TC514CPJ

更新时间:2024-09-18 02:06:32
品牌:MICROCHIP
描述:Precision Analog Front Ends

TC514CPJ 概述

Precision Analog Front Ends 精密模拟前端 其他模拟IC

TC514CPJ 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Active零件包装代码:DIP
包装说明:DIP, DIP28,.3针数:28
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01Factory Lead Time:9 weeks
风险等级:1.4Is Samacsys:N
模拟集成电路 - 其他类型:ANALOG CIRCUITJESD-30 代码:R-PDIP-T28
JESD-609代码:e3长度:34.67 mm
功能数量:1端子数量:28
最高工作温度:70 °C最低工作温度:
封装主体材料:PLASTIC/EPOXY封装代码:DIP
封装等效代码:DIP28,.3封装形状:RECTANGULAR
封装形式:IN-LINE峰值回流温度(摄氏度):NOT APPLICABLE
电源:5 V认证状态:Not Qualified
座面最大高度:4.06 mm子类别:Other Analog ICs
最大供电电流 (Isup):3.5 mA最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):4.5 V标称供电电压 (Vsup):5 V
表面贴装:NO技术:CMOS
温度等级:COMMERCIAL端子面层:Matte Tin (Sn)
端子形式:THROUGH-HOLE端子节距:2.54 mm
端子位置:DUAL处于峰值回流温度下的最长时间:NOT APPLICABLE
宽度:7.62 mmBase Number Matches:1

TC514CPJ 数据手册

通过下载TC514CPJ数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
TC500/A/510/514  
Precision Analog Front Ends  
Features  
Package Types  
• Precision (up to 17-bits) A/D Converter "Front End"  
• 3-Pin Control Interface to Microprocessor  
16-Pin SOIC  
16 Pin-PDIP  
• Flexible: User Can Trade-off Conversion Speed  
for Resolution  
V
C
1
16  
15  
14  
13  
12  
11  
10  
9
DD  
INT  
V
2
3
4
5
6
7
8
DGND  
SS  
• Single Supply Operation (TC510/TC514)  
• 4 Input, Differential Analog MUX (TC514)  
• Automatic Input Voltage Polarity Detection  
• Low Power Dissipation:  
TC500/  
TC500A  
COE  
C
CMPTR OUT  
AZ  
BUF  
B
A
ACOM  
TC500/  
TC500A  
CPE  
C
C
+
V
V
+
REF  
IN  
IN  
- (TC500/TC500A): 10mΩ  
- (TC510/TC514): 18mΩ  
• Wide Analog Input Range: ±4.2V (TC500A/TC510)  
REF  
V
V
+
REF  
REF  
• Directly Accepts Bipolar and Differential  
Input Signals  
24-Pin SOIC  
24-Pin PDIP  
V
-
1
24  
CAP-  
OUT  
Applications  
C
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
3
INT  
DGND  
CAP+  
• Precision Analog Signal Processor  
• Precision Sensor Interface  
C
AZ  
BUF  
4
V
DD  
• High Accuracy DC Measurements  
ACOM  
5
OSC  
C
-
6
TC510COG  
TC510CPF  
CMPTR OUT  
REF  
Device Selection Table  
C
+
7
A
B
REF  
REF  
8
V
+
Part  
Number  
Temperature  
Range  
Package  
9
V
-
V
V
+
-
REF  
IN  
10  
11  
12  
N/C  
N/C  
N/C  
IN  
TC500ACOE  
16-Pin SOIC (Wide)  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
N/C  
N/C  
TC500ACPE 16-Pin PDIP (Narrow)  
TC500COE  
TC500CPE  
TC510COG  
TC510CPF  
TC514COI  
TC514CPJ  
16-Pin SOIC (Wide)  
16-Pin PDIP (Narrow)  
24-Pin SOIC (Wide)  
24-Pin PDIP (Narrow)  
28-Pin SOIC (Wide)  
28-Pin PDIP (Narrow)  
28-Pin SOIC  
28-Pin PDIP  
V
-
1
2
3
4
5
6
28 CAP-  
OUT  
C
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
DGND  
CAP+  
INT  
C
AZ  
V
BUF  
DD  
ACOM  
OSC  
C
-
CMPTR OUT  
REF  
C
REF  
+
-
7
8
A
TC514COI  
TC514CPJ  
V
B
REF  
V
+
9
A0  
A1  
CH1+  
REF  
10  
11  
12  
13  
14  
CH4-  
CH3-  
17  
16  
CH2-  
CH1-  
CH2+  
CH3+  
15 CH4+  
N/C  
2002 Microchip Technology Inc.  
DS21428B-page 1  
TC500/A/510/514  
offset voltages in the TC5XX are corrected by a closed  
loop feedback mechanism. The input voltage is applied  
to the integrator during the Integrate phase. This  
causes an integrator output dv/dt directly proportional  
to the magnitude of the input voltage. The higher the  
input voltage, the greater the magnitude of the voltage  
stored on the integrator during this phase. At the start  
of the De-integrate phase, an external voltage refer-  
ence is applied to the integrator and, at the same time,  
the external host processor starts its on-board timer.  
The processor maintains this state until a transition  
occurs on the CMPTR output, at which time the proces-  
sor halts its timer. The resulting timer count is the con-  
verted analog data. Integrator Zero (the final phase of  
conversion) removes any residue remaining in the  
integrator in preparation for the next conversion.  
General Description  
TheTC500/A/510/514 family are precision analog front  
ends that implement dual slope A/D converters having  
a maximum resolution of 17-bits plus sign. As a mini-  
mum, each device contains the integrator, zero cross-  
ing comparator and processor interface logic. The  
TC500 is the base (16-bit max) device and requires  
both positive and negative power supplies. The  
TC500A is identical to the TC500 with the exception  
that it has improved linearity, allowing it to operate to a  
maximum resolution of 17-bits. The TC510 adds an on-  
board negative power supply converter for single sup-  
ply operation. The TC514 adds both a negative power  
supply converter and a 4 input differential analog  
multiplexer.  
Each device has the same processor control interface  
consisting of 3 wires: control inputs (A and B) and zero-  
crossing comparator output (CMPTR). The processor  
manipulates A, B to sequence the TC5XX through four  
phases of conversion: Auto Zero, Integrate, De-inte-  
grate and Integrator Zero. During the Auto Zero phase,  
The TC500/A/510/514 offer high resolution (up to 17-  
bits), superior 50Hz/60Hz noise rejection, low power  
operation, minimum I/O connections, low input bias  
currents and lower cost compared to other converter  
technologies having similar conversion speeds.  
