TC7116CLW [MICROCHIP]

3-1/2 Digit Analog-to-Digital Converters with Hold; 3-1 / 2位模数转换与保持转换器
TC7116CLW
型号: TC7116CLW
厂家: MICROCHIP    MICROCHIP
描述:

3-1/2 Digit Analog-to-Digital Converters with Hold
3-1 / 2位模数转换与保持转换器

转换器
文件: 总22页 (文件大小:549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7116/A/TC7117/A  
3-1/2 Digit Analog-to-Digital Converters with Hold  
Features  
General Description  
• Low Temperature Drift Internal Reference  
- TC7116/TC7117 80 ppm/°C Typ.  
- TC7116A/TC7117A 20 ppm/°C Typ.  
• Display Hold Function  
The TC7116A/TC7117A are 3-1/2 digit CMOS analog-  
to-digital converters (ADCs) containing all the active  
components necessary to construct a 0.05% resolution  
measurement system. Seven-segment decoders,  
polarity and digit drivers, voltage reference, and clock  
circuit are integrated on-chip. The TC7116A drives liq-  
uid crystal displays (LCDs) and includes a backplane  
driver. The TC7117A drives common anode light emit-  
ting diode (LED) displays directly with an 8mA drive  
current per segment.  
• Directly Drives LCD or LED Display  
• Zero Reading with Zero Input  
• Low Noise for Stable Display  
- 2V or 200mV Full Scale Range (FSR)  
• Auto-Zero Cycle Eliminates Need for Zero  
• Adjustment Potentiometer  
These devices incorporate a display hold (HLDR) func-  
tion. The displayed reading remains indefinitely, as  
long as HLDR is held high. Conversions continue, but  
output data display latches are not updated. The refer-  
• True Polarity Indication for Precision Null  
Applications  
• Convenient 9V Battery Operation:  
(TC7116/TC7116A)  
• High Impedance CMOS Differential Inputs: 1012Ω  
ence low input (V  
-) is not available, as it is with the  
REF  
TC7106/7107. V  
- is tied internally to analog com-  
REF  
mon in the TC7116A/7117A devices.  
• Low Power Operation: 10mW  
The TC7116A/7117A reduces linearity error to less  
than 1 count. Rollover error (the difference in readings  
for equal magnitude but opposite polarity input signals)  
is below ±1 count. High-impedance differential inputs  
Applications  
• Thermometry  
12  
offer 1pA leakage current and a 10 input imped-  
• Bridge Readouts: Strain Gauges, Load Cells,  
Null Detectors  
ance. The 15µV  
noise performance enables a “rock  
P-P  
solid” reading. The auto-zero cycle ensures a zero dis-  
play reading with a 0V input.  
• Digital Meters: Voltage/Current/Ohms/Power, pH  
• Digital Scales, Process Monitors  
• Portable Instrumentation  
The TC7116A and TC7117A feature a precision, low  
drift internal reference, and are functionally identical to  
the TC7116/TC7117. A low drift external reference is  
not normally required with the TC7116A/TC7117A.  
Device Selection Table  
Package Code  
Package  
Temperature Range  
CPL  
IJL  
40-Pin PDIP  
40-Pin CERDIP  
44-Pin PQFP  
44-Pin PLCC  
0°C to +70°C  
-25°C to +85°C  
0°C to +70°C  
0°C to +70°C  
CKW  
CLW  
2002 Microchip Technology Inc.  
DS21457B-page 1  
TC7116/A/TC7117/A  
Package Type  
40-Pin PDIP  
40-Pin CERDIP  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
HLDR  
OSC1  
OSC2  
OSC3  
TEST  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
HLDR  
OSC1  
OSC2  
OSC3  
TEST  
1
2
D
1
D
1
C
1
3
C
1
3
B
1
4
B
1
4
A
1
5
1's  
V
+
A
1
5
1's  
V
+
REF  
REF  
F
1
6
V+  
C
F
1
6
V+  
C
1
G
1
+
-
7
G
+
-
7
REF  
REF  
E
1
C
8
E
1
C
8
REF  
REF  
TC7116CPL  
TC7116ACPL  
TC7117CPL  
TC7117ACPL  
TC7116IJL  
TC7116AIJL  
TC7117IJL  
TC7117AIJL  
9
D
2
COMMON  
9
D
2
COMMON  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
C
2
V
V
+
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
C
2
V
V
+
-
IN  
IN  
B
2
B
2
IN  
IN  
10's  
10's  
A
2
29 C  
AZ  
A
2
29 C  
AZ  
F
2
28  
27  
26  
25  
24  
23  
22  
21  
V
V
F
28  
V
BUFF  
2
BUFF  
INT  
E
2
E
2
27  
V
INT  
D
3
V-  
G
26  
D
3
V-  
B
3
B
3
25  
24  
23  
22  
21  
G
2
2
100's  
100's  
F
C
F
3
C
A
3
3
3
100's  
100's  
A
E
E
3
3
3
3
AB  
G
1000's  
AB  
G
1000's  
4
3
4
3
POL  
(Minus Sign)  
BP/GND  
(TC7116/7117)  
POL  
(Minus Sign)  
BP/GND  
(TC7116/7117)  
(TC7116A/TC7117A)  
(TC7116A/TC7117A)  
44-Pin PLCC  
44-Pin PQFP  
6
5
4
3
2
1
44 43 42 41 40  
44 43 42 41 40 39 38 37 36 35 34  
33  
1
2
3
4
5
6
7
NC  
NC  
NC  
F
G
E
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
V+  
C
1
32 G  
3
3
3
+
-
8
REF  
1
C
31  
30 A  
TEST  
OSC3  
NC  
C
9
REF  
1
D
10  
11  
12  
13  
14  
15  
16  
17  
COMMON  
2
29  
28  
27  
26  
25  
24  
23  
G
3
C
V
+
TC7116CKW  
TC7116ACKW  
TC7117CKW  
TC7117ACKW  
2
IN  
NC  
TC7116CLW  
TC7116ACLW  
TC7117CLW  
TC7117ACLW  
BP/  
OSC2  
OSC1  
NC  
B2  
GND  
POL  
V
-
IN  
AB  
4
HLDR 8  
D
A
2
C
V
AZ  
E
3
9
1
1
F
2
BUFF  
INT  
F
3
10  
11  
C
B
E
2
V
B
3
D
3
1
V-  
25 26 27 28  
19 20 21 22  
12 13 14 15 16 17 18  
18 19 20 21 22 23 24  
Note 1: NC = No internal connection.  
