dsPIC33FJ09GS302 [MICROCHIP]

16-Bit Microcontrollers and Digital Signal Controllers with High-Speed PWM, ADC and Comparators; 16位微控制器和数字信号控制器与高速PWM , ADC和比较器
dsPIC33FJ09GS302
型号: dsPIC33FJ09GS302
厂家: MICROCHIP    MICROCHIP
描述:

16-Bit Microcontrollers and Digital Signal Controllers with High-Speed PWM, ADC and Comparators
16位微控制器和数字信号控制器与高速PWM , ADC和比较器

比较器 微控制器
文件: 总352页 (文件大小:3423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33FJ06GS001/101A/102A/202A  
and dsPIC33FJ09GS302  
16-Bit Microcontrollers and Digital Signal Controllers with  
High-Speed PWM, ADC and Comparators  
Operating Conditions  
Advanced Analog Features (Continued)  
• ADC module:  
• 3.0V to 3.6V, -40ºC to +125ºC, DC to 40 MIPS  
- 10-bit resolution with Successive Approximation  
Register (SAR) converter (2 Msps) and three  
Sample-and-Hold (S&H) circuits  
- Up to 8 input channels grouped into four conversion  
pairs, plus two inputs for monitoring voltage references  
- Flexible and independent ADC trigger sources  
- Dedicated Result register for each  
analog channel  
Core: 16-Bit dsPIC33F CPU  
• Code Efficient (C and Assembly) Architecture  
• Two 40-Bit Wide Accumulators  
• Single-Cycle (MAC/MPY) with Dual Data Fetch  
• Single-Cycle Mixed-Sign MUL plus Hardware Divide  
• 32-Bit Multiply Support  
Clock Management  
Timers/Output Compare/Input Capture  
• Two 16-Bit General Purpose Timers/Counters  
• Input Capture module  
• Output Compare module  
• ±2% Internal Oscillator  
• Programmable PLLs and Oscillator Clock Sources  
• Fail-Safe Clock Monitor (FSCM)  
• Independent Watchdog Timer (WDT)  
• Fast Wake-up and Start-up  
• Peripheral Pin Select (PPS) to allow Function Remap  
Communication Interfaces  
• UART module (10 Mbps):  
- With support for LIN/J2602 protocols and IrDA  
Power Management  
®
• Low-Power Management modes (Sleep, Idle, Doze)  
• Integrated Power-on Reset and Brown-out Reset  
• 2.0 mA/MHz Dynamic Current (typical)  
• 135 µA IPD Current (typical)  
• 4-Wire SPI module  
2
• I C™ module (up to 1 Mbaud) with SMBus Support  
• PPS to allow Function Remap  
Input/Output  
• Constant Current Source:  
High-Speed PWM  
• Up to Three PWM Pairs with Independent Timing  
• Dead Time for Rising and Falling Edges  
• 1.04 ns PWM Resolution for Dead Time, Duty Cycle,  
Phase and Frequency  
- Constant current generator (10 µA nominal)  
• Sink/Source 18 mA on 8 Pins and 6 mA on 13 Pins  
• 5V Tolerant Pins  
• Selectable Open-Drain and Pull-ups  
• PWM Support for:  
- DC/DC, AC/DC, Inverters, PFC and Lighting  
• Programmable Fault Inputs  
• External Interrupts on 16 I/O Pins  
Qualification and Class B Support  
• AEC-Q100 REVG (Grade 1, -40ºC to +125ºC) Planned  
• Class B Safety Library, IEC 60730  
• Flexible Trigger Configurations for ADC Conversions  
Advanced Analog Features  
Debugger Development Support  
• In-Circuit and In-Application Programming  
• Two Breakpoints  
• IEEE 1149.2 Compatible (JTAG) Boundary Scan  
• Trace and Run-Time Watch  
• Two High-Speed Comparators with Direct Connection to  
the PWM module:  
- Buffered/amplified output drive  
- Independent 10-bit DAC for each comparator  
- Rail-to-rail comparator operation  
- DACOUT amplifier (1x, 1.8x)  
- Selectable hysteresis  
- Programmable output polarity  
- Interrupt generation capability  
2011-2012 Microchip Technology Inc.  
DS75018C-page 1  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
dsPIC33FJ06GS001/101A/102A/202A  
and dsPIC33FJ09GS302 PRODUCT  
FAMILIES  
The device names, pin counts, memory sizes and periph-  
eral availability of each device are listed in Table 1. The  
following pages show their pinout diagrams.  
TABLE 1:  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 PRODUCT FAMILIES  
Remappable Peripherals  
ADC  
Device  
PDIP,  
SOIC  
18  
20  
18  
20  
dsPIC33FJ06GS001  
dsPIC33FJ06GS101A  
6
6
256  
256  
8
8
2
2
0
0
0
1
0
1
0
1
2x2  
2x2  
2
0
3
3
0
0
0
0
0
1
1
1
1
1
2
3
6
6
13  
13  
SSOP  
PDIP,  
SOIC  
SSOP  
SPDIP,  
SOIC,  
SSOP,  
QFN-S  
28  
36  
28  
36  
28  
36  
dsPIC33FJ06GS102A  
dsPIC33FJ06GS202A  
dsPIC33FJ09GS302  
6
6
9
256 16  
1K 16  
1K 16  
2
2
2
0
1
1
1
1
1
1
1
1
1
1
1
2x2  
2x2  
3x2  
0
2
2
3
3
3
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
3
3
3
6
6
8
21  
21  
21  
VTLA  
SPDIP,  
SOIC,  
SSOP,  
QFN-S  
VTLA  
SPDIP,  
SOIC,  
SSOP,  
QFN-S  
VTLA  
Note 1:  
2:  
INT0 is not remappable.  
The PWM4 pair is remappable and only available on dsPIC33FJ06GS001/101A and dsPIC33FJ09GS302 devices.  
DS75018C-page 2  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Pin Diagrams  
= Pins are up to 5V tolerant  
18-Pin SOIC, PDIP  
MCLR  
AN0/CMP1A/RA0  
AN1/CMP1B/RA1  
1
2
3
4
5
18  
17  
16  
15  
14  
VDD  
VSS  
PWM1L/RA3  
PWM1H/RA4  
VCAP  
AN2/CMP1C/CMP2A/RA2  
(1)  
AN3/CMP1D/CMP2B/RP0 /CN0/RB0  
(1)  
OSC1/CLKI/AN6/RP1 /CN1/RB1  
VSS  
6
7
8
13  
12  
11  
(1)  
(1)  
OSC2/CLKO/AN7/RP2 /CN2/RB2  
PGEC1/SDA1/RP7 /CN7/RB7  
(1)  
(1)  
PGED2/TCK/INT0/RP3 /CN3/RB3  
PGED1/TDI/SCL1/RP6 /CN6/RB6  
(1)  
(1)  
9
10  
PGEC2/TMS/EXTREF/RP4 /CN4/RB4  
TDO/RP5 /CN5/RB5  
MCLR  
AN0/RA0  
AN1/RA1  
AN2/RA2  
1
2
3
4
5
18  
17  
16  
15  
14  
VDD  
VSS  
PWM1L/RA3  
PWM1H/RA4  
VCAP  
(1)  
AN3/RP0 /CN0/RB0  
(1)  
OSC1/CLKI/AN6/RP1 /CN1/RB1  
VSS  
6
7
8
13  
12  
11  
(1)  
(1)  
OSC2/CLKO/AN7/RP2 /CN2/RB2  
PGEC1/SDA1/RP7 /CN7/RB7  
(1)  
(1)  
PGED1/TDI/SCL1/RP6 /CN6/RB6  
PGED2/TCK/INT0/RP3 /CN3/RB3  
(1)  
(1)  
PGEC2/TMS/RP4 /CN4/RB4  
9
10  
TDO/RP5 /CN5/RB5  
= Pins are up to 5V tolerant  
20-Pin SSOP  
20  
19  
18  
AVDD  
MCLR  
AN0/CMP1A/RA0  
1
2
3
4
5
AVSS  
PWM1L/RA3  
PWM1H/RA4  
AN1/CMP1B/RA1  
AN2/CMP1C/CMP2A/RA2  
17  
16  
(1)  
AN3/CMP1D/CMP2B/RP0 /CN0/RB0  
VDD  
VSS  
VCAP  
15  
6
7
8
(1)  
14  
13  
OSCI/CLKI/AN6/RP1 /CN1/RB1  
VSS  
(1)  
(1)  
OSCO/CLKO/AN7/RP2 /CN2/RB2  
PGEC1/SDA1/RP7 /CN7/RB7  
(1)  
12  
11  
(1)  
9
PGED2/TCK/INT0/RP3 /CN3/RB3  
PGED1/TDI/SCL1/RP6 /CN6/RB6  
(1)  
(1)  
TDO/RP5 /CN5/RB5  
10  
PGEC2/TMS/EXTREF/RP4 /CN4/RB4  
AVDD  
20  
19  
18  
MCLR  
AN0/RA0  
AN1/RA1  
AN2/RA2  
1
2
3
4
5
AVSS  
PWM1L/RA3  
PWM1H/RA4  
17  
16  
(1)  
AN3/RP0 /CN0/RB0  
VDD  
VSS  
VCAP  
15  
6
7
8
(1)  
14  
13  
OSCI/CLKI/AN6/RP1 /CN1/RB1  
VSS  
(1)  
(1)  
OSCO/CLKO/AN7/RP2 /CN2/RB2  
PGEC1/SDA1/RP7 /CN7/RB7  
(1)  
12  
11  
(1)  
PGED2/TCK/INT0/RP3 /CN3/RB3  
9
