
Battery Life  
The TC2054, TC2055 and TC2186 are high accuracy  
(typically ±0.4%) CMOS upgrades for older (bipolar)  
low dropout regulators. Designed specifically for  
battery-operated systems, the devices’ total supply  
current is typically 55 µA at full load (20 to 60 times  
lower than in bipolar regulators).  
• Low Dropout Voltage: 140 mV (Typical) @  
150 mA  
• High Output Voltage Accuracy: ±0.4% (Typical)  
• Standard or Custom Output Voltages  
• Power-Saving Shutdown Mode  
The devices’ key features include low noise operation,  
low dropout voltage – typically 45 mV (TC2054); 90 mV  
(TC2055); and 140 mV (TC2186) at full load - and fast  
response to step changes in load. An error output  
(ERROR) is asserted when the devices are  
out-of-regulation (due to a low input voltage or  
excessive output current). Supply current is reduced to  
0.5 µA (maximum) and both VOUT and ERROR are  
disabled when the shutdown input is low. The devices  
also incorporate overcurrent and overtemperature  
protection.  
• ERROR Output Can Be Used as a Low Battery  
Detector or Processor Reset Generator  
• Fast Shutdown Reponse Time: 60 µs (Typical)  
• Overcurrent and Overtemperature Protection  
• Space-Saving 5-Pin SOT-23A Package  
• Pin Compatible Upgrades for Bipolar Regulators  
• Standard Output Voltage Options:  
- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V,  
3.3V, 5.0V  
The TC2054, TC2055 and TC2186 are stable with a  
low esr ceramic output capacitor of 1 µF and have a  
maximum output current of 50 mA, 100 mA and  
150 mA, respectively. This LDO Family also features a  
fast response time (60 µs typically) when released from  
shutdown.  
Applications  
• Battery Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
Package Type  
• Cellular / GSMS / PHS Phones  
• Pagers  
5-Pin SOT-23A  
Top View  
Typical Application  
VOUT  
5
ERROR  
4
1
5
V
V
V
V
IN  
OUT  
OUT  
IN  
TC2054  
TC2055  
TC2186  
1 µF  
1 µF  
2
GND  
2
TC2054  
TC2055  
TC2186  
1
3
1M  
VIN  
GND SHDN  
3
4
ERROR  
SHDN  
ERROR  
Shutdown Control  
(from Power Control Logic)  
© 2009 Microchip Technology Inc.  
DS21663D-page 1  
TC2054/2055/2186  
NOTES:  
DS21663D-page 2  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods my  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage .........................................................6.5V  
Output Voltage ...............................(-0.3) to (VIN + 0.3)  
Operating Temperature.................. -40°C < TJ< 125°C  
Storage Temperature .........................-65°C to +150°C  
Maximum Voltage on Any Pin ........VIN +0.3V to -0.3V  
ELECTRICAL SPECIFICATIONS  
Electrical Specifications: Unless otherwise noted, VIN = VR + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Operating Voltage  
Maximum Output Current  
VIN  
2.7  
50  
6.0  
V
Note 1  
TC2054  
TC2055  
TC2186  
Note 2  
IOUT  
mA  
MAX  
100  
150  
Output Voltage  
VOUT  
VR - 2.0% VR ± 0.4% VR + 2.0%  
V
V
OUT Temperature  
TCVOUT  
20  
40  
ppm/°C Note 3  
Coefficient  
Line Regulation  
ΔVOUT  
ΔVIN  
/
/
0.05  
0.5  
%
%
(VR + 1V) < VIN < 6V  
Load Regulation  
ΔVOUT  
-1.0  
-2.0  
0.33  
0.43  
+1.0  
+2.0  
TC2054;TC2055 IL = 0.1 mA to IOUT  
MAX  
VOUT  
TC2186  
IL = 0.1 mA to IOUT  
MAX  
Note 6  
Dropout Voltage, Note 7  
V
IN – VOUT  
2
70  
mV  
IL = 100 µA  
IL = 50 mA  
45  
90  
140  
210  
TC2015; TC2185 IL = 100 mA  
140  
TC2185  
IL = 150 mA  
Note 7  
Supply Current  
IIN  
55  
0.05  
50  
80  
0.5  
µA  
µA  
dB  
SHDN = VIH, IL=0  
SHDN = 0V  
FRE 100 kHz  
Shutdown Supply Current  
IINSD  
PSRR  
Power Supply Rejection  
Ratio  
Output Short Circuit Current  
IOUT  
160  
300  
mA  
VOUT = 0V  
SC  
Note 1: The minimum VIN has to meet two conditions: VIN = 2.7V and VIN = VR + VDROPOUT  
.
