VSC8522XJQ-04 [MICROCHIP]

Ethernet Transceiver;
VSC8522XJQ-04
型号: VSC8522XJQ-04
厂家: MICROCHIP    MICROCHIP
描述:

Ethernet Transceiver

以太网:16GBASE-T 电信 电信集成电路
文件: 总99页 (文件大小:936K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VSC8522-02 Datasheet  
12-Port 10/100/1000BASE-T PHY with QSGMII MAC  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of  
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the  
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have  
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any  
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all  
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not  
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to  
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi  
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely  
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP  
rights, whether with regard to such information itself or anything described by such information. Information provided in this  
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this  
document or to any products and services at any time without notice.  
Microsemi Headquarters  
One Enterprise, Aliso Viejo,  
CA 92656 USA  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
Email: sales.support@microsemi.com  
www.microsemi.com  
About Microsemi  
©2018 Microsemi, a wholly owned  
subsidiary of Microchip Technology Inc. All  
rights reserved. Microsemi and the  
Microsemi logo are registered trademarks of  
Microsemi Corporation. All other trademarks  
and service marks are the property of their  
respective owners.  
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of  
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.  
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and  
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's  
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication  
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and  
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.  
VMDS-10397. 4.2 11/18  
Contents  
1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
1.3  
Revision 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
Register and Bit Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.1  
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
4 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4.1  
Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4.2  
SerDes MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4.2.1  
QSGMII MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4.3  
4.4  
PHY Addressing and Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4.3.1  
4.3.2  
PHY Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SerDes Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Cat5 Twisted Pair Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.4.1  
4.4.2  
4.4.3  
4.4.4  
4.4.5  
4.4.6  
4.4.7  
Voltage-Mode Line Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Cat5 Autonegotiation and Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1000BASE-T Forced Mode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Automatic Crossover and Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Manual HP Auto-MDIX Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Link Speed Downshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Energy Efficient Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.5  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.5.1  
4.5.2  
4.5.3  
Configuring the REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Single-Ended REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Differential REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.6  
4.7  
4.8  
Ethernet Inline Powered Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
IEEE 802.3af PoE Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
ActiPHY Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.8.1  
4.8.2  
4.8.3  
Low Power State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Link Partner Wake-Up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Normal Operating State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.9  
Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.9.1  
4.9.2  
SMI Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
SMI Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.10  
LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.10.1 LED Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.10.2 LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.10.3 Enhanced Serial LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.11  
4.12  
GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Testing Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.12.1 Ethernet Packet Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.12.2 CRC Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.12.3 Far-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.12.4 Near-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
iii  
4.12.5 Connector Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.12.6 SerDes Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.12.7 VeriPHY Cable Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.12.8 JTAG Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.12.9 JTAG Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.12.10 Boundary Scan Register Cell Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.12.11 JTAG Boundary Scan Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.13  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.1  
IEEE Standard and Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.1.8  
5.1.9  
Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Autonegotiation Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Link Partner Autonegotiation Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Autonegotiation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Transmit Autonegotiation Next Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Autonegotiation Link Partner Next Page Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
1000BASE-T Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.1.10 1000BASE-T Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.1.11 MMD Access Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.1.12 MMD Address or Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.1.13 1000BASE-T Status Extension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.1.14 100BASE-TX Status Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1.15 1000BASE-T Status Extension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1.16 Bypass Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.1.17 Error Counter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.1.18 Error Counter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.1.19 Error Counter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.1.20 Extended Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.2  
5.3  
Extended PHY Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
Extended PHY Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Device Auxiliary Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
LED Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Extended Page Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Extended Page 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
Cu Media CRC Good Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Extended Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
ActiPHY Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
PoE and Miscellaneous Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
VeriPHY Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
VeriPHY Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
VeriPHY Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Ethernet Packet Generator Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Ethernet Packet Generator Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.4  
5.5  
Extended Page 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.4.1  
5.4.2  
Cu PMD Transmit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
EEE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Extended Page 3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
MAC SerDes PCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
MAC SerDes PCS Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
MAC SerDes Clause 37 Advertised Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
MAC SerDes Clause 37 Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
iv  
5.5.5  
5.5.6  
5.5.7  
MAC SerDes Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Media SerDes Transmit Good Packet Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Media SerDes Transmit CRC Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.6  
General Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.6.1  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
5.6.6  
5.6.7  
5.6.8  
COMA_MODE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
GPIO Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Global Command and SerDes Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
MAC Mode and Fast Link Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Enhanced LED Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Global Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
5.7  
Clause 45 Registers to Support Energy Efficient Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
5.7.1  
5.7.2  
5.7.3  
5.7.4  
5.7.5  
PCS Status 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
EEE Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EEE Wake Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EEE Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EEE Link Partner Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
6 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
6.1  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
VDD_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Internal Pull-Up or Pull-Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Enhanced SerDes Interface (QSGMII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
6.2  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.2.7  
6.2.8  
6.2.9  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Enhanced SerDes Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Enhanced SerDes Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Enhanced Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Enhanced SerDes Driver Jitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Enhanced SerDes Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Enhanced SerDes Receiver Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6.2.10 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
6.2.11 Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
6.2.12 Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.3  
6.4  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
7 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.1  
Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.2  
Pins by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.2.8  
JTAG Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
MAC SerDes/QSGMII Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Multipurpose Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Reserved Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Serial Management Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Twisted Pair Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
7.3  
7.4  
Pins by Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Pins by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
v
8.1  
8.2  
8.3  
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
9 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
10BASE-T mode unable to re-establish link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Software script for link performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
10BASE-T signal amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Clause 45 register 7.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Clause 45 register 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Clause 45 register 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Clause 45 register address post-increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
10 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
vi  
Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
QSGMII Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
QSGMII MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Cat5 Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Low Power Idle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.5 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
AC-Coupling Required for REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Inline Powered Ethernet Switch Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ActiPHY State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SMI Read Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SMI Write Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MDINT Configured as an Open-Drain (Active-Low) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
MDINT Configured as an Open-Source (Active-High) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Far-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Near-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Connector Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data Loops of the SerDes Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Test Access Port and Boundary Scan Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Register Space Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
QSGMII DC Transmit Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
QSGMII Transient Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Enhanced Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
JTAG Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Test Circuit for TDO Disable Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
SMI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
vii  
Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
PHY Address Range Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
SerDes Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Supported MDI Pair Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
REFCLK Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
LED Mode and Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
IDCODE JTAG Device Identification Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
USERCODE JTAG Device Identification Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
JTAG Interface Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
IEEE 802.3 Standard Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode Control, Address 0 (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode Status, Address 1 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Identifier 1, Address 2 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Identifier 2, Address 3 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Device Autonegotiation Advertisement, Address 4 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Autonegotiation Link Partner Ability, Address 5 (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Autonegotiation Expansion, Address 6 (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Autonegotiation Next Page Transmit, Address 7 (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Autonegotiation LP Next Page Receive, Address 8 (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
1000BASE-T Control, Address 9 (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
1000BASE-T Status, Address 10 (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
MMD EEE Access, Address 13 (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
MMD Address or Data Register, Address 14 (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
1000BASE-T Status Extension 1, Address 15 (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
100BASE-TX Status Extension, Address 16 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
1000BASE-T Status Extension 2, Address 17 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Bypass Control, Address 18 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Extended Control and Status, Address 19 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Extended Control and Status, Address 20 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Extended Control and Status, Address 21 (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Extended Control and Status, Address 22 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Extended PHY Control 1, Address 23 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Extended PHY Control 2, Address 24 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt Mask, Address 25 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt Status, Address 26 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Auxiliary Control and Status, Address 28 (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
LED Mode Select, Address 29 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
LED Behavior, Address 30 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Extended/GPIO Page Access, Address 31 (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Extended Registers Page 1 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Cu Media CRC Good Counter, Address 18E1 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Extended Mode Control, Address 19E1 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Extended PHY Control 3, Address 20E1 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Extended PHY Control 4, Address 23E1 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
VeriPHY Control 1, Address 24E1 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
VeriPHY Control 2, Address 25E1 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
VeriPHY Control 3, Address 26E1 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
VeriPHY Control 3 Fault Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
EPG Control 1, Address 29E1 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
EPG Control 2, Address 30E1 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Extended Registers Page 2 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Cu PMD Transmit Control, Address 16E2 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
EEE Control, Address 17E2 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Extended Registers Page 3 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Table 48  
Table 49  
Table 50  
Table 51  
Table 52  
Table 53  
Table 54  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
viii  
Table 55  
Table 56  
Table 57  
Table 58  
Table 59  
Table 60  
Table 61  
Table 62  
Table 63  
Table 64  
Table 65  
Table 66  
Table 67  
Table 68  
Table 69  
Table 70  
Table 71  
Table 72  
Table 73  
Table 74  
Table 75  
Table 76  
Table 77  
Table 78  
Table 79  
Table 80  
Table 81  
Table 82  
Table 83  
Table 84  
Table 85  
Table 86  
Table 87  
Table 88  
Table 89  
Table 90  
Table 91  
Table 92  
Table 93  
Table 94  
Table 95  
Table 96  
Table 97  
Table 98  
Table 99  
Table 100  
Table 101  
Table 102  
Table 103  
Table 104  
Table 105  
MAC SerDes PCS Control, Address 16E3 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
MAC SerDes PCS Status, Address 17E3 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
MAC SerDes Cl37 Advertised Ability, Address 18E3 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
MAC SerDes Cl37 LP Ability, Address 19E3 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
MAC SerDes Status, Address 20E3 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Media SerDes Tx Good Packet Counter, Address 21E3 (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Media SerDes Tx CRC Error Counter, Address 22E3 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
General Purpose Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
COMA_MODE Control, Address 14G (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
GPIO Input, Address 15G (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Output, Address 16G (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Input/Output Configuration, Address 17G (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Global Command and SerDes Configuration, Address 18G (0x12) . . . . . . . . . . . . . . . . . . . . . . . . 54  
MAC Mode and Fast Link Configuration, Address 19G (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Enhanced LED Control, Address 25G (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Global Interrupt Status, Address 29G (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Clause 45 Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
PCS Status 1, Address 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
EEE Capability, Address 3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EEE Wake Error Counter, Address 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EEE Advertisement, Address 7.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EEE Advertisement, Address 7.61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
VDD_IO DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Internal Pull-Up or Pull-Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Reference Clock DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Enhanced SerDes Driver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Enhanced SerDes Receiver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
QSGMII to 1000BASE-T Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Reference Clock AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Enhanced SerDes Outputs AC Specifications, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Enhanced Serial LEDs AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Enhanced SerDes Driver Jitter Characteristics, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Enhanced SerDes Inputs AC Specifications, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Enhanced SerDes Receiver Jitter Tolerance, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
JTAG Interface AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
SMI Interface AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
NRESET Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Serial LEDs AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Pin Type Symbol Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
MAC SerDes/QSGMII Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Multipurpose Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Reserved Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Serial Management Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Twisted Pair Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Thermal Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
ix  
Revision History  
1
Revision History  
The revision history describes the changes that were implemented in the document. The changes are  
listed by revision, starting with the most current publication.  
1.1  
Revision 4.1  
Revision 4.1 of this datasheet was published in May 2014. The following is a summary of the changes  
made to the datasheet:  
Information about the device SerDes MAC and the device media interface was updated. Neither the  
integrated SerDes media access controller (MAC) or the enhanced SerDes media interface of the  
device include internal AC-decoupling capacitors; external capacitors must be used.  
The functional block diagram of the device was changed to show the correct direction of the  
SERDES_E(3:1)_TXN, the SERDES_E(3:1)_RXP, and the SERDES_E(3:1)_RXN signals.  
Information about AC-coupling, which is required when using a differential reference clock  
(REFCLK) input, was added.  
Information about the typical input impedance for a differential REFCLK signal (RI) was added.  
The order of the information in the Pins by Function section was changed to match the alphabetical  
sort in the Pins spreadsheet attached to this document.  
References to SFP functionality, Basic Serial LED functionality, and Parallel LED signal detection  
(part of the Enhanced LED Control) were removed from this document. These functions are not  
supported in this device. The Functional Group of pins 40, 41, 42, 43, 44, 45, 47, 49, 50, A14, and  
A15 were changed from Multipurpose to Miscellaneous.  
1.2  
1.3  
Revision 4.0  
Revision 4.0 of this datasheet was published in December 2012. In revision 4.0 of the document, errata  