Typical Application  
Control Logic  
A
0
B
0
Converter Sate  
Zero Integrator Output  
C
R
INT  
INT  
C
REF  
0
1
1
1
0
1
Auto-Zero  
Signal Integrate  
Deintegrate  
C
AZ  
V
REF  
-
V
REF  
+
A1  
A0  
C
REF  
-
C
INT  
C
AZ  
C
REF  
+
BUF  
TC500  
Buffer  
-
SW SW  
R
R
Integrator  
TC500A  
TC510  
TC514  
CH1+  
CH2+  
CH3+  
CH4+  
CH1-  
CH2-  
CH3-  
CH4-  
SW  
CMPTR 1  
+
I
DIF.  
CMPTR 2  
+
MUX  
(TC514)  
SW -  
RI  
+
SW  
-
RI  
Level  
Shift  
CMPTR  
Output  
+
SW  
Z
SW  
IZ  
SW  
Z
Polarity  
Detection  
SW  
RI  
+
SW  
-
RI  
ACOM  
SW  
1
SW  
I
Analog  
Phase  
Decoding  
Logic  
DGND  
Switch  
Control  
Signals  
V
SS  
DC-TO-DC  
Converter  
(TC510 & TC514)  
OSC  
V
-
OUT  
CAP+  
CAP-  
1.0µF  
V
SS  
A
B
1.0µF  
(TC500  
TC500A)  
Control Logic  
C
-
OUT  
DS21428B-page 2  
2002 Microchip Technology Inc.  
TC500/A/510/514  
*Stresses above those listed under "Absolute Maxi-  
mum Ratings" may cause permanent damage to the  
device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
TC510/TC514 Positive Supply Voltage  
(V to GND) .........................................+10.5V  
DD  
TC500/TC500A Supply Voltage  
(V to V ) ..............................................+18V  
DD  
SS  
TC500/TC500A Positive Supply Voltage  
(V to GND) ............................................+12V  
DD  
TC500/TC500A Negative Supply Voltage  
(V to GND)................................................-8V  
SS  
Analog Input Voltage (V + or V -) ............V to V  
SS  
IN  
IN  
DD  
Logic Input Voltage...............V +0.3V to GND - 0.3V  
DD  
Voltage on OSC:  
........................... -0.3V to (V +0.3V) for V < 5.5V  
DD  
DD  
Ambient Operating Temperature Range:  
................................................................ 0°C to +70°C  
Storage Temperature Range:............. -65°C to +150°C  
TC500/A/510/514 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: TC510/TC514: V = +5V, TC500/TC500A: V = ±5V unless otherwise specified.  
DD  
SS  
C
= C  
= 0.47µF.  
AZ  
REF  
TA = +25°C  
TA = 0°C to 70°C  
Symbol  
Analog  
Parameter  
Unit  
Test Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Resolution  
60  
µV  
Note 1  
ZSE  
ENL  
Zero Scale Error  
with Auto Zero Phase  
0.005  
0.003  
0.005  
0.003  
0.012  
0.009  
% F.S. TC500/510/514  
TC500A  
End Point Linearity  
0.005  
0.015  
0.010  
0.015  
0.010  
0.060  
0.045  
% F.S. TC500/510/514,  
% F.S. Note 1, Note 2,  
TC500A  
NL  
Best Case Straight  
Line Linearity  
0.003  
0.008  
% F.S. TC500/510/514,  
Note 1, Note 2  
0.005  
1
2
% F.S. TC500A  
ZSTC  
SYE  
Zero-Scale Temp.  
Coefficient  
µV/°C Over Operating  
Temperature Range  
Full-Scale Symmetry  
Error (Roll-Over Error)  
0.01  
0.03  
10  
% F.S. Note 3  
FSTC  
Full-Scale Tempera-  
ture Coefficient  
ppm/°C Over Operating  
Temperature Range;  
External Reference  
TC = 0 ppm/°C  
IIN  
Input Current  
6
pA  
VIN = 0V  
Note 1: Integrate time 66msec, auto zero time 66msec, VINT (peak) 4V.  
2: End point linearity at ±1/4, ±1 /2, ±3/4 F.S. after full-scale adjustment.  
3: Roll-over error is related to CINT, CREF, CAZ characteristics.  
2002 Microchip Technology Inc.  
DS21428B-page 3  
TC500/A/510/514  
TC500/A/510/514 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: TC510/TC514: V = +5V, TC500/TC500A: V = ±5V unless otherwise specified.  
DD  
SS  
C
= C  
= 0.47µF.  
AZ  
REF  
TA = +25°C  
TA = 0°C to 70°C  
Symbol  
Parameter  
Unit  
Test Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Analog (Continued)  
VCMR Common Mode  
VSS +1.5  
VSS +0.9  
VSS +1.5  
VSS +1  
VDD – 1.5 VSS + 1.5  
VDD – 0.9 VSS +0.9  
VDD – 1.5 VSS +1.5  
VDD – 1.5  
VSS +0.9  
VSS +1.5  
VDD – 1  
V
V
V
V
Voltage Range  
Integrator Output  
Swing  
Analog Input Signal-  
Range  
ACOM = GND = 0V  
VREF  
Voltage Reference  
Range  
VDD – 1  
VSS +1  
VREF- VREF+  
Digital  
VOH  
Comparator Logic 1,  
Output High  
4
0.4  
1
4
0.4  
1
V
V
V
V
ISOURCE = 400µA  
VOL  
VIH  
VIL  
Comparator Logic 0,  
Output Low  
3.5  
3.5  
ISINK = 2.1mA  
Logic 1, Input High  
Voltage  
Logic 0, Input Low  
Voltage  
IL  
Logic Input Current  
Comparator Delay  
2
0.3  
3
µA  
Logic 1 or 0  
tD  
µsec  
Multiplexer (TC514 Only)  
Maximum Input  
Voltage  
-2.5  
2.5  
10  
-2.5  
2.5  
V
VDD = 5V  
VDD = 5V  
RDSON Drain/Source ON  
Resistance  
6
kΩ  
Power (TC510/TC514 Only)  
IS  
Supply Current  
1.8  
18  
2.4  
3.5  
mA  
mW  
V
VDD = 5V, A = 1, B = 1  
VDD = 5V  
PD  
VDD  
Power Dissipation  
Positive Supply Oper-  
ating Voltage Range  
4.5  
5.5  
4.5  
5.5  
ROUT  
Operating Source  
Resistance  
60  
85  
100  
IOUT = 10mA  
Oscillator Frequency  
Maximum Current Out  
100  
kHz  
mA  
(Note 3)  
IOUT  
-10  
-10  
VDD = 5V  
Power (TC500/TC500A Only)  
IS  
Supply Current  
1
1.5  
2.5  
mA  
mW  
V
VS = ±5V, A = B = 1  
VDD = 5V, VSS = -5V  
PD  
VDD  
Power Dissipation  
10  
Positive Supply Oper-  
ating Range  
4.5  
7.5  
4.5  
7.5  
VSS  
Negative Supply  
Operating Range  
-4.5  
-7.5  
- 4.5  
-7.5  
V
Note 1: Integrate time 66msec, auto zero time 66msec, VINT (peak) 4V.  