PGED1/TDI/SCL1/RP6 /CN6/RB6  
(1)  
(1)  
TDO/RP5 /CN5/RB5  
10  
PGEC2/TMS/RP4 /CN4/RB4  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 3  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Pin Diagrams (Continued)  
= Pins are up to 5V tolerant  
28-Pin SOIC, SPDIP, SSOP  
MCLR  
AN0/RA0  
AN1/RA1  
AN2/RA2  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
AVSS  
PWM1L/RA3  
PWM1H/RA4  
PWM2L/RP14 /CN14/RB14  
PWM2H/RP13 /CN13/RB13  
TCK/RP12 /CN12/RB12  
(1)  
(1)  
AN3/RP0 /CN0/RB0  
AN4/RP9 /CN9/RB9  
AN5/RP10 /CN10/RB10  
(1)  
(1)  
(1)  
(1)  
(1)  
TMS/RP11 /CN11/RB11  
VSS  
(1)  
OSC1/CLKI/RP1 /CN1/RB1  
OSC2/CLKO/RP2 /CN2/RB2  
PGED2/INT0/RP3 /CN3/RB3  
9
VCAP  
VSS  
(1)  
10  
11  
12  
13  
14  
(1)  
(1)  
PGEC1/SDA1/RP7 /CN7/RB7  
PGED1/TDI/1SCL1/RP6 /CN6/RB6  
TDO/RP5 /CN5/RB5  
PGEC3/RP15 /CN15/RB15  
(1)  
(1)  
PGEC2/RP4 /CN4/RB4  
(1)  
VDD  
(1)  
(1)  
PGED3/RP8 /CN8/RB8  
= Pins are up to 5V tolerant  
28-Pin SPDIP, SOIC, SSOP  
MCLR  
AN0/CMP1A/RA0  
AN1/CMP1B/RA1  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
AVSS  
PWM1L/RA3  
PWM1H/RA4  
PWM2L/RP14 /CN14/RB14  
PWM2H/RP13 /CN13/RB13  
TCK/RP12 /CN12/RB12  
TMS/RP11 /CN11/RB11  
VCAP  
VSS  
PGEC1/SDA1/RP7 /CN7/RB7  
PGED1/TDI/SCL1/RP6 /CN6/RB6  
AN2/CMP1C/CMP2A/RA2  
(1)  
(1)  
AN3/CMP1D/CMP2B/RP0 /CN0/RB0  
(1)  
(1)  
AN4/CMP2C/RP9 /CN9/RB9  
(1)  
(1)  
AN5/CMP2D/RP10 /CN10/RB10  
(1)  
VSS  
(1)  
OSC1/CLKI/RP1 /CN1/RB1  
OSC2/CLKO/RP2 /CN2/RB2  
PGED2/DACOUT/INT0/RP3 /CN3/RB3  
9
(1)  
10  
11  
12  
13  
14  
(1)  
(1)  
(1)  
(1)  
PGEC2/EXTREF/RP4 /CN4/RB4  
(1)  
VDD  
TDO/RP5 /CN5/RB5  
PGEC3/RP15 /CN15/RB15  
(1)  
(1)  
PGED3/RP8 /CN8/RB8  
28-Pin SPDIP, SOIC, SSOP  
= Pins are up to 5V tolerant  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
AVSS  
MCLR  
AN0/CMP1A/RA0  
AN1/CMP1B1/RA1  
PWM1L/RA3  
PWM1H/RA4  
PWM2L/RP14 /CN14/RB14  
PWM2H/RP13 /CN13/RB13  
TCK/RP12 /CN12/RB12  
AN2/CMP1C/CMP2A/RA2  
(1)  
(1)  
AN3/CMP1D/CMP2B/RP0 /CN0/RB0  
(1)  
(1)  
AN4/ISRC4/CMP2C/RP9 /CN9/RB9  
(1)  
(1)  
AN5/ISRC3/CMP2D/RP10 /CN10/RB10  
(1)  
TMS/RP11 /CN11/RB11  
VSS  
(1)  
9
OSC1/CLKI/AN6/ISRC2/RP1 /CN1/RB1  
OSC2/CLKO/AN7/ISRC1/RP2 /CN2/RB2  
PGED2/DACOUT/INT0/RP3 /CN3/RB3  
VCAP  
VSS  
(1)  
10  
11  
12  
13  
14  
(1)  
(1)  
PGEC1/SDA1/RP7 /CN7/RB7  
PGED1/TDI/SCL1/RP6 /CN6/RB6  
TDO/RP5 /CN5/RB5  
PGEC3/RP15/CN15/RB15  
(1)  
(1)  
PGEC2/EXTREF/RP4 /CN4/RB4  
(1)  
VDD  
(1)  
PGED3/RP8 /CN8/RB8  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
DS75018C-page 4  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Pin Diagrams (Continued)  
28-Pin QFN-S(2)  
= Pins are up to 5V tolerant  
28 27 26 25 24 23 22  
(1)  
AN2/RA2  
1
2
3
4
5
6
7
21  
PWM2L/RP14 /CN14/RB14  
(1)  
(1)  
AN3/RP0 /CN0/RB0  
AN4/RP9 /CN9/RB9  
20 PWM2H/RP13 /CN13/RB13  
(1)  
(1)  
19 TCK/RP12 /CN12/RB12  
(1)  
(1)  
dsPIC33FJ06GS102A  
TMS/RP11 /CN11/RB11  
AN5/RP10 /CN10/RB10  
18  
17  
16  
15  
VSS  
VCAP  
VSS  
(1)  
OSC1/CLKI/RP1 /CN1/RB1  
(1)  
(1)  
PGEC1/SDA1/RP7 /CN7/RB7  
OSC2/CLKO/RP2 /CN2/RB2  
8
9 10 11 12 13 14  
28-Pin QFN-S(2)  
= Pins are up to 5V tolerant  
28 27 26 25 24 23 22  
(1)  
AN2/CMP1C/CMP2A/RA2  
1
2
3
4
5
6
7
21 PWM2L/RP14 /CN14/RB14  
(1)  
(1)  
AN3/CMP1D/CMP2B/RP0 /CN0/RB0  
PWM2H/RP13 /CN13/RB13  
20  
(1)  
(1)  
AN4/CMP2C/RP9 /CN9/RB9  
19 TCK/RP12 /CN12/RB12  
(1)  
(1)  
AN5/CMP2D/RP10 /CN10/RB10  
18 TMS/RP11 /CN11/RB11  
dsPIC33FJ06GS202A  
VSS  
17  
16  
15  
VCAP  
VSS  
(1)  
OSC1/CLKI/RP1 /CN1/RB1  
(1)  
(1)  
OSC2/CLKO/RP2 /CN2/RB2  
PGEC1/SDA1/RP7 /CN7/RB7  
8
9 10 11 12 13 14  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 5  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Pin Diagrams (Continued)  
28-Pin QFN-S(2)  
= Pins are up to 5V tolerant  
28 27 26 25 24 23 22  
(1)  
AN2/CMP1C/CMP2A/RA2  
1
2
3
4
5
6
7
21  
PWM2L/RP14 /CN14/RB14  
(1)  
(1)  
AN3/CMP1D/CMP2B/RP0 /CN0/RB0  
20 PWM2H/RP13 /CN13/RB13  
(1)  
(1)  
AN4/ISRC4/CMP2C/RP9 /CN9/RB9  
19  
18  
17  
16  
15  
TCK/RP12 /CN12/RB12  
(1)  
(1)  
AN5/ISRC3/CMP2D/RP10 /CN10/RB10  
dsPIC33FJ09GS302  
TMS/RP11 /CN11/RB11  
VSS  
VCAP  
VSS  
(1)  
OSC1/CLKI/AN6/ISRC2/RP1 /CN1/RB1  
(1)  
(1)  
OSC2/CLKO/AN7/ISRC1//RP2 /CN2/RB2  
PGEC1/SDA1/RP7 /CN7/RB7  
8
9 10 11 12 13 14  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
DS75018C-page 6  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Pin Diagrams (Continued)  
36-Pin VTLA  
= Pins are up to 5V tolerant  
(1)  
36  
1
34 33 32 31 30 29 28 27  
26  
35  
PWM2L/RP14 /CN14/RB14  
(1)  
(1)  
AN4/RP9 /CN9/RB9  
PWM2H/RP13 /CN13/RB13  
(1)  
(1)  
2
3
4
5
6
7
8
9
25  
24  
AN5/RP10 /CN10/RB10  
TCK/RP12 /CN12/RB12  
(1)  
NC  
NC  
TMS/RP11 /CN11/RB11  
23  
VDD  
dsPIC33FJ06GS102A  
VDD  
22  
VCAP  
VSS  
21 VSS  
(1)  
OSCI/CLKI/RP1 /CN1/RB1  
N/C  
PGEC1/SDA1/RP7 /CN7/RB7  
20  
19  
(1)  
(1)  
OSCO/CLKO/RP2 /CN2/RB2  
NC  
18  
10 11 12 13 14 15 16 17  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 7  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Pin Diagrams (Continued)  
36-Pin VTLA  
= Pins are up to 5V tolerant  
(1)  
36  
1
34 33 32 31 30 29 28 27  
26  
35  
PWM2L/RP14 /CN14/RB14  
(1)  
(1)  
AN4/CMP2C/RP9 /CN9/RB9  
PWM2H/RP13 /CN13/RB13  
(1)  
(1)  
2
3
4
5
6
7
8
9
25  
24  
AN5/CMP2D/RP10 /CN10/RB10  
TCK/RP12 /CN12/RB12  
(1)  
NC  
NC  
TMS/RP11 /CN11/RB11  
23  
VDD  
VCAP  
VSS  
dsPIC33FJ06GS202A  
VDD  
VSS  
22  
21  
(1)  
OSCI/CLKI/RP1 /CN1/RB1  
20 N/C  
(1)  
(1)  
OSCO/CLKO/RP2 /CN2/RB2  
19  
PGEC1/SDA1/RP7 /CN7/RB7  
18  
10 11 12 13 14 15 16 17  
NC  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected  
to VSS externally.  
DS75018C-page 8  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Pin Diagrams (Continued)  
36-Pin VTLA  
= Pins are up to 5V tolerant  
(1)  
36  
1
34 33 32 31 30 29 28 27  
26  
35  
PWM2L/RP14 /CN14/RB14  
(1)  
(1)  
AN4/ISRC4/CMP2C/RP9 /CN9/RB9  
PWM2H/RP13 /CN13/RB13  
(1)  
(1)  
2
3
4
5
6
7
8
9
25  
24  
AN5/ISRC3/CMP2D/RP10 /CN10/RB10  
TCK/RP12 /CN12/RB12  
(1)  
NC  
NC  
TMS/RP11 /CN11/RB11  
23 VDD  
22 VCAP  
dsPIC33FJ09GS302  
VDD  
VSS  
VSS  
N/C  
21  
20  
(1)  
OSCI/CLKI/AN6/ISRC2/RP1 /CN1/RB1  
(1)  
(1)  
OSCO/CLKO/AN7/ISRC1/RP2 /CN2/RB2  
19  
18  
PGEC1/SDA1/RP7 /CN7/RB7  
10 11 12 13 14 15 16 17  
NC  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available peripherals.  
