TC7660MJAG [MICROCHIP]

SWITCHED CAPACITOR REGULATOR, 10 kHz SWITCHING FREQ-MAX, CDIP8, CERDIP-8;
TC7660MJAG
型号: TC7660MJAG
厂家: MICROCHIP    MICROCHIP
描述:

SWITCHED CAPACITOR REGULATOR, 10 kHz SWITCHING FREQ-MAX, CDIP8, CERDIP-8

CD 开关
文件: 总20页 (文件大小:1179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7660  
Charge Pump DC-to-DC Voltage Converter  
Features  
Package Types  
• Wide Input Voltage Range: +1.5V to +10V  
• Efficient Voltage Conversion (99.9%, typ)  
• Excellent Power Efficiency (98%, typ)  
• Low Power Consumption: 80 µA (typ) @ VIN = 5V  
• Low Cost and Easy to Use  
PDIP/CERDIP/SOIC  
+
NC  
1
2
3
4
8
7
6
5
V
+
OSC  
CAP  
TC7660  
LOW  
VOLTAGE (LV)  
GND  
- Only Two External Capacitors Required  
• Available in 8-Pin Small Outline (SOIC), 8-Pin  
PDIP and 8-Pin CERDIP Packages  
-
V
CAP  
OUT  
• Improved ESD Protection (3 kV HBM)  
• No External Diode Required for High-Voltage  
Operation  
General Description  
The TC7660 device is a pin-compatible replacement  
for the industry standard 7660 charge pump voltage  
converter. It converts a +1.5V to +10V input to a corre-  
sponding -1.5V to -10V output using only two low-cost  
capacitors, eliminating inductors and their associated  
cost, size and electromagnetic interference (EMI).  
Applications  
• RS-232 Negative Power Supply  
• Simple Conversion of +5V to ±5V Supplies  
• Voltage Multiplication VOUT = ± n V+  
• Negative Supplies for Data Acquisition Systems  
and Instrumentation  
The on-board oscillator operates at a nominal fre-  
quency of 10 kHz. Operation below 10 kHz (for lower  
supply current applications) is possible by connecting  
an external capacitor from OSC to ground.  
The TC7660 is available in 8-Pin PDIP, 8-Pin Small  
Outline (SOIC) and 8-Pin CERDIP packages in  
commercial and extended temperature ranges.  
Functional Block Diagram  
V+ CAP+  
8
2
Voltage  
Level  
Translator  
7
6
RC  
Oscillator  
4
5
OSC  
LV  
  
