UPD301BKYX [MICROCHIP]

Stand-alone USB Type-C™ Power Delivery 3.0 Controller;
UPD301BKYX
型号: UPD301BKYX
厂家: MICROCHIP    MICROCHIP
描述:

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

文件: 总45页 (文件大小:1529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UPD301B/C  
Stand-alone USB Type-C™ Power Delivery 3.0 Controller  
• 32-bit ARM Cortex-M0+ CPU  
Highlights  
• USB Type-C™ (1) Power Delivery (PD) Solution for  
- Source-only applications (UPD301B)  
- 64KB Flash, 8KB RAM  
• Optional Two, Three, or Four Port Solution via  
External UPD350  
- Sink-only, Dual Role Power, and Dual Role  
Data applications (UPD301C)  
- SPI for External UPD350 Communication  
- Power Delivery Firmware Controls All Ports  
• Companion device for USB PD Software Frame-  
work (PSF) open source firmware stack  
• Integrated Analog Discrete Components  
- VCONN FETs with Rp/Rd Switching  
- Dead Battery Rd termination (UPD301C only)  
- Programmable Current Sense for  
Overcurrent Conditions  
• Fully Customizable software  
• Standard Power Delivery power profiles  
(15/27/45/60/100W) supported with  
no software modification  
- Voltage Sense for Overvoltage Conditions  
• USB Power Delivery 3.0 compliant MAC  
• USB Power Delivery MAC  
• USB Type-C™ connector support with  
connection detection and control  
- Compliant with USB Power Delivery  
Specification Revision 3.0  
• Integrated Analog Discrete Components Reduce  
Bill of Materials and Design Footprint  
- Power Delivery Packet Framing  
- CRC Checking/Generation  
- 4B/5B Encoding/Decoding  
- BMC Encoding/Decoding  
• Easily Supports up to 3 additional Power Delivery  
ports Port via UPD350 Add-on  
- EOP/SOP Generation for PD Frames  
- SOP Detection and SOP Header Processing  
- Separate RX/TX FIFOs  
• Commercial, Industrial, and Automotive  
Temperature Support  
- Automatic GoodCRC Message Generation  
- Automatic Retry Generation  
- Error Handling  
Target Applications  
• Point-of-Sale Terminals  
• Charging Lockers  
- Low Standby Power Support  
• IoT Products and Sensors  
• Smart Speakers and Monitors  
• Conference Systems  
• USB Type-C Cable Detect Logic  
- Auto Cable Attach & Orientation Detection  
- Routes Baseband Communication to Respec-  
tive CC Pin per Detected Orientation  
- VCONN Supply Control for Active Cable  
- Charging Current Capability Detection  
• Power Tools  
• Multi-port Charging Docks  
• Automotive Rear Seat Charging Ports  
• Power and I/Os  
- Integrated 1.8V Voltage Regulator  
- 10 Configurable General Purpose I/O Pins  
Key Benefits  
• Fully Customizable Power Delivery Firmware  
• Package  
- Industry standard MPLABX development and  
programming environment  
- Supports all Standard Power Delivery profiles  
(15/27/45/60/100W) and custom profiles  
- Supports Dual Role Port (DRP) operation  
(UPD301C only)  
- Supports Alternate Mode operation  
- PSF software framework enables customized  
PD applications  
- 40-VQFN (6.0mm x 6.0mm)  
• Environmental  
- Commercial Temperature Range  
(0°C to +70°C)  
- Industrial / AEC-Q100 Automotive Grade 3  
Temperature Range (-40°C to +85°C)  
1. USB Type-C™ and USB-C™ are trademarks of USB Implementers Forum.  
2020 Microchip Technology Inc.  
DS00003412A-page 1  
UPD301B/C  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Documentation  
To obtain the most up-to-date version of this documentation, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-  
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS00003412A-page 2  
2020 Microchip Technology Inc.  
UPD301B/C  
Table of Contents  
1.0 Preface ............................................................................................................................................................................................ 4  
2.0 Introduction ..................................................................................................................................................................................... 6  
3.0 Pin Descriptions and Configuration ............................................................................................................................................... 13  
4.0 Functional Descriptions ................................................................................................................................................................. 18  
5.0 Operational Characteristics ........................................................................................................................................................... 30  
6.0 Package Information ..................................................................................................................................................................... 37  
Appendix A: Data Sheet Revision History ........................................................................................................................................... 41  
The Microchip Web Site ...................................................................................................................................................................... 42  
Customer Change Notification Service ............................................................................................................................................... 42  
Customer Support ............................................................................................................................................................................... 42  
Product Identification System ............................................................................................................................................................. 43  
2020 Microchip Technology Inc.  
DS00003412A-page 3  
UPD301B/C  
1.0  
1.1  
PREFACE  
Glossary of Terms  
TABLE 1-1:  
Term  
GLOSSARY OF TERMS  
Definition  
BCI  
Baseband CC Interface  
Billboard  
USB Billboard Device. A required USB device class for UFPs which support Alternate Modes  
in order to provide product information to the USB Host.  
BIST  
BMC  
Byte  
CC  
Built-In Self Test  
Bi-phase Mark Coding  
8-bits  
Generic reference to USB Type-CCable / Connector CC1/CC2 pins  
Control and Status Register  
Downstream Facing Port (USB Type-C™ Specification definition)  
DisplayPort (a VESA standard interface)  
Dual-Role Power  
CSR  
DFP  
DP  
DRP  
ESD  
FIFO  
GPIO  
Host  
HBM  
HS  
Electro-Static Discharge  
First In First Out buffer  
General Purpose Input/Output  
External system (Includes processor, application software, etc.)  
Human Body Model (Simulates ESD from humans)  
High-Speed  
LDO  
MAC  
Microchip  
N/A  
Linear Drop-Out regulator  
Media Access Controller  
Microchip Technology Incorporated  
Not Applicable  
NC  
No Connect (pin)  
OCS  
PD / UPD  
PDO  
Over-Current Sense  
USB Power Delivery  
Power Delivery Object (USB PD Specification definition)  
PDOs enable the port to indicate its Port Partner supported combinations of Voltage/Current or  
Power as well as the type of supply (Fixed, Variable, Battery) in Source Role or Sink Role.  
PIO  
General Purpose I/O  
POR  
Power-On Reset  
Port Partner  
PRBS  
Remote port which is connected to the UPD301B/C’s local port  
Pseudo Random Binary Sequence  
USB Type-C port is sinking power from its Port Partner  
Source Role  
Source-only  
Operation  
Operation exclusively in USB Type-C / Power Delivery Source Role as defined in the USB  
Type-C and Power-Delivery specifications. In this mode of operation, USB Type-C Dual-Role  
Power Operation is not supported and there is no support for USB Power Role Swap.  
SPI  
SS  
Serial Peripheral Interface  
SuperSpeed  
Stand-alone Mode Chip operation without the control or configuration by an external MCU. Policy is defined locally  
by the UPD301B/C firmware. Configuration is achieved by use of configuration straps.  
UFP  
USB  
Upstream Facing Port (USB Type-C™ Specification definition)  
Universal Serial Bus  
DS00003412A-page 4  
2020 Microchip Technology Inc.  
UPD301B/C  
TABLE 1-1:  
Term  
GLOSSARY OF TERMS (CONTINUED)  
Definition  
USB Power  
Port is operating using USB Power Delivery protocols in conformance to the USB PD Specifi-  
Delivery Operation cation.  
USB Power  
Role Swap  
Message sequence as defined in the USB PD Specification, enabling a transition between  
Source Role and Sink Role during USB Power Delivery Operation  
USB Type-C™  
USB Type-C™ Cable / Connector  
1.2  
Buffer Types  
TABLE 1-2:  
BUFFER TYPES  
Description  
Buffer Type  
I
Input  
IS  
Schmitt-triggered input  
O2  
OD2  
O8  
PD  
Output with 2 mA sink and 2 mA source  
Open-drain output with 2 mA sink and 2 mA source  
Output with 8 mA sink and 8 mA source  
200kΩ (typical) internal pull-down.  
Note:  
Internal pull-down resistors prevent unconnected inputs from floating. Do not rely  
on internal resistors to drive signals external to the device. When connected to a  
load that must be pulled low, an external resistor must be added.  
AI  
AO  
AIO  
P
Analog input  
Analog output  
Analog bidirectional  
Power pin  
Note:  
Refer to Section 5.5, "DC Characteristics," on page 33 for the electrical characteristics of the various buf-  
fers.  
1.3  
References  
• Microchip UPD350 Datasheet: https://www.microchip.com/wwwproducts/en/UPD350  
• Microchip SAM D20 Datasheet:  
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D20_%20Family_Datasheet_DS60001504C.pdf  
• USB Power Delivery: https://www.usb.org/document-library/usb-power-delivery.  
• USB Type-C™ Specification: ihttps://www.usb.org/document-library/usb-type-cr-cable-and-connector-specifica-  
tion-revision-14-march-29-2019  
2020 Microchip Technology Inc.  
DS00003412A-page 5  
UPD301B/C  
2.0  
2.1  
INTRODUCTION  
General Description  
The UPD301B/C is a stand-alone, small form factor USB Type-C™ Power Delivery (PD) Port Controller designed to  
adhere to the USB Type-C™ Cable and Connector Specification and USB Power Delivery 3.0 Specification. The  
UPD301B/C provides stand-alone operation for a wide range of PD applications, enabling cable plug orientation and  
detection for a USB Type-C receptacle, and implementing baseband communication with a partner USB Type-C device  
