TC2186-3.3VCTRT [MICROCHIP]

3.3 V FIXED POSITIVE LDO REGULATOR, 0.21 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN;
TC2186-3.3VCTRT
型号: TC2186-3.3VCTRT
厂家: MICROCHIP    MICROCHIP
描述:

3.3 V FIXED POSITIVE LDO REGULATOR, 0.21 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN

光电二极管
文件: 总16页 (文件大小:519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC2054/2055/2186  
50mA, 100mA, and 150mA CMOS LDOs  
with Shutdown and Error Output  
Features  
General Description  
• Very Low Supply Current (55µA Typ.) for Longer  
Battery Life  
The TC2054, TC2055 and TC2186 are high accuracy  
(typically ±0.4%) CMOS upgrades for older (bipolar)  
low dropout regulators. Designed specifically for bat-  
tery-operated systems, the devices’ total supply current  
is typically 55µA at full load (20 to 60 times lower than  
in bipolar regulators).  
• Very Low Dropout Voltage: 140mV (Typ.) @  
150mA  
• High Output Voltage Accuracy: ±0.4% (Typ)  
• Standard or Custom Output Voltages  
• Power-Saving Shutdown Mode  
The devices’ key features include ultra low noise oper-  
ation, very low dropout voltage - typically 45mV  
(TC2054); 90mV (TC2055); and 140mV (TC2186) at  
full load - and fast response to step changes in load. An  
error output (ERROR) is asserted when the devices are  
out-of-regulation (due to a low input voltage or exces-  
sive output current). Supply current is reduced to 0.5µA  
• ERROR Output Can Be Used as a Low Battery  
Detector or Processor Reset Generator  
• Fast Shutdown Reponse Time: 60µsec (Typ)  
• Over-Current Protection  
• Space-Saving 5-Pin SOT-23A Package  
• Pin Compatible Upgrades for Bipolar Regulators  
(max) and both V  
and ERROR are disabled when  
OUT  
the shutdown input is low. The devices also incorporate  
over-current protection.  
Applications  
The TC2054, TC2055 and TC2186 are stable with a  
low esr ceramic output capacitor of 1µF and have a  
maximum output current of 50mA, 100mA and 150mA,  
respectively. This LDO Family also features a fast  
response time (60µsec typically) when released from  
shutdown.  
• Battery Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
• Cellular / GSMS / PHS Phones  
• Pagers  
Typical Application  
Device Selection Table  
1
5
V
V
V
V
OUT  
IN  
IN  
OUT  
Junction Temp.  
Part Number  
Package  
Range  
1µF  
1µF  
TC2054-xxVCT 5-Pin SOT-23A*  
TC2055-xxVCT 5-Pin SOT-23A*  
TC2186-xxVCT 5-Pin SOT-23A*  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
2
GND  
TC2054  
TC2055  
TC2186  
1M  
Note:  
*5-Pin SOT-23A is equivalent to EIAJ (SC-74A).  
3
4
SHDN  
ERROR  
ERROR  
Package Type  
Shutdown Control  
(from Power Control Logic)  
VOUT  
ERROR  
4
5
TC2054  
TC2055  
TC2186  
2
3
1
5-Pin SOT-23A*  
TOP VIEW  
VIN  
GND SHDN  
2002 Microchip Technology Inc.  
DS21663B-page 1  
TC2054/2055/2186  
*Stresses above those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the  
device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods my  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS*  
Input Voltage .........................................................6.5V  
Output Voltage................................(-0.3) to (V + 0.3)  
IN  
Operating Temperature .................. -40°C < T < 125°C  
J
Storage Temperature..........................-65°C to +150°C  
Maximum Voltage on Any Pin ........V +0.3V to -0.3V  
IN  