2
CAP-  
VOUT  
n
t
e
r
n
a
l
Voltage  
Regulator  
Logic  
Network  
TC7660  
3
GND  
2002-2011 Microchip Technology Inc.  
DS21465C-page 1  
TC7660  
* Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational sections of this specification is not intended. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage .............................................................+10.5V  
LV and OSC Inputs Voltage: (Note 1)  
+
.............................................. -0.3V to V for V < 5.5V  
SS  
+
+
+
.....................................(V – 5.5V) to (V ) for V > 5.5V  
I
S
+
Current into LV .........................................20 µA for V > 3.5V  
1
2
3
4
8
7
6
5
+
Output Short Duration (V  
5.5V)...............Continuous  
V
SUPPLY  
I
L
(+5V)  
+
Package Power Dissipation: (T 70°C)  
TC7660  
C
10 µF  
A
1
C
OSC  
8-Pin CERDIP ....................................................800 mW  
8-Pin PDIP .........................................................730 mW  
8-Pin SOIC.........................................................470 mW  
Operating Temperature Range:  
R
L
V
OUT  
C Suffix.......................................................0°C to +70°C  
I Suffix .....................................................-25°C to +85°C  
E Suffix....................................................-40°C to +85°C  
M Suffix .................................................-55°C to +125°C  
Storage Temperature Range.........................-65°C to +160°C  
ESD protection on all pins (HBM) .................................3 kV  
Maximum Junction Temperature.................................. 150°C  
C
10 µF  
2
+
FIGURE 1-1:  
TC7660 Test Circuit.  
ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise noted, specifications measured over operating temperature range with V = 5V,  
+
C
= 0, refer to test circuit in Figure 1-1.  
OSC  
Parameters  
Sym  
Min  
Typ  
80  
Max  
180  
10  
Units  
µA  
V
Conditions  
I+  
Supply Current  
R =   
L
+
Supply Voltage Range, High  
Supply Voltage Range, Low  
Output Source Resistance  
V
H
3.0  
1.5  
Min T Max, R = 10 k, LV Open  
A L  
+
V
L
3.5  
V
Min T Max, R = 10 k, LV to GND  
A L  
70  
100  
120  
130  
150  
300  
I
I
I
I
=20 mA, T = +25°C  
ROUT  
OUT  
OUT  
OUT  
A
=20 mA, T +70°C (C Device)  
A
=20 mA, T +85°C (E and I Device)  
A
104  
150  
=20 mA, T +125°C (M Device)  
OUT  
+
A
V = 2V, I  
= 3 mA, LV to GND  
OUT  
0°C T +70°C  
A
+
160  
600  
V = 2V, I  
= 3 mA, LV to GND  
OUT  
-55°C T +125°C (M Device)  
A
Oscillator Frequency  
Power Efficiency  
95  
97  
10  
98  
kHz Pin 7 open  
fOSC  
PEFF  
VOUTEFF  
ZOSC  
%
%
R = 5 k  
L
Voltage Conversion Efficiency  
Oscillator Impedance  
99.9  
1.0  
R =   
L
+
M  
k  
V = 2V  
+
100  
V = 5V  
+
Note 1: Destructive latch-up may occur if voltages greater than V or less than GND are supplied to any input pin.  
DS21465C-page 2  
2002-2011 Microchip Technology Inc.  
TC7660  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, C1 = C2 = 10 µF, ESRC1 = ESRC2 = 1 , TA = 25°C. See Figure 1-1.  
12  
10  
100  
98  
96  
I
= 1 mA  
OUT  
OUT  
94  
92  
8
6
I
= 15 mA  
90  
88  
86  
84  
82  
SUPPLY VOLTAGE RANGE  
4
2
+
V
= +5V  
80  
100  
0
1k  
10k  
-55 -25  
0
+25 +50 +75 +100 +125  
OSCILLATOR FREQUENCY (Hz)  
TEMPERATURE (
°
C)  
FIGURE 2-1:  
Operating Voltage vs.  
FIGURE 2-4:  
Power Conversion  
Temperature.  
Efficiency vs. Oscillator Frequency.  
500  
10k  
I
= 1 mA  
OUT  
450  
400  
1k  
200  
150  
100  
50  
+
V
V
= +2V  
= +5V  
100Ω  
10Ω  
+
0
0
1
2
3
4
5
6
7
8
-55 -25  
0
+25 +50 +75 +100 +125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 2-2:  
Output Source Resistance  
FIGURE 2-5:  
Output Source Resistance  