items, which were previously published in the VSC8522-02 Errata revision 1.0 as open issues, are now  
reconciled in the datasheet. Now that the information is available in the datasheet, the previously  
published errata document no longer applies, and it has been removed from the Microsemi Web site.  
Revision 2.0  
Revision 2.0 of this datasheet was published in September 2012. This was the first publication of the  
document.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
1
Introduction  
2
Introduction  
This document consists of descriptions and specifications for both functional and physical aspects of the  
VSC8522-02 12-port 10/100/1000BASE-T PHY device for the Ethernet market segment.  
In addition to datasheets, the Microsemi Web site offers an extensive library of documentation, support  
files, and application materials specific to each device. The address of the Microsemi Web site is  
www.microsemi.com.  
2.1  
Register and Bit Conventions  
This document refers to registers by their address and bit number in decimal notation. A range of bits is  
indicated with a colon. For example, a reference to address 26, bits 15 through 14 is shown as 26.15:14.  
A register with an E and a number attached (example 27E1) means it is a register contained within  
extended register page number 1. A register with a G attached (example 13G) means it is a GPIO page  
register.  
Bit numbering follows the IEEE standard with bit 15 being the most significant bit and bit 0 being the least  
significant bit.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
2
Overview  
3
Overview  
The VSC8522-02 is a low-power 12-port Gigabit Ethernet transceiver. It has a low electromagnetic  
interference (EMI) line driver and integrated line side termination resistors that conserve both power and  
printed circuit board (PCB) space.  
Microsemi’s mixed signal and digital signal processing (DSP) architecture is a key operational feature of  
the VSC8522-02, assuring robust performance even under less-than-favorable environmental  
conditions. It supports both half-duplex and full duplex 10BASE-T, 100BASE-TX, and 1000BASE-T  
communication speeds over Category 5 (Cat5) unshielded twisted pair (UTP) cable at distances greater  
than 100 m, displaying excellent tolerance to NEXT, FEXT, echo, and other types of ambient  
environmental and system electronic noise.  
The following illustration shows a high-level, general view of a typical VSC8522-02 application.  
Figure 1 • QSGMII Application Diagram  
QSGMII  
1.0 V  
2.5 V  
QSGMII Ethernet MAC  
QSGMII Ethernet MAC  
VSC8522  
12 ports copper media  
QSGMII MAC interface  
12× RJ-45  
and Magnetics  
QSGMII Ethernet MAC  
3.1  
Key Features  
This section lists the main features and benefits of the VSC8522-02 device.  
Low Power  
Low power consumption of approximately 425 mW per port in 1000BASE-T mode, 200 mW per port  
in 100BASE-TX mode, and 225 mW per port in 10BASE-T mode  
ActiPHY™ link down power savings  
PerfectReach™ smart cable reach algorithm  
IEEE 802.3az Energy Efficient Ethernet idle power savings  
Wide Range of Support  
Compliant with IEEE 802.3 (10BASE-T, 100BASE-TX, and 1000BASE-T) specifications  
Support for >16 kB jumbo frames in all speeds with programmable synchronization FIFOs  
Supports Cisco QSGMII v1.3, IEEE 1149.1 JTAG boundary scan, and IEEE 1149.6 AC-JTAG  
Support for applications that need to meet 2 kV CDE, IEC 61000-4-2 at 8 kV  
Available in a low-cost, 302-pin TQFP package with a 24 mm × 24 mm body size for low-power,  
fanless applications  
Flexibility  
VeriPHY® cable diagnostics suite provides extensive network cable information such as cable  
length, termination status, and open/short fault location  
Patented, low EMI line driver with integrated line side termination resistors  
Serial LED interface option  
Extensive test features including near end, far end, copper media connector, SerDes MAC loopback,  
and Ethernet packet generator with CRC error counter to decrease time-to-market  
3.2  
Block Diagram  
The following illustration shows the primary functional blocks of the VSC8522-02 device.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
3
Overview  
Figure 2 • Block Diagram  
P[11:0]_D0P  
P[11:0]_D0N  
P[11:0]_D1P  
P[11:0]_D1N  
P[11:0]_D2P  
P[11:0]_D2N  
P[11:0]_D3P  
P[11:0]_D3N  
SERDES_E[3:1]_TXP  
SERDES_E[3:1]_TXN  
10/100/  
1000BASE-T  
PCS  
10/100/  
1000BASE-T  
PMA  
MDI  
Twisted Pair  
Interface  
SERDES_E[3:1]_RXP  
SERDES_E[3:1]_RXN  
REFCLK_P  
REFCLK_N  
COMA_MODE  
NRESET  
MDC  
Management  
and  
Control Interface  
(MIIM)  
REFCLK_SEL[2:0]  
REF_FILT_[2:0]  
REF_REXT_[2:0]  
SERDES_REXT_[1:0]  
PLL and Analog  
LED Interface  
JTAG  
MDIO  
GPIO_30  
GPIO_[8:5]  
GPIO_[3:0]  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
4
Functional Descriptions  
4
Functional Descriptions  
This section provides detailed information about the functionality of the VSC8522-02 device, available  
configurations, operational features, and testing functionality. It includes descriptions of the various  
device interfaces and their configuration. With the information in this section, the device setup  
parameters can be determined for configuring the VSC8522-02 part for use in a particular application.  
4.1  
4.2  
Operating Mode  
The VSC8522-02 supports 10/100/1000BASE-T media through the QSGMII MAC-to-Cat5 Link Partner  
operating mode (ports 8-11). For more information, see Figure 1, page 3.  
SerDes MAC Interface  
The VSC8522-02 SerDes MAC interface performs data serialization and deserialization functions using  
an integrated SerDes block. The interface operates in QSGMII mode. The Enhanced SerDes block  
includes an integrated termination resistor. Register 19G is a global register and only needs to be set  
once to configure the device. The other register bits are configured on a per-port basis and the operation  
either needs to be repeated for each port, or a broadcast write needs to be used by setting register 22,  
bit 0 to configure all the ports simultaneously.  
4.2.1  
QSGMII MAC  
The VSC8522-02 device supports a QSGMII MAC to convey four ports of network data and port speed  
between 10BASE-T, 100BASE-T, and 1000BASE-T data rates and operates in both half-duplex and full-  
duplex at all port speeds. To configure the device for QSGMII MAC mode, set register 19G,  
bits 15:14 = 00 or 10. This device also supports SGMII MAC-side autonegotiation on each individual port  
and is enabled through register 16E3, bit 7, of that port.  
Figure 3 • QSGMII MAC Interface  
0.1 µF  
SERDES_E_RxP  
100 Ω  
TxP  
PHY  
Port_n  
PHY  
Port_n-1  
TxN  
0.1 µF  
0.1 µF  
SERDES_E_RxN  
QSGMII MAC  
PHY  
Port_n-2  
SERDES_E_TxP  
RxP  
PHY  
Port_n-3  
100 Ω  
100 Ω  
RxN  
0.1 µF  
SERDES_E_TxN  
4.3  
PHY Addressing and Port Mapping  
This section contains information about PHY addressing and port mapping.  
4.3.1  
PHY Addressing  
The VSC8522-02 includes two external PHY address pins to allow control of multiple PHY devices on a  
system board that are sharing a common management bus. Based on the settings of these two address  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
5
Functional Descriptions  
control pins, the internal PHYs in the VSC8522-02 device take on the address ranges as shown in the  
following table.  
Table 1 •  
PHY Address Range Selection  
PHYADD4  
PHYADD3  
Internal PHY Addresses  
0
0
1
1
0
1
0
1
0–11  
12–23  
4–15  
20–31  
4.3.2  
SerDes Port Mapping  
The VSC8522-02 includes three 5 GHz enhanced SerDes macros. The following table shows the  
SerDes port mapping in QSGMII to CAT5 mode of operation.  
Table 2 •  
SerDes Port Mapping  
Interface Pins  
Mode  
SERDES_E1_TXP, SERDES_E1_TXN QSGMII0  
SERDES_E1_RXP, SERDES_E1_RXN QSGMII0  
SERDES_E2_TXP, SERDES_E2_TXN QSGMII1  
SERDES_E2_RXP, SERDES_E2_RXN QSGMII1  
SERDES_E3_TXP, SERDES_E3_TXN QSGMII2  
SERDES_E3_RXP, SERDES_E3_RXN QSGMII2  
4.4  
Cat5 Twisted Pair Media Interface  
The VSC8522-02 twisted pair interface is compliant with IEEE 802.3-2008 and the IEEE 802.3az  
standard for Energy Efficient Ethernet.  
4.4.1  
Voltage-Mode Line Driver  
Unlike many other gigabit PHYs, the VSC8522-02 uses a patented voltage-mode line driver that allows it  
to fully integrate the series termination resistors, which are required to connect the PHY’s Cat5 interface  
to an external 1:1 transformer. Also, the interface does not require the user to place an external voltage  
on the center tap of the magnetic. The following illustration shows the connections.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
6
Functional Descriptions  
Figure 4 • Cat5 Media Interface  
PHY Port_n  
RJ-45  
Transformer  
TXVPA_n  
1
2
3
6
4
5
7
8
A+  
A–  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
TXVNA_n  
TXVPB_n  
TXVNB_n  
B+  
B–  
C+  
C–  
D+  
D–  
TXVPC_n  
TXVNC_n  
TXVPD_n  
TXVND_n  
75  
75 Ω  
75 Ω  
75 Ω  
1000 pF,  
2 kV  
4.4.2  
Cat5 Autonegotiation and Parallel Detection  
The VSC8522-02 supports twisted pair autonegotiation, as defined by IEEE 802.3-2008 Clause 28 and  
IEEE 802.3az. The autonegotiation process evaluates the advertised capabilities of the local PHY and its  
link partner to determine the best possible operating mode. In particular, autonegotiation can determine  
speed, duplex configuration, and master or slave operating modes for 1000BASE-TX. Autonegotiation  
also enables a connected MAC to communicate with its link partner MAC through the VSC8522-02 using  
optional next pages, which set attributes that may not otherwise be defined by the IEEE standard.  
If the Cat5 link partner does not support autonegotiation, the VSC8522-02 automatically uses parallel  
detection to select the appropriate link speed.  
Autonegotiation is disabled by clearing register 0, bit 12. If autonegotiation is disabled, the state of  
register bits 0.6, 0.13, and 0.8 determine the device operating speed and duplex mode. Note that while  
10BASE-T and 100BASE-T do not require autonegotiation, Clause 40 has defined 1000BASE-T to  
require autonegotiation.  
4.4.3  
4.4.4  
1000BASE-T Forced Mode Support  
VSC8522-02 provides support for a 1000BASE-T forced test mode. In this mode, the PHY can be forced  
into 1000BASE-T mode and does not require manual setting of master/slave at the two ends of the link.  
This mode is for test purposes only, and should not be used in normal operation. To configure a PHY in  
this mode, set register 17E2, bit 5 = 1 and register 0, bits 6 and 13 = 10.  
Automatic Crossover and Polarity Detection  
For trouble-free configuration and management of Ethernet links, the VSC8522-02 includes a robust  
automatic crossover detection feature for all three speeds on the twisted-pair interface (10BASE-T,  
100BASE-T, and 1000BASE-T). Known as HP Auto-MDIX, the function is fully compliant with Clause 40  
of IEEE 802.3-2008.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
7
Functional Descriptions  
Additionally, the device detects and corrects polarity errors on all MDI pairs — a useful capability that  
exceeds the requirements of the standard.  
Both HP Auto-MDIX detection and polarity correction are enabled in the device by default. Default  
settings can be changed using device register bits 18.5:4. Status bits for each of these functions are  
located in register 28.  
Note: The VSC8522-02 can be configured to perform HP Auto-MDIX, even when autonegotiation is disabled  
and the link is forced into 10/100 speeds. To enable this feature, set register 18.7 to 0. To disable the  
feature, set register 0.12 to 0.  
The HP Auto-MDIX algorithm successfully detects, corrects, and operates with any of the MDI wiring pair  
combinations listed in the following table.  
Table 3 •  
Supported MDI Pair Combinations  
1, 2  
A
3, 6  
B
4, 5  
C
7, 8  
D
Mode  
Normal MDI  
B
A
D
C
Normal MDI-X  
A
B
D
C
Normal MDI with pair swap on C and D pair  
Normal MDI-X with pair swap on C and D pair  
B
A
C
D
4.4.5  
4.4.6  
Manual HP Auto-MDIX Setting  
As an alternative to HP Auto-MDIX detection, the PHY can be forced to be MDI or MDI-X using  
register 19E1, bits 3:2. Setting these bits to 10 forces MDI and setting 11 forces MDI-X. Leaving the  
bits 00 enables the HP Auto-MDIX setting to be based on register 18, bits 7 and 5.  
Link Speed Downshift  
For operation in cabling environments that are incompatible with 1000BASE-T, the VSC8522-02 provides  
an automatic link speed downshift option. When enabled, the device automatically changes its  
1000BASE-T autonegotiation advertisement to the next slower speed after a set number of failed  
attempts at 1000BASE-T. No reset is required to get out of this state if a subsequent link partner with  
1000BASE-T support is connected. This feature is useful in setting up in networks using older cable  
installations that include only pairs A and B, and not pairs C and D.  
To configure and monitor link speed downshifting, set register 20E1, bits 4:1. For more information, see  
Table 43, page 44.  
4.4.7  
Energy Efficient Ethernet  
The VSC8522-02 supports the IEEE 802.3az Energy Efficient Ethernet standard that is currently in  
development. This new standard provides a method for reducing power consumption on an Ethernet link  
during times of low utilization. It uses low power idles (LPI) to achieve this objective.  
Figure 5 • Low Power Idle Operation  
Active  
Low-Power Idle  
Active  
Quiet  
Quiet  
Quiet  
Ts  
Tq  
Tr  
Using LPI, the usage model for the link is to transmit data as fast as possible and then return to a low  
power idle state. Energy is saved on the link by cycling between active and low power idle states. During  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
8
Functional Descriptions  
LPI, power is reduced by turning off unused circuits and using this method, energy use scales with  
bandwidth utilization.  
The VSC8522-02 uses LPI to optimize power dissipation in 100BASE-TX and 1000BASE-T modes of  
operation. In addition, the IEEE 802.3az standard defines a 10BASE-Te mode that reduces transmit  
signal amplitude from 5 Vp-p to ~3.3 Vp-p. This mode reduces power consumption in 10 Mbps link speed  
and fully interoperates with legacy 10BASE-T compliant PHYs over 100 m Cat5 cable or better.  
To configure the VSC8522-02 in 10BASE-Te mode, set register 17E2.15 to 1 for each port. Additional  
Energy Efficient Ethernet features are controlled through Clause 45 registers. For more information, see  
Clause 45 Registers to Support Energy Efficient Ethernet, page 57.  
4.5  
Reference Clock  
The device reference clock can be a 25 MHz, 125 MHz, or 156.25 MHz clock signal. It can be either a  
differential reference clock or a single-ended clock. However, 25 MHz single-ended operation is not  
recommended when using QSGMII due to the jitter specification requirements of this interface. For more  
information, see Reference Clock, page 61.  
4.5.1  
Configuring the REFCLK  
There are three REFCLK_SEL pins to configure the REFCLK speed. The following table shows the  
functionality and associated REFCLK frequency.  
Table 4 •  
REFCLK Frequency Selection  
REFCLK_SEL2 REFCLK_SEL1 REFCLK_SEL0 REFCLK Frequency  
0
0
1
0
0
0
0
1
0
125 MHz  
156.25 MHz  
25 MHz  
4.5.2  
Single-Ended REFCLK Input  
To use a single-ended REFCLK, an external resistor network is required. The purpose of the network is  
to limit the amplitude and to adjust the center of the swing. The configurations for a single-ended  
REFCLK are shown in the following illustrations.  
Figure 6 • 2.5 V CMOS Single-Ended REFCLK Input Resistor Network  
220 Ω  
REFCLK_P  
REFCLK_N  
2.5 V  
CMOS  
VDD_A  
910 Ω  
VSS  
Figure 7 • 3.3 V CMOS Single-Ended REFCLK Input Resistor Network  
270 Ω  
REFCLK_P  
REFCLK_N  
3.3 V  
CMOS  
VDD_A  
430 Ω  
VSS  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
9
Functional Descriptions  
4.5.3  
Differential REFCLK Input  
AC-coupling is required when using a differential REFCLK. Differential clocks must be capacitively  
coupled and LVDS-compliant. The following illustration shows the configuration.  
Figure 8 • AC-Coupling Required for REFCLK Input  
REFCLK_P  
PHY Equivalent  
Termination Circuit  
0.1 µF  
50 Ω  
50 Ω  
VTT (Internal Voltage)  
REFCLK_N  
0.1 µF  
4.6  
Ethernet Inline Powered Devices  
The VSC8522-02 can detect legacy inline powered devices in Ethernet network applications. Inline  
powered detection capability is useful in systems that enable IP phones and other devices (such as  
wireless access points) to receive power directly from their Ethernet cable, similar to office digital phones  
receiving power from a private branch exchange (PBX) office switch over telephone cabling. This type of  
setup eliminates the need for an external power supply and enables the inline powered device to remain  
active during a power outage, assuming that the Ethernet switch is connected to an uninterrupted power  
supply, battery, back-up power generator, or other uninterruptable power source.  
For more information about legacy inline powered device detection, visit the Cisco Web site at  
www.cisco.com. The following illustration shows an example of an inline powered Ethernet switch  
application.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
10  
Functional Descriptions  
Figure 9 • Inline Powered Ethernet Switch Diagram  
Gigabit Switch  
Processor  
Control  
SMI  
QSGMII  
Interface  
Inline,  
Power-Over-Ethernet  
(PoE)  
PHY_port0  
PHY_port1  
PHY_portn  
Power Supply  
Transformer  
Transformer  
Transformer  
RJ-45  
I/F  
RJ-45  
I/F  
RJ-45  
I/F  
Cat5  
Link  
Partner  
Link  
Partner  
Link  
Partner  
The following procedure describes the process that an Ethernet switch must perform to process inline  
power requests made by a link partner (LP) that is, in turn, capable of receiving inline power:  
1. Enable the inline powered device detection mode on each VSC8522-02 PHY using its serial  
management interface. Set register bit 23E1.10 to 1.  
2. Ensure that the VSC8522-02 autonegotiation enable bit (register 0.12) is also set to 1. In the  
application, the device sends a special fast link pulse (FLP) signal to the LP. Reading register  
bit 23E1.9:8 returns 00 during the search for devices that require power over Ethernet (PoE).  
3. The VSC8522-02 PHY monitors its inputs for the FLP signal looped back by the LP. An LP capable  
of receiving PoE loops back the FLP pulses when the LP is in a powered down state. This is  
reported when VSC8522-02 register bit 23E1.9:8 reads back 01. It can also be verified as an inline  
power detection interrupt by reading VSC8522-02 register bit 26.9, which should be a 1, and which  
is subsequently cleared and the interrupt de-asserted after the read. If an LP device does not loop  
back the FLP after a specific time, VSC8522-02 register bit 23E1.9:8 automatically resets to 10.  
4. If the VSC8522-02 PHY reports that the LP requires PoE, the Ethernet switch must enable inline  
power on this port, externally of the PHY.  
5. The PHY automatically disables inline powered device detection if the VSC8522-02 register  
bits 23E1.9:8 automatically resets to 10, and then automatically changes to its normal  
autonegotiation process. A link is then auto-negotiated and established when the link status bit is set  
(register bit 1.2 is set to 1).  
6. In the event of a link failure (indicated when VSC8522-02 register bit 1.2 reads 0), the inline power  
should be disabled to the inline powered device external to the PHY. The VSC8522-02 PHY disables  
its normal autonegotiation process and re-enables its inline powered device detection mode.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
11  
Functional Descriptions  
4.7  
4.8  
IEEE 802.3af PoE Support  
The VSC8522-02 is compatible with switch designs that are intended for use in systems that supply  
power to data terminal equipment (DTE) by means of the MDI or twisted pair cable, as described in  
IEEE 802.3af Clause 33.  
ActiPHY Power Management  
In addition to the IEEE-specified power-down control bit (device register bit 0.11), the device also  
includes an ActiPHY power management mode for each PHY. This mode enables support for power-  
sensitive applications. It utilizes a signal-detect function that monitors the media interface for the  
presence of a link to determine when to automatically power-down the PHY. The PHY wakes up at a  
programmable interval and attempts to wake up the link partner PHY by sending a burst of FLP over  
copper media.  
The ActiPHY power management mode in the VSC8522-02 is enabled on a per-port basis during normal  
operation at any time by setting register bit 28.6 to 1.  
The following operating states are possible when ActiPHY mode is enabled:  
Low power state  
LP wake-up state  
Normal operating state (link-up state)  
The VSC8522-02 switches between the low power state and LP wake-up state at a programmable rate  
(the default is two seconds) until signal energy has been detected on the media interface pins. When  
signal energy is detected, the PHY enters the normal operating state. If the PHY is in its normal operating  
state and the link fails, the PHY returns to the low power state after the expiration of the link status time-  
out timer. After reset, the PHY enters the low power state.  
When autonegotiation is enabled in the PHY, the ActiPHY state machine operates as described. If  
autonegotiation is disabled and the link is forced to use 10BASE-T or 100BASE-TX modes while the  
PHY is in its low power state, the PHY continues to transition between the low power and LP wake-up  
states until signal energy is detected on the media pins. At that time, the PHY transitions to the normal  
operating state and stays in that state even when the link is dropped. If autonegotiation is disabled while  
the PHY is in the normal operation state, the PHY stays in that state when the link is dropped and does  
not transition back to the low power state.  
The following illustration shows the relationship between ActiPHY states and timers.  
Figure 10 • ActiPHY State Diagram  
Low Power State  
Signal Energy Detected on  
Media  
FLP Burst or  
Clause 37 Restart  
Signal Sent  
Sleep Timer Expires  
Timeout Timer Expires and  
Auto-negotiation Enabled  
Normal  
Operation State  
LP Wake-up  
State  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
12  
Functional Descriptions  
4.8.1  
Low Power State  
In the low power state, all major digital blocks are powered down. However, the following functionality is  
provided:  
SMI interface (MDC, MDIO, and MDINT pins)  
CLKOUT  
In this state, the PHY monitors the media interface pins for signal energy. The PHY comes out of low  
power state and transitions to the normal operating state when signal energy is detected on the media.  
This happens when the PHY is connected to one of the following:  
Autonegotiation-capable link partner  
Another PHY in enhanced ActiPHY LP wake-up state  
In the absence of signal energy on the media pins, the PHY periodically transitions from low-power state  
to LP wake-up state, based on the programmable sleep timer (register bits 20E1.14:13). The actual sleep  
time duration is randomized from –80 ms to 60 ms to avoid two linked PHYs in ActiPHY mode entering a  
lock-up state during operation.  
4.8.2  
Link Partner Wake-Up State  
In the link partner wake-up state, the PHY attempts to wake up the link partner. Up to three complete FLP  
bursts are sent on alternating pairs A and B of the Cat5 media for a duration based on the wake-up timer,  
which is set using register bits 20E1.12:11.  
In this state, the following functionality is provided:  
SMI interface (MDC, MDIO, and MDINT pins)  
CLKOUT  
After sending signal energy on the relevant media, the PHY returns to the low power state.  
4.8.3  
Normal Operating State  
In the normal operating state, the PHY establishes a link with a link partner. When the media is  
unplugged or the link partner is powered down, the PHY waits for the duration of the programmable link  
status time-out timer, which is set using register bit 28.7 and bit 28.2. It then enters the low power state.  
4.9  
Serial Management Interface  
The VSC8522-02 device includes an IEEE 802.3-compliant serial management interface (SMI) that is  
affected by use of its MDC and MDIO pins. The SMI provides access to device control and status  
registers. The register set that controls the SMI consists of 32 16-bit registers, including all required  
IEEE-specified registers. Also, there are additional pages of registers accessible using device  