2: VR is the regulator output voltage setting. For example: VR = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
3: TCVOUT  
4:  
5:  
=
6
(V  
V  
) × 10  
OUTMAX  
OUTMIN  
× ΔT  
-----------------------------------------------------------------------------------------  
V
OUT  
6: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
7: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal  
value at a 1V differential.  
8: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to IMAX at VIN = 6V for T = 10 ms.  
9: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
perature and the thermal resistance from junction-to-air (i.e. TA, TJ, θJA).  
10: Hysteresis voltage is referenced by VR.  
11: Time required for VOUT to reach 95% of VR (output voltage setting), after VSHDN is switched from 0 to VIN  
.
© 2009 Microchip Technology Inc.  
DS21663D-page 3  
TC2054/2055/2186  
ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = VR + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Thermal Regulation  
ΔVOUT/ΔPD  
0.04  
160  
V/W Note 8  
Thermal Shutdown Die  
Temperature  
TSD  
°C  
Output Noise  
eN  
tR  
600  
60  
nV /  
Hz  
IL = IOUTMAX, F = 10 kHz  
Response Time  
(from Shutdown Mode)  
µs  
VIN = 4V  
IN = 1 µF, COUT = 10 µF  
IL = 0.1 mA, Note 11  
C
SHDN Input  
SHDN Input High Threshold  
SHDN Input Low Threshold  
ERROR OUTPUT  
VIH  
VIL  
60  
%VIN VIN = 2.5V to 6.0V  
%VIN VIN = 2.5V to 6.0V  
15  
Minimum VIN Operating  
Voltage  
VINMIN  
VOL  
1.0  
V
IOL = 0.1 mA  
Output Logic Low Voltage  
400  
mV  
1 mA Flows to ERROR,  
IOL = 1 mA, VIN = 2V  
ERROR Threshold Voltage  
ERROR Positive Hysteresis  
VTH  
VHYS  
0.95 x VR  
V
mV  
ms  
Ω
See Figure 4-2  
50  
2
Note 10  
V
OUT to ERROR Delay  
tDELAY  
RERROR  
VOUT from VR = 3V to 2.8V  
VDD = 2.5V, VOUT = 2.5V  
Resistance from ERROR to  
GND  
126  
Note 1: The minimum VIN has to meet two conditions: VIN = 2.7V and VIN = VR + VDROPOUT  
.
2: R is the regulator output voltage setting. For example: VR = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
V
3: TCVOUT  
4:  
5:  
=
6
(V  
V  
) × 10  
OUTMAX  
OUTMIN  
× ΔT  
-----------------------------------------------------------------------------------------  
V
OUT  
6: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
7: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal  
value at a 1V differential.  
8: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to IMAX at VIN = 6V for T = 10 ms.  
9: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
perature and the thermal resistance from junction-to-air (i.e. TA, TJ, θJA).  
10: Hysteresis voltage is referenced by VR.  
11: Time required for VOUT to reach 95% of VR (output voltage setting), after VSHDN is switched from 0 to VIN  
.
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, VDD = +2.7V to +6.0V and VSS = GND.  
Parameters  
Temperature Ranges:  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances:  
Thermal Resistance, 5L-SOT-23  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
255  
°C/W  
DS21663D-page 4  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
0
-20  
0
-20  
VINDC = 4V  
VINAC = 100 mVp-p  
VOUTDC = 3V  
IOUT = 100 µA  
COUT = 1 µF Ceramic  
VINDC = 4V  
VINAC = 100 mVp-p  
VOUTDC = 3V  
-40  
-40  
-60  
-60  
-80  
-80  
IOUT = 150 mA  
COUT = 10 µF Ceramic  
-100  
-100  
10  
100  
1000  
10k  
100k 1M  
10  
10
100
10k
100k1M
f (Hz)  
f (Hz)  
FIGURE 2-1:  
Power Supply Rejection  
FIGURE 2-4:  
Power Supply Rejection  
Ratio.  