via the integrated USB Power Delivery 3.0 MAC.  
The UPD301B/C is an integrated PD solution with SAMD20 (32-bit ARM Cortex-M0+) microcontroller and UPD350 PD  
MAC/PHY functionality. The embedded 32-bit ARM Cortex-M0+ can execute the USB Power Delivery Framework (PSF)  
Power Delivery stack. Optionally, a second, third, or fourth PD port is supported via SPI connection of additional external  
Microchip UPD350 devices. The UPD301B/C devices are shipped blank and require programming with compiled appli-  
cation specific code before operation.  
Additionally, the UPD301B/C integrates many of the analog discrete components required for USB Type-C PD applica-  
tions, including two VCONN FETs with Rp/Rd switching and current/voltage sense circuitry for over-voltage/current  
detection. By integrating the PD firmware and many of the analog discrete components required for USB Type-C PD  
applications, the UPD301B/C provides a low cost, stand-alone, fast time-to-market solution for consumer, industrial, and  
automotive applications.  
The Microchip UPD301B/C family includes the following devices:  
• UPD301B  
• UPD301C  
The UPD301B/C is available in commercial (0°C to +70°C) and industrial/automotive grade 3 (-40°C to +85°C) tempera-  
ture ranges. The UPD301B/C is available with dead battery support enabled or disabled in hardware. Device specific  
features that do not pertain to the entire UPD301B/C family are called out independently throughout this document.  
Table 2-1 provides a summary of the feature differences between family members. For ordering information, refer to the  
Product Identification System on page 43.  
TABLE 2-1:  
UPD301B/C FAMILY FEATURE MATRIX  
UPD301B  
UPD301C  
40-VQFN  
40-VQFN  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2.2  
USB Power Delivery Software Framework  
The PSF firmware stack allows for a wide range of USB Power Delivery applications, including but not limited to: Single  
or Multi-Port source Only applications, Bus-Powered Sink applications, Battery-Powered Sink applications, and Dual  
Role Data / Dual Role Power applications such as PD-based docking stations or PD-based dongles.  
The PSF firmware stack is continuously deployed. Not all features that are able to be supported by the UPD301B/C  
device are necessarily supported by PSF. The supported features may be expanded over time. The PSF firmware stack  
can be downloaded from the UPD301B/C product page. Refer to the UPD301B/C product page and PSF Online code  
repository for details on the currently supported feature set and future development road-map. Additional feature devel-  
opment may be requested through Microchip support channels.  
DS00003412A-page 6  
2020 Microchip Technology Inc.  
UPD301B/C  
2.3  
Example Applications  
The UPD301B/C has been designed for multiple applications, including:  
• UPD301B  
- Source-Only Applications (E.G., Charging Ports) (UPD301B Only)  
- Two-Port, Three-Port, and Four-Port Source-Only Applications (E.G., Automotive Rear Seat Charging)  
(UPD301B Only)  
• UPD301C  
- Bus-Powered or Battery Powered Sink-Only Applications (UPD301C Only)  
- Dual Role Power/Data Application (5V Source, High Voltage Sink) (UPD301C Only)  
- Dual Role Power/Data Application (High Voltage Source, 5V @ 0A Sink) (UPD301C Only)  
- 2-Port Dual Role Power/Data Application ‘Charge-Through Adapter’ (UPD301C Only)  
Note:  
Single-Port Source, Single-Port Sink, and Dual-Port Source modes are the only supported modes of oper-  
ation. Dual-Port Sink and Source + Sink modes are not supported without custom firmware.  
2.3.1  
SOURCE-ONLY APPLICATIONS (E.G., CHARGING PORTS) (UPD301B ONLY)  
The simplest UPD301B application is a power source (Source-Only), as shown in Figure 2-1. The UPD301B control  
I/O configures the DC-DC converter, selecting the output voltage, and controls the load switch to regulate and protect  
the output voltage. The load switch can also be replaced by discrete FETs and over-current / over-voltage protection  
circuits.  
Additional notes on Source-Only Charging Port Applications:  
• Supporting USB data is not required for a Charging Port.  
• A Power Source Load Switch is optional for Source-Only ports. Source-Only ports are permitted to maintain a  
large bulk capacitance on VBUS at all times, even when the port is in the detached state.  
• USB3 operation is optional for PD docking ports.  
FIGURE 2-1:  
SYSTEM BLOCK DIAGRAM - SOURCE-ONLY APPLICATION  
Optional  
DC‐DC  
Converter  
DC In  
Load Switch  
Control I/O  
Fault Indicator  
(GPIO, DAC,  
or I2C)  
VBUS  
VBUS_DET  
Microchip  
UPD301B  
POWER  
RESET  
CC1  
CC2  
2020 Microchip Technology Inc.  
DS00003412A-page 7  
UPD301B/C  
2.3.2  
TWO-PORT, THREE-PORT, AND FOUR-PORT SOURCE-ONLY APPLICATIONS  
(E.G., AUTOMOTIVE REAR SEAT CHARGING) (UPD301B ONLY)  
Some applications, such as a automotive rear seat charging port, may need multiple USB Type-C™ power delivery  
ports. These ports can be implemented by connecting a UPD301B and a UPD350 via the SPI interface, as shown in  
Figure 2-2. The UPD301B will execute the stack for the UPD350. The two-port implementation supports dynamic power  
allocation (e.g., go-to power min based on an external input).  
FIGURE 2-2:  
SYSTEM BLOCK DIAGRAM - TWO-PORT APPLICATION  
Optional  
DC‐DC  
Converter  
DC In  
Load Switch  
Fault Indicator  
Control I/O  
(GPIO, DAC,  
or I2C)  
VBUS  
VBUS_DET  
Microchip  
UPD301B  
CC1  
CC2  
M
SPI  
S
POWER  
RESET  
CC1  
CC2  
Microchip  
UPD350  
VBUS_DET  
Control I/O  
VBUS  
(GPIO, DAC,  
or I2C)  
Fault Indicator  
Optional  
DC‐DC  
Converter  
DC In  
Load Switch  
DS00003412A-page 8  
2020 Microchip Technology Inc.  
UPD301B/C  
2.3.3  
BUS-POWERED OR BATTERY POWERED SINK-ONLY APPLICATIONS (UPD301C ONLY)  
An example of a bus powered power sink (Sink-Only) application is shown in Figure 2-3. Abus powered Sink-Only appli-  
cation derives all power from the upstream VBUS connection and does not have any other power source. The UPD301C  
device with dead battery support should be selected for all Sink-Only devices. The dead battery Rp terminations allow  
the Sink-Only device to be detected and powered from an attached DFP port when connected in an unpowered state.  
Additional notes on Bus-Power or Battery Powered Sink-Only Applications:  
• USB data support is optional.  
• If USB3 data is supported, a 2:1 multiplexer may be required to handle Type-C cable insertion reversibility. Device  
controllers and hubs specifically designed to support USB Type-C may also integrate the reversibility functionality.  
• USB Alternate Modes may also be supported in Sink-Only applications.  
• DisplayPort support is optional for mobile device ports.  
• USB2 signals may be connected directly to the Type-C connector; a multiplexer is not necessary as long as the  
USB2 signal layout is carefully managed to keep branches at a minimum.  
FIGURE 2-3:  
SYSTEM BLOCK DIAGRAM - SINK-ONLY APPLICATION  
To  
Power Sink  
Load Switch  
System Power  
or  
Battery Charger  
VBUS  
LDO  
VBUS_DET  
CC1  
Misc.  
Microchip  
UPD301C*  
SOC/MCU/  
External Logic  
Charging  
Capability  
Indication  
(i.e.: GPIO,  
DAC, I2C)  
CC2  
*With Dead Battery  
Support Enabled  
ORIENTATION  
USB2  
USB Device /  
Hub Upstream  
Port  
2:1  
Data  
Mux  
USB3  
2020 Microchip Technology Inc.  
DS00003412A-page 9  
UPD301B/C  
2.3.4  
DUAL ROLE POWER/DATA APPLICATION (5V SOURCE, HIGH VOLTAGE SINK) (UPD301C  
ONLY)  
An example of a mobile device port is shown in Figure 2-4. In this example a mobile device, such as a notebook, smart-  
phone, or tablet, is capable of operating as a USB host (and device if the processor is capable of OTG operation), receiv-  
ing a charge, and driving an external video display through a single Type-C connection. A cross-bar switch is shown for  
routing DisplayPort Alternate Mode and USB3 data to the connector, allowing port expansion and video display.  
Additional notes on Dual Role Power/Data (5V Source, High Voltage Sink) Applications:  
• A typical mobile device will limit the power sourcing capability to 5V only in order to preserve battery life. This is  
not explicitly required and a mobile device may optionally provide up to the maximum 100W capability if the sys-  
tem supports it.  
• When the port is operating as a power sink/data UFP, the USB Host / Hub Downstream Port block is not required  
to support USB Device / Hub Upstream Port operation.  
• A 5V Source Load Switch device must be tolerant of the maximum supported sinking voltage.  
• USB3 operation is optional for mobile device ports.  
• DisplayPort support is optional for mobile device ports.  
• If both USB3 and DisplayPort operation are omitted, the crossbar data switch is not necessary.  
• USB2 signals may be connected directly to the Type-C connector; a multiplexer is not necessary as long as the  
USB2 signal layout is carefully managed to keep branches to a minimum.  
FIGURE 2-4:  
SYSTEM BLOCK DIAGRAM - DUAL ROLE POWER/DATA APPLICATION  
(5V SOURCE, HIGH VOLTAGE SINK)  
5V Source  
Switch  
5V  
To  
Power Sink  
Load Switch  
System Power  
or  
Battery Charger  
VBUS  
LDO  
VBUS_DET  
Misc.  
SOC/MCU/  
External Logic  
Microchip  
CC1  
CC2  
UPD301C*  
Charging  
Capability  
Indication  
(i.e.: GPIO,  
DAC, I2C)  
*With Dead Battery  
Support Enabled  
ORIENTATION  
USB2  
USB Host / Hub  
Downstream  
Port  
USB3  
X‐Bar  
Data  
Mux  
DisplayPort  
Source  
DP  
DS00003412A-page 10  
2020 Microchip Technology Inc.  
UPD301B/C  
2.3.5  
DUAL ROLE POWER/DATA APPLICATION (HIGH VOLTAGE SOURCE, 5V @ 0A SINK)  
(UPD301C ONLY)  
An example of a PD docking port is shown in Figure 2-5. In this example a battery powered mobile device, such as a  
notebook, smart-phone, or tablet may connect to the docking PD port and receive a charge, access the USB device  
tree, and drive an external video display through a single Type-C connection. A cross-bar switch is shown for routing  
DisplayPort Alternate Mode and USB3 data to the connector, allowing port expansion and video display.  
Additional notes on Dual Role Power/Data (High Voltage Source, 5V @ 0A Sink) Applications:  
