TC7106CPLIJL [MICROCHIP]

ADC, Dual-Slope, 1 Func, 1 Channel, PDIP40, CERDIP-40;
TC7106CPLIJL
型号: TC7106CPLIJL
厂家: MICROCHIP    MICROCHIP
描述:

ADC, Dual-Slope, 1 Func, 1 Channel, PDIP40, CERDIP-40

光电二极管 转换器
文件: 总21页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7106  
TC7106A  
TC7107  
TC7107A  
3-1/2 DIGIT A/D CONVERTERS  
FEATURES  
GENERAL DESCRIPTION  
Internal Reference with Low Temperature Drift  
TC7106/7 ....................................... 80ppm/°C Typical  
TC7106A/7A.................................. 20ppm/°C Typical  
Drives LCD (TC7106) or LED (TC7107) Display  
Directly  
Guaranteed Zero Reading With Zero Input  
Low Noise for Stable Display  
The TC7106A and TC7107A 3-1/2 digit direct-display  
drive analog-to-digital converters allow existing 7106/7107  
based systems to be upgraded. Each device has a preci-  
sion reference with a 20ppm/°C max temperature coeffi-  
cient. This represents a 4 to 7 times improvement over  
similar 3-1/2 digit converters. Existing 7106 and 7107 based  
systems may be upgraded without changing external pas-  
sive component values. The TC7107A drives common  
anode light emitting diode (LED) displays directly with 8mA  
per segment. A low-cost, high-resolution indicating meter  
requires only a display, four resistors, and four capacitors.  
The TC7106A low power drain and 9V battery operation  
make it suitable for portable applications.  
The TC7106A/TC7107A reduces linearity error to less  
than 1 count. Rollover error – the difference in readings for  
equal magnitude but opposite polarity input signals – is  
below ±1 count. High impedance differential inputs offer  
1pA leakage current and a 1012input impedance. The  
differential reference input allows ratiometric measurements  
for ohms or bridge transducer measurements. The  
15µVP–P noise performance guarantees a “rock solid” read-  
ing. The auto-zero cycle guarantees a zero display read-  
ing with a zero-volts input.  
Auto-Zero Cycle Eliminates Need for Zero  
Adjustment  
True Polarity Indication for Precision Null  
Applications  
Convenient 9 V Battery Operation (TC7106A)  
High Impedance CMOS Differential Inputs.... 1012Ω  
Differential Reference Inputs Simplify Ratiometric  
Measurements  
Low Power Operation ..................................... 10mW  
ORDERING INFORMATION  
PART CODE  
TC710X X X XXX  
6 = LCD  
7 = LED  
}
A or blank*  
R (reversed pins) or blank (CPL pkg only)  
* "A" parts have an improved reference TC  
Package Code (see below):  
0.1µF  
LCD DISPLAY (TC7106/A) OR  
COMMON ANODE LED  
DISPLAY (TC7107/A)  
33  
C
REF  
34  
+
C
REF  
1M  
Package  
Code  
Temperature  
Range  
31  
SEGMENT  
DRIVE  
+
2–19  
+
V
IN  
22–25  
ANALOG  
INPUT  
Package  
Pin Layout  
0.01µF  
20  
30  
32  
POL  
BP  
V
IN  
MINUS SIGN  
BACKPLANE  
DRIVE  
CKW  
CLW  
CPL  
IPL  
44-Pin PQFP  
44-Pin PLCC  
40-Pin PDIP  
40-Pin PDIP  
40-Pin CerDIP  
Formed Leads  
0°C to +70°C  
0°C to +70°C  
21  
1
ANALOG  
COMMON  
+
V
Normal  
Normal  
Normal  
0°C to +70°C  
24kΩ  
1kΩ  
28  
TC7106/A  
TC7107/A  
+
V
BUFF  
– 25°C to +85°C  
– 25°C to +85°C  
9V  
V
47kΩ  
+
REF  
36  
V
0.47µF  
29  
REF  
IJL  
C
V
AZ  
35 100mV  
26  
V
REF  
0.22µF  
27  
V
INT  
AVAILABLE PACKAGES  
OSC OSC OSC  
2
3
1
TO ANALOG  
COMMON (PIN 32)  
C
39  
38  
40  
OSC  
R
100pF  
3 CONVERSIONS/SEC  
200mV FULL SCALE  
OSC  
100kΩ  
40-Pin CERDIP  
40-Pin Plastic DIP  
Figure 1. TC7106/A/7/A Typical Operating Circuit  
44-Pin Plastic Quad Flat  
Package Formed Leads  
44-Pin Plastic Chip  
Carrier PLCC  
TC7106/6A/7/7A-7 11/4/96  
TelCom Semiconductor reserves the right to make changes in the circuitryand specifications to its devices.  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
ABSOLUTE MAXIMUM RATINGS*  
Clock Input ....................................................... GND to V+  
Power Dissipation (Note 2) (TA 70°C)  
40-Pin CerDIP Package ...................................2.29W  
40-Pin Plastic DIP.............................................1.23W  
44-Pin PLCC.....................................................1.23W  
44-Pin PQFP ....................................................1.00W  
Operating Temperature  
“C” Devices ............................................ 0°C to +70°C  
“I” Devices ........................................25°C to +85°C  
Storage Temperature ............................ – 65°C to +150°C  
Lead Temperature (Soldering, 10 sec) ................. +300°C  
TC7106A  
Supply Voltage (V+ to V) ...........................................15 V  
Analog Input Voltage (either input) (Note 1)......... V+ to V–  
Reference Input Voltage (either input) ................. V+ to V–  
Clock Input ........................................................ Test to V+  
Package Power Dissipation (Note 2) (TA 70°C)  
CerDIP ..............................................................2.29W  
Plastic DIP ........................................................1.23W  
PLCC ................................................................1.23W  
PQFP ................................................................1.00W  
Operating Temperature  
“C” Devices ............................................ 0°C to +70°C  
“I” Devices ........................................25°C to +85°C  
Storage Temperature ............................ – 65°C to +150°C  
Lead Temperature (Soldering, 60 sec) ................... 300°C  
*Static-sensitive device. Unused devices must be stored in conductive  
material. Protect devices from static discharge and static fields. Stresses  
above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. These are stress ratings only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating Conditions for extended periods  
may affect device reliability.  
TC7107A  
Supply Voltage  
V+ ................................................................................................ +6 V  
V............................................................................................... – 9 V  
Analog Input Voltage (either input) (Note 1)......... V+ to V–  
Reference Input Voltage (either input) ................. V+ to V–  
ELECTRICAL CHARACTERISTICS (Note 3)  
TC7106/A & TC7107/A  
Parameters  
Test Conditions  
Min  
Typ  
Max  
Unit  
Zero Input Reading  
VIN = 0.0 V  
– 000.0  
±000.0  
+000.0  
Digital  
Full-Scale = 200.0mV  
Reading  
Ratiometric Reading  
VIN = VREF  
VREF = 100 mV  
VIN = +VI+N 200mV  
999  
– 1  
999/1000  
1000  
+1  
Digital  
Reading  
Roll-Over Error (Difference in  