2: Pins 9, 25, 40 and 56 are connected to the die substrate. The potential at these pins is approximately V+. No external  
connections should be made.  
DS21457B-page 2  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
Typical Application  
TC7116/A  
TC7117/A  
Display  
Hold  
0.1µF  
LCD Display (TC7116/7116A)  
or Common Anode LED Display  
(TC7117/7117A)  
33  
1
34  
HLDR  
-
REF  
C
+ C  
REF  
1MΩ  
31  
Segment  
2–19  
+
V
+
IN  
Drive  
22–25  
Analog  
Input  
0.01µF  
20  
POL  
30  
32  
V
-
IN  
Backplane Drive  
Minus Sign  
21  
35  
BP/GND  
V+  
ANALOG  
COMMON  
24kΩ  
28  
V
C
BUFF  
+
47kΩ  
V
9V  
36  
26  
REF  
0.47µF  
29  
V
+
REF  
1kΩ  
AZ  
100mV  
0.22µF  
27  
V
INT  
V-  
OSC2 OSC3 OSC1  
39 38  
To Analog  
Common (Pin 32)  
C
40  
OSC  
R
OSC  
100pF  
3 Conversions Per Second  
100kΩ  
2002 Microchip Technology Inc.  
DS21457B-page 3  
TC7116/A/TC7117/A  
*Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device  
at these or any other conditions above those indicated in the  
operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage:  
TC7116/TC7116A (V+ to V-) ...........................15V  
TC7117/TC7117A (V+ to GND) .......................+6V  
V- to GND.........................................................-9V  
Analog Input Voltage (Either Input) (Note 1)... V+ to V-  
Reference Input Voltage (Either Input)............ V+ to V-  
Clock Input:  
TC7116/TC7116A............................... TEST to V+  
TC7117/TC7117A.................................GND to V+  
Package Power Dissipation; T 70°C (Note 2)  
A
40-Pin CDIP ................................................2.29W  
40-Pin PDIP ................................................1.23W  
44-Pin PLCC ...............................................1.23W  
44-Pin PQFP...............................................1.00W  
Operating Temperature:  
C (Commercial) Device ................... 0°C to +70°C  
I (Commercial) Device.................... 0°C to +70°C  
Storage Temperature..........................-65°C to +150°C  
TC7116/A AND TC7117/A ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, specifications apply to both the TC7116/A and TC7117/A at TA = 25°C,  
fCLOCK = 48kHz. Parts are tested in the circuit of the Typical Operating Circuit.  
Symbol  
Parameter  
Zero Input Reading  
Min  
Typ  
Max  
Unit  
Test Conditions  
ZIR  
±0  
Digital VIN = 0V  
Reading Full Scale = 200mV  
Ratiometric Reading  
999  
-1  
999/1000  
±0.2  
1000  
+1  
Digital VIN = VREF  
Reading VREF = 100mV  
R/O  
Rollover Error (Difference in Reading for  
Equal Positive and Negative  
Counts VIN- = + VIN+ 200mV  
or 2V  
Readings Near Full Scale)  
Linearity (Maximum Deviation from Best  
Straight Line Fit)  
-1  
±0.2  
50  
+1  
Counts Full Scale = 200mV or 2V  
CMRR  
eN  
Common Mode Rejection Ratio  
(Note 3)  
µV/V  
µV  
VCM = ±1V, VIN = 0V  
Full Scale = 200mV  
Noise (Peak to Peak 95% of Time)  
15  
VIN = 0V  
Full Scale = 200mV  
IL  
Leakage Current at Input  
Zero Reading Drift  
1
10  
1
pA  
VIN = 0V  
0.2  
µV/°C VIN = 0V  
“C” Device = 0°C to +70°C  
µV/°C “I” Device = -25°C to +85°C  
1.0  
2
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to ±100µA.  
2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3: Refer to “Differential Input” discussion.  
4: Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is  
20 times conversion rate. Average DC component is less than 50mV.  
5: The TC7116/TC7116A logic inputs have an internal pull-down resistor connected from HLDR, Pin 1 to TEST, Pin 37. The  
TC7117/TC7117A logic inputs have an internal pull-down resistor connected from HLDR, Pin 1 to GND, Pin 21.  
DS21457B-page 4  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
TC7116/A AND TC7117/A ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise noted, specifications apply to both the TC7116/A and TC7117/A at TA = 25°C,  
CLOCK = 48kHz. Parts are tested in the circuit of the Typical Operating Circuit.  
f
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
TCSF  
Scale Factor Temperature Coefficient  
1
5
ppm/°C VIN = 199mV,  
“C” Device = 0°C to +70°C  
(Ext. Ref = 0ppm°C)  
30  
70  
20  
ppm/°C “I” Device = -25°C to +85°C  
Input Resistance, Pin 1  
VIL, Pin 1  
kΩ  
V
(Note 5)  
Test + 1.5  
GND + 1.5  
TC7116/A Only  
TC7117/A Only  
Both  
VIL, Pin 1  
V+ - 1.5  
V
VIH, Pin 1  
V
IDD  
Supply Current (Does not Include LED  
Current for TC7117/A)  
0.8  
1.8  
mA  
VIN = 0V  
VC  
Analog Common Voltage  
(with Respect to Positive Supply)  
2.4  
3.05  
3.35  
V
25kBetween Common  
and Positive Supply  
VCTC  
Temperature Coefficient of Analog  
Common (with Respect to Positive  
Supply)  
20  
80  
50  
“C” Device: 0°C to +70°C  
ppm/°C TC7116A/TC7117A  
ppm/°C TC7116/TC7117  
VSD  
VBD  
TC7116/TC7117A ONLY Peak to Peak  
Segment Drive Voltage  
4
4
5
5
5
8
6
V
V+ to V- = 9V  
(Note 4)  