TC2054/2055/2186 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: VIN = VR + 1V, IL = 100µA, CL = 3.3µF, SHDN > VIH, TA = 25°C, unless otherwise noted. BOLDFACE  
type specifications apply for junction temperature of -40°C to +125°C.  
Symbol  
Parameter  
Min  
2.7  
Typ  
Max  
6.0  
Units  
Test Conditions  
V
Input Operating Voltage  
Maximum Output Current  
V
Note 1  
IN  
IOUT  
50  
100  
150  
mA  
TC2054  
TC2055  
TC2186  
MAX  
V
Output Voltage  
V
- 2.0%  
V
± 0.4%  
V + 2.0%  
R
V
Note 2  
OUT  
R
R
TCV  
V
Temperature  
OUT  
20  
ppm/°C Note 3  
OUT  
Coefficient  
40  
V  
V  
/
Line Regulation  
0.05  
0.5  
%
%
(V + 1V) < V < 6V  
OUT  
R
IN  
IN  
V  
/
Load Regulation  
-1.5  
-2.5  
0.5  
0.5  
0.5  
0.5  
TC2054;TC2055 I = 0.1mA to IOUT  
L
OUT  
MAX  
MAX  
V
V
TC2186  
I = 0.1mA to IOUT  
OUT  
L
Note 4  
– V  
Dropout Voltage, Note 5  
2
45  
90  
140  
70  
140  
210  
mV  
I
I
I
I
= 100µA  
= 50mA  
= 100mA  
= 150mA  
IN  
OUT  
L
L
L
L
TC2015; TC2185  
TC2185  
Note 5  
I
Supply Current  
55  
0.05  
50  
80  
0.5  
µA  
µA  
SHDN = V , I =0  
IN  
IH  
L
I
Shutdown Supply Current  
Power Supply Rejection Ratio  
Output Short Circuit Current  
Thermal Regulation  
SHDN = 0V  
F 120kHz  
RE  
INSD  
PSRR  
dB  
I
160  
300  
0.04  
600  
mA  
V/W  
V
OUT  
= 0V  
OUT  
SC  
V  
P  
Note 6  
= I  
OUT  
D
eN  
Output Noise  
nV /  
Hz  
I
, F = 10kHz  
L
OUT  
MAX  
t
Response Time  
60  
µsec  
V
= 4V  
R
IN  
(from Shutdown Mode)  
C
= 1µF, C  
= 10µF  
IN  
OUT  
I
= 0.1mA, Note 9  
L
Note 1: The minimum V has to meet two conditions: V = 2.7V and V = V + V .  
DROPOUT  
IN  
IN  
IN  
R
2:  
V is the regulator output voltage setting. For example: V = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
R
R
3: TCV  
=
6
OUT  
(V  
V  
) × 10  
OUTMAX  
OUTMIN  
× ∆T  
-----------------------------------------------------------------------------------------  
V
OUT  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a  
load range from 1.0mA to the maximum specified output current. Changes in output voltage due to heating effects are covered  
by the thermal regulation specification.  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V  
differential.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, exclud-  
ing load or line regulation effects. Specifications are for a current pulse equal to I  
at V = 6V for T = 10msec.  
MAX  
IN  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature  
and the thermal resistance from junction-to-air (i.e. T , T , θ ).  
A
J
JA  
8: Hysteresis voltage is referenced by V .  
R
9: Time required for V  
to reach 95% of V (output voltage setting), after V  
is switched from 0 to V .  
SHDN IN  
OUT  
R
DS21663B-page 2  
2002 Microchip Technology Inc.  
TC2054/2055/2186  
Electrical Characteristics: VIN = VR + 1V, IL = 100µA, CL = 3.3µF, SHDN > VIH, TA = 25°C, unless otherwise noted. BOLDFACE  
type specifications apply for junction temperature of -40°C to +125°C.  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Test Conditions  
SHDN Input  
V
V
SHDN Input High Threshold  
SHDN Input Low Threshold  
60  
%V  
%V  
V
V
= 2.5V to 6.0V  
IH  
IL  
IN  
IN  
IN  
IN  
15  
= 2.5V to 6.0V  
ERROR OUTPUT  
V
Minimum V Operating Volt-  
1.0  
V
V
2.7V  
OUT  
INMIN  
IN  
age  
V
V
V
Output Logic Low Voltage  
ERROR Threshold Voltage  
ERROR Positive Hysteresis  
0.95 x V  
50  