Reading for Equal Positive and  
Negative Reading Near Full-Scale)  
±0.2  
Counts  
Linearity (Max. Deviation From  
Best Straight Line Fit)  
Full-Scale = 200mV  
or Full-Scale = 2.000 V  
– 1  
±0.2  
50  
15  
1
+1  
10  
Counts  
µV/V  
µV  
Common-Mode  
Rejection Ratio (Note 4)  
VCM = ±1V, VIN = 0V,  
Full Scale = 200.0 mV  
Noise (Pk – Pk Value Not  
Exceeded 95% of Time)  
VIN = 0 V  
Full-Scale = 200.0mV  
Leakage Current @ Input  
Zero Reading Drift  
VIN = 0 V  
pA  
VIN = 0 V  
“C” Device = 0°C to +70°C  
0.2  
1.0  
1
2
µV/°C  
µV/°C  
V
IN = 0 V  
“I” Device = – 25°C to +85°C  
IN = 199.0mV,  
Scale Factor  
V
Temperature Coefficient  
“C” Device = 0°C to +70°C  
(Ext. Ref = 0ppm°C)  
1
5
ppm/°C  
ppm/°C  
V
IN = 199.0mV  
20  
“I” Device = – 25°C to +85°C  
Supply Current (Does Not  
VIN = 0  
0.8  
1.8  
mA  
Include LED Current For TC7107/A)  
2
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
ELECTRICAL CHARACTERISTICS (Cont.) (Note 3)  
TC7106/A & TC7107/A  
Parameters  
Test Conditions  
Min  
Typ  
Max  
Unit  
Analog Common Voltage  
25kBetween Common  
2.7  
3.05  
3.35  
V
(With Respect to Pos. Supply)  
and Pos. Supply  
Temp. Coeff. of  
Analog Common  
(With Respect  
to Pos. Supply)  
25kBetween Common  
and Pos. Supply  
0°C TA +70°C  
7106A/7A  
7106/7  
20  
80  
50  
ppm/°C  
ppm/°C  
("C", Commercial Temp. Range Devices)  
Temp. Coeff. of  
Analog Common  
(With Respect  
to Pos. Supply)  
25kBetween Common  
and Pos. Supply  
– 25°C TA 85°C  
(“I,” Industrial Temp. Range Devices)  
V+ to V= 9V  
4
5
75  
6
ppm/°C  
V
TC7106A ONLY Pk – Pk  
Segment Drive Voltage (Note 5)  
TC7106A ONLY Pk – Pk  
V+ to V= 9V  
4
5
6
V
Backplane Drive Voltage (Note 5)  
TC7107A ONLY  
V+ = 5.0V  
5
8.0  
16  
mA  
mA  
Segment Sinking Current (Except Pin 19)  
Segment Voltage = 3V  
V+ = 5.0V  
TC7107A ONLY  
10  
Segment Sinking Current (Pin 19)  
Segment Voltage = 3V  
NOTES: 1. Input voltages may exceed the supply voltages provided the input current is limited to ±100µA.  
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3. Unless otherwise noted, specifications apply to both the TC7106/A and TC7107/A at TA = 25°C, fCLOCK = 48 kHz. Parts are tested in the  
circuit of Figure 1.  
4. Refer to “Differential Input” discussion.  
5. Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is 20 times  
conversion rate. Average DC component is less than 50mV.  
3
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
PIN CONFIGURATIONS  
+
+
OSC  
OSC  
OSC  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
V
D
C
OSC  
OSC  
OSC  
V
D
C
1
2
1
2
1
2
3
NORMAL PIN  
CONFIGURATION  
REVERSE PIN  
CONFIGURATION  
1
1
1
1
1
1
1
1
1
1
3
3
3
TEST  
B
A
F
B
A
F
4
TEST  
4
+
+
V
5
5
1's  
V
1's  
REF  
REF  
V
6
6
V
REF  
REF  
+
+
C
G
G
1
C
7
7
1
REF  
REF  
C
E
E
C
8
8
1
1
REF  
REF  
ANALOG  
ANALOG  
9
9
D
C
B
A
F
D
C
B
A
F
2
2
2
2
2
2
2
2
2
2
2
2
COMMON  
COMMON  
+
+
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
V
IN  
IN  
TC7106ACPL  
TC7107AIPL  
TC7106AIJL  
TC7107AIJL  
V
V
IN  
IN  
10's  
10's  
C
C
V
AZ  
AZ  
V
BUFF  
BUFF  
V
E
E
V
INT  
INT  
D
B
V
G
C
A
G
V
D
B
3
3
3
3
G
2
2
3
3
3
100's  
100's  
C
3
F
E
F
E
3
3
4
3
3
100's  
100's  
A
3
3
G
AB  
AB  
4
1000's  
1000's  
BP/GND 20  
(7106A/7107A)  
POL  
(MINUS SIGN)  
POL  
(MINUS SIGN)  
BP/GND  
(7106A/7107A)  
6
5
4
3
2
1
44 43 42 41 40  
44 43 42 41 40 39 38 37 36 35 34  
7
8
REF LO  
1
2
NC  
F
G
E
D
C
39  
38  
37  
NC  
NC  
33  
32  
31  
30  
29  
28  
27  
1
1
1
2
2
C
G
2
REF  
9
C
TEST  
3
C
3
REF  
10  
11  
OSC  
3
4
A
3
36 COMMON  
IN HI  
NC  
NC  
5
G
3
35  
34  
33  
NC 12  
OSC  
2
6
BP/GND  
POL  
TC7106ACLW  
TC7107ACLW  
(PLCC)  
TC7106ACKW  
TC7107ACKW  
(FLAT PACKAGE)  
B
A
F
13  
14  
15  
16  
17  
IN LO  
OSC  
1
7
2
2
2
2
3
+
32 A/Z  
V
8
26 AB  
4
31 BUFF  
D
1
9
25  
24  
23  
E
F
3
E
D
30 INT  
C
1
10  
11  
3
29  
V
B
1
B
3
18 19 20 21 22 23 24 25 26 27 28  
12 13 14 15 16 17 18 19 20 21 22  
4
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
PIN DESCRIPTION  
(Pin No.  
(Pin No.  
40-Pin PDIP 40-Pin PDIP  
(Normal))  
(Reverse))  
Symbol  
Description  
1
2
(40)  
(39)  
(38)  
(37)  
(36)  
(35)  
(34)  
(33)  
(32)  
(31)  
(30)  
(29)  
(28)  
(27)  
(26)  
(25)  
(24)  
(23)  
(22)  
(21)  
(20)  
V+  
D1  
C1  
B1  
Positive supply voltage.  
Activates the D section of the units display.  
Activates the C section of the units display.  
Activates the B section of the units display.  
Activates the A section of the units display.  
Activates the F section of the units display.  
Activates the G section of the units display.  
Activates the E section of the units display.  
Activates the D section of the tens display.  
Activates the C section of the tens display.  
Activates the B section of the tens display.  
Activates the A section of the tens display.  
Activates the F section of the tens display.  
Activates the E section of the tens display.  
Activates the D section of the hundreds display.  
Activates the B section of the hundreds display.  
Activates the F section of the hundreds display.  
Activates the E section of the hundreds display.  
Activates both halves of the 1 in the thousands display.  
Activates the negative polarity display.  
3
4
5
A1  
6
F1  
7
G1  
E1  
8
9
D2  
C2  
B2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
A2  
F2  
E2  
D3  
B3  
F3  
E3  
AB4  
POL  
BP  
GND  
LCD Backplane drive output (TC7106A).  
Digital ground (TC7107A).  
22  
23  
24  
25  
26  
27  
(19)  
(18)  
(17)  
(16)  
(15)  
(14)  
G3  
A3  
Activates the G section of the hundreds display.  
Activates the A section of the hundreds display.  
Activates the C section of the hundreds display.  
Activates the G section of the tens display.  
Negative power supply voltage.  
C3  
G2  
V–  
VINT  
Integrator output. Connection point for integration capacitor. See  
INTEGRATING CAPACITOR section for more details  
28  
29  
(13)  
(12)  
VBUFF  
CAZ  
Integration resistor connection. Use a 47kresistor for a 200mV full-  
scale range and a 470kresistor for 2V full-scale range.  
The size of the auto-zero capacitor influences system noise. Use a  
0.47µF capacitor for 200mV full scale, and a 0.047µF capacitor for  
2V full scale. See Paragraph on AUTO-ZERO CAPACITOR for more  
details.  
30  
31  
32  
(11)  
(10)  
(9)  
VIN  
V+IN  
The analog LOW input is connected to this pin.  
The analog HIGH input signal is connected to this pin.  
ANALOG  
COMMON  
This pin is primarily used to set the analog common-mode voltage  