TC7116A/TC7116A ONLY Peak to Peak  
Backplane Drive Voltage  
6
V
V+ to V- = 9V  
(Note 4)  
TC7117/TC7117A ONLY  
Segment Sinking Current  
(Except Pin 19)  
mA  
V+ = 5.0V  
Segment Voltage = 3V  
TC7117/TC7117A ONLY  
10  
16  
mA  
V+ = 5.0V  
Segment Sinking Current (Pin 19 Only)  
Segment Voltage = 3V  
Note 1: Input voltages may exceed the supply voltages provided the input current is limited to ±100µA.  
2: Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3: Refer to “Differential Input” discussion.  
4: Backplane drive is in phase with segment drive for “OFF” segment, 180° out of phase for “ON” segment. Frequency is  
20 times conversion rate. Average DC component is less than 50mV.  
5: The TC7116/TC7116A logic inputs have an internal pull-down resistor connected from HLDR, Pin 1 to TEST, Pin 37. The  
TC7117/TC7117A logic inputs have an internal pull-down resistor connected from HLDR, Pin 1 to GND, Pin 21.  
2002 Microchip Technology Inc.  
DS21457B-page 5  
TC7116/A/TC7117/A  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin Number  
(40-Pin PDIP)  
(40-Pin CERDIP)  
Pin Number  
Symbol  
Description  
(44-Pin PQFP)  
1
2
8
HLDR  
D1  
Hold pin, Logic 1 holds present display reading.  
Activates the D section of the units display.  
Activates the C section of the units display.  
Activates the B section of the units display.  
Activates the A section of the units display.  
Activates the F section of the units display.  
Activates the G section of the units display.  
Activates the E section of the units display.  
Activates the D section of the tens display.  
Activates the C section of the tens display.  
Activates the B section of the tens display.  
Activates the A section of the tens display.  
Activates the F section of the tens display.  
Activates the E section of the tens display.  
Activates the D section of the hundreds display.  
Activates the B section of the hundreds display.  
Activates the F section of the hundreds display.  
Activates the E section of the hundreds display.  
Activates both halves of the 1 in the thousands display.  
Activates the negative polarity display.  
9
3
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
C1  
4
B1  
5
A1  
6
F1  
7
G1  
E1  
8
9
D2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
C2  
B2  
A2  
F2  
E2  
D3  
B3  
F3  
E3  
AB4  
POL  
BP/  
GND  
LCD backplane drive output (TC7116/TC7116A). Digital ground  
(TC7117/TC7117A).  
22  
23  
24  
25  
26  
27  
29  
30  
31  
32  
34  
35  
G3  
A3  
Activates the G section of the hundreds display.  
Activates the A section of the hundreds display.  
Activates the C section of the hundreds display.  
Activates the G section of the tens display.  
Negative power supply voltage.  
C3  
G2  
V-  
VINT  
Integrator output. Connection point for integration capacitor.  
See Section 4.3, Integrating Capacitor for more details.  
28  
29  
36  
37  
VBUFF  
CAZ  
Integration resistor connection. Use a 47kresistor for a 200mV full scale range  
and a 470kresistor for 2V full scale range.  
The size of the auto-zero capacitor influences system noise. Use a 0.47µF  
capacitor for 200mV full scale, and a 0.047µF capacitor for 2V full scale.  
See Section 4.1, Auto-Zero Capacitor for more details.  
30  
31  
32  
38  
39  
40  
VIN  
VIN  
-
The analog LOW input is connected to this pin.  
+
The analog HIGH input signal is connected to this pin.  
COMMON This pin is primarily used to set the Analog Common mode voltage for battery  
operation, or in systems where the input signal is referenced to the power supply.  
It also acts as a reference voltage source. See Section 3.1.6, Analog Common  
for more details.  
33  
34  
41  
42  
CREF  
CREF  
-
See Pin 34.  
+
A 0.1µF capacitor is used in most applications. If a large Common mode voltage  
exists (for example, the VIN- pin is not at analog common), and a 200mV scale is  
used, a 1µF capacitor is recommended and will hold the rollover error to  
0.5 count.  
DS21457B-page 6  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
TABLE 2-1:  
PIN FUNCTION TABLE (CONTINUED)  
Pin Number  
(40-Pin PDIP)  
(40-Pin CERDIP)  
Pin Number  
Symbol  
Description  
(44-Pin PQFP)  
35  
36  
43  
44  
V+  
Positive Power Supply Voltage.  
VREF  
+
The analog input required to generate a full scale output (1999 counts). Place  
100mV between Pins 32 and 36 for 199.9mV full scale. Place 1V between  
Pins 35 and 36 for 2V full scale. See Section 4.6, Reference Voltage.  
37  
3
TEST  
Lamp test. When pulled HIGH (to V+), all segments will be turned on and the dis-  
play should read -1888. It may also be used as a negative supply for externally  
generated decimal points. See Section 3.1.7, TEST for additional information.  
38  
39  
40  
4
6
7
OSC3  
OSC2  
OSC1  
See Pin 40.  
See Pin 40.  