• While a PD docking port may technically resolve into a power sink role, a typical PD dock will not attempt to sink  
any power while operating as a power sink. This type of operation may be referred to a “5V @ 0A Sink”.  
• When the port is operating as a power sink/data UFP, the USB Device/Hub Upstream Port block is not required to  
support USB Host/Hub Downstream Port operation.  
• A Power Source Load Switch device is necessary, as the DC-DC converters bulk capacitance must be isolated  
from VBUS when the port is operating as a 5V @ 0A Sink.  
• USB3 operation is optional for PD docking ports.  
• DisplayPort support is optional for PD docking ports.  
• If an Alternate Mode such as DisplayPort is supported, a Billboard device must also be included within the system  
and be exposed following an Alternate Mode negotiation failure (A Billboard device may optionally be connected  
at all times and communicate a successful Alternate Mode connection, but this is optional).  
• If both USB3 and DisplayPort operation are omitted, the crossbar data switch is not necessary.  
• USB2 signals may be connected directly to the Type-C connector; a multiplexer is not necessary as long as the  
USB2 signal layout is carefully managed to keep branches to a minimum.  
FIGURE 2-5:  
SYSTEM BLOCK DIAGRAM - DUAL ROLE POWER/DATA APPLICATION  
(HIGH VOLTAGE SOURCE, 5V @ 0A SINK)  
DC‐DC  
Converter  
Power Source  
LoadSwitch  
DC In  
Fault Indicator  
Control I/O  
(GPIO, DAC,  
or I2C)  
VBUS_DET  
VBUS  
Microchip  
UPD301C  
CC1  
POWER  
RESET  
CC2  
ORIENTATION  
USB2  
USB Device /  
Hub Upstream  
Port  
USB3  
X‐Bar  
Data  
Mux  
BB Control  
USB2  
To Display Scalar/HDMI  
Conversion IC/  
DisplayPort MST Hub/  
DisplayPort Connector/  
etc.  
DP  
USB Billboard  
Device  
2020 Microchip Technology Inc.  
DS00003412A-page 11  
UPD301B/C  
2.3.6  
2-PORT DUAL ROLE POWER/DATA APPLICATION ‘CHARGE-THROUGH ADAPTER’  
(UPD301C ONLY)  
An example of a charge through adapter/mobile dock device is shown in Figure 2-6. In this example, the ‘Charger Input  
Port’ may pass a high voltage power profile through the system to an attached mobile device. If a charger is not inserted  
into the ‘Charger Input Port’. then the mobile device may power the adapter with 5V power.  
A cross-bar switch is shown for routing DisplayPort Alternate Mode and USB3 data to the connector, allowing port  
expansion and video display.  
An LDO is shown connected to a power OR circuit to ensure power to the system is available regardless of which Type-  
-C port is supplying power to the system. The LDO should be selected to operate at the maximum supported charge-  
through voltage.  
FIGURE 2-6:  
SYSTEM BLOCK DIAGRAM - 2-PORT DUAL ROLE POWER/DATA APPLICATION  
‘CHARGE-THROUGH ADAPTER’  
HDMI  
Port  
DP to  
HDMI  
HDMI  
DP  
X‐Bar  
Data  
Mux  
USB3  
USB2  
VBUS  
USB Port  
5V Power  
Mobile  
Device  
Port  
CC1  
CC2  
Microchip  
UPD301C  
VBUS_DET  
VBUS  
M
POWER  
SPI  
S
LDO  
Load Switch  
VBUS  
VBUS_DET  
Charger  
Input  
Port  
Microchip  
UPD350  
CC1  
CC2  
DS00003412A-page 12  
2020 Microchip Technology Inc.  
UPD301B/C  
3.0  
3.1  
PIN DESCRIPTIONS AND CONFIGURATION  
Pin Assignments  
The device pin diagram for the UPD301B/C can be seen in Figure 3-1. Table 3-1 provides a UPD301B/C pin assignment  
table. The internal bonding diagram (simplified) is shown in Figure 3-2. Pin descriptions are provided in Section 3.2, "Pin  
Descriptions".  
FIGURE 3-1:  
UPD301B/C PIN ASSIGNMENTS (TOP VIEW)  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PA28  
CC2  
PA15  
2
3
SPI_IRQ_N0 (PA14)  
VPP18  
VCONN_IN  
CC1  
4
GPIO3  
5
VDD12_CORE_OUT  
VDD33_REG_IN  
SWCLK (PA30)  
SWDIO (PA31)  
VBUS_DET_IN  
PA00  
GPIO2  
Microchip  
UPD301B/C  
6
SPI_MOSI (PA11)  
SPI_SS0 (PA10)  
SPI_CLK (PA09)  
SPI_MISO (PA08)  
VDD33_ANA_IN  
(Top View 40-VQFN)  
7
8
9
Thermal slug connects to VSS  
10  
Note: Exposed pad (VSS) on bottom of package must be connected to ground.  
2020 Microchip Technology Inc.  
DS00003412A-page 13  
UPD301B/C  
FIGURE 3-2:  
SIMPLIFIED INTERNAL BONDING DIAGRAM  
UPD301B/C  
29  
5
6
VDD12_CORE_OUT  
VDDCORE  
30  
9
1
2
3
4
5
10  
11  
VDDIN  
PA00  
PA01  
PA00  
PA01  
VDD33_REG_IN  
VDD33_ANA_IN  
RESET_N_IN  
21  
40  
VDDANA  
RESET  
26  
12  
13  
17  
18  
19  
20  
PA02  
PA03  
PA04  
PA02  
PA03  
17  
18  
19  
20  
31  
32  
34  
35  
PA16  
PA17  
PA18  
PA19  
PA16  
PA17  
PA04  
PA05 6  
PA05  
7
PA06  
PA06  
PA18/GPO4  
PA19/GPIO5  
8
PA07  
SPI_MOSI_SI (PA07)  
21  
22  
25  
27  
PA08 11  
PA09 12  
PA10 13  
PA11 14  
PA14 15  
PA15 16  
36  
37  
39  
1
22  
23  
24  
25  
29  
30  
SPI_MISO (PA08)  
SPI_CLK (PA09)  
PA22/GPIO6  
PA23/GPIO7  
PA22  
PA23  
PA27  
PA28  
PA27/GPIO9  
PA28  
SPI_SS0 (PA10)  
SPI_MOSI (PA11)  
SPI_IRQ_N0 (PA14)  
PA15  
31  
32  
7
8
PA30  
PA31  
SWCLK (PA30)  
SWDIO (PA31)  
ATSAMD20E  
18  
19  
23  
24  
25  
26  
27  
28  
26  
27  
15  
GPIO2  
GPIO3  
GPIO2  
GPIO3  
GPO4  
SPI_DO 16  
SPI_CLK  
17  
SPI_CS_N 13  
SPI_DI  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
21  
22  
IRQ_N  
33  
9
RESET_N  
RESET_N_COM  
VBUS_DET_IN  
VBUS_DET 4  
38  
GPIO8  
3
4
2
3
CC1 1  
CC1  
CC2  
2
8
VS  
VCONN_IN  
CC2  
14  
3V3_ALW  
VSW  
VDD33_ALW_IN  
9
12  
11  
20  
16  
15  
VDD33_IO_IN  
VDD33IO  
VDD18_CAP  
VDD18  
VDD18_CORE_OUT  
28  
VPP18  
UPD350-B  
DS00003412A-page 14  
2020 Microchip Technology Inc.  
UPD301B/C  
TABLE 3-1:  
Pin  
UPD301B/C PIN ASSIGNMENTS  
Pin Name  
Bond to SAMD20E  
Bond to UPD350-B  
1
PA28  
CC2  
PA28  
-
-
2
CC2  
3
VCONN_IN  
CC1  
-
VS  
4
-
CC1  
5
VDD12_CORE_OUT  
VDD33_REG_IN  
SWCLK (PA30)  
SWDIO (PA31)  
VBUS_DET_IN  
PA00  
VDDCORE  
VDDIN  
PA30  
PA31  
-
-
6
-
7
-
8
-
9
VBUS_DET  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
PA00  
PA01  
PA02  
PA03  
-
-
PA01  
-
PA02  
-
PA03  
-
VDD33_ALW_IN  
VDD18_CORE_OUT  
VDD33_IO_IN  
PA04  
3V3_ALW & VSW  
-
VDD18_CAP  
-
VDD33IO  
PA04  
PA05  
PA06  
PA07  
VDDANA  
PA08  
PA09  
PA10  
PA11  
-
-
-
PA05  
PA06  
-
SPI_MOSI_SI (PA07)  
VDD33_ANA_IN  
SPI_MISO (PA08)  
SPI_CLK(PA09)  
SPI_SS0 (PA10)  
SPI_MOSI (PA11)  
GPIO2  
SPI_DI  
-
SPI_DO  
SPI_CLK  
SPI_CS_N  
-
GPIO2  
GPIO3  
VDD18  
IRQ_N  
-
GPIO3  
-
VPP18  
-
SPI_IRQ_N0 (PA14)  
PA15  
PA14  
PA15  
PA16  
PA17  
-
PA16  
-
PA17  
-
RESET_N_COM  
PA18/GPO4 (Note 1)  
PA19/GPIO5 (Note 1)  
PA22/GPIO6 (Note 1)  
PA23/GPIO7 (Note 1)  
GPIO8  
RESET_N  
GPO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
-
PA18  
PA19  
PA22  
PA23  
-
PA27/GPIO9 (Note 1)  
RESET_N_IN  
PA27  
RESET  
Exposed Pad (VSS) must be connected to ground.  
Note 1: This pin is double bonded to the internal SAMD20E and UPD301B/C and should not be simultaneously  
driven by both sources under normal use cases.  
2020 Microchip Technology Inc.  
DS00003412A-page 15  
UPD301B/C  
3.2  
Pin Descriptions  
This sections details the functions of the various device signals.  
TABLE 3-2:  
Name  
PIN DESCRIPTIONS  
Symbol  
Buffer  
Type  
Description  
USB Type-C™  
Configuration  
Channel 1  
CC1  
CC2  
AIO  
AIO  
AIO  
Configuration Channel (CC) used in the discovery, configu-  
ration and management of connections across a USB  
Type-C cable. (CC1 in UPD350)  
Configuration  
Channel 2  
Configuration Channel (CC) used in the discovery, configu-  
ration and management of connections across a USB  
Type-C cable. (CC2 in UPD350)  
VBUS  
Detection  
VBUS_DET_IN  
Scaled down version of VBUS input used for VBUS detec-  
tion. Tie this signal to VBUS via a resistor divider.  
(VBUS_DET in UPD350)  
SPI Interface  
SPI Clock  
SPI_CLK  
IS  
SPI clock. The maximum supported SPI clock frequency is  
8 MHz. (SPI_CLK in UPD350 and PA09 in SAMD20)  
SPI Data  
Master In /  
Slave Out  
SPI_MISO  
I/O8  
SPI data master in, slave out.  
(SPI_DO in UPD350 and PA08 in SAMD20)  
SPI Data  
Master Out /  
Slave In  
SPI_MOSI  
O2  
IS  
SPI data master out / slave in. This pin must be connected  
to SPI_MOSI_SI for proper operation. (PA11 in SAMD20)  
SPI Data  
Slave In  
SPI_MOSI_SI  
SPI data slave in. This pin must be connected to SPI_MOSI  
for proper operation.  
(SPI_DI in UPD350 and PA07 in SAMD20)  
SPI Chip  
Enable 0  
SPI_SS0  
IS  
I
Active low SPI chip enable input for UPD301B/C.  
(SPI_CS_N in UPD350 and PA10 in SAMD20)  
SPI Interrupt 0  
SPI_IRQ_N0  
SPI interrupt indicating request for service from optional  
external UPD350.  
(IRQ_N in UPD350 and PA14 in SAMD20)  
Serial Wire Debug Interface  
Serial Wire  
Debug Clock  
SWCLK  
SWDIO  
IS  
Serial wire debug clock.  
(PA30 in SAMD20)  
Serial Wire  
Debug Data  
I/O  
Serial wire debug bidirectional data.  
(PA31 in SAMD20)  
Miscellaneous  
System Reset  
Input  
RESET_N_IN  
I
Active low SAMD20 system reset input. This reset is used  
for reset of the SAMD20 portion of the UPD301B/C by a  
companion MCU. (RESET in SAMD20)  
System Reset  
Common  
RESET_N_COM  
IS  
Active low UPD350 system reset input. This reset is used  
for reset of the UPD350 portion of the UPD301B/C by a  
companion MCU. (RESET_N in UPD350)  
General Purpose I/Os  
I/O Refer to SAMD20E Datasheet for pin function, peripheral  
Misc.  
PA00, PA01, PA02, PA03,  
SAMD20E I/O PA04, PA05, PA06, PA15,  
PA16, PA17, PA18, PA19,  
detail, and characteristics.  
(PAxx in SAMD20)  
PA22, PA23, PA27, PA28  
Note:  
PA18, PA19, PA22, PA23, and PA27 are multi-  
plexed with UPD350 GPIOs. Refer to Table 3-1  
for more information.  
DS00003412A-page 16  
2020 Microchip Technology Inc.  
UPD301B/C  
TABLE 3-2:  
Name  
PIN DESCRIPTIONS (CONTINUED)  
Buffer  
Symbol  
Type  
Description  
UPD350 GPIO GPIO2, GPIO3, GPO4,  
GPIO5, GPIO6, GPIO7,  
I/O  
Refer to UPD350 Datasheet for pin function, peripheral  
detail, and characteristics.  
GPIO8, GPIO9  
(GPIOx, GPO4 in UPD350)  
Note:  
GPO4, GPIO5, GPIO6, GPIO7, and GPIO9 are  
multiplexed with SAMD20 GPIOs. Refer to  
Table 3-1 for more information.  
Power/Ground  
+5V  
Port Power  
Switch Input  
VCONN_IN  
VDD33_IO_IN  
VDD33_ANA_IN  
VDD33_ALW_IN  
P
P
P
P
+5V VCONN FET power source.  
(VS in UPD350)  
+3.3V I/O  
Power Supply  
Input  
+3.3V I/O power supply input.  
(VDD33IO in UPD350)  
+3.3V Analog  
Power Supply  
Input  
+3.3V analog power supply input.  