for battery operation or in systems where the input signal is  
referenced to the power supply. It also acts as a reference voltage  
source. See paragraph on ANALOG COMMON for more details.  
33  
(8)  
CREF  
See pin 34.  
5
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
PIN DESCRIPTION (Cont.)  
(Pin No.  
(Pin No.  
40-Pin PDIP 40-Pin PDIP  
(Normal)  
(Reverse)  
Symbol  
Description  
34  
(7)  
C+REF  
A 0.1µF capacitor is used in most applications. If a large common-  
mode voltage exists (for example, the VIN pin is not at analog  
common), and a 200mV scale is used, a 1µF capacitor is recom-  
mended and will hold the roll-over error to 0.5 count.  
35  
36  
(6)  
(5)  
VREF  
V+REF  
See pin 36.  
The analog input required to generate a full-scale output (1999  
counts). Place 100mV between pins 35 and 36 for 199.9mV  
full-scale. Place 1V between pins 35 and 36 for 2V full scale. See  
paragraph on REFERENCE VOLTAGE.  
37  
(4)  
Test  
Lamp test. When pulled HIGH (to V+) all segments will be turned on  
and the display should read –1888. It may also be used as a negative  
supply for externally-generated decimal points. See paragraph under  
TEST for additional information.  
38  
39  
40  
(3)  
(2)  
(1)  
OSC3  
OSC2  
OSC1  
See pin 40.  
See pin 40.  
Pins 40, 39, 38 make up the oscillator section. For a 48kHz clock  
(3 readings per section), connect pin 40 to the junction of a 100kΩ  
resistor and a 100pF capacitor. The 100kresistor is tied to pin 39  
and the 100pF capacitor is tied to pin 38.  
General Theory of Operation  
where:  
Dual Slope Conversion Principles  
VR = Reference Voltage  
TSI = Signal Integration Time (Fixed)  
TRI = Reference Voltage Integration Time (Variable)  
(All Pin Designations Refer to the 40-Pin DIP)  
The TC7106A and TC7107A are dual slope, integrating  
analog-to-digital converters. An understanding of the dual  
slope conversion technique will aid in following the detailed  
operation theory.  
The conventional dual slope converter measurement  
cycle has two distinct phases:  
For a constant VIN:  
TRI  
VIN = VR  
TSI  
C
ANALOG  
INPUT  
Input Signal Integration  
Reference Voltage Integration (Deintegration)  
INTEGRATOR  
SIGNAL  
COMPARATOR  
+
The input signal being converted is integrated for a fixed  
+
time period (TSI). Time is measured by counting clock  
pulses. An opposite polarity constant reference voltage is  
then integrated until the integrator output voltage returns to  
zero. The reference integration time is directly proportional  
to the input signal (TRI). (Figure 2A).  
+/–  
SWITCH  
DRIVER  
CLOCK  
PHASE  
REF  
VOLTAGE  
CONTROL  
LOGIC  
CONTROL  
POLARITY CONTROL  
In a simple dual slope converter a complete conversion  
requires the integrator output to “ramp-up” and “ramp-  
down.”  
Asimplemathematicalequationrelatestheinputsignal,  
reference voltage and integration time:  
COUNTER  
DISPLAY  
V
V
V
IN  
IN  
FULL SCALE  
1/2 V  
FULL SCALE  
FIXED VARIABLE  
SIGNAL REFERENCE  
INTEGRATE INTEGRATE  
TIME TIME  
TSI  
VRTRI  
RC  
1
RC  
VIN(t)dt =  
0
Figure 2A. Basic Dual Slope Converter  
6
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
The dual slope converter accuracy is unrelated to the  
integrating resistor and capacitor values as long as they are  
stable during a measurement cycle. An inherent benefit is  
noise immunity. Noise spikes are integrated or averaged to  
zero during the integration periods. Integrating ADCs are  
immune to the large conversion errors that plague succes-  
sive approximation converters in high-noise environments.  
Interfering signals with frequency components at multiples  
of the averaging period will be attenuated. Integrating ADCs  
commonly operate with the signal integration period set to a  
multiple of the 50/60Hz power line period. (Figure 2B)  
Signal Integrate Cycle  
When the auto-zero loop is opened, the internal differ-  
ential inputs connect to VI+N and VIN. The differential input  
signal is integrated for a fixed time period. The signal  
integration period is 1000 counts. The externally set clock  
frequency is divided by four before clocking the internal  
counters. The integration time period is:  
4
TSI =  
x 1000  
fOSC  
where:  
fOSC = External Clock Frequency  
30  
20  
10  
The differential input voltage must be within the device  
common-mode range (1V of either supply) when the con-  
verter and measured system share the same power supply  
common(ground). Iftheconverterandmeasuredsystemdo  
not share the same power supply common, VIN should be  
tied to analog common.  
Polarity is determined at the end of the signal integrate  
phase. The sign bit is a true polarity indication in that signals  
less than 1 LSB are correctly determined. This allows  
precision null detection, limited only by device noise and  
auto-zero residual offsets.  
T = MEASUREMENT PERIOD  
0
0.1/T  
1/T  
10/T  
Reference Integrate Cycle  
INPUT FREQUENCY  
The final phase is reference integrate or de-integrate.  
VIN is internally connected to analog common and VI+N is  
connected across the previously charged reference capaci-  
tor. Circuitrywithinthechipensuresthatthecapacitorwillbe  
connected with the correct polarity to cause the integrator  
output to return to zero. The time required for the output to  
return to zero is proportional to the input signal and is  
between0and2000counts.Thedigitalreadingdisplayedis:  
Figure 2B. Normal-Mode Rejection of Dual Slope Converter  
ANALOG SECTION  
In addition to the basic signal integrate and deintegrate  
cycles discussed, the circuit incorporates an auto-zero  
cycle. This cycle removes buffer amplifier, integrator, and  
comparator offset voltage error terms from the conversion.  
A true digital zero reading results without adjusting external  
potentiometers. A complete conversion consists of three  
cycles: an auto-zero, signal-integrate and reference-inte-  
grate cycle.  
VIN  
1000 x  
VREF  
DIGITAL SECTION (TC7106A)  
Auto-Zero Cycle  
The TC7106A (Figure 3) contains all the segment driv-  
ers necessary to directly drive a 3-1/2 digit liquid crystal  
display (LCD). An LCD backplane driver is included. The  
backplane frequency is the external clock frequency divided  
by 800. For three conversions/second the backplane fre-  
quency is 60Hz with a 5V nominal amplitude. When a  
segment driver is in phase with the backplane signal the  
segment is “OFF.” An out of phase segment drive signal  