register 31.  
Energy Efficient Ethernet control registers are available through the SMI using Clause 45 registers and  
Clause 22 register access in registers 13 through 14. For more information, see Table 22, page 33 and  
Table 71, page 57.  
The SMI is a synchronous serial interface with input data to the VSC8522-02 on the MDIO pin that is  
clocked on the rising edge of the MDC pin. The output data is sent on the MDIO pin on the rising edge of  
the MDC signal. The interface can be clocked at a rate from 0 MHz to 12.5 MHz, depending on the total  
load on MDIO. An external 2-kpull-up resistor is required on the MDIO pin.  
4.9.1  
SMI Frames  
Data is transferred over the SMI using 32-bit frames with an optional, arbitrary-length preamble. Before  
the first frame can be sent, at least two clock pulses on MDC must be provided with the MDIO signal at  
logic one to initialize the SMI state machine. The following illustrations show the SMI frame format for  
read and write operations.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
13  
Functional Descriptions  
Figure 11 • SMI Read Frame  
Station manager drives MDIO  
PHY drives MDIO  
MDC  
MDIO  
Z
Z
1
0
1
1
0
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
Z
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Z
Z
Preamble  
(optional)  
Register Data  
from PHY  
Register Address  
to PHY  
Idle  
SFD Read  
PHY Address  
TA  
Idle  
Figure 12 • SMI Write Frame  
Station manager drives MDIO (PHY tri-states MDIO during the entire sequence)  
MDC  
MDIO  
Z
Z
1
0
1
0
1
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
1
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Z
Z
Preamble  
(optional)  
Register Data  
from PHY  
Register Address  
to PHY  
Idle  
SFD Write  
PHY Address  
TA  
Idle  
The following list provides additional information about the terms used in the SMI read and write timing  
diagrams.  
4.9.1.1  
Idle  
During idle, the MDIO node goes to a high-impedance state. This allows an external pull-up resistor to  
pull the MDIO node up to a logical 1 state. Because the idle mode should not contain any transitions on  
MDIO, the number of bits is undefined during idle.  
4.9.1.2  
4.9.1.3  
4.9.1.4  
4.9.1.5  
Preamble  
By default, preambles are not expected or required. The preamble is a string of ones. If it exists, the  
preamble must be at least one bit; otherwise, it can be of an arbitrary length.  
Start of Frame (SFD)  
A pattern of 01 indicates the start of frame. If the pattern is not 01, all following bits are ignored until the  
next preamble pattern is detected.  
Read or Write Opcode  
A pattern of 10 indicates a read. A 01 pattern indicates a write. If the bits are not either 01 or 10, all  
following bits are ignored until the next preamble pattern is detected.  
PHY Address  
The particular VSC8522-02 responds to a message frame only when the received PHY address matches  
its physical address. The physical address is 5 bits long (4:0).  
4.9.1.6  
4.9.1.7  
Register Address  
The next five bits are the register address.  
Turnaround  
The two bits used to avoid signal contention when a read operation is performed on the MDIO are called  
the turnaround (TA) bits. During read operations, the VSC8522-02 drives the second TA bit, a logical 0.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
14  
Functional Descriptions  
4.9.1.8  
Data  
The 16-bits read from or written to the device are considered the data or data stream. When data is read  
from a PHY, it is valid at the output from one rising edge of MDC to the next rising edge of MDC. When  
data is written to the PHY, it must be valid around the rising edge of MDC.  
4.9.1.9  
Idle  
The sequence is repeated.  
4.9.2  
SMI Interrupt  
The SMI includes an output interrupt signal, MDINT, for signaling the station manager when certain  
events occur in the VSC8522-02.  
The MDINT pin can be configured for open-drain (active-low) by tying the pin to a pull-up resistor and to  
VDDIO. The following illustration shows this configuration.  
Figure 13 • MDINT Configured as an Open-Drain (Active-Low) Pin  
External Pull-up  
Resistor at the  
VDDIO  
Station Manager  
for Open-drain  
(Active-low Mode)  
PHY_n  
Interrupt Pin Enable  
MDINT  
MDINT  
(to the Station  
Manager)  
(Register 25.15)  
Interrupt Pin Status  
(Register 26.15)  
Alternatively, the MDINT pin can be configured for open-source (active-high) by tying the pin to a pull-  
down resistor and to VSS. The following illustration shows this configuration.  
Figure 14 • MDINT Configured as an Open-Source (Active-High) Pin  
VDDIO  
Interrupt Pin Enable  
(Register 25.15)  
MDINT  
(to the Station  
Manager)  
MDINT  
Interrupt Pin Status  
(Register 26.15)  
External Pull-down  
at the Station  
PHY_n  
Manager  
For Open-source  
(Active-high Mode)  
When a PHY generates an interrupt, the MDINT pin is asserted (driven high or low, depending on resistor  
connection) if the interrupt pin enable bit (MII register 25.15) is set.  
4.10 LED Interface  
The VSC8522-02 outputs four LED signals per port (LED0, LED1, LED2, and LED3) through an  
enhanced serial LED mode. For more information, see Enhanced Serial LED Mode, page 17. The  
polarity of the LED outputs is programmable and can be changed through register 17E2.13:10. The  
default polarity is active low.  
4.10.1 LED Modes  
Each LED pin can be configured to display different status information that can be selected by setting the  
LED mode in register 29. The modes listed in the following table are equivalent to the setting used in  
register 29 to configure each LED pin. The default LED state is active low and can be changed by  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
15  
Functional Descriptions  
modifying the value in register 17E2, bits 13:10. The blink/pulse-stretch is dependent on the LED  
behavior setting in register 30.  
Table 5 •  
LED Mode and Function Summary  
Mode Function Name  
LED State and Description  
0
1
2
3
4
5
6
7
Link/Activity  
1 = No link in any speed on any media interface.  
0 = Valid link at any speed on any media interface.  
Blink or pulse-stretch = Valid link at any speed on any media  
interface with activity present.  
Link1000/Activity  
Link100/Activity  
Link10/Activity  
1 = No link in 1000BASE-T.  
0 = Valid 1000BASE-T.  
Blink or pulse-stretch = Valid 1000BASE-T link with activity  
present.  
1 = No link in 100BASE-TX.  
0 = Valid 100BASE-TX.  
Blink or pulse-stretch = Valid 100BASE-TX link with activity  
present.  
1 = No link in 10BASE-T.  
0 = Valid 10BASE-T link.  
Blink or pulse-stretch = Valid 10BASE-T link with activity  
present.  
Link100/1000/Activity  
Link10/1000/Activity  
Link10/100/Activity  
Duplex/Collision  
1 = No link in 100BASE-TX or 1000BASE-T.  
0 = Valid 100BASE-TX or 1000BASE-T link.  
Blink or pulse-stretch = Valid 100BASE-TX or 1000BASE-T link  
with activity present.  
1 = No link in 10BASE-T or 1000BASE-T.  
0 = Valid 10BASE-T or 1000BASE-T link.  
Blink or pulse-stretch = Valid 10BASE-T or 1000BASE-T link  
with activity present.  
1 = No link in 10BASE-T, or 100BASE-TX.  
0 = Valid 10BASE-T or 100BASE-TX, link.  
Blink or pulse-stretch = Valid 10BASE-T, or 100BASE-TX link  
with activity present.  
1 = Link established in half-duplex mode, or no link established.  
0 = Link established in full-duplex mode.  
Blink or pulse-stretch = Link established in half-duplex mode but  
collisions are present.  
8
9
Collision  
Activity  
1 = No collision detected.  
Blink or pulse-stretch = Collision detected.  
1 = No activity present.  
Blink or pulse-stretch = Activity present (becomes TX activity  
present if register bit 30.14 is set to 1).  
10  
Autonegotiation Fault  
1 = No autonegotiation fault present.  
0 = Autonegotiation fault occurred.  
11  
12  
13  
Reserved  
Reserved.  
Force LED Off  
Force LED On  
1 = De-asserts the LED(1)  
0 = Asserts the LED(1)  
.
.
1. Setting this mode suppresses LED blinking after reset.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
16  
Functional Descriptions  
4.10.2 LED Behavior  
Several LED behaviors can be programmed into the VSC8522-02. Use the settings in register 30 to  
program LED behavior, which includes the following:  
4.10.2.1 LED Combine  
Enables an LED to display the status for a combination of primary and secondary modes. This can be  
enabled or disabled for each LED pin. For example, a copper link running in 1000BASE-T mode and  
activity present can be displayed with one LED by configuring an LED pin to Link1000/Activity mode. The  
LED asserts when linked to a 1000BASE-T partner and also blinks or performs pulse-stretch when  
activity is either transmitted by the PHY or received by the Link Partner. When disabled, the combine  
feature only provides status of the selected primary function. In this example, only Link1000 asserts the  
LED, and the secondary mode, activity, does not display if the combine feature is disabled.  
4.10.2.2 LED Blink or Pulse-Stretch  
This behavior is used for activity and collision indication. This can be uniquely configured for each LED  
pin. Activity and collision events can occur randomly and intermittently throughout the link-up period.  
Blink is a 50% duty cycle oscillation of asserting and de-asserting an LED pin. Pulse-stretch guarantees  
that an LED is asserted and de-asserted for a specific period of time when activity is either present or not  
present. These rates can also be configured using a register setting.  
4.10.2.3 Rate of LED Blink or Pulse-Stretch  
This behavior controls the LED blink rate or pulse-stretch length when blink/pulse-stretch is enabled on  
an LED pin. The blink rate, which alternates between a high and low voltage level at a 50% duty cycle,  
can be set to 2.5 Hz, 5 Hz, 10 Hz, or 20 Hz. For pulse-stretch, the rate can be set to 50 ms, 100 ms,  
200 ms, or 400 ms. The blink rate selection for PHY0 globally sets the rate used for all LED pins on all  
PHY ports.  
4.10.2.4 LED Pulsing Enable  
To provide additional power savings, the LEDs (when asserted) can be pulsed at 5 kHz, 20% duty cycle.  
4.10.2.5 LED Blink After Reset  
The LEDs will blink for one second after power-up and after any time all resets have been de-asserted.  
This can be disabled through register 19E1, bit 11 = 0.  
4.10.2.6 Pulse Programmable Control  
These bits add the ability to width and frequency of LED pulses. This feature facilities power reduction  
options.  
4.10.3 Enhanced Serial LED Mode  
VSC8522-02 can be configured to output up to four LED signals per port on a serial stream that can be  
de-serialized externally to drive LEDs on the system board. This functionality is controlled by setting  
register 25G, bits 7:1. In this mode, the serial LED_DATA is shifted out on the falling edge of LED_CLK  
and is latched in the external serial to parallel converter on the rising edge of LED_CLK. The falling edge  
of LED_LD signal can be used to shift the data from the shift register in the converter to the parallel  
output drive register. If a separate parallel output drive register is not used in the external serial to parallel  
converter, then the LEDs will blink at a high frequency as the data bits are being shifted through which  
may be undesirable. The LED_PULSE signal provides a 5 kHz pulse stream whose duty cycle can be  
modulated to turn on/off LEDs at a high rate. This signal can be tied to the output enable signal of the  
serial to parallel converter to provide the LED dimming functionality to save energy.  
4.11 GPIO Pins  
The VSC8522-02 provides nine multiplexed multipurpose pins. For more information about the available  
GPIO pins, see LED and Multi/General Purpose Input and Output Pins, page 101, and for information  
about configuring them, see General Purpose Registers, page 52.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
17  
Functional Descriptions  
4.12 Testing Features  
The VSC8522-02 device includes several testing features designed to facilitate performing system-level  
debugging and in-system production testing. This section describes the available features.  
4.12.1 Ethernet Packet Generator  
The Ethernet packet generator (EPG) can be used at each of the 10/100/1000BASE-T speed settings for  
copper Cat5 media to isolate problems between the MAC and the VSC8522-02, or between a locally  
connected PHY and its remote link partner. Enabling the EPG feature effectively disables all MAC  
interface transmit pins and selects the EPG as the source for all data transmitted onto the twisted pair  
interface.  
Important The EPG is intended for use with laboratory or in-system testing equipment only. Do not use  
the EPG testing feature when the VSC8522-02 is connected to a live network.  
To enable the VSC8522-02 EPG feature, set the device register bit 29E1.15 to 1.  
When the EPG is enabled, packet loss occurs during transmission of packets from the MAC to the PHY.  
However, the PHY receive output pins to the MAC are still active when the EPG is enabled. If it is  
necessary to disable the MAC receive pins as well, set the register bit 0.10 to 1.  
When the device register bit 29E1.14 is set to 1, the PHY begins transmitting Ethernet packets based on  
the settings in registers 29E1 and 30E1. These registers set:  
Source and destination addresses for each packet  
Packet size  
Inter-packet gap  
FCS state  
Transmit duration  
Payload pattern  
If register bit 29E1.13 is set to 0, register bit 29E1.14 is cleared automatically after 30,000,000 packets  
are transmitted.  
4.12.2 CRC Counters  
A set of cyclical redundancy check (CRC) counters is available in all PHYs in VSC8522-02 to monitor  
traffic on the copper interface.  
The device CRC counters operate in 10/100/1000BASE-T mode as follows:  
After receiving a packet on the media interface, register bit 15 in register 18E1 or register 28E3 is set  
and cleared after being read.  
The packet then is counted by either the good CRC counter or the bad CRC counter.  
Both CRC counters are also automatically cleared when read.  
The good CRC counter’s highest value is 9,999 packets. After this value is reached, the counter clears  
on the 10,000th packet and continues to count additional packets beyond that value. The bad CRC  
counter stops counting when it reaches its maximum counter limit of 255 packets.  
4.12.2.1 Copper Interface CRC Counters  
Two separate CRC counters are available and reside between the copper interface PCSs and SerDes  
MAC interface. There is a 14-bit good CRC counter available through register bits 18E1.13:0 and a  
separate 8-bit bad CRC counter available in register bits 23E1.7:0.  
4.12.3 Far-End Loopback  
The far-end loopback testing feature is enabled by setting register bit 23.3 to 1. When enabled, it forces  
incoming data from a link partner on the current media interface, into the MAC interface of the PHY, to be  
retransmitted back to the link partner on the media interface as shown in the following illustration. In  
addition, the incoming data also appears on the receive data pins of the MAC interface. Data present on  
the transmit data pins of the MAC interface is ignored when using this testing feature.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
18  
Functional Descriptions  
Figure 15 • Far-End Loopback Diagram  
PHY_port_n  
RX  
RXD  
TXD  
Link Partner  
TX  
MAC  
Cat5  
4.12.4 Near-End Loopback  
When the near-end loopback testing feature is enabled, transmitted data (TXD) is looped back in the  
PCS block onto the receive data signals (RXD), as shown in the following illustration. When using this  
testing feature, no data is transmitted over the network. To enable near-end loopback, set the device  
register bit 0.14 to 1.  
Figure 16 • Near-End Loopback Diagram  
PHY_port_n  
RX  
RXD  
TXD  
Link Partner  
MAC  
TX  
Cat5  
4.12.5 Connector Loopback  
The connector loopback testing feature allows the twisted pair interface to be looped back externally.  
When using this feature, the PHY must be connected to a loopback connector or a loopback cable.  
Pair A should be connected to pair B, and pair C to pair D, as shown in the following illustration. The  
connector loopback feature functions at all available interface speeds.  
Figure 17 • Connector Loopback Diagram  
A
B
C
D
RXD  
TXD  
Cat5  
PHY_port_n  
MAC  
When using the connector loopback testing feature, the device autonegotiation, speed, and duplex  
configuration is set using device registers 0, 4, and 9. For 1000BASE-T connector loopback, the  
following additional writes are required. Execute the additional writes in the following order:  
1. Enable the 1000BASE-T connector loopback. Set register bit 24.0 to 1.  
2. Disable pair swap correction. Set register bit 18.5 to 1.  
4.12.6 SerDes Loopbacks  
For test purposes, the enhanced SerDes macro interfaces provide several data loops. The following  
illustration shows the SerDes loopbacks.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
19  
Functional Descriptions  
Figure 18 • Data Loops of the SerDes Macro  
n bit IF  
n bit IF  
SLIVER  
Digital interface, configuration, and control logic  
D Q  
Facility Loop  
HS-ref. clock  
HS-ref. clock  
RC-PLL  
DES  
n:1  
SER  
1:n  
Equipment-Loop  
Input-Loop  
OB  
Analog Service Modules  
(BIAS, clk tree buffers, ESD  
IB  
protection,  
)
Pad-Loop  
RX  
TX  
4.12.6.1 QSGMII Mode  
When the MAC interface is configured in QSGMII mode, write the following 16-bit value to register 18G:  
Bits 15:12 0x9  
Bits 11:8: Port address (0xC to 0xE)  
Bits 7:4: Loopback type  
Bits 3:0: 0x2  
where loopback type is:  
0x0: No loopback  
0x1: Pad loopback  
0x2: Input loopback  
0x4: Facility loopback  
0x8: Equipment loopback  
and port addresses (bits 11:8) are:  
0xC: Enhanced SerDes macro for ports 0–3  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
20  
Functional Descriptions  
0xD: Enhanced SerDes macro for ports 4–7  
0xE: Enhanced SerDes macro for ports 8-11  
Note: Loopback configuration affects all four ports associated with a QSGMII. Individual port loopback within a  
QSGMII is not possible.  
4.12.6.2 Facility Loop  
The recovered and de-multiplexer deserializer data output is looped back to the serializer data input and  
replaces the data delivered by the digital core. This test loop provides the possibility to test the complete  
analog macro data path from outside including input buffer, clock and data recovery, serialization and  
output buffer. The data received by the input buffer must be transmitted by the output buffer after some  
delay.  
Additional configuration of the Enhanced SerDes macro is required for facility loopback mode. When  
entering facility loopback mode, the set = 1 option should be run; when exiting facility loopback mode,  
the set = 0 option should be run. The following software script must be executed after running the  
command to enable/disable facility loopback mode.  
PhyWrite(PhyBaseAddr, 31, 0x0010);  
PhyWrite(PhyBaseAddr, 18, 0x8s13);  
// where "s" is the physical address of the SerDes macro  
PhyWrite(PhyBaseAddr, 18, 0xd7d3);  
PhyWrite(PhyBaseAddr, 18, 0x8007);  
tmp1 = PhyRead(PhyBaseAddr, 18);  
tmp2 = tmp1 & 0x0ff0;  
if (set)  
tmp3 = tmp2 | 0x0100;  
else  
tmp3 = tmp2 & 0x0ef0;  
tmp4 = tmp3 | 0x8006;  
PhyWrite(PhyBaseAddr, 18, tmp4);  
PhyWrite(PhyBaseAddr, 18, 0x9p40);  
// where "p" is the logical address of the SGMII or QSGMII interface  
PhyBaseAddr is the base address of the internal PHYs and is equal to 0, 12, 4, or 20 based on the value  
of the PHYADD4 and PHYADD3 pins. For more information, see Table 1, page 6.  
The value of s is 1–3 and corresponds to the physical address of the enhanced SerDes macro. The value  
of p is 0–2 and is the logical address of the QSGMII lane that corresponds to the enhanced SerDes  
macro with physical address s. For more information about address mapping, see Table 2, page 6.  
4.12.6.2.1 Equipment Loop  
The 1-bit data stream at the serializer output is looped back to the deserializer and replaces the received  
data stream from the input buffer. This test loop provides the possibility to verify the digital data path  
internally. The transmit data goes through the serialization, the clock and data recovery and  
deserialization before the data is fed back to the digital core.  
4.12.6.2.2 Input Loop  
The received 1-bit data stream of the input buffer is looped back asynchronously to the output buffer. This  
test loop provides the possibility to the test only the analog parts of the QSGMII interface because only  
the input and output buffer are part of this loop.  
4.12.6.2.3 Pad Loop  
The 1-bit data stream at the output buffer output is looped back to the input buffer input and added to the  
differential pad signal. Therefore, the input pad should not be driven when the output loop is activated.  
The test loop provides a means to test the complete QSGMII macro data path, including the input and  
output buffers.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
21  
Functional Descriptions  
4.12.7 VeriPHY Cable Diagnostics  
The VSC8522-02 includes a comprehensive suite of cable diagnostic functions that are available using  
SMI reads and writes. These functions enable a variety of cable operating conditions and status to be  
accessed and checked. The VeriPHY suite has the ability to identify the cable length and operating  
conditions and to isolate a variety of common faults that can occur on the Cat5 twisted pair cabling.  
Note: If a link is established on the twisted pair interface in the 1000BASE-T mode, VeriPHY can run without  
disrupting the link or disrupting any data transfer. However, if a link is established in 100BASE-TX or  
10BASE-T, VeriPHY causes the link to drop while the diagnostics are running. After diagnostics are  
finished, the link is re-established.  
The following diagnostic functions are part of the VeriPHY suite:  
Detecting coupling between cable pairs  
Detecting cable pair termination  
Determining cable length  
4.12.7.1 Coupling Between Cable Pairs  
Shorted wires, improper termination, or high crosstalk resulting from an incorrect wire map can cause  
error conditions, such as anomalous coupling between cable pairs. These conditions can prevent the  
device from establishing a link in any speed.  
4.12.7.2 Cable Pair Termination  
Proper termination of Cat5 cable requires a 100 differential impedance between the positive and  
negative cable terminals. IEEE 802.3 allows for a termination of 115 maximum and 85 minimum. If  
the termination falls outside of this range, it is reported by the VeriPHY diagnostics as an anomalous  
termination. The diagnostics can also determine the presence of an open or shorted cable pair.  
4.12.7.3 Cable Length  
When the Cat5 cable in an installation is properly terminated, VeriPHY reports the approximate cable  
length in meters.  
4.12.7.4 Mean Square Error Noise  
The average absolute error can be read out when either a 100BASE-TX or 1000BASE-T link is  
established. In the case of 1000BASE-T link, there are four average absolute error terms, one for each  
twisted-pair over which signal is received. Use the following script to read average absolute error for  
100BASE-TX:  
PhyWrite( <phy>, 31, 0x52b5 );  
PhyWrite( <phy>, 16, 0xa3c0 );  
PhyRead( <phy>, 16 );  
tmp17 = PhyRead( <phy>, 17 );  
tmp18 = PhyRead( <phy>, 18 );  
mse = (tmp18 << 4) | (tmp17 >> 12);  
PhyWrite( <phy>, 31, 0 );  
The returned average absolute error is in units of 1/2048 and can be found in the mse variable.  
PhyWrite( <phy>, 31, 0x52b5 );  
PhyWrite( <phy>, 16, 0xa3c0 );  
PhyRead( <phy>, 16 );  
tmp17 = PhyRead( <phy>, 17 );  
tmp18 = PhyRead( <phy>, 18 );  
mseA = (tmp18 << 4) | (tmp17 >> 12);  
mseB = tmp17 & 0x0fff;  
PhyWrite( <phy>, 16, 0xa3c2 );  
PhyRead( <phy>, 16 );  
tmp17 = PhyRead( <phy>, 17 );  
tmp18 = PhyRead( <phy>, 18 );  
mseC = (tmp18 << 4) | (tmp17 >> 12);  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
22  
Functional Descriptions  
mseD = tmp17 & 0x0fff;  
PhyWrite( <phy>, 31, 0 );  
The returned average absolute error is in units of 1/2048 and can be found in the mseA, mseB, mseC,  
and mseD variables for each twisted pair.  
4.12.8 JTAG Boundary Scan  
The VSC8522-02 supports the test access port (TAP) and boundary scan architecture described in  
IEEE 1149.1. The device includes an IEEE 1149.1-compliant test interface, referred to as a JTAG TAP  
interface.  
The JTAG boundary scan logic on the VSC8522-02, accessed using its TAP interface, consists of a  