2: The metal pad at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 9  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 13  
2.0 Guidelines for Getting Started with 16-Bit Digital Signal Controllers.......................................................................................... 17  
3.0 CPU............................................................................................................................................................................................ 25  
4.0 Memory Organization................................................................................................................................................................. 37  
5.0 Flash Program Memory.............................................................................................................................................................. 75  
6.0 Resets ....................................................................................................................................................................................... 79  
7.0 Interrupt Controller ..................................................................................................................................................................... 87  
8.0 Oscillator Configuration ......................................................................................................................................................... 123  
9.0 Power-Saving Features............................................................................................................................................................ 137  
10.0 I/O Ports ................................................................................................................................................................................... 145  
11.0 Timer1 ...................................................................................................................................................................................... 173  
12.0 Timer2 Features....................................................................................................................................................................... 175  
13.0 Input Capture............................................................................................................................................................................ 177  
14.0 Output Compare....................................................................................................................................................................... 179  
15.0 High-Speed PWM..................................................................................................................................................................... 183  
16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 205  
17.0 Inter-Integrated Circuit™ (I2C™).............................................................................................................................................. 211  
18.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 219  
19.0 High-Speed 10-Bit Analog-to-Digital Converter (ADC)............................................................................................................. 225  
20.0 High-Speed Analog Comparator .............................................................................................................................................. 243  
21.0 Constant Current Source.......................................................................................................................................................... 249  
22.0 Special Features ...................................................................................................................................................................... 251  
23.0 Instruction Set Summary.......................................................................................................................................................... 259  
24.0 Development Support............................................................................................................................................................... 267  
25.0 Electrical Characteristics.......................................................................................................................................................... 271  
26.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 315  
27.0 Packaging Information.............................................................................................................................................................. 319  
Appendix A: Revision History............................................................................................................................................................. 339  
Index ................................................................................................................................................................................................. 341  
DS75018C-page 10  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 11  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Referenced Sources  
This device data sheet is based on the following  
individual chapters of the “dsPIC33F/PIC24H Family  
Reference Manual”. These documents should be  
considered the primary reference for the operation of a  
particular module or device feature.  
Note: To access the documents listed below,  
visit  
the  
Microchip  
web  
site  
(www.microchip.com).  
• Section 1. “Introduction” (DS70197)  
• Section 2. “CPU” (DS70204)  
• Section 3. “Data Memory” (DS70202)  
• Section 4. “Program Memory” (DS70203)  
• Section 5. “Flash Programming” (DS70191)  
• Section 8. “Reset” (DS70192)  
• Section 9. “Watchdog Timer (WDT) and Power-Saving Modes” (DS70196)  
• Section 10. “I/O Ports” (DS70193)  
• Section 11. “Timers” (DS70205)  
• Section 12. “Input Capture” (DS70198)  
• Section 13. “Output Compare” (DS70209)  
• Section 17. “UART” (DS70188)  
• Section 18. “Serial Peripheral Interface (SPI)” (DS70206)  
• Section 19. “Inter-Integrated Circuit™ (I2C™)” (DS70195)  
• Section 24. “Programming and Diagnostics” (DS70207)  
• Section 25. “Device Configuration” (DS70194)  
• Section 41. “Interrupts (Part IV)” (DS70300)  
Section 42. “Oscillator (Part IV)” (DS70307)  
• Section 43. “High-Speed PWM” (DS70323)  
Section 44. “High-Speed 10-Bit ADC” (DS70321)  
Section 45. “High-Speed Analog Comparator” (DS70296)  
DS75018C-page 12  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 devices contain extensive  
1.0  
DEVICE OVERVIEW  
Note:  
This data sheet summarizes the features of  
the dsPIC33FJ06GS001/101A/102A/202A  
and dsPIC33FJ09GS302 families of  
Digital Signal Processor (DSP) functionality with a  
high-performance, 16-bit microcontroller (MCU)  
architecture.  
devices. It is not intended to be  
a
Figure 1-1 shows a general block diagram of the core  
andperipheralmodulesinthedevices.Table 1-1liststhe  
functions of the various pins shown in the pinout  
diagrams.  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F/PIC24H  
Family Reference Manual”. Please see the  
Microchip web site (www.microchip.com)  
for the latest “dsPIC33F/PIC24H Family  
Reference Manual” sections.  
This document contains device-specific information for  
the following dsPIC33F Digital Signal Controller (DSC)  
devices:  
• dsPIC33FJ06GS001  
• dsPIC33FJ06GS101A  
• dsPIC33FJ06GS102A  
• dsPIC33FJ06GS202A  
• dsPIC33FJ09GS302  
2011-2012 Microchip Technology Inc.  
DS75018C-page 13  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 1-1:  
dsPIC33FJ06GS001/101A/102A/202AanddsPIC33FJ09GS302BLOCKDIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
PORTA  
PORTB  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
PCH PCL  
Y RAM  
PCU  
23  
Program Counter  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
16  
23  
16  
16  
Remappable  
Pins  
Address Generator Units  
Address Latch  
Program  
Memory  
EA MUX  
Data Latch  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
Power-up  
Timer  
W Register Array  
Divide Support  
16  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
Oscillator  
Start-up Timer  
Power-on  
Reset  
FRC/LPRC  
Oscillators  
16-Bit ALU  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VCAP  
VDD, VSS  
MCLR  
Constant  
Current  
Source  
PWM  
3 x 2  
Timer1,2  
ADC1  
UART1  
OC1  
I2C1  
Analog  
Comparator 1, 2  
Reference  
Clock  
SPI1  
IC1  
CNx  
Note:  
Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features  
present on each device.  
DS75018C-page 14  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 1-1:  
Pin Name  
AN0-AN7  
PINOUT I/O DESCRIPTIONS  
Pin  
Type  
Buffer  
Type  
PPS  
Capable  
Description  
I
I
Analog  
No  
No  
Analog input channels.  
CLKI  
ST/CMOS  
External clock source input. Always associated with OSC1 pin  
function.  
CLKO  
O
No  
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC  
modes. Always associated with OSC2 pin function.  
OSC1  
OSC2  
I
ST/CMOS  
No  
No  
Oscillator crystal input. ST buffer when configured in RC mode;  
CMOS otherwise.  
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC  
modes.  
I/O  
CN0-CN15  
IC1  
I
I
ST  
ST  
No  
Change notification inputs. Can be software programmed for  
internal weak pull-ups on all inputs.  
Yes  
Capture Input 1.  
OCFA  
OC1  
I
O
ST  
Yes  
Yes  
Compare Fault A input (for Compare Channel 1).  
Compare Output 1.  
INT0  
INT1  
INT2  
I
I
I
ST  
ST  
ST  
No  
Yes  
Yes  
External Interrupt 0.  
External Interrupt 1.  
External Interrupt 2.  
RA0-RA4  
I/O  
I/O  
I/O  
ST  
ST  
ST  
No  
No  
No  
PORTA is a bidirectional I/O port.  
PORTB is a bidirectional I/O port.  
Remappable I/O pins.  
RB0-RB15(1)  
RP0-RP15(1)  
T1CK  
T2CK  
I
I
ST  
ST  
Yes  
Yes  
Timer1 external clock input.  
Timer2 external clock input.  
U1CTS  
U1RTS  
U1RX  
I
O
I
ST  
ST  
Yes  
Yes  
Yes  
Yes  
UART1 Clear-to-Send.  
UART1 Ready-to-Send.  
UART1 receive.  
U1TX  
O
UART1 transmit.  
SCK1  
SDI1  
SDO1  
SS1  
I/O  
I
O
ST  
ST  
Yes  
Yes  
Yes  
Yes  
Synchronous serial clock input/output for SPI1.  
SPI1 data in.  
SPI1 data out.  
I/O  
ST  
SPI1 slave synchronization or frame pulse I/O.  
SCL1  
SDA1  
I/O  
I/O  
ST  
ST  
No  
No  
Synchronous serial clock input/output for I2C1.  
Synchronous serial data input/output for I2C1.  
TMS  
TCK  
TDI  
I
I
I
TTL  
TTL  
TTL  
No  
No  
No  
No  
JTAG Test mode select pin.  
JTAG test clock input pin.  
JTAG test data input pin.  
JTAG test data output pin.  
TDO  
O
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = Transistor-Transistor Logic  
Analog = Analog input  
P = Power  
PPS = Peripheral Pin Select  
I = Input  
O = Output  
— = Does not apply  
Note 1: Not all pins are available on all devices. Refer to the specific device in the “Pin Diagrams” section for  
availability.  
2: This pin is available on dsPIC33FJ09GS302 devices only.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 15  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
Capable  
CMP1A  
CMP1B  
CMP1C  
CMP1D  
CMP2A  
CMP2B  
CMP2C  
CMP2D  
I
I
I
I
I
I
I
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
No  
No  
No  
No  
No  
No  
No  
No  
Comparator 1 Channel A.  
Comparator 1 Channel B.  
Comparator 1 Channel C.  
Comparator 1 Channel D.  
Comparator 2 Channel A.  
Comparator 2 Channel B.  
Comparator 2 Channel C.  
Comparator 2 Channel D.  
DACOUT  
O
O
No  
DAC output voltage.  
ACMP1-ACMP2  
Yes  
DAC trigger to PWM module.  
ISRC1(2)  
ISRC2(2)  
ISRC3(2)  
ISRC4(2)  
O
O
O
O
No  
No  
No  
No  
Constant Current Source Output 1.  
Constant Current Source Output 2.  
Constant Current Source Output 3.  
Constant Current Source Output 4.  
EXTREF  
I
Analog  
No  
External voltage reference input for the reference DACs.  
REFCLKO  
O
Yes  
REFCLKO output signal is a postscaled derivative of the system  
clock.  
FLT1-FLT8  
I
ST  
Yes  
Fault inputs to PWM module.  
SYNCI1-SYNCI2  
SYNCO1  
PWM1L  
PWM1H  
PWM2L  
PWM2H  
PWM4L  
PWM4H  
I
ST  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
External synchronization signal to PWM master time base.  
PWM master time base for external device synchronization.  
PWM1 low output.  
PWM1 high output.  
PWM2 low output.  
PWM2 high output.  
PWM4 low output.  
PWM4 high output.  