2: End point linearity at ±1/4, ±1 /2, ±3/4 F.S. after full-scale adjustment.  
3: Roll-over error is related to CINT, CREF, CAZ characteristics.  
DS21428B-page 4  
2002 Microchip Technology Inc.  
TC500/A/510/514  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin Number  
(TC500,  
Pin  
Pin  
Number Number Symbol  
Description  
TC500A)  
(TC510) (TC514)  
1
2
3
4
5
2
2
CINT  
VSS  
CAZ  
BUF  
Integrator output. Integrator capacitor connection.  
Not Used Not Used  
Negative power supply input (TC500/TC500A only).  
Auto Zero input. The Auto Zero capacitor connection.  
Buffer output. The Integrator capacitor connection.  
3
4
5
3
4
5
ACOM This pin is grounded in most applications. It is recommended that ACOM and the  
input common pin (Ven- or CHn-) be within the analog common mode range (CMR).  
6
7
6
7
6
CREF  
CREF  
VREF  
VREF  
VIN  
-
Input. Negative reference capacitor connection.  
Input. Positive reference capacitor connection.  
Input. External voltage reference (-) connection.  
Input. External voltage reference (+) connection.  
Negative analog input.  
7
+
8
8
8
-
9
9
9
Not Used  
Not Used  
22  
+
10  
11  
12  
13  
15  
16  
18  
17  
-
VIN  
A
+
Positive analog input.  
Input. Converter phase control MSB. (See input B.)  
21  
B
Input. Converter phase control LSB. The states of A, B place the TC5XX in one of  
four required phases. A conversion is complete when all four phases have been  
executed:  
Phase control input pins: AB = 00: Integrator Zero  
01: Auto Zero  
10: Integrate  
11: De-integrate  
14  
19  
23  
CMPTR Zero crossing comparator output. CMPTR is HIGH during the Integration phase  
OUT  
when a positive input voltage is being integrated and is LOW when a negative input  
voltage is being integrated. A HIGH-to-LOW transition on CMPTR signals the pro-  
cessor that the De-integrate phase is completed. CMPTR is undefined during the  
Auto Zero phase. It should be monitored to time the Integrator Zero phase.  
15  
16  
23  
21  
22  
24  
1
27  
25  
26  
28  
1
DGND Input. Digital ground.  
VDD  
Input. Power supply positive connection.  
CAP+ Input. Negative power supply converter capacitor (+) connection.  
CAP- Input. Negative power supply converter capacitor (-) connection.  
VOUT  
-
Output. Negative power supply converter output and reservoir capacitor connection.  
This output can be used to power other devices in the circuit requiring a negative  
bias voltage.  
20  
24  
OSC  
Oscillator control input. The negative power supply converter normally runs at a fre-  
quency of 100kHz. The converter oscillator frequency can be slowed down  
(to reduce quiescent current) by connecting an external capacitor between this pin  
and VDD (see Section 9.0, Typical Characteristics Curves).  
18  
13  
17  
12  
16  
11  
15  
10  
20  
19  
CH1+ Positive analog input pin. MUX channel 1.  
CH1- Negative analog input pin. MUX channel 1.  
CH2+ Positive analog input pin. MUX channel 2.  
CH2- Negative analog input pin. MUX channel 2.  
CH3+ Positive analog input pin. MUX channel 3.  
CH3- Negative analog input pin. MUX channel 3.  
CH4+ Positive analog input pin. MUX channel 4.  
CH4- Negative analog input pin. MUX channel 4  
A0  
A1  
Multiplexer input channel select input LSB (see A1).  
Multiplexer input channel select input MSB.  
Phase control input pins: A1, A0 = 00 = Channel 1  
01 = Channel 2  
10 = Channel 3  
11 = Channel 4  
2002 Microchip Technology Inc.  
DS21428B-page 5  
TC500/A/510/514  
the integration period are, theoretically, completely  
removed, since the average value of a sine wave of  
frequency (1/T) averaged over a period (T) is zero.  
3.0  
3.1  
DETAILED DESCRIPTION  
Dual Slope Conversion Principles  
Integrating converters often establish the integration  
period to reject 50/60Hz line frequency interference  
signals. The ability to reject such signals is shown by a  
normal mode rejection plot (Figure 3-1). Normal mode  
rejection is limited in practice to 50 to 65dB, since the  
line frequency can deviate by a few tenths of a percent  
(Figure 3-2).  
Actual data conversion is accomplished in two phases:  
input signal Integration and reference voltage  
De-integration.  
The integrator output is initialized to 0V prior to the start  
of Integration. During Integration, analog switch S1  
connects V to the integrator input where it is main-  
IN  
tained for a fixed time period (T ). The application of  
INT  
V
causes the integrator output to depart 0V at a rate  
IN  
FIGURE 3-1:  
INTEGRATING  
CONVERTER NORMAL  
MODE REJECTION  
determined by the magnitude of V and a direction  
determined by the polarity of V . The De-integration  
phase is initiated immediately at the expiration of T  
IN  
IN  
.
INT  
30  
During De-integration, S1 connects a reference voltage  
Measurment  
T =  
(having a polarity opposite that of V ) to the integrator  
Period  
IN  
input. At the same time, an external precision timer is  
started. The De-integration phase is maintained until  
the comparator output changes state, indicating the  
integrator has returned to its starting point of 0V. When  
this occurs, the precision timer is stopped. The De-inte-  
20  
10  
0
gration time period (T  
), as measured by the preci-  
DEINT  
sion timer, is directly proportional to the magnitude of  
the applied input voltage (see Figure 3-3).  
A simple mathematical equation relates the Input Sig-  
nal, Reference Voltage and Integration time:  
0.1/T  
1/T  
10/T  
Input Frequency  
EQUATION 3-1:  
FIGURE 3-2:  
LINE FREQUENCY  
DEVIATION  
T
0
V
T
INT  
1
REF DEINT  
V
(T)DT =  
IN  
R
C
R
C
INT INT  
INT INT  
80  
70  
60  
50  
40  
Where:  
= Reference Voltage  
V
REF  
t = 0.1 sec  
T
= Signal Integration time (fixed)  
INT  
t
= Reference Voltage Integration time (variable)  
DEINT  
For a constant V  
:
IN  
DEV  
SIN 60 p t (1  
60 p t (1  
)
EQUATION 3-2:  
= V  
100  
Normal Mode = 20 LOG  
REJECTION  
DEV  
)
30  
20  
100  
T
DEINT  
DEV = Deviation from 60Hz  
t = Integration Period  
V
IN  
REF  
T
INT  
0.01  
0.1  
1.0  
The dual slope converter accuracy is unrelated to the  
integrating resistor and capacitor values as long as  
they are stable during a measurement cycle.  