causes the segment to be “ON” or visible. This AC drive  
configuration results in negligible DC voltage across each  
LCD segment. This insures long LCD display life. The  
polarity segment driver is “ON” for negative analog inputs. If  
VI+N and VIN are reversed, this indicator will reverse.  
During the auto-zero cycle the differential input signal is  
disconnected from the circuit by opening internal analog  
gates. The internal nodes are shorted to analog common  
(ground) to establish a zero-input condition. Additional ana-  
log gates close a feedback loop around the integrator and  
comparator. This loop permits comparator offset voltage  
error compensation. The voltage level established on CAZ  
compensates for device offset voltages. The offset error  
referred to the input is less than 10µV.  
The auto-zero cycle length is 1000 to 3000 counts.  
7
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
Figure 3. TC7106A Block Diagram  
8
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
When the TEST pin on the TC7106A is pulled to V+, all  
segmentsareturnedON.” Thedisplayreads1888.During  
this mode the LCD segments have a constant DC voltage  
impressed. DO NOT LEAVE THE DISPLAY IN THIS MODE  
FOR MORE THAN SEVERAL MINUTES! LCD displays  
may be destroyed if operated with DC levels for extended  
periods.  
Signal Integrate: 1000 Counts  
(4000 Clock Pulses)  
This time period is fixed. The integration period is:  
1
TSI = 4000  
[f ]  
OSC  
Where fOSC is the externally set clock frequency.  
The display font and the segment drive assignment are  
shown in Figure 4.  
Reference Integrate: 0 to 2000 Counts  
(0 to 8000 Clock Pulses)  
DISPLAY FONT  
The TC7106A/7107A are drop-in replacements for the  
7106/7107 parts. External component value changes are  
not required to benefit from the low drift internal reference.  
1000's  
100's  
10's  
1's  
Clock Circuit  
Three clocking methods may be used:  
1. An external oscillator connected to pin 40.  
2. A crystal between pins 39 and 40.  
3. An R-C oscillator using all three pins.  
Figure 4. Display Font and Segment Assignment  
TO  
COUNTER  
÷4  
In the TC7106A, an internal digital ground is generated  
from a 6 volt zener diode and a large P channel source  
follower. This supply is made stiff to absorb the large  
capacitivecurrentswhenthebackplanevoltageisswitched.  
40  
39  
38  
CRYSTAL  
EXT  
DIGITAL SECTION (TC7107A)  
TC7106A  
TC7107A  
OSC  
RC NETWORK  
Figure 5 shows the TC7107A. It is designed to drive  
common anode LEDs. It is identical to the TC7106A except  
that the regulated supply and backplane drive have been  
eliminated and the segment drive is typically 8mA. The  
1000'soutput(pin19)sinkscurrentfromtwoLEDsegments,  
and has a 16mA drive capability.  
In both devices, the polarity indication is “ON” for nega-  
tiveanaloginputs. IfVIN and VI+N arereversed, thisindication  
can be reversed also, if desired.  
TO TEST PIN ON TSC7106A  
TO GND PIN ON TSC7107A  
Figure 6. Clock Circuits  
COMPONENT VALUE SELECTION  
Auto-Zero Capacitor – CAZ  
The CAZ capacitor size has some influence on system  
noise. A 0.47µF capacitor is recommended for 200mV full-  
scaleapplicationswhere1LSBis100µV. A0.047µFcapaci-  
tor is adequate for 2.0V full-scale applications. A mylar  
dielectric capacitor is adequate.  
The display font is the same as the TC7106A.  
System Timing  
The oscillator frequency is divided by 4 prior to clocking  
the internal decade counters. The three-phase measure-  
ment cycle takes a total of 4000 counts or 16000 clock  
pulses. The 4000 count cycle is independent of input signal  
magnitude.  
Reference Voltage Capacitor – CREF  
The reference voltage used to ramp the integrator  
output voltage back to zero during the reference-integrate  
cycle is stored on CREF. A 0.1µF capacitor is acceptable  
whenVIN istiedtoanalogcommon. Ifalargecommon-mode  
voltage exists (VREF analog common) and the application  
requires200mVfull-scale, increaseCREF to1.0µF. Rollover  
error will be held to less than 1/2 count. A mylar dielectric  
capacitor is adequate.  
Each phase of the measurement cycle has the following  
length:  
Auto-Zero Phase: 1000 to 3000 Counts  
(4000 to 12000 Clock Pulses)  
For signals less than full-scale, the auto-zero phase is  
assigned the unused reference integrate time period.  
9
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
Figure 5. TC7107A Block Diagram  
10  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
Note:1. fOSC = 48kHz (3 readings/sec)  
Integrating Capacitor – CINT  
CINT should be selected to maximize the integrator  
output voltage swing without causing output saturation. Due  
to the TC7106A/7107A superior temperature coefficient  
specification,analogcommonwillnormallysupplythediffer-  
ential voltage reference. For this case a ±2V full-scale  
integrator output swing is satisfactory. For 3 readings/  
second (fOSC = 48kHz) a 0.22µF value is suggested. If a  
different oscillator frequency is used, CINT must be changed  
in inverse proportion to maintain the nominal ±2 V integrator  
swing.  
Oscillator Components  
ROSC (Pin 40 to Pin 39) should be 100k. COSC is  
0.45  
selected using the equation:  
fOSC  
=
RC  
For fOSC of 48kHz, COSC is 100pF nominally.  
NotethatfOSCisdividedbyfourtogeneratetheTC7106A  
internal control clock. The backplane drive signal is derived  
by dividing fOSC by 800.  
An exact expression for CINT is:  
To achieve maximum rejection of 60Hz noise pickup,  
the signal-integrate period should be a multiple of 60Hz.  
Oscillator frequencies of 240kHz, 120kHz, 80kHz, 60kHz,  
48kHz, 40kHz, etc. should be selected. For 50 Hz rejection,  
oscillatorfrequenciesof200kHz,100kHz,662/3kHz,50kHz,  
40kHz, etc. would be suitable. Note that 40kHz (2.5 read-  
ings/second) will reject both 50Hz and 60Hz.  
VFS  
1
(4000) (  
) (  
)
RINT  
fOSC  
CINT  
=
VINT  
Where:  
fOSC = Clock frequency at Pin 38  
VFS = Full-scale input voltage  
RINT = Integrating resistor  
Reference Voltage Selection  
A full-scale reading (2000 counts) requires the input  
signal be twice the reference voltage.  
VINT = Desired full-scale integrator output swing  
CINT must have low dielectric absorption to minimize  
rollover error. A polypropylene capacitor is recommended.  
Required Full-Scale Voltage*  
VREF  
200.0mV  
2.000V  
100.0mV  
1.000V  
Integrating Resistor – RINT  
The input buffer amplifier and integrator are designed  
with class A output stages. The output stage idling current  