Pins 40, 39, 38 make up the oscillator section. For a 48kHz clock (3 readings per  
section), connect Pin 40 to the junction of a 100kresistor and a 100pF capaci-  
tor. The 100kresistor is tied to Pin 39 and the 100pF capacitor is tied to Pin 38.  
3.1.2  
SIGNAL INTEGRATE PHASE  
3.0  
DETAILED DESCRIPTION  
The auto-zero loop is opened, the internal short is  
removed, and the internal high and low inputs are con-  
nected to the external pins. The converter then inte-  
(All Pin Designations Refer to 40-Pin PDIP.)  
3.1  
Analog Section  
grates the differential voltages between V + and V  
-
IN  
IN  
Figure 3-1 shows the block diagram of the analog sec-  
tion for the TC7116/TC7116A and TC7117/TC7117A.  
Each measurement cycle is divided into three phases:  
(1) Auto-Zero (AZ), (2) Signal Integrate (INT), and  
(3) Reference Integrate (REF), or De-integrate (DE).  
for a fixed time. This differential voltage can be within a  
wide Common mode range: 1V of either supply. How-  
ever, if the input signal has no return with respect to the  
converter power supply, V - can be tied to analog  
IN  
common to establish the correct Common mode volt-  
age. At the end of this phase, the polarity of the  
integrated signal is determined.  
3.1.1  
AUTO-ZERO PHASE  
High and low inputs are disconnected from the pins and  
internally shorted to analog common. The reference  
capacitor is charged to the reference voltage. A feed-  
back loop is closed around the system to charge the  
auto-zero capacitor (C ) to compensate for offset volt-  
AZ  
ages in the buffer amplifier, integrator, and comparator.  
Since the comparator is included in the loop, AZ accu-  
racy is limited only by system noise. The offset referred  
to the input is less than 10µV.  
2002 Microchip Technology Inc.  
DS21457B-page 7  
TC7116/A/TC7117/A  
FIGURE 3-1:  
ANALOG SECTION OF TC7116/TC7117A AND TC7117/TC7117A  
C
C
V
AZ  
INT  
R
C
+
INT  
V+  
35  
REF  
C
REF  
+
V
C
-
V
BUFF  
REF  
INT  
REF  
Auto-Zero  
29  
34  
36  
33  
28  
27  
V+  
+
Integrator  
AZ  
10µA  
Low  
Temp.  
Drift  
+
+
To  
Digital  
Section  
31  
V
IN  
+
DE  
(–±  
DE  
(+±  
INT  
AZ  
Zener  
AZ  
+
V
REF  
Comparator  
DE (+±  
AZ & DE (± ±  
32  
30  
DE (–±  
TC7116  
TC7116A  
TC7117  
Analog  
Common  
V+ -3V  
V
-
IN  
TC7117A  
26  
INT  
V-  
3.1.3  
REFERENCE INTEGRATE PHASE  
3.1.6  
ANALOG COMMON  
The final phase is reference integrate, or de-integrate.  
Input low is internally connected to analog common  
and input high is connected across the previously  
charged reference capacitor. Circuitry within the chip  
ensures that the capacitor will be connected with the  
correct polarity to cause the integrator output to return  
to zero. The time required for the output to return to  
zero is proportional to the input signal. The digital  
reading displayed is:  
This pin is included primarily to set the Common mode  
voltage for battery operation (TC7116/TC7116A), or for  
any system where the input signals are floating, with  
respect to the power supply. The analog common pin  
sets a voltage approximately 2.8V more negative than  
the positive supply. This is selected to give a minimum  
end of life battery voltage of about 6V. However, analog  
common has some attributes of a reference voltage.  
When the total supply voltage is large enough to cause  
the zener to regulate (>7V), the analog common volt-  
age will have a low voltage coefficient (0.001%), low  
output impedance (15), and a temperature coeffi-  
cient of less than 20ppm/°C, typically, and 50 ppm max-  
imum. The TC7116/TC7117 temperature coefficients  
are typically 80ppm/°C.  
EQUATION 3-1:  
V
IN  
1000 =  
V
REF  
3.1.4  
REFERENCE  
An external reference may be used, if necessary, as  
shown in Figure 3-2.  
The positive reference voltage (V  
analog common.  
+) is referred to  
REF  
FIGURE 3-2:  
USING AN EXTERNAL  
REFERENCE  
3.1.5  
DIFFERENTIAL INPUT  
This input can accept differential voltages anywhere  
within the Common mode range of the input amplifier  
or, specifically, from 1V below the positive supply to 1V  
above the negative supply. In this range, the system  
has a CMRR of 86dB, typical. However, since the inte-  
grator also swings with the Common mode voltage,  
care must be exercised to ensure that the integrator  
output does not saturate. A worst case condition would  
be a large, positive Common mode voltage with a near  
full scale negative differential input voltage. The nega-  
tive input signal drives the integrator positive, when  
most of its swing has been used up by the positive  
Common mode voltage. For these critical applications,  
the integrator swing can be reduced to less than the  
recommended 2V full scale swing with little loss of  
accuracy. The integrator output can swing within 0.3V  
of either supply without loss of linearity.  
V+  
V+  
6.8kΩ  