Ratio.  
0
0
VINDC = 4V  
VINDC = 4V  
VINAC = 100 mVp-p  
VOUTDC = 3V  
VINAC = 100 mVp-p  
VOUTDC = 3V  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
IOUT = 150 mA  
IOUT = 150 mA  
COUT = 10 µF Tantalum  
COUT = 1 µF Ceramic  
-100  
-100  
10  
100  
1000  
10k  
100k 1M  
10  
100
1000  
10k
100k  
1M  
f (Hz)  
f (Hz)  
FIGURE 2-2:  
Power Supply Rejection  
FIGURE 2-5:  
Power Supply Rejection  
Ratio.  
Ratio.  
0.160  
V
OUT = 1.8V  
10  
1
0.140  
0.120  
0.100  
T = 25°C  
COUT = 1 µF  
T = 130°C  
T = -45°C  
0.1  
0.01  
0.080  
0.060  
0.040  
0.020  
0.000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
100  
150  
50  
0
Frequency (kHz)  
ILOAD (mA)  
FIGURE 2-3:  
Output Noise vs. Frequency.  
FIGURE 2-6:  
Dropout Voltage vs. I  
.
LOAD  
© 2009 Microchip Technology Inc.  
DS21663D-page 5  
TC2054/2055/2186  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
65.00  
1.9  
VOUT = 1.8V  
1.88  
63.00  
1.86  
1.84  
61.00  
1.82  
VIN = 2.8V  
59.00  
57.00  
1.8  
1.78  
1.76  
1.74  
VIN = 2.8V  
55.00  
53.00  
1.72  
1.7  
0
15  
30  
45  
60  
75  
90  
105  
120  
135  
150  
-45  
5
55  
105  
155  
ILOAD (mA)  
Temperature (°C)  
FIGURE 2-7:  
I
vs. Temperature.  
FIGURE 2-10:  
Output Voltage vs. Output  
DD  
Current.  
2.9  
2.9  
VOUT = 2.8V  
IOUT = 0.1mA  
V
OUT = 2.8V  
I
OUT = 0.1mA  
2.85  
VIN = 6.5V  
2.85  
Temp = +130˚C  
2.8  
2.8  
2.75  
2.7  
VIN = 6.0V  
VIN = 3.8V  
2.75  
2.7  
Temp = +25˚C  
Temp = -45˚C  
2.65  
2.6  
2.65  
2.6  
2.55  
2.5  
2.55  
2.5  
-50 -35 -20 -5  
10  
25  
40 55  
70  
85 100 115 130 145  
3.5  
4
4.5  
5
5.5  
6
6.5  
7
VIN (V)  
Temperature (˚C)  
FIGURE 2-8:  
Output Voltage vs.  
FIGURE 2-11:  
Output Voltage vs. Supply  
Temperature.  
Voltage.  
1.9  
1.9  
VOUT = 1.8V  
V
OUT = 1.8V  
IOUT = 0.1mA  
1.88  
1.86  
1.88  
1.86  
1.84  
I
OUT = 0.1mA  
1.84  
1.82  
1.8  
VIN = 6.0V  
VIN = 6.5V  
Temp = +130˚C  
Temp = +25˚C  
1.82  
1.8  
1.78  
Temp = -45˚C  
1.78  
VIN = 2.8V  
1.76  
1.74  
1.76  
1.74  
1.72  
1.72  
1.7  
1.7  
-50 -35 -20  
-5  
10  
25 40  
55 70  
85 100 115 130 145  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
6.2  
6.7  
VIN (V)  
Temperature (˚C)  
FIGURE 2-9:  
Output Voltage vs.  
FIGURE 2-12:  
Dropout Voltage vs. Supply  
Temperature.  
Voltage.  
DS21663D-page 6  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
V
V
= 3.8V  
V
V
= 3.0V  
IN  
IN  
= 2.8V  
= 2.8V  
OUT  
OUT  
C
= 1 μF Ceramic  
= 1 μF Ceramic  
C
= 1μF Ceramic  
IN  
IN  
C
C
= 10μF Ceramic  
OUT  
OUT  
Frequency = 1 KHz  
Frequency = 10KHz  
V
100mV/DIV  
OUT  
100mV / DIV  
V
OUT  
Load Current  
Load Current  
150mA  
Load  
100μA  
150mA  
Load  
100μA  
FIGURE 2-13:  
Load Transient Response.  