O
O
O
O
O
O
O
PGED1  
PGEC1  
I/O  
I
ST  
ST  
No  
No  
Data I/O pin for programming/debugging Communication Channel 1.  
Clock input pin for programming/debugging Communication  
Channel 1.  
PGED2  
PGEC2  
I/O  
I
ST  
ST  
No  
No  
Data I/O pin for programming/debugging Communication Channel 2.  
Clock input pin for programming/debugging Communication  
Channel 2.  
Data I/O pin for programming/debugging Communication Channel 3.  
Clock input pin for programming/debugging Communication  
Channel 3.  
PGED3(1)  
PGEC3(1)  
I/O  
I
ST  
ST  
No  
No  
MCLR  
AVDD  
AVSS  
I/P  
P
ST  
P
No  
No  
No  
Master Clear (Reset) input. This pin is an active-low Reset to the  
device.  
Positive supply for analog modules. This pin must be connected  
at all times. AVDD is connected to VDD on 18 and 28-pin devices.  
P
P
Ground reference for analog modules. AVSS is connected to VSS  
on 18 and 28-pin devices.  
VDD  
VCAP  
VSS  
P
P
P
No  
No  
No  
Positive supply for peripheral logic and I/O pins.  
CPU logic filter capacitor connection.  
Ground reference for logic and I/O pins.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = Transistor-Transistor Logic  
Analog = Analog input  
P = Power  
PPS = Peripheral Pin Select  
I = Input  
O = Output  
— = Does not apply  
Note 1: Not all pins are available on all devices. Refer to the specific device in the “Pin Diagrams” section for  
availability.  
2: This pin is available on dsPIC33FJ09GS302 devices only.  
DS75018C-page 16  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
DIGITAL SIGNAL  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS, is required.  
CONTROLLERS  
Consider the following criteria when using decoupling  
capacitors:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
Value and type of capacitor: Recommendation  
of 0.1 µF (100 nF), 10-20V. This capacitor should  
be a low-ESR and have resonance frequency in  
the range of 20 MHz and higher. It is  
recommended that ceramic capacitors be used.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within  
one-quarter inch (6 mm) in length.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise, upward of  
tens of MHz, add a second ceramic type capacitor  
in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 µF to 0.001 µF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible;  
for example, 0.1 µF in parallel with 0.001 µF.  
2.1  
Basic Connection Requirements  
Getting started with the dsPIC33FJ06GS001/101A/  
102A/202A and dsPIC33FJ09GS302 family of 16-bit  
Digital Signal Controllers (DSCs) requires attention to a  
minimal set of device pin connections before  
proceeding with development. The following is a list of  
pin names which must always be connected:  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB track  
• All AVDD and AVSS pins, regardless if ADC module  
is not used  
(see Section 2.2 “Decoupling Capacitors”)  
• VCAP  
(see Section 2.3 “Capacitor on Internal Voltage  
Regulator (VCAP)”)  
• MCLR pin  
inductance.  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP™ Pins”)  
• OSC1 and OSC2 pins when external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
2011-2012 Microchip Technology Inc.  
DS75018C-page 17  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
2.3  
Capacitor on Internal Voltage  
Regulator (VCAP)  
0.1 µF  
Ceramic  
A low-ESR (<0.5 Ohms) capacitor is required on the  
VCAP pin, which is used to stabilize the voltage regulator  
output voltage. The VCAP pin must not be connected to  
VDD, and must have a capacitor between 4.7 µF and  
10 µF, 16V connected to ground. The type can be  
ceramic or tantalum. Refer to Section 25.0 “Electrical  
Characteristics” for additional information.  
10 µF  
Tantalum  
VDD  
R
R1  
MCLR  
C
The placement of this capacitor should be close to the  
VCAP. It is recommended that the trace length not  
exceed one-quarter inch (6 mm). Refer to Section 22.2  
“On-Chip Voltage Regulator” for details.  
dsPIC33F  
VDD  
VSS  
VDD  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
2.4  
Master Clear (MCLR) Pin  
The MCLR pin provides for two specific device  
functions:  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
L1(1)  
• Device Reset  
• Device Programming and Debugging  
Note 1: As an option, instead of a hard-wired connection, an  
inductor (L1) can be substituted between VDD and  
AVDD to improve ADC noise rejection. The inductor  
impedance should be less than 1and the inductor  
capacity greater than 10 mA.  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
Where:  
FCNV  
(i.e., ADC conversion rate/2)  
f = -------------  
2
1
f = -----------------------  
For example, as shown in Figure 2-2, it is recommended  
that the capacitor, C, be isolated from the MCLR pin  
during programming and debugging operations.  
2LC  
1
2  
---------------------  
L =  
2f C  
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
2.2.1  
TANK CAPACITORS  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
On boards with power traces running longer than  
six inches in length, it is suggested to use a tank capac-  
itor for integrated circuits including DSCs to supply a  
local power source. The value of the tank capacitor  
should be determined based on the trace resistance  
that connects the power supply source to the device,  
and the maximum current drawn by the device in the  
application. In other words, select the tank capacitor so  
that it meets the acceptable voltage sag at the device;  
typical values range from 4.7 µF to 47 µF.  
VDD  
R(1)  
R1(2)  
MCLR  
JP  
C
dsPIC33F  
Note 1: R 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are  
met.  
2: R1 470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR  
pin VIH and VIL specifications are met.  
DS75018C-page 18  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
2.5  
ICSP™ Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming™ (ICSP™) and debugging  
purposes. It is recommended to keep the trace length  
between the ICSP connector and the ICSP pins on the  
device as short as possible. If the ICSP connector is  
expected to experience an ESD event, a series resistor  
is recommended, with the value in the range of a few  
tens of Ohms, not to exceed 100 Ohms.  
Many DSCs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 8.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes, and capacitors on the  
PGECx and PGEDx pins, are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and tim-  
ing requirements information in the respective device  
Flash programming specification for information on  
capacitive loading limits, and Input Voltage High (VIH)  
and Input Voltage Low (VIL) pin requirements.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
Ensure that the “Communication Channel Select”  
(i.e., PGECx/PGEDx pins), programmed into the  
device matches the physical connections for the ICSP  
to MPLAB® ICD 3 or MPLAB REAL ICE™.  
For more information on MPLAB ICD 3 and REAL ICE  
connection requirements, refer to the following  
documents that are available on the Microchip web site  
(www.microchip.com):  
Main Oscillator  
Guard Ring  
13  
14  
15  
16  
17  
18  
19  
20  
“Using MPLAB® ICD 3” (poster) (DS51765)  
Guard Trace  
“Multi-Tool Design Advisory” (DS51764)  
“MPLAB® REAL ICE™ In-Circuit Emulator User’s  
Guide” (DS51616)  
“Using MPLAB® REAL ICE™” (poster) (DS51749)  
Secondary  
Oscillator  
2011-2012 Microchip Technology Inc.  
DS75018C-page 19  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
If your application needs to use certain Analog-to-Digital  
2.7  
Oscillator Value Conditions on  
Device Start-up  
pins as analog input pins during the debug session, the  
user application must clear the corresponding bits in  
the ADPCFG register during initialization of the ADC  
module.  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 4 MHz < FIN < 8 MHz to comply with device PLL  
start-up conditions. This means that if the external  
oscillator frequency is outside of this range, the  
application must start up in the FRC mode first. The  
default PLL settings after a POR, with an oscillator  
frequency outside of this range, will violate the device  
operating speed.  
When MPLAB ICD 3 or REAL ICE is used as a  
programmer, the user application firmware must  
correctly configure the ADPCFG register. Automatic  
initialization of these registers is only done during  
debugger operation. Failure to correctly configure the  
register(s) will result in all Analog-to-Digital pins being  
recognized as analog input pins, resulting in the port  
value being read as a logic ‘0’, which may affect user  
application functionality.  
Once the device powers up, the application firmware  
can initialize the PLL SFRs, CLKDIV and PLLDBF to a  
suitable value, and then perform a clock switch to the  
Oscillator + PLL clock source. Note that clock switching  
must be enabled in the device Configuration Word.  
2.9  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state.  
2.8  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
Alternatively, connect a 1k to 10k resistor between VSS  
and unused pins, and drive the output to logic low.  
2.10 Typical Application Connection  
Examples  
If MPLAB ICD 3 or REAL ICE is selected as a debug-  
ger, it automatically initializes all of the Analog-to-Digital  
input pins (ANx) as “digital” pins, by setting all bits in the  
ADPCFG register.  
Examples of typical application connections are shown  
in Figure 2-4 through Figure 2-8.  
The bits in the registers that correspond to the  
Analog-to-Digital pins that are initialized by MPLAB  
ICD 3 or REAL ICE, must not be cleared by the user  
application firmware; otherwise, communication errors  
will result between the debugger and the device.  
DS75018C-page 20  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 2-4:  
DIGITAL PFC  
IPFC  
VHV_BUS  
|VAC|  
k1  
k3  
VAC  
FET  
Driver  
k2  
ADC Channel  
ADC Channel  
ADC Channel PWM Output  
dsPIC33FJ06GS001  
FIGURE 2-5:  
BOOST CONVERTER IMPLEMENTATION  
IPFC  
VINPUT  
VOUTPUT  
k1  
k3  
FET  
Driver  
k2  
ADC Channel  
ADC Channel  
ADC  
Channel  
PWM  
Output  
dsPIC33FJ06GS001  
2011-2012 Microchip Technology Inc.  
DS75018C-page 21  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 2-6:  
SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER  
12V Input  
5V Output  
I5V  
FET  
Driver  
k7  
k2  
k1  
ADC  
Channel  
Analog  
Comp.  
ADC  
Channel  
dsPIC33FJ06GS202A  
FIGURE 2-7:  
INTERLEAVED PFC  
VOUT+  
|VAC|  
k4  
VAC  
k3  
k1  
k2  
VOUT-  
FET  
Driver  
FET  
Driver  
ADC Channel  
ADC Channel  
PWM ADC  
Channel  
PWM  
ADC  
Channel  
ADC  
Channel  
dsPIC33FJ06GS202A  
DS75018C-page 22  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 2-8:  
PHASE-SHIFTED FULL-BRIDGE CONVERTER  
VIN+  
Gate 6  
Gate 3  
Gate 1  
VOUT+  
VOUT-  
S1  
S3  
Gate 2  
VIN-  
Gate 4  
Gate 5  
Gate 5  
FET  
Driver  
k2  
k1  
Analog  
Ground  
Gate 1  
S1  
FET  
Driver  
PWM  
PWM  
ADC  
PWM  
ADC  
Channel  
Channel  
Gate 3  
dsPIC33FJ09GS302  
FET  
Driver  
S3  
Gate 2  
Gate 4  
2011-2012 Microchip Technology Inc.  