is 100µA. The integrator and buffer can supply 20µA drive  
currents with negligible linearity errors. RINT is chosen to  
remainintheoutputstagelineardriveregionbutnotsolarge  
thatprintedcircuitboardleakagecurrentsinduceerrors. For  
a 200mV full-scale, RINT is 47k. 2.0V full-scale requires  
470k.  
* VFS = 2 VREF  
In some applications a scale factor other than unity may  
exist between a transducer output voltage and the required  
digitalreading.Assume,forexample,apressuretransducer  
output is 400mV for 2000 lb/in2. Rather than dividing the  
input voltage by two the reference voltage should be set to  
200mV. This permits the transducer input to be used  
directly.  
The differential reference can also be used when a  
digital zero reading is required when VIN is not equal to zero.  
This is common in temperature measuring instrumentation.  
A compensating offset voltage can be applied between  
analog common and VIN. The transducer output is con-  
nected between VI+N and analog common.  
The internal voltage reference potential available at  
analog common will normally be used to supply the convert-  
er's reference. This potential is stable whenever the supply  
potential is greater than approximately 7V. In applications  
whereanexternally-generatedreferencevoltageisdesired,  
refer to Figure 7.  
Component  
Value  
Nominal Full-Scale Voltage  
200.0mV  
0.47µF  
47kΩ  
2.000V  
0.047µF  
470kΩ  
CAZ  
RINT  
CINT  
0.22µF  
0.22µF  
11  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
C
+
+
INPUT  
BUFFER  
I
V
V
+
V
R
+
V
+
I
+
V
+
+
REF  
6.8V  
ZENER  
V
V
I
6.8k  
IN  
V
INTEGRATOR  
TC7106A  
TC7107A  
REF  
20kΩ  
T
I
I
V
=
V
– V  
Z
I
I
[
CM  
IN  
[
+
V
CM  
R C  
V
TC7106A  
TC7107A  
I
I
REF  
TC04  
Where:  
4000  
fOSC  
T
INTEGRATION TIME  
=
=
=
V
1.2V  
REF  
REF  
C
R
INTEGRATION CAPACITOR  
= INTEGRATION RESISTOR  
I
I
COMMON  
(b)  
(a)  
Figure 9. Common-Mode Voltage Reduces Available Integrator  
Figure 7. External Reference  
Swing. (VCOM VIN)  
Device Pin Functional Description  
Differential Signal Inputs  
Differential Reference  
(V+REF (Pin 36), VREF (Pin 35))  
(VI+N (Pin 31), VIN (Pin 30))  
The reference voltage can be generated anywhere  
within the V+ to Vpower supply range.  
To prevent rollover errors from being induced by large  
common-mode voltages, CREF should be large compared to  
stray node capacitance.  
The TC7106A/TC7107A circuits have a significantly  
lower analog common temperature coefficient. This gives a  
very stable voltage suitable for use as a reference. The  
temperature coefficient of analog common is 20ppm/°C  
typically.  
The TC7106A/7017A is designed with true differential  
inputs and accepts input signals within the input stage  
common mode voltage range (VCM). The typical range is V+  
–1.0 to V+1 V. Common-mode voltages are removed from  
the system when the TC7106A/TC7107A operates from a  
battery or floating power source (isolated from measured  
system) and VIN is connected to analog common (VCOM):  
See Figure 8.  
In systems where common-mode voltages exist, the  
86dB common-mode rejection ratio minimizes error. Com-  
mon-mode voltages do, however, affect the integrator out-  
put level. Integrator output saturation must be prevented. A  
worst-case condition exists if a large positive VCM exists in  
conjunctionwithafull-scalenegativedifferentialsignal. The  
negative signal drives the integrator output positive along  
with VCM (Figure 9). For such applications the integrator  
output swing can be reduced below the recommended 2.0V  
full-scale swing. The integrator output will swing within 0.3V  
of V+ or Vwithout increasing linearity errors.  
SEGMENT  
DRIVE  
LCD DISPLAY  
MEASURED  
SYSTEM  
V
+
C
V
POL BP  
BUF  
AZ  
INT  
OSC  
1
V IN  
+
V
OSC  
OSC  
3
2
V IN  
TC7106A  
V
GND  
ANALOG  
COMMON REF REF  
+
+
V
V
V
V
+
V
V
GND  
POWER  
SOURCE  
+
9V  
Figure 8. Common-Mode Voltage Removed in Battery Operation with VIN = Analog Common  
12  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
Analog Common (Pin 32)  
Internal Voltage Reference Stability  
The analog common pin is set at a voltage potential  
approximately 3.0V below V+. The potential is guaranteed  
to be between 2.7V and 3.35 V below V+. Analog common  
is tied internally to the N channel FET capable of sinking  
20mA. This FET will hold the common line at 3.0V should an  
external load attempt to pull the common line toward V+.  
Analog common source current is limited to 10µA. Analog  
common is therefore easily pulled to a more negative  
voltage (i.e., below V+ – 3.0V).  
The analog common voltage temperature stability has  
been significantly improved (Figure 10). The “A” version of  
the industry standard circuits allow users to upgrade old  
systems and design new systems without external voltage  
references. External R and C values do not need to be  
changed. Figure 11 shows analog common supplying the  
necessary voltage reference for the TC7106A/TC7107A.  
200  
The TC7106A connects the internal VI+N and VIN inputs  
to analog common during the auto-zero cycle. During the  
reference-integrate phase, VIN is connected to analog com-  
mon. If VIN is not externally connected to analog common,  
a common-mode voltage exists. This is rejected by the  
converter's 86dB common-mode rejection ratio. In battery  
operation, analog common and VIN are usually connected,  
removingcommon-modevoltageconcerns.Insystemswhere  
VIN is connected to the power supply ground or to a given  
voltage, analog common should be connected to VIN.  
Theanalogcommonpinservestosettheanalogsection  
reference or common point. The TC7106A is specifically  
designed to operate from a battery or in any measurement  
system where input signals are not referenced (float) with  
respect to the TC7106A power source. The analog common  
potential of V+ – 3.0V gives a 6 V end of battery life voltage.  
The common potential has a 0.001%/% voltage coefficient  
and a 15 output impedance.  
180  
NO  
MAXIMUM  
SPECIFIED  
NO MAXIMUM  
SPECIFIED  
160  
140  
120  
100  
TYPICAL  
NO MAXIMUM  
SPECIFIED  
MAXIMUM  
LIMIT  
80  
60  
40  
20  
TYPICAL  
TYPICAL  
TC  
ICL7106  
ICL7136  
7106A  
0
Figure 10. Analog Common Temperature Coefficient  
With sufficiently high total supply voltage (V+ – V–  
> 7.0V) analog common is a very stable potential with  
excellent temperature stability—typically 20ppm/°C. This  
potential can be used to generate the reference voltage. An  