FIGURE 2-16:  
Load Transient Response.  
Load Transient Response in Dropout Mode  
V
= 4.0V  
= 3.0V  
IN  
V
OUT  
C
C
I
= 10μF  
= 0.01μF  
= 100μA  
OUT  
BYP  
OUT  
VOUT  
100mV/DIV  
V
SHDN  
150mA  
V
IN = 3.105V  
V
OUT = 3.006V  
C
IN = 1μF Ceramic  
OUT = 1μF Ceramic  
LOAD = 20Ω  
100μA  
C
R
V
OUT  
FIGURE 2-14:  
Load Transient Response in  
FIGURE 2-17:  
Shutdown Delay.  
Dropout Mode.  
V
= 2.8V  
OUT  
V
C
C
I
= 1μF Ceramic  
= 470pF  
SHDN  
OUT  
BYP  
= 100μA  
OUT  
50mV / DIV  
V
OUT  
Input Voltage  
2V / DIV  
V
6V  
4V  
OUT  
V
= 4.0V  
= 3.0V  
IN  
V
OUT  
C
= 10μF  
= 0.01μF  
= 100μA  
OUT  
C
BYP  
OUT  
I
FIGURE 2-18:  
Shutdown Wake-up Time.  
FIGURE 2-15:  
Line Transient Response.  
© 2009 Microchip Technology Inc.  
DS21663D-page 7  
TC2054/2055/2186  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
R
PULLUP = 100kΩ  
I
OUT = 0.3mA  
V
IN  
1V/Div  
1V/Div  
3.42V  
3.0V  
2.8V  
2.8V  
V
OUT  
2V/Div  
VERROR  
0V  
FIGURE 2-19:  
V
to ERROR Delay.  
OUT  
DS21663D-page 8  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin Number  
PIN FUNCTION TABLE  
Symbol  
Description  
1
2
3
VIN  
Unregulated supply input.  
Ground terminal.  
GND  
SHDN  
Shutdown control input. The regulator is fully enabled when a logic high is  
applied to this input. The regulator enters shutdown when a logic low is applied  
to this input. During shutdown, output voltage falls to zero, ERROR is open  
circuited and supply current is reduced to 0.5 µA (maximum).  
4
5
ERROR  
VOUT  
Out-of-Regulation Flag. (Open-drain output). This output goes low when VOUT is  
out-of-tolerance by approximately -5%.  
Regulated voltage output.  
3.1  
Unregulated Supply Input (VIN)  
3.4  
Out-of-Regulation Flag (ERROR)  
Connect the unregulated input supply to the VIN pin. If  
there is a large distance between the input supply and  
the LDO regulator, some input capacitance is  
necessary for proper operation. A 1 µF capacitor,  
connected from VIN to ground, is recommended for  
most applications.  
The open-drain ERROR flag provides indication that  
the regulator output voltage is not in regulation. The  
ERROR pin will be low when the output is typically  
below 5% of its specified value.  
3.5  
Regulated Voltage Output (VOUT)  
Connect the output load to VOUT of the LDO. Also  
connect one side of the LDO output decoupling  
capacitor as close as possible to the VOUT pin.  
3.2  
Ground Terminal (GND)  
Connect the unregulated input supply ground return to  
GND. Also connect one side of the 1 µF typical input  
decoupling capacitor close to this pin and one side of  
the output capacitor COUT to this pin.  
3.3  
Shutdown Control Input (SHDN)  
The regulator is fully enabled when a logic-high is  
applied to SHDN. The regulator enters shutdown when  
a logic-low is applied to this input. During shutdown, the  
output voltage falls to zero and the supply current is  
reduced to 0.5 µA (maximum).  
© 2009 Microchip Technology Inc.  