TC7116  
TC7116A  
TC7117  
TC7117A  
20kΩ  
V
+
REF  
1.2V REF  
COMMON  
DS21457B-page 8  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
Analog common is also used as V - return during  
FIGURE 3-4:  
EXCLUSIVE “OR” GATE  
FOR DECIMAL POINT  
DRIVE  
IN  
auto-zero and de-integrate. If V - is different from ana-  
IN  
log common, a Common mode voltage exists in the  
system and is taken care of by the excellent CMRR of  
the converter. However, in some applications, V - will  
V+  
IN  
be set at a fixed, known voltage (power supply common  
for instance). In this application, analog common  
should be tied to the same point, thus removing the  
Common mode voltage from the converter. The same  
holds true for the reference voltage; if it can be conve-  
niently referenced to analog common, it should be.  
This removes the Common mode voltage from the  
reference system.  
V+  
BP  
TC7116  
TC7116A  
To LCD  
Decimal  
Point  
Decimal  
Point  
Select  
4030  
GND  
Within the IC, analog common is tied to an N-channel  
FET, that can sink 30mA or more of current to hold the  
voltage 3V below the positive supply (when a load is  
trying to pull the analog common line positive). How-  
ever, there is only 10µA of source current, so analog  
common may easily be tied to a more negative voltage,  
thus overriding the internal reference.  
TEST  
3.2  
Digital Section  
Figure 3-5 and Figure 3-6 show the digital section for  
TC7116/TC7116A and TC7117/TC7117A, respectively.  
For the TC7116/TC7116A (Figure 3-5), an internal dig-  
ital ground is generated from a 6V zener diode and a  
large P-channel source follower. This supply is made  
stiff to absorb the relative large capacitive currents  
when the backplane (BP) voltage is switched. The BP  
frequency is the clock frequency 4800. For 3 readings  
per second, this is a 60Hz square wave with a nominal  
amplitude of 5V. The segments are driven at the same  
frequency and amplitude, and are in phase with BP  
when OFF, but out of phase when ON. In all cases,  
negligible DC voltage exists across the segments.  
3.1.7  
TEST  
The TEST pin serves two functions. On the TC7117/  
TC7117A, it is coupled to the internally generated digi-  
tal supply through a 500resistor. Thus, it can be used  
as a negative supply for externally generated segment  
drivers, such as decimal points, or any other presenta-  
tion the user may want to include on the LCD.  
(Figure 3-3 and Figure 3-4 show such an application.)  
No more than a 1mA load should be applied.  
The second function is a "lamp test." When TEST is  
pulled HIGH (to V+), all segments will be turned ON  
and the display should read -1888. The TEST pin will  
sink about 10mA under these conditions.  
Figure 3-6 is the digital section of the TC7117/  
TC7117A. It is identical to the TC7116/TC7116A,  
except that the regulated supply and BP drive have  
been eliminated, and the segment drive is typically  
8mA. The 1000's output (Pin 19) sinks current from two  
LED segments, and has a 16mA drive capability. The  
TC7117/TC7117A are designed to drive common  
anode LED displays.  
FIGURE 3-3:  
SIMPLE INVERTER FOR  
FIXED DECIMAL POINT  
V+  
V+  
In both devices, the polarity indication is ON for analog  
inputs. If V - and V + are reversed, this indication can  
be reversed also, if desired.  
IN  
IN  
TC7116  
TC7116A  
4049  
BP  
To LCD  
Decimal  
21  
37  
Point  
GND  
TEST  
To LCD  
Backplane  
2002 Microchip Technology Inc.  
DS21457B-page 9  
TC7116/A/TC7117/A  
FIGURE 3-5:  
TC7116/TC7116A DIGITAL SECTION  
TC7116  
TC7116A  
Backplane  
21  
LCD Phase Driver  
Typical Segment Output  
0.5mA  
V+  
7-Segment  
Decode  
7-Segment  
Decode  
7-Segment  
Decode  
÷
200  
Segment  
Output  
Latch  
Tens  
2mA  
Internal Digital Ground  
Units  
Hundreds  
Thousands  
To Switch Drivers  
From Comparator Output  
35  
37  
V+  
~70kΩ  
= 1V  
Clock  
6.2V  
500Ω  
÷
4
Logic Control  
TEST  
V-  
V
TH  
26  
Internal Digital Ground  
40  
39  
38  
1
OSC1  
OSC2  
OSC3  
HLDR  
To achieve maximum rejection of 60Hz pickup, the sig-  
nal integrate cycle should be a multiple of 60Hz. Oscil-  
lator frequencies of 240kHz, 120kHz, 80kHz, 60kHz,  
48kHz, 40kHz, etc. should be selected. For 50Hz rejec-  
tion, oscillator frequencies of 200kHz, 100kHz,  
66-2/3kHz, 50kHz, 40kHz, etc. would be suitable. Note  
that 40kHz (2.5 readings per second) will reject both  
50Hz and 60Hz.  
3.2.1  
SYSTEM TIMING  
The clocking method used for the TC7116/TC7116A  
and TC7117/TC7117A is shown in Figure 3-6. Three  
clocking methods may be used:  
1. An external oscillator connected to Pin 40.  
2. A crystal between Pins 39 and 40.  
3. An RC network using all three pins.  
The oscillator frequency is ÷4 before it clocks the  
decade counters. It is then further divided to form the  