(VDDANA in SAMD20)  
+3.3V  
Always Supply  
Input  
+3.3V always supply input. (3V3_ALW & VSW in UPD350)  
Note:  
This pin must be connect to a 2.2 uF capacitor  
to ground.  
+3.3V  
Regulator  
Power Supply  
Input  
VDD33_REG_IN  
P
+3.3V regulator power supply input.  
(VDDIN in SAMD20)  
+1.8V Core  
Voltage Power  
Supply Input  
VPP18  
VDD18_CORE_OUT  
VDD12_CORE_OUT  
VSS  
P
P
P
P
+1.8V core voltage power supply input.  
(VDD18 in UPD350)  
+1.8V Digital  
Core Power  
Supply Output  
+1.8V digital core power supply output. This signal must be  
connected to a 1uF capacitor to ground for proper opera-  
tion. (VDD18_CAP in UPD350)  
+1.2V  
Core Power  
Supply Output  
+1.2V core power supply output. This signal must be con-  
nected to a 1uF capacitor to ground for proper operation.  
(VDDCORE in SAMD20)  
Ground  
Ground pins.  
2020 Microchip Technology Inc.  
DS00003412A-page 17  
UPD301B/C  
4.0  
FUNCTIONAL DESCRIPTIONS  
This section provides functional descriptions of the following:  
Serial Peripheral Interface (SPI)  
Power States  
Cable Plug Orientation and Detection  
Baseband CC Interface (BCI)  
Power Delivery MAC  
Supported Power Delivery (PD) Functionality  
4.1  
Serial Peripheral Interface (SPI)  
The UPD301B/C integrates a SPI master/slave controller which includes the following features:  
• • Full-duplex, four-wire interface (SPI_MISO, SPI_MOSI, SPI_SCK, SPI_SS)  
• • Single-buffered transmitter, double-buffered receiver  
• • Supports all four SPI modes of operation  
• • Single data direction operation allows alternate function on SPI_MISO or SPI_MOSI pin  
• • Selectable LSB- or MSB-first data transfer  
• • Master operation:  
- – Serial clock speed, fSCK=1/tSCK(Note 4-1)  
- – 8-bit clock generator  
• • Slave operation:  
- – Serial clock speed, fSCK=1/tSSCK(Note 4-1)  
- – Optional 8-bit address match operation  
- – Operation in all sleep modes  
Note 4-1  
For tSCK and tSSCK values, refer to Section 5.6.2, "SPI Timing"  
The SPI is a high-speed synchronous data transfer interface which allows high-speed communication between the  
device and peripheral devices. The SPI can operate as a master or slave. As a master, the SPI initiates and controls all  
data transactions. The SPI is single buffered for transmitting and double buffered for receiving.  
When transmitting data, a Data register is loaded with the next character to be transmitted during the current transmis-  
sion. When receiving, the data is transferred to the two-level receive buffer, and the receiver is ready for a new character.  
The SPI transaction format is shown in Figure 4-1. Each transaction can contain one or more characters. The character  
size is configurable, and can be either 8 or 9 bits.  
FIGURE 4-1:  
SPI TRANSACTION FORMAT  
SPI_MOSI/  
SPI_MISO  
SPI_SS  
The SPI master pulls the slave select line (SPI_SS) of the desired slave low to initiate a transaction. The master and  
slave prepare data to send via their respective shift registers, and the master generates the serial clock on the SPI_SCK  
line.  
Data is always shifted from master to slave on the Master Output Slave Input line (SPI_MOSI); data is shifted from slave  
to master on the Master Input Slave Output line (SPI_MISO).  
Each time character is shifted out from the master, a character will be shifted out from the slave simultaneously. To signal  
the end of a transaction, the master will pull the SPI_SS line high.  
DS00003412A-page 18  
2020 Microchip Technology Inc.  
UPD301B/C  
4.2  
Power States  
The device supports the following power states, as defined in their respective sub-sections:  
SLEEP  
HIBERNATE  
STANDBY  
ATTACHED IDLE (FRS Enabled)  
ATTACHED IDLE (FRS Disabled)  
ACTIVE  
4.2.1  
SLEEP  
This is the lowest power state of the device. The SLEEP state is entered via assertion of the PWR_DN pin. Virtually all  
of the device is powered off in this mode with minimal circuity in the 3.3V domain to detect deassertion of PWR_DN.  
This mode is intended to minimize power consumption when the device is not being used in battery powered applica-  
tions. In these applications, a wake up event such as a button press, can cause the host CPU to deassert PWR_DN.  
4.2.2  
HIBERNATE  
In this state, the port is disabled by the USB PD firmware and the PWR_DN pin is low. Attach detection is disabled due  
to CC terminations in the high-impedance state.  
4.2.3  
STANDBY  
STANDBY is the lowest power functional state of the device. The majority of the device is powered off in this state. The  
internal CC comparator and 20 KHz oscillator are enabled in this state as well as requisite analog components (1.8V  
LDO, PORs, Biases, etc).  
The CC lines are constantly monitored for an attach condition which shall result in an interrupt assertion to the host. If  
an attachment has been made, this state can detect a change in the partner’s advertisement as well as a detach.  
STANDBY is the power state that the UPD301B/C device will be in when in USB Type-CUnattached.SRC.  
4.2.4  
ATTACHED IDLE (FRS ENABLED)  
In this state, a USB Type-C™ device is connected and the USB PD bus is idle (no USB packets in transit). The CC  
signals are constantly being monitored for packet transmission and Fast Role Swap (FRS) signal detection is enabled.  
4.2.5  
ATTACHED IDLE (FRS DISABLED)  
In this state, a USB Type-C™ device is connected and the USB PD bus is idle (no USB packets in transit). The CC  
signals are constantly being monitored for packet transmission and Fast Role Swap (FRS) signal detection is disabled.  
4.2.6  
ACTIVE  
This state defines the condition of the device after an attachment occurred. In this state, Power Delivery communication  
is supported. This state is also used for any condition in which the 48 MHz Relaxation Oscillator must be enabled, such  
as when it is desired to debounce a GPIO within the micro-second range.  
When transmitting a Power Delivery packet, an additional 5 mA may be consumed. Additional power consumption  
results from enabling the OCS comparator, VBUS comparator and other modules. When VCONN FETs are enabled,  
there is an additional 70 mW of power consumption.  
This section details the functions that control and monitor the CC pins, monitor the VBUS_DET pin, control the VCONN  
FETs, and sample the CFG_SEL pin.  
2020 Microchip Technology Inc.  
DS00003412A-page 19  
UPD301B/C  
4.3  
Cable Plug Orientation and Detection  
4.3.1  
CC COMPARATOR  
The device integrates a comparator and DAC circuit to implement Type-C attach and detach functions. It supports up  
to eight programmable thresholds for attach detection between UFP and DFP. When operating as a UFP, the device  
supports detecting changes in the DFP’s advertised thresholds to determine current sourcing capability. The default  
nominal values for the thresholds detected by the CC comparators are:  
• 0.20 V  
• 0.40 V  
• 0.66 V  
• 0.80 V  
• 1.23 V  
• 1.60 V  
• 2.60 V  
• 3.0 V Proprietary Mode  
TABLE 4-1:  
Parameter  
CABLE DETECT SUMMARY  
Threshold CSR  
Description  
Min  
Typ  
Max  
DFP_ACT_DEF  
CC_THR0  
Detecting an active cable when configured  
as DFP and advertising default USB current.  
0.20 V  
UFP_DFP_DEF  
CC_THR0  
Detecting DFP attach when configured as  
UFP and DFP is advertising default USB  
current.  
0.20 V  
DFP_ACT_1A5  
UFP_DFP_1A5  
DFP_ACT_3A0  
UFP_DFP_3A0  
DFP_UFP_DEF  
DFP_UFP_1A5  
DFP_UFP_3A0  
CC_THR1  
CC_THR2  
CC_THR3  
CC_THR4  
CC_THR5  
CC_THR5  
CC_THR6  
Detecting an active cable when configured  
as DFP and advertising 1.5A.  
0.40 V  
0.66 V  
0.80 V  
1.23 V  
1.60 V  
1.60 V  
2.60 V  
Detecting DFP attach when configured as  
UFP and DFP is advertising 1.5A.  
Detecting an active cable when configured  
as DFP and advertising 3.0A.  
Detecting DFP attach when configured as  
UFP and DFP is advertising 3.0A.  
Detecting UFP attach when configured as  
DFP advertising default USB current.  
Detecting UFP attach when configured as  
DFP advertising 1.5A.  
Detecting UFP attach when configured as  
DFP advertising 3.0A.  
DS00003412A-page 20  
2020 Microchip Technology Inc.  
UPD301B/C  
The following tables summarizes the expected thresholds to be matched for various configurations.  
TABLE 4-2:  
DFP CC MATCH SUMMARY  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC State  
THR0  
THR1  
THR2  
THR3  
THR4  
THR5  
THR6  
THR7  
Advertise Default USB Current and  
connected to powered cable  
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
Advertise 1.5 A and connected to  
powered cable  
0
0
1
0
0
1
0
0
0
Advertise 3.0 A and connected to  
powered cable  
Advertise Default USB Current and  
connected to UFP  
Advertise 1.5 A and connected to  
UFP  
Advertise 3.0 A and connected to  
UFP  
Advertise Default USB Current and  
no connect (vOpen)  
Advertise 1.5 A and no connect  
(vOpen)  
Advertise 3.0 A and no connect  
(vOpen)  
Proprietary Mode and no connect  
(vOpen)  
TABLE 4-3:  
UFP CC MATCH SUMMARY  
CC  
CC_  
CC  
CC  
CC  
CC  
CC  
CC  
CC State  
THR0  
THR1  
THR2  
THR3  
THR4  
THR5  
THR6  
THR7  
Powered cable detected.  
No Connect (SNK.Open)  
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DFP Connected and advertising  
default USB current  
DFP Connected and advertising 1.5  
A
1
1
1
0
0
0
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
DFP Connected and advertising 3.0  
A
DFP Connected and advertising pro-  
prietary current  
2020 Microchip Technology Inc.  
DS00003412A-page 21  
UPD301B/C  
4.3.2  
DFP OPERATION  
The device implements current sources to advertise current charging capabilities on both CC pins when operating as a  
DFP.  
When a UFP connection is established, the current driven across the CC pins creates a voltage across the UFP’s Rd  
pull-down that can be detected by the integrated CC comparator. The voltages monitored are summarized in Table 4-  
4. When connected to an active cable, an alternative pull-down (Ra) appears on the CC pin.  
The DFP also integrates two 5V FETs for implementing the VCONN function. This is further discussed in Section 4.3.9,  
"VCONN Operation".  
TABLE 4-4:  
SOURCE DETECTION  
Connection State  
CC1  
CC2  
CC Comparator State  
VBUS VCONN  
