TC2055-2.85VCTTR713 [MICROCHIP]

IC,VOLT REGULATOR,FIXED,+2.85V,CMOS,TSOP,5PIN,PLASTIC;
TC2055-2.85VCTTR713
型号: TC2055-2.85VCTTR713
厂家: MICROCHIP    MICROCHIP
描述:

IC,VOLT REGULATOR,FIXED,+2.85V,CMOS,TSOP,5PIN,PLASTIC

光电二极管
文件: 总18页 (文件大小:929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC2054/2055/2186  
50 mA, 100 mA, and 150 mA CMOS LDOs  
with Shutdown and Error Output  
Features  
General Description  
• Low Supply Current (55 µA Typ.) for Longer Bat-  
tery Life  
The TC2054, TC2055 and TC2186 are high accuracy  
(typically ±0.4%) CMOS upgrades for older (bipolar)  
low dropout regulators. Designed specifically for bat-  
tery-operated systems, the devices’ total supply current  
is typically 55 µA at full load (20 to 60 times lower than  
in bipolar regulators).  
• Low Dropout Voltage: 140 mV (Typ.) @ 150 mA  
• High Output Voltage Accuracy: ±0.4% (Typ)  
• Standard or Custom Output Voltages  
• Power-Saving Shutdown Mode  
The devices’ key features include low noise operation,  
low dropout voltage – typically 45 mV (TC2054); 90 mV  
(TC2055); and 140 mV (TC2186) at full load - and fast  
response to step changes in load. An error output  
(ERROR) is asserted when the devices are out-of-reg-  
ulation (due to a low input voltage or excessive output  
current). Supply current is reduced to 0.5 µA (max) and  
both VOUT and ERROR are disabled when the shut-  
down input is low. The devices also incorporate over-  
current and overtemperature protection.  
• ERROR Output Can Be Used as a Low Battery  
Detector or Processor Reset Generator  
• Fast Shutdown Reponse Time: 60 μsec (Typ)  
• Overcurrent and Overtemperature Protection  
• Space-Saving 5-Pin SOT-23A Package  
• Pin Compatible Upgrades for Bipolar Regulators  
• Standard Output Voltage Options:  
- 1.8V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 3.0V,  
3.3V, 5.0V  
The TC2054, TC2055 and TC2186 are stable with a  
low esr ceramic output capacitor of 1 µF and have a  
maximum output current of 50 mA, 100 mA and  
150 mA, respectively. This LDO Family also features a  
fast response time (60 µs typically) when released from  
shutdown.  
Applications  
• Battery Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
Package Type  
• Cellular / GSMS / PHS Phones  
• Pagers  
VOUT  
ERROR  
4
5
Typical Application  
TC2054  
TC2055  
TC2186  
1
5
V
V
V
V
IN  
OUT  
OUT  
IN  
1 µF  
1 µF  
2
3
1
5-Pin SOT-23A  
VIN  
Top View  
GND SHDN  
2
GND  
TC2054  
TC2055  
TC2186  
1M  
3
4
SHDN  
ERROR  
ERROR  
Shutdown Control  
(from Power Control Logic)  
© 2006 Microchip Technology Inc.  
DS21663C-page 1  
TC2054/2055/2186  
Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods my  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage .........................................................6.5V  
Output Voltage................................(-0.3) to (VIN + 0.3)  
Operating Temperature .................. -40°C < TJ< 125°C  
Storage Temperature..........................-65°C to +150°C  
Maximum Voltage on Any Pin ........VIN +0.3V to -0.3V  
ELECTRICAL SPECIFICATIONS  
Electrical Specifications: Unless otherwise noted, VIN = VR + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.  
Parameter  
Sym  
Min  
2.7  
Typ  
Max  
6.0  
Units  
Conditions  
Input Operating Voltage  
Maximum Output Current  
VIN  
V
Note 1  
IOUT  
50  
100  
150  
mA  
TC2054  
TC2055  
TC2186  
MAX  
Output Voltage  
VOUT  
VR - 2.0% VR ± 0.4% VR + 2.0%  
V
Note 2  
VOUT Temperature  
Coefficient  
TCVOUT  
20  