boundary scan register and other logic control blocks. The TAP controller includes all IEEE-required  
signals (TMS, TCK, TDI, and TDO), in addition to the optional asynchronous reset signal NTRST. The  
following illustration shows the TAP and boundary scan architecture.  
Figure 19 • Test Access Port and Boundary Scan Architecture  
Boundary Scan  
Register  
Device Identification  
Register  
Bypass Register  
TDO  
MUX,  
DFF  
Control  
Instruction Register,  
Instruction Decode  
Control  
TDI  
TMS  
Control  
Select  
Test Access Port  
Controller  
NTRST  
TCK  
TDO Enable  
After a TAP reset, the device identification register is serially connected between TDI and TDO by  
default. The TAP instruction register is loaded either from a shift register when a new instruction is shifted  
in, or, if there is no new instruction in the shift register, a default value of 6’b100100 (IDCODE) is loaded.  
Using this method, there is always a valid code in the instruction register, and the problem of toggling  
instruction bits during a shift is avoided. Unused codes are mapped to the BYPASS instruction.  
4.12.9 JTAG Instruction Codes  
The VSC8522-02 supports the following instruction codes:  
4.12.9.1 EXTEST  
Allows tests of the off-chip circuitry and board-level interconnections by sampling input pins and loading  
data onto output pins. Outputs are driven by the contents of the boundary-scan cells, which have to be  
updated with valid values, with the PRELOAD instruction, prior to the EXTEST instruction.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
23  
Functional Descriptions  
4.12.9.2 SAMPLE/PRELOAD  
Allows a snapshot of inputs and outputs during normal system operation to be taken and examined. It  
also allows data values to be loaded into the boundary-scan cells prior to the selection of other boundary-  
scan test instructions.  
4.12.9.3 IDCODE  
Provides the version number (bits 31:28), device family ID (bits 27:12), and the manufacturer identity  
(bits 11:1) to be serially read from the device.  
The following table provides information about the meaning of IDCODE binary values stored in the  
device JTAG registers.  
Table 6 •  
IDCODE JTAG Device Identification Register Descriptions  
Description Device Version Family ID  
Bit field 31–28 27–12  
Manufacturing Identity  
LSB  
11–1  
0
1
Binary value 0000  
1011 0000 0000 0001 000 0111 0100  
4.12.9.4 USERCODE  
Provides the version number (bits 31:28), part number (bits 27:12), and the manufacturer identity  
(bits 11:1) to be serially read from the device. The following table provides information about the meaning  
of USERCODE binary values stored in the device JTAG registers.  
Table 7 •  
USERCODE JTAG Device Identification Register Descriptions  
Description Device Version Model Number  
Bit field 31–28 27–12  
Binary value 0010  
Manufacturing Identity  
LSB  
11–1  
0
1
1000 0101 0010 0010 000 0111 0100  
4.12.9.5 CLAMP  
Allows the state of the signals driven from the component pins to be determined from the boundary scan  
register while the bypass register is selected as the serial path between TDI and TDO. While the CLAMP  
instruction is selected, the signals driven from the component pins do not change.  
4.12.9.6 HIGHZ  
Places the component in a state in which all of its system logic outputs are placed in a high-impedance  
state. In this state, an in-circuit test system can drive signals onto the connections normally driven by a  
component output without incurring a risk of damage to the component. This makes it possible to use a  
board where not all of the components are compatible with the IEEE 1149.1 standard.  
4.12.9.7 BYPASS  
The bypass register contains a single shift-register stage and is used to provide a minimum-length serial  
path (one TCK clock period) between TDI and TDO to bypass the device when no test operation is  
required.  
The following table provides information about the location and IEEE compliance of the JTAG instruction  
codes used in the VSC8522-02. Instructions not explicitly listed in the table are reserved. For more  
information about these IEEE specifications, visit the IEEE Web site at www.IEEE.org.  
Table 8 •  
JTAG Interface Instruction Codes  
Register  
Width  
Instruction  
Code  
Selected Register  
IEEE 1149.1 IEEE 1149.6  
EXTEST  
6'b000000 Boundary-Scan  
161  
Mandatory  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
24  
Functional Descriptions  
Table 8 •  
JTAG Interface Instruction Codes (continued)  
Register  
Width  
Instruction  
Code  
Selected Register  
IEEE 1149.1 IEEE 1149.6  
SAMPLE/PREL 6'b000001 Boundary-Scan  
OAD  
161  
Mandatory  
IDCODE  
USERCODE  
CLAMP  
6'b100100 Device Identification  
6'b100101 Device Identification  
6'b000010 Bypass Register  
6'b000101 Bypass Register  
6'b111111 Bypass Register  
32  
32  
1
Optional  
Optional  
Optional  
Optional  
Mandatory  
Mandatory  
HIGHZ  
1
BYPASS  
1
EXTEST_PULS 6'b000011 Boundary-Scan Register 161  
E
EXTEST_TRAI 6'b000100 Boundary-Scan Register 161  
N
Mandatory  
4.12.10 Boundary Scan Register Cell Order  
All inputs and outputs are observed in the boundary scan register cells. All outputs are additionally driven  
by the contents of boundary scan register cells. Bidirectional pins have all three related boundary scan  
register cells: input, output, and control.  
The complete boundary scan cell order is available as a BSDL file format on the Microsemi Web site at  
www.microsemi.com.  
4.12.11 JTAG Boundary Scan Interface  
The IEEE 1149.6 AC-JTAG solution integrated on all SerDes ports of the VSC8522-02 extends the  
capability of IEEE 1149.1 boundary scan for robust board-level testing. This interface is backward-  
compatible to the IEEE 1149.1 standard.  
4.13 Configuration  
The VSC8522-02 can be configured by setting internal memory registers using the management  
interface.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
25  
Registers  
5
Registers  
This section provides information about how to configure the VSC8522-02 using its internal memory  
registers and the management interface.  
The VSC8522-02 uses several different types of registers:  
IEEE Clause 22 device registers with addresses from 0 to 31  
Three pages of extended registers with addresses from 16E1–30E1, 16E2–30E2, and 16E3–30E3  
General-purpose registers with addresses from 0G to 30G  
IEEE Clause 45 devices registers accessible through the Clause 22 registers 13 and 14 to support  
IEEE 802.3az Energy Efficient Ethernet registers  
The following illustration shows the relationship between the device registers and their address spaces.  
Figure 20 • Register Space Diagram  
0
1
2
3
.
0G  
1G  
2G  
3G  
.
.
.
Clause 45  
Registers  
IEEE 802.3  
Standard  
.
Registers  
.
13  
14  
15  
.
.
15G  
General Purpose  
Registers  
16  
17  
18  
19  
.
.
.
16E1  
17E1  
18E1  
19E1  
.
.
.
16E2  
17E2  
18E2  
19E2  
.
.
.
16E3  
17E3  
18E3  
19E3  
.
.
.
16G  
17G  
18G  
19G  
.
.
.
Extended  
Registers 1  
Extended  
Registers 2  
Extended  
Registers 3  
Main Registers  
.
.
.
.
.
.
.
.
.
.
30  
30E1  
30E2  
30E3  
30G  
31  
0x0000  
0x0010  
0x0001  
0x0002  
0x0003  
Reserved Registers—For main registers 16–31, extended registers 16E1–30E1, 16E2–30E2,  
16E3–30E3, and general purpose registers 0G–30G, any bits marked as Reserved should be  
processed as read-only and their states as undefined.  
Reserved Bits—In writing to registers with reserved bits, use a read-modify-then-write technique,  
where the entire register is read but only the intended bits to be changed are modified. Reserved bits  
cannot be changed and their read state cannot be considered static or unchanging.  
5.1  
IEEE Standard and Main Registers  
In the VSC8522-02, the page space of the standard registers consists of the IEEE standard registers and  
the Microsemi standard registers. The following table lists the names of the registers associated with the  
addresses as dictated by the IEEE standard.  
Table 9 •  
IEEE 802.3 Standard Registers  
Address Name  
0
1
2
3
4
5
6
Mode Control  
Mode Status  
PHY Identifier 1  
PHY Identifier 2  
Autonegotiation Advertisement  
Autonegotiation Link Partner Ability  
Autonegotiation Expansion  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
26  
Registers  
Table 9 •  
IEEE 802.3 Standard Registers (continued)  
Address Name  
7
Autonegotiation Next-Page Transmit  
8
Autonegotiation Link Partner Next-Page Receive  
1000BASE-T Control  
9
10  
1000BASE-T Status  
11–12  
13  
Reserved  
Clause 45 access registers from IEEE 802.3  
Table 22-6 and 22.24.3.11-12 and Annex 22D  
14  
15  
Clause 45 access registers from IEEE 802.3  
Table 22-6 and 22.24.3.11-12 and Annex 22D  
1000BASE-T Status Extension 1  
The following table lists the names of the registers in the main page space of the device. These registers  
are accessible only when register address 31 is set to 0x0000.  
Table 10 • Main Registers  
Address Name  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
100BASE-TX Status Extension 1  
1000BASE-T Status Extension 2  
Bypass Control  
Error Counter 1  
Error Counter 2  
Error Counter 3  
Extended Control and Status  
Extended PHY Control 1  
Extended PHY Control 2  
Interrupt Mask  
Interrupt Status  
Reserved  
Auxiliary Control and Status  
LED Mode Select  
LED Behavior  
Extended Register Page Access  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
27  
Registers  
5.1.1  
Mode Control  
The device register at memory address 0 controls several aspects of VSC8522-02 functionality. The  
following table shows the available bit settings in this register and what they control.  
Table 11 • Mode Control, Address 0 (0x00)  
Bit  
Name  
Access Description  
R/W Self-clearing. Restores all serial  
Default  
15  
Software reset  
0
management interface (SMI) registers to  
default state, except for sticky and  
super-sticky bits.  
1: Reset asserted.  
0: Reset de-asserted. Wait [X] after setting  
this bit to initiate another SMI register  
access.  
14  
Loopback  
R/W  
1: Loopback enabled.  
0: Loopback disabled.  
When loop back is enabled, the device  
functions at the current speed setting and  
with the current duplex mode setting (bits 6,  
8, and 13 of this register).  
0
0
13  
12  
Forced speed selection R/W  
LSB  
Least significant bit. MSB is bit 6.  
00: 10 Mbps.  
01: 100 Mbps.  
10: 1000 Mbps.  
11: Reserved.  
Autonegotiation enable R/W  
1: Autonegotiation enabled.  
0: Autonegotiation disabled.  
1
0
11  
10  
Power-down  
Isolate  
R/W  
R/W  
1: Power-down enabled.  
1: Disable MAC interface outputs and ignore 0  
MAC interface inputs.  
9
8
Restart autonegotiation R/W  
Self-clearing bit.  
1: Restart autonegotiation on media  
interface.  
0
Duplex  
R/W  
R/W  
1: Full-duplex.  
0: Half-duplex.  
0
7
6
Collision test enable  
1: Collision test enabled.  
0
Forced speed selection R/W  
MSB  
Most significant bit. LSB is bit 13.  
00: 10 Mbps.  
10  
01: 100 Mbps.  
10: 1000 Mbps.  
11: Reserved.  
5:0  
Reserved  
RO  
Reserved.  
All zeros  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
28  
Registers  
5.1.2  
Mode Status  
The register at address 1 in the device main registers space allows you to read the currently enabled  
mode setting. The following table shows possible readouts of this register.  
Table 12 • Mode Status, Address 1 (0x01)  
Bit Name  
Access Description  
Default  
15 100BASE-T4 capability  
RO  
1: 100BASE-T4 capable.  
0
1
1
1
1
0
0
1
14 100BASE-TX FDX capability RO  
13 100BASE-TX HDX capability RO  
1: 100BASE-TX FDX capable.  
1: 100BASE-TX HDX capable.  
1: 10BASE-T FDX capable.  
1: 10BASE-T HDX capable.  
1: 100BASE-T2 FDX capable.  
1: 100BASE-T2 HDX capable.  
12 10BASE-T FDX capability  
11 10BASE-T HDX capability  
RO  
RO  
10 100BASE-T2 FDX capability RO  
9
8
100BASE-T2 HDX capability RO  
Extended status enable  
RO  
1: Extended status information present in  
register 15.  
7
6
Reserved  
RO  
RO  
Note: Reserved.  
1
1
Preamble suppression  
capability  
1: MF preamble can be suppressed.  
0: MF required.  
5
4
Autonegotiation complete  
Remote fault  
RO  
RO  
1: Autonegotiation complete.  
0
0
Latches high.  
1: Far-end fault detected.  
3
2
Autonegotiation capability  
Link status  
RO  
RO  
1: Autonegotiation capable.  
1
0
Latches low.  
1: Link is up.  
1
0
Jabber detect  
RO  
RO  
Latches high.  
1: Jabber condition detected.  
0
1
Extended capability  
1: Extended register capable.  
5.1.3  
Device Identification  
All 16 bits in both register 2 and register 3 in the VSC8522-02 are used to provide information associated  
with aspects of the device identification. The following tables list the expected readouts.  
Table 13 • Identifier 1, Address 2 (0x02)  
Bit Name  
Access Description  
RO OUI most significant bits (3:18)  
Default  
15:0 Organizationally unique identifier  
(OUI)  
0×0007  
Table 14 • Identifier 2, Address 3 (0x03)  
Bit  
Name  
Access Description  
Default  
15:10 OUI  
RO  
RO  
OUI least significant bits (19:24)  
VSC8522-02 (0x2f)  
000001  
101111  
9:4  
3:0  
Microsemi model  
number  
Device revision number RO  
0011  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
29  
Registers  
5.1.4  
Autonegotiation Advertisement  
The bits in address 4 in the main registers space control the VSC8522-02 ability to notify other devices of  
the status of its autonegotiation feature. The following table shows the available settings and readouts.  
Table 15 • Device Autonegotiation Advertisement, Address 4 (0x04)  
Bit Name  
Access Description  
Default  
15 Next page transmission request R/W  
1: Request enabled  
0
14 Reserved  
RO  
Reserved  
0
13 Transmit remote fault  
12 Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1: Enabled  
0
Reserved  
0
11 Advertise asymmetric pause  
10 Advertise symmetric pause  
1: Advertises asymmetric pause  
1: Advertises symmetric pause  
1: Advertises 100BASE-T4  
1: Advertise 100BASE-TX FDX  
1: Advertises 100BASE-TX HDX  
1: Advertises 10BASE-T FDX  
1: Advertises 10BASE-T HDX  
0
0
9
8
7
6
5
Advertise100BASE-T4  
0
Advertise100BASE-TX FDX  
Advertise100BASE-TX HDX  
Advertise10BASE-T FDX  
Advertise10BASE-T HDX  
1
1
1
1
4:0 Advertise selector  
00001  
5.1.5  
Link Partner Autonegotiation Capability  
The bits in main register 5 can be used to determine if the Cat5 link partner (LP) used with the  
VSC8522-02 is compatible with the autonegotiation functionality.  
Table 16 • Autonegotiation Link Partner Ability, Address 5 (0x05)  
Bit Name  
Access Description  
Default  
15 LP next page transmission request RO  
1: Requested  
0
14 LP acknowledge  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1: Acknowledge  
0
13 LP remote fault  
1: Remote fault  
0
12 Reserved  
Reserved  
0
11 LP advertise asymmetric pause  
10 LP advertise symmetric pause  
1: Capable of asymmetric pause  
1: Capable of symmetric pause  
1: Capable of 100BASE-T4  
1: Capable of 100BASE-TX FDX  
1: Capable of 100BASE-TX HDX  
1: Capable of 10BASE-T FDX  
1: Capable of 10BASE-T HDX  
0
0
9
8
7
6
5
LP advertise 100BASE-T4  
0
LP advertise 100BASE-TX FDX  
LP advertise 100BASE-TX HDX  
LP advertise 10BASE-T FDX  
LP advertise 10BASE-T HDX  
0
0
0
0
4:0 LP advertise selector  
00000  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
30  
Registers  
5.1.6  
Autonegotiation Expansion  
The bits in main register 6 work together with those in register 5 to indicate the status of the LP  
autonegotiation functioning. The following table shows the available settings and readouts.  
Table 17 • Autonegotiation Expansion, Address 6 (0x06)  
Bit  
Name  
Access Description  
Default  
All zeros  
0
15:5 Reserved  
RO  
RO  
Reserved.  
4
Parallel detection fault  
LP next page capable  
This bit latches high.  
1: Parallel detection fault.  
3
2
1
RO  
1: LP is next page capable.  
0
1
0
Local PHY next page capable RO  
Page received RO  
1: Local PHY is next page capable.  
This bit latches low.  
1: New page is received.  
0
LP is autonegotiation capable RO  
1: LP is capable of autonegotiation.  
0
5.1.7  
Transmit Autonegotiation Next Page  
The settings in register 7 in the main registers space provide information about the number of pages in  
an autonegotiation sequence. The following table shows the settings available.  
Table 18 • Autonegotiation Next Page Transmit, Address 7 (0x07)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
Next page  
Reserved  
Message page  
R/W  
RO  
1: More pages follow  
0
0
1
Reserved  
R/W  
1: Message page  
0: Unformatted page  
12  
11  
Acknowledge 2  
Toggle  
R/W  
RO  
1: Complies with request  
0: Cannot comply with request  
0
1: Previous transmitted LCW = 0  
0: Previous transmitted LCW = 1  
0
10:0 Message/unformatted code R/W  
00000000001  
5.1.8  
Autonegotiation Link Partner Next Page Receive  
The bits in register 8 of the main register space work together with register 7 to determine certain aspects  
of the LP autonegotiation. The following table shows the possible readouts.  
Table 19 • Autonegotiation LP Next Page Receive, Address 8 (0x08)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
LP next page  
Acknowledge  
LP message page  
RO  
RO  
RO  
1: More pages follow  
0
0
0
1: LP acknowledge  
1: Message page  
0: Unformatted page  
12  
11  
LP acknowledge 2  
LP toggle  
RO  
RO  
1: LP complies with request  
0
0
1: Previous transmitted LCW = 0  
0: Previous transmitted LCW = 1  
10:0 LP message/unformatted code RO  
All zeros  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
31  
Registers  
5.1.9  
1000BASE-T Control  
The VSC8522-02’s 1000BASE-T functionality is controlled by the bits in register 9 of the main register  
space. The following table shows the settings and readouts available.  
Table 20 • 1000BASE-T Control, Address 9 (0x09)  
Bit Name Access Description  
Default  
15:13 Transmitter test  
mode  
R/W  
000: Normal.  
000  
001: Mode 1: Transmit waveform test.  
010: Mode 2: Transmit jitter test as master.  
011: Mode 3: Transmit jitter test as slave.  
100: Mode 4: Transmitter distortion test.  
101–111: Reserved  
12  
11  
Master/slavemanual R/W  
configuration  
1: Master/slave manual configuration enabled.  
0
0
Master/slave value R/W  
This register is only valid when bit 9.12 is set to  
1.  
1: Configure PHY as master during negotiation.  
0: Configure PHY as slave during negotiation.  
10  
9
Port type  
R/W  
R/W  
1: Multi-port device.  
0: Single-port device.  
1
1000BASE-T FDX  
capability  
1: PHY is 1000BASE-T FDX capable.  
1: PHY is 1000BASE-T HDX capable.  
Reserved.  
1
8
1000BASE-T HDX R/W  
capability  
1
7:0  
Reserved  
R/W  
0x00  
Note: Transmitter test mode (bits 15:13) operates in the manner described in IEEE 802.3 section 40.6.1.1.2.  
When using any of the transmitter test modes, the automatic media-sense feature must be disabled. For  
more information, see Extended PHY Control 2, page 38.  
5.1.10 1000BASE-T Status  
The bits in register 10 of the main register space can be read to obtain the status of the 1000BASE-T  
communications enabled in the device. The following table shows the readouts.  
Table 21 • 1000BASE-T Status, Address 10 (0x0A)  
Bit Name  
Access Description  
Default  
15 Master/slave  
RO  
RO  
This bit latches high.  
1: Master/slave configuration fault detected.  
0: No master/slave configuration fault detected.  
0
configuration fault  
14 Master/slave  
configuration  
resolution  
1: Local PHY configuration resolved to master.  
0: Local PHY configuration resolved to slave.  
1
13 Local receiver status RO  
1: Local receiver is operating normally.  
1: Remote receiver OK.  
0
0
12 Remote receiver  
status  
RO  
RO  
RO  
11 LP 1000BASE-T  
FDX capability  
1: LP 1000BASE-T FDX capable.  
1: LP 1000BASE-T HDX capable.  
0
0
10 LP 1000BASE-T  
HDX capability  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
32  
Registers  
Table 21 • 1000BASE-T Status, Address 10 (0x0A) (continued)  
Bit Name  
Access Description  
Default  
00  
9:8 Reserved  
7:0 Idle error count  
RO  
RO  
Reserved.  
Self-clearing register.  
0x00  
5.1.11 MMD Access Control Register  
The bits in register 13 of the main register space are a window to the EEE registers as defined in  
IEEE 802.3az Clause 45.  
Table 22 • MMD EEE Access, Address 13 (0x0D)  
Bit  
Name  
Access Description  
15:14 Function R/W  
00: Address  
01: Data, no post increment  
10: Data, post increment for read and write  
11: Data, post increment for write only  
13:5  
4:0  
Reserved R/W  
DVAD R/W  
Reserved  
Device address as defined in IEEE 802.3az table 45-1  
5.1.12 MMD Address or Data Register  
The bits in register 14 of the main register space are a window to the EEE registers as defined in  
IEEE 802.3az Clause 45.  
Table 23 • MMD Address or Data Register, Address 14 (0x0E)  
Bit  
Name  
Access Description  
15:0 Register Address/Data R/W  
If register 13.15:14 = 2'b00, address of register of the  
device that is specified by 13.4:0. Otherwise, the data to  
be written to or read from the register.  
5.1.13 1000BASE-T Status Extension 1  
Register 15 provides additional information about the operation of the device 1000BASE-T  
communications. The following table shows the readouts available.  
Table 24 • 1000BASE-T Status Extension 1, Address 15 (0x0F)  
Bit  
15  
14  
13  
12  
Name  
Access Description  
Default  
1000BASE-X FDX capability RO  
1000BASE-X HDX capability RO  
1000BASE-T FDX capability RO  
1000BASE-T HDX capability RO  
1: PHY is 1000BASE-X FDX capable  
1: PHY is 1000BASE-X HDX capable  
1: PHY is 1000BASE-T FDX capable  
1: PHY is 1000BASE-T HDX capable  
Reserved  
0
0
1
1
11:0 Reserved  
RO  
0x000  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
33  
Registers  
5.1.14 100BASE-TX Status Extension  
Register 16 in the main registers page space of the VSC8522-02 provides additional information about  
the status of the device’s 100BASE-TX operation.  
Table 25 • 100BASE-TX Status Extension, Address 16 (0x10)  
Bit Name  
Access Description  
Default  
15 100BASE-TX Descrambler  
14 100BASE-TX lock error  
RO  
RO  
1: Descrambler locked.  
0
0
Self-clearing bit.  
1: Lock error detected.  
13 100BASE-TX disconnect state  
RO  
Self-clearing bit.  
0
1: PHY 100BASE-TX link disconnect  
detected.  
12 100BASE-TX current link status RO  
1: PHY 100BASE-TX link active.  
0
0
11 100BASE-TX receive error  
RO  
RO  
RO  
Self-clearing bit.  
1: Receive error detected.  
10 100BASE-TX transmit error  
Self-clearing bit.  
1: Transmit error detected.  
0
0
9
8
100BASE-TX SSD error  
100BASE-TX ESD error  
Self-clearing bit.  
1: Start-of-stream delimiter error  
detected.  
RO  
RO  
Self-clearing bit.  
1: End-of-stream delimiter error  
detected.  
0
7:0 Reserved  
Reserved  
5.1.15 1000BASE-T Status Extension 2  
The second status extension register is at address 17 in the device main registers space. It provides  
information about another set of parameters associated with 1000BASE-T communications. For  
information about the first status extension register, see Table 24, page 33.  
Table 26 • 1000BASE-T Status Extension 2, Address 17 (0x11)  
Bit Name  
Access Description  
Default  
15 1000BASE-T descrambler  
14 1000BASE-T lock error  
RO  
RO  
1: Descrambler locked.  
0
0
Self-clearing bit.  
1: Lock error detected.  
13 1000BASE-T disconnect state  
RO  
Self-clearing bit.  
0
1: PHY 1000BASE-T link disconnect  
detected.  
12 1000BASE-T current link status RO  
1: PHY 1000BASE-T link active.  
0
0
11 1000BASE-T receive error  
RO  
RO  
RO  
Self-clearing bit.  
1: Receive error detected.  
10 1000BASE-T transmit error  
Self-clearing bit.  
1: Transmit error detected.  
0
0
9
1000BASE-T SSD error  
Self-clearing bit.  
1: Start-of-stream delimiter error  
detected.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
34  
Registers  
Table 26 • 1000BASE-T Status Extension 2, Address 17 (0x11) (continued)  
Bit Name Access Description  
Default  
8
1000BASE-T ESD error  
RO  
Self-clearing bit.  
0
1: End-of-stream delimiter error  
detected.  
7
6
5
1000BASE-T carrier extension  
error  
RO  
RO  
Self-clearing bit.  
1: Carrier extension error detected.  
0
0
0
Non-compliant BCM5400  
detected  
1: Non-compliant BCM5400 link  
partner detected.  
MDI crossover error  
RO  
RO  
1: MDI crossover error was detected.  
Reserved  
4:0 Reserved  
5.1.16 Bypass Control  
The bits in this register control aspects of functionality in effect when the device is disabled for the  