DS75018C-page 23  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 24  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
3.1  
Data Addressing Overview  
3.0  
CPU  
The data space can be addressed as 32K words or  
64 Kbytes and is split into two blocks, referred to as X  
and Y data memory. Each memory block has its own  
independent Address Generation Unit (AGU). The  
MCU class of instructions operates solely through  
the X memory AGU, which accesses the entire  
memory map as one linear data space. Certain DSP  
instructions operate through the X and Y AGUs to  
support dual operand reads, which splits the data  
address space into two parts. The X and Y data space  
boundary is device-specific.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 2. “CPU”  
(DS70204) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
Overhead-free circular buffers (Modulo Addressing  
mode) are supported in both X and Y address spaces.  
The Modulo Addressing removes the software boundary  
checking overhead for DSP algorithms. Furthermore,  
the X AGU Circular Addressing can be used with any of  
the MCU class of instructions. The X AGU also supports  
Bit-Reversed Addressing to greatly simplify input or  
output data reordering for radix-2 FFT algorithms.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The CPU module has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set, including  
significant support for DSP. The CPU has a 24-bit  
instruction word with a variable length opcode field. The  
Program Counter (PC) is 23 bits wide and addresses up  
to 4M x 24 bits of user program memory space. The  
actual amount of program memory implemented varies  
from device to device. A single-cycle instruction prefetch  
mechanism is used to help maintain throughput and  
provides predictable execution. All instructions execute in  
a single cycle, with the exception of instructions that  
change the program flow, the double-word move (MOV.D)  
instruction and the table instructions. Overhead-free  
program loop constructs are supported using the DOand  
REPEAT instructions, both of which are interruptible at  
any point.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K program word boundary defined by the 8-bit  
Program Space Visibility Page (PSVPAG) register. The  
program-to-data space mapping feature lets any  
instruction access program space as if it were data  
space.  
3.2  
DSP Engine Overview  
The DSP engine features a high-speed, 17-bit by 17-bit  
multiplier, 40-bit ALU, two 40-bit saturating  
a
accumulators and a 40-bit bidirectional barrel shifter.  
The barrel shifter is capable of shifting a 40-bit value up  
to 16 bits, right or left, in a single cycle. The DSP  
instructions operate seamlessly with all other  
instructions and have been designed for optimal real-  
time performance. The MACinstruction and other asso-  
ciated instructions can concurrently fetch two data  
operands from memory while multiplying two W  
registers and accumulating and optionally saturating  
the result in the same cycle. This instruction  
functionality requires that the RAM data space be split  
for these instructions and linear for all others. Data  
space partitioning is achieved in a transparent and  
flexible manner through dedicating certain working  
registers to each address space.  
The dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 devices have sixteen, 16-bit  
working registers in the programmer’s model. Each of the  
working registers can serve as a Data, Address or  
Address Offset register. The sixteenth working register  
(W15) operates as a software Stack Pointer (SP) for  
interrupts and calls.  
There are two classes of instruction: MCU and DSP.  
These two instruction classes are seamlessly  
integrated into a single CPU. The instruction set  
includes many addressing modes and is designed  
for optimum C compiler efficiency. For most instruc-  
tions, the devices are capable of executing a data  
(or program data) memory read, a working register  
(data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, three parameter instructions can be sup-  
ported, allowing A + B = C operations to be executed  
in a single cycle.  
A block diagram of the CPU is shown in Figure 3-1,  
and the programmer’s model is shown in Figure 3-2.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 25  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The 16/16 and 32/16 divide operations are supported,  
3.3  
Special MCU Features  
both fractional and integer. All divide instructions are  
iterative operations. They must be executed within a  
REPEAT loop, resulting in a total execution time of  
19 instruction cycles. The divide operation can be  
interrupted during any of those 19 cycles without loss of  
data.  
A 17-bit by 17-bit single-cycle multiplier is shared by both  
the MCU ALU and DSP engine. The multiplier can per-  
form signed, unsigned and mixed-sign multiplication.  
Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit  
multiplication not only allows you to perform mixed-sign  
multiplication, it also achieves accurate results for special  
operations, such as (-1.0) x (-1.0).  
A 40-bit barrel shifter is used to perform up to a 16-bit  
left or right shift in a single cycle. The barrel shifter can  
be used by both MCU and DSP instructions.  
FIGURE 3-1:  
CPU CORE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
Y RAM  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
16  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
W Register Array  
Divide Support  
16  
16-Bit ALU  
16  
To Peripheral Modules  
DS75018C-page 26  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 3-2:  
PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD15  
AD39  
AD31  
AD0  
DSP  
Accumulators  
ACCA  
ACCB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB SA SB OAB SAB DA DC  
SRH  
RA  
N
Z
C
IPL2 IPL1 IPL0  
OV  
STATUS Register  
SRL  
2011-2012 Microchip Technology Inc.  
DS75018C-page 27  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
3.4  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA(1)  
R/C-0  
SB(1)  
R-0  
R/C-0  
SAB(1,4)  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
R/W-0(3)  
IPL<2:0>(2)  
R/W-0(3)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clearable bit  
S = Settable bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
OA: Accumulator A Overflow Status bit  
1= Accumulator A overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(1)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(1)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulators A or B have overflowed  
0= Neither Accumulators A or B have overflowed  
SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit(1,4)  
1= Accumulators A or B are saturated or have been saturated at some time in the past  
0= Neither Accumulator A or B are saturated  
DA: DOLoop Active bit  
1= DOloop in progress  
0= DOloop not in progress  
bit 8  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized  
data) of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when  
IPL3 = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
4: Clearing this bit will clear SA and SB.  
DS75018C-page 28  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 3-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of a magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation that affects the Z bit has set it at some time in the past  
0= The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when  
IPL3 = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
4: Clearing this bit will clear SA and SB.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 29  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
US: DSP Multiply Unsigned/Signed Control bit  
1= DSP engine multiplies are unsigned  
0= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminate executing DOloop at end of current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= 7 DOloops active  
001= 1 DOloop active  
000= 0 DOloops active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SATA: ACCA Saturation Enable bit  
1= Accumulator A saturation is enabled  
0= Accumulator A saturation is disabled  
SATB: ACCB Saturation Enable bit  
1= Accumulator B saturation is enabled  
0= Accumulator B saturation is disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data space write saturation is enabled  
0= Data space write saturation is disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space is visible in data space  
0= Program space is not visible in data space  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding is enabled  
0= Unbiased (convergent) rounding is enabled  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode enabled for DSP multiply ops  
0= Fractional mode enabled for DSP multiply ops  
Note 1: This bit will always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS75018C-page 30  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
3.5  
Arithmetic Logic Unit (ALU)  
3.6  
DSP Engine  
The ALU is 16 bits wide and is capable of addition,  
subtraction, bit shifts and logic operations. Unless  
otherwise mentioned, arithmetic operations are 2’s  
complement in nature. Depending on the operation, the  
ALU can affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC) Status  
bits in the SR register. The C and DC Status bits operate  
as Borrow and Digit Borrow bits, respectively, for  
subtraction operations.  
The DSP engine consists of a high-speed, 17-bit x 17-bit  
multiplier, a barrel shifter and a 40-bit adder/subtracter  
(with two target accumulators, round and saturation  
logic).  
The dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 devices feature a single-cycle  
instruction flow architecture; therefore, concurrent  
operation of the DSP engine with MCU instruction flow is  
not possible. However, some MCU ALU and DSP engine  
resources can be used concurrently by the same  
instruction (for example, ED, EDAC).  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
The DSP engine can also perform inherent  
accumulator-to-accumulator operations that require no  
additional data. These instructions are ADD, SUBand  
NEG.  
The DSP engine has options selected through bits in  
the CPU Core Control register (CORCON), as listed  
below:  
Refer to the “16-Bit MCU and DSC Programmer’s  
Reference Manual” (DS70157) for information on the  
SR bits affected by each instruction.  
• Fractional or Integer DSP Multiply (IF)  
The CPU incorporates hardware support for both multipli-  
cation and division. This includes a dedicated hardware  
multiplier and support hardware for 16-bit divisor division.  
• Signed or Unsigned DSP Multiply (US)  
• Conventional or Convergent Rounding (RND)  
• Automatic Saturation On/Off for ACCA (SATA)  
• Automatic Saturation On/Off for ACCB (SATB)  
3.5.1  
MULTIPLIER  
Using the high-speed, 17-bit x 17-bit multiplier of the  
DSP engine, the ALU supports unsigned, signed or  
mixed-sign operation in several MCU multiplication  
modes:  
• Automatic Saturation On/Off for Writes to Data  
Memory (SATDW)  
• Accumulator Saturation mode Selection (ACCSAT)  
A block diagram of the DSP engine is shown in  
Figure 3-3.  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
TABLE 3-1:  
Instruction  
DSP INSTRUCTIONS  
SUMMARY  
Algebraic  
Operation  
ACC Write  
Back  
CLR  
A = 0  
Yes  
No  
ED  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
3.5.2  
DIVIDER  
EDAC  
MAC  
No  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
Yes  
No  
MAC  
• 32-bit signed/16-bit signed divide  
• 32-bit unsigned/16-bit unsigned divide  
• 16-bit signed/16-bit signed divide  
• 16-bit unsigned/16-bit unsigned divide  
MOVSAC  
MPY  
No change in A  
A = x * y  
A = x2  
Yes  
No  
MPY  
No  
MPY.N  
MSC  
A = – x * y  
No  
The quotient for all divide instructions ends up in W0 and  
the remainder in W1. 16-bit signed and unsigned DIV  
instructions can specify any W register for both the 16-bit  
A = A – x * y  
Yes  
divisor (Wn) and any  
W register (aligned) pair  
(W(m + 1):Wm) for the 32-bit dividend. The divide  
algorithm takes one cycle per bit of divisor, so both 32-bit/  
16-bit and 16-bit/16-bit instructions take the same  
number of cycles to execute.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 31  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 3-3:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40-Bit Accumulator A  
40-Bit Accumulator B  
40  
t 16  
40  
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Carry/Borrow In  
Saturate  
Adder  
e
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-Bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS75018C-page 32  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The adder/subtracter generates Overflow Status bits,  
SA/SB and OA/OB, which are latched and reflected in  
the STATUS register:  
3.6.1  
MULTIPLIER  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
multiplier/scaler is a 33-bit value that is sign-extended  
to 40 bits. Integer data is inherently represented as a  
signed 2’s complement value, where the Most  
Significant bit (MSb) is defined as a sign bit. The range  
of an N-bit 2’s complement integer is -2N-1 to 2N-1 – 1.  