400  
mV  
1 mA Flows to ERROR  
See Figure 4-2  
Note 8  
OL  
V
TH  
R
mV  
msec  
HYS  
DELAY  
t
V
to ERROR Delay  
2
V
V
from V = 3V to 2.8V  
OUT R  
OUT  
R
Resistance from ERROR to  
GND  
126  
= 2.5V, V  
= 2.5V  
OUT  
ERROR  
DD  
Note 1: The minimum V has to meet two conditions: V = 2.7V and V = V + V .  
DROPOUT  
IN  
IN  
IN  
R
2:  
V is the regulator output voltage setting. For example: V = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
R
R
3: TCV  
=
6
OUT  
(V  
V  
) × 10  
OUTMAX  
OUTMIN  
× T  
-----------------------------------------------------------------------------------------  
V
OUT  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a  
load range from 1.0mA to the maximum specified output current. Changes in output voltage due to heating effects are covered  
by the thermal regulation specification.  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V  
differential.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, exclud-  
ing load or line regulation effects. Specifications are for a current pulse equal to I  
at V = 6V for T = 10msec.  
MAX  
IN  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature  
and the thermal resistance from junction-to-air (i.e. T , T , θ ).  
A
J
JA  
8: Hysteresis voltage is referenced by V .  
R
9: Time required for V  
to reach 95% of V (output voltage setting), after V  
is switched from 0 to V .  
SHDN IN  
OUT  
R
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
Pin Number  
PIN FUNCTION TABLE  
Symbol  
Description  
1
2
3
V
Unregulated supply input.  
Ground terminal.  
IN  
GND  
SHDN  
Shutdown control input. The regulator is fully enabled when a logic high is  
applied to this input. The regulator enters shutdown when a logic low is  
applied to this input. During shutdown, output voltage falls to zero, ERROR  
is open circuited and supply current is reduced to 0.5µA (max).  
4
5
ERROR  
Out-of-Regulation Flag. (Open drain output). This output goes low when  
V
is out-of-tolerance by approximately -5%.  
OUT  
V
Regulated voltage output.  
OUT  
2002 Microchip Technology Inc.  
DS21663B-page 3  
TC2054/2055/2186  
FIGURE 3-2: ERROR OUTPUT OPERATION  
3.0  
DETAILED DESCRIPTION  
VOUT  
The TC2054, TC2055 and TC2186 are precision fixed  
output voltage regulators. (If an adjustable version is  
desired, please see the TC1070, TC1071 or TC1187  
data sheets.) Unlike bipolar regulators, the TC2054,  
TC2055 and TC2186 supply current does not increase  
with load current. In addition, VOUT remains stable and  
within regulation over the entire 0mA to maximum out-  
put current operating load range.  
HYSTERESIS (VHYS  
)
VTH  
ERROR  
VIH  
VOL  
Figure 3-1 shows a typical application circuit. The reg-  
ulator is enabled any time the shutdown input (SHDN)  
3.2  
Output Capacitor  
is at or above V , and shutdown (disabled) when  
IH  
SHDN is at or below V . SHDN may be controlled by a  
IL  
A 1µF (min) capacitor from V  
to ground is required.  
The output capacitor should have an effective series  
OUT  
CMOS logic gate, or I/O port of a microcontroller. If the  
SHDN input is not required, it should be connected  
directly to the input supply. While in shutdown, supply  
resistance of 0.01. to 5for V = 2.5V, and 0.05.  
OUT  
to 5for V  
< 2.5V. A 1µF capacitor should be con-  
IN  
OUT  
current decreases to 0.05µA (typical), V  