purpose of traffic bypass. The following table shows the settings available.  
Table 27 • Bypass Control, Address 18 (0x12)  
Bit Name  
Access Description  
Default  
15 Transmit disable  
14 4B5B encoder/decoder  
13 Scrambler  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
1: PHY transmitter disabled.  
0
0
0
0
0
0
0
1: Bypass 4B/5B encoder/decoder.  
1: Bypass scrambler.  
12 De-scrambler  
11 PCS receive  
10 PCS transmit  
1: Bypass de-scrambler.  
1: Bypass PCS receiver.  
1: Bypass PSC transmit.  
1: Bypass Link Fail Inhibit (LFI) timer.  
Reserved.  
9
8
7
LFI timer  
Reserved  
HP Auto-MDIX at forced  
10/100  
R/W  
Sticky bit.  
1
0
0
1: Disable HP Auto-MDIX at forced 10/100  
speeds.  
6
5
Non-compliant BCM5400 R/W  
detect disable  
Sticky bit.  
1: Disable non-compliant BCM5400  
detection.  
Disable pair swap  
correction (HP Auto-MDIX  
when autonegotiation  
enabled)  
R/W  
Sticky bit.  
1: Disable the automatic pair swap correction.  
4
3
Disable polarity correction R/W  
Sticky bit.  
0
1
1: Disable polarity inversion correction on  
each subchannel.  
Parallel detect control  
R/W  
Sticky bit.  
1: Do not ignore advertised ability.  
0: Ignore advertised ability.  
2
1
Pulse shaping filter  
R/W  
R/W  
1: Disable pulse shaping filter  
0
0
Disable automatic  
1000BASE-T next page  
exchange  
Sticky bit.  
1: Disable automatic 1000BASE-T next page  
exchanges.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
35  
Registers  
Table 27 • Bypass Control, Address 18 (0x12) (continued)  
Bit Name  
Reserved  
Access Description  
RO Reserved.  
Default  
0
Note: If bit 18.1 is set to 1 in this register, automatic exchange of next pages is disabled, and control is returned  
to the user through the SMI after the base page is exchanged. The user then must send the correct  
sequence of next pages to the link partner, determine the common capabilities, and force the device into  
the correct configuration following the successful exchange of pages.  
5.1.17 Error Counter 1  
The bits in register 19 provide an error counter. The following table shows the settings available.  
Table 28 • Extended Control and Status, Address 19 (0x13)  
Bit  
15:8 Reserved  
7:0 100/1000BASE-TX  
receive error counter  
Name  
Access Description  
Default  
RO  
RO  
Reserved.  
8-bit counter that saturates when it reaches  
255. These bits are self-clearing when read.  
0x00  
5.1.18 Error Counter 2  
The bits in register 20 provide an error counter. The following table shows the settings available.  
Table 29 • Extended Control and Status, Address 20 (0x14)  
Bit  
15:8 Reserved  
7:0 100/1000BASE-TX  
false carrier counter  
Name  
Access Description  
Default  
RO  
RO  
Reserved.  
8-bit counter that saturates when it reaches  
255. These bits are self-clearing when read.  
0x00  
5.1.19 Error Counter 3  
The bits in register 21 provide an error counter. The following table shows the settings available.  
Table 30 • Extended Control and Status, Address 21 (0x15)  
Bit  
15:8 Reserved  
7:0 Copper media link  
disconnect counter  
Name  
Access Description  
Default  
RO  
RO  
Reserved.  
8-bit counter that saturates when it reaches 255. 0x00  
These bits are self-clearing when read.  
5.1.20 Extended Control and Status  
The bits in register 22 provide additional device control and readouts. The following table shows the  
settings available.  
Table 31 • Extended Control and Status, Address 22 (0x16)  
Bit  
Name  
Access Description  
Default  
15  
Force 10BASE-T link high R/W  
Sticky bit.  
0
1: Bypass link integrity test.  
0: Enable link integrity test.  
14  
Jabber detect disable  
R/W  
Sticky bit.  
0
1: Disable jabber detect.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
36  
Registers  
Table 31 • Extended Control and Status, Address 22 (0x16) (continued)  
Bit  
Name  
Access Description  
Default  
13  
Disable 10BASE-T echo  
R/W  
Sticky bit.  
1
1: Disable 10BASE-T echo.  
12  
Disable SQE mode  
R/W  
Sticky bit.  
1
1: Disable SQE mode.  
11:10 10BASE-T squelch control R/W  
Sticky bit.  
00  
00: Normal squelch.  
01: Low squelch.  
10: High squelch.  
11: Reserved.  
9
8
7
Sticky reset enable  
EOF Error  
R/W  
RO  
Super-sticky bit.  
1: Enabled.  
1
0
0
0
This bit is self-clearing.  
1: EOF error detected.  
10BASE-T disconnect state RO  
This bit is self-clearing.  
1: 10BASE-T link disconnect detected.  
6
10BASE-T link status  
Reserved  
RO  
RO  
1: 10BASE-T link active.  
Reserved.  
5:1  
0
SMI broadcast write  
R/W  
Sticky bit.  
0
1: Enabled.  
The following information applies to the extended control and status bits:  
When bit 22.15 is set, the link integrity state machine is bypassed and the PHY is forced into a link  
pass status.  
When bits 22.11:10 are set to 00, the squelch threshold levels are based on the IEEE standard for  
10BASE-T. When set to 01, the squelch level is decreased, which can improve the bit error rate  
performance on long loops. When set to 10, the squelch level is increased and can improve the bit  
error rate in high-noise environments.  
When bit 22.9 is set, all sticky register bits retain their values during a software reset. Clearing this  
bit causes all sticky register bits to change to their default values upon software reset. Super-sticky  
bits retain their values upon software reset regardless of the setting of bit 22.9.  
When bit 22.0 is set, if a write to any PHY register (registers 0–31, including extended registers), the  
same write is broadcast to all PHYs. For example, if bit 22.0 is set to 1 and a write to PHY0 is  
executed (register 0 is set to 0x1040), all PHYs’ register 0s are set to 0x1040. Disabling this bit  
restores normal PHY write operation. Reads are still possible when this bit is set, but the value that  
is read corresponds only to the particular PHY being addressed.  
5.2  
Extended PHY Control 1  
The following table shows the settings available.  
Table 32 • Extended PHY Control 1, Address 23 (0x17)  
Bit  
Name  
Access Description  
Default  
15:13 Reserved  
RO  
R/W  
RO  
Reserved.  
Reserved.  
Reserved.  
1: Enabled.  
110  
0
12  
11:4  
3
Reserved  
Reserved  
0
Far-endloopback R/W  
mode  
0
2:0  
Reserved  
RO  
Reserved.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
37  
Registers  
5.2.1  
Extended PHY Control 2  
The second set of extended controls is located in register 24 in the main register space for the device.  
The following table shows the settings and readouts available.  
Table 33 • Extended PHY Control 2, Address 24 (0x18)  
Bit Name Access Description  
Default  
15:13 100BASE-TX edge rate R/W  
control  
Sticky bit.  
000  
011: +5 Edge rate (slowest).  
010: +4 Edge rate.  
001: +3 Edge rate.  
000: +2 Edge rate.  
111: +1 Edge rate.  
110: Default edge rate.  
101: –1 Edge rate.  
100: –2 Edge rate (fastest).  
12  
PICMG 2.16 reduced  
power mode  
R/W  
Sticky bit.  
1: Enabled.  
0
11:6  
5:4  
Reserved  
RO  
Reserved.  
Jumbo packet mode  
R/W  
Sticky bit.  
00  
00: Normal IEEE 1.5 kB packet length.  
01: 9 kB jumbo packet length (12 kB with  
60 ppm or better reference clock).  
10: 12 kB jumbo packet length (16 kB with  
70 ppm or better reference clock).  
11: Reserved.  
3:1  
0
Reserved  
RO  
Reserved.  
1000BASE-Tconnector R/W  
loopback  
1: Enabled.  
0
Note: When bits 5:4 are set to jumbo packet mode, the default maximum packet values are based on 100 ppm  
driven reference clock to the device. Controlling the ppm offset between the MAC and the PHY as  
specified in the bit description results in a higher jumbo packet length.  
5.2.2  
Interrupt Mask  
These bits control the device interrupt mask. The following table shows the settings available.  
Table 34 • Interrupt Mask, Address 25 (0x19)  
Bit Name  
Access Description  
Default  
15 MDINT interrupt status enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Sticky bit.  
1: Enabled.  
0
14 Speed state change mask  
13 Link state change mask  
12 FDX state change mask  
11 Autonegotiation error mask  
10 Autonegotiation complete mask  
Sticky bit.  
1: Enabled.  
0
0
0
0
0
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
38  
Registers  
Table 34 • Interrupt Mask, Address 25 (0x19) (continued)  
Bit Name Access Description  
Default  
9
Inline powered device (PoE) detect mask R/W  
Sticky bit.  
0
1: Enabled.  
8
Symbol error interrupt mask  
R/W  
Sticky bit.  
0
1: Enabled.  
7
6
Reserved  
RO  
Reserved.  
0
0
TX FIFO over/underflow interrupt mask  
R/W  
Sticky bit.  
1: Enabled.  
5
4
3
2
1
0
RX FIFO over/underflow interrupt mask  
AMS media changed mask  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Sticky bit.  
1: Enabled.  
0
0
0
0
0
0
Sticky bit.  
1: Enabled.  
False-carrier interrupt mask  
Sticky bit.  
1: Enabled.  
Link speed downshift detect mask  
Master/Slave resolution error mask  
RX_ER interrupt mask  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
Sticky bit.  
1: Enabled.  
Note: When bit 25.15 is set, the MDINT pin is enabled. When enabled, the state of this pin reflects the state of  
bit 26.15. Clearing this bit only inhibits the MDINT pin from being asserted. Also, before enabling this bit,  
read register 26 to clear any previously inactive interrupts pending that will cause bit 25.15 to be set.  
5.2.3  
Interrupt Status  
The status of interrupts already written to the device are available for reading from register 26 in the main  
registers space. The following table shows the expected readouts.  
Table 35 • Interrupt Status, Address 26 (0x1A)  
Bit Name  
Access Description  
Default  
15 Interrupt status  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Self-clearing bit.  
1: Interrupt pending.  
0
14 Speed state change status  
13 Link state change status  
12 FDX state change status  
11 Autonegotiation error status  
10 Autonegotiation complete status  
Self-clearing bit.  
1: Interrupt pending.  
0
0
0
0
0
0
0
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
9
8
Inline powered device detect status  
Symbol error status  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
39  
Registers  
Table 35 • Interrupt Status, Address 26 (0x1A) (continued)  
Bit Name Access Description  
Default  
7
6
5
4
3
2
1
0
Fast link failure detect status  
RO  
TX FIFO over/underflow detect status RO  
RX FIFO over/underflow detect status RO  
Self-clearing bit.  
1: Interrupt pending.  
0
Self-clearing bit.  
1: Interrupt pending.  
0
0
0
0
0
0
0
Self-clearing bit.  
1: Interrupt pending.  
AMS media changed mask  
RO  
RO  
RO  
RO  
RO  
Self-clearing bit.  
1: Interrupt pending.  
False-carrier interrupt status  
Link speed downshift detect status  
Master/Slave resolution error status  
RX_ER interrupt status  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
Self-clearing bit.  
1: Interrupt pending.  
The following information applies to the interrupt status bits:  
All set bits in this register are cleared after being read (self-clearing). If bit 26.15 is set, the cause of  
the interrupt can be read by reading bits 26.14:0.  
For bits 26.14 and 26.12, bit 0.12 must be set for this interrupt to assert.  
For bit 26.2, bits 4.8:5 must be set for this interrupt to assert.  
For bit 26.0, this interrupt will not occur when RX_ER is used for carrier-extension decoding of a link  
partner’s data transmission.  
5.2.4  
Device Auxiliary Control and Status  
Register 28 provides control and status information for several device functions not controlled or  
monitored by other device registers. The following table shows the settings available and the expected  
readouts.  
Table 36 • Auxiliary Control and Status, Address 28 (0x1C)  
Bit Name  
Access Description  
Default  
15 Autonegotiation complete RO  
Duplicate of bit 1.5.  
0
0
0
14 Autonegotiation disabled  
RO  
RO  
Inverted duplicate of bit 0.12.  
13 HP Auto-MDIX crossover  
indication  
1: HP Auto-MDIX crossover performed  
internally.  
12 CD pair swap  
RO  
RO  
RO  
RO  
RO  
1: CD pairs are swapped.  
1: Polarity swap on pair A.  
1: Polarity swap on pair B.  
1: Polarity swap on pair C.  
1: Polarity swap on pair D.  
0
0
0
0
0
11 A polarity inversion  
10 B polarity inversion  
9
8
C polarity inversion  
D polarity inversion  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
40  
Registers  
Table 36 • Auxiliary Control and Status, Address 28 (0x1C) (continued)  
Bit Name Access Description  
Default  
7
ActiPHY link status time-out R/W  
control [1]  
Sticky bit. Bits 7 and 2 are part of the  
ActiPHY Link Status time-out control. Bit 7 is  
the MSB.  
0
00: 1 second.  
01: 2 seconds.  
10: 3 seconds.  
11: 4 seconds.  
6
5
ActiPHY mode enable  
FDX status  
R/W  
RO  
RO  
Sticky bit.  
1: Enabled.  
0
1: Full-duplex.  
0: Half-duplex.  
00  
0
4:3 Speed status  
00: Speed is 10BASE-T.  
01: Speed is 100BASE-TX.  
10: Speed is 1000BASE-T.  
11: Reserved.  
2
ActiPHY link status time-out R/W  
control [0]  
Sticky bit. Bits 7 and 2 are part of the  
ActiPHY Link Status time-out control. Bit 7 is  
the MSB.  
1
00: 1 second.  
01: 2 seconds.  
10: 3 seconds.  
11: 4 seconds.  
1:0 Media mode status  
RO  
00: No media selected.  
01: Reserved.  
00  
10: SerDes media selected.  
11: Reserved.  
5.2.5  
LED Mode Select  
The device LED outputs are controlled using the bits in register 29 of the main register space. The  
following table shows the information needed to access the functionality of each of the outputs.  
Table 37 • LED Mode Select, Address 29 (0x1D)  
Bit  
Name  
Access Description  
Default  
15:12 LED3 mode select R/W  
Sticky bit. Select from LED modes 0–15. 1000  
11:8  
7:4  
LED2 mode select R/W  
LED1 mode select R/W  
LED0 mode select R/W  
Sticky bit. Select from LED modes 0–15. 0000  
Sticky bit. Select from LED modes 0–15. 0010  
Sticky bit. Select from LED modes 0–15. 0001  
3:0  
5.2.6  
LED Behavior  
The bits in register 30 control and enable you to read the status of the pulse or blink rate of the device  
LEDs. The following table shows the settings you can write to the register or read from the register.  
Table 38 • LED Behavior, Address 30 (0x1E)  
Bit  
Name  
Access Description  
RO Reserved.  
Default  
15:13 Reserved  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
41  
Registers  
Table 38 • LED Behavior, Address 30 (0x1E) (continued)  
Bit  
Name  
Access Description  
Default  
12  
LED pulsing enable R/W  
Sticky bit.  
0
0: Normal operation.  
1: LEDs pulse with a 5 kHz, programmable duty  
cycle when active.  
11:10 LED blink/pulse-  
stretch rate  
R/W  
Sticky bit.  
01  
00: 2.5 Hz blink rate/400 ms pulse-stretch.  
01: 5 Hz blink rate/200 ms pulse-stretch.  
10: 10 Hz blink rate/100 ms pulse-stretch.  
11: 20 Hz blink rate/50 ms pulse-stretch. The  
blink rate selection for PHY0 globally sets the  
rate used for all LED pins on all PHY ports.  
9:0  
Reserved  
RO  
Reserved.  
Note: Bits 30.11:10 are active only in port 0 and affect the behavior of LEDs for all the ports.  
5.2.7  
Extended Page Access  
To provide functionality beyond the IEEE 802.3-specified registers and main device registers, the  
VSC8522-02 includes an extended set of registers that provide an additional 15 register spaces.  
The register at address 31 controls the access to the extended registers for the VSC8522-02. Accessing  
the GPIO page register space is similar to accessing the extended page registers. The following table  
shows the settings available.  
Table 39 • Extended/GPIO Page Access, Address 31 (0x1F)  
Bit  
Name  
Access Description  
Default  
15:0 Extended/GPIO page R/W  
register access  
0x0000: Register 16–30 accesses main register 0x0000  
space. Writing 0x0000 to register 31 restores the  
main register access.  
0x0001: Register 16–30 accesses extended  
register space 1  
0x0002: Register 16–30 accesses extended  
register space 2  
0x0003: Register 16–30 accesses extended  
register space 3  
0x0010: Register 0–30 accesses GPIO register  
space  
5.3  
Extended Page 1 Registers  
To access the extended page 1 registers (16E1–30E1), enable extended register access by writing  
0x0001 to register 31. Writing 0x0000 to register 31 restores the main register access.  
When extended page 1 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E1–30E1 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Table 40 • Extended Registers Page 1 Space  
Address  
Name  
16E1–17E1 Reserved  
18E1  
19E1  
Cu Media CRC Good Counter  
Extended Mode Control (LED blink control and MDI control)  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
42  
Registers  
Table 40 • Extended Registers Page 1 Space (continued)  
Address  
Name  
20E1  
Extended PHY Control 3 (ActiPHY)  
21E1–22E1 Reserved  
23E1  
24E1  
25E1  
26E1  
Extended PHY Control 4 (PoE and CRC error counter)  
VeriPHY 1  
VeriPHY 2  
VeriPHY 3  
27E1–28E1 Reserved  
29E1  
30E1  
Ethernet Packet Generator (EPG) Control 1  
EPG Control 2  
5.3.1  
Cu Media CRC Good Counter  
Register 18E1 makes it possible to read the contents of the CRC good counter for packets that are  
received on the Cu media interface; the number of CRC routines that have executed successfully. The  
following table shows the expected readouts.  
Table 41 • Cu Media CRC Good Counter, Address 18E1 (0x12)  
Bit  
Name  
Access Description  
Default  
15  
Packet since last read  
RO  
Self-clearing bit.  
0
1: Packet received since last read.  
14  
Reserved  
RO  
RO  
Reserved.  
13:0 Cu Media CRC good counter  
contents  
Self-clearing counter containing the 0x0000  
number of packets with valid CRCs  
modulo 10,000. This counter does  
not saturate and will roll over to 0 on  
the next good packet received after  
9,999.  
5.3.2  
Extended Mode Control  
Register 19E1 controls the extended LED and other chip modes. The following table shows the settings  
available.  
Table 42 • Extended Mode Control, Address 19E1 (0x13)  
Bit  
Name  
Access Description  
Default  
15:12 Reserved  
RO  
Reserved.  
0
0
11  
LED Reset Blink  
R/W  
1: Blink LEDs after COMA_MODE is  
deasserted.  
Suppress  
0: Suppress LED blink after COMA_MODE  
is deasserted.  
10:4  
3:2  
Reserved  
RO  
Reserved  
0
Force MDI crossover  
R/W  
00: Normal HP Auto-MDIX operation.  
01: Reserved.  
00  
10: Copper media forced to MDI.  
11: Copper media forced MDI-X.  
1:0  
Reserved  
RO  
Reserved  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
43  
Registers  
5.3.3  
ActiPHY Control  
Register 20E1 controls the device ActiPHY sleep timer, its wake-up timer, the frequency of the CLKOUT  
signal, and its link speed downshifting feature. The following table shows the settings available.  
Table 43 • Extended PHY Control 3, Address 20E1 (0x14)  
Bit  
Name  
Access Description  
Default  
15  
Disable carrier  
extension  
R/W  
1: Disable carrier extension in SGMII-  
1000BASE-T copper links.  
1
14:13 ActiPHY sleep timer  
R/W  
Sticky bit.  
01  
00: 1 second.  
01: 2 seconds.  
10: 3 seconds.  
11: 4 seconds.  
12:11 ActiPHY wake-up  
timer  
R/W  
RO  
Sticky bit.  
00  
00: 160 ms.  
01: 400 ms.  
10: 800 ms.  
11: 2 seconds.  
10  
9
Reserved  
Reserved  
PHY address reversal R/W  
1: Enabled  
Address  
00  
8
Reserved  
RO  
RO  
Valid only on PHY0.  
7:6  
Media mode status  
00: No media selected.  
01: Copper media selected.  
10: SerDes media selected.  
11: Reserved.  
5
Enable 10BASE-T no R/W  
preamble mode  
Sticky bit.  
0
1: 10BASE-T will assert RX_DV indication  
when data is presented to the receiver even  
without a preamble preceding it.  
4
Enable link speed  
auto-downshift feature  
R/W  
R/W  
Sticky bit.  
0
1: Enable auto link speed downshift from  
1000BASE-T.  
3:2  
Link speed auto  
downshift control  
Sticky bit.  
01  
00: Downshift after 2 failed 1000BASE-T  
autonegotiation attempts.  
01: Downshift after 3 failed 1000BASE-T  
autonegotiation attempts.  
10: Downshift after 4 failed 1000BASE-T  
autonegotiation attempts.  
11: Downshift after 5 failed 1000BASE-T  
autonegotiation attempts.  
1
0
Link speed auto  
downshift status  
RO  
RO  
0: No downshift.  
1: Downshift is required or has occurred.  
0
Reserved  
Reserved  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
44  
Registers  
5.3.4  
PoE and Miscellaneous Functionality  
The register at address 23E1 controls various aspects of inline powering and the CRC error counter in  
the VSC8522-02.  
Table 44 • Extended PHY Control 4, Address 23E1 (0x17)  
Bit  
Name  
Access Description  
Default  
15:11 PHY address  
RO  
PHY address; latched on reset.  
10  
Inline powered device  
R/W  
Sticky bit.  
0
detection  
1: Enabled.  
9:8  
Inline powered device  
detection status  
RO  
RO  
Only valid when bit 10 is set.  
00: Searching for devices.  
01: Device found; requires inline power.  
10: Device found; does not require inline  
power.  
00  
11: Reserved.  
7:0  
Cu Media CRC error  
counter  
Self-clearing bit.  
0x00  
RC error counter for packets received on the  
Cu media interface. The value saturates at  
0xFF and subsequently clears when read  
and restarts count.  
5.3.5  
VeriPHY Control 1  
Register 24E1 in the extended register space provides control over the device VeriPHY diagnostics  
features. There are three separate VeriPHY control registers. The following table shows the settings  
available and describes the expected readouts.  
Table 45 • VeriPHY Control 1, Address 24E1 (0x18)  
Bit  
Name  
Access Description  
Default  
15  
VeriPHY trigger  
R/W  
RO  
Self-clearing bit.  
0
1: Triggers the VeriPHY algorithm and clears  
when VeriPHY has completed. Settings in  
registers 24E–26E become valid after this bit  
clears.  
14  
VeriPHY valid  
1: VeriPHY results in registers 24E–26E are  
valid.  
0
13:8 Pair A (1, 2) distance RO  
Loop length or distance to anomaly for pair A (1, 0x00  
2).  
7:6  
5:0  
Reserved  
RO  
Reserved.  
Pair B (3, 6) distance RO  
Loop length or distance to anomaly for pair B (3, 0x00  
6).  
Note: The resolution of the 6-bit length field is 3 meters.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
45  
Registers  
5.3.6  
VeriPHY Control 2  
The register at address 25E1 consists of the second of the three device registers that provide control  
over VeriPHY diagnostics features. The following table shows the expected readouts.  
Table 46 • VeriPHY Control 2, Address 25E1 (0x19)  
Bit  
Name  
Access Description  
RO Reserved  
Pair C (4, 5) distance RO  
Default  
15:14 Reserved  
13:8  
Loop length or distance to anomaly for pair C 0x00  
(4, 5)  
7:6  
5:0  
Reserved  
RO  
Reserved  
Pair D (7, 8) distance RO  
Loop length or distance to anomaly for pair D 0x00  
(7, 8)  
Note: The resolution of the 6-bit length field is 3 meters.  
5.3.7  
VeriPHY Control 3  
The register at address 26E1 consists of the third of the three device registers that provide control over  
VeriPHY diagnostics features. Specifically, this register provides information about the termination status  
(fault condition) for all four link partner pairs. The following table shows the expected readouts.  
Table 47 • VeriPHY Control 3, Address 26E1 (0x1A)  
Bit  
Name  
Access Description  
Default  
0x00  
15:12 Pair A (1, 2) termination status RO  
Termination fault for pair A (1, 2)  
Termination fault for pair B (3, 4)  
Termination fault for pair C (4, 5)  
Termination fault for pair D (7, 8)  
11:8  
7:4  
Pair B (3, 6) termination status RO  
Pair C (4, 5) termination status RO  
Pair D (7, 8) termination status RO  
0x00  
0x00  
3:0  
0x00  
The following table shows the meanings for the various fault codes.  
Table 48 • VeriPHY Control 3 Fault Codes  
Code Denotes  
0000 Correctly terminated pair  
0001 Open pair  
0010 Shorted pair  
0100 Abnormal termination  
1000 Cross-pair short to pair A  
1001 Cross-pair short to pair B  
1010 Cross-pair short to pair C  
1011 Cross-pair short to pair D  
1100 Abnormal cross-pair coupling with pair A  
1101 Abnormal cross-pair coupling with pair B  
1110 Abnormal cross-pair coupling with pair C  
1111 Abnormal cross-pair coupling with pair D  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
46  
Registers  
5.3.8  
Ethernet Packet Generator Control 1  
The EPG control register provides access to and control of various aspects of the EPG testing feature.  
There are two separate EPG control registers. The following table shows the settings available in the first  
register.  
Table 49 • EPG Control 1, Address 29E1 (0x1D)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
EPG enable  
EPG run or stop  
R/W  
R/W  