• Overflow from bit 39: This is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed  
• Overflow into guard bits, 32 through 39: This is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
The adder has an additional saturation block that controls  
accumulator data saturation, if selected. It uses the result  
of the adder, the Overflow Status bits described  
previously and the SAT<A:B> (CORCON<7:6>) and  
ACCSAT (CORCON<4>) mode control bits to determine  
when and to what value to saturate.  
• For a 16-bit integer, the data range is -32768  
(0x8000) to 32767 (0x7FFF) including 0  
• For a 32-bit integer, the data range is  
-2,147,483,648 (0x8000 0000) to 2,147,483,647  
(0x7FFF FFFF)  
Six STATUS register bits support saturation and  
overflow:  
• OA: ACCA overflowed into guard bits  
• OB: ACCB overflowed into guard bits  
When the multiplier is configured for fractional  
multiplication, the data is represented as a 2’s  
complement fraction, where the MSb is defined as a  
sign bit and the radix point is implied to lie just after the  
sign bit (QX format). The range of an N-bit 2’s  
complement fraction with this implied radix point is -1.0  
to (1 – 21-N). For a 16-bit fraction, the Q15 data range  
is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0  
and has a precision of 3.01518x10-5. In Fractional  
mode, the 16 x 16 multiply operation generates a  
• SA: ACCA saturated (bit 31 overflow and  
saturation)  
or  
ACCA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
• SB: ACCB saturated (bit 31 overflow and  
saturation)  
or  
ACCB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
1.31 product that has a precision of 4.65661 x 10-10  
.
The same multiplier is used to support the MCU  
multiply instructions, which include integer 16-bit  
signed, unsigned and mixed-sign multiply operations.  
• OAB: Logical OR of OA and OB  
• SAB: Logical OR of SA and SB  
The OA and OB bits are modified each time data passes  
through the adder/subtracter. When set, they indicate  
that the most recent operation has overflowed into the  
accumulator guard bits (bits 32 through 39). The OA and  
OB bits can also optionally generate an arithmetic warn-  
ing trap when set and the corresponding Overflow Trap  
Enable bits (OVATE, OVBTE) in the INTCON1 register  
are set (refer to Section 7.0 “Interrupt Controller”).  
This allows the user application to take immediate  
action, for example, to correct system gain.  
The MUL instruction can be directed to use byte or  
word-sized operands. Byte operands will direct a 16-bit  
result, and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
3.6.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
The data accumulator consists of a 40-bit adder/  
subtracter with automatic sign extension logic. It can  
select one of two accumulators (A or B) as its pre-  
accumulation source and post-accumulation destination.  
For the ADDand LACinstructions, the data to be accumu-  
lated or loaded can be optionally scaled using the barrel  
shifter prior to accumulation.  
The SA and SB bits are modified each time data  
passes through the adder/subtracter, but can only be  
cleared by the user application. When set, they indicate  
that the accumulator has overflowed its maximum  
range (bit 31 for 32-bit saturation or bit 39 for 40-bit  
saturation) and will be saturated (if saturation is  
enabled). When saturation is not enabled, SA and SB  
default to bit 39 overflow and thus, indicate that a cata-  
strophic overflow has occurred. If the COVTE bit in the  
INTCON1 register is set, SA and SB bits will generate  
an arithmetic warning trap when saturation is disabled.  
3.6.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side, and either true or complement  
data into the other input.  
• In the case of addition, the Carry/Borrow input is  
active-high and the other input is true data (not  
complemented)  
• In the case of subtraction, the Carry/Borrow input  
is active-low and the other input is complemented  
2011-2012 Microchip Technology Inc.  
DS75018C-page 33  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The Overflow and Saturation Status bits can optionally be  
viewed in the STATUS Register (SR) as the logical OR of  
OA and OB (in bit OAB) and the logical OR of SA and SB  
(in bit SAB). Programmers can check one bit in the  
STATUS Register to determine if either accumulator has  
overflowed, or one bit to determine if either accumulator  
has saturated. This is useful for complex number  
arithmetic, which typically uses both accumulators.  
3.6.3.1  
Round Logic  
The round logic is a combinational block that performs  
a conventional (biased) or convergent (unbiased)  
round function during an accumulator write (store). The  
Round mode is determined by the state of the RND bit  
in the CORCON register. It generates a 16-bit,  
1.15 data value that is passed to the data space write  
saturation logic. If rounding is not indicated by the  
instruction, a truncated 1.15 data value is stored and  
the least significant word is simply discarded.  
The device supports three Saturation and Overflow  
modes:  
• Bit 39 Overflow and Saturation:  
Conventional rounding zero-extends bit 15 of the accu-  
mulator and adds it to the ACCxH word (bits 16 through  
31 of the accumulator).  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive  
9.31 (0x7FFFFFFFFF) or maximally negative  
9.31 value (0x8000000000) into the target accumu-  
lator. The SA or SB bit is set and remains set until  
cleared by the user application. This condition is  
referred to as ‘super saturation’ and provides  
protection against erroneous data or unexpected  
algorithm problems (such as gain calculations).  
• If the ACCxL word (bits 0 through 15 of the  
accumulator) is between 0x8000 and 0xFFFF  
(0x8000 included), ACCxH is incremented  
• If ACCxL is between 0x0000 and 0x7FFF, ACCxH  
is left unchanged  
A consequence of this algorithm is that over a  
succession of random rounding operations, the value  
tends to be biased slightly positive.  
• Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally positive  
1.31 value (0x007FFFFFFF) or maximally negative  
1.31 value (0x0080000000) into the target accumu-  
lator. The SA or SB bit is set and remains set until  
cleared by the user application. When this Satura-  
tion mode is in effect, the guard bits are not used,  
so the OA, OB or OAB bits are never set.  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. In this case, the Least  
Significant bit (bit 16 of the accumulator) of ACCxH is  
examined:  
• If it is ‘1’, ACCxH is incremented  
• If it is ‘0’, ACCxH is not modified  
• Bit 39 Catastrophic Overflow:  
Bit 39 Overflow Status bit, from the adder, is used  
to set the SA or SB bit, which remains set until  
cleared by the user application. No saturation  
operation is performed, and the accumulator is  
allowed to overflow, destroying its sign. If the  
COVTE bit in the INTCON1 register is set, a  
catastrophic overflow can initiate a trap exception.  
Assuming that bit 16 is effectively random in nature,  
this scheme removes any rounding bias that may  
accumulate.  
The SAC and SAC.R instructions store either a  
truncated (SAC), or rounded (SAC.R) version of the  
contents of the target accumulator to data memory via  
the  
X
bus, subject to data saturation (see  
3.6.3  
ACCUMULATOR ‘WRITE BACK’  
Section 3.6.3.2 “Data Space Write Saturation”). For  
the MAC class of instructions, the accumulator write-  
back operation functions in the same manner,  
addressing combined MCU (X and Y) data space  
though the X bus. For this class of instructions, the data  
is always subject to rounding.‘  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
• W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a  
1.15 fraction.  
• [W13] + = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target  
accumulator are written into the address pointed  
to by W13 as a 1.15 fraction. W13 is then  
incremented by 2 (for a word write).  
DS75018C-page 34  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
3.6.3.2  
Data Space Write Saturation  
3.6.4  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space can also be saturated, but without affecting the  
contents of the source accumulator. The data space write  
saturation logic block accepts a 16-bit, 1.15 fractional  
value from the round logic block as its input, together with  
overflow status from the original source (accumulator)  
and the 16-bit round adder. These inputs are combined  
and used to select the appropriate 1.15 fractional value  
as output to write to data space memory.  
The barrel shifter can perform up to 16-bit arithmetic or  
logic right shifts, or up to 16-bit left shifts in a single  
cycle. The source can be either of the two DSP  
accumulators or the X bus (to support multi-bit shifts of  
register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly:  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between bit positions 16  
and 31 for right shifts, and between bit positions 0 and  
15 for left shifts.  
• For input data greater than 0x007FFF, data  
written to memory is forced to the maximum  
positive 1.15 value, 0x7FFF  
• For input data less than 0xFF8000, data written to  
memory is forced to the maximum negative  
1.15 value, 0x8000  
The Most Significant bit of the source (bit 39) is used to  
determine the sign of the operand being tested.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 35  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 36  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
4.1  
Program Address Space  
4.0  
MEMORY ORGANIZATION  
The device program address memory space is 4M  
instructions. The space is addressable by a 24-bit  
value derived either from the 23-bit Program Counter  
(PC) during program execution, or from table operation  
or data space remapping as described in Section 4.7  
“Interfacing Program and Data Memory Spaces”.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 4. “Program  
Memory” (DS70203) in the “dsPIC33F/  
PIC24H Family Reference Manual”, which  
is available from the Microchip web site  
(www.microchip.com).  
User application access to the program memory space  
is restricted to the lower half of the address range  
(0x000000 to 0x7FFFFF). The exception is the use of  
TBLRD/TBLWT operations, which use TBLPAG<7> to  
permit access to the constant current source trim value  
and Device ID sections of the configuration memory  
space.  
The device architecture features separate program and  
data memory spaces and buses. This architecture also  
allows the direct access to program memory from the  
data space during code execution.  
The device memory maps are shown in Figure 4-1.  
FIGURE 4-1:  
PROGRAM MEMORY MAPS FOR dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 DEVICES  
dsPIC33FJ06GS001/101A/102A/202A  
dsPIC33FJ09GS302  
0x000000  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
0x000002  
0x000004  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
User Program  
Flash Memory  
(1784 instructions)  
(2808 instructions)  
0x000FEE  
0x000FF0  
0x000FFE  
0x001000  
0x0017EE  
0x0017F0  
0x0017FE  
0x001800  
Configuration  
Configuration  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
0x7FFFFE  
0x800000  
Constant Current  
Source Trim Value  
Constant Current  
Source Trim Value  
0x800840  
0x800840  
Reserved  
Reserved  
0xFEFFFE  
0xFF0000  
0xFF0002  
0xFFFFFE  
0xFEFFFE  
0xFF0000  
0xFF0002  
0xFFFFFE  
DEVID (2)  
Reserved  
DEVID (2)  
Reserved  
2011-2012 Microchip Technology Inc.  