vs. Supply Voltage.  
vs. Temperature.  
20  
+
10k  
+
V
= +5V  
V
= +5V  
18  
16  
14  
1k  
100  
10  
12  
10  
8
6
1
10  
100  
1000  
10k  
-55 -25  
0
+25 +50 +75 +100 +125  
OSCILLATOR CAPACITANCE (pF)  
TEMPERATURE (°C)  
FIGURE 2-3:  
Frequency of Oscillation vs.  
FIGURE 2-6:  
Unloaded Oscillator  
Oscillator Capacitance.  
Frequency vs. Temperature.  
2002-2011 Microchip Technology Inc.  
DS21465C-page 3  
TC7660  
Note: Unless otherwise indicated, C1 = C2 = 10 µF, ESRC1 = ESRC2 = 1 , TA = 25°C. See Figure 1-1.  
5
4
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
+
V
= +5V  
3
2
1
0
-1  
-2  
-3  
-4  
-8  
SLOPE 55Ω  
-9  
LV OPEN  
-10  
-5  
0
10 20 30 40 50 60 70 80 90 100  
OUTPUT CURRENT (mA)  
0
10 20 30 40 50 60 70  
LOAD CURRENT (mA)  
80  
FIGURE 2-7:  
Output Voltage vs. Output  
FIGURE 2-10:  
Output Voltage vs. Load  
Current.  
Current.  
100  
90  
100  
90  
100  
90  
20  
+
V
= 2V  
18  
16  
80  
80  
80  
70  
60  
50  
70  
60  
50  
70  
60  
50  
14  
12  
10  
40  
30  
20  
10  
40  
30  
20  
40  
30  
20  
10  
8
6
4
2
0
10  
+
V
= +5V  
50  
0
0
10  
20  
30  
40  
60  
0
1.5  
3.0  
4.5  
6.0  
7.5 9.0  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
FIGURE 2-8:  
Supply Current and Power  
FIGURE 2-11:  
Supply Current and Power  
Conversion Efficiency vs. Load Current.  
Conversion Efficiency vs. Load Current.  
2
+
V
= +2V  
1
0
-1  
SLOPE 150Ω  
-2  
0
1
2
3
4
5
6
7
8
LOAD CURRENT (mA)  
FIGURE 2-9:  
Output Voltage vs. Load  
Current.  
DS21465C-page 4  
2002-2011 Microchip Technology Inc.  
TC7660  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
Symbol  
Description  
1
2
3
4
5
6
7
8
NC  
No connection  
+
CAP  
Charge pump capacitor positive terminal  
Ground terminal  
GND  
-
CAP  
Charge pump capacitor negative terminal  
Output voltage  
V
OUT  
LV  
Low voltage pin. Connect to GND for V+ < 3.5V  
OSC  
Oscillator control input. Bypass with an external capacitor to slow the oscillator  
Power supply positive voltage input  
+
V
+
3.1  
Charge Pump Capacitor (CAP )  
3.5  
Low Voltage Pin (LV)  
Positive connection for the charge pump capacitor, or  
flying capacitor, used to transfer charge from the input  
source to the output. In the voltage-inverting configura-  
tion, the charge pump capacitor is charged to the input  
voltage during the first half of the switching cycle. Dur-  
ing the second half of the switching cycle, the charge  
pump capacitor is inverted and charge is transferred to  
the output capacitor and load.  
The low voltage pin ensures proper operation of the  
internal oscillator for input voltages below 3.5V. The low  
voltage pin should be connected to ground (GND) for  
input voltages below 3.5V. Otherwise, the low voltage  
pin should be allowed to float.  
3.6  
Oscillator Control Input (OSC)  
The oscillator control input can be utilized to slow down  
or speed up the operation of the TC7660. Refer to  
Section 5.4 “Changing the TC7660 Oscillator Fre-  
quency”, for details on altering the oscillator  
frequency.  
It is recommended that a low ESR (equivalent series  
resistance) capacitor be used. Additionally, larger  
values will lower the output resistance.  
3.2  
Ground (GND)  
+
3.7  
Power Supply (V )  
Input and output zero volt reference.  
Positive power supply input voltage connection. It is  
recommended that a low ESR (equivalent series resis-  
tance) capacitor be used to bypass the power supply  
input to ground (GND).  
-
3.3  
Charge Pump Capacitor (CAP )  
Negative connection for the charge pump capacitor, or  
flying capacitor, used to transfer charge from the input  
to the output. Proper orientation is imperative when  