1: Enable EPG  
1: Run EPG  
0
0
0
Transmission duration R/W  
1: Continuous (sends in 10,000-packet  
increments)  
0: Send 30,000,000 packets and stop  
12:11 Packet length  
R/W  
00: 125 bytes  
0
01: 64 bytes  
10: 1518 bytes  
11: 10,000 bytes (jumbo packet)  
10  
9:6  
5:2  
1
Inter-packet gap  
Destination address  
Source address  
Payload type  
R/W  
R/W  
R/W  
R/W  
R/W  
1: 8,192 ns  
0: 96 ns  
0
Lowest nibble of the 6-byte destination  
address  
0001  
0000  
0
Lowest nibble of the 6-byte destination  
address  
1: Randomly generated payload pattern  
0: Fixed based on payload pattern  
0
Bad frame check  
sequence (FCS)  
generation  
1: Generate packets with bad FCS  
0: Generate packets with good FCS  
0
The following information applies to the EPG control number 1:  
Do not run the EPG when the VSC8522-02 is connected to a live network.  
Bit 29E1.13 (continuous EPG mode control): When enabled, this mode causes the device to send  
continuous packets. When disabled, the device continues to send packets only until it reaches the  
next 10,000-packet increment mark. It then ceases to send packets.  
The 6-byte destination address in bits 9:6 is assigned one of 16 addresses in the range of 0xFF FF  
FF FF FF F0 through 0xFF FF FF FF FF FF.  
The 6-byte source address in bits 5:2 is assigned one of 16 addresses in the range of 0xFF FF FF  
FF FF F0 through 0xFF FF FF FF FF FF.  
If any of bits 13:0 are changed while the EPG is running (bit 14 is set to 1), bit 14 must be cleared  
and then set back to 1 for the change to take effect and to restart the EPG.  
5.3.9  
Ethernet Packet Generator Control 2  
Register 30E1 consists of the second set of bits that provide access to and control over the various  
aspects of the EPG testing feature. The following table shows the settings available.  
Table 50 • EPG Control 2, Address 30E1 (0x1E)  
Bit  
Name  
Access Description  
Data pattern repeated in the payload of packets 0x00  
generated by the EPG  
Default  
15:0 EPG packet payload R/W  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
47  
Registers  
Note: If any of bits 15:0 in this register are changed while the EPG is running (bit 14 of register 29E1 is set to  
1), that bit (29E1.14) must first be cleared and then set back to 1 for the change to take effect and to  
restart the EPG.  
5.4  
Extended Page 2 Registers  
To access the extended page 2 registers (16E2–30E2), enable extended register access by writing  
0x0002 to register 31. For more information, see Table 39, page 42.  
When extended page 2 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E2–30E2 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Writing 0x0000 to register 31 restores the main register access.  
The following table lists the addresses and register names in the extended register page 2 space. These  
registers are accessible only when the device register 31 is set to 0x0002.  
Table 51 • Extended Registers Page 2 Space  
Address  
16E2  
Name  
Cu PMD Transmit Control  
EEE Control  
17E2  
18E2–30E2 Reserved  
5.4.1  
Cu PMD Transmit Control  
The register at address 16E2 consists of the bits that provide control over the amplitude settings for the  
transmit side Cu PMD interface. These bits provide the ability to make small adjustments in the signal  
amplitude to compensate for minor variations in the magnetics from different vendors. Extreme caution  
must be exercised when changing these settings from the default values as they have a direct impact on  
the signal quality. Changing these settings also affects the linearity and harmonic distortion of the  
transmitted signals. Contact Microsemi for further help with changing these values.  
Table 52 • Cu PMD Transmit Control, Address 16E2 (0x10)  
Bit  
Name  
Access Description  
Default  
15:12 1000BASE-T signal R/W  
amplitude trim  
Change 1000BASE-T 0000  
signal amplitude  
11:8  
100BASE-TX signal R/W  
amplitude trim  
Change 100BASE-TX 0010  
signal amplitude  
7:4  
10BASE-T signal  
amplitude trim  
R/W  
Change 10BASE-T  
signal amplitude  
1111  
3:0  
10BASE-Te signal  
amplitude trim  
R/W  
Change 10BASE-Te 0000  
signal amplitude  
5.4.2  
EEE Control  
The register at address 17E2 consists of the bits that provide additional control over the chip behavior in  
Energy Efficient Ethernet (IEEE 802.3az) mode for debug and to allow interoperation with legacy MACs  
that do not support IEEE 802.3az.  
Table 53 • EEE Control, Address 17E2 (0x11)  
Bit  
Name  
Access Description  
R/W Enable Energy Efficient (IEEE 802.3az)  
10BASE-Te operating mode.  
Default  
15  
Enable 10BASE-Te  
0
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
48  
Registers  
Table 53 • EEE Control, Address 17E2 (0x11) (continued)  
Bit  
Name  
Access Description  
Default  
14  
Reserved  
RO  
Reserved.  
0
13:10 Invert LED polarity  
R/W  
Invert polarity of LED[3:0] signals. Default is to 0000  
drive an active low signal on the LED pins.  
9:6  
5
Reserved  
R/O  
Reserved.  
Enable 1000BASE-T R/W  
force mode  
1: Enable 1000BASE-T force mode to allow  
PHY to link up in 1000BASE-T mode without  
forcing master/slave when register 0, bits 6 and  
13 are set to 2'b10.  
0
0
4
Force transmit LPI  
R/W  
1: Enable the EPG to transmit LPI on the MDI  
instead of normal idles when receiving normal  
idles from the MAC.  
0: Transmit idles being received from the MAC.  
3
2
1
0
Inhibit 100BASE-TX R/W  
transmit EEE LPI  
1: Disable transmission of EEE LPI on transmit 0  
path MDI in 100BASE-TX mode when receiving  
LPI from MAC.  
Inhibit 100BASE-TX R/W  
receive EEE LPI  
1: Disable transmission of EEE LPI on receive  
path MAC interface in 100BASE-TX mode  
when receiving LPI from the MDI.  
0
Inhibit 1000BASE-T R/W  
transmit EEE LPI  
1: Disable transmission of EEE LPI on transmit 0  
path MDI in 1000BASE-T mode when receiving  
LPI from MAC.  
Inhibit 1000BASE-T R/W  
receive EEE LPI  
1: Disable transmission of EEE LPI on receive  
path MAC interface in 1000BASE-T mode when  
receiving LPI from the MDI.  
0
5.5  
Extended Page 3 Registers  
To access the extended page 3 registers (16E3–30E3), enable extended register access by writing  
0x0003 to register 31. For more information, see Table 39, page 42.  
When extended page 3 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E3–30E3 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Writing 0x0000 to register 31 restores the main register access.  
The following table lists the addresses and register names in the extended register page 3 space. These  
registers are accessible only when the device register 31 is set to 0x0003.  
Table 54 • Extended Registers Page 3 Space  
Address  
16E3  
17E3  
18E3  
19E3  
20E3  
21E3  
22E3  
Name  
MAC SerDes PCS Control  
MAC SerDes PCS Status  
MAC SerDes Clause 37 Advertised Ability  
MAC SerDes Clause 37 Link Partner Ability  
MAC SerDes Status  
Media SerDes Transmit Good Packet Counter  
Media SerDes Transmit CRC Error Counter  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
49  
Registers  
Table 54 • Extended Registers Page 3 Space (continued)  
Address Name  
23E3–30E3 Reserved  
5.5.1  
MAC SerDes PCS Control  
The register at address 16E3 consists of the bits that provide access to and control over MAC SerDes  
PCS block. The following table shows the settings available.  
Table 55 • MAC SerDes PCS Control, Address 16E3 (0x10)  
Bit  
Name  
Access Description  
Default  
15  
MAC interface disable  
R/W  
R/W  
Sticky bit.  
1: 1000BASE-X MAC interface disable  
when media link down.  
0
14  
13  
MAC interface restart  
Sticky bit.  
0
0
1: 1000BASE-X MAC interface restart on  
media link change.  
MAC interface PD enable R/W  
Sticky bit.  
1: MAC interface autonegotiation parallel  
detect enable.  
12  
11  
MAC interface  
autonegotiation restart  
R/W  
R/W  
R/W  
Self-clearing bit.  
1: Restart MAC interface autonegotiation.  
0
Force advertised ability  
1: Force 16-bit advertised ability from  
register 18E3.  
0
10:8 SGMII preamble control  
000 = No effect on the start of packet.  
001 = If both the first two nibbles of the  
10/100 packet are not 0x5, a byte of 0x55  
must be prefixed to the output, otherwise  
there will be no effect on the start of packet.  
010 = If both the first two nibbles of the  
10/100 packet are not 0x5, a byte of 0x55  
must be prefixed to the output. An  
additional byte of 0x55 must be prefixed to  
the output if the next two nibbles are also  
not 0x5.  
001  
011–111 = Reserved.  
7
6
5
4
MAC SerDes  
autonegotiation enable  
R/W  
1: MAC SerDes ANEG enable.  
0
SerDes polarity at input of R/W  
MAC  
1: Invert polarity of signal received at input 0  
of MAC.  
SerDes polarity at output of R/W  
MAC  
1: Invert polarity of signal at output of MAC.  
Fast link status enable  
R/W  
1: Use fast link fail indication as link status 0  
indication to MAC SerDes  
0: Use normal link status indication to MAC  
SerDes  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
50  
Registers  
Table 55 • MAC SerDes PCS Control, Address 16E3 (0x10) (continued)  
Bit  
Name  
Access Description  
R/W 1: Enable transmit on MAC interface  
Default  
3
Unidirectional enable  
0
regardless of whether the PHY has  
determined that a valid link has been  
established.  
0: Enable transmit on MAC interface only  
when the PHY has determined that a valid  
link has been established.  
2:0  
Reserved  
RO  
Reserved.  
5.5.2  
MAC SerDes PCS Status  
The register at address 17E3 consists of the bits that provide status from the MAC SerDes PCS block.  
The following table shows the settings available.  
Table 56 • MAC SerDes PCS Status, Address 17E3 (0x11)  
Bit  
Name  
Access Description  
15:13 Reserved  
RO  
RO  
RO  
Reserved  
12  
11  
SGMII alignment error  
1: SGMII alignment error occurred  
MAC interface LP  
1: MAC interface link partner autonegotiation restart  
request occurred  
autonegotiation restart  
10  
Reserved  
RO  
RO  
Reserved  
9:8  
MAC remote fault  
01, 10, and 11: Remote fault detected from MAC  
00: No remote fault detected from MAC  
7
6
Asymmetric pause  
advertisement  
RO  
RO  
RO  
1: Asymmetric pause advertised by MAC  
Symmetric pause  
advertisement  
1: Symmetric pause advertised by MAC  
5
4
3
Full duplex advertisement  
1: Full duplex advertised by MAC  
1: Half duplex advertised by MAC  
Half duplex advertisement RO  
MAC interface LP  
autonegotiation capable  
RO  
1: MAC interface link partner autonegotiation  
capable  
2
1
MAC interface link status  
RO  
RO  
1: MAC interface link status connected  
MAC interface  
1: MAC interface autonegotiation complete  
autonegotiation complete  
0
MAC interface PCS signal RO  
detect  
1: MAC interface PCS signal detect present  
5.5.3  
MAC SerDes Clause 37 Advertised Ability  
The register at address 18E3 consists of the bits that provide access to and control over MAC SerDes  
Clause 37 advertised ability. The following table shows the settings available.  
Table 57 • MAC SerDes Cl37 Advertised Ability, Address 18E3 (0x12)  
Bit Name Access Description  
Default  
15:0 MAC SerDes  
advertised ability  
R/W  
Current configuration code word being advertised 0x0000  
(this register is read/write if 16E3.11 = 1)  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
51  
Registers  
5.5.4  
MAC SerDes Clause 37 Link Partner Ability  
The register at address 19E3 consists of the bits that provide status of the MAC SerDes link partner’s  
Clause 37 advertised ability. The following table shows the settings available.  
Table 58 • MAC SerDes Cl37 LP Ability, Address 19E3 (0x13)  
Bit  
Name  
Access Description  
15:0 MAC SerDes LP ability RO  
Last configuration code word received from link partner  
5.5.5  
MAC SerDes Status  
The register at address 20E3 consists of the bits that provide access to MAC SerDes status. The  
following table shows the settings available.  
Table 59 • MAC SerDes Status, Address 20E3 (0x14)  
Bit  
Name  
Access Description  
15  
K28.5 comma realignment RO  
Self-clearing bit.  
1: a K28.5 comma re-alignment has occurred  
14  
SerDes signal detect  
RO  
RO  
Self-clearing bit. Sticky bit.  
1: SerDes signal detection occurred  
13:0 Reserved  
Reserved  
5.5.6  
Media SerDes Transmit Good Packet Counter  
The register at address 21E3 consists of the bits that provide status of the media SerDes transmit good  
packet counter. The following table shows the settings available.  
Table 60 • Media SerDes Tx Good Packet Counter, Address 21E3 (0x15)  
Bit  
15  
14  
Name  
Access Description  
Tx good packet counter active RO  
1: Transmit good packet counter active  
Reserved  
Reserved  
RO  
RO  
13:0 Tx good packet count  
Transmit good packet count modulo 10000  
5.5.7  
Media SerDes Transmit CRC Error Counter  
The register at address 22E3 consists of the bits that provide status of the media SerDes transmit packet  
count that had a CRC error. The following table shows the settings available.  
Table 61 • Media SerDes Tx CRC Error Counter, Address 22E3 (0x16)  
Bit  
15:8 Reserved  
7:0 Tx CRC packet count RO  
Name  
Access Description  
RO  
Reserved  
Transmit CRC packet count (saturates at 255)  
5.6  
General Purpose Registers  
Accessing the General Purpose register space is similar to accessing the extended page registers. Set  
register 31 to 0x0010. This sets all 32 registers to the general purpose register space.  
To restore main register page access, write 0x0000 to register 31.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
52  
Registers  
The following table lists the addresses and register names in the general purpose register page space.  
These registers are accessible only when the device register 31 is set to 0x0010.  
Table 62 • General Purpose Registers Page Space  
Address Name  
0G–12G Reserved  
13G  
14G  
15G  
16G  
17G  
18G  
19G  
Reserved  
COMA_MODE Control  
GPIO Input  
GPIO Output  
GPIO Output Enable  
Global Command and SerDes Configuration  
MAC Mode and Fast Link Configuration  
20G–24G Reserved  
25G  
Enhanced LED Control  
26G–28G Reserved  
29G  
30G  
Global Interrupt Status  
Reserved  
5.6.1  
COMA_MODE Control  
Register 14G configures the functionality of the COMA_MODE input pin.  
Table 63 • COMA_MODE Control, Address 14G (0x0E)  
Bit  
Name  
Access Description  
Default  
15:14 Reserved  
RO  
Reserved  
13  
12  
COMA_MODE output  
enable (active low)  
R/W  
1: COMA_MODE pin is an input  
0: COMA_MODE pin is an output  
1
0
COMA_MODE output data R/W  
Value to output on the COMA_MODE pin  
when it is configured as an output  
11  
10  
9
COMA_MODE input data RO  
Data read from the COMA_MODE pin  
Reserved  
Reserved  
R/W  
0
0
Tri-state enable for LEDs R/W  
1: Tri-state LED output signals instead of  
driving them high. This allows those  
signals to be pulled above VDDIO using  
an external pull-up resistor.  
0: Drive LED bus output signals to high  
and low values as appropriate.  
8:0  
Reserved  
RO  
Reserved.  
0
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
53  
Registers  
5.6.2  
GPIO Input  
The input register contains information about the input to the device GPIO pins. Read from this register to  
access the data on the device GPIO pins. The following table shows the readout you can expect.  
Table 64 • GPIO Input, Address 15G (0x0F)  
Bit  
15:2 Reserved  
1:0 GPIO input RO  
Name  
Access Description  
Default  
RO  
Reserved  
Data read from the GPIO_[3:2] pins  
5.6.3  
5.6.4  
GPIO Output  
The output register allows you to access and control the output from the device GPIO pins. The following  
table shows the values you can write.  
Table 65 • GPIO Output, Address 16G (0x10)  
Bit  
15:2 Reserved  
1:0 GPIO output R/W  
Name  
Access Description  
Default  
RO  
Reserved  
Data written to the GPIO_[3:2] pins  
0x00  
GPIO Pin Configuration  
Register 17G in the GPIO register space controls whether a particular GPIO pin functions as an input or  
an output. The following table shows the settings available.  
Table 66 • GPIO Input/Output Configuration, Address 17G (0x11)  
Bit  
15:2 Reserved  
1:0 GPIO_[3:2] pin input or output  
enable  
Name  
Access Description  
Default  
RO  
Reserved  
R/W  
1: Pin is configured as an output.  
0: Pin is configured as an input.  
0x00  
5.6.5  
Global Command and SerDes Configuration  
Register 18G is a command window. Bit 15 tells the internal processor to execute the command. When  
bit 15 is cleared the command has completed. Software needs to wait until bit 15 = 0 before proceeding  
with the next PHY register access. The following table lists the values to write to register 18G to execute  
the various commands.  
Table 67 • Global Command and SerDes Configuration, Address 18G (0x12)  
Command  
Value  
Enable 12 PHYs MAC SGMII  
0x80B0  
0x80A0  
0x8F81(1)  
0x8F91(1)  
Enable 12 PHYs MAC QSGMII  
Enable 4 PHYs (PHY8 to PHY11) media 1000BASE-X  
Enable 4 PHYs (PHY8 to PHY11) media 100BASE-FX  
1. The “F” in the command has a bit representing each of the four PHYs. To exclude a PHY from the  
configuration, set its bit to 0. For example, the configuration of PHY 3 and PHY 2 to 1000BASE-X  
would be 1100 or a “C” and the command would be 0x8CC1.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
54  
Registers  
5.6.6  
MAC Mode and Fast Link Configuration  
Register 19G controls the MAC interface mode and the selection of the source PHY for the fast link  
failure indication. The following table shows the settings available for the FAST_LINK_STATUS pin.  
Table 68 • MAC Mode and Fast Link Configuration, Address 19G (0x13)  
Bit  
Name  
Access Description  
Default  
15:14 MAC interface mode select R/W  
for all PHYs in the  
Select MAC interface mode  
00: QSGMII to CAT5 mode  
01: SGMII to CAT5 mode  
10: QSGMII to CAT5 mode  
11: Reserved  
00  
VSC8522-02  
13:4  
3:0  
Reserved  
RO  
Reserved  
Fast link failure port setting R/W  
0000: PHY0  
0xF  
0001: PHY1  
0010: PHY2  
0011: PHY3  
0100: PHY4  
0101: PHY5  
0110: PHY6  
0111: PHY7  
1000: PHY8  
1001: PHY9  
1010: PHY10  
1011: PHY11  
1100–1111: Output disabled  
5.6.7  
Enhanced LED Control  
The following table contains the bits to control advanced functionality of the serial LED signals.  
Table 69 • Enhanced LED Control, Address 25G (0x19)  
Bit Name Access Description  
Default  
15:8 LED pulsing duty cycle R/W  
control  
Programmable control for LED pulsing duty  
cycle when bit 30.12 is set to 1. Valid settings  
are between 0 and 198. A setting of 0  
corresponds to a 0.5% duty cycle and 198  
corresponds to a 99.5% duty cycle.  
Intermediate values change the duty cycle in  
0.5% increments  
00  
7
6
Serial LED output 2  
enable  
R/W  
R/W  
Enable the serial LED output functionality for  
GPIO_5, GPIO_6, GPIO_7, and GPIO_8 pins  
1: Pins function as serial LED outputs  
0: Pins retain their normal function  
0
0
Serial LED output 1  
enable  
Enable the serial LED output functionality for  
GPIO_[3:0] pins  
1: Pins function as serial LED outputs  
0: Pins retain their normal function  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
55  
Registers  
Table 69 • Enhanced LED Control, Address 25G (0x19) (continued)  
Bit  
Name  
Access Description  
Default  
5:3  
Serial LED frame rate R/W  
selection  
Select frame rate of serial LED stream  
000: 2500 Hz frame rate  
001: 1000 Hz frame rate  
010: 500 Hz frame rate  
011: 250 Hz frame rate  
100: 200 Hz frame rate  
101: 125 Hz frame rate  
110: 40 Hz frame rate  
111: Reserved.  
2:1  
Serial LED select  
R/W  
RO  
Select which LEDs from each PHY to enable on 00  
the serial stream  
00: Enable all 4 LEDs of each PHY  
01: Enable LEDs 2, 1 and 0 of each PHY  
10: Enable LEDs 1 and 0 of each PHY  
11: Enable LED 0 of each PHY  
0
Reserved  
Reserved.  
0
5.6.8  
Global Interrupt Status  
The following table contains the interrupt status from the various sources to indicate which one caused  
that last interrupt on the pin.  
Table 70 • Global Interrupt Status, Address 29G (0x1D)  
Bit  
Name  
Access Description  
15:12 Reserved  
RO  
RO  
Reserved  
11  
10  
9
PHY11 interrupt source(1)  
PHY11 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY10 interrupt source(1)  
PHY9 interrupt source(1)  
PHY8 interrupt source(1)  
PHY7 interrupt source(1)  
PHY6 interrupt source(1)  
PHY5 interrupt source(1)  
PHY4 interrupt source(1)  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
PHY10 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY9 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
8
PHY8 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
7
PHY7 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
6
PHY6 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
5
PHY5 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
4
PHY4 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
56  
Registers  
Table 70 • Global Interrupt Status, Address 29G (0x1D) (continued)  
Bit  
Name  
Access Description  
3
PHY3 interrupt source(1)  
RO  
RO  
RO  
RO  
PHY3 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
2
1
0
PHY2 interrupt source(1)  
PHY1 interrupt source(1)  
PHY0 interrupt source(1)  
PHY2 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY1 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
PHY0 interrupt source indication  
0: PHY caused the interrupt  
1: PHY did not cause an interrupt  
1. This bit is set to 1 when the corresponding PHY’s Interrupt Status register 26 (0x1A) is read.  
5.7  
Clause 45 Registers to Support Energy Efficient Ethernet  
This section describes the Clause 45 registers that are required to support Energy Efficient Ethernet.  
Access to these registers is through the IEEE standard registers 13 and 14 (MMD access control and  
MMD data or address registers) as described in section 4.2.11 and 4.2.12.  
The following table lists the addresses and register names in the Clause 45 register page space.  
Table 71 • Clause 45 Registers Page Space  
Address Name  
3.1  
PCS Status 1  
3.20  
3.22  
7.60  
7.61  
EEE Capability  
EEE Wake Error Counter  
EEE Advertisement  
EEE Link Partner Advertisement  
5.7.1  
PCS Status 1  
The bits in the PCS Status 1 register provide a status of the EEE operation from the PCS for the link that  
is currently active.  
Table 72 • PCS Status 1, Address 3.1  
Bit  
Name  
Access Description  
RO Reserved  
15:12 Reserved  
11  
10  
9
Tx LPI received  
RO/LH 1: Tx PCS has received LPI  
0: LPI not received  
Rx LPI received  
Tx LPI indication  
Rx LPI indication  
Reserved  
RO/LH 1: Rx PCS has received LPI  
0: LPI not received  
RO  
RO  
RO  
1: Tx PCS is currently receiving LPI  
0: PCS is not currently receiving LPI  
8
1: Rx PCS is currently receiving LPI  
0: PCS is not currently receiving LPI  
7:3  
Reserved  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
57  
Registers  
Table 72 • PCS Status 1, Address 3.1 (continued)  
Bit  
Name  
Access Description  
2
PCS receive link status RO  
1: PCS receive link up  
0: PCS receive link down  
1:0  
Reserved  
RO  
Reserved  
5.7.2  
EEE Capability  
This register is used to indicate the capability of the PCS to support EEE functions for each PHY type.  
The following table shows the bit assignments for the EEE capability register.  
Table 73 • EEE Capability, Address 3.20  
Bit  
Name  
Access Description  
15:3 Reserved  
RO  
1000BASE-T EEE RO  
Reserved  
2
1
0
1: EEE is supported for 1000BASE-T  
0: EEE is not supported for 1000BASE-T  
100BASE-TX  
EEE  
RO  
RO  
1: EEE is supported for 100BASE-TX  
0: EEE is not supported for 100BASE-TX  
Reserved  
Reserved  
5.7.3  
5.7.4  
EEE Wake Error Counter  
This register is used by PHY types that support EEE to count wake time faults where the PHY fails to  
complete its normal wake sequence within the time required for the specific PHY type. The definition of  
the fault event to be counted is defined for each PHY and can occur during a refresh or a wakeup as  
defined by the PHY. This 16-bit counter is reset to all zeros when the EEE wake error counter is read or  
when the PHY undergoes hardware or software reset.  
Table 74 • EEE Wake Error Counter, Address 3.22  
Bit  
Name  
Access Description  
15:0 Wake error counter RO  
Count of wake time faults for a PHY  
EEE Advertisement  
This register defines the EEE advertisement that is sent in the unformatted next page following a EEE  
technology message code. The following table shows the bit assignments for the EEE advertisement  
register.  
Table 75 • EEE Advertisement, Address 7.60  