Open Open Nothing Attached  
Rd Open UFP Attached  
Open Rd UFP Attached  
Ra Open Powered Cable, No UFP attached  
Monitor both CC pins for attach  
Monitor CC1 for detach  
Off  
On  
On  
Off  
Off  
Off  
Off  
Off  
Monitor CC2 for detach  
Monitor CC2 for UFP attach.  
Monitor CC1 for cable detach.  
Open Ra  
Powered Cable, No UFP attached  
Powered Cable, UFP attached  
Powered Cable, UFP attached  
Monitor CC1 for UFP attach.  
Monitor CC2 for cable detach.  
Off  
On  
On  
Off  
On  
On  
Ra  
Rd  
Rd  
Ra  
Monitor CC2 for UFP detach.  
CC1 is not monitored for detach.  
Monitor CC1 for UFP detach.  
CC2 is not monitored for detach.  
Rd  
Ra  
Rd  
Ra  
Debug accessory mode attached  
Audio accessory mode attached.  
Monitor both CC pins for detach  
Monitor both CC pins for detach  
Off  
Off  
Off  
Off  
4.3.3  
RP CURRENT SOURCES  
In order to advertise the current charging capabilities of the device via the integrated port power controller or external  
power circuit, Rp current sources are used. The current source can be selected by software. Table 4-5 summarizes the  
values supported by the current sources in regards to the programmed value.  
TABLE 4-5:  
RP CURRENT SOURCES  
Current source  
(1.7V to 5.5V)  
DFP Advertisement  
RPx Value  
Disabled  
00b  
01b  
10b  
11b  
Default USB Power  
80 uA +/-20%  
180 uA +/-8%  
330 uA +/-8%  
1.5A @ 5V  
3.0A @ 5V  
The current source coupled with the CC pins for RP advertisement is also used for sampling the CFG_SEL pin. When  
the CFG_SEL pin is sampled, current is steered away from the CC pins and no RP value is advertised.  
4.3.4  
UFP OPERATION  
When operating as a UFP, the device applies an Rd pull-down on both CC lines and waits for a DFP connection from  
the assertion of VBUS. The CC comparator is used to determine the advertised current charger capabilities supported  
by the DFP.  
4.3.5  
DRP OPERATION (LEGACY)  
In this configuration, software utilizes the device to alternate between a Source and Sink advertisement with an interval  
of tDRP per the USB Type-C™ Specification.  
DS00003412A-page 22  
2020 Microchip Technology Inc.  
UPD301B/C  
4.3.6  
DRP OFFLOAD  
DRP offload enables the device to manage the DRP toggle. This is beneficial as it allows the host CPU to remain in a  
low power state until a connection is detected.  
DRP offload toggles between Source and Sink advertisement by alternating between enabling Rp current sources and  
Rd pull-downs for a period of tDRP (DRP Time Register). The duty cycle between Source and Sink advertisement is  
determined by the DRP Duty Cycle Register. The DRP Time Register may be written by firmware or generated auto-  
matically via a pseudo random number generator. The latter approach should be used to reduce the probability of col-  
lisions when connecting. It is selectable whether the DRP cycle shall first advertise UFP or DFP.  
A connection is detected after a successful debounce for a period defined by the Match Debounce Register. VBUS is  
checked to be below vSafe0v for the DFP case. This results in IRQ_N assertion and automatic disablement of the DRP  
toggle. Firmware must further debounces for the period tPDDebounce before determining if a valid match is present. If  
a match has not occurred, firmware will enable DRP again.  
A pseudo random number generator, implemented via a LFSR, is utilized to generate the DRP period. The LFSR oper-  
ates off of the 20 KHz clock and updates every 100 us when enabled.  
Hardware limits the total DRP period to be between 50 ms and 100 ms in order to comply with the USB Type-C™ spec-  
ification.  
4.3.7  
COLLISION AVOIDANCE  
An alternative mode of operation is required to enable the CC detection circuit to facilitate software implementation of  
collision detection which was incorporated into version 3.0 of the USB PD Specification.  
In order to avoid message collisions due to asynchronous Messaging (AMS) sent from the Sink, the Source sets Rp to  
SinkTxOk (3A@5V) to indicate to the Sink that it is OK to initiate an AMS. When the Source wishes to initiate an AMS  
it sets Rp to SinkTxNG (1.5A@5V). When the Sink detects that Rp is set to SinkTxOk it may initiate an AMS. When the  
Sink detects that Rp is set to SinkTxNG it shall not initiate an AMS and shall only send Messages that are part of an  
AMS the Source has initiated.  
When operating as a Sink, a mechanism is required for quickly determining whether the Source is advertising SinkTxNG  
or SinkTxOK on Rp.  
A collision avoidance mechanism exists to enable software to instruct the device to sample only a single threshold on  
a single CC pin. This results in a cycle through both thresholds taking only 100 us, making it easier for software to meet  
the timing constraints mandated by SinkTxOk in the specification.  
4.3.8  
FAST ROLE SWAP (FRS)  
This feature is used to detect when a partner source has lost power. Upon detection of FRS signaling, the “Old Sink”  
transitions to be a Source and begins supplying VBUS.  
When operating as a Sink, the FRS mode of operation enables detection of FRS signaling. Detection results in IRQ_N  
assertion and this event may also be mapped as a PIO override source. When operating as a Source, upon detection  
of loss of power, the device will transmit FRS signaling. This is initiated by either assertion of a selected PIO or a CSR  
write.  
The following FRS related features are supported:  
• Ability to detect reception of FRS signaling  
• High bandwidth and current boost mode for CC comparator to increase sampling frequency  
• Interrupt, and PIO, assertion upon FRS detection  
• PIO override support for FRS detection as a source  
• Ability to initiate FRS signaling via GPIO assertion or register write.  
• Control 5 Ohm (Rsw) pull-down resistor  
2020 Microchip Technology Inc.  
DS00003412A-page 23  
UPD301B/C  
4.3.8.1  
FRS Sink Operation  
When operating as a Sink, the device is configured to detect FRS signaling by setting FRS Detect Enable (FRS_DE-  
T_EN) in FRS Control Register. The CC detection logic is programmed to detect three thresholds (SinkTxOK, Sink-  
TXNG, FRSWAP) and samples each threshold in round robin fashion. The sampling rate is determined by CC Sample  
Clock Register.  
When a match is detected on FRSWAP threshold, the CC detection logic will “park” at this threshold and continue mon-  
itoring the output of the comparator. While “parked” the output of the CC comparator will be sampled at an increased  
rate of 12 MHz. This higher sampling rate will prevent PD messages from inadvertently looking like FRS signaling which  
will happen on occasion when the sampling rate is similar or slower than the ~270 kbps rate of PD messages.  
It will continue debouncing for the amount of time specified in FRS CC Debounce Register. The FRSWAP threshold is  
indicated by FRS Threshold Select Register.  
If the debounce is successful, then the FRS_RCV_STS interrupt is asserted and the CC detection logic resumes sam-  
pling all enabled thresholds. If the FRS debounce fails, the CC detection logic resumes sampling all enabled thresholds.  
In this mode of operation the CC Comparator operates at a faster rate in order to minimize the FRS detection latency.  
This is enabled by placing this the comparator into a high bandwidth mode.  
After detecting the FRS signaling, the “old Sink” must start supplying vSafe5V at USB Type-C™ current VBUS no later  
than tSrcFRSwap (150 us) after VBUS has dropped below vSafe5V. This must be accomplished via circuitry external  
to the device.  
Note:  
Note:  
The upper threshold used for vSafe5V should be used for determining when VBUS has dropped below  
vSafe5v to help meet tSrcFRSwap requirement.  
Matching of a VBUS threshold may be selected as a source to a PIO override. Additionally, VBUS threshold  
match ANDed with FRS signal detect may also be used as a PIO override source.  
4.3.8.2  
FRS Source Operation  
The initial Source shall signal a FRS request by driving the CC pin to ground with a resistance of less than 5 Ohms for  
a period defined by FRS Transmission Length Register. The FRS request signaling is initiated by either a CSR write or  
GPIO assertion.  
The former case is implemented by setting the FRS Request (FRS_REQ_EN) bit in FRS Control Register. This bit self  
clears after the FRS request is transmitted. For the latter case, the PIO is selected by the FRS Request PIO  
(FRS_REQ_PIO) field in FRS Control Register.  
Transmission of FRS signaling will take precedence over PD MAC TX communication. The FRS PD resistor is enabled  
in tandem on the CC pin determined by FRS CC Select (FRS_CC_SEL) in FRS Control Register. This configuration  
remains until FRS transmission has completed.  
4.3.8.3  
Dead Battery (UPD301C Only)  
The UPD301C device includes two variations of the Rd resistor implementation: Rd (Dead Battery) and Rd (Trimmed).  
The CC pins are configured to present either Hi-Z or an untrimmed Rd pull-down resistance when connected to a DFP  
advertising a pull-up resistance.  
Figure 4-2 illustrates the configuration for supporting dead battery cases. The UFP pull-up activates the FET in series  
with RD_DB and enables the untrimmed dead battery pull-down.  
DS00003412A-page 24  
2020 Microchip Technology Inc.  
UPD301B/C  
FIGURE 4-2:  
CC RD (DEAD BATTERY)  
UFP  
DFP  
Rp  
CCx  
RD_TRIM  
5.1 KW  
50 MW  
RD_DB  
5.1 KW  
Hi-Z  
EN_RD_TRIM  
Hi-Z  
EN_RD_DB_N  
Figure 4-3 illustrates operation after the UFP has been powered over VBUS by the DFP. After the device is powered,  
EN_RD_DB asserts by default to keep the RD_DB pull-down activated.  
Upon powering the host CPU, software simultaneously deasserts EN_RD_DB and asserts EN_RD_TRIM. Going for-  
ward the device presents RD_TRIM.  
FIGURE 4-3:  
CC RD (TRIM)  
UFP  
DFP  
Rp  
CCx  
RD_TRIM  
5.1 KW  
50 MW  
RD_DB  
5.1 KW  
EN_RD_TRIM  
EN_RD_DB_N  
The Rd resistor presented, trimmed or untrimmed, is controlled by the CC1 and CC2 Pull-Down Values in the CC Control  
Register (CC_CTL). These register fields serve the basis for the EN_RD_TRIM and EN_RD_DB_N control signals  
depicted.  
2020 Microchip Technology Inc.  
DS00003412A-page 25  
UPD301B/C  
4.3.9  