using a polarized capacitor.  
3.4  
Output Voltage (V  
)
OUT  
Negative connection for the charge pump output  
capacitor. In the voltage-inverting configuration, the  
charge pump output capacitor supplies the output load  
during the first half of the switching cycle. During the  
second half of the switching cycle, charge is restored to  
the charge pump output capacitor.  
It is recommended that a low ESR (equivalent series  
resistance) capacitor be used. Additionally, larger  
values will lower the output ripple.  
2002-2011 Microchip Technology Inc.  
DS21465C-page 5  
TC7660  
EQUATION  
4.0  
4.1  
DETAILED DESCRIPTION  
1
ROUT  
=
----------------------------- + 8RSW + 4ESRC1 + ESRC2  
fPUMP C1  
Theory of Operation  
The TC7660 charge pump converter inverts the voltage  
applied to the V+pin. The conversion consists of a two-  
phase operation (Figure 4-1). During the first phase,  
switches S2 and S4 are open and switches S1 and S3  
are closed. C1 charges to the voltage applied to the V+  
pin, with the load current being supplied from C2. Dur-  
ing the second phase, switches S2 and S4 are closed  
and switches S1 and S3 are open. Charge is trans-  
ferred from C1 to C2, with the load current being  
supplied from C1.  
Where:  
fOSC  
fPUMP = ----------  
2
RSW = on-resistance of the switches  
ESRC1 = equivalent series resistance of C  
ESRC2 = equivalent series resistance of C  
1
2
4.2  
Switched Capacitor Inverter  
Power Losses  
S1  
S2  
C1  
V+  
The overall power loss of a switched capacitor inverter  
is affected by four factors:  
+
1. Losses from power consumed by the internal  
oscillator, switch drive, etc. These losses will  
vary with input voltage, temperature and  
oscillator frequency.  
+
C2  
GND  
S3  
S4  
VOUT = -VIN  
2. Conduction losses in the non-ideal switches.  
3. Losses due to the non-ideal nature of the  
external capacitors.  
4. Losses that occur during charge transfer from  
C1 to C2 when a voltage difference between the  
capacitors exists.  
FIGURE 4-1:  
Inverter.  
Ideal Switched Capacitor  
Figure 4-3 depicts the non-ideal elements associated  
with the switched capacitor inverter power loss.  
In this manner, the TC7660 performs a voltage inver-  
sion, but does not provide regulation. The average out-  
put voltage will drop in a linear manner with respect to  
load current. The equivalent circuit of the charge pump  
inverter can be modeled as an ideal voltage source in  
series with a resistor, as shown in Figure 4-2.  
S1  
S2  
RSW  
RSW  
+
+
V+  
IDD  
C1  
C2  
+
-
IOUT  
LOAD  
ROUT  
ESRC1  
S3  
ESRC2  
S4  
VOUT  
-
RSW  
RSW  
V+  
+
FIGURE 4-3:  
Non-Ideal Switched  
Capacitor Inverter.  
FIGURE 4-2:  
Equivalent Circuit Model.  
Switched Capacitor Inverter  
The power loss is calculated using the following  
equation:  
The value of the series resistor (ROUT) is a function of  
the switching frequency, capacitance and equivalent  
series resistance (ESR) of C1 and C2 and the on-resis-  
tance of switches S1, S2, S3 and S4. A close  
approximation for ROUT is given in the following  
equation:  
EQUATION  
PLOSS = I2OUT ROUT + IDD V+  
DS21465C-page 6  
2002-2011 Microchip Technology Inc.  
TC7660  
5.2  
Paralleling Devices  
5.0  
5.1  
APPLICATIONS INFORMATION  
To reduce the value of ROUT, multiple TC7660 voltage  
converters can be connected in parallel (Figure 5-2).  
The output resistance will be reduced by approximately  
a factor of n, where n is the number of devices  
connected in parallel.  
Simple Negative Voltage  
Converter  
Figure 5-1 shows typical connections to provide a  
negative supply where a positive supply is available. A  
similar scheme may be employed for supply voltages  