zero volts, and ERROR is open-circuited.  
falls to  
OUT  
nected from V to GND if there is more than 10 inches  
of wire between the regulator and the AC filter capaci-  
tor, or if a battery is used as the power source. Ceramic,  
tantalum and aluminum electrolytic capacitors can be  
used. (Since many aluminum electrolytic capacitors  
freeze at approximately -30°C, solid tantalums are rec-  
ommended for applications operating below -25°C).  
When operating from sources other than batteries, sup-  
ply-noise rejection and transient response can be  
improved by increasing the value of the input and out-  
put capacitors and employing passive filtering tech-  
niques.  
FIGURE 3-1: TYPICAL APPLICATION CIRCUIT  
V
V
V
OUT  
OUT  
IN  
1µF  
1µF  
C1  
TC2054  
TC2055  
TC2186  
BATTERY  
GND  
+
V
SHDN  
ERROR  
R1  
1M  
Shutdown Control  
(to CMOS Logic or Tie  
C2 Required Only  
BATTLOW  
or RESET  
if ERROR is used as a  
Processor RESET Signal  
(See Text)  
to V if unused)  
IN  
0.2µF  
C2  
3.1  
ERROR Open Drain Output  
ERROR is driven low whenever V  
falls out of regu-  
OUT  
lation by more than -5% (typical). This condition may be  
caused by low input voltage, output current limiting or  
thermal limiting. The ERROR threshold is 5% below  
rated V  
regardless of the programmed output volt-  
OUT  
age value (e.g. ERROR = V at 4.75V (typ.) for a 5.0V  
OL  
regulator and 2.85V (typ.) for a 3.0V regulator).  
ERROR output operation is shown in Figure 4-2.  
Note that ERROR is active when V  
falls to V , and  
TH  
OUT  
inactive when V  
rises above V by V  
.
OUT  
TH  
HYS  
As shown in Figure 3-1, ERROR can be used as a bat-  
tery low flag or as a processor RESET signal (with the  
addition of timing capacitor C2). R1 x C2 should be  
chosen to maintain ERROR below V of the processor  
IH  
RESET input for at least 200msec to allow time for the  
system to stabilize. Pull-up resistor R1 can be tied to  
V
, V or any other voltage less than (V + 0.3V).  
OUT IN  
IN  
The ERROR pin sink current is self-limiting to approxi-  
mately 18mA.  
DS21663B-page 4  
2002 Microchip Technology Inc.  
TC2054/2055/2186  
Equation 4-1 can be used in conjunction with Equation  
4-2 to ensure regulator thermal operation is within lim-  
its. For example:  
4.0  
4.1  
THERMAL CONSIDERATIONS  
Power Dissipation  
The amount of power the regulator dissipates is prima-  
rily a function of input and output voltage, and output  
current.  
Given:  
V
V
= 3.0V ±5%  
= 2.7V – 2.5%  
= 40mA  
IN  
MAX  
OUT  
MIN  
The following equation is used to calculate worst case  
power dissipation:  
I
LOAD  
MAX  
T
= 55°C  
A
MAX  
EQUATION 4-1:  
Find 1. Actual power dissapation  
:
P
(V – V  
)I  
OUT LOAD  
MIN  
D
IN  
MAX  
2. Maximum allowable dissapation  
Where:  
P
V
V
=
=
=
=
Worst case actual power dissipation  
Maximum voltage on V  
D
Actual power dissipation:  
IN  
IN  
MAX  
Minimum regulator output voltage  
Maximum output (load) current  
OUT  
MIN  
P
(V  
– V  
)I  
OUT LOAD  
MAX  
MIN  
D
IN  
MAX  
I
LOAD  
–3  
MAX  
= [(3.0 x 1.05) – (2.7 x .975)]40 x 10  
= 20.7mW  
Maximum allowable power dissipation:  
The maximum allowable power dissipation (Equation  
4-2) is a function of the maximum ambient temperature  
(TJ  
TA  
)
MAX  
(T  
), the maximum allowable die temperature (125  
A
MAX  
MAX  
PD  
= -------------------------------------  