Line Frequency Deviation from 60 Hz (%)  
An inherent benefit is noise immunity. Input noise  
spikes are integrated (averaged to zero) during the  
integration periods. Integrating ADCs are immune to  
the large conversion errors that plague successive  
approximation converters in high noise environments.  
Integrating converters provide inherent noise rejection  
with at least a 20dB/decade attenuation rate. Interfer-  
ence signals with frequencies at integral multiples of  
DS21428B-page 6  
2002 Microchip Technology Inc.  
TC500/A/510/514  
FIGURE 3-3:  
BASIC DUAL SLOPE CONVERTER  
C
INT  
TC510  
Integrator  
R
INT  
Analog  
V
INT  
Input (V  
)
Comparator  
IN  
CMPTR Out  
+
+
S1  
Phase  
Control  
Switch Driver  
Polarity Control  
REF  
VOLTAGE  
Control  
Logic  
A
B
I/O  
Microcomputer  
V
V
SUPPLY  
INT  
V
V
V  
REF  
IN  
IN  
1/2 V  
REF  
Timer  
Counter  
ROM  
RAM  
T
T
DEINT  
INT  
2002 Microchip Technology Inc.  
DS21428B-page 7  
TC500/A/510/514  
The internal analog switch status for each of these  
phases is summarized in Table 4-1. This table  
references the Typical Application.  
4.0  
TC500/A/510/514 CONVERTER  
OPERATION  
The TC500/A/510/514 incorporates an Auto Zero and  
Integrator phase in addition to the input signal Integrate  
and reference De-integrate phases. The addition of  
these phases reduce system errors, calibration steps  
and shorten overrange recovery time. A typical mea-  
surement cycle uses all four phases in the following  
order:  
1. Auto Zero  
2. Input signal integration  
3. Reference deintegration  
4. Integrator output zero  
TABLE 4-1:  
INTERNAL ANALOG GATE STATUS  
Conversion Phase  
SW  
SW +  
SW -  
SW  
SW  
SW  
SW  
IZ  
I
R
R
Z
R
1
Auto Zero (A = 0, B = 1)  
Closed  
Closed  
Closed  
Input Signal Integration (A = 1, B = 0)  
Closed  
Reference Voltage De-integration  
(A =1, B = 1)  
Closed*  
Closed  
Integrator Output Zero (A = 0, B = 0)  
Closed  
Closed Closed  
Note: *Assumes a positive polarity input signal. SW  
would be closed for a negative input signal.  
RI  
4.1  
Auto Zero Phase (AZ)  
4.3  
Reference Voltage De-integration  
Phase (DINT  
)
During this phase, errors due to buffer, integrator and  
comparator offset voltages are nulled out by charging  
The previously charged reference capacitor is con-  
nected with the proper polarity to ramp the integrator  
output back to zero. An externally-provided, precision  
timer is used to measure the duration of this phase.  
The resulting time measurement is proportional to the  
magnitude of the applied input voltage.  
C
(auto zero capacitor) with a compensating error  
AZ  
voltage.  
The external input signal is disconnected from the inter-  
nal circuitry by opening the two SW switches. The  
internal input points connect to analog common. The  
reference capacitor is charged to the reference voltage  
potential through SW . A feedback loop, closed around  
I
4.4  
Integrator Output Zero Phase (IZ)  
R
the integrator and comparator, charges the C capac-  
itor with a voltage to compensate for buffer amplifier,  
integrator and comparator offset voltages.  
AZ  
This phase ensures the integrator output is at 0V when  
the Auto Zero phase is entered and that only system  
offset voltages are compensated. This phase is used at  
the end of the reference voltage de-integration phase  
and MUST be used for ALL TC5XX applications having  
resolutions of 12-bits or more. If this phase is not used,  
4.2  
Analog Input Signal Integration  
Phase (INT)  
the value of the Auto Zero capacitor (C ) must be  
about 2 to 3 times the value of the Integration capacitor  
AZ  
The TC5XX integrates the differential voltage between  
the (V +) and (V –) inputs. The differential voltage  
IN  
IN  
(C ) to reduce the effects of charge sharing. The Inte-  
INT  
must be within the device's Common mode range  
. The input signal polarity is normally checked via  
grator Output Zero phase should be programmed to  
operate until the output of the comparator returns  
"HIGH". The overall timing system is shown in  
Figure 4-1.  
V
CMR  
software at the end of this phase: CMPTR = 1 for  
positive polarity; CMPTR = 0 for negative polarity.  
DS21428B-page 8  
2002 Microchip Technology Inc.  
TC500/A/510/514  
FIGURE 4-1:  
TYPICAL DUAL SLOPE A/D CONVERTER SYSTEM TIMING  
T
TIME  
Auto-Zero  
Converter Status  
Integrate  
Full Scale Input  
Reference  
Overshoot Integrator  
De-integrate  
Output  
Zero  
Integrator  
Voltage  
0
V
INT  
Comparator Delay  
Undefined  
0 For Negative Input  
1 For Postive Input  
Comparator  
Output  
A
A = 1  
B = 1  
A = 1  
B = 0  
A = 0  
B = 1  
A = 0  
B = 0  
AB Inputs  
B
Ready for Next  
Conversion  
(Auto-Zero is  
Idle State)  
Capture  
Begin Conversion with  
Auto-Zero Phase  
Time Input  
Integration  
Phase  
Integrator  
Controller  
Operation  
De-integration  
Time  
Output  
Zero Phase  
Complete  
Sample Input Polarity  
T
INT  
Minimizing  
Overshoot  
will Minimize  
I.O.Z. Time  
Typically = T  
INT  
Comparator Delay +  
Processor Latency  
(Positive Input Shown)  
Notes: The length of this phase is chosen almost arbitrarily  
but needs to be long enough to null out worst case errors  
(see text).  
2002 Microchip Technology Inc.  
DS21428B-page 9  
TC500/A/510/514  
The difference in reference for (+) or (-) input voltages  
will cause a rollover error. This error can be minimized  
by using a large reference capacitor in comparison to  
the stray capacitance.  
5.0  
5.1  
ANALOG SECTION  
Differential Inputs (VIN+, VIN–)  
The TC5XX operates with differential voltages within  
the input amplifier Common mode range. The amplifier  
Common mode range extends from 1.5V below posi-  
tive supply to 1.5V above negative supply. Within this  
Common mode voltage range, Common mode rejec-  
tion is typically 80dB. Full accuracy is maintained, how-  
ever, when the inputs are no less than 1.5V from either  
supply.  
5.4  
Phase Control Inputs (A, B)  
The A, B unlatched logic inputs select the TC5XX oper-  
ating phase. The A, B inputs are normally driven by a  
microprocessor I/O port or external logic.  