40  
ppm/°C Note 3  
Line Regulation  
ΔVOUT  
ΔVIN  
/
/
0.05  
0.5  
%
%
(VR + 1V) < VIN < 6V  
Load Regulation  
ΔVOUT  
VOUT  
-1.5  
-2.5  
0.5  
0.5  
0.5  
0.5  
TC2054;TC2055IL = 0.1 mA to IOUT  
MAX  
MAX  
TC2186  
IL = 0.1 mA to IOUT  
Note 4  
Dropout Voltage, Note 5  
VIN – VOUT  
2
45  
90  
140  
70  
140  
210  
mV  
IL = 100 µA  
IL = 50 mA  
TC2015; TC2185 IL = 100 mA  
TC2185  
IL = 150 mA  
Note 5  
Supply Current  
IIN  
55  
0.05  
50  
80  
0.5  
µA  
µA  
dB  
SHDN = VIH, IL=0  
SHDN = 0V  
Shutdown Supply Current  
IINSD  
PSRR  
Power Supply Rejection  
Ratio  
FRE 100 kHz  
Output Short Circuit Current  
Thermal Regulation  
IOUT  
160  
300  
0.04  
160  
mA  
VOUT = 0V  
SC  
ΔVOUT/ΔPD  
V/W Note 6  
Thermal Shutdown Die  
Temperature  
TSD  
°C  
Note 1: The minimum VIN has to meet two conditions: VIN = 2.7V and VIN = VR + VDROPOUT  
2: R is the regulator output voltage setting. For example: VR = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
3: TCVOUT  
.
V
=
6
(V  
V  
) × 10  
OUTMAX  
OUTMIN  
× ΔT  
-----------------------------------------------------------------------------------------  
V
OUT  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 1.0mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value  
at a 1V differential.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to IMAX at VIN = 6V for T = 10 ms.  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
perature and the thermal resistance from junction-to-air (i.e. TA, TJ, θJA).  
8: Hysteresis voltage is referenced by VR.  
9: Time required for VOUT to reach 95% of VR (output voltage setting), after VSHDN is switched from 0 to VIN  
.
DS21663C-page 2  
© 2006 Microchip Technology Inc.  
TC2054/2055/2186  
ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = VR + 1V, IL = 100 µA, CL = 3.3 µF, SHDN > VIH, TA = +25°C.  
BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.  
Parameter  
Output Noise  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
eN  
600  
nV /  
Hz  
IL = IOUTMAX, F = 10 kHz  
Response Time  
tR  
60  
µs  
VIN = 4V  
(from Shutdown Mode)  
CIN = 1 µF, COUT = 10 µF  
IL = 0.1 mA, Note 9  
SHDN Input  
SHDN Input High Threshold VIH  
SHDN Input Low Threshold VIL  
ERROR OUTPUT  
60  
%VIN VIN = 2.5V to 6.0V  
%VIN VIN = 2.5V to 6.0V  
15  
Minimum VIN Operating  
Voltage  
VINMIN  
1.0  
V
IOL = 0.1 mA  
Output Logic Low Voltage  
VOL  
400  
mV  
1 mA Flows to ERROR,  
IOL = 1 mA, VIN = 2V  
ERROR Threshold Voltage VTH  
ERROR Positive Hysteresis VHYS  
0.95 x VR  
V
mV  
ms  
Ω
See Figure 4-2  
50  
2
Note 8  
VOUT to ERROR Delay  
tDELAY  
VOUT from VR = 3V to 2.8V  
VDD = 2.5V, VOUT = 2.5V  
Resistance from ERROR to RERROR  
GND  
126  
Note 1: The minimum VIN has to meet two conditions: VIN = 2.7V and VIN = VR + VDROPOUT  
2: R is the regulator output voltage setting. For example: VR = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
3: TCVOUT  
.
V
=
6
(V  
V  
) × 10  
OUTMAX  
OUTMIN  
× ΔT  
-----------------------------------------------------------------------------------------  
V
OUT  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 1.0mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value  
at a 1V differential.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to IMAX at VIN = 6V for T = 10 ms.  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
perature and the thermal resistance from junction-to-air (i.e. TA, TJ, θJA).  
8: Hysteresis voltage is referenced by VR.  