three convert cycle phases: Signal Integrate (1000  
counts), Reference De-integrate (0 to 2000 counts),  
and Auto-Zero (1000 to 3000 counts). For signals less  
than full scale, auto-zero gets the unused portion of ref-  
erence de-integrate. This makes a complete measure  
cycle of 4000 (16,000 clock pulses), independent of  
input voltage. For 3 readings per second, an oscillator  
frequency of 48kHz would be used.  
3.2.2  
HOLD READING INPUT  
When HLDR is at a logic HIGH, the latch will not be  
updated. Analog-to-digital conversions will continue,  
but will not be updated until HLDR is returned to LOW.  
To continuously update the display, connect to TEST  
(TC7116/TC7116A) or GROUND (TC7117/TC7117A),  
or disconnect. This input is CMOS compatible with  
70ktypical resistance to TEST (TC7116/TC7116A) or  
GROUND (TC7117/TC7117A).  
DS21457B-page 10  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
FIGURE 3-6:  
TC7117/TC711A DIGITAL SECTION  
TC7117  
TC7117A  
Typical Segment Output  
V+  
7-Segment 7-Segment  
7-Segment  
Decode  
0.5mA  
Decode  
Decode  
To  
Segment  
8mA  
Latch  
Digital Ground  
Internal Digital Ground  
Units  
Thousands  
Hundreds  
Tens  
To Switch Drivers  
From Comparator Output  
V+  
35  
37  
V+  
TEST  
Clock  
÷
4
Control Logic  
500Ω  
21  
Digital  
GND  
40  
OSC1  
39  
OSC2  
38  
OSC3  
1
~70kΩ  
HLDR  
2002 Microchip Technology Inc.  
DS21457B-page 11  
TC7116/A/TC7117/A  
4.6  
Reference Voltage  
4.0  
COMPONENT VALUE  
SELECTION  
To generate full scale output (2000 counts), the analog  
input requirement is V = 2V . Thus, for the 200mV  
and 2V scale, V  
IN  
REF  
4.1  
Auto-Zero Capacitor  
should equal 100mV and 1V,  
REF  
respectively. In many applications, where the ADC is  
connected to a transducer, a scale factor exists  
between the input voltage and the digital reading. For  
instance, in a measuring system, the designer might like  
to have a full scale reading when the voltage from the  
transducer is 700mV. Instead of dividing the input down  
to 200mV, the designer should use the input voltage  
The size of the auto-zero capacitor has some influence  
on system noise. For 200mV full scale, where noise is  
very important, a 0.47µF capacitor is recommended.  
On the 2V scale, a 0.047µF capacitor increases the  
speed of recovery from overload and is adequate for  
noise on this scale.  
directly and select V  
= 350mV. Suitable values for  
REF  
4.2  
Reference Capacitor  
integrating resistor and capacitor would be 120kW and  
0.22µF. This makes the system slightly quieter and also  
avoids a divider network on the input. The TC7117/  
TC7117A, with ±5V supplies, can accept input signals  
up to ±4V. Another advantage of this system is when a  
A 0.1µF capacitor is acceptable in most applications.  
However, where a large Common mode voltage exists  
(i.e., the V - pin is not at analog common), and a  
200mV scale is used, a larger value is required to pre-  
vent rollover error. Generally, 1µF will hold the rollover  
error to 0.5 count in this instance.  
IN  
digital reading of zero is desired for V 0. Tempera-  
IN  
ture and weighing systems with a variable tare are  
examples. This offset reading can be conveniently gen-  
erated by connecting the voltage transducer between  
4.3  
Integrating Capacitor  
V
+ and analog common, and the variable (or fixed)  
IN  
The integrating capacitor should be selected to give the  
maximum voltage swing that ensures tolerance buildup  
will not saturate the integrator swing (approximately  
0.3V from either supply). In the TC7116/TC7116A or  
the TC7117/TC7117A, when the analog common is  
used as a reference, a nominal ±2V full scale integrator  
swing is acceptable. For the TC7117/TC7117A, with  
±5V supplies and analog common tied to supply  
ground, a ±3.5V to ±4V swing is nominal. For 3 read-  
offset voltage between analog common and V -.  
IN  
5.0  
TC7117/TC7117A POWER  
SUPPLIES  
The TC7117/TC7117A are designed to operate from  
±5V supplies. However, if a negative supply is not avail-  
able, it can be generated with a TC7660 DC-to-DC con-  
verter and two capacitors. Figure 5-1 shows this  
application.  
ings per second (48kHz clock), nominal values for C  
INT  
are 0.22µ1F and 0.10µF, respectively. If different oscil-  
lator frequencies are used, these values should be  
changed in inverse proportion to maintain the output  
swing. The integrating capacitor must have low dielec-  
tric absorption to prevent rollover errors. Polypropylene  
capacitors are recommended for this application.  
In selected applications, a negative supply is not  
required. The conditions for using a single +5V supply  
are:  
1. The input signal can be referenced to the center  
of the Common mode range of the converter.  
2. The signal is less than ±1.5V.  
3. An external reference is used.  