DS75018C-page 37  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.2  
INTERRUPT AND TRAP VECTORS  
All devices reserve the addresses between 0x00000 and  
0x000200 for hard-coded program execution vectors. A  
hardware Reset vector is provided to redirect code execu-  
tion from the default value of the PC on device Reset to  
the actual start of code. A GOTO instruction is pro-  
grammed by the user application at 0x000000, with the  
actual address for the start of code at 0x000002.  
The program memory space is organized in word-  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (see Figure 4-2).  
The devices also have two interrupt vector tables, located  
from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF.  
These vector tables allow each of the device interrupt  
sources to be handled by separate Interrupt Service  
Routines (ISRs). A more detailed discussion of the  
interrupt vector tables is provided in Section 7.1  
“Interrupt Vector Table”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during the code execution. This  
arrangement provides compatibility with data memory  
space addressing and makes data in the program  
memory space accessible.  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS75018C-page 38  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
4.2  
Data Address Space  
The CPU has a separate, 16-bit wide data memory  
space. The data space is accessed using separate  
Address Generation Units (AGUs) for read and write  
operations. The data memory maps are shown in  
Figure 4-3.  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed. If the error occurred  
on a write, the instruction is executed but the write does  
not occur. In either case, a trap is then executed,  
allowing the system and/or user application to examine  
the machine state prior to execution of the address  
Fault.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 4.7.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
A Sign-Extend (SE) instruction is provided to allow user  
applications to translate 8-bit signed data to 16-bit  
signed values. Alternatively, for 16-bit unsigned data,  
user applications can clear the MSB of any W register  
by executing a Zero-Extend (ZE) instruction on the  
appropriate address.  
All devices implement up to 1 Kbyte of data memory.  
Should an EA point to a location outside of this area, an  
all-zero word or byte will be returned.  
4.2.1  
DATA SPACE WIDTH  
The data memory space is organized in byte-  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
4.2.3  
SFR SPACE  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the core and  
peripheral modules for controlling the operation of the  
device.  
SFRs are distributed among the modules that they  
control, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCU  
devices and improve data space memory usage  
efficiency, the instruction set supports both word and  
byte operations. As a consequence of byte accessibil-  
ity, all Effective Address calculations are internally  
scaled to step through word-aligned memory. For  
example, the core recognizes Post-Modified Register  
Indirect Addressing mode [Ws++], which results in a  
value of Ws + 1 for byte operations and Ws + 2 for word  
operations.  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Refer to the  
corresponding device tables and pinout  
diagrams for device-specific information.  
4.2.4  
NEAR DATA SPACE  
The 8-Kbyte area between 0x0000 and 0x1FFF is  
referred to as the Near Data Space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a working  
register as an Address Pointer.  
Data byte reads will read the complete word that  
contains the byte, using the LSb of any EA to determine  
which byte to select. The selected byte is placed onto  
the LSB of the data path. That is, data memory and reg-  
isters are organized as two parallel byte-wide entities  
with shared (word) address decode but separate write  
lines. Data byte writes only write to the corresponding  
side of the array or register that matches the byte  
address.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 39  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 4-3:  
DATA MEMORY MAP FOR dsPIC33FJ06GS001/101A/102A DEVICES WITH  
256 BYTES OF RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
8-Kbyte  
Near Data  
Space  
0x087F  
0x0881  
0x087E  
0x0880  
256-Byte  
SRAM Space  
0x08FF  
0x0901  
0x08FE  
0x0900  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS75018C-page 40  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 4-4:  
DATA MEMORY MAP FOR THE dsPIC33FJ09GS302 DEVICE WITH 1 KB RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
8-Kbyte  
Near Data  
Space  
0x09FF  
0x0A01  
0x09FE  
0x0A00  
1-Kbyte  
SRAM Space  
0x0BFF  
0x0C01  
0x0BFE  
0x0C00  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
2011-2012 Microchip Technology Inc.  
DS75018C-page 41  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to  
provide two concurrent data read paths.  
4.2.5  
X AND Y DATA SPACES  
The core has two data spaces, X and Y. These data  
spaces can be considered either separate (for some  
DSP instructions), or as one unified linear address  
range (for MCU instructions). The data spaces are  
accessed using two Address Generation Units (AGUs)  
and separate data paths. This feature allows certain  
instructions to concurrently fetch two words from RAM,  
thereby enabling efficient execution of DSP algorithms,  
such as Finite Impulse Response (FIR) filtering and  
Fast Fourier Transform (FFT).  
Both the X and Y data spaces support Modulo  
Addressing mode for all instructions, subject to  
addressing mode restrictions. Bit-Reversed Addressing  
mode is only supported for writes to X data space.  
All data memory writes, included in DSP instructions,  
view data space as combined X and Y address space.  
The boundary between the X and Y data spaces is  
device-dependent and is not user-programmable.  
The X data space is used by all instructions and  
supports all addressing modes. X data space has  
separate read and write data buses. The X read data  
bus is the read data path for all instructions that view  
data space as combined X and Y address space. It is  
also the X data prefetch path for the dual operand DSP  
instructions (MACclass).  
All Effective Addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes, or 32K words, though the  
implemented memory locations vary by device.  
DS75018C-page 42  
2011-2012 Microchip Technology Inc.  
4.3  
Special Function Register Maps  
TABLE 4-1:  
CPU CORE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
00xx  
xxxx  
00xx  
0000  
Stack Pointer Limit Register  
ACCAL  
ACCAL  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
ACCAH  
0026 ACCA<39> ACCA<39> ACCA<39> ACCA<39> ACCA<39> ACCA<39> ACCA<39> ACCA<39>  
ACCAU  
0028  
002A  
ACCBL  
ACCBH  
002C ACCB<39> ACCB<39> ACCB<39> ACCB<39> ACCB<39> ACCB<39> ACCB<39> ACCB<39>  
ACCBU  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
Program Counter Low Word Register  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
Program Memory Visibility Page Address Pointer Register  
Repeat Loop Counter Register  
DCOUNT<15:0>  
DOSTARTL<15:1>  
0
0
C
DOSTARTH 003C  
DOENDL<15:1>  
DOSTARTH<5:0>  
DOENDH  
DOENDL  
DOENDH  
SR  
003E  
0040  
0042  
OA  
OB  
SA  
SB  
OAB  
SAB  
DA  
DC  
IPL<2:0>  
RA  
N
OV  
Z
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-1:  
CPU CORE REGISTER MAP (CONTINUED)  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1  
Bit 0  
CORCON  
MODCON  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
0044  
0046  
0048  
004A  
004C  
004E  
0050  
0052  
US  
EDT  
DL<2:0>  
SATA SATB SATDW ACCSAT IPL3  
YWM<3:0>  
PSV  
RND  
IF  
0020  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
XMODEN  
YMODEN  
BWM<3:0>  
XS<15:1>  
XWM<3:0>  
0
1
0
1
XE<15:1>  
YS<15:1>  
YE<15:1>  
BREN  
XB<14:0>  
Disable Interrupts Counter Register  
DISICNT  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-2:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A  
SFR  
Addr  
All  
Resets  
File Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNPU1  
0060  
0068  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN7PUE CN6PUE CN5PUE CN4PUE  
CN3PUE CN2PUE CN1PUE CN0PUE  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-3:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A, AND dsPIC33FJ09GS302  
File  
Name Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1 0060  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
Legend: x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-4:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS001 DEVICES ONLY  
All  
Reset  
s
File  
Name Addr.  