9: Time required for VOUT to reach 95% of VR (output voltage setting), after VSHDN is switched from 0 to VIN  
.
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, VDD = +2.7V to +6.0V and VSS = GND.  
Parameters  
Temperature Ranges:  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances:  
Thermal Resistance, 5L-SOT-23  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
255  
°C/W  
© 2006 Microchip Technology Inc.  
DS21663C-page 3  
TC2054/2055/2186  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
0
-20  
0
-20  
VINDC = 4V  
VINAC = 100mVp-p  
VOUTDC = 3V  
IOUT = 100µA  
COUT = 1 µF Ceramic  
VINDC = 4V  
VINAC = 100 mVp-p  
VOUTDC = 3V  
-40  
-40  
-60  
-60  
-80  
-80  
IOUT = 150 mA  
COUT = 10 µF Ceramic  
-100  
-100  
10  
100  
1000  
10k  
100k 1M  
10  
100  
1000  
10k  
100k 1M  
f (Hz)  
f (Hz)  
FIGURE 2-1:  
Power Supply Rejection  
FIGURE 2-4:  
Power Supply Rejection  
Ratio.  
Ratio.  
0
0
VINDC = 4V  
VINDC = 4V  
VINAC = 100 mVp-p  
VOUTDC = 3V  
VINAC = 100 mVp-p  
VOUTDC = 3V  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
IOUT = 150 mA  
IOUT = 150 mA  
COUT = 10 µF Tantalum  
COUT = 1 µF Ceramic  
-100  
-100  
10  
100  
1000  
10k  
100k 1M  
10  
100
1000  
10k
100k  
1M  
f (Hz)  
f (Hz)  
FIGURE 2-2:  
Power Supply Rejection  
FIGURE 2-5:  
Power Supply Rejection  
Ratio.  
Ratio.  
0.160  
10  
1
VOUT = 1.8V  
0.140  
0.120  
0.100  
T = 25°C  
COUT = 1µF  
T = 130°C  
T = -45°C  
0.1  
0.01  
0.080  
0.060  
0.040  
0.020  
0.001  
0.01  
0.000  
0
0.1  
1
10  
100  
1000  
100  
150  
50  
ILOAD (mA)  
Frequency (kHz)  
FIGURE 2-3:  
Output Noise vs. Frequency.  
FIGURE 2-6:  
Dropout Voltage vs. I  
.
LOAD  
DS21663C-page 4  
© 2006 Microchip Technology Inc.  
TC2054/2055/2186  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
65.00  
1.9  
1.88  
1.86  
1.84  
VOUT = 1.8V  
63.00  
61.00  
1.82  
1.8  
VIN = 2.8V  
59.00  
57.00  
VIN = 2.8V  
1.78  
1.76  
1.74  
55.00  
53.00  
1.72  
1.7  
0
15  
30  
45  
60  
75  
ILOAD (mA)  
90  
105  
120  
135  
150  
-45  
5
55  
105  
155  
Temperature (°C)  
FIGURE 2-7:  
I
vs. Temperature.  
FIGURE 2-10:  
Output Voltage vs. Output  
DD  
Current.  
2.9  
2.9  
V
OUT = 2.8V  
VOUT = 2.8V  
IOUT = 0.1mA  
I
OUT = 0.1mA  
2.85  
2.8  
V
IN = 6.5V  
2.85  
Temp = +130˚C  
2.8  
2.75  
2.7  
V
IN = 6.0V  
V
IN = 3.8V  
2.75  
2.7  
Temp = +25˚C  
Temp = -45˚C  
2.65  
2.6  
2.65  
2.6  
2.55  
2.5  
2.55  
2.5  
-50 -35 -20 -5  
10  
25  
40 55  
70  
85 100 115 130 145  
3.5  
4
4.5  
5
5.5  
6
6.5  
7
VIN (V)  
Temperature (˚C)  
FIGURE 2-8:  
Output Voltage vs.  
FIGURE 2-11:  
Output Voltage vs. Supply  
Temperature.  
Voltage.  
1.9  
1.9  
VOUT = 1.8V  
V
OUT = 1.8V  
IOUT = 0.1mA  
1.88  
1.86  
1.88  
1.86  
1.84  
I
OUT = 0.1mA  
1.84  
1.82  
1.8  
VIN = 6.0V  
VIN = 6.5V  
Temp = +130˚C  
Temp = +25˚C  
1.82  
1.8  
1.78  
Temp = -45˚C  
1.78  
VIN = 2.8V  
1.76  
1.74  
1.76  
1.74  
1.72  
1.72  
1.7  
1.7  
-50 -35 -20  
-5  
10  
25 40  
55 70  
85 100 115 130 145  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
6.2  
6.7  
VIN (V)  
Temperature (˚C)  
FIGURE 2-9:  
Output Voltage vs.  
FIGURE 2-12:  
Dropout Voltage vs. Supply  
Temperature.  
Voltage.  
© 2006 Microchip Technology Inc.  
DS21663C-page 5  
TC2054/2055/2186  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
V
V
= 3.8V  
IN  
V
V
= 3.0V  
IN  
= 2.8V  
OUT  
= 2.8V  
OUT  
C
= 1 µF Ceramic  
= 1 µF Ceramic  
IN  
C
= 1µF Ceramic  
IN  
C
OUT  
C
= 10µF Ceramic  
OUT  
Frequency = 1 KHz  
Frequency = 10KHz  