4.4  
Integrating Resistor  
Both the buffer amplifier and the integrator have a class  
A output stage with 100µA of quiescent current. They  
can supply 20µA of drive current with negligible non-  
linearity. The integrating resistor should be large  
enough to remain in this very linear region over the  
input voltage range, but small enough that undue leak-  
age requirements are not placed on the PC board. For  
2V full scale, 470kis near optimum and, similarly,  
47kfor 200mV full scale.  
FIGURE 5-1:  
NEGATIVE POWER  
SUPPLY GENERATION  
WITH TC7660  
+5V  
35  
V+  
36  
V
+
REF  
LED  
Drive  
32  
31  
COM  
4.5  
Oscillator Components  
TC7117  
TC7117A  
+
V
+
For all frequency ranges, a 100kresistor is recom-  
mended; the capacitor is selected from the equation:  
IN  
V
IN  
30  
21  
V
-
IN  
8
2
EQUATION 4-1:  
GND  
+
10µF  
4
V-  
26  
TC7660  
0.45  
5
(-5V)  
f = -----------  
RC  
3
+
10µF  
For a 48kHz clock (3 readings per second), C = 100pF.  
DS21457B-page 12  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
In addition to limiting maximum power dissipation, the  
resistor reduces change in power dissipation as the  
display changes. The effect is caused by the fact that,  
as fewer segments are ON, each ON output drops  
more voltage and current. For the best case of six seg-  
ments (a “111” display) to worst case (a “1888” display),  
the resistor circuit will change about 230mW, while a  
circuit without the resistor will change about 470mW.  
Therefore, the resistor will reduce the effect of display  
dissipation on reference voltage drift by about 50%.  
6.0  
TYPICAL APPLICATIONS  
The TC7117/TC7117A sink the LED display current,  
causing heat to build up in the IC package. If the inter-  
nal voltage reference is used, the changing chip tem-  
perature can cause the display to change reading. By  
reducing the LED common anode voltage, the TC7117/  
TC7117A package power dissipation is reduced.  
Figure 6-1 is a curve tracer display showing the rela-  
tionship between output current and output voltage for  
typical TC7117CPL/TC7117ACPL devices. Since a  
typical LED has 1.8V across it at 8mA and its common  
anode is connected to +5V, the TC7117/TC7117A out-  
put is at 3.2V (Point A, Figure 6-1). Maximum power  
dissipation is 8.1mA x 3.2V x 24 segments = 622mW.  
The change in LED brightness caused by the resistor is  
almost unnoticeable as more segments turn off. If dis-  
play brightness remaining steady is very important to  
the designer, a diode may be used instead of the  
resistor.  
However, notice that once the TC7117/TC7117A's out-  
put voltage is above 2V, the LED current is essentially  
constant as output voltage increases. Reducing the  
output voltage by 0.7V (Point B Figure 6-1) results in  
7.7mA of LED current, only a 5% reduction. Maximum  
power dissipation is now only 7.7mA x 2.5V x 24 =  
462mW, a reduction of 26%. An output voltage reduc-  
tion of 1V (Point C) reduces LED current by 10%  
(7.3mA), but power dissipation by 38% (7.3mA x 2.2V  
x 24 = 385mW).  
FIGURE 6-2:  
DIODE OR RESISTOR  
LIMITS PACKAGE POWER  
DISSIPATION  
In  
-5V  
+5V  
+
1MΩ  
TP3  
24kΩ  
150kΩ  
1kΩ  
0.47  
µF  
0.22  
µF  
100  
pF  
0.01  
µF  
TP5  
TP2  
TP1  
0.1  
µF  
Display  
FIGURE 6-1:  
TC7117/TC7117A OUTPUT  
VS. OUTPUT VOLTAGE  
100  
47  
kΩ  
kΩ  
40  
1
35  
30  
TP  
21  
10.000  
9.000  
8.000  
4
TC7117  
TC7117A  
10  
20  
A
Display  
B
1.5W, 1/4Ω  
C
1N4001  
7.000  
6.000  
2.00  
2.50  
3.00  
3.50  
4.00  
Output Voltage (V)  
Reduced power dissipation is very easy to obtain.  
Figure 6-2 shows two ways: either a 5.1, 1/4W resis-  
tor, or a 1A diode placed in series with the display (but  
not in series with the TC7117/TC7117A). The resistor  
reduces the TC7117/TC7117A's output voltage (when  
all 24 segments are ON) to Point C of Figure 6-1. When  
segments turn off, the output voltage will increase. The  
diode, however, will result in a relatively steady output  
voltage, around Point B.  
2002 Microchip Technology Inc.  
DS21457B-page 13  
TC7116/A/TC7117/A  
FIGURE 6-3:  
TC7116/TC7117A USING THE INTERNAL REFERENCE  
(200mV FULL SCALE, 3 READINGS PER SECOND - RPS)  
Set V  
REF  
= 100mV  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100kΩ  
100pF  
22kΩ  
1MΩ  
0.1pF  
1kΩ  
+
In  
0.01µF  
47kΩ  
TC7116  
TC7116A  
+
0.47µF  
9V  
0.22µF  
To Display  
To Backplane  
FIGURE 6-4:  
TC7117/TC7117A INTERNAL REFERENCE  
(200mV FULL SCALE, 3 RPS, V - TIED TO GND FOR SINGLE ENDED INPUTS)  
IN  
Set V  
= 100mV  
REF  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100kΩ  
100pF  
22kΩ  
1MΩ  
+5V  
1kΩ  
0.1pF  
+
In  
0.01µF  
47kΩ  
TC7117  
TC7117A  
0.47µF  
0.22µF  
-5V  
To Display  
DS21457B-page 14  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
FIGURE 6-5:  