anywhere in the operating range of +1.5V to +10V,  
keeping in mind that pin 6 (LV) is tied to the supply  
negative (GND) only for supply voltages below 3.5V.  
EQUATION  
ROUT of TC7660  
ROUT = --------------------------------------------------------  
n number of devices  
+
While each device requires its own pump capacitor  
(C1), all devices may share one reservoir capacitor  
(C2). To preserve ripple performance, the value of C2  
should be scaled according to the number of devices  
connected in parallel.  
V
1
2
3
4
8
7
6
5
V
*
OUT  
+
TC7660  
C
10 µF  
C
1
2
10 µF  
+
5.3  
Cascading Devices  
+
A larger negative multiplication of the initial supply volt-  
age can be obtained by cascading multiple TC7660  
devices. The output voltage and the output resistance  
will both increase by approximately a factor of n, where  
n is the number of devices cascaded.  
* V  
= -V for 1.5V V+ 10V  
OUT  
FIGURE 5-1:  
Simple Negative Converter.  
The output characteristics of the circuit in Figure 5-1  
are those of a nearly ideal voltage source in series with  
a 70resistor. Thus, for a load current of -10 mA and  
a supply voltage of +5V, the output voltage would be  
-4.3V.  
EQUATION  
VOUT = –nV+  
ROUT = n ROUT of TC7660  
V+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
+
TC7660  
C1  
RL  
+
TC7660  
C1  
“1”  
“n”  
C2  
+
FIGURE 5-2:  
Paralleling Devices Lowers Output Impedance.  
V+  
1
2
3
4
8
7
6
5
1
2
3
4
8
+
TC7660  
10 µF  
7
6
5
+
TC7660  
10 µF  
“1”  
VOUT  
10 µF  
*
“n”  
+
10 µF  
+
* VOUT = -n V+ for 1.5V V+ 10V  
Increased Output Voltage By Cascading Devices.  
FIGURE 5-3:  
2002-2011 Microchip Technology Inc.  
DS21465C-page 7  
TC7660  
5.4  
Changing the TC7660 Oscillator  
Frequency  
5.5  
Positive Voltage Multiplication  
Positive voltage multiplication can be obtained by  
employing two external diodes (Figure 5-6). Refer to  
the theory of operation of the TC7660 (Section 4.1  
“Theory of Operation”). During the half cycle when  
switch S2 is closed, capacitor C1 of Figure 5-6 is  
charged up to a voltage of V+ - VF1, where VF1 is the  
forward voltage drop of diode D1. During the next half  
cycle, switch S1 is closed, shifting the reference of  
capacitor C1 from GND to V+. The energy in capacitor  
C1 is transferred to capacitor C2 through diode D2, pro-  
ducing an output voltage of approximately:  
The operating frequency of the TC7660 can be  
changed in order to optimize the system performance.  
The frequency can be increased by over-driving the  
OSC input (Figure 5-4). Any CMOS logic gate can be  
utilized in conjunction with a 1 kseries resistor. The  
resistor is required to prevent device latch-up. While  
TTL level signals can be utilized, an additional 10 k  
pull-up resistor to V+ is required. Transitions occur on  
the rising edge of the clock input. The resultant output  
voltage ripple frequency is one half the clock input.  
Higher clock frequencies allow for the use of smaller  
pump and reservoir capacitors for a given output volt-  
age ripple and droop. Additionally, this allows the  
TC7660 to be synchronized to an external clock,  
eliminating undesirable beat frequencies.  
EQUATION  
VOUT = 2 V+ VF1 + VF2  
where:  
At light loads, lowering the oscillator frequency can  
increase the efficiency of the TC7660 (Figure 5-5). By  
lowering the oscillator frequency, the switching losses  
are reduced. Refer to Figure 2-3 to determine the typi-  
cal operating frequency based on the value of the  
external capacitor. At lower operating frequencies, it  
may be necessary to increase the values of the pump  
and reservoir capacitors in order to maintain the  