MAX  
°C) and the thermal resistance from junction-to-air  
θJA  
(θ ). The 5-Pin SOT-23A package has a θ of  
JA  
JA  
approximately 220°C/Watt when mounted on a typical  
two layer FR4 dielectric copper clad PC board.  
(125 55)  
--------------------------  
EQUATION 4-2:  
220  
TJ  
TA  
MAX  
= 318mW  
MAX  
PD  
= ----------------------------------  
MAX  
θJA  
In this example, the TC2054 dissipates a maximum of  
only 20.7mW; far below the allowable limit of 318mW.  
In a similar manner, Equation 4-1 and Equation 4-2 can  
be used to calculate maximum current and/or input  
voltage limits.  
Where all terms are previously defined  
4.2  
Layout Considerations  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads, and wide power  
supply bus lines combine to lower θ and, therefore,  
JA  
increase the maximum allowable power dissipation  
limit.  
2002 Microchip Technology Inc.  
DS21663B-page 5  
TC2054/2055/2186  
5.0  
TYPICAL CHARACTERISTICS  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
FIGURE 5-1: POWER SUPPLY REJECTION  
RATIO  
FIGURE 5-4: POWER SUPPLY REJECTION  
RATIO  
0
0
V
INDC = 4V  
I
OUT = 150mA  
V
INDC = 4V  
I
OUT = 100µA  
V
INAC = 100mVp-p  
OUTDC = 3V  
COUT = 10µF Ceramic  
V
INAC = 100mVp-p  
COUT = 1mF Ceramic  
V
V
OUTDC = 3V  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
f (Hz)  
f (Hz)  
FIGURE 5-5: POWER SUPPLY REJECTION  
FIGURE 5-2: POWER SUPPLY REJECTION  
RATIO  
RATIO  
0
0
V
INDC = 4V  
I
OUT = 150mA  
INDC = 4V  
I
OUT = 150mA  
V
INAC = 100mVp-p  
OUTDC = 3V  
COUT = 10µF Tantalum  
V
COUT = 1µF Ceramic  
V
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
f (Hz)  
f (Hz)  
FIGURE 5-6: DROPOUT VOLTAGE VS. I  
FIGURE 5-3: OUTPUT NOISE  
LOAD  
0.160  
10  
V
OUT = 1.8V  
0.140  
0.120  
0.100  
1
T = 25˚C  
T = 130˚C  
C
OUT = 1µF  
0.080  
0.060  
0.1  
0.01  
T = -45˚C  
0.040  
0.020  
0.000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
100  
150  
50  
0
Frequency (KHz)  
I
LOAD (mA)  
DS21663B-page 6  
2002 Microchip Technology Inc.  
TC2054/2055/2186  
TYPICAL CHARACTERISTICS (CONT)  
FIGURE 5-7:  
I
VS. TEMPERATURE  
FIGURE 5-10: OUTPUT VOLTAGE VS. OUTPUT  
CURRENT  
DD  
65.00  
1.9  
1.88  
1.86  
1.84  
V
OUT = 1.8V  
63.00  
61.00  
1.82  
59.00  
57.00  
V
IN = 2.8V  
VIN = 2.8V  
1.8  
1.78  
1.76  
1.74  
55.00  
53.00  
1.72  
1.7  
-45  
5
55  
105  
155  
0
15  
30  
45  
60  
75  
90  
105  
120  
135  
150  
Temp (˚C)  
I
LOAD (mA)  
FIGURE 5-8: OUTPUT VOLTAGE VS.  
TEMPERATURE  
FIGURE 5-11: OUTPUT VOLTAGE VS. SUPPLY  
VOLTAGE  
2.9  
V
OUT = 2.8V  
2.9  
I
OUT = 0.1mA  
V
OUT = 2.8V  
2.85  
2.8  
VIN = 6.5V  
I
OUT = 0.1mA  
2.85  
Temp = +130˚C  
2.8  
2.75  
2.7  
V
IN = 6.0V  
V
IN = 3.8V  
2.75  
2.7  
Temp = +25˚C  
Temp = -45˚C  
2.65  
2.6  
2.65  
2.6  
2.55  
2.5  
2.55  
2.5  
-50 -35 -20 -5  
10  
25  
40 55  
70  
85 100 115 130 145  
3.5  
4
4.5  
5
5.5  
6
6.5  
7
Temperature (˚C)  
VIN (V)  
FIGURE 5-9: OUTPUT VOLTAGE VS.  
TEMPERATURE  
FIGURE 5-12: OUTPUT VOLTAGE VS. SUPPLY  
VOLTAGE  
1.9  
V
OUT = 1.8V  
I
OUT = 0.1mA  
1.88  
1.86  
1.9  
V
OUT = 1.8V  
1.88  
1.86  
1.84  
I
OUT = 0.1mA  
1.84  
1.82  
1.8  
VIN = 6.0V  
VIN = 6.5V  
Temp = +130˚C  
1.82  
1.8  
1.78  
V
IN = 2.8V  
1.76  
1.74  
Temp = -45˚C  
1.78  
Temp = +25˚C  
1.76  
1.74  
1.72  
1.72  
1.7  
-50 -35 -20  
-5  
10  
25 40  
55 70  