external voltage reference will be unnecessary in most  
cases because of the 50ppm/°C maximum temperature  
coefficient. See Internal Voltage Reference discussion.  
1
+
24k  
1kΩ  
V
V
TC7106A  
TC7107A  
Test (Pin 37)  
The TEST pin potential is 5V less than V+. TEST may be  
used as the negative power supply connection for external  
CMOSlogic. TheTESTpinistiedtotheinternallygenerated  
negative logic supply (Internal Logic Ground) through a  
500resistor in the TC7106A. The TEST pin load should be  
no more than 1mA .  
36  
+
V
REF  
V
REF  
35  
V
REF  
32  
ANALOG  
COMMON  
If TEST is pulled to V+ all segments plus the minus sign  
will be activated. Do not operate in this mode for more than  
severalminuteswiththeTC7106A. WithTEST=V+ theLCD  
segments are impressed with a DC voltage which will  
destroy the LCD.  
SET V  
= 1/2 V  
REF  
FULL SCALE  
Figure 11. Internal Voltage Reference Connection  
The TEST pin will sink about 10mA when pulled to V+.  
13  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
TC7107 Power Dissipation Reduction  
POWER SUPPLIES  
The TC7107A sinks the LED display current and this  
causes heat to build up in the IC package. If the internal  
voltage reference is used, the changing chip temperature  
can cause the display to change reading. By reducing the  
LED common anode voltage the TC7107A package power  
dissipation is reduced.  
The TC7107A is designed to work from ±5V supplies.  
However, if a negative supply is not available, it can be  
generatedfromtheclockoutputwithtwodiodes,twocapaci-  
tors, and an inexpensive IC. (Figure 12)  
In selected applications a negative supply is not re-  
quired. The conditions to use a single +5V supply are:  
Figure 14 is a photograph of a curve-tracer display  
showing the relationship between output current and output  
voltage for a typical TC7107CPL. Since a typical LED has  
1.8 volts across it at 7mA, and its common anode is con-  
nected to +5V, the TC7107A output is at 3.2V (point A on  
Figure 13). Maximum power dissipation is 8.1mA x 3.2V x  
24 segments = 622mW.  
Notice, however, that once the TC7107A output voltage  
isabovetwovolts, theLEDcurrentisessentiallyconstantas  
output voltage increases. Reducing the output voltage by  
0.7V (point B in Figure 14) results in 7.7mA of LED current,  
only a 5 percent reduction. Maximum power dissipation is  
only 7.7mA x 2.5 V x 24 = 462mW, a reduction of 26%. An  
output voltage reduction of 1 volt (point C) reduces LED  
current by 10% (7.3mA) but power dissipation by 38%!  
(7.3mA x 2.2V x 24 = 385mW).  
The input signal can be referenced to the center of the  
common-mode range of the converter.  
The signal is less than ±1.5V.  
An external reference is used.  
The TSC7660 DC to DC converter may be used to  
generate – 5 V from +5 V (Figure 13).  
+
V
CD4009  
+
V
OSC  
1
OSC  
0.047  
µF  
2
1N914  
+
OSC  
3
10  
µF  
1N914  
TC7107A  
GND  
V
V
= –3.3V  
Figure 12. Generating Negative Supply From +5 V  
+5 V  
1
+
36  
35  
32  
+
V
V
V
REF  
REF  
LED  
DRIVE  
Figure 14. TC7107A Output Current vs Output Voltage  
COM  
TC7107A  
Reduced power dissipation is very easy to obtain.  
Figure15showstwoways:eithera5.1ohm,1/4wattresistor  
or a 1 Amp diode placed in series with the display (but not in  
series with the TC7107A). The resistor will reduce the  
TC7107A output voltage, when all 24 segments are “ON,” to  
point “C” of Figure 14. When segments turn off, the output  
voltagewillincrease.Thediode,ontheotherhand,willresult  
in a relatively steady output voltage, around point “B.”  
+
31  
V
IN  
V
IN  
IN  
30  
21  
V
GND  
V
8
26  
2
4
+
(–5 V)  
5
10µF  
TC7660  
*3-1/2 DIGIT ADC  
3
+
10µF  
Figure 13. Negative Power Supply Generation with TC7660  
14  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
In addition to limiting maximum power dissipation, the  
resistor reduces the change in power dissipation as the  
display changes. This effect is caused by the fact that, as  
fewer segments are “ON,” each “ON” output drops more  
voltage and current. For the best case of six segments (a  
“111” display) to worst case (a “1888” display) the resistor  
willchangeabout230mW, whileacircuitwithouttheresistor  
will change about 470mW. Therefore, the resistor will re-  
duce the effect of display dissipation on reference voltage  
drift by about 50%.  
APPLICATIONS INFORMATION  
Liquid Crystal Display Sources  
Several LCD manufacturers supply standard LCD dis-  
plays to interface with the TC7106A 3-1/2 digit analog-to-  
digital converter.  
Manufacturer Address/Phone  
Part Numbers1  
Crystaloid  
Electronics  
5282 Hudson Dr.  
Hudson, OH 44236  
216/655-2429  
C5335, H5535,  
T5135, SX440  
The change in LED brightness caused by the resistor is  
almost unnoticeable as more segments turn off. If display  
brightness remaining steady is very important to the de-  
signer, a diode may be used instead of the resistor.  
AND  
720 Palomar Ave.  
Sunnyvale, CA 94086  
408/523-8200  
FE 0201,0701  
FE 0203, 2201  
FE 0501  
IN  
–5V  
+5V  
Epson  
3415 Kashikawa St.  
Torrance, CA 90505  
213/534-0360  
LD-B709BZ  
LD-H7992AZ  
+
1 M  
24kΩ  
1kΩ  
150Ω  
Hamlin, Inc.  
612 E. Lake St.  
Lake Mills, WI 53551  
414/648-2361  
3902, 3933, 3903  
TP3  
0.47  
µF  
0.22  
µF  
100  
pF  
0.01  
µF  
Note: 1. Contact LCD manufacturer for full product listing/specifications.  
TP5  
TP2  
TP1  
0.1  
µF  
DISPLAY  
100  
kΩ  
47  
kΩ  
Light Emitting Diode Display Sources  
Several LED manufacturers supply seven segment  
digits with and without decimal point annunciators for the  
TC7107A.  
40  
1
30  
TP  
4
21  
TC7107A  
10  
20  
Manufacturer  
Address  
Display Type  
DISPLAY  
Hewlett-Packard  
Components  
640 Page Mill Rd.  
Palo Alto, CA 94304  
LED  
5.11/4W  
1N4001  
AND  
720 Palomar Ave.  
LED  
Sunnyvale, CA 94086  
Figure 15. Diode or Resistor Limits Package Power Dissipation  
15  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
Decimal Point and Annunciator Drive  
Ratiometric Resistance Measurements  
The TEST pin is connected to the internally-generated  
digital logic supply ground through a 500 resistor. The  
TEST pin may be used as the negative supply for external  
CMOS gate segment drivers. LCD display annunciators for  
decimal points, low battery indication, or function indication  
may be added without adding an additional supply. No more  
than 1mA should be supplied by the TEST pin: its potential  
is approximately 5V below V+.  
The true differential input and differential reference  