desired output voltage ripple and output impedance.  
VF1 is the forward voltage drop of diode D1  
and  
VF2 is the forward voltage drop of diode D2.  
V+  
1
2
3
4
8
7
6
5
VOUT  
=
D1  
(2 V+) - (2 VF)  
TC7660  
D2  
V+  
V+  
+
+
1
2
3
4
8
7
6
5
C1  
C2  
1 k  
CMOS  
GATE  
+
TC7660  
10 µF  
FIGURE 5-6:  
5.6  
Positive Voltage Multiplier.  
VOUT  
“1”  
Combined Negative Voltage  
Conversion and Positive Supply  
Multiplication  
10 µF  
+
FIGURE 5-4:  
External Clocking.  
Simultaneous voltage inversion and positive voltage  
multiplication can be obtained (Figure 5-7). Capacitors  
C1 and C3 perform the voltage inversion, while capaci-  
tors C2 and C4, plus the two diodes, perform the posi-  
tive voltage multiplication. Capacitors C1 and C2 are  
the pump capacitors, while capacitors C3 and C4 are  
the reservoir capacitors for their respective functions.  
Both functions utilize the same switches of the TC7660.  
As a result, if either output is loaded, both outputs will  
drop towards GND.  
V+  
1
8
7
6
5
2
+
TC7660  
C1  
COSC  
3
VOUT  
4
C2  
+
FIGURE 5-5:  
Lowering Oscillator  
Frequency.  
DS21465C-page 8  
2002-2011 Microchip Technology Inc.  
TC7660  
+
V
V
= -V  
OUT  
1
2
3
4
8
7
6
5
+
C
3
+
TC7660  
D
D
1
2
V
=
OUT  
+
+
(2 V ) - (2 V )  
C
F
1
+
+
C
2
C
4
FIGURE 5-7:  
Combined Negative  
Converter and Positive Multiplier.  
5.7  
Efficient Positive Voltage  
Multiplication/Conversion  
Since the switches that allow the charge pumping  
operation are bidirectional, the charge transfer can be  
performed backwards as easily as forwards.  
Figure 5-8 shows a TC7660 transforming -5V to +5V  
(or +5V to +10V, etc.). The only problem here is that the  
internal clock and switch-drive section will not operate  
until some positive voltage has been generated. An ini-  
tial inefficient pump, as shown in Figure 5-7, could be  
used to start this circuit up, after which it will bypass the  
other (D1 and D2 in Figure 5-7 would never turn on), or  
else the diode and resistor shown dotted in Figure 5-8  
can be used to “force” the internal regulator on.  
-
V
= -V  
OUT  
1
2
3
4
8
7
6
5
+
10 µF  
1 M  
+
C
10 µF  
TC7660  
1
-
V input  
FIGURE 5-8:  
Positive Voltage  
Conversion.  
2002-2011 Microchip Technology Inc.  
DS21465C-page 9  
TC7660  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil)  
Example  
Example  
TC7660  
TC7660  
XXXXXXXX  
XXXXXNNN  
e
3
CPA 256  
CPA256  
1208  
1208  
YYWW  
8-Lead CERDIP (.300”)  
Example  
Example  
TC7660  
TC7660  
XXXXXXXX  
XXXXXNNN  
e
3
MJA256  
MJA 256  
1208  
1208  
YYWW  
8-Lead SOIC (3.90 mm)  
Example  
Example  
TC7660C  
TC7660C  
OA1208  
e
3
OA 1208  
256  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
DS21465C-page 10  
2002-2011 Microchip Technology Inc.  
TC7660  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢐꢁꢂꢋꢐꢃꢆꢑꢇꢒꢓꢆꢔꢆꢕꢖꢖꢆꢗꢋꢈꢆꢘꢙꢅꢚꢆꢛꢇꢍꢏꢇꢜ  
ꢝꢙꢊꢃꢞ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
ꢯꢄꢃꢏꢇ  
ꢰꢱꢝꢲꢠꢛ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢳꢃꢑꢃꢏꢇ  
ꢢꢰꢱ  
ꢱꢴꢢ  
ꢁꢀꢣꢣꢅꢩꢛꢝ  
ꢁꢀꢞꢣ  
ꢁꢞꢀꢣ  
ꢁꢙꢨꢣ  
ꢁꢞꢺꢨ  
ꢁꢀꢞꢣ  
ꢁꢣꢀꢣ  
ꢁꢣꢺꢣ  
ꢁꢣꢀꢶ  
ꢢꢦꢵ  
ꢱꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
ꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢩꢉꢇꢌꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢛꢘꢕꢈꢊꢋꢌꢐꢅꢏꢕꢅꢛꢘꢕꢈꢊꢋꢌꢐꢅꢹꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢳꢌꢄꢜꢏꢘ  
ꢦꢙ  
ꢦꢀ  
ꢠꢀ  
ꢔꢀ  
ꢌꢩ  
ꢁꢙꢀꢣ  
ꢁꢀꢸꢨ  
ꢁꢀꢀꢨ  
ꢁꢣꢀꢨ  
ꢁꢙꢸꢣ  
ꢁꢙꢥꢣ  
ꢁꢞꢥꢶ  
ꢁꢀꢀꢨ  
ꢁꢣꢣꢶ  
ꢁꢣꢥꢣ  
ꢁꢣꢀꢥ  
ꢁꢞꢙꢨ  
ꢁꢙꢶꢣ  
ꢁꢥꢣꢣ  
ꢁꢀꢨꢣ  
ꢁꢣꢀꢨ  
ꢁꢣꢻꢣ  
ꢁꢣꢙꢙ  
ꢁꢥꢞꢣ  
ꢫꢃꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢳꢌꢉꢋꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢯꢡꢡꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢳꢕꢗꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢼꢕꢗꢅꢛꢡꢉꢖꢃꢄꢜꢅꢅꢚ  