85 100 115 130 145  
1.7  
Temperature (˚C)  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
6.2  
6.7  
VIN (V)  
2002 Microchip Technology Inc.  
DS21663B-page 7  
TC2054/2055/2186  
TYPICAL CHARACTERISTICS (CONT)  
FIGURE 5-13: LOAD TRANSIENT RESPONSE  
FIGURE 5-16: LOAD TRANSIENT RESPONSE  
V
V
= 3.0V  
V
V
= 3.8V  
IN  
IN  
= 2.8V  
= 2.8V  
OUT  
OUT  
C
= 1µF Ceramic  
C
= 1 µF Ceramic  
= 1 µF Ceramic  
IN  
IN  
C
= 10µF Ceramic  
C
OUT  
OUT  
Frequency = 1 KHz  
Frequency = 10KHz  
V
100mV/DIV  
100mV / DIV  
V
OUT  
OUT  
Load Current  
Load Current  
150mA  
Load  
100µA  
150mA  
Load  
100µA  
FIGURE 5-17: SHUTDOWN DELAY  
FIGURE 5-14: LOAD TRANSIENT RESPONSE IN  
DROPOUT MODE  
V
V
C
C
I
= 4.0V  
IN  
= 3.0V  
= 10µF  
= 0.01µF  
= 100µA  
Load Transient Response in Dropout Mode  
OUT  
OUT  
BYP  
OUT  
VOUT  
100mV/DIV  
V
SHDN  
150mA  
VIN = 3.105V  
VOUT = 3.006V  
CIN = 1µF Ceramic  
COUT = 1µF Ceramic  
V
OUT  
100µA  
RLOAD = 20  
FIGURE 5-18: SHUTDOWN WAKE-UP TIME  
FIGURE 5-15: LINE TRANSIENT RESPONSE  
V
SHDN  
V
= 2.8V  
OUT  
C
C
I
= 1µF Ceramic  
= 470pF  
OUT  
BYP  
= 100µA  
OUT  
50mV / DIV  
V
OUT  
V
OUT  
Input Voltage  
2V / DIV  
6V  
4V  
V
V
= 4.0V  
IN  
= 3.0V  
OUT  
C
= 10µF  
OUT  
C
= 0.01µF  
= 100µA  
BYP  
OUT  
I
DS21663B-page 8  
2002 Microchip Technology Inc.  
TC2054/2055/2186  
TYPICAL CHARACTERISTICS (CONT)  
FIGURE 5-19: V  
TO ERROR DELAY  
OUT  
R
PULLUP = 100k  
I
OUT = 0.3mA  
V
IN  
1V/Div  
1V/Div  
3.42V  
3.0V  
2.8V  
2.8V  
V
OUT  
2V/Div  
VERROR  
0V  
2002 Microchip Technology Inc.  
DS21663B-page 9  
TC2054/2055/2186  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Pin SOT-23A  
1 & 2 = part number code + temperature range and volt-  
age  
TC2054  
Code  
TC2055  
Code  
TC2186  
Code  
(V)  
1.8  
2.5  
2.7  
2.8  
2.85  
3.0  
3.3  
SA  
SB  
SC  
SD  
SE  
SF  
SG  
TA  
TB  
TC  
TD  
TE  
TF  
TG  
VA  
VB  
VC  
VD  
VE  
VF  
VG  
3 represents year and 2-month period code  
4 represents lot ID number  
6.2  
Taping Information  
Component Taping Orientation for 5-Pin SOT-23A (EIAJ SC-74A) Devices  
User Direction of Feed  
Device  
Marking  
W
PIN 1  
Standard Reel Component Orientation  
TR Suffix Device  
(Mark Right Side Up)  
P
Reverse Reel Component Orientation  
RT Suffix Device  
(Mark Upside Down)  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
5-Pin SOT-23A  
8 mm  
4 mm  
3000  
7 in  
DS21663B-page 10  
2002 Microchip Technology Inc.  
TC2054/2055/2186  
6.3  
Package Dimensions  
SOT-23A-5  
.075 (1.90)  
REF.  
.071 (1.80)  
.059 (1.50)  
.122 (3.10)  
.098 (2.50)  
.020 (0.50)  
.012 (0.30)  
PIN 1  
.037 (0.95)  
REF.  
.122 (3.10)  
.106 (2.70)  
.057 (1.45)  
.035 (0.90)  
.010 (0.25)  
.004 (0.09)  
10° MAX.  
.006 (0.15)  
.000 (0.00)  
.024 (0.60)  
.004 (0.10)  
Dimensions: inches (mm)  
2002 Microchip Technology Inc.  
DS21663B-page 11  
TC2054/2055/2186  
NOTES:  
DS21663B-page 12  
2002 Microchip Technology Inc.  
TC2054/2055/2186  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21663B-page 13  
TC2054/2055/2186  
NOTES:  
DS21663B-page 14  
2002 Microchip Technology Inc.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21347B - page 15  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Hong Kong  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
03/01/02  
DS21663B-page 16  
2002 Microchip Technology Inc.  