SFR  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
0000  
INTCON2 0082 ALTIVT  
DISI  
T2IF  
INT2EP  
INT1EP  
INT0EP 0000  
INT0IF 0000  
SI2C1IF 0000  
IFS0  
0084  
0086  
008A  
008C  
008E  
ADIF  
T1IF  
IFS1  
INT2IF  
INT1IF  
CNIF  
AC1IF  
MI2C1IF  
IFS3  
PSEMIF  
0000  
0000  
0000  
0000  
0000  
0000  
IFS4  
IFS5  
PWM1IF  
JTAGIF  
IFS6  
0090 ADCP1IF ADCP0IF  
AC2IF  
PWM4IF  
IFS7  
0092  
0094  
0096  
009A  
009C  
009E  
ADCP6IF  
ADCP3IF  
IEC0  
IEC1  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC3  
IPC4  
IPC5  
IPC7  
IPC14  
IPC20  
IPC23  
IPC24  
IPC25  
IPC27  
IPC28  
IPC29  
ADIE  
T2IE  
INT1IE  
T1IE  
INT0IE  
INT2IE  
CNIE  
AC1IE  
MI2C1IE  
SI2C1IE 0000  
PSEMIE  
0000  
0000  
0000  
0000  
0000  
4004  
4000  
0040  
4444  
0004  
0040  
0040  
0004  
0400  
0040  
4400  
4000  
0040  
0004  
0000  
PWM1IE  
JTAGIE  
00A0 ADCP1IE ADCP0IE  
AC2IE  
PWM4IE  
00A2  
00A4  
00A6  
00AA  
00AC  
00AE  
00B2  
00C0  
00CC  
00D2  
00D4  
00D6  
00DA  
00DC  
00DE  
ADCP6IE  
ADCP3IE  
T1IP<2:0>  
INT0IP<2:0>  
T2IP<2:0>  
-—  
ADIP<2:0>  
CNIP<2:0>  
AC1IP<2:0>  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
INT2IP<2:0>  
PSEMIP<2:0>  
JTAGIP<2:0>  
PWM1IP<2:0>  
PWM4IP<2:0>  
AC2IP<2:0>  
ADCP1IP<2:0>  
ADCP0IP<2:0>  
ADCP3IP<2:0>  
ADCP6IP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-5:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS101A DEVICES ONLY  
File  
Name  
SFR  
Addr.  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4404  
4000  
4440  
0044  
4044  
0004  
0040  
0040  
0040  
0004  
0400  
0040  
4400  
0040  
0000  
INTCON2 0082 ALTIVT  
DISI  
U1TXIF  
U1RXIF  
T2IF  
T2IE  
-—  
INT2EP  
OC1IF  
INT1EP  
IFS0  
0084  
0086  
008A  
008C  
008E  
ADIF  
SPI1IF SPI1EIF  
T1IF  
IFS1  
INT2IF  
PSEMIF  
INT1IF  
CNIF  
MI2C1IF  
IFS3  
IFS4  
U1EIF  
IFS5  
PWM1IF  
JTAGIF  
IFS6  
0090 ADCP1IF ADCP0IF  
PWM4IF  
IFS7  
0092  
0094  
0096  
009A  
009C  
009E  
ADCP3IF  
IEC0  
IEC1  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC7  
IPC14  
IPC16  
IPC20  
IPC23  
IPC24  
IPC27  
IPC28  
ADIE  
U1TXIE  
U1RXIE  
SPI1IE SPI1EIE  
T1IE  
OC1IE  
INT0IE  
SI2C1IE  
INT2IE  
INT1IE  
CNIE  
MI2C1IE  
PSEMIE  
U1EIE  
PWM1IE  
JTAGIE  
00A0 ADCP1IE ADCP0IE  
PWM4IE  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B2  
00C0  
00C4  
00CC  
00D2  
00D4  
00DA  
00DC  
ADCP3IE  
T1IP<2:0>  
OC1IP<2:0>  
INT0IP<2:0>  
T2IP<2:0>  
U1RXIP<2:0>  
SPI1IP<2:0>  
SPI1EIP<2:0>  
ADIP<2:0>  
MI2C1IP<2:0>  
U1TXIP<2:0>  
CNIP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
INT2IP<2:0>  
PSEMIP<2:0>  
U1EIP<2:0>  
JTAGIP<2:0>  
PWM1IP<2:0>  
ADCP0IP<2:0>  
PWM4IP<2:0>  
ADCP1IP<2:0>  
ADCP3IP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS102A DEVICES ONLY  
File  
Name  
SFR  
Addr.  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
U1TXIF  
U1RXIF  
T2IF  
T2IE  
-—  
T1IF  
CNIF  
INT2EP  
OC1IF  
INT1EP  
IFS0  
IFS1  
IFS3  
0084  
0086  
008A  
008C  
ADIF  
SPI1IF SPI1EIF  
INT2IF  
PSEMIF  
INT1IF  
MI2C1IF  
IFS4  
U1EIF  
IFS5  
008E PWM2IF PWM1IF  
0090 ADCP1IF ADCP0IF  
JTAGIF  
IFS6  
IFS7  
IEC0  
IEC1  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC7  
IPC14  
IPC16  
IPC20  
IPC23  
IPC27  
IPC28  
0092  
0094  
0096  
009A  
009C  
ADCP2IF 0000  
ADIE  
U1TXIE  
U1RXIE  
SPI1IE SPI1EIE  
T1IE  
CNIE  
OC1IE  
INT0IE  
SI2C1IE  
0000  
0000  
0000  
0000  
0000  
0000  
INT2IE  
INT1IE  
MI2C1IE  
PSEMIE  
U1EIE  
009E PWM2IE PWM1IE  
00A0 ADCP1IE ADCP0IE  
JTAGIE  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B2  
00C0  
00C4  
00CC  
00D2  
00DA  
00DC  
ADCP2IE 0000  
T1IP<2:0>  
OC1IP<2:0>  
INT0IP<2:0>  
4404  
T2IP<2:0>  
SPI1EIP<2:0>  
ADIP<2:0>  
MI2C1IP<2:0>  
4000  
4440  
0044  
4044  
0004  
0040  
0040  
0040  
0004  
4400  
4400  
0004  
0000  
U1RXIP<2:0>  
SPI1IP<2:0>  
U1TXIP<2:0>  
CNIP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
INT2IP<2:0>  
PSEMIP<2:0>  
U1EIP<2:0>  
JTAGIP<2:0>  
PWM2IP<2:0>  
PWM1IP<2:0>  
ADCP0IP<2:0>  
ADCP1IP<2:0>  
ADCP2IP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS202A DEVICES ONLY  
File  
Name  
SFR  
Addr.  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
U1TXIF  
U1RXIF  
T2IF  
INT2EP  
OC1IF  
AC1IF  
INT1EP  
IFS0  
0084  
0086  
008A  
008C  
ADIF  
SPI1IF SPI1EIF  
T1IF  
IC1IF  
IFS1  
INT2IF  
PSEMIF  
INT1IF  
CNIF  
MI2C1IF  
IFS3  
IFS4  
U1EIF  
IFS5  
008E PWM2IF PWM1IF  
0090 ADCP1IF ADCP0IF  
JTAGIF  
IFS6  
AC2IF  
IFS7  
0092  
0094  
0096  
009A  
009C  
ADCP6IF  
ADCP2IF 0000  
IEC0  
IEC1  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC7  
IPC14  
IPC16  
IPC20  
IPC23  
IPC25  
IPC27  
IPC28  
IPC29  
ADIE  
U1TXIE  
U1RXIE  
SPI1IE SPI1EIE  
T2IE  
T1IE  
OC1IE  
AC1IE  
IC1IE  
INT0IE  
SI2C1IE  
0000  
0000  
0000  
0000  
0000  
0000  
INT2IE  
INT1IE  
CNIE  
MI2C1IE  
PSEMIE  
U1EIE  
009E PWM2IE PWM1IE  
00A0 ADCP1IE ADCP0IE  
JTAGIE  
AC2IE  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B2  
00C0  
00C4  
00CC  
00D2  
00D6  
00DA  
00DC  
00DE  
ADCP6IE  
ADCP2IE 0000  
T1IP<2:0>  
OC1IP<2:0>  
IC1IP<2:0>  
INT0IP<2:0>  
4444  
T2IP<2:0>  
4000  
4440  
0044  
4444  
0004  
0040  
0040  
0040  
0004  
4400  
4000  
4400  
0004  
0004  
0000  
U1RXIP<2:0>  
SPI1IP<2:0>  
SPI1EIP<2:0>  
-—  
ADIP<2:0>  
U1TXIP<2:0>  
CNIP<2:0>  
AC1IP<2:0>  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
INT2IP<2:0>  
PSEMIP<2:0>  
U1EIP<2:0>  
JTAGIP<2:0>  
PWM2IP<2:0>  
PWM1IP<2:0>  
AC2IP<2:0>  
ADCP1IP<2:0>  
ADCP0IP<2:0>  
ADCP2IP<2:0>  
ADCP6IP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ09GS302 DEVICES ONLY  
File  
Name  
SFR  
Addr.  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INTCON2 0082 ALTIVT  
DISI  
U1TXIF  
U1RXIF  
T2IF  
INT2EP  
OC1IF  
AC1IF  
INT1EP  
IC1IF  
MI2C1IF  
IFS0  
0084  
0086  
008A  
008C  
ADIF  
SPI1IF SPI1EIF  
T1IF  
IFS1  
INT2IF  
PSEMIF  
INT1IF  
CNIF  
IFS3  
IFS4  
U1EIF  
IFS5  
008E PWM2IF PWM1IF  
0090 ADCP1IF ADCP0IF  
JTAGIF  
IFS6  
AC2IF  
PWM4IF  
IFS7  
0092  
0094  
0096  
009A  
009C  
ADCP6IF  
ADCP3IF ADCP2IF 0000  
IEC0  
IEC1  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC7  
IPC14  
IPC16  
IPC20  
IPC23  
IPC24  
IPC25  
IPC27  
IPC28  
IPC29  
ADIE  
U1TXIE  
U1RXIE  
SPI1IE SPI1EIE  
T2IE  
T1IE  
OC1IE  
AC1IE  
IC1IE  
MI2C1IE  
INT0IE  
SI2C1IE  
0000  
0000  
0000  
0000  
0000  
0000  
INT2IE  
INT1IE  
CNIE  
PSEMIE  
U1EIE  
009E PWM2IE PWM1IE  
00A0 ADCP1IE ADCP0IE  
JTAGIE  
AC2IE  
PWM4IE  
00A2  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B2  
00C0  
00C4  
00CC  
00D2  
00D4  
00D6  
00DA  
00DC  
00DE  
IC1IP<2:0>  
ADCP6IE  
ADCP3IE ADCP2IE 0000  
T1IP<2:0>  
OC1IP<2:0>  
INT0IP<2:0>  
4444  
4000  
4440  
0044  
4444  
0004  
0040  
0040  
0040  
0004  
4400  
0040  
4000  
4400  
0044  
0004  
0000  
T2IP<2:0>  
-—  
U1RXIP<2:0>  
SPI1IP<2:0>  
SPI1EIP<2:0>  
ADIP<2:0>  
MI2C1IP<2:0>  
-—  
-—  
U1TXIP<2:0>  
CNIP<2:0>  
AC1IP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
INT2IP<2:0>  
PSEMIP<2:0>  
U1EIP<2:0>  
JTAGIP<2:0>  
PWM2IP<2:0>  
PWM1IP<2:0>  
PWM4IP<2:0>  
AC2IP<2:0>  
ADCP1IP<2:0>  
ADCP0IP<2:0>  
-—  
ADCP3IP<2:0>  
ADCP2IP<2:0>  
ADCP6IP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
TIMER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
0100  
0102  
0104  
0106  
010C  
0110  
Timer1 Register  
Period Register 1  
0000  
FFFF  
0000  
0000  
FFFF  
0000  
PR1  
T1CON  
TMR2  
PR2  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
TSYNC  
TCS  
TCS  
Timer2 Register  
Period Register 2  
T2CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-10: INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ06GS202A AND dsPIC33FJ09GS302  
SFR  
Name  
All  
Resets  
SFR Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
Legend:  
0140  
Input Capture 1 Register  
xxxx  
0000  
0142  
ICSIDL  
ICI<1:0>  
ICOV  
ICBNE  
ICM<2:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A  
AND dsPIC33FJ09GS302  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
OC1CON  
Legend:  
OCSIDL  
OCFLT  
OCM<2:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: HIGH-SPEED PWM REGISTER MAP  
Addr  
Offset  
All  
Resets  
File Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PTCON  
PTCON2  
PTPER  
0400  
0402  
0404  
PTEN  
PTSIDL  
SESTAT  
SEIEN  
EIPU  
SYNCPOL SYNCOEN SYNCEN  
SYNCSRC<1:0>  
SEVTPS<3:0>  
PCLKDIV<2