ꢝꢙꢊꢃꢉꢞ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢚꢅꢛꢃꢜꢄꢃꢎꢃꢖꢉꢄꢏꢅꢝꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢠꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢁꢣꢀꢣꢤꢅꢡꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢥꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢜꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢜꢅꢡꢌꢐꢅꢦꢛꢢꢠꢅꢧꢀꢥꢁꢨꢢꢁ  
ꢩꢛꢝꢪꢅꢩꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢫꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢡ ꢖꢘꢄꢕꢊꢕꢜꢒ ꢟꢐꢉꢗꢃꢄꢜ ꢝꢣꢥꢽꢣꢀꢶꢩ  
2002-2011 Microchip Technology Inc.  
DS21465C-page 11  
TC7660  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21465C-page 12  
2002-2011 Microchip Technology Inc.  
TC7660  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2002-2011 Microchip Technology Inc.  
DS21465C-page 13  
TC7660  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21465C-page 14  
2002-2011 Microchip Technology Inc.  
TC7660  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢟꢗꢄꢈꢈꢆꢠꢎꢊꢈꢋꢐꢃꢆꢑꢠꢒꢓꢆꢔꢆꢝꢄꢡꢡꢙꢢꢣꢆꢕꢤꢥꢖꢆꢗꢗꢆꢘꢙꢅꢚꢆꢛꢟꢠꢏꢦꢜ  
ꢝꢙꢊꢃꢞ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
2002-2011 Microchip Technology Inc.  
DS21465C-page 15  
TC7660  
APPENDIX A: REVISION HISTORY  
Revision C (March 2012)  
The following is the list of modifications.  
1. Updated Figure 5-5.  
2. Added Appendix A.  
Revision B (March 2003)  
Undocumented changes.  
Revision A (May 2002)  
Original release of this document.  
DS21465C-page 16  
2002-2012 Microchip Technology Inc.  
TC7660  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
TC7660COA: Commercial Temp., SOIC  
package.  
TC7660COA713:Tape and Reel, Commercial  
Temp., SOIC package.  
TC7660CPA: Commercial Temp., PDIP  
package.  
TC7660EOA: Extended Temp., SOIC  
package.  
TC7660EOA713:Tape and Reel, Extended  
Temp., SOIC package.  
TC7660EPA: Extended Temp., PDIP  
package.  
Temperature Package  
Range  
Device:  
TC7660: DC-to-DC Voltage Converter  
Temperature Range:  
C
E
I
=
=
=
=
0°C to +70°C  
-40°C to +85°C  
-25°C to +85°C (CERDIP only)  
-55°C to +125°C (CERDIP only)  
M
g)  
h)  
TC7660IJA: Industrial Temp., CERDIP  
package  
TC7660MJA: Military Temp., CERDIP  
package.  
Package:  
PA  
JA  
OA  
=
=
=
Plastic DIP, (300 mil body), 8-lead  
Ceramic DIP, (300 mil body), 8-lead  
SOIC (Narrow), 8-lead  
OA713 = SOIC (Narrow), 8-lead (Tape and Reel)  
2002-2012 Microchip Technology Inc.  
DS21465C-page 17  
TC7660  
NOTES:  
DS21465C-page 18  
2002-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62076-089-5  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2002-2012 Microchip Technology Inc.  
DS21465C-page 19  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS21465C-page 20  
2002-2012 Microchip Technology Inc.  

相关型号:

TC7660MOA

Charge Pump DC-to-DC Voltage Converter
MICROCHIP

TC7660MOA713

Charge Pump DC-to-DC Voltage Converter
MICROCHIP

TC7660MPA

Charge Pump DC-to-DC Voltage Converter
MICROCHIP

TC7660S

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
TELCOM

TC7660S

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
MICROCHIP

TC7660SCOA

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
TELCOM

TC7660SCOA

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
MICROCHIP

TC7660SCOA713

SWITCHED CAPACITOR REGULATOR, 45 kHz SWITCHING FREQ-MAX, PDSO8, SOIC-8
MICROCHIP

TC7660SCOA723

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
MICROCHIP

TC7660SCOAG

SWITCHED CAPACITOR REGULATOR, 45 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, SOIC-8
MICROCHIP

TC7660SCPA

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
TELCOM

TC7660SCPA

SUPER CHARGE PUMP DC-TO-DC VOLTAGE CONVERTER
MICROCHIP