5.5  
Comparator Output  
By monitoring the comparator output during the fixed  
signal integrate time, the input signal polarity can be  
determined by the microprocessor controlling the  
conversion. The comparator output is HIGH for positive  
signals and LOW for negative signals during the signal  
integrate phase (see Figure 5-1).  
The integrator output also follows the Common mode  
voltage. The integrator output must not be allowed to  
saturate. A worst case condition exists, for example,  
when a large, positive Common mode voltage, with a  
near full scale negative differential input voltage, is  
applied. The negative input signal drives the integrator  
positive when most of its swing has been used up by  
the positive Common mode voltage. For these critical  
applications, the integrator swing can be reduced. The  
integrator output can swing within 0.9V of either supply  
without loss of linearity.  
During the reference de-integrate phase, the compara-  
tor output will make a HIGH-to-LOW transition as the  
integrator output ramp crosses zero. The transition is  
used to signal the processor that the conversion is  
complete.  
The internal comparator delay is 2µsec, typically.  
Figure 5-1 shows the comparator output for large  
positive and negative signal inputs. For signal inputs at  
or near zero volts, however, the integrator swing is very  
small. If Common mode noise is present, the compara-  
tor can switch several times during the beginning of the  
signal integrate period. To ensure that the polarity  
reading is correct, the comparator output should be  
read and stored at the end of the signal integrate  
phase.  
5.2  
Analog Common  
Analog common is used as V return during system  
zero and reference de-integrate. If V – is different from  
analog common, a Common mode voltage exists in the  
system. This signal is rejected by the excellent CMR of  
the converter. In most applications, V – will be set at a  
fixed known voltage (i.e., power supply common). A  
Common mode voltage will exist when V – is not  
connected to analog common.  
IN  
IN  
IN  
IN  
The comparator output is undefined during the Auto  
Zero phase and is used to time the Integrator Output  
Zero phase. (See Section 7.6, Integrator Output Zero  
Phase).  
5.3  
Differential Reference  
(VREF+, VREF–)  
The reference voltage can be anywhere within 1V of  
the power supply voltage of the converter. Rollover  
error is caused by the reference capacitor losing or  
gaining charge due to stray capacitance on its nodes.  
FIGURE 5-1:  
COMPARATOR OUTPUT  
Signal  
Integrate  
Reference  
Signal  
Reference  
Deintegrate  
Integrate  
De-integrate  
Integrator  
Output  
Zero  
Crossing  
Integrator  
Output  
Zero  
Crossing  
Comparator  
Output  
Comparator  
Output  
A. Positive Input Signal  
B. Negative Input Signal  
DS21428B-page 10  
2002 Microchip Technology Inc.  
TC500/A/510/514  
TABLE 6-1:  
C
AND C SELECTION  
AZ  
6.0  
6.1  
TYPICAL APPLICATIONS  
Component Value Selection  
REF  
Conversions Typical Value of  
Per Second  
Suggested* Part  
Number  
C
REF, CAZ (µF)  
The procedure outlined below allows the user to arrive  
at values for the following TC5XX design variables:  
>7  
0.1  
SMR5 104K50J01L4  
SMR5 224K50J02L4  
SMR5 474K50J04L4  
2 to 7  
0.22  
0.47  
1. Integration Phase Timing  
2 or less  
2. Integrator Timing Components (R , C  
)
INT INT  
Note:  
Manufactured by Evox-Rifa, Inc.  
3. Auto Zero and Reference Capacitors  
4. Voltage Reference  
6.6  
Calculate Integrating Capacitor  
(CINT  
)
6.2  
Select Integration Time  
The integrating capacitor must be selected to maximize  
integrator output voltage swing. The integrator output  
Integration time must be picked as a multiple of the  
period of the line frequency. For example, T times of  
33msec, 66msec and 132msec maximize 60Hz line  
rejection.  
INT  
voltage swing is defined as the absolute value of V  
DD  
(or V ) less 0.9V (i.e., IV - 0.9VI or IV + 0.9VI).  
SS  
DD  
SS  
Using the 20µA buffer maximum output current, the  
value of the integrating capacitor is calculated using the  
following equation.  
6.3  
DINT and IZ Phase Timing  
The duration of the DINT phase is a function of the  
amount of voltage stored on the integrator during T  
EQUATION 6-2:  
INT  
and the value of V  
. The DINT phase must be initi-  
-6  
REF  
(T ) (20 x 10  
)
INT  
ated immediately following INT and terminated when  
an integrator output zero-crossing is detected. In gen-  
eral, the maximum number of counts chosen for DINT  
µF  
C
=
INT  
(V - 0.9)  
S
Where:  
is twice that of INT (with V  
chosen at V  
/2).  
REF  
IN(MAX)  
T
= Integration Period  
INT  
6.4  
Calculate Integrating Resistor  
(RINT  
V
V
= IV I or IV I, whichever is less (TC500/A  
DD SS  
S
S
)
= IV I (TC510, TC514)  
DD  
The desired full scale input voltage and amplifier output  
It is critical that the integrating capacitor has a very low  
dielectric absorption. Polypropylene capacitors are an  
example of one such dielectic. Polyester and Polybicar-  
bonate capacitors may also be used in less critical  
applications. Table 6-2 summarizes recommended  
current capability determine the value of R . The  
INT  
buffer and integrator amplifiers each have a full-scale  
current of 20µA.  
The value of R  
is therefore directly calculated in the  
INT  
following equation:  
capacitors for C  
.
INT  
EQUATION 6-1:  
TABLE 6-2:  
RECOMMENDED CAPACITOR  
FOR C  
V
INT  
IN(MAX)  
R
(in M) =  
INT  
20  
Value  
Suggested Part Number*  
0.1  
SMR5 104K50J01L4  
SMR5 224K50J02L4  
SMR5 334K50J03L4  
SMR5 474K50J04L4  
Where:  
0.22  
0.33  
0.47  
V
= Maximum input voltage (full count voltage)  
IN(MAX)  
R
= Integrating Resistor (in M)  
INT  
For loop stability, R  
should be 50k.  
INT  
Note:  
Manufactured by Evox-Rifa, Inc.  