V
100mV/DIV  
OUT  
100mV / DIV  
V
OUT  
Load Current  
Load Current  
150mA  
Load  
100µA  
150mA  
Load  
100µA  
FIGURE 2-13:  
Load Transient Response.  
FIGURE 2-16:  
Load Transient Response.  
Load Transient Response in Dropout Mode  
V
V
C
C
I
= 4.0V  
IN  
= 3.0V  
= 10μF  
= 0.01μF  
= 100µA  
OUT  
OUT  
BYP  
VOUT  
OUT  
100mV/DIV  
V
SHDN  
150mA  
VIN = 3.105V  
VOUT = 3.006V  
CIN = 1µF Ceramic  
COUT = 1µF Ceramic  
RLOAD = 20Ω  
100µA  
V
OUT  
FIGURE 2-14:  
Dropout Mode.  
Load Transient Response in  
FIGURE 2-17:  
Shutdown Delay.  
V
= 2.8V  
OUT  
C
C
I
= 1μF Ceramic  
= 470pF  
OUT  
V
SHDN  
BYP  
= 100μA  
OUT  
50mV / DIV  
V
OUT  
Input Voltage  
2V / DIV  
V
OUT  
6V  
4V  
V
V
= 4.0V  
IN  
= 3.0V  
OUT  
C
= 10μF  
OUT  
C
= 0.01μF  
= 100µA  
BYP  
OUT  
I
FIGURE 2-18:  
Shutdown Wake-up Time.  
FIGURE 2-15:  
Line Transient Response.  
DS21663C-page 6  
© 2006 Microchip Technology Inc.  
TC2054/2055/2186  
Note: Unless otherwise indicated, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
RPULLUP = 100kΩ  
IOUT = 0.3mA  
VIN  
1V/Div  
1V/Div  
3.42V  
3.0V  
2.8V  
2.8V  
VOUT  
2V/Div  
VERROR  
0V  
FIGURE 2-19:  
V
to ERROR Delay.  
OUT  
© 2006 Microchip Technology Inc.  
DS21663C-page 7  
TC2054/2055/2186  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin Number  
PIN FUNCTION TABLE  
Symbol  
Description  
1
2
3
VIN  
Unregulated supply input.  
Ground terminal.  
GND  
SHDN  
Shutdown control input. The regulator is fully enabled when a logic high is applied  
to this input. The regulator enters shutdown when a logic low is applied to this  
input. During shutdown, output voltage falls to zero, ERROR is open circuited  
and supply current is reduced to 0.5µA (max).  
4
5
ERROR  
VOUT  
Out-of-Regulation Flag. (Open-drain output). This output goes low when VOUT is  
out-of-tolerance by approximately -5%.  
Regulated voltage output.  
3.1  
Unregulated Supply Input (VIN)  
3.4  
Out-of-Regulation Flag (ERROR)  
Connect the unregulated input supply to the VIN pin. If  
there is a large distance between the input supply and  
the LDO regulator, some input capacitance is  
necessary for proper operation. A 1 µF capacitor,  
connected from VIN to ground, is recommended for  
most applications.  
The open-drain ERROR flag provides indication that  
the regulator output voltage is not in regulation. The  
ERROR pin will be low when the output is typically  
below 5% of its specified value.  
3.5  
Regulated Voltage Output (VOUT)  
Connect the output load to VOUT of the LDO. Also  
connect one side of the LDO output decoupling  
capacitor as close as possible to the VOUT pin.  
3.2  
Ground Terminal (GND)  
Connect the unregulated input supply ground return to  
GND. Also connect one side of the 1 µF typical input  
decoupling capacitor close to this pin and one side of  
the output capacitor COUT to this pin.  
3.3  
Shutdown Control Input (SHDN)  
The regulator is fully enabled when a logic-high is  
applied to SHDN. The regulator enters shutdown when  
a logic-low is applied to this input. During shutdown, the  
output voltage falls to zero and the supply current is  
reduced to 0.5 µA (max).  
DS21663C-page 8  
© 2006 Microchip Technology Inc.  
TC2054/2055/2186  
4.0  
DETAILED DESCRIPTION  
V
OUT  
The TC2054, TC2055 and TC2186 are precision fixed  
output voltage regulators. (If an adjustable version is  
desired, refer to the TC1070/TC1071/TC1187 data  
sheet (DS21353). Unlike bipolar regulators, the  