VCONN OPERATION  
VCONN is a 5V supply that is used to power circuitry in the USB Type-C™ plug, which is required to implement Elec-  
tronically Marked Cables. By default, the DFP always sources VCONN when connected to an active cable. However,  
this may be changed by software.  
The VCONN FETs are enabled/disabled by software via the VCONN1 Control and VCONN2 Control control bits in the  
CC Control Register (CC_CTL).  
APPLICATION NOTE: It is not envisioned to ever enable both FETs simultaneously.  
VCONN is monitored for an over current condition via an internal monitoring circuit. A VCONN over current condition is  
recognized when the event persists for a time longer than specified.When an over-current VCONN event is detected,  
an interrupt asserts. The device may be configured to automatically disable the VCONN FET upon detection of a CC1/  
CC2 Back-Drive Error or VCONN Discharge Error. In the event of the detection of a debounced over-current VCONN  
event, the enabled VCONN FET will be disabled.  
4.3.10  
VBUS DETECTION  
The device implements a comparator for determining when VBUS is within a programmed range, vSafe5V, or vSafe0v.  
VBUS is divided down externally via a 1:9 resistor divider to generate VBUS_DET_IN. VBUS_DET_IN is compared with  
an 8-bit threshold generated by an integrated DAC. The comparator is also shared by the CFG_SEL pin which is sam-  
pled automatically after a system reset.  
Figure 4-4 illustrates the VBUS_DET_IN circuit. In a typical use case, VBUS_DET_IN thresholds are programmed to  
track the following voltage ranges as defined in Table 4-5.  
Note:  
Table 4-5 illustrates the values of VBUS_DET_IN utilizing +/-1% accurate resistors where R1 is 10K Ohms  
and R2 is 90 kOhms.  
FIGURE 4-4:  
VBUS_DET_IN COMPARATOR  
VBUS  
15 uA  
ZTC  
R2  
VBUS_DET_IN  
VBUS_MATCH  
10-bits  
DAC  
R3  
R1  
VBUS  
Threshold  
Generation  
Bandgap  
Reference  
20 KHz Clock  
For a DFP, the VBUS comparator is useful to detect when VBUS is within the desired range per PD negotiations. This  
is the case when VBUS is generated by a source external to the device.  
For a UFP, the VBUS comparator is required to determine when a DFP is attached or detached. It may also use the  
comparator to determine when VBUS is within a new voltage range negotiated via PD.  
If supported, the ranges 8V, 12V and 20V may be programmed in VBUS Threshold 2 and VBUS Threshold 3 registers.  
Likewise 5V range, vSafe5v, can be programmed in VBUS Threshold 0 and VBUS Threshold 1 registers.  
The threshold for vSafe0V is programmable.  
VBUS_DET_IN monitoring logic operates off of the 20 KHz oscillator which cycles through each threshold. Including  
vSafe0v, a total of five values are compared.  
DS00003412A-page 26  
2020 Microchip Technology Inc.  
UPD301B/C  
The VBUS Match Register (VBUS_MATCH) indicates when the value on VBUS_DET_IN is higher than the correspond-  
ing programmed threshold and can therefore be used to determine if VBUS is in the desired range.  
A change in the state of the VBUS match may trigger assertion of the IRQ_N pin if appropriately configured.  
4.4  
Baseband CC Interface (BCI)  
The device integrates a Baseband CC Interface (BCI) to facilitate USB Power Delivery communication. This module  
bridges between the PD MAC/BMC and the analog front end. Baseband communication is initiated by the PD MAC,  
which interfaces to the BCI. The BCI implements the digital functions required to control TX baseband components.  
4.4.1  
BASEBAND TX DATA-FLOW  
The key responsibility of the BCI is to generate the wave form required for baseband communication. To this end, the  
BMC has a group of eight registers that define the Lo-Hi and Hi-Lo transitions for the generated BMC signal.  
When instructed to transition from Lo-Hi, the BCI steps through all BB TX Rise Registers. Likewise when instructed to  
transition from Hi-Lo, the BCI steps through all BB TX Fall Registers  
APPLICATION NOTE: The user may replicate values if it is desired to use less than twelve unique values for this  
purpose.  
4.4.2  
BASEBAND RX DATA-FLOW  
Baseband RX data is received by the BCI from the RX analog front end where it is compared to a threshold programmed  
by software. The CC RX DAC Value defines the trip point used for reception of baseband data. The field shall be pro-  
grammed to be 175 mV below the RX Eye center, as defined in the PD Specification for the mode in which the device  
is operating (Sourcing Power, Sinking Power, Power Neutral).  
4.5  
Power Delivery MAC  
The PD MAC implements certain features of the protocol layer and physical layer of the Universal Serial Bus Power  
Delivery Specification. On one end the PD MAC interfaces to the software implementing the bulk of protocol and higher  
level layers and on the other end it interfaces to a BMC encoder / decoder module.  
In addition to the normal TX and RX functions, the PD MAC implements the test mode logic defined in the USB PD  
specification (BIST).  
The PD MAC supports the following features:  
• Automatic TX Mode for packet framing and CRC32 insertion.  
• Raw TX Mode for bit level packet control.  
• Automatic GoodCRC response to received messages.  
• Automatic BIST Error Count Message in BIST RX Mode.  
• GoodCRCTimer implementation.  
• Automatic retries with programmable retry count.  
• Redundant receive packets automatically dropped in auto response mode.  
• 74 byte TX queue.  
• 128 byte RX queue.  
• Programmable TX Bit-time. Allows for changing operating frequency.  
• Programmable preamble length.  
• BIST TX and RX logic.  
• Programmable TX and RX queue modes - buffer mode and FIFO mode.  
• CRC32 generator for TX.  
• CRC32 calculator and comparator for RX.  
2020 Microchip Technology Inc.  
DS00003412A-page 27  
UPD301B/C  
4.5.1  
PD MAC TRANSMITTER  
The PD MAC transmitter is comprised of three major blocks:  
TX Queue:  
The TX Queue is where software loads the message to be transmitted.  
TX Control:  
The TX Control implements the necessary control logic. It is responsible for reading the data from the TX queue  
and based on the data processing mode (automatic or raw), processing the data to make it suitable (nibbles with  
control information) for use by the TX Comm. It is also responsible for generating packet framing and terminating  
the packet in automatic mode, and generating messages for automatic response (GoodCRC and BIST Error  
Count). TX Control also handles the selection of the SOP type that is to be transmitted.  
TX Comm:  
The TX Comm is comprised of a TX CRC generator, a 4b5b encoder, serializer, preamble generator, and TX bit  
timer. It takes the nibble data, computes and inserts the CRC, 5b encodes, and generates the baseband serial  
data. Preamble insertion is also performed by this logic.  
4.5.2  
PD MAC RECEIVER  
The PD MAC receiver is comprised of three major blocks:  
RX Queue:  
The RX Queue is where software reads the received messages.  
RX Control:  
The RX Control implements the necessary control logic. It is responsible for validating the received packet, updat-  
ing the RX Queue status, and triggering automatic responses, if required.  
RX Comm:  
The RX Comm is comprised of the Clock and Data Recovery (CDR), RX DES (de-serializer) (serial-to-parallel  
converter, 4b5b decoder, and framing detector), RX CRC32 (CRC calculator, receive timer), and other logic to  
detect valid packet reception.  
4.5.3  
PD MAC BIST  
The PD MAC incorporates BIST functions as defined in the USB PD Specification. It is comprised of a TX and RX block.  
The BIST TX block contains a PRBS (Pseudo Random Binary Sequence) generator, BIST pattern generation logic, and  
its own bit-timing logic. The SOP type used by TX BIST Test Frames is a 20-bit static vector which is created by multi-  
plexing between the five SOP ordered sets based on a register setting. The resultant 20-bit vector is simply bit selected  
when the packet is transmitted.  
The BIST RX block contains a PRBS generator and bit error detection logic. BIST RX is used only during the BIST  
Receiver Test.  
4.6  
Supported Power Delivery (PD) Functionality  
4.6.1  
SUPPORTED PD MESSAGES  
The UPD301B/C is capable of supporting the USB PD Control messages defined within the.USB Power Delivery 3.0  
Specification. The complete list of supported messages depends on the release version of the USB Power Delivery Soft-  
ware Framework (PSF). The minimum set of supported features are:  
• GoodCRC  
• Accept  
• Reject  
• Ping  
• PS_RDY  
• Get_Source_Cap (Sink Role only)  
• Get_Sink_Cap (Source Role only)  
• VCONN_Swap  
• Wait  
• Soft_Reset  
DS00003412A-page 28  
2020 Microchip Technology Inc.  
UPD301B/C  
The following USB PD Data messages are supported:  
• Source_Capabilities (Source Role only)  
• Request  
• BIST  
• Sink_Capabilities (Sink Role only)  
The following USB PD Extended messages are supported:  
• Firmware_Update_Request  
• Firmware_Update_Response  
The following USB PD Control messages can also be supported UPD301B/C. Check the release notes of the latest PSF  
release for the most up-to-date list of supported messages. Support to specific messages may also be added by mod-  
ification of the PDF source code.  
• GotoMin  
• DR_Swap  
• PR_Swap  
• Get_Source_Cap_Extended  
• Get_Status  
• FR_Swap  
• Get_PPS_Status  
• Get_Country_Codes  
The following USB PD Data messages are not supported:  
• Battery_Status  
• Alert  
• Get_Country_Info  
• Vendor_Defined  
The following USB PD Extended messages are not supported:  
• Source_Capabilities_Extended  
• Status  
• Get_Battery_Cap  
• Get_Battery_Status  
• Battery_Capabilities  
• Manufacturer_Info  
• Security_Request  
• Security_Response  
• PPS_Status  
• Country_Info  
• Country_Codes  
4.6.2  
SOURCE POWER DELIVERY OBJECTS (PDOS)  
The PDOs defined in the USB PD Specification Section 10.2.2 are configurable within the PSF configuration. These are  
the PDOs returned in the PD Source_Capabilities message and correspond to the capabilities of the Source power sup-  
ply. Augmented PDOs (APDOs) are also supported for enabling Programmable Power Supply (PPS) operation.  
4.6.3  
SINK POWER DELIVERY OBJECTS (PDOS)  