CIRCUIT FOR DEVELOPING UNDER RANGE AND OVER RANGE SIGNALS  
FROM TC7116/TC7117A OUTPUTS  
V+  
40  
To Logic V  
CC  
35  
To Logic  
GND  
TC7116  
TC7116A  
26  
V-  
O/R  
U/R  
20  
21  
CD4023  
or 74C10  
CD4077 O/R = Over Range  
U/R = Under Range  
FIGURE 6-6:  
TC7117/TC7117A WITH A 1.2 EXTERNAL BANDGAP REFERENCE  
(V - TIED TO COMMON)  
IN  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100kΩ  
Set V  
= 100mV  
REF  
100pF  
10kΩ  
10kΩ  
V+  
1kΩ  
0.1pF  
+
1.2V  
In  
0.01µF  
47kΩ  
1MΩ  
TC7117  
TC7117A  
0.47µF  
0.22µF  
To Display  
2002 Microchip Technology Inc.  
DS21457B-page 15  
TC7116/A/TC7117/A  
FIGURE 6-7:  
RECOMMENDED COMPONENT VALUES FOR 2V FULL SCALE  
(TC7116/TC7116A AND TC7117/TC7117A)  
Set V  
= 1V  
REF  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
100kΩ  
100pF  
24kΩ  
1MΩ  
V+  
0.1µF  
25kΩ  
+
TC7116  
TC7116A  
TC7117  
In  
0.01µF  
470kΩ  
0.047µF  
TC7117A  
0.22µF  
V-  
To Display  
FIGURE 6-8:  
TC7117/TC7117A OPERATED FROM SINGLE +5V SUPPLY  
(AN EXTERNAL REFERENCE MUST BE USED IN THIS APPLICATION)  
40  
100kΩ  
Set V  
= 100mV  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
REF  
100pF  
10kΩ  
10kΩ  
V+  
1kΩ  
0.1pF  
+
1.2V  
In  
0.01µF  
47kΩ  
1MΩ  
TC7117  
TC7117A  
0.47µF  
0.22µF  
To Display  
DS21457B-page 16  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Package marking data not available at this time.  
7.2  
Taping Form  
Component Taping Orientation for 44-Pin PLCC Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PLCC  
32 mm  
24 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
Component Taping Orientation for 44-Pin PQFP Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PQFP  
24 mm  
16 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
2002 Microchip Technology Inc.  
DS21457B-page 17  
TC7116/A/TC7117/A  
7.3  
Package Dimensions  
40-Pin PDIP (Wide)  
PIN 1  
.555 (14.10)  
.530 (13.46)  
2.065 (52.45)  
2.027 (51.49)  
.610 (15.49)  
.590 (14.99)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
.008 (0.20)  
.150 (3.81)  
.115 (2.92)  
3° MIN.  
.700 (17.78)  
.610 (15.50)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
40-Pin CERDIP (Wide)  
PIN 1  
.540 (13.72)  
.510 (12.95)  
.098 (2.49) MAX.  
.030 (0.76) MIN.  
2.070 (52.58)  
2.030 (51.56)  
.620 (15.75)  
.590 (15.00)  
.060 (1.52)  
.020 (0.51)  
.210 (5.33)  
.170 (4.32)  
.015 (0.38)  
.008 (0.20)  
3° MIN.  
.150 (3.81)  
MIN.  
.200 (5.08)  
.125 (3.18)  
.700 (17.78)  
.620 (15.75)  
.020 (0.51)  
.016 (0.41)  
.110 (2.79)  
.090 (2.29)  
.065 (1.65)  
.045 (1.14)  
Dimensions: inches (mm)  
DS21457B-page 18  
2002 Microchip Technology Inc.  
TC7116/A/TC7117/A  
7.3  
Package Dimensions (Continued)  
44-Pin PLCC  
PIN 1  
.021 (0.53)  
.013 (0.33)  
.050 (1.27) TYP.  
.695 (17.65)  
.685 (17.40)  
.630 (16.00)  
.591 (15.00)  
.656 (16.66)  
.650 (16.51)  
.032 (0.81)  
.026 (0.66)  
.020 (0.51) MIN.  
.656 (16.66)  
.650 (16.51)  
.120 (3.05)  
.090 (2.29)  
.695 (17.65)  
.685 (17.40)  
.180 (4.57)  
.165 (4.19)  
Dimenisons: inches (mm)  
44-Pin PQFP  
7° MAX.  
.009 (0.23)  
.005 (0.13)  
PIN 1  
.041 (1.03)  
.026 (0.65)  
.018 (0.45)  
.012 (0.30)  
.398 (10.10)  
.390 (9.90)  
.557 (14.15)  
.537 (13.65)  
.031 (0.80) TYP.  
.010 (0.25) TYP.  
.398 (10.10)  
.390 (9.90)  
.083 (2.10)  
.075 (1.90)  
.557 (14.15)  
.537 (13.65)  
.096 (2.45) MAX.  
Dimenisons: inches (mm)  
2002 Microchip Technology Inc.  
DS21457B-page 19  
TC7116/A/TC7117/A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART CODE  
6 = LCD  
7 = LED  
TC711X X X XXX  
}
A or blank*  
R (reversed pins) or blank (CPL pkg only)  
* "A" parts have an improved reference TC  
Package Code (see Device Selection Table)  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
DS21457B-page 20  
2002 Microchip Technology Inc.  
TC7116/ATC7117/A  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21457B-page 21  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Hong Kong  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
03/01/02  
DS21457B-page 22  
2002 Microchip Technology Inc.  

相关型号:

TC7116CLWRT

暂无描述
MICROCHIP

TC7116CLWTR

1-CH DUAL-SLOPE ADC, PQCC44, PLASTIC, LCC-44
MICROCHIP

TC7116CPL

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7116CPL

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD
TELCOM

TC7116IJL

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7116IJL

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD
TELCOM

TC7116_06

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7116_13

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7117

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7117

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD
TELCOM

TC7117A

3-1/2 Digit Analog-to-Digital Converters with Hold
MICROCHIP

TC7117A

3-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTERS WITH HOLD
TELCOM