相关型号:

TC2186-3.3VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2186-3.3VCTTR713

IC,VOLT REGULATOR,FIXED,+3.3V,CMOS,TSOP,5PIN,PLASTIC
MICROCHIP

TC2186-5.0VCTTR

50 mA, 100 mA, and 150 mA CMOS LDOs with Shutdown and Error Output
MICROCHIP

TC2186-XXVCT

TC2186-XXVCT
MICROCHIP

TC2186-XXVCTTR

TC2186-XXVCTTR
MICROCHIP

TC22-1

Zener Diode
TAK_CHEONG

TC22-10C4RK

CAPACITOR, TANTALUM, SOLID, POLARIZED, 10 V, 22 uF, THROUGH HOLE MOUNT, RADIAL LEADED
VISHAY

TC22-1L.T26B

Zener Diode, 21.4V V(Z), 2.3%, 0.4W,
TAK_CHEONG

TC22-1L.TR

Zener Diode, 21.4V V(Z), 2.3%, 0.4W,
TAK_CHEONG

TC22-3C3AM

CAPACITOR, TANTALUM, SOLID, POLARIZED, 3 V, 22 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TC220-4C6AM

CAPACITOR, TANTALUM, SOLID, POLARIZED, 4 V, 220 uF, THROUGH HOLE MOUNT, AXIAL LEADED
VISHAY

TC2201

Plastic Packaged Low Noise PHEMT GaAs FETs
TRANSCOM