DS21663D-page 9  
TC2054/2055/2186  
NOTES:  
DS21663D-page 10  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
4.0  
DETAILED DESCRIPTION  
V
OUT  
The TC2054, TC2055 and TC2186 are precision fixed  
output voltage regulators. (If an adjustable version is  
desired, refer to the TC1070/TC1071/TC1187 data  
sheet (DS21353). Unlike bipolar regulators, the  
TC2054, TC2055 and TC2186 supply current does not  
increase with load current. In addition, VOUT remains  
stable and within regulation over the entire 0 mA to  
maximum output current operating load range.  
HYSTERESIS (V  
)
HYS  
V
TH  
ERROR  
V
IH  
V
OL  
Figure 4-1 shows a typical application circuit. The  
regulator is enabled any time the shutdown input  
(SHDN) is at or above VIH, and shutdown (disabled)  
when SHDN is at or below VIL. SHDN may be  
controlled by a CMOS logic gate, or I/O port of a  
microcontroller. If the SHDN input is not required, it  
should be connected directly to the input supply. While  
in shutdown, supply current decreases to 0.05 µA  
(typical), VOUT falls to zero volts, and ERROR is  
open-circuited.  
FIGURE 4-2:  
Error Output Operation.  
4.2  
Output Capacitor  
A 1 µF (minimum) capacitor from VOUT to ground is  
required. The output capacitor should have an effective  
series resistance of 0.01Ω. to 5Ω for VOUT = 2.5V, and  
0.05Ω. to 5Ω for VOUT < 2.5V. Ceramic, tantalum and  
aluminum electrolytic capacitors can be used. (Since  
many aluminum electrolytic capacitors freeze at  
approximately  
-30°C,  
solid  
tantalums  
are  
V
V
V
OUT  
IN  
OUT  
recommended for applications operating below -25°C).  
When operating from sources other than batteries,  
supply-noise rejection and transient response can be  
improved by increasing the value of the input and  
output capacitors and employing passive filtering  
techniques.  
1 µF  
1 µF  
C
1
TC2054  
TC2055  
TC2186  
BATTERY  
GND  
V+  
SHDN  
ERROR  
R
1MΩ  
1
Shutdown Control  
(to CMOS Logic or Tie  
4.3  
Input Capacitor  
C2 Required Only  
if ERROR is used as a  
Processor RESET Signal  
(See Text)  
BATTLOW  
or RESET  
to V if unused)  
IN  
A 1 µF capacitor should be connected from VIN to GND  
if there is more than 10 inches of wire between the  
regulator and this AC filter capacitor, or if a battery is  
used as the power source. Aluminum electrolytic or  
tantalum capacitors can be used (since many  
0.2 µF  
C
2
FIGURE 4-1:  
Typical Application Circuit.  
aluminum  
electrolytic  
capacitors  
freeze  
at  
4.1  
ERROR Open-Drain Output  
approximately -30°C, solid tantalum are recommended  
for applications operating below -25°C). When  
operating from sources other than batteries,  
supply-noise rejection and transient response can be  
improved by increasing the value of the input and  
output capacitors and employing passive filtering  
techniques.  
ERROR is driven low whenever VOUT falls out of  
regulation by more than -5% (typical). This condition  
may be caused by low input voltage, output current  
limiting or thermal limiting. The ERROR threshold is 5%  
below rated VOUT regardless of the programmed  
output voltage value (e.g. ERROR = VOL at 4.75V  
(typical) for a 5.0V regulator and 2.85V (typical) for a  
3.0V regulator). ERROR output operation is shown in  
Figure 4-2.  
Note that ERROR is active when VOUT falls to VTH, and  
inactive when VOUT rises above VTH by VHYS  
.
As shown in Figure 4-1, ERROR can be used as a  
battery low flag or as a processor RESET signal (with  
the addition of timing capacitor C2). R1 x C2 should be  
chosen to maintain ERROR below VIH of the processor  
RESET input for at least 200 ms to allow time for the  
system to stabilize. Pull-up resistor R1 can be tied to  
VOUT, VIN or any other voltage less than (VIN + 0.3V).  
The ERROR pin sink current is self-limiting to  
approximately 18 mA.  
© 2009 Microchip Technology Inc.  
DS21663D-page 11  
TC2054/2055/2186  
NOTES:  
DS21663D-page 12  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
Equation 5-1 can be used in conjunction with  
Equation 5-2 to ensure regulator thermal operation is  
within limits. For example:  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
Integrated thermal protection circuitry shuts the  
regulator off when the die temperature exceeds  
approximately 160°C. The regulator remains off until  
the die temperature cools to approximatley 150°C.  