make ratiometric reading possible. Typically in a ratiometric  
operation, an unknown resistance is measured with respect  
to a known standard resistance. No accurately defined  
reference voltage is needed.  
The unknown resistance is put in series with a known  
standard and a current passed through the pair. The voltage  
developed across the unknown is applied to the input and  
the voltage across the known resistor is applied to the  
reference input. If the unknown equals the standard, the  
display will read 1000. The displayed reading can be deter-  
mined from the following expression:  
+
V
+
V
4049  
R Unknown  
Displayed Reading =  
x 1000  
TC7106A  
R Standard  
TO LCD  
DECIMAL  
POINT  
21  
BP  
The display will overrange for R Unknown 2 x R  
standard.  
GND  
37  
TEST  
TO LCD  
BACK-  
PLANE  
+
+
V
V
REF  
V
R
REF  
STANDARD  
+
LCD DISPLAY  
+
V
V
IN  
+
V
R
BP  
UNKNOWN  
TC7106A  
V
IN  
TO LCD  
DECIMAL  
POINTS  
DECIMAL  
ANALOG  
COMMON  
POINT  
TC7106A  
SELECT  
Figure 17. Low Parts Count Ratiometric Resistance  
Measurement  
4030  
GND  
TEST  
Figure 16. Decimal Point Drive Using TEST as Logic Ground  
16  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
9V  
+
+
IN4148  
200mV  
1µF  
26  
V
27  
29  
28  
1
IN  
9M  
V
+
+
V
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
10kΩ  
1MΩ  
24kΩ  
1kΩ  
2 V  
0.02  
µF  
TC7106A  
900kΩ  
90kΩ  
10kΩ  
1MΩ  
36  
20 V  
V
V
REF  
AD636  
47kΩ  
1 W  
10%  
35  
32  
31  
6.8µF  
REF  
+
200 V  
ANALOG  
COMMON  
1M10%  
40  
+
V
8
IN  
0.01  
µF  
20kW  
10%  
2.2µF  
30  
26  
38  
39  
V
COM  
IN  
C1 = 3–10pF VARIABLE,  
C2 = 132pF VARIABLE  
V
BP  
SEG  
DRIVE  
LCD DISPLAY  
Figure 18. 3 1/2 Digit True RMS AC DMM  
9V  
+
+
9V  
5.6k  
160kΩ  
160k  
300kΩ  
300kΩ  
+
+
V
V
V
V
V
V
R
V
V
1N914  
IN  
1
IN  
20kΩ  
+
R
+
IN  
1N4148  
SENSOR  
1
TC7106A  
IN  
TC7106A  
= 2V  
50kΩ  
V
FS  
0.7%/°C  
R
2
20kΩ  
+
+
R
3
R
V
V
2
V
V
PTC  
REF  
REF  
50kΩ  
REF  
REF  
COMMON  
COMMON  
Figure 20. Positive Temperature Coefficient Resistor  
Temperature Sensor  
Figure 19. Temperature Sensor  
17  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
9V  
2
1
CONSTANT 5 V  
+
+
V
V
+
V
REF  
REF02  
TC7106A  
TC911  
51k  
5.1kΩ  
50kΩ  
6
V
V
R
OUT  
ADJ  
2
REF  
R
4
R
5
V
= 2.00V  
FS  
5
3
2
8
1
NC  
V
V
IN  
3
+
TEMP  
V
OUT =  
1.86V @  
4
+
IN  
25°C  
TEMPERATURE  
DEPENDENT  
OUTPUT  
50kΩ  
1.3k  
COMMON  
R
1
V
GND  
4
26  
Figure 21. Integrated Circuit Temperature Sensor  
TO PIN 1  
TO PIN 1  
SET V  
REF  
= 100mV  
SET V  
= 100mV  
REF  
40  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100k  
100k  
39  
38  
37  
36  
35  
100pF  
100pF  
+5V  
22k  
1k  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1 k  
22k  
0.1µF  
0.1µF  
1M  
0.01µF  
47k  
1M  
+
+
IN  
IN  
0.01µF  
47kΩ  
TC7106A  
TC7107A  
+
0.47µF  
0.47µF  
9V  
0.22µF  
0.22µF  
–5V  
TO DISPLAY  
TO DISPLAY  
TO BACKPLANE  
Figure 22. TC7106A Using the Internal Reference: 200mV Full-  
Scale, 3 Readings-per-second (RPS).  
Figure 23. TC7107A Internal Reference (200mV Full-Scale,  
3RPS, VIN Tied to GND for Single Ended Inputs).  
18  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
+
V
TO PIN 1  
1
40  
SET V  
REF  
= 1V  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
100k  
TO  
LOGIC  
V
TO  
LOGIC  
GND  
CC  
100pF  
24k  
+
V
25k  
0.1µF  
TC7106A  
1M  
+
IN  
0.01µF  
TC7106A  
TC7107A  
0.047µF  
V
O/R  
29  
28  
27  
26  
25  
24  
23  
22  
21  
470k  
0.22µF  
V
U/R  
20  
21  
TO DISPLAY  
CD4023  
OR 74C10  
CD4077  
O/R = OVERRANGE  
U/R = UNDERRANGE  
Figure 24. Circuit for Developing Underrange and Overrange  
Signals from TC7106A Outputs.  
Figure 25. TC7106A/TC7107A: Recommended Component  
Values for 2.00V Full-Scale  
TO PIN 1  
40  
TO PIN 1  
40  
100k  
100k  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SET V  
= 100mV  
39  
38  
37  
36  
35  
34  
33  
32  
SET V  
REF  
= 100mV  
REF  
100pF  
100pF  
10k  
10k  
10k  
10k  
+
+
V
V
1k  
TC04  
1 k  
0.1µF  
TC04  
0.1µF  
+
1.2V  
0.01µF  
+
1.2V  
0.01µF  
IN  
1M  
IN  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1M  
TC7107A  
TC7107A  
0.47µF  
0.47µF  
47kΩ  
47k  
0.22µF  
V
0.22µF  
TO DISPLAY  
TO DISPLAY  
Figure 26. TC7107A With a 1.2V External Band-Gap Reference.  
(VIN Tied to Common.)  
Figure 27. TC7107A Operated from Single +5V Supply. An  
External Reference Must Be Used in This Application.  
19  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
PACKAGE DIMENSIONS  
40-Pin CerDIP  
PIN 1  
.540 (13.72)  
.510 (12.95)  
.098 (2.49) MAX.  
2.070 (52.58)  
.030 (0.76) MIN.  
.620 (15.75)  
.590 (15.00)  
2.030 (51.56)  
.060 (1.52)  
.020 (0.51)  
.210 (5.33)  
.170 (4.32)  
.015 (0.38)  
.008 (0.20)  
3°MIN.  
.150 (3.81)  
MIN.  
.200 (5.08)  
.125 (3.18)  
.700 (17.78)  
.620 (15.75)  
.020 (0.51)  
.016 (0.41)  
.110 (2.79)  
.090 (2.29)  
.065 (1.65)  
.045 (1.14)  
40-Pin PDIP  
PIN 1  
.555 (14.10)  
.530 (13.46)  
2.065 (52.45)  
2.035 (51.49)  
.610 (15.49)  
.590 (14.99)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
.008 (0.20)  
.150 (3.81)  
.115 (2.92)  
3° MIN.  
.700 (17.78)  
.610 (15.50)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
20  
3-1/2 DIGIT A/D CONVERTERS  
TC7106  
TC7106A  
TC7107  
TC7107A  
PACKAGE DIMENSIONS (Cont.)  
44-Pin PLCC  
PIN 1  
.021 (0.53)  
.013 (0.33)  
.050 (1.27) TYP.  
.695 (17.65)  
.685 (17.40)  
.630 (16.00)  
.590 (15.00)  
.656 (16.66)  
.650 (16.51)  
.032 (0.81)  
.026 (0.66)  
.020 (0.51) MIN.  
.656 (16.66)  
.650 (16.51)  
.120 (3.05)  
.090 (2.29)  
.695 (17.65)  
.650 (17.40)  
.180 (4.57)  
.165 (4.19)  
44-Pin PQFP  
7° MAX.  
.009 (0.23)  
.005 (0.13)  
PIN 1  
.041 (1.03)  
.026 (0.65)  
.018 (0.45)  
.012 (0.30)  
.398 (10.10)  
.390 (9.90)  
.557 (14.15)  
.537 (13.65)  
.031 (.080) TYP.  
.010 (0.25) TYP.  
.398 (10.10)  
.390 (9.90)  
.083 (2.10)  
.075 (1.90)  
.557 (14.15)  
.537 (13.65)  
.096 (2.45) MAX.  
Dimensions: inches (mm)  
Sales Offices  
TelCom Semiconductor H.K. Ltd.  
10 Sam Chuk Street, Ground Floor  
San Po Kong, Kowloon  
Hong Kong  
TEL: 852-2324-0122  
FAX: 852-2354-9957  
TelCom Semiconductor  
Austin Product Center  
9101 Burnet Rd. Suite 214  
Austin, TX 78758  
TEL: 512-873-7100  
FAX: 512-873-8236  
TelCom Semiconductor  
1300 Terra Bella Avenue  
P.O. Box 7267  
Mountain View, CA 94039-7267  
TEL: 415-968-9241  
FAX: 415-967-1590  
E-Mail: liter@c2smtp.telcom-semi.com  
Printed in the U.S.A.  
21  