The PDOs defined in the USB PD Specification Section 10.2.2 are configurable within the PSF configuration. These are  
the PDOs returned in the PD Sink_Capabilities message and correspond to the requirements of the Sink with respect  
to Source capabilities. Note that the PDOs defined in the USB Power Delivery Specification Section 10.2.2 are defined  
for Sources, but correspond to the Source PDOs the Sink is able to operate with.  
2020 Microchip Technology Inc.  
DS00003412A-page 29  
UPD301B/C  
5.0  
5.1  
OPERATIONAL CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage (VCONN_IN) (Note 5-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 V to +6.0 V  
Supply Voltage (VDD33_ALW_IN, VDD33_IO_IN) (Note 5-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to +6.0 V  
Supply Voltage (VDD33_REG_IN, VDD33_ANA_IN) (Note 5-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to +3.8 V  
Supply Voltage (VPP18) (Note 5-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to +7.75 V  
Pin voltage with respect to ground (Note 5-2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS-0.6 V to VDD33_REG_IN+0.6 V  
Pin voltage with respect to ground (VBUS_DET_IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to +3.96 V  
Pin voltage with respect to ground  
(CC1, CC2, SPI_MOSI_SI, EN_VBUS, RESET_N_COM, VBUS_DIS, I2C_ADDR_SEL) . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to +6.0 V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to +150oC  
Lead Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Refer to JEDEC Spec. J-STD-020  
HBM ESD Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+/-2 kV  
Note 5-1  
When powering this device from laboratory or system power supplies, it is important that the absolute  
maximum ratings not be exceeded or device failure can result. Some power supplies exhibit voltage  
spikes on their outputs when AC power is switched on or off. In addition, voltage transients on the  
AC power line may appear on the DC output. If this possibility exists, it is suggested to use a clamp  
circuit.  
Note 5-2  
This rating does not apply to the following pins: VBUS_DET_IN, CC1, CC2, SPI_MOSI_SI, EN_VBUS,  
RESET_N_IN, VBUS_DIS  
*Stresses exceeding those listed in this section could cause permanent damage to the device. This is a stress rating  
only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Functional  
operation of the device at any condition exceeding those indicated in Section 5.2, "Operating Conditions**", Section 5.5,  
"DC Characteristics", or any other applicable section of this specification is not implied.  
5.2  
Operating Conditions**  
Supply Voltage (VCONN_IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4.75 V to +5.25 V  
Supply Voltage (VDD33_ALW_IN, VDD33_IO_IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.97 V to +3.63 V  
Supply Voltage (VDD33_REG_IN, VDD33_ANA_IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2.97 V to +3.63 V  
Supply Voltage (VPP18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1.62 V to +1.98 V  
Pin voltage with respect to ground (Note 5-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to +2.00 V  
Positive pin voltage with respect to ground (VBUS_DET_IN) . . . . . . . . . . . . VDD33_IO_IN-0.3 V to VDD33_IO_IN+0.3 V  
Negative pin voltage with respect to ground (VBUS_DET_IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.33 V to -0.27 V  
Positive pin voltage with respect to ground  
(CC1, CC2, SPI_MOSI_SI, EN_VBUS, RESET_N_COM, VBUS_DIS, I2C_ADDR_SEL) . . . . . . . . . . . . . . . . . . . . . . . . +2.97 V to +3.63 V  
Negative pin voltage with respect to ground  
(CC1, CC2, SPI_MOSI_SI, EN_VBUS, RESET_N_COM, VBUS_DIS, I2C_ADDR_SEL) . . . . . . . . . . . . . . . . . . . . . . . . . -0.33 V to -0.27 V  
Power Supply Rise Time Max (TRT) (VDD33_IO_IN) (Figure 5-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100ms  
Power Supply Rise Rate Max (VDD33_ANA_IN, VDD33_REG_IN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.1 V/µs  
Ambient Operating Temperature in Still Air (TA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Note 5-4  
Note 5-3  
Note 5-4  
This rating does not apply to the following pins: VBUS_DET_IN, CC1, CC2, SPI_MOSI_SI, EN_VBUS,  
RESET_N_COM, VBUS_DIS  
0oC to +70oC for commercial version, -40oC to +85oC for industrial version.  
**Proper operation of the device is assured only within the ranges specified in this section.  
DS00003412A-page 30  
2020 Microchip Technology Inc.  
UPD301B/C  
FIGURE 5-1:  
SUPPLY RISE TIME MODEL  
Voltage  
tRT  
3.3V  
100%  
VDD33_IO_IN  
90%  
10%  
VSS  
t90%  
Time  
t10%  
5.3  
Package Thermal Specifications  
TABLE 5-1:  
PACKAGE THERMAL PARAMETERS  
Parameter  
Symbol  
°C/W  
Thermal Resistance Junction to Ambient (@ 0 air flow)  
Thermal Resistance Junction to Top of Case  
JA  
JC  
JB  
JT  
36.6  
9.2  
Thermal Resistance Junction to Board  
15.7  
0.2  
Thermal Resistance Junction to Bottom of Case (@ 0 air flow)  
Note:  
Thermal parameters are measured or estimated for devices in a multi-layer 2S2P PCB per JESDN51.  
TABLE 5-2:  
POWER DISSIPATION  
Parameter  
Symbol  
Max  
Units  
Power Dissipation  
Pdis  
214  
mW  
Note:  
This is the worst-case power dissipation as a consequence of maximum loading (before current-limiting  
protections take effect) upon the VCONN power switch, 3.3V power-ORing switch, analog blocks, and core  
digital logic.  
2020 Microchip Technology Inc.  
DS00003412A-page 31  
UPD301B/C  
5.4  
Current Consumption  
TABLE 5-3:  
TYPICAL DEVICE CURRENT CONSUMPTION  
3.3V Supply Current  
Max  
Power State  
Typical  
Units  
RESET  
1.27  
-
mA  
mA  
mA  
mA  
STANDBY (source)  
7.49  
11.40  
-
-
-
ATTACHED IDLE (source)  
ACTIVE (with PD packet transmitting)  
23.84  
Note 1: This table details the power consumption of the UPD301B/C device as measured during various modes  
of operation for a single port Source-Only implementation (i.e.: loading a PSF Source-only configuration  
and programming with default settings). The power consumption may vary significantly depending on the  
utilization SAMD20 MCU to handle any additional custom system-specific functions. Refer to the respec-  
tive SAMD20E and UPD350 datasheets for more details on the power consumption of these two devices  
under certain specific usage scenarios. Also refer to Section 4.2, "Power States" for additional information.  
Power dissipation is determined by temperature, supply voltage, and external source/sink requirements.  
Maximum values represent very short bursts of activity over a small amount of time. Typical values repre-  
sent averaged current consumption over time.  
2: STANDBY is equivalent to USB Type-Cspecification’s Unattached.SRC  
3: Currents measured with all 3.3V rails tied together.  
DS00003412A-page 32  
2020 Microchip Technology Inc.  
UPD301B/C  
5.5  
DC Characteristics  
TABLE 5-4:  
DC ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
I Type Input Buffer  
Low Input Level  
High Input Level  
0.3*VDD33_REG_IN  
VIL  
VIH  
V
V
0.55*VDD33_REG_IN  
-1  
1
Input Leakage  
ILEAK  
±0.015  
±0.015  
µA  
IS_1 Type Input Buffer  
0.3*VDD33_REG_IN  
Low Input Level  
High Input Level  
VIL  
VIH  
IIH  
V
V
0.55*VDD33_REG_IN  
-1  
1
Input Leakage  
µA  
IS_2 Type Input Buffer  
Low Input Level  
VILI  
VIHI  
-0.3  
2.0  
0.8  
3.6  
1.8  
1.8  
200  
V
V
High Input Level  
Negative-Going Threshold  
Positive-Going Threshold  
Schmitt Trigger Hysteresis  
VILT  
VIHT  
VHYS  
1.21  
1.31  
100  
1.33  
1.58  
133  
V
Schmitt trigger  
Schmitt trigger  
V
mV  
(VIHT - VILT  
)
Input Leakage  
(VIN = VSS or VDD33_IO_IN)  
IIH  
-10  
10  
3
µA  
pF  
Note 5-5  
Input Capacitance  
CIN  
O2 Type Output Buffer  
Low Output Level  
VOL  
VOH  
0.1*VDD33_REG_IN 0.2*VDD33_REG_IN  
0.8*VDD33_REG_IN 0.9*VDD33_REG_IN  
V
V
IOL = -2 mA  
IOH = 2 mA  
High Output Level  
OD2 Type Output Buffer  
0.1*VDD33_REG_IN 0.2*VDD33_REG_IN  
Low Output Level  
VOL  
V
IOL = -2 mA  
O8_1 Type Output Buffer  
Low Output Level  
VOL  
VOH  
0.1*VDD33_REG_IN 0.2*VDD33_REG_IN  
0.8*VDD33_REG_IN 0.9*VDD33_REG_IN  
V
V
IOL = -8 mA  
IOH = 8 mA  
High Output Level  
O8_2 Type Output Buffer  
Low Output Level  
High Output Level  
VOL  
VOH  
0.4  
V
V
IOL = -8 mA  
IOH = 8 mA  
VDD33_IO_IN - 0.4  
Note 5-5  
This specification applies to all inputs and tri-stated bi-directional pins. Internal pull-down and pull-up  
resistors add +/- 50 µA per-pin (typical).  
2020 Microchip Technology Inc.  
DS00003412A-page 33  
UPD301B/C  
TABLE 5-5:  
VOLTAGE REGULATOR OPERATING RANGES  
Pin Name  
Parameter  
Min  
Typ  
Max  
Units  
VDD18_CORE_OUT  
VDD12_CORE_OUT  
DC uncalibrated output voltage  
DC calibrated output voltage  
1.62  
1.10  
1.80  
1.23  
1.91  
1.30  
V
V
TABLE 5-6:  
VCONN SOURCE DC PARAMETERS  
Parameter  
Symbol  
Min  
Typ  
600  
270  
Max  
Units  
mA  
Notes  
ILIM  
ILIM_VCONN  
RON_VCONN  
VCONN_IN=5V  
On Resistance  
m  
5.6  
AC Characteristics and Timing  
This section details the various AC timing specifications of the device.  
5.6.1  
RESET_N TIMING  
Figure 5-2 illustrates the RESET_N timing requirements. Assertion of RESET_N is not a requirement. However, if used,  
it must be asserted for the minimum period specified  
FIGURE 5-2:  
RESET_N TIMING  
trstia  
RESET_N  
TABLE 5-7:  
Symbol  
trstia  
RESET_N TIMING VALUES  
Description  
Min  
Typ  
Max  
Units  
RESET_N input assertion time  
1
s  
DS00003412A-page 34  
2020 Microchip Technology Inc.  
UPD301B/C  
5.6.2  
SPI TIMING  
Figure 5-3 and Figure 5-4 illustrate the SPI master and slave timing requirements, respectively. Refer to Section 4.1,  
"Serial Peripheral Interface (SPI)" for additional information.  
FIGURE 5-3:  
SPI MASTER TIMING  
SPI_SS  
SPI_CLK  
(CPOL = 0)  
SPI_CLK  
(CPOL = 1)  
SPI_MISO  
(Data Input)  
SPI_MOSI  
(Data Output)  
FIGURE 5-4:  
SPI SLAVE TIMING  
SPI_SS  
SPI_CLK  
(CPOL = 0)  
SPI_CLK  
(CPOL = 1)  
SPI_MOSI  
(Data Input)  
SPI_MISO  
(Data Output)  
2020 Microchip Technology Inc.  
DS00003412A-page 35  
UPD301B/C  
TABLE 5-8:  
Symbol  
SPI TIMING VALUES  
Description  
SPI_CLK period (Master)  
Min  
Typ  
Max  
Units  
tSCK  
tSCKW  
tSCKR  
tSCKF  
tMIS  
84  
SPI_CLK high/low width (Master)  