Given:  
VINMAX  
= 3.0V +10%  
VOUTMIN = 2.7V – 2.5%  
ILOADMAX = 40 mA  
5.2  
Power Dissipation  
TAMAX  
= +55°C  
The amount of power the regulator dissipates is  
primarily a function of input and output voltage, and  
output current.  
Find:  
1. Actual power dissipation  
Equation 5-1 is used to calculate worst case power  
dissipation:  
2. Maximum allowable dissipation  
Actual power dissipation:  
EQUATION 5-1:  
P
≈ (VINMAX VOUTMIN)ILOADMAX  
D
PD = (VINMAX VOUTMIN)ILOADMAX  
Where:  
= [(3.0 × 1.1) (2.7 × 0.975)]40 × 103  
= 26.7mW  
PD  
= Worst-case actual power dissipation  
= Maximum voltage on VIN  
VINMAX  
Maximum allowable power dissipation:  
VOUTMIN = Minimum regulator output voltage  
ILOADMAX = Maximum output (load) current  
TJMAX TAMAX  
PDMAX = --------------------------------------  
θJA  
The  
(Equation 5-2) is a function of the maximum ambient  
temperature (TA  
maximum  
allowable  
power  
dissipation  
125 55  
= --------------------  
MAX), the maximum allowable die  
220  
temperature (125 °C) and the thermal resistance from  
junction-to-air (θJA). The 5-Pin SOT-23A package has  
a θJA of approximately 220°C/Watt when mounted on a  
typical two layer FR4 dielectric copper clad PC board.  
= 318mW  
In this example, the TC2054 dissipates a maximum of  
only 26.7 mW; far below the allowable limit of 318 mW.  
In a similar manner, Equation 5-1 and Equation 5-2 can  
be used to calculate maximum current and/or input  
voltage limits.  
EQUATION 5-2:  
TJMAX TAMAX  
PDMAX = --------------------------------------  
θJA  
5.3  
Layout Considerations  
Where all terms are previously defined.  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads, and wide power  
supply bus lines combine to lower θJA and, therefore,  
increase the maximum allowable power dissipation  
limit.  
© 2009 Microchip Technology Inc.  
DS21663D-page 13  
TC2054/2055/2186  
NOTES:  
DS21663D-page 14  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23  
TABLE 6-1:  
PART NUMBER CODE AND  
TEMPERATURE RANGE  
5
4
3
5
1
4
3
(V)  
TC2054  
TC2055  
TC2186  
SA25  
XXNN  
1.8  
2.5  
2.6  
2.7  
2.8  
2.85  
3.0  
3.3  
5.0  
SA  
SB  
SH  
SC  
SD  
SE  
SF  
SG  
SK  
TA  
TB  
TH  
TC  
TD  
TE  
TF  
TG  
TJ  
VA  
VB  
VH  
VC  
VD  
VE  
VF  
VG  
VJ  
1
2
2
Legend: XX...X Customer-specific information  
NN  
Alphanumeric traceability code  
6.2  
Taping Information  
Component Taping Orientation for 5-Pin SOT-23A (EIAJ SC-74A) Devices  
User Direction of Feed  
Device  
Marking  
W
PIN 1  
P
Standard Reel Component Orientation  
for 713 Suffix Device  
(Mark Right Side Up)  
Carrier Tape, Number of Components Per Reel and Reel Size:  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
5-Pin SOT-23A  
8 mm  
4 mm  
3000  
7 in.  
© 2009 Microchip Technology Inc.  