TC2054, TC2055 and TC2186 supply current does not  
increase with load current. In addition, VOUT remains  
stable and within regulation over the entire 0 mA to  
maximum output current operating load range.  
HYSTERESIS (V  
)
HYS  
V
TH  
ERROR  
V
IH  
V
OL  
Figure 4-1 shows a typical application circuit. The  
regulator is enabled any time the shutdown input  
(SHDN) is at or above VIH, and shutdown (disabled)  
when SHDN is at or below VIL. SHDN may be con-  
trolled by a CMOS logic gate, or I/O port of a microcon-  
troller. If the SHDN input is not required, it should be  
connected directly to the input supply. While in shut-  
down, supply current decreases to 0.05 µA (typical),  
VOUT falls to zero volts, and ERROR is open-circuited.  
FIGURE 4-2:  
Error Output Operation.  
4.2  
Output Capacitor  
A 1 µF (min) capacitor from VOUT to ground is required.  
The output capacitor should have an effective series  
resistance of 0.01Ω. to 5Ω for VOUT = 2.5V, and 0.05Ω.  
to 5Ω for VOUT < 2.5V. Ceramic, tantalum and  
aluminum electrolytic capacitors can be used. (Since  
many aluminum electrolytic capacitors freeze at  
V
approximately  
-30°C,  
solid  
tantalums  
are  
V
V
OUT  
IN  
OUT  
1 µF  
recommended for applications operating below -25°C).  
When operating from sources other than batteries,  
supply-noise rejection and transient response can be  
improved by increasing the value of the input and  
output capacitors and employing passive filtering  
techniques.  
1 µF  
C
1
TC2054  
TC2055  
TC2186  
BATTERY  
GND  
V+  
SHDN  
ERROR  
R
1
Shutdown Control  
(to CMOS Logic or Tie  
to V if unused)  
IN  
1MΩ  
C2 Required Only  
if ERROR is used as a  
Processor RESET Signal  
(See Text)  
BATTLOW  
or RESET  
4.3  
Input Capacitor  
0.2 µF  
A 1 µF capacitor should be connected from VIN to GND  
if there is more than 10 inches of wire between the  
regulator and this AC filter capacitor, or if a battery is  
used as the power source. Aluminum electrolytic or  
tantalum capacitors can be used (since many  
aluminum electrolytic capacitors freeze at approxi-  
mately -30°C, solid tantalum are recommended for  
applications operating below -25°C). When operating  
from sources other than batteries, supply-noise  
rejection and transient response can be improved by  
increasing the value of the input and output capacitors  
and employing passive filtering techniques.  
C
2
FIGURE 4-1:  
Typical Application Circuit.  
4.1  
ERROR Open-Drain Output  
ERROR is driven low whenever VOUT falls out of  
regulation by more than -5% (typical). This condition  
may be caused by low input voltage, output current  
limiting or thermal limiting. The ERROR threshold is 5%  
below rated VOUT regardless of the programmed out-  
put voltage value (e.g. ERROR = VOL at 4.75V (typ.) for  
a 5.0V regulator and 2.85V (typ.) for a 3.0V regulator).  
ERROR output operation is shown in Figure 4-2.  
Note that ERROR is active when VOUT falls to VTH, and  
inactive when VOUT rises above VTH by VHYS  
.
As shown in Figure 4-1, ERROR can be used as a  
battery low flag or as a processor RESET signal (with  
the addition of timing capacitor C2). R1 x C2 should be  
chosen to maintain ERROR below VIH of the processor  
RESET input for at least 200 ms to allow time for the  
system to stabilize. Pull-up resistor R1 can be tied to  
VOUT, VIN or any other voltage less than (VIN + 0.3V).  
The ERROR pin sink current is self-limiting to  
approximately 18 mA.  
© 2006 Microchip Technology Inc.  
DS21663C-page 9  