6.5  
Select Reference (CREF) and Auto  
Zero (CAZ) Capacitors  
6.7  
Calculate VREF  
The reference deintegration voltage is calculated using  
the following equation:  
C
and C must be low leakage capacitors (such as  
REF  
AZ  
polypropylene). The slower the conversion rate, the  
larger the value C must be. Recommended capac-  
REF  
EQUATION 6-3:  
itors for C  
and C are shown in Table 6-1. Larger  
REF  
AZ  
(V – 0.9) (C ) (R )  
INT  
S
INT  
values for C  
rollover errors.  
and C  
may also be used to limit  
REF  
AZ  
V
=
V
REF  
2(R  
)
INT  
2002 Microchip Technology Inc.  
DS21428B-page 11  
TC500/A/510/514  
7.4  
Input Signal Integrate Phase  
7.0  
7.1  
DESIGN CONSIDERATIONS  
Noise  
The length of this phase is constant from one conver-  
sion to the next and depends on system parameters  
and component value selections. The calculation of  
The threshold noise (N ) is the algebraic sum of the  
TH  
T
is shown elsewhere in this data sheet. At some  
integrator noise and the comparator noise. This value  
is typically 30µV. Figure 7-1 shows how the value of the  
reference voltage can affect the final count. Such errors  
can be reduced by increased integration times, in the  
same way that 50/60Hz noise is rejected. The signal-  
INT  
point near the end of this phase, the microcontroller  
should sample CMPTR to determine the input signal  
polarity. This value is, in effect, the Sign Bit for the over-  
all conversion result. Optimally, CMPTR should be  
sampled just before this phase is terminated by chang-  
ing AB from 10 to 11. The consideration here is that,  
during the initial stage of input integration when the  
integrator voltage is low, the comparator may be  
affected by noise and its output unreliable. Once inte-  
gration is well underway, the comparator will be in a  
defined state.  
to-noise ratio is related to the integration time (T  
)
INT  
and the integration time constant (R  
lows:  
(C ) as fol-  
INT)  
INT  
EQUATION 7-1:  
V
t
INT  
IN  
S/N (dB) = 20 Log  
(
6
)
30 x 10  
(R ) • (C  
)
INT  
INT  
7.5  
Reference De-integration  
7.2  
System Timing  
The length of this phase must be precisely measured  
from the transition of AB from 10 to 11 to the falling  
edge of CMPTR. The comparator delay contributes  
some error in timing this phase. The typical delay is  
specified to be 2µsec. This should be considered in the  
To obtain maximum performance from the TC5XX, the  
overshoot at the end of the De-integration phase must  
be minimized. Also, the Integrator Output Zero phase  
must be terminated as soon as the comparator output  
returns high. (See Figure 4-1).  
context of the length of  
a single count when  
determining overall system performance and possible  
single count errors. Additionally, Overshoot will result in  
charge accumulating on the integrator after its output  
crosses zero. This charge must be nulled during the  
Integrator Output Zero phase.  
Figure 4-1 shows the overall timing for a typical system  
in which a TC5XX is interfaced to a microcontroller. The  
microcontroller drives the A, B inputs with I/O lines and  
monitors the comparator output, CMPTR, using an I/O  
line or dedicated timer capture control pin. It may be  
necessary to monitor the state of the CMPTR output in  
addition to having it control a timer directly for the Ref-  
erence De-integration phase. (This is further explained  
below.)  
The timing diagram in Figure 4-1 is not to scale, as the  
timing in a real system depends on many system  
parameters and component value selections. There  
are four critical timing events (as shown in Figure 4-1):  
sampling the input polarity; capturing the de-integration  
time; minimizing overshoot and properly executing the  
Integrator Output Zero phase.  
7.3  
Auto Zero Phase  
The length of this phase is usually set to be equal to the  
Input Signal Integration time. This decision is virtually  
arbitrary since the magnitudes of the various system  
errors are not known. Setting the Auto Zero time equal  
to the Input Integrate time should be more than  
adequate to null out system errors. The system may  
remain in this phase indefinitely (i.e., Auto Zero is the  
appropriate Idle state for a TC5XX device).  
DS21428B-page 12  
2002 Microchip Technology Inc.  
TC500/A/510/514  
FIGURE 7-1:  
NOISE THRESHOLD  
S
S
S
30 µV  
N
TH  
N
TH  
N
TH  
High V  
REF  
Normal V  
REF  
Low  
REF  
REF  
V
Slope (S) =  
N
= Noise Threshold  
TH  
R
C
INT INT  
7.6  
Integrator Output Zero Phase  
7.7  
Using the TC510/TC514  
The comparator delay and the controller's response  
latency may result in overshoot, causing charge  
buildup on the integrator at the end of a conversion.  
This charge must be removed or performance will  
degrade. The Integrator Output Zero phase should be  
activated (AB = 00) until CMPTR goes high. It is abso-  
lutely critical that this phase be terminated immediately  
so that Overshoot is not allowed to occur in the oppo-  
site direction. At this point, it can be assured that the  
integrator is near zero. Auto Zero should be entered  
(AB = 01) and the TC5XX held in this state until the next  
cycle is begun (see Figure 7-2).  
7.7.1  
NEGATIVE SUPPLY VOLTAGE  
CONVERTER (TC510, TC514)  
A capacitive charge pump is employed to invert the volt-  
age on V for negative bias within the TC510/TC514.  
This voltage is also available on the V  
negative bias elsewhere in the system. Two external  
capacitors are required to perform the conversion.  
DD  
- pin to provide  
OUT  
Timing is generated by an internal state machine driven  
from an on-board oscillator. During the first phase,  
capacitor C is switched across the power supply and  
F
charged to V +. This charge is transferred to capacitor  
S
C
- during the second phase. The oscillator normally  
OUT  
FIGURE 7-2:  
OVERSHOOT  
runs at 100kHz to ensure minimum output ripple. This  
frequency can be reduced by placing a capacitor from  
OSC to V . The relationship between the capacitor  
value is shown in Section 9.0.  
DD  
Integrator  
Output  
Zero  
Crossing  
7.7.2  
ANALOG INPUT MULTIPLEXER  
(TC514)  
The TC514 is equipped with a four input differential  
analog multiplexer. Input channels are selected using  
select inputs (A1, A0). These are high-true control sig-  
nals (i.e., channel 0 is selected when (A1, A0 = 00).  
Overshoot  
Comparator  
Output Comp  
De-integrate Phase  
Integrator  
Zero Phase  
Integrate  
Phase  
2002 Microchip Technology Inc.  
DS21428B-page 13  
TC500/A/510/514  
8.0  
DESIGN EXAMPLE  
(SEE FIGURES 8-1 TO 8-4)  
Given: Required Resolution: (16 Bits (65,536  
counts).  
Maximum V : ±2V  
IN  
Power Supply Voltage: +5V  
60Hz System  
Step 1: Pick integration time (t ) as a multiple of the  
INT  
line frequency:  
1/60Hz = 16.6msec. Use 4x line frequency  
= 66msec  
Step 2: Calculate R  
INT  
R
= V  
/20µA 2 /20µA = 100kΩ  
INT  
IN(MAX)  
Step 3: Calculate C  
for maximum (4V) integrator  
INT  
output swing:  
–6  
C
= (t ) (20 x 10 ) / (V - 0.9)  
INT S  
INT  
–6  
= (.066) (20 x 10 ) / (4.1)  
= .32µF (use closest value: 0.33µF)  
Note: Microchip recommended capacitor:  
Evox-Rifa p/n: 5MR5 334K50J03L4.  