Bit  
Name  
Access Description  
Default  
15:3 Reserved  
RO  
1000BASE-T EEE R/W  
Reserved  
2
1
0
1: Advertise that the 1000BASE-T has EEE  
capability  
0: Do not advertise that the 1000BASE-T has EEE  
capability  
0
100BASE-TX  
EEE  
R/W  
RO  
1: Advertise that the 100BASE-TX has EEE  
capability  
0: Do not advertise that the 100BASE-TX has EEE  
capability  
0
Reserved  
Reserved  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
58  
Registers  
5.7.5  
EEE Link Partner Advertisement  
All the bits in the EEE LP Advertisement register are read only. A write to the EEE LP advertisement  
register has no effect. When the AN process has been completed, this register will reflect the contents of  
the link partner’s EEE advertisement register. The following table shows the bit assignments for the EEE  
advertisement register.  
Table 76 • EEE Advertisement, Address 7.61  
Bit  
Name  
Access Description  
15:3 Reserved  
RO  
1000BASE-T EEE RO  
Reserved  
2
1
0
1: Link partner is advertising EEE capability for 1000BASE-T  
0: Link partner is not advertising EEE capability for  
1000BASE-T  
100BASE-TX  
EEE  
RO  
RO  
1: Link partner is advertising EEE capability for 100BASE-TX  
0: Link partner is not advertising EEE capability for  
100BASE-TX  
Reserved  
Reserved  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
59  
Electrical Specifications  
6
Electrical Specifications  
This section provides the DC characteristics, AC characteristics, recommended operating conditions,  
and stress ratings for the VSC8522-02 device.  
6.1  
DC Characteristics  
This section contains the DC specifications for the VSC8522-02 device.  
6.1.1  
VDD_IO  
The following table shows the DC specifications for the pins referenced to VDD_IO. The specifications  
listed in the following table are valid only when VDD = 1.0 V, VDD_VS = 1.0 V, VDD_AL = 1.0 V, or  
VDD_AH = 2.5 V.  
Table 77 • VDD_IO DC Characteristics  
Parameter  
Symbol  
VOH  
VOL  
Minimum Maximum Unit Condition  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
2.0  
2.8  
0.4  
3.0  
0.7  
32  
V
IOH = –1.0 mA  
IOL = 1.0 mA  
–0.3  
1.85  
–0.3  
V
VIH  
V
VIL  
V
Input leakage current,  
GPIO pins  
IILEAK_GPIO –89  
µA  
Internal resistor included  
Internal resistor included  
Internal resistor included  
Internal resistor included  
Input leakage current, all IILEAK  
other pins  
–32  
32  
32  
32  
6
µA  
µA  
µA  
mA  
mA  
Output leakage current, IOLEAK_GPIO –89  
GPIO pins  
Output leakage current, IOLEAK  
all other pins  
–32  
Output low current drive IOL  
strength  
Output high current drive IOH  
strength  
–6  
6.1.2  
Internal Pull-Up or Pull-Down Resistors  
Internal pull-up or pull-down resistors are specified in the following table. For more information about  
signals with internal pull-up or pull-down resistors, see Pins by Function, page 72.  
All internal pull-up resistors are connected to their respective I/O supply.  
Table 78 • Internal Pull-Up or Pull-Down Resistors  
Parameter  
Symbol Minimum Typical Maximum Unit  
Internal pull-up resistor, GPIO pins  
Internal pull-up resistor, all other pins  
Internal pull-down resistor  
RPU  
RPU  
RPD  
33  
96  
96  
53  
90  
kΩ  
kΩ  
kΩ  
120  
120  
144  
144  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
60  
Electrical Specifications  
6.1.3  
Reference Clock  
The following table shows the DC specifications for a differential reference clock input signal.  
Table 79 • Reference Clock DC Characteristics  
Parameter  
Symbol  
VIP,VIN  
VID  
Minimum  
–25  
Typical  
Maximum  
1260  
Unit  
mV  
mV  
mV  
Input voltage range  
Input differential voltage  
150(1)  
1000  
Input common-mode voltage VICM  
Differential input impedance RI  
0
1200(2)  
100  
1. To meet jitter specifications, the minimum input differential voltage must be 400 mV. When using a single-  
ended clock input, the REFCLK_P low voltage must be less than VDDA – 200 mV, and the high voltage  
level must be greater than VDDA + 200 mV.  
2. The maximum common-mode voltage is provided without a differential signal. The common-mode voltage  
is only limited by the maximum and minimum input voltage range and by the differential amplitude of the  
input signal.  
6.1.4  
Enhanced SerDes Interface (QSGMII)  
All DC specifications for the enhanced SerDes interface are compliant with QSGMII Specification  
Revision 1.3 and meet or exceed the requirements in the standard. They are also compliant with OIF-  
CEI-02.0 requirements where applicable. The following table shows the DC specifications for the  
enhanced SerDes driver.  
Table 80 • Enhanced SerDes Driver DC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output differential peak voltage,  
QSGMII mode  
|VODp  
|
250  
400  
mV VDD_VS = 1.0 V  
RL = 100 ±1%  
maximum drive  
Output current, drivers shorted to |IOSA|,  
40  
mA  
ground, SGMII and QSGMII  
modes  
|IOSB  
|
Output current, drivers shorted  
together, SGMII and QSGMII  
modes  
|IOSAB  
|
12  
mA  
The following table lists the DC specifications for the enhanced SerDes receiver.  
Table 81 • Enhanced SerDes Receiver DC Specifications  
Parameter  
Symbol Minimum Typical Maximum Unit  
(1)  
Input voltage range, VIA or VIB  
VI  
–0.25  
100  
0
1.2  
V
Input differential peak-to-peak voltage  
Input common-mode voltage  
|VID|  
VICM  
RI  
1600  
1200  
120  
mV  
mV  
Receiver differential input impedance  
80  
100  
1. QSGMII DC input sensitivity is less than 400 mV.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
61  
Electrical Specifications  
Figure 21 • QSGMII DC Transmit Test Circuit  
VOA  
VOD = VOA – VOB  
100 ±1%  
VOS = ½ (VOA + VOB)  
VOB  
6.1.5  
Current Consumption  
The typical current consumption values in QSGMII to 1000BASE-T mode are based on nominal voltages  
with the MAC interface operating in QSGMII mode, and all media side ports operating in 1000BASE-T  
with full-duplex enabled. Data traffic is a 64-bit random data pattern at 100% utilization.  
Table 82 • QSGMII to 1000BASE-T Current Consumption  
Parameter  
Symbol Typical Maximum Unit  
Worst-case power consumption PD  
6.75  
W
A
A
A
A
A
A
Current with VDD at 1.0 V  
IVDD  
IVDD_A  
1.15  
0.18  
Current with VDD_A at 1.0 V  
Current with VDD_AH at 2.5 V  
Current with VDD_AL at 1.0 V  
Current with VDD_IO at 2.5 V  
Current with VDD_VS at 1.0 V  
IVDD_AH 1.37  
IVDD_AL 0.19  
IVDD_IO 0.06  
IVDD_VS 0.09  
6.2  
AC Characteristics  
This section provides the AC specifications for the VSC8522-02 device.  
6.2.1  
Reference Clock  
To meet QSGMII jitter generation requirements, Microsemi requires the use of a differential reference  
clock source. Use of a 25 MHz single-ended reference clock is not recommended. However, to  
implement a QSGMII chip interconnect using a 25 MHz single-ended reference clock and achieve error-  
free data transfer on that interface, use an Ethernet switch with higher jitter tolerance than specified in  
the standard, such as Microsemi VSC742x family of products. For more information about QSGMII  
interoperability when using a 25 MHz single-ended reference clock, contact your Microsemi  
representative.  
The following table shows the AC specifications for a differential reference clock input. Performance is  
guaranteed for 156.25 MHz and 125 MHz differential clocks only, however 25 MHz and single-ended  
clocks are also supported.  
Table 83 • Reference Clock AC Characteristics  
Parameter  
Symbol Minimum Typical Maximum Unit Condition  
Reference clock frequency,  
REFCLK_SEL[2:0] = 100  
ƒ
–100 ppm 25.00  
100 ppm  
MHz  
MHz  
MHz  
%
Reference clock frequency,  
REFCLK_SEL[2:0] = 000  
ƒ
–100 ppm 125.00 100 ppm  
–100 ppm 156.25 100 ppm  
Reference clock frequency,  
REFCLK_SEL[2:0] = 001  
ƒ
Duty cycle  
DC  
40  
50  
60  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
62  
Electrical Specifications  
Table 83 • Reference Clock AC Characteristics (continued)  
Parameter  
Symbol Minimum Typical Maximum Unit Condition  
Rise time and fall time  
tR, tF  
1.5  
ns  
20% to 80%  
threshold  
REFCLK input RMS jitter,  
bandwidth from 12 kHz to  
500 kHz  
20  
ps  
REFCLK input RMS jitter,  
bandwidth from 500 kHz to  
15 MHz  
4
ps  
ps  
ps  
dB  
dB  
REFCLK input RMS jitter,  
bandwidth from 15 MHz to  
40 MHz  
20  
100  
0.3  
3
REFCLK input RMS jitter,  
bandwidth from 40 MHz to  
80 MHz  
Jitter gain from REFCLK to  
SerDes output, bandwidth  
from 0 MHz to 0.1 MHz  
Jitter gain from REFCLK to  
SerDes output, bandwidth  
from 0.1 MHz to 7 MHz  
Jitter gain from REFCLK to  
SerDes output, bandwidth  
greater than 7 MHz  
3 –20 × log dB  
(ƒ/7 MHz)  
6.2.2  
Enhanced SerDes Interface  
All AC specifications for the enhanced SerDes interface are compliant with QSGMII Specification  
Revision 1.3 and meet or exceed the requirements in the standard. They are also compliant with the OIF-  
CEI-02.0 requirements where applicable.  
The values in the tables in the following sections apply to QSGMII mode and are based on the test circuit  
shown in Figure 21, page 62. The transmit and receive eye specifications relate to the eye diagrams  
shown in the following illustration, with the compliance load as defined in the test circuit.  
Figure 22 • QSGMII Transient Parameters  
Transmitter Eye Mask  
Receiver Eye Mask  
T_Y2  
T_Y1  
0
R_Y2  
R_Y1  
0
–T_Y1  
–T_Y2  
–R_Y1  
–R_Y2  
0
T_X1  
T_X2  
1–T_X2 1–T_X1  
1.0  
0
R_X1  
0.5  
1–R_X1  
1.0  
Time (UI)  
Time (UI)  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
63  
Electrical Specifications  
6.2.3  
Enhanced SerDes Outputs  
The following table provides the AC specifications for the enhanced SerDes outputs in QSGMII mode.  
Table 84 • Enhanced SerDes Outputs AC Specifications, QSGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Unit interval, 5G  
UI  
200 ps  
VOD rise time and fall time tR, tF  
30  
96  
30  
ps  
20% to 80% of VS  
RL = 100 ±1%  
Differential peak-to-peak  
output voltage  
VOD  
mV Tx disabled  
Differential output return  
loss, 100 MHz to 2.5 GHz  
RLO_DIFF  
8
dB  
dB  
RL = 100 ±1%  
RL = 100 ±1%  
Differential output return  
loss, 2.5 GHz to 5 GHz  
RLO_DIFF 8 dB – 16.6 log  
(ƒ/2.5 GHz)  
Eye mask X1  
Eye mask X2  
Eye mask Y1  
Eye mask Y2  
T_X1  
T_X2  
0.15  
0.4  
UI  
UI  
T_Y1  
T_Y2  
200  
mV  
mV  
450  
6.2.4  
Enhanced Serial LEDs  
This section contains the AC specifications for the enhanced serial LEDs. The duty cycle of the  
LED_PULSE signal is programmable and can be varied from 0.5% to 99.5%.  
Table 85 • Enhanced Serial LEDs AC Characteristics  
Parameter  
Symbol Minimum Maximum Unit  
LED_CLK cycle time  
tCYC  
255  
257  
ns  
µs  
ns  
ns  
ns  
µs  
Pause between LED_DATA bit sequences tPAUSE  
387.712  
127  
24987  
129  
LED_CLK to LED_DATA  
LED_CLK to LED_LD  
LED_LD pulse width  
tCO  
tCL  
255  
257  
tLW  
127  
129  
LED_PULSE cycle time  
tPULSE  
199  
201  
Figure 23 • Enhanced Serial LED Timing  
tcyc  
tpause  
LED_CLK  
tcl  
tco  
Bit 1  
LED_DATA  
Bit 2  
Bit X  
Bit 1  
Bit 2  
tlw  
LED_LD  
tpulse  
LED_PULSE  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
64  
Electrical Specifications  
6.2.5  
Enhanced SerDes Driver Jitter Characteristics  
The following table lists the jitter characteristics for the enhanced SerDes driver in QSGMII mode.  
Table 86 • Enhanced SerDes Driver Jitter Characteristics, QSGMII Mode  
Parameter  
Symbol Maximum Unit Condition  
Total output jitter  
TJO  
60  
ps  
Measured according to  
IEEE 802.3.38.5.  
Deterministic output jitter  
DJO  
10  
ps  
Measured according to  
IEEE 802.3.38.5.  
6.2.6  
Enhanced SerDes Inputs  
The following table lists the AC specifications for the enhanced SerDes inputs in QSGMII mode.  
Table 87 • Enhanced SerDes Inputs AC Specifications, QSGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Unit interval, 5G  
UI  
200 ps  
Differential input return loss, RLI_DIFF  
100 MHz to 2.5 GHz  
8
dB  
dB  
dB  
RL = 100 ±1%  
Differential input return loss, RLI_DIFF 8 dB – 16.6 log  
2.5 GHz to 5 GHz  
RL = 100 ±1%  
(ƒ/2.5 GHz)  
Common-mode input return RLICM  
loss, 100 MHz to 2.5 GHz  
6
Eye mask X1  
Eye mask Y1  
Eye mask Y2  
R_X1  
R_Y1  
R_Y2  
0.3  
50  
UI  
mV  
mV  
450  
6.2.7  
Enhanced SerDes Receiver Jitter Tolerance  
The following table lists the jitter tolerance for the enhanced SerDes receiver in QSGMII mode.  
Table 88 • Enhanced SerDes Receiver Jitter Tolerance, QSGMII Mode  
Parameter  
Symbol Maximum Unit Condition  
Bounded high-probability jitter(1)  
BHPJ  
90  
ps  
92 ps peak-to-peak random  
jitter and 38 ps sinusoidal jitter  
(SJHF).  
Sinusoidal jitter, maximum  
Sinusoidal jitter, high frequency  
Total jitter tolerance  
SJMAX  
SJHF  
TJTI  
1000  
10  
ps  
ps  
ps  
120  
92 ps peak-to-peak random  
jitter and 38 ps sinusoidal jitter  
(SJHF).  
1. This is the sum of uncorrelated bounded high probability jitter (0.15 UI), and correlated bounded high  
probability jitter (0.30 UI). Uncorrelated bounded high probability jitter is distribution where the value of the  
jitter shows no correlation to any signal level being transmitted, formally defined as deterministic jitter (DJ).  
Correlated bounded high probability jitter is jitter distribution where the value of the jitter shows a strong  
correlation to the signal level being transmitted.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
65  
Electrical Specifications  
6.2.8  
JTAG Interface  
This section provides the AC specifications for the JTAG interface. The specifications meet or exceed the  
requirements of IEEE 1149.1-2001. The JTAG receive signal requirements are requested at the pin of  
the device. The JTAG_TRST signal is asynchronous to the clock, and does not have a setup or hold time  
requirement.  
Table 89 • JTAG Interface AC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
TCK frequency  
TCK cycle time  
TCK high time  
TCK low time  
ƒ
10  
MHz  
ns  
tC  
100  
40  
40  
10  
10  
tW(CH)  
tW(CL)  
tSU  
ns  
ns  
Setup time to TCK rising  
ns  
Hold time from TCK rising tH  
TDO valid after TCK falling tV(C)  
ns  
28  
30  
ns  
CL = 10 pF  
CL = 0 pF  
TDO hold time from TCK  
falling  
tH(TDO)  
0
ns  
TDO disable time(1)  
tDIS  
ns  
ns  
See Figure 25, page 67.  
nTRST time low  
tW(TL)  
30  
1. The pin begins to float when a 300 mV change from the actual VOH/VOL level occurs.  
Figure 24 • JTAG Interface Timing Diagram  
tC  
TCK  
tW(CH)  
tW(CL)  
TDI  
TMS  
tSU  
tH  
tV(C)  
TDO  
See definition.  
tH(TDO)  
tDIS  
nTRST  
tW(TL)  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
66  
Electrical Specifications  
Figure 25 • Test Circuit for TDO Disable Time  
3.3 V  
500 Ω  
From output under test  
5 pF  
500 Ω  
6.2.9  
Serial Management Interface  
This section contains the AC specifications for the serial management interface (SMI).  
Table 90 • SMI Interface AC Characteristics  
Parameter  
Symbol Minimum Typical Maximum Unit Condition  
MDC frequency(1)  
MDC cycle time  
MDC time high  
MDC time low  
ƒCLK  
tCYC  
tWH  
0.488  
48  
20.83  
2048  
MHz  
ns  
20  
ns  
CL = 50 pF  
CL = 50 pF  
tWL  
20  
ns  
MDIO setup time to MDC tSU  
on write  
15  
ns  
MDIO hold time to MDC  
on write  
tH  
tR  
tR  
15  
ns  
ns  
ns  
MDC rise time,  
MDC = 0: 1 MHz  
100  
MDC rise time,  
MDC = 1 MHz:  
ƒCLK maximum  
tCYC ×  
10%(1)  
MDC fall time,  
MDC = 0: 1 MHz  
tF  
tF  
100  
ns  
ns  
MDC fall time,  
MDC = 1 MHz:  
ƒCLK maximum  
tCYC  
×
10%(1)  
MDC to MDIO valid  
tCO  
10  
300  
ns  
Time-dependant  
on the value of  
the external pull-  
up resistor on the  
MDIO pin  
1. For ƒCLK greater than 1 MHz, the minimum rise time and fall time is in relation to the frequency of the MDC  
clock period. For example, if ƒCLK is 2 MHz, the minimum clock rise time and fall time is 50 ns.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
67  
Electrical Specifications  
Figure 26 • SMI Interface Timing  
tWH  
tWL  
MDC  
tCYC  
tSU  
tH  
MDIO  
(write)  
Data  
tCO  
MDIO  
(read)  
Data  
6.2.10 Reset Timing  
This section contains the AC specifications that apply to device reset functionality. The signal applied to  
the NRESET input must comply with the specifications listed in the following table.  
Table 91 • NRESET Timing Specifications  
Parameter  
Symbol Minimum Maximum Unit  
NRESET assertion time after power supplies tW  
and clock stabilize  
2
ms  
Recovery time from reset inactive to device tREC  
fully active  
105  
ms  
NRESET pulse width  
tW(RL)  
tWAIT  
100  
105  
ns  
Wait time between NRESET de-assert and  
access of the SMI interface  
ms  
Figure 27 • Reset Timing  
tcyc  
tpause  
LED_CLK  
tco  
LED_DATA  
Bit 1  
Bit 2  
Bit X  
Bit 1  
6.2.11 Serial LEDs  
This section contains the AC specifications for the serial LEDs.  
Table 92 • Serial LEDs AC Characteristics  
Parameter  
Symbol Minimum Maximum Unit  
LED_CLK cycle time  
tCYC  
1
µs  
ms  
ns  
Pause between LED bit sequences tPAUSE  
LED_CLK to LED_DATA tCO  
25  
1
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
68  
Electrical Specifications  
Figure 28 • Serial LED Timing  
tcyc  
tpause  
LED_CLK  
tco  
LED_DATA  
Bit 1  
Bit 2  
Bit X  
Bit 1  
6.2.12 Power Supply Sequencing  
During power on and off, VDD_A and VDD_VS must never be more than 300 mV above VDD. VDD_VS must  
be powered, even if the associated interface is not used. These power supplies must not remain at  
ground or left floating.  
There are no sequencing requirements for VDD_AL, VDD_AH, or VDD_IO. These power supplies can  
remain at ground or left floating if not used.  
The NRESET and JTAG_nTRST inputs must be held low until all power supply voltages  
have reached their recommended operating condition values.  
6.3  
Operating Conditions  
The following table shows the recommended operating conditions for the device.  
Table 93 • Recommended Operating Conditions  
Parameter  
Symbol Minimum Typical Maximum Unit  
Power supply voltage for VDD  
Power supply voltage for VDD_A  
Power supply voltage for VDD_AH  
Power supply voltage for VDD_AL  
Power supply voltage for VDD_IO  
Power supply voltage for VDD_VS  
VSC8522-02 operating temperature(1)  
VSC8522-04 operating temperature(1)  
VDD  
0.95  
0.95  
1.00  
1.00  
2.50  
1.00  
2.50  
1.00  
1.05  
1.05  
2.62  
1.05  
2.62  
1.05  
125  
V
V
V
V
V
V
VDD_A  
VDD_AH 2.38  
VDD_AL 0.95  
VDD_IO  
2.38  
VDD_VS 0.95  
T
T
0
°C  
°C  
–40  
125  
1. Minimum specification is ambient temperature, and the maximum is junction temperature.  
6.4  
Stress Ratings  
This section contains the stress ratings for the VSC8522-02 device.  
Warning Stresses listed in the following table may be applied to devices one at a time without causing  
permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these  
values for extended periods may affect device reliability.  
Table 94 • Stress Ratings  
Parameter  
Symbol  
VDD  
Minimum Maximum Unit  
Power supply voltage for core supply  
–0.3  
–0.3  
1.10  
1.32  
V
V
Power supply voltage for SerDes and Enhanced  
SerDes interfaces  
VDD_VS  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
69  
Electrical Specifications  
Table 94 • Stress Ratings (continued)  
Parameter  
Symbol  
Minimum Maximum Unit  
Power supply voltage for analog circuits in twisted pair VDD_AL  
interface  
–0.3  
–0.3  
–0.3  
1.10  
2.75  
2.75  
V
V
V
Power supply voltage for analog circuits in twisted pair VDD_AH  
interface  
Power supply voltage for MIIM, PI, and miscellaneous VDD_IO  
I/O  
Input voltage for GPIO and logic input pins  
3.3  
V
Storage temperature  
TS  
–55  
125  
500  
1750  
°C  
V
Electrostatic discharge voltage, charged device model VESD_CDM –500  
Electrostatic discharge voltage, human body model VESD_HBM –1750  
V
Warning This device can be damaged by electrostatic discharge (ESD) voltage. Microsemi  
recommends that all integrated circuits be handled with appropriate precautions. Failure to observe  
proper handling and installation procedures may adversely affect reliability of the device.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
70  
Pin Descriptions  
7
Pin Descriptions  
The VSC8522-02 device has 302 pins, which are described in this section.  
The pin information is also provided as an attached Microsoft Excel file, so that you can copy it  
electronically. In Adobe Reader, double-click the attachment icon.  
7.1  
Pin Diagram  
The following illustration shows the pin diagram for the VSC8522-02 device, as seen from the top view  
looking through the device.  
Figure 29 • Pin Diagram  
224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169  
1
2
3
4
5
6
7
8
168  
167  
166  
165  
164  
163  
162  
161  
160  
159  
158  
157  
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
A78 A77 A76 A75 A74 A73 A72 A71 A70 A69 A68 A67 A66 A65 A64 A63 A62 A61 A60 A59 A58 A57  
A1  
A2  
A56  
A55  
A54  
A53  
A52  
A51  
A50  
A49  
A48  
A47  
A46  
A45  
A44  
A43  
A42  
A41  
A40  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39  
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
71  
Pin Descriptions  
7.2  
Pins by Function  
This section contains the functional pin descriptions for the VSC8522-02 device. The following table lists  
the definitions for the pin type symbols.  
Table 95 • Pin Type Symbol Definitions  
Symbol Pin Type  
Description  
3V  
3.3 V-tolerant pin.  
Analog bias pin.  
ABIAS  
ADIFF  
I
Analog bias  
Analog differential Analog differential signal pair.  
Input  
Input without on-chip pull-up or pull-down resistor.  
I/O  
Bidirectional  
No connect  
Output  
Bidirectional input or output signal.  
No connect pins must be left floating.  
Output signal.  
NC  
O
OD  
OS  
PD  
PU  
ST  
Open drain  
Open source  
Pull-down  
Pull-up  
Open drain output.  
Open source output.  
On-chip pull-down resistor to VSS.  
On-chip pull-up resistor to VDD_IO.  
Input has Schmitt-trigger circuitry.  
Schmitt-trigger  
7.2.1  
JTAG Interface Pins  
The following table shows the functional pins for the JTAG interface.  
Table 96 • JTAG Pins  
Name  
JTAG_CLK 175 I, PU, ST, 3V JTAG clock pin  
JTAG_DI 174 I, PU, ST, 3V JTAG data input pin  
JTAG_DO 172 JTAG data output pin  
Pin Type  
Description  
O
JTAG_TMS 173 I, PU, ST, 3V JTAG test mode select pin  
JTAG_TRS 171 I, PU, ST, 3V JTAG reset pin  
T
7.2.2  
MAC SerDes/QSGMII Interface Pins  
The following table shows the functional pins for the MAC SerDes/QSGMII interface.  
Table 97 • MAC SerDes/QSGMII Interface Pins  
Name  
Pin  
Type  
Description  
SERDES_E[1:3]_RXN A31, A27, A21 ADIFF 6G SerDes receive negative polarity pins  
SERDES_E[1:3]_RXP A30, A28, A20 ADIFF 6G SerDes receive positive polarity pins  
SERDES_E[1:3]_TXN A33, A25, A23 ADIFF 6G SerDes transmit negative polarity pins  
SERDES_E[1:3]_TXP A32, A26, A22 ADIFF 6G SerDes transmit positive polarity pins  
SERDES_REXT_[0:1] 106, 107  
ABIAS Analog bias calibration. Connect an external  
620 ±1% resistor between  
SERDES_REXT_1 and SERDES_REXT_0.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
72  
Pin Descriptions  
7.2.3  
Miscellaneous Pins  
The following table shows the miscellaneous pins.  
Table 98 • Miscellaneous Pins  
Name  
Pin  
50  
49  
45  
Type  
I/O  
Description  
ESLED0_CLK  
ESLED0_LD  
ESLED1_CLK  
Enhanced serial LED clock  
Enhanced serial LED load  
I/O  
I/O  
LED direct-drive output  
Enhanced serial LED clock  
ESLED1_DO  
ESLED1_LD  
44  
I/O  
I/O  
I/O  
LED direct-drive output  
Enhanced serial LED data  
A14  
43  
LED direct-drive output  
Enhanced serial LED load  
ESLED1_PULSE  
LED direct-drive output  
Enhanced serial LED pulse  
FAST_LINK_STATUS 38  
I/O  
I/O  
Fast link failure indication.  
GPIO_15  
42  
LED direct-drive output  
General purpose I/O  
GPIO_16  
41  
I/O  
LED direct-drive output  
General purpose I/O  
GPIO_29  
40  
I/O  
General purpose I/O  
PHYADD[3:4]  
222, 221  
I, PD  
PHY address range select.  
REFCLK_N  
REFCLK_P  
69  
70  
I, ADIFF Reference clock input. The input can be  
either differential or single-ended. In  
differential mode, REFCLK_P is the true  
part of the differential signal, and  
REFCLK_N is the complement part of the  
differential signal. In single-ended mode,  
REFCLK_P is used as single-ended LVTTL  
input, and the REFCLK_N should be pulled  
to VDD_A. Required applied frequency  
depends on REFCLK_SEL[2:0] input state.  
REFCLK_SEL[0:2]  
216, 217, 215  
I, PD  
Reference clock frequency select.  
0: Connect to pull-down or leave floating.  
1: Connect to pull-up to VDD_IO.  