DS21663D-page 15  
TC2054/2055/2186  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖꢒꢗꢆꢘꢍꢏꢒꢁꢙꢚꢛ  
ꢜꢔꢊꢃꢝ .ꢆꢌꢇ$ꢋꢄꢇ ꢆ!$ꢇꢉ%ꢌꢌꢄꢅ$ꢇꢍꢈꢉ/ꢈꢒꢄꢇ"ꢌꢈ-ꢃꢅꢒ!0ꢇꢍꢊꢄꢈ!ꢄꢇ!ꢄꢄꢇ$ꢋꢄꢇꢎꢃꢉꢌꢆꢉꢋꢃꢍꢇ1ꢈꢉ/ꢈꢒꢃꢅꢒꢇꢔꢍꢄꢉꢃ&ꢃꢉꢈ$ꢃꢆꢅꢇꢊꢆꢉꢈ$ꢄ"ꢇꢈ$ꢇ  
ꢋ$$ꢍ+22---ꢁ ꢃꢉꢌꢆꢉꢋꢃꢍꢁꢉꢆ 2ꢍꢈꢉ/ꢈꢒꢃꢅꢒ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢅꢃ$!  
ꢎꢙ44ꢙꢎ#ꢗ#ꢚꢔ  
ꢂꢃ ꢄꢅ!ꢃꢆꢅꢇ4ꢃ ꢃ$!  
ꢎꢙ5  
56ꢎ  
ꢎꢓ7  
5% 8ꢄꢌꢇꢆ&ꢇ1ꢃꢅ!  
4ꢄꢈ"ꢇ1ꢃ$ꢉꢋ  
5
ꢏꢁꢛꢖꢇ)ꢔ*  
6%$!ꢃ"ꢄꢇ4ꢄꢈ"ꢇ1ꢃ$ꢉꢋ  
6,ꢄꢌꢈꢊꢊꢇ9ꢄꢃꢒꢋ$  
ꢎꢆꢊ"ꢄ"ꢇ1ꢈꢉ/ꢈꢒꢄꢇꢗꢋꢃꢉ/ꢅꢄ!!  
ꢔ$ꢈꢅ"ꢆ&&  
6,ꢄꢌꢈꢊꢊꢇ<ꢃ"$ꢋ  
ꢎꢆꢊ"ꢄ"ꢇ1ꢈꢉ/ꢈꢒꢄꢇ<ꢃ"$ꢋ  
6,ꢄꢌꢈꢊꢊꢇ4ꢄꢅꢒ$ꢋ  
.ꢆꢆ$ꢇ4ꢄꢅꢒ$ꢋ  
.ꢆꢆ$ꢍꢌꢃꢅ$  
.ꢆꢆ$ꢇꢓꢅꢒꢊꢄ  
4ꢄꢈ"ꢇꢗꢋꢃꢉ/ꢅꢄ!!  
4ꢄꢈ"ꢇ<ꢃ"$ꢋ  
ꢄꢀ  
ꢓꢐ  
ꢓꢀ  
#
#ꢀ  
4
ꢀꢁꢛꢏꢇ)ꢔ*  
ꢏꢁꢛꢏ  
ꢏꢁ;ꢛ  
ꢏꢁꢏꢏ  
ꢐꢁꢐꢏ  
ꢀꢁꢜꢏ  
ꢐꢁꢑꢏ  
ꢏꢁꢀꢏ  
ꢏꢁꢜꢖ  
ꢏꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢕꢖ  
ꢀꢁꢜꢏ  
ꢏꢁꢀꢖ  
ꢜꢁꢐꢏ  
ꢀꢁ;ꢏ  
ꢜꢁꢀꢏ  
ꢏꢁ=ꢏ  
ꢏꢁ;ꢏ  
ꢜꢏꢝ  
4ꢀ  
8
ꢏꢁꢏ;  
ꢏꢁꢐꢏ  
ꢏꢁꢐ=  
ꢏꢁꢖꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅ!ꢇꢂꢇꢈꢅ"ꢇ#ꢀꢇ"ꢆꢇꢅꢆ$ꢇꢃꢅꢉꢊ%"ꢄꢇ ꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢁꢇꢎꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢇ!ꢋꢈꢊꢊꢇꢅꢆ$ꢇꢄ'ꢉꢄꢄ"ꢇꢏꢁꢀꢐꢑꢇ  ꢇꢍꢄꢌꢇ!ꢃ"ꢄꢁ  
ꢐꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅꢃꢅꢒꢇꢈꢅ"ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢃꢅꢒꢇꢍꢄꢌꢇꢓꢔꢎ#ꢇ(ꢀꢕꢁꢖꢎꢁ  
)ꢔ*+ )ꢈ!ꢃꢉꢇꢂꢃ ꢄꢅ!ꢃꢆꢅꢁꢇꢗꢋꢄꢆꢌꢄ$ꢃꢉꢈꢊꢊꢘꢇꢄ'ꢈꢉ$ꢇ,ꢈꢊ%ꢄꢇ!ꢋꢆ-ꢅꢇ-ꢃ$ꢋꢆ%$ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢄ!ꢁ  
ꢎꢃꢉꢌꢆꢉꢋꢃꢍ ꢉꢋꢅꢆꢊꢆꢒꢘ ꢂꢌꢈ-ꢃꢅꢒ *ꢏꢕꢞꢏꢛꢀ)  
DS21663D-page 16  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
APPENDIX A: REVISION HISTORY  
Revision D (September 2009)  
The following is the list of modifications:  
1. Added the 2.6V, and 5.0V option in Table 6-1 in  
Section 6.0 “Packaging Information”.  