Step 4: Choose C  
and C based on conversion  
AZ  
REF  
rate:  
Conversions/sec:  
= 1/(T + T  
+ 2 T + 2msec)  
INT  
AZ  
INT  
= 1/(66msec +66msec  
+132msec +2msec)  
= 3.7 conversions/sec  
From which C = C  
(see Table 6-1)  
= 0.22µF  
REF  
AZ  
Note: Microchip recommended capacitor:  
Evox-Rifa p/n: 5MR5 224K50J02L4  
Step 5: Calculate V  
REF  
EQUATION 8-1:  
(V - 0.9) (C ) (R  
)
S
INT  
INT  
V
=
REF  
2(T  
)
INT  
–6  
5
= (4.1) (0.33 x 1 ) (10 ) / 2(.066)  
= 1.025V  
DS21428B-page 14  
2002 Microchip Technology Inc.  
TC500/A/510/514  
FIGURE 8-1:  
TC510 DESIGN SAMPLE  
1
24  
23  
CAP-  
V
-
OUT  
C
INT  
0.33µF  
1µF  
Typical Waveforms  
+5V  
2
1µF  
DGND  
C
INT  
C
AZ  
0.22µF  
Pin 2  
TC510  
3
22  
21  
CAP+  
C
AZ  
V
+
IN  
4
V
DD  
+5V  
+5V  
BUF  
R
INT  
100k  
Pin 19  
5
6
ACOM  
Microcontroller  
19  
MCP1525  
CMPTR  
C
-
REF  
REF  
C
REF  
0.22µF  
R2  
Pin 2  
18  
17  
10k  
7
9
8
C
V
+
A
B
V
-
IN  
1µF  
R3, 10k  
Pin 19  
-
REF  
C1  
16  
15  
V
REF  
+
V
IN  
+
INPUT+  
0.01µF  
V
-
IN  
INPUT–  
FIGURE 8-2:  
TC514 DESIGN EXAMPLE  
1
28  
27  
V
-
CAP-  
OUT  
C
INT  
0.33µF  
1µF  
2
1µF  
DGND  
C
C
+
5V  
INT  
C
AZ  
0.22µF  
26  
25  
3
4
CAP+  
AZ  
V
+5V  
TC514  
DD  
+5V  
BUF  
R
100k  
INT  
22  
19  
23  
A0  
5
6
Analog  
Mux Logic  
ACOM  
Microcontroller  
A1  
MCP1525  
C
C
-
CMPTR  
REF  
C
REF  
0.22µF  
10k  
10k  
22  
21  
7
9
8
A
B
+
REF  
1µF  
V
V
+
REF  
REF  
C1, .01µF  
18  
13  
CH1+  
INPUT 1+  
-
CH1–  
INPUT 1–  
Typical Waveforms  
17  
12  
CH2+  
INPUT 2+  
PIN 2  
CH2  
INPUT 2–  
V
IN  
+
+
16  
11  
CH3  
INPUT 3+  
PIN 23  
CH3  
INPUT 3–  
+
15  
10  
CH4  
INPUT4+  
PIN 2  
IN  
CH4  
INPUT4–  
V
PIN 23  
2002 Microchip Technology Inc.  
DS21428B-page 15  
TC500/A/510/514  
®
FIGURE 8-3:  
TC510 TO IBM COMPATIBLE PRINTER PORT  
+5V  
21  
1
1µF  
V
V
-
DD  
OUT  
24  
CAP-  
1µF  
22  
7
CAP+  
C
+
REF  
0.22µF  
0.01µF  
10k  
10k  
6
9
C
-
REF  
MCP1525  
1µF  
V
+
REF  
TC510  
8
V
-
REF  
100kΩ  
PC  
Printer  
Port  
4
BUF  
0.22µF  
18  
17  
3
2
A
B
C
AZ  
PORT  
0378  
HEX  
0.33µF  
100kΩ  
3
2
C
V
INT  
+
10  
19  
16  
+
CMPTR  
IN  
0.01µF  
Input  
15  
5
V
-
IN  
ACOM  
DGND  
23  
DS21428B-page 16  
2002 Microchip Technology Inc.  
TC500/A/510/514  
FIGURE 8-4:  
TC514 TO IBM COMPATIBLE PRINTER PORT  
+5V  
25  
1
1µF  
28  
26  
+
18  
13  
17  
V
CH1+  
V
OUT  
DD  
CAP–  
Input 1  
1µF  
CH1–  
10kΩ  
CAP+  
+
CH2+  
Input 2  
7
6
12  
16  
11  
C
+
MCP1525  
REF  
REF  
CH2–  
CH3+  
CH3–  
0.22µF  
+
C
-
10k  
Input 3  
9
8
15  
10  
V
+
REF  
+
CH4+  
10k  
Input 4  
0.01µF  
CH4–  
TC514  
V
-
REF  
20  
A0  
A1  
Analog  
Mux Control Logic  
19  
22  
21  
100kΩ  
0.22µF  
4
3
2
IBM  
Printer Port  
2
BUF  
A
B
C
C
AZ  
Port  
0378  
0.33µF  
3
INT  
Hex  
10  
23  
CMPTR  
5
ACOM  
DGND  
27  
2002 Microchip Technology Inc.  
DS21428B-page 17  
TC500/A/510/514  
9.0  
TYPICAL CHARACTERISTICS  
The graphs and tables following this note are a statistical summary based on a limited number of samples and are  
provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed.  
In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified  
power supply range), and therefore outside the warranted range.  
Output Voltage vs. Output Current  
Output Voltage vs Load Current  
= 25 C  
-0  
-1  
-2  
-3  
-4  
5
4
T
= 25 C  
T
A
A
˚
˚
V+ = 5V  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-5  
-6  
Slope 60Ω  
-7  
-8  
0
2
4
6
8
10 12 14 16 18 20  
0
10  
20  
30  
40  
60  
70  
80  
50  
Load Current (mA)  
Output Current (mA)  
Output Source Resistance vs. Temperature  
Output Ripple vs. Load Current  
200  
100  
90  
V+ = 5V  
I = 10mA  
OUT  
V+ = 5V, T = 25˚C  
A
175  
150  
125  
100  
75  
Osc. Freq. = 100kHz  
80  
CAP = 1µF  
70  
60  
CAP = 10µF  
50  
50  
25  
40  
0
0
1
2
3
4
5
6
7
8
9
10  
-50  
0
25  
50  
75  
100  
-25  
Temperature ( C)  
Load Current (mA)  
˚
Oscillator Frequency vs. Capacitance  
= +25˚C  
Oscillator Frequency vs. Temperature  
100  
10  
1
150  
125  
V+ = 5V  
T
A
V+ = 5V  
100  
75  
50  
1
10  
Oscillator Capacitance (pF)  
-25  
0
25  
Temperature (˚C)  
-50  
75  
100 125  
100  
1000  
50  
DS21428B-page 18  
2002 Microchip Technology Inc.  
TC500/A/510/514  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
Package marking data not available at this time.  