TC2054/2055/2186  
Equation 5-1 can be used in conjunction with  
Equation 5-2 to ensure regulator thermal operation is  
within limits. For example:  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Thermal Shutdown  
Integrated thermal protection circuitry shuts the regula-  
tor off when the die temperature exceeds approxi-  
mately 160°C. The regulator remains off until the die  
temperature cools to approximatley 150°C.  
Given:  
VINMAX  
= 3.0V +10%  
VOUTMIN = 2.7V – 2.5%  
ILOADMAX = 40 mA  
5.2  
Power Dissipation  
TAMAX  
= +55°C  
The amount of power the regulator dissipates is  
primarily a function of input and output voltage, and  
output current.  
Find:  
1. Actual power dissipation  
Equation 5-1 is used to calculate worst case power  
dissipation:  
2. Maximum allowable dissipation  
Actual power dissipation:  
EQUATION 5-1:  
P
≈ (VINMAX VOUTMIN)ILOADMAX  
PD = (VINMAX VOUTMIN)ILOADMAX  
D
= [(3.0 × 1.1) (2.7 × 0.975)]40 × 103  
= 26.7mW  
Where:  
PD  
= Worst-case actual power dissipation  
= Maximum voltage on VIN  
VINMAX  
Maximum allowable power dissipation:  
VOUTMIN = Minimum regulator output voltage  
ILOADMAX = Maximum output (load) current  
TJMAX TAMAX  
PDMAX = --------------------------------------  
θJA  
125 55  
220  
The  
(Equation 5-2) is a function of the maximum ambient  
temperature (TA  
maximum  
allowable  
power  
dissipation  
= --------------------  
MAX), the maximum allowable die  
= 318mW  
temperature (125 °C) and the thermal resistance from  
junction-to-air (θJA). The 5-Pin SOT-23A package has  
a θJA of approximately 220°C/Watt when mounted on a  
typical two layer FR4 dielectric copper clad PC board.  
In this example, the TC2054 dissipates a maximum of  
only 26.7 mW; far below the allowable limit of 318 mW.  
In a similar manner, Equation 5-1 and Equation 5-2 can  
be used to calculate maximum current and/or input  
voltage limits.  
EQUATION 5-2:  
TJMAX TAMAX  
PDMAX = --------------------------------------  
θJA  
5.3  
Layout Considerations  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads, and wide power  
supply bus lines combine to lower θJA and, therefore,  
increase the maximum allowable power dissipation  
limit.  
Where all terms are previously defined.  
DS21663C-page 10  
© 2006 Microchip Technology Inc.  
TC2054/2055/2186  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
TABLE 6-1:  
PART NUMBER CODE AND  
TEMPERATURE RANGE  
(V)  
TC2054  
TC2055  
TC2186  
1.8  
2.5  
2.7  
2.8  
2.85  
3.0  
5.0  
SA  
SB  
SC  
SD  
SE  
SF  
SJ  
TA  
TB  
TC  
TD  
TE  
TF  
TG  
VA  
VB  
VC  
VD  
VE  
VF  
VG  
cdef  
c&d represents part number code + temperature  
range and voltage  
e
f
represents year and 2-month period code  
represents lot ID number  
6.2  
Taping Information  
Component Taping Orientation for 5-Pin SOT-23A (EIAJ SC-74A) Devices  
User Direction of Feed  
Device  
Marking  
W
PIN 1  
P
Standard Reel Component Orientation  
for 713 Suffix Device  
(Mark Right Side Up)  
Carrier Tape, Number of Components Per Reel and Reel Size:  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
5-Pin SOT-23A  
8 mm  
4 mm  
3000  
7 in.  
© 2006 Microchip Technology Inc.  
DS21663C-page 11  
TC2054/2055/2186  
5-Lead Plastic Small Outline Transistor (CT) (SOT-23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
L
A1  
β
Units  
INCHES  
NOM  
*
MILLIMETERS  
NOM  
5
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
.038  
0.95  
p1  
A
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