2. Updated the package outline drawing.  
3. Added 2.6V option to Product Identification  
System section.  
Revision C (May 2006)  
The following is the list of modifications:  
1. Added overtemperature to bullet for overcurrent  
protection in Features and General Description  
verbiage.  
2. Added “Thermal Shutdown Die Temperature” to  
the Electrical Specifications table. Changed  
condition for “Minimum VIN Operating Voltage”.  
3. Added Temperature Characteristics Table.  
4. Added Section 5.1 “Thermal Shutdown”.  
5. Updated the package outline drawing.  
Revision B (May 2002)  
• Data Sheet converted to Microchip standards.  
Revision A (May 2001)  
• Original Release of this Document under Telcom.  
© 2009 Microchip Technology Inc.  
DS21663D-page 13  
TC2054/2055/2186  
NOTES:  
DS21663D-page 14  
© 2009 Microchip Technology Inc.  
TC2054/2055/2186  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-XX  
X
XXXX  
a)  
b)  
c)  
TC2054-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Output  
Voltage  
Temperature  
Range  
Package  
Tape and Reel.  
TC2054-2.85VCTTR:5LD SOT-23-A, 2.85V,  
Tape and Reel.  
TC2054-3.3VCTTR: 5LD SOT-23-A, 3.3V,  
Tape and Reel.  
Device:  
TC2054: 50 mA LDO with Shutdown and ERROR Output  
TC2055: 100 mA LDO with Shutdown and ERROR Output  
TC2186: 150 mA LDO with Shutdown and ERROR Output  
a)  
b)  
c)  
TC2055-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Tape and Reel.  
Output Voltage:  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
=
=
=
=
=
=
=
=
=
1.8V  
2.5V  
2.6V  
2.7V  
2.8V  
2.85V  
3.0V  
3.3V  
5.0V  
TC2055-2.85VCTTR:5LD SOT-23-A, 2.85V,  
Tape and Reel.  
TC2055-3.0VCTTR: 5LD SOT-23-A, 3.0V,  
Tape and Reel.  
a)  
b)  
TC2186-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Tape and Reel.  
TC2186-2.8VCTTR: 5LD SOT-23-A, 2.8V,  
Tape and Reel.  
Temperature Range:  
Package:  
V
=
-40°C to +125°C  
CTTR  
=
Plastic Small Outline Transistor (SOT-23),  
5-lead, Tape and Reel  
© 2009 Microchip Technology Inc.  
DS21663D-page 15  
TC2054/2055/2186  
NOTES:  
DS21663D-page 16  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS21663D-page 17  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS21663D-page 18  
© 2009 Microchip Technology Inc.  

相关型号:

TC2054-3.3VCT

3.3 V FIXED POSITIVE LDO REGULATOR, 0.07 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2054-3.3VCTRT

暂无描述
MICROCHIP

TC2054-3.3VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2054-5.0VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2054_06

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2054_09

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2055

50mA, 100mA, and 150mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2055-1.8VCTRT

1.8 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2055-1.8VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2055-1.8VCTTR713

IC,VOLT REGULATOR,FIXED,+1.8V,CMOS,TSOP,5PIN,PLASTIC
MICROCHIP

TC2055-2.5VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2055-2.5VCTTR713

IC,VOLT REGULATOR,FIXED,+2.5V,CMOS,TSOP,5PIN,PLASTIC
MICROCHIP