相关型号:

TC7106CPT713

ADC, Dual-Slope, 1 Func, 1 Channel, PQFP44
MICROCHIP

TC7106IJL

3-1/2 DIGIT A/D CONVERTERS
TELCOM

TC7106IKW

IC,A/D CONVERTER,SINGLE,3 1/2-DIGIT,CMOS,QFP,44PIN
MICROCHIP

TC7106IKW713

1-CH DUAL-SLOPE ADC, PQFP44, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MQFP-44
MICROCHIP

TC7106ILW

IC,A/D CONVERTER,SINGLE,3 1/2-DIGIT,CMOS,LDCC,44PIN
MICROCHIP

TC7106IPL

3-1/2 DIGIT A/D CONVERTERS
TELCOM

TC7106IPLG

1-CH DUAL-SLOPE ADC, PDIP40, 0.600 INCH, PLASTIC, DIP-40
MICROCHIP

TC7106IPT713

ADC, Dual-Slope, 1 Func, 1 Channel, PQFP44
MICROCHIP

TC7106RCKW

1-CH DUAL-SLOPE ADC, PQFP44, REVERSE, PLASTIC, QFP-44
MICROCHIP

TC7106RCPL

3-1/2 DIGIT A/D CONVERTERS
TELCOM

TC7106RCPLIJL

1-CH DUAL-SLOPE ADC, ACCESS, PDIP40, CERDIP-40
MICROCHIP

TC7106RIPL

1-CH DUAL-SLOPE ADC, PDIP40, REVERSE, PLASTIC, DIP-40
MICROCHIP