.035  
.057  
0.90  
1.18  
1.45  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.10  
0.08  
Overall Width  
2.80  
Molded Package Width  
Overall Length  
E1  
D
1.63  
2.95  
Foot Length  
L
f
0.45  
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
0
5
5
10  
10  
10  
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
DS21663C-page 12  
© 2006 Microchip Technology Inc.  
TC2054/2055/2186  
APPENDIX A: REVISION HISTORY  
Revision C (May 2006)  
• Page 1: Added overtemperature to bullet for over-  
current protection in features and general descrip-  
tion verbiage.  
• Page 3: Added “Thermal Shutdown Die Tempera-  
ture” to electrical characteristics table. Changed  
codition for “Minimum VIN Operating Voltage”  
• Page 3: Added Thermal Characteristics Table.  
• Page 5: Added new section 5.1 and new ver-  
biage.  
• Page 13: Updated package outline drawing.  
Revision B (May 2002)  
• Data Sheet converted to Microchip standards.  
Revision A (May 2001)  
• Original Release of this Document under Telcom.  
© 2006 Microchip Technology Inc.  
DS21663C-page 13  
TC2054/2055/2186  
NOTES:  
DS21663C-page 14  
© 2006 Microchip Technology Inc.  
TC2054/2055/2186  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-XX  
X
XXXX  
a)  
b)  
c)  
TC2054-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Output  
Voltage  
Temperature  
Range  
Package  
Tape and Reel.  
TC2054-2.85VCTTR:5LD SOT-23-A, 2.85V,  
Tape and Reel.  
TC2054-3.3VCTTR: 5LD SOT-23-A, 3.3V,  
Tape and Reel.  
Device:  
TC2054: 50 mA LDO with Shutdown and ERROR Output  
TC2055: 100 mA LDO with Shutdown and ERROR Output  
TC2186: 150 mA LDO with Shutdown and ERROR Output  
a)  
b)  
c)  
TC2055-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Tape and Reel.  
Output Voltage:  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
=
=
=
=
=
=
=
1.8V  
2.5V  
2.7V  
2.8V  
2.85V  
3.0V  
3.3V  
TC2055-2.85VCTTR:5LD SOT-23-A, 2.85V,  
Tape and Reel.  
TC2055-3.0VCTTR: 5LD SOT-23-A, 3.0V,  
Tape and Reel.  
a)  
b)  
TC2186-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Tape and Reel.  
Temperature Range:  
Package:  
V
=
-40°C to +125°C  
TC2186-2.8VCTTR: 5LD SOT-23-A, 2.8V,  
Tape and Reel.  
CTTR  
=
Plastic Small Outline Transistor (SOT-23),  
5-lead, Tape and Reel  
© 2006 Microchip Technology Inc.  
DS21663C-page 15  
TC2054/2055/2186  
NOTES:  
DS21663C-page 16  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi,  
MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21663C-page 17  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenzhen  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/16/06  
DS21663C-page 18  
© 2006 Microchip Technology Inc.  

相关型号:

TC2055-2.8VCT

2.8 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2055-2.8VCTRT

2.8 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2055-2.8VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2055-2.8VCTTR713

IC,VOLT REGULATOR,FIXED,+2.8V,CMOS,TSOP,5PIN,PLASTIC
MICROCHIP

TC2055-3.0VCTRT

3 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2055-3.0VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2055-3.0VCTTR713

IC,VOLT REGULATOR,FIXED,+3V,CMOS,TSOP,5PIN,PLASTIC
MICROCHIP

TC2055-3.3VCT

3.3 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2055-3.3VCTRT

3.3 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2055-3.3VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2055-5.0VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2055-XXVCTTR

TC2055-XXVCTTR
MICROCHIP