000: 125 MHz (default).  
001: 156.25 MHz.  
100: 25 MHz.  
7.2.4  
Multipurpose Pins  
The following table shows the functional descriptions for the multipurpose I/O pins.  
Table 99 • Multipurpose Pins  
Name  
Pin Type Description  
A15 I/O Enhanced serial LED data  
ESLED0_DO / GPIO_2  
General purpose I/O  
ESLED0_PULSE / GPIO_3  
47  
I/O  
Enhanced serial LED pulse  
General purpose I/O  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
73  
Pin Descriptions  
7.2.5  
Power Supply Pins  
The following table shows the power supply pins. All power supply pins must be connected to their  
respective voltage input, even though certain pin functions may not be used for a specific application.  
Table 100 • Power Supply Pins  
Name  
Pin  
Type Description  
VDD_[1:41]  
57, 58, 59, 76, 77, 78, 86, 87, 88, 1.0V Connect to 1.0 V  
89, 90, 99, 100, 101, 102, 105,  
109, 110, 111, 112, 113, 114, 115,  
116, 117, 118, 119, 120, 121, 122,  
123, 124, 125, A10, A43, A44,  
A45, A61, A62, A72, A73  
VDD_A_[1:15]  
60, 63, 64, 68, 71, 72, 74, 80, 82, 1.0V Analog SerDes 1.0 V  
85, 91, 93, 95, 98, 104  
VDD_AH_[1:21] A2, A3, A4, A5, A7, A8, A9, A47, 2.5V Analog 2.5 V  
A48, A49, A50, A51, A53, A54,  
A55, A64, A65, A66, A67, A68,  
A69  
VDD_AL_[1:12] 1, 20, 37, 126, 127, 128, 129,  
130, 133, 160, 183, 201  
1.0V Analog 1.0 V  
VDD_IO_[1:11]  
39, 56, 67, 83, 108, A59, A60,  
A71, A75, A76, A77  
2.5V Connect to 2.5 V  
VDD_VS_[1:12] 61, 62, 73, 75, 79, 81, 84, 92, 94, 1.0V Analog SerDes 1.0 V  
96, 97, 103  
VSS_[1:16]  
VSS_163  
A6, A13, A18, A19, A24, A29,  
A34, A39, A40, A41, A42, A46,  
A52, A58, A63, A70, A74  
0V  
Ground  
7.2.6  
Reserved Pins  
The following table shows the reserved device pins. Except for pin 223 (RESERVED_0), which must be  
connected to ground, all RESERVED pins must be left floating.  
Table 101 • Reserved Pins  
Name  
Pin  
Type Description  
NC Reserved. Connect to ground.  
RESERVED_0  
RESERVED_[3:8]  
RESERVED_[10:18]  
223  
220, 218, 167, 168, 169, 170 NC  
Reserved. Leave unconnected.  
Reserved. Leave unconnected.  
A56, A57, 212, 213, A78, A1, NC  
A17, A16  
RESERVED_[22:30]  
66, 65, A11, 53, 52, 48, 51,  
219, 46  
NC  
Reserved. Leave unconnected.  
Reserved. Leave unconnected.  
RESERVED_[100:103]  
A38, A37, A36, A35  
NC  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
74  
Pin Descriptions  
7.2.7  
Serial Management Interface Pins  
The following table shows the functional pins for the serial management interface.  
Table 102 • Serial Management Interface Pins  
Name  
Pin Type  
Description  
COMA_MOD 214 I/O, PU, ST, 3V When this pin is asserted high, all PHYs are held in a  
E
powered down state. When this pin is deasserted low, all  
PHYs are powered up and resume normal operation. This  
signal is also used to synchronize the operation of multiple  
chips on the same PCB to provide visual synchronization for  
LEDs driven from the separate chips.  
MDC  
54  
A12 I/O, OD, OS  
55 I/O, OD  
224 I, PD, ST, 3V  
I
Management data clock pin.  
Management interrupt signal.  
Management data input/output pin.  
Device reset pin, active low.  
MDINT  
MDIO  
NRESET  
7.2.8  
Twisted Pair Interface Pins  
The following table shows the functional pins for the twisted pair interface.  
Table 103 • Twisted Pair Interface Pins  
Name  
Pin  
Type  
Description  
P[0:11]_D0N  
138, 146, 156, 165, ADIFF Connects to RJ45 pin 2 through a magnetic.  
182, 191, 202, 210,  
8, 16, 27, 35  
P[0:11]_D0P  
P[0:11]_D1N  
P[0:11]_D1P  
P[0:11]_D2N  
P[0:11]_D2P  
P[0:11]_D3N  
P[11:0]_D3P  
139, 147, 157, 166, ADIFF Connects to RJ45 Pin 1 through a magnetic.  
184, 192, 203, 211, 9,  
17, 28, 36  
136, 144, 154, 163, ADIFF Connects to RJ45 Pin 6 through a magnetic.  
180, 189, 199, 208,  
6, 14, 25, 33  
137, 145, 155, 164, ADIFF Connects to RJ45 Pin 3 through a magnetic.  
181, 190, 200, 209,  
7, 15, 26, 34  
134, 142, 152, 161, ADIFF Connects to RJ45 Pin 5 through a magnetic.  
178, 187, 197, 206,  
4, 12, 23, 31  
135, 143, 153, 162, ADIFF Connects to RJ45 Pin 4 through a magnetic.  
179, 188, 198, 207,  
5, 13, 24, 32  
131, 140, 150, 158, ADIFF Connects to RJ45 Pin 8 through a magnetic.  
176, 185, 195, 204,  
2, 10, 21, 29  
132, 141, 151, 159, ADIFF Connects to RJ45 Pin 7 through a magnetic.  
177, 186, 196, 205,  
3, 11, 22, 30  
REF_FILT_[0:2] 148, 193, 18  
ABIAS Copper media reference filter pins. Connect  
each of these pins to one external 1 µF  
capacitor each and then all going to ground.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
75  
Pin Descriptions  
Table 103 • Twisted Pair Interface Pins (continued)  
Name  
Pin  
Type  
Description  
REF_REXT_[0:2] 149, 194, 19  
ABIAS Copper media reference external pins. Connect  
each of these pins to one external 2.0 k(1%)  
resistor each and then all going to ground.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
76  
12-Port 10/100/1000BASE-T PHY with QSGMII MAC  
7.3  
Pins by Number  
This section provides a numeric list of the VSC8522-02 pins.  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
FAST_LINK_STATUS  
VDD_IO_1  
GPIO_29  
1
VDD_AL_1  
P8_D3N  
2
GPIO_16  
3
P8_D3P  
GPIO_15  
4
P8_D2N  
ESLED1_PULSE  
ESLED1_DO  
ESLED1_CLK  
RESERVED_30  
ESLED0_PULSE / GPIO_3  
RESERVED_27  
ESLED0_LD  
ESLED0_CLK  
RESERVED_28  
RESERVED_26  
RESERVED_25  
MDC  
5
P8_D2P  
6
P8_D1N  
7
P8_D1P  
8
P8_D0N  
9
P8_D0P  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
P9_D3N  
P9_D3P  
P9_D2N  
P9_D2P  
P9_D1N  
P9_D1P  
P9_D0N  
MDIO  
P9_D0P  
VDD_IO_2  
VDD_1  
REF_FILT_2  
REF_REXT_2  
VDD_AL_2  
P10_D3N  
P10_D3P  
P10_D2N  
P10_D2P  
P10_D1N  
P10_D1P  
P10_D0N  
P10_D0P  
P11_D3N  
P11_D3P  
P11_D2N  
P11_D2P  
P11_D1N  
P11_D1P  
P11_D0N  
P11_D0P  
VDD_AL_3  
VDD_2  
VDD_3  
VDD_A_1  
VDD_VS_1  
VDD_VS_2  
VDD_A_2  
VDD_A_3  
RESERVED_23  
RESERVED_22  
VDD_IO_3  
VDD_A_4  
REFCLK_N  
REFCLK_P  
VDD_A_5  
VDD_A_6  
VDD_VS_3  
VDD_A_7  
VDD_VS_4  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
77  
Pins by number (continued)  
76  
VDD_4  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
VDD_22  
VDD_23  
VDD_24  
VDD_25  
VDD_26  
VDD_27  
VDD_28  
VDD_29  
VDD_30  
VDD_31  
VDD_32  
VDD_33  
VDD_AL_4  
VDD_AL_5  
VDD_AL_6  
VDD_AL_7  
VDD_AL_8  
P0_D3N  
P0_D3P  
77  
VDD_5  
78  
VDD_6  
79  
VDD_VS_5  
VDD_A_8  
VDD_VS_6  
VDD_A_9  
VDD_IO_4  
VDD_VS_7  
VDD_A_10  
VDD_7  
80  
81  
82  
83  
84  
85  
86  
87  
VDD_8  
88  
VDD_9  
89  
VDD_10  
90  
VDD_11  
91  
VDD_A_11  
VDD_VS_8  
VDD_A_12  
VDD_VS_9  
VDD_A_13  
92  
93  
94  
95  
VDD_AL_9  
P0_D2N  
P0_D2P  
96  
VDD_VS_10  
VDD_VS_11  
VDD_A_14  
VDD_12  
97  
98  
P0_D1N  
P0_D1P  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
VDD_13  
P0_D0N  
P0_D0P  
VDD_14  
VDD_15  
P1_D3N  
P1_D3P  
VDD_VS_12  
VDD_A_15  
VDD_16  
P1_D2N  
P1_D2P  
SERDES_REXT_0  
SERDES_REXT_1  
VDD_IO_5  
VDD_17  
P1_D1N  
P1_D1P  
P1_D0N  
P1_D0P  
VDD_18  
REF_FILT_0  
REF_REXT_0  
P2_D3N  
P2_D3P  
VDD_19  
VDD_20  
VDD_21  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
78  
Pins by number (continued)  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
P2_D2N  
P2_D2P  
P2_D1N  
P2_D1P  
P2_D0N  
P2_D0P  
P3_D3N  
P3_D3P  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
A1  
P5_D1P  
P5_D0N  
P5_D0P  
REF_FILT_1  
REF_REXT_1  
P6_D3N  
P6_D3P  
P6_D2N  
VDD_AL_10  
P3_D2N  
P6_D2P  
P6_D1N  
P3_D2P  
P6_D1P  
P3_D1N  
VDD_AL_12  
P6_D0N  
P3_D1P  
P3_D0N  
P6_D0P  
P3_D0P  
P7_D3N  
RESERVED_5  
RESERVED_6  
RESERVED_7  
RESERVED_8  
JTAG_TRST  
JTAG_DO  
JTAG_TMS  
JTAG_DI  
JTAG_CLK  
P4_D3N  
P7_D3P  
P7_D2N  
P7_D2P  
P7_D1N  
P7_D1P  
P7_D0N  
P7_D0P  
RESERVED_12  
RESERVED_13  
COMA_MODE  
REFCLK_SEL2  
REFCLK_SEL0  
REFCLK_SEL1  
RESERVED_4  
RESERVED_29  
RESERVED_3  
PHYADD4  
PHYADD3  
RESERVED_0  
NRESET  
P4_D3P  
P4_D2N  
P4_D2P  
P4_D1N  
P4_D1P  
P4_D0N  
VDD_AL_11  
P4_D0P  
P5_D3N  
P5_D3P  
P5_D2N  
RESERVED_15  
VDD_AH_1  
VDD_AH_2  
P5_D2P  
A2  
P5_D1N  
A3  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
79  
Pins by number (continued)  
A4  
VDD_AH_3  
VDD_AH_4  
VSS_1  
A42  
A43  
A44  
A45  
A46  
A47  
A48  
A49  
A50  
A51  
A52  
A53  
A54  
A55  
A56  
A57  
A58  
A59  
A60  
A61  
A62  
A63  
A64  
A65  
A66  
A67  
A68  
A69  
A70  
A71  
A72  
A73  
A74  
A75  
A76  
A77  
A78  
VSS_10  
A5  
VDD_35  
A6  
VDD_36  
A7  
VDD_AH_5  
VDD_AH_6  
VDD_AH_7  
VDD_34  
VDD_37  
A8  
VSS_11  
A9  
VDD_AH_8  
VDD_AH_9  
VDD_AH_10  
VDD_AH_11  
VDD_AH_12  
VSS_12  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
A31  
A32  
A33  
A34  
A35  
A36  
A37  
A38  
A39  
A40  
A41  
RESERVED_24  
MDINT  
VSS_2  
ESLED1_LD  
ESLED0_DO / GPIO_2  
RESERVED_18  
RESERVED_17  
VSS_163  
VDD_AH_13  
VDD_AH_14  
VDD_AH_15  
RESERVED_10  
RESERVED_11  
VSS_13  
VSS_3  
SERDES_E3_RXP  
SERDES_E3_RXN  
SERDES_E3_TXP  
SERDES_E3_TXN  
VSS_4  
VDD_IO_6  
VDD_IO_7  
VDD_38  
VDD_39  
SERDES_E2_TXN  
SERDES_E2_TXP  
SERDES_E2_RXN  
SERDES_E2_RXP  
VSS_5  
VSS_14  
VDD_AH_16  
VDD_AH_17  
VDD_AH_18  
VDD_AH_19  
VDD_AH_20  
VDD_AH_21  
VSS_15  
SERDES_E1_RXP  
SERDES_E1_RXN  
SERDES_E1_TXP  
SERDES_E1_TXN  
VSS_6  
VDD_IO_8  
VDD_40  
RESERVED_103  
RESERVED_102  
RESERVED_101  
RESERVED_100  
VSS_7  
VDD_41  
VSS_16  
VDD_IO_9  
VDD_IO_10  
VDD_IO_11  
RESERVED_14  
VSS_8  
VSS_9  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
80  
12-Port 10/100/1000BASE-T PHY with QSGMII MAC  
7.4  
Pins by Name  
This section provides an alphabetical list of the VSC8522-02 pins.  
P1_D3P  
141  
27  
P10_D0N  
COMA_MODE  
ESLED0_CLK  
ESLED0_DO / GPIO_2  
ESLED0_LD  
ESLED0_PULSE / GPIO_3  
ESLED1_CLK  
ESLED1_DO  
ESLED1_LD  
ESLED1_PULSE  
FAST_LINK_STATUS  
GPIO_15  
214  
50  
P10_D0P  
P10_D1N  
P10_D1P  
P10_D2N  
P10_D2P  
P10_D3N  
P10_D3P  
P11_D0N  
P11_D0P  
P11_D1N  
P11_D1P  
P11_D2N  
P11_D2P  
P11_D3N  
P11_D3P  
P2_D0N  
P2_D0P  
P2_D1N  
P2_D1P  
P2_D2N  
P2_D2P  
P2_D3N  
P2_D3P  
P3_D0N  
P3_D0P  
P3_D1N  
P3_D1P  
P3_D2N  
P3_D2P  
P3_D3N  
P3_D3P  
P4_D0N  
P4_D0P  
P4_D1N  
P4_D1P  
P4_D2N  
28  
25  
A15  
49  
26  
23  
47  
24  
45  
21  
44  
22  
A14  
43  
35  
36  
38  
33  
42  
34  
GPIO_16  
41  
31  
GPIO_29  
40  
32  
JTAG_CLK  
JTAG_DI  
175  
174  
172  
173  
171  
54  
29  
30  
JTAG_DO  
JTAG_TMS  
JTAG_TRST  
MDC  
156  
157  
154  
155  
152  
153  
150  
151  
165  
166  
163  
164  
161  
162  
158  
159  
182  
184  
180  
181  
178  
MDINT  
A12  
55  
MDIO  
NRESET  
224  
138  
139  
136  
137  
134  
135  
131  
132  
146  
147  
144  
145  
142  
143  
140  
P0_D0N  
P0_D0P  
P0_D1N  
P0_D1P  
P0_D2N  
P0_D2P  
P0_D3N  
P0_D3P  
P1_D0N  
P1_D0P  
P1_D1N  
P1_D1P  
P1_D2N  
P1_D2P  
P1_D3N  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
81  
Pins by name (continued)  
P4_D2P  
P4_D3N  
P4_D3P  
P5_D0N  
P5_D0P  
P5_D1N  
P5_D1P  
P5_D2N  
P5_D2P  
P5_D3N  
P5_D3P  
P6_D0N  
P6_D0P  
P6_D1N  
P6_D1P  
P6_D2N  
P6_D2P  
P6_D3N  
P6_D3P  
P7_D0N  
P7_D0P  
P7_D1N  
P7_D1P  
P7_D2N  
P7_D2P  
P7_D3N  
P7_D3P  
P8_D0N  
P8_D0P  
P8_D1N  
P8_D1P  
P8_D2N  
P8_D2P  
P8_D3N  
P8_D3P  
P9_D0N  
P9_D0P  
P9_D1N  
179  
176  
177  
191  
192  
189  
190  
187  
188  
185  
186  
202  
203  
199  
200  
197  
198  
195  
196  
210  
211  
208  
209  
206  
207  
204  
205  
8
P9_D1P  
15  
P9_D2N  
12  
P9_D2P  
13  
P9_D3N  
10  
P9_D3P  
11  
PHYADD3  
222  
221  
148  
193  
18  
PHYADD4  
REF_FILT_0  
REF_FILT_1  
REF_FILT_2  
REF_REXT_0  
REF_REXT_1  
REF_REXT_2  
REFCLK_N  
149  
194  
19  
69  
REFCLK_P  
70  
REFCLK_SEL0  
REFCLK_SEL1  
REFCLK_SEL2  
RESERVED_0  
RESERVED_3  
RESERVED_4  
RESERVED_5  
RESERVED_6  
RESERVED_7  
RESERVED_8  
RESERVED_10  
RESERVED_11  
RESERVED_12  
RESERVED_13  
RESERVED_14  
RESERVED_15  
RESERVED_17  
RESERVED_18  
RESERVED_22  
RESERVED_23  
RESERVED_24  
RESERVED_25  
RESERVED_26  
216  
217  
215  
223  
220  
218  
167  
168  
169  
170  
A56  
A57  
212  
213  
A78  
A1  
9
6
7
4
A17  
A16  
66  
5
2
3
65  
16  
A11  
53  
17  
14  
52  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
82  
Pins by name (continued)  
RESERVED_27  
RESERVED_28  
RESERVED_29  
RESERVED_30  
RESERVED_100  
RESERVED_101  
RESERVED_102  
RESERVED_103  
SERDES_E1_RXN  
SERDES_E1_RXP  
SERDES_E1_TXN  
SERDES_E1_TXP  
SERDES_E2_RXN  
SERDES_E2_RXP  
SERDES_E2_TXN  
SERDES_E2_TXP  
SERDES_E3_RXN  
SERDES_E3_RXP  
SERDES_E3_TXN  
SERDES_E3_TXP  
SERDES_REXT_0  
SERDES_REXT_1  
VDD_1  
48  
VDD_17  
VDD_18  
VDD_19  
VDD_20  
VDD_21  
VDD_22  
VDD_23  
VDD_24  
VDD_25  
VDD_26  
VDD_27  
VDD_28  
VDD_29  
VDD_30  
VDD_31  
VDD_32  
VDD_33  
VDD_34  
VDD_35  
VDD_36  
VDD_37  
VDD_38  
VDD_39  
VDD_40  
VDD_41  
VDD_A_1  
VDD_A_2  
VDD_A_3  
VDD_A_4  
VDD_A_5  
VDD_A_6  
VDD_A_7  
VDD_A_8  
VDD_A_9  
VDD_A_10  
VDD_A_11  
VDD_A_12  
VDD_A_13  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
A10  
A43  
A44  
A45  
A61  
A62  
A72  
A73  
60  
51  
219  
46  
A38  
A37  
A36  
A35  
A31  
A30  
A33  
A32  
A27  
A28  
A25  
A26  
A21  
A20  
A23  
A22  
106  
107  
57  
VDD_2  
58  
VDD_3  
59  
VDD_4  
76  
VDD_5  
77  
63  
VDD_6  
78  
64  
VDD_7  
86  
68  
VDD_8  
87  
71  
VDD_9  
88  
72  
VDD_10  
89  
74  
VDD_11  
90  
80  
VDD_12  
99  
82  
VDD_13  
100  
101  
102  
105  
85  
VDD_14  
91  
VDD_15  
93  
VDD_16  
95  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
83  
Pins by name (continued)  
VDD_A_14  
VDD_A_15  
VDD_AH_1  
VDD_AH_2  
VDD_AH_3  
VDD_AH_4  
VDD_AH_5  
VDD_AH_6  
VDD_AH_7  
VDD_AH_8  
VDD_AH_9  
VDD_AH_10  
VDD_AH_11  
VDD_AH_12  
VDD_AH_13  
VDD_AH_14  
VDD_AH_15  
VDD_AH_16  
VDD_AH_17  
VDD_AH_18  
VDD_AH_19  
VDD_AH_20  
VDD_AH_21  
VDD_AL_1  
VDD_AL_2  
VDD_AL_3  
VDD_AL_4  
VDD_AL_5  
VDD_AL_6  
VDD_AL_7  
VDD_AL_8  
VDD_AL_9  
VDD_AL_10  
VDD_AL_11  
VDD_AL_12  
VDD_IO_1  
VDD_IO_2  
VDD_IO_3  
98  
VDD_IO_4  
VDD_IO_5  
VDD_IO_6  
VDD_IO_7  
VDD_IO_8  
VDD_IO_9  
VDD_IO_10  
VDD_IO_11  
VDD_VS_1  
VDD_VS_2  
VDD_VS_3  
VDD_VS_4  
VDD_VS_5  
VDD_VS_6  
VDD_VS_7  
VDD_VS_8  
VDD_VS_9  
VDD_VS_10  
VDD_VS_11  
VDD_VS_12  
VSS_1  
83  
104  
A2  
108  
A59  
A60  
A71  
A75  
A76  
A77  
61  
A3  
A4  
A5  
A7  
A8  
A9  
A47  
A48  
A49  
A50  
A51  
A53  
A54  
A55  
A64  
A65  
A66  
A67  
A68  
A69  
1
62  
73  
75  
79  
81  
84  
92  
94  
96  
97  
103  
A6  
VSS_2  
A13  
A19  
A24  
A29  
A34  
A39  
A40  
A41  
A42  
A46  
A52  
A58  
A63  
A70  
A74  
A18  
VSS_3  
VSS_4  
20  
VSS_5  
37  
VSS_6  
126  
127  
128  
129  
130  
133  
160  
183  
201  
39  
VSS_7  
VSS_8  
VSS_9  
VSS_10  
VSS_11  
VSS_12  
VSS_13  
VSS_14  
VSS_15  
VSS_16  
56  
VSS_163  
67  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
84  
Package Information  
8
Package Information  
VSC8522XJQ-02 and VSC8522XJQ-04 are packaged in a lead-free (Pb-free), 302-pin, plastic thin quad  
flat package (TQFP) with an exposed pad, 24 mm × 24 mm body size, 1 mm body thickness, 0.4 mm pin  
pitch for the outer leads, 0.5 mm pin pitch for the inner leads, and 1.2 mm maximum height.  
Lead-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC  
and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.  
This section provides the package drawing, thermal specifications, and moisture sensitivity rating for the  
device.  
8.1  
Package Drawing  
The following illustration shows the package drawing for the device. The drawing contains the top view,  
bottom view, side view, detail views, dimensions, tolerances, and notes.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
85  
Package Information  
Figure 30 • Package Drawing  
Top View  
Bottom View  
5
6
24.00  
Pin 1  
corner  
22.00  
Pin 1 corner  
26.00  
4
12.50  
11.40 ±0.10  
D
Detail B  
3
224  
224  
1
1
13 (13×)  
A78  
A1  
3
3
4
A
B
5
6
0.22 ±0.05 (78×)  
Detail D  
Detail E  
10.50  
Detail C  
Detail A  
0.05 M  
H
A-B D  
0.20 (4×)  
C
A-B D  
0.20 (4×)  
0.05  
H
A-B  
D
Side View  
Detail A  
0.05  
0.20 min  
0° min  
0.08/0.20 R  
0.25  
11°–13°  
2
H
2
H
0.10  
C
1.00  
±0.05  
1.20  
max  
C
C
0.08  
0°–7°  
C
0.08 M  
C
A-B D  
Seating plane  
C
0.08 R min  
9
Gauge plane  
0.60 ±0.15  
+0.049  
–0.051  
0.051  
Detail B  
Detail C  
3
1.00  
0.40 BSC  
Detail D  
Even land side  
0.40 ±0.10  
A, B, or D  
0.10 M  
H
A-B D  
0.18  
±0.05  
0.40 maximum cut width  
0.25 maximum cut depth  
Detail E  
3
8
0.50 BSC  
Odd land side  
Notes  
1. All dimensions and tolerances are in millimeters (mm).  
2. Datum plane H is located at the mold parting line and coincident lead, where the  
lead exits the plastic body at the bottom of the parting line.  
3. Datums A–B and D are determined at the centerline, between leads, where the  
leads exit the plastic body at datum plane H.  
0.50 BSC  
D
D
4. Determined at seating plane C.  
5. Dimensions do not include a mold protrusion allowance of 0.254 mm.  
6. Determined at datum plane H.  
Cross section C-C  
0.08 M  
C
A-B D  
8
7. Top of package may be smaller than the bottom of package by 0.15 mm.  
8. Dimension does not include a dambar protrusion allowance of 0.08 mm total in  
excess of the pin width maximum.  
9. Measured from the seating plane to the lowest point of the package body.  
10. Exposed pad size tolerance is 0.10 mm maximum.  
0.18 ±0.05  
Cross section D-D  
14  
0.144/0.200  
Base metal  
with lead  
finish  
0.08 H  
0.22 ±0.05  
0 ±0.05  
Base metal  
with lead  
finish  
11. Exposed pad is coplanar with the bottom of the package within 0.05 mm.  
12. Unilateral coplanarity zone applies to the exposed pad and terminals.  
13. Mechanical connect tabs are counted as ground signal pins and are included in the  
total package pin count.  
0.152  
Mold compound  
14. Applies to the flat section of the lead between 0.10 mm and 0.25 mm from lead tip.  
8.2  
Thermal Specifications  
Thermal specifications for this device are based on the JEDEC JESD51 family of documents. These  
documents are available on the JEDEC Web site at www.jedec.org. The thermal specifications are  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
86  
Package Information  
modeled using a four-layer test board with two signal layers, a power plane, and a ground plane (2s2p  
PCB). For more information about the thermal measurement method used for this device, see the  
JESD51-1 standard.  
Table 104 • Thermal Resistances  
Symbol  
θJCtop  
θJB  
°C/W  
5.13  
Parameter  
Die junction to package case top  
7.86  
Die junction to printed circuit board  
Die junction to ambient  
θJA  
15.39  
11.53  
9.34  
θ
JMA at 1 m/s  
JMA at 2 m/s  
Die junction to moving air measured at an air speed of 1 m/s  
Die junction to moving air measured at an air speed of 2 m/s  
θ
To achieve results similar to the modeled thermal measurements, the guidelines for board design  
described in the JESD51 family of publications must be applied. For information about applications using  
QFP packages with an exposed pad, see the following:  
JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions, Natural Convection  
(Still Air)  
JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions, Forced Convection  
(Moving Air)  
JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions, Junction-to-Board  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-5, Extension of Thermal Test Board Standards for Packages with Direct Thermal  
Attachment Mechanisms  
8.3  
Moisture Sensitivity  
This device is rated moisture sensitivity level 4 as specified in the joint IPC and JEDEC standard  
IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
87  
Design Considerations  
9
Design Considerations  
This section provides information about the design considerations for the VSC8522-02 device.  
9.1  
10BASE-T mode unable to re-establish link  
10BASE-T mode is unable to re-establish link with the following devices if the link drops while sending  
data: SparX-III™ and Caracal™ family of switches, VSC8512-02, VSC8522-02, VSC8522-12, VSC8504,  
VSC8552, VSC8572, and VSC8574. No issue is observed for other link partner devices. The probability  
of this error occurring is low except in a test environment.  
The workaround is to contact Microsemi for the current API software release.  
This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100054.  
9.2  
9.3  
Software script for link performance  
Software script is required for improved link performance. PHY ports may exhibit suboptimal  
performance. Contact Microsemi for a script to be applied during system initialization.  
This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100034.  
10BASE-T signal amplitude  
10BASE-T signal amplitude can be lower than the minimum specified in IEEE 802.3 paragraph  
14.3.1.2.1 (2.2 V) at low supply voltages. This issue is not estimated to present any system level impact.  
Performance is not impaired with cables up to 130 m with various link partners.  
This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100036.  
9.4  
9.5  
Clause 45 register 7.60  
Clause 45, register 7.60, bit 10 reads back as a logic 1. This is a reserved bit in the standard and should  
be ignored by software.  
This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100037.  
Clause 45 register 3.22  
Clause 45, register 3.22 is cleared upon read only when extended page access register (register 31) is  
set to 0. This register cannot be read when page access register is set to a value other than 0.  
The workaround is to set the extended page access register to 0 before accessing clause 45, register  
3.22.  
This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100038.  
9.6  
9.7  
Clause 45 register 3.1  
Clause 45, register 3.1, Rx and Tx LPI received bits are cleared upon read only when extended page  
access register (register 31) is set to 0.  
The workaround is to set the extended page access register to 0 before accessing clause 45, register  
3.1.  
This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100039.  
Clause 45 register address post-increment  
Clause 45 register address post-increment only works when reading registers and only when the  
extended page access register (register 31) is set to 0. The estimated impact is low, as there are very few  
Clause 45 registers in a Gigabit PHY, and they can be addressed individually.  
The workaround is to access Clause 45 registers individually.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
88  
Design Considerations  
This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100040.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
89  
Ordering Information  
10 Ordering Information  
The device is offered with two operating temperature ranges. The range for VSC8522-02 is 0 °C ambient  
to 125 °C junction. The range for VSC8522-04 is  
–40 °C ambient to 125 °C junction.  
VSC8522XJQ-02 and VSC8522XJQ-04 are packaged in a lead-free (Pb-free), 302-pin, plastic thin quad  
flat package (TQFP) with an exposed pad, 24 mm × 24 mm body size, 1 mm body thickness, 0.4 mm pin  
pitch for the outer leads, 0.5 mm pin pitch for the inner leads, and 1.2 mm maximum height.  
Lead-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC  
and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.  
The following table lists the ordering information for the device.  
Table 105 • Ordering Information  
Part Order Number Description  
VSC8522XJQ-02  
Lead-free, 302-pin, plastic TQFP with an exposed pad, 24 mm × 24 mm  
body size, 1 mm body thickness, 0.4 mm pin pitch for the outer leads,  
0.5 mm pin pitch for the inner leads, and 1.2 mm maximum height. The  
operating temperature is 0 °C ambient to 125 °C junction.  
VSC8522XJQ-04  
Lead-free, 302-pin, plastic TQFP with an exposed pad, 24 mm × 24 mm  
body size, 1 mm body thickness, 0.4 mm pin pitch for the outer leads,  
0.5 mm pin pitch for the inner leads, and 1.2 mm maximum height. The  
operating temperature is –40 °C ambient to 125 °C junction.  
VMDS-10397 VSC8522-02 Datasheet Revision 4.2  
90  

相关型号:

VSC852TP

Digital Time Switch, PBGA440, 35 X 35 MM, BGA-440
VITESSE

VSC852TV

Digital Time Switch, PBGA440, 35 X 35 MM, TBGA-440
VITESSE

VSC8538XHJ

Octal Port 10/100/1000BASE-T PHY
VITESSE

VSC8552XKS-01

Ethernet Transceiver
MICROCHIP

VSC8552XKS-02

Ethernet Transceiver
MICROCHIP

VSC8552XKS-04

Ethernet Transceiver
MICROCHIP

VSC8552XKS-05

Ethernet Transceiver
MICROCHIP

VSC8558

Octal Port 10/100/1000BASE-T and 1000BASE-X PHY
VITESSE

VSC8558HJ

Ethernet Transceiver, 8-Trnsvr, PBGA444,
MICROSEMI

VSC8558XHJ

Ethernet Transceiver, 8-Trnsvr, PBGA444,
MICROSEMI

VSC8574XKS-05

Ethernet Transceiver
MICROCHIP

VSC8574XKS-05

Ethernet Transceiver, PBGA256, BGA-256
MICROSEMI