10.2 Taping Forms  
Component Taping Orientation for 16-Pin SOIC (Wide) Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
16-Pin SOIC (W)  
16 mm  
12 mm  
1000  
13 in  
Component Taping Orientation for 24-Pin SOIC (Wide) Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
24-Pin SOIC (W)  
24 mm  
12 mm  
1000  
13 in  
2002 Microchip Technology Inc.  
DS21428B-page 19  
TC500/A/510/514  
10.2 Taping Forms (Continued)  
Component Taping Orientation for 28-Pin SOIC (Wide) Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
1000  
Reel Size  
28-Pin SOIC (W)  
24 mm  
12 mm  
13 in  
DS21428B-page 20  
2002 Microchip Technology Inc.  
TC500/A/510/514  
10.3 Package Dimensions  
16-Pin PDIP (Narrow)  
PIN 1  
.270 (6.86)  
.240 (6.10)  
.045 (1.14)  
.030 (0.76)  
.770 (19.56)  
.740 (18.80)  
.310 (7.87)  
.290 (7.37)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.014 (0.36)  
.008 (0.20)  
10° MAX.  
.150 (3.81)  
.115 (2.92)  
.400 (10.16)  
.310 (7.87)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
16-Pin SOIC (Narrow)  
PIN 1  
.157 (3.99)  
.150 (3.81)  
.244 (6.20)  
.228 (5.79)  
.050 (1.27) TYP  
.394 (10.00)  
.385 (9.78)  
.069 (1.75)  
.053 (1.35)  
8°  
MAX.  
.010 (0.25)  
.007 (0.18)  
.010 (0.25)  
.004 (0.10)  
.050 (1.27)  
.016 (0.40)  
.018 (0.46)  
.014 (0.36)  
Dimensions: inches (mm)  
2002 Microchip Technology Inc.  
DS21428B-page 21  
TC500/A/510/514  
10.3 Packaging Dimensions (Continued)  
16-Pin SOIC (Wide)  
PIN 1  
.299 (7.59) .419 (10.65)  
.291 (7.40) .398 (10.10)  
.413 (10.49)  
.398 (10.10)  
.104 (2.64)  
.097 (2.46)  
8°  
MAX.  
.013 (0.33)  
.009 (0.23)  
.012 (0.30)  
.019 (0.48)  
.014 (0.36)  
.004 (0.10)  
.050 (1.27) TYP.  
.050 (1.27)  
.016 (0.40)  
Dimensions: inches (mm)  
24-Pin PDIP (Narrow)  
PIN 1  
.280 (7.11)  
.240 (6.10)  
.045 (1.14)  
.030 (0.76)  
.310 (7.87)  
.290 (7.37)  
1.195 (30.35)  
1.155 (29.34)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.015 (0.38)  
.015 (0.38)  
.008 (0.20)  
3˚ MIN.  
.150 (3.81)  
.115 (2.92)  
.400 (10.16)  
.310 (7.87)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.023 (0.58)  
.015 (0.38)  
Dimensions: inches (mm)  
DS21428B-page 22  
2002 Microchip Technology Inc.  
TC500/A/510/514  
10.3 Packaging Dimensions (Continued)  
24-Pin SOIC (Wide)  
PIN 1  
.299 (7.59) .419 (10.65)  
.291 (7.40) .398 (10.10)  
.615 (15.62)  
.597 (15.16)  
.104 (2.64)  
.097 (2.46)  
8°  
MAX.  
.013 (0.33)  
.009 (0.23)  
.012 (0.30)  
.004 (0.10)  
.019 (0.48)  
.014 (0.36)  
.050 (1.27) TYP.  
.050 (1.27)  
.016 (0.40)  
Dimensions: inches (mm)  
PIN 1  
28-Pin PDIP (Narrow)  
.288 (7.32)  
.240 (6.10)  
.045 (1.14)  
.030 (0.76)  
.310 (7.87)  
.290 (7.37)  
1.400 (35.56)  
1.345 (34.16)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.015 (0.38)  
.015 (0.38)  
.008 (0.20)  
3˚ MIN.  
.150 (3.81)  
.115 (2.92)  
.400 (10.16)  
.310 (7.87)  
.022 (0.56)  
.015 (0.38)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
Dimensions: inches (mm)  
2002 Microchip Technology Inc.  
DS21428B-page 23  
TC500/A/510/514  
10.3 Package Dimensions (Continued)  
28-Pin SOIC (Wide)  
PIN 1  
.299 (7.59)  
.291 (7.40)  
.419 (10.65)  
.398 (10.10)  
.713 (18.11)  
.697 (17.70)  
.103 (2.62)  
.097 (2.46)  
.013 (0.33)  
.009 (0.23)  
8˚ MAX.  
.012 (0.30)  
.004 (0.10)  
.019 (0.48)  
.014 (0.36)  
.050 (1.27)  
.016 (0.40)  
Dimensions: inches (mm)  
DS21428B-page 24  
2002 Microchip Technology Inc.  
TC500/A/510/514  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21428B-page 25  
TC500/A/510/514  
NOTES:  
DS21428B-page 26  
2002 Microchip Technology Inc.  
TC500/A/510/514  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21428B-page 27  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
China - Hong Kong SAR  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
04/20/02  
DS21428B-page 28  
2002 Microchip Technology Inc.  

TC514CPJ CAD模型

  • 引脚图

  • 封装焊盘图

  • TC514CPJ 相关器件

    型号 制造商 描述 价格 文档
    TC514IJE MICROCHIP Precision Analog Front Ends 获取价格
    TC514IOE MICROCHIP Precision Analog Front Ends 获取价格
    TC514IOE713 MICROCHIP Precision Analog Front Ends 获取价格
    TC514IOG MICROCHIP Precision Analog Front Ends 获取价格
    TC514IOG713 MICROCHIP Precision Analog Front Ends 获取价格
    TC514IOI MICROCHIP Precision Analog Front Ends with Dual Slope ADC 获取价格
    TC514IOI713 MICROCHIP Precision Analog Front Ends with Dual Slope ADC 获取价格
    TC514IOIOI713 MICROCHIP Precision Analog Front Ends 获取价格
    TC514IPE MICROCHIP Precision Analog Front Ends 获取价格
    TC514IPF MICROCHIP Precision Analog Front Ends 获取价格

    TC514CPJ 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6