SPI_CLK rise time (Master)  
0.5*tSCK  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SPI_CLK fall time (Master)  
9.5  
SPI_MISO setup to SPI_CLK (Master)  
SPI_MISO hold after SPI_CLK (Master)  
SPI_MOSI setup to SPI_CLK (Master)  
SPI_MOSI hold after SPI_CLK (Master)  
SPI_CLK period (Slave)  
29  
tMIH  
8
tSCK/2 - 16  
16  
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
1*tCLK_APB  
0.5*tSSCK  
SPI_CLK high/low width (Slave)  
SPI_CLK rise time (Slave)  
7
SPI_CLK fall time (Slave)  
9.5  
SPI_MOSI setup to SPI_CLK (Slave)  
SPI_MOSI hold after SPI_CLK (Slave)  
SPI_SS setup to SPI_CLK (Slave, PRELOADEN=1)  
tSSCK/2-19  
tSSCK/2-5  
tSIH  
tSSS  
2*tCLK_APB  
+ tSOS  
SPI_SS setup to SPI_CLK (Slave, PRELOADEN=0)  
SPI_SS hold after SPI_CLK (Slave)  
tSOS+7  
tSIH-4  
ns  
ns  
ns  
ns  
ns  
ns  
tSSH  
tSOS  
SPI_MISO setup to SPI_CLK (Slave)  
tSSCK/2-20  
tSOH  
SPI_MISO hold after SPI_CLK (Slave)  
SPI_MISO setup after SPI_SS low (Slave)  
SPI_MISO setup after SPI_SS high (Slave)  
20  
16  
11  
tSOSS  
tSOSH  
DS00003412A-page 36  
2020 Microchip Technology Inc.  
UPD301B/C  
6.0  
PACKAGE INFORMATION  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
FIGURE 6-1:  
PACKAGE MARKING INFORMATION  
40-VQFN  
UPD301mi  
e
3
VRnnn  
YYWWNNN  
Legend:  
m
Device version (“B” or “C”)  
i
V
R
Temperature range designator (Blank = commercial, i = industrial/automotive)  
Automotive (blank for non-automotive versions)  
Functional revision  
nnn  
YY  
WW  
NN  
Internal code  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
FIGURE 6-2:  
TAPE & REEL DEVICE ORIENTATION  
DIRECTION OF UNREELING  
2020 Microchip Technology Inc.  
DS00003412A-page 37  
UPD301B/C  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
FIGURE 6-3:  
40-VQFN PACKAGE (DRAWING)  
ꢀꢁꢂ/HDGꢃ9HU\ꢃ7KLQꢃ3ODVWLFꢃ4XDGꢃ)ODWꢄꢃ1Rꢃ/HDGꢃ3DFNDJHꢃꢅ.<;ꢆꢃꢂꢃꢇ[ꢇꢃPPꢃ%RG\ꢃ>94)1@  
:LWKꢃꢀꢈꢇ[ꢀꢈꢇꢃPPꢃ([SRVHGꢃ3DG  
'
$
%
(
127(ꢅꢂ  
1
ꢄ'$780ꢅ%ꢆ  
ꢄ'$780ꢅ$ꢆ  
ꢇ;  
ꢀꢁꢂꢀ &  
ꢇ;  
ꢀꢁꢂꢀ &  
723ꢅ9,(:  
$ꢂ  
ꢀꢁꢂꢀ &  
&
$
6($7,1*  
3/$1(  
ꢉꢀ;  
ꢄ$ꢌꢆ  
ꢀꢁꢀꢈ &  
6,'(ꢅ9,(:  
ꢀꢁꢂꢀ  
& $ %  
'ꢇ  
ꢀꢁꢂꢀ  
& $ %  
(ꢇ  
H
.
127(ꢅꢂ  
1
/
ꢉꢀ;ꢅE  
ꢀꢁꢂꢀ  
ꢀꢁꢀꢃ  
& $ %  
&
H
%27720ꢅ9,(:  
0LFURFKLSꢅ7HFKQRORJ\ꢅ'UDZLQJꢅꢅ&ꢀꢉꢊꢉꢋꢌꢅ5HYꢁꢅ$ꢅ6KHHWꢅꢂꢅRIꢅꢇ  
DS00003412A-page 38  
2020 Microchip Technology Inc.  
UPD301B/C  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
FIGURE 6-4:  
40-VQFN PACKAGE (DIMENSIONS)  
ꢀꢁꢂ/HDGꢃ9HU\ꢃ7KLQꢃ3ODVWLFꢃ4XDGꢃ)ODWꢄꢃ1Rꢃ/HDGꢃ3DFNDJHꢃꢅ.<;ꢆꢃꢂꢃꢇ[ꢇꢃPPꢃ%RG\ꢃ>94)1@  
:LWKꢃꢀꢈꢇ[ꢀꢈꢇꢃPPꢃ([SRVHGꢃ3DG  
8QLWV  
'LPHQVLRQꢅ/LPLWV  
0,//,0(7(56  
120  
0,1  
0$;  
1XPEHUꢅRIꢅ7HUPLQDOV  
3LWFK  
2YHUDOOꢅ+HLJKW  
6WDQGRII  
7HUPLQDOꢅ7KLFNQHVV  
2YHUDOOꢅ/HQJWK  
([SRVHGꢅ3DGꢅ/HQJWK  
2YHUDOOꢅ:LGWK  
([SRVHGꢅ3DGꢅ:LGWK  
7HUPLQDOꢅ:LGWK  
7HUPLQDOꢅ/HQJWK  
1
ꢉꢀ  
ꢀꢁꢃꢀꢅ%6&  
ꢀꢁꢈꢃ  
ꢀꢁꢀꢇ  
ꢀꢁꢇꢀꢅ5()  
ꢍꢁꢀꢀꢅ%6&  
ꢉꢁꢍꢀ  
ꢍꢁꢀꢀꢅ%6&  
ꢉꢁꢍꢀ  
ꢀꢁꢇꢃ  
ꢀꢁꢉꢀ  
H
$
$ꢂ  
$ꢌ  
'
'ꢇ  
(
(ꢇ  
E
/
ꢀꢁꢈꢀ  
ꢀꢁꢀꢀ  
ꢀꢁꢎꢀ  
ꢀꢁꢀꢋ  
ꢉꢁꢃꢀ  
ꢉꢁꢋꢀ  
ꢉꢁꢃꢀ  
ꢀꢁꢇꢀ  
ꢀꢁꢌꢃ  
ꢀꢁꢇꢀ  
ꢉꢁꢋꢀ  
ꢀꢁꢌꢀ  
ꢀꢁꢉꢃ  
7HUPLQDOꢊWRꢊ([SRVHGꢊ3DG  
.
Notes:  
ꢂꢁ 3LQꢅꢂꢅYLVXDOꢅLQGH[ꢅIHDWXUHꢅPD\ꢅYDU\ꢐꢅEXWꢅPXVWꢅEHꢅORFDWHGꢅZLWKLQꢅWKHꢅKDWFKHGꢅDUHDꢁ  
ꢇꢁ 3DFNDJHꢅLVꢅVDZꢅVLQJXODWHG  
ꢌꢁ 'LPHQVLRQLQJꢅDQGꢅWROHUDQFLQJꢅSHUꢅ$60(ꢅ<ꢂꢉꢁꢃ0  
%6&ꢏꢅ%DVLFꢅ'LPHQVLRQꢁꢅ7KHRUHWLFDOO\ꢅH[DFWꢅYDOXHꢅVKRZQꢅZLWKRXWꢅWROHUDQFHVꢁ  
5()ꢏꢅ5HIHUHQFHꢅ'LPHQVLRQꢐꢅXVXDOO\ꢅZLWKRXWꢅWROHUDQFHꢐꢅIRUꢅLQIRUPDWLRQꢅSXUSRVHVꢅRQO\ꢁ  
0LFURFKLSꢅ7HFKQRORJ\ꢅ'UDZLQJꢅꢅ&ꢀꢉꢊꢉꢋꢌꢅ5HYꢁꢅ$ꢅ6KHHWꢅꢇꢅRIꢅꢇ  
2020 Microchip Technology Inc.  
DS00003412A-page 39  
UPD301B/C  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
FIGURE 6-5:  
40-VQFN PACKAGE (LAND PATTERN)  
ꢀꢁꢂ/HDGꢃ9HU\ꢃ7KLQꢃ3ODVWLFꢃ4XDGꢃ)ODWꢄꢃ1Rꢃ/HDGꢃ3DFNDJHꢃꢅ.<;ꢆꢃꢂꢃꢇ[ꢇꢃPPꢃ%RG\ꢃ>94)1@  
:LWKꢃꢀꢈꢇ[ꢀꢈꢇꢃPPꢃ([SRVHGꢃ3DG  
&ꢂ  
;ꢇ  
(9  
ꢉꢀ  
‘9  
*ꢇ  
&ꢇ <ꢇ  
(9  
*ꢂ  
<ꢂ  
;ꢂ  
(
6,/.ꢅ6&5((1  
5(&200(1'('ꢅ/$1'ꢅ3$77(51  
8QLWV  
'LPHQVLRQꢅ/LPLWV  
(
0,//,0(7(56  
120  
ꢀꢁꢃꢀꢅ%6&  
0,1  
0$;  
&RQWDFWꢅ3LWFK  
2SWLRQDOꢅ&HQWHUꢅ3DGꢅ:LGWK  
2SWLRQDOꢅ&HQWHUꢅ3DGꢅ/HQJWK  
&RQWDFWꢅ3DGꢅ6SDFLQJ  
;ꢇ  
<ꢇ  
&ꢂ  
&ꢇ  
;ꢂ  
<ꢂ  
*ꢂ  
*ꢇ  
9
ꢉꢁꢋꢀ  
ꢉꢁꢋꢀ  
ꢍꢁꢀꢀ  
ꢍꢁꢀꢀ  
&RQWDFWꢅ3DGꢅ6SDFLQJ  
&RQWDFWꢅ3DGꢅ:LGWKꢅꢄ;ꢉꢀꢆ  
&RQWDFWꢅ3DGꢅ/HQJWKꢅꢄ;ꢉꢀꢆ  
&RQWDFWꢅ3DGꢅWRꢅ&HQWHUꢅ3DGꢅꢄ;ꢉꢀꢆ  
&RQWDFWꢅ3DGꢅWRꢅ&RQWDFWꢅ3DGꢅꢄ;ꢌꢍꢆ  
7KHUPDOꢅ9LDꢅ'LDPHWHU  
ꢀꢁꢌꢀ  
ꢀꢁꢈꢀ  
ꢀꢁꢇꢀ  
ꢀꢁꢇꢀ  
ꢀꢁꢌꢌ  
ꢂꢁꢇꢀ  
7KHUPDOꢅ9LDꢅ3LWFK  
(9  
1RWHVꢏ  
ꢂꢁ 'LPHQVLRQLQJꢅDQGꢅWROHUDQFLQJꢅSHUꢅ$60(ꢅ<ꢂꢉꢁꢃ0  
%6&ꢏꢅ%DVLFꢅ'LPHQVLRQꢁꢅ7KHRUHWLFDOO\ꢅH[DFWꢅYDOXHꢅVKRZQꢅZLWKRXWꢅWROHUDQFHVꢁ  
ꢇꢁ )RUꢅEHVWꢅVROGHULQJꢅUHVXOWVꢐꢅWKHUPDOꢅYLDVꢐꢅLIꢅXVHGꢐꢅVKRXOGꢅEHꢅILOOHGꢅRUꢅWHQWHGꢅWRꢅDYRLGꢅVROGHUꢅORVVꢅGXULQJ  
UHIORZꢅSURFHVV  
0LFURFKLSꢅ7HFKQRORJ\ꢅ'UDZLQJꢅ&ꢀꢉꢊꢇꢉꢋꢌꢅ5HYꢁꢅ$  
DS00003412A-page 40  
2020 Microchip Technology Inc.  
UPD301B/C  
APPENDIX A: DATA SHEET REVISION HISTORY  
TABLE A-1:  
REVISION HISTORY  
Revision  
Section/Figure/Entry  
Correction  
DS00003412A (04-06-20)  
Initial Document Release  
2020 Microchip Technology Inc.  
DS00003412A-page 41  
UPD301B/C  
THE MICROCHIP WEB SITE  
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make  
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site con-  
tains the following information:  
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s  
guides and hardware support documents, latest software releases and archived software  
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion  
groups, Microchip consultant program member listing  
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of semi-  
nars and events, listings of Microchip sales offices, distributors and factory representatives  
CUSTOMER CHANGE NOTIFICATION SERVICE  
Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive  
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or  
development tool of interest.  
To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-  
cation” and follow the registration instructions.  
CUSTOMER SUPPORT  
Users of Microchip products can receive assistance through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales  
offices are also available to help customers. A listing of sales offices and locations is included in the back of this docu-  
ment.  
Technical support is available through the web site at: http://www.microchip.com/support  
DS00003412A-page 42  
2020 Microchip Technology Inc.  
UPD301B/C  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
[X]( 1)  
PART NO.  
[X]  
/XX  
[XXX]  
Examples:  
a)  
UPD301B/KYX  
Device Tape & Reel  
Option  
Temp. Package Automotive  
Code  
No Rd terminations, standard packaging,  
Range  
0C to +70C, 40-pin VQFN package  
b)  
UPD301BT/KYX  
No Rd terminations, Tape and Reel,  
0C to +70C, 40-pin VQFN package  
UPD301B-I/KYX  
No Rd terminations, Standard packaging,  
-40C to +85C, 40-pin VQFN package  
UPD301BT-I/KYX  
No Rd terminations, Tape and Reel,  
-40C to +85C, 40-pin VQFN package  
UPD301B-I/KYXVAO  
No Rd terminations, Standard packaging,  
-40C to +85C, 40-pin VQFN package,  
Automotive Grade 3  
Device:  
UPD301B = No dead battery Rd terminations  
UPD301C = Dead battery Rd terminations  
c)  
d)  
e)  
Tape and Reel  
Option:  
Blank = Standard packaging (tray)  
T
= Tape and Reel (Note 1)  
Temperature  
Range:  
Blank  
I
=
=
0C to +70C (Commercial)  
-40C to +85C (Industrial/Automotive Grade 3)  
Package:  
KYX  
= 40-pin VQFN  
f)  
UPD301C/KYX  
Rd terminations, standard packaging,  
0C to +70C, 40-pin VQFN package  
UPD301CT/KYX  
Rd terminations, Tape and Reel,  
0C to +70C, 40-pin VQFN package  
UPD301C-I/KYX  
Rd terminations, Standard packaging,  
-40C to +85C, 40-pin VQFN package  
UPD301CT-I/KYX  
Automotive Code: Vxx  
=
3 character code with “V” prefix,  
specifying automotive grade 3 product.  
g)  
h)  
i)  
Rd terminations, Tape and Reel,  
-40C to +85C, 40-pin VQFN package  
j)  
UPD301C-I/KYXVAO  
Rd terminations, Standard packaging,  
-40C to +85C, 40-pin VQFN package,  
Automotive Grade 3  
Note 1:  
Tape and Reel identifier only appears in  
the catalog part number description. This  
identifier is used for ordering purposes and  
is not printed on the device package.  
Check with your Microchip Sales Office for  
package availability with the Tape and Reel  
option.  
2020 Microchip Technology Inc.  
DS00003412A-page 43  
UPD301B/C  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be  
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO  
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Micro-  
chip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold  
harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo,  
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch,  
MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo,  
PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero,  
motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux,  
TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,  
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain,  
Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,  
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher,  
SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in  
other countries.  
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other  
countries.  
All other trademarks mentioned herein are property of their respective companies.  
© 2020, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 9781522456933  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
DS00003412A-page 44  
2020 Microchip Technology Inc.  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS00003412A-page 45  
2020 Microchip Technology Inc.  
05/14/19  

相关型号:

UPD301BT

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301BT-I

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301BT-IKYX

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301BTKYX

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301C

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301C-I

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301C-IKYX

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301C-IKYXVAO

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301CKYX

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301CT

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301CT-I

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP

UPD301CT-IKYX

Stand-alone USB Type-C™ Power Delivery 3.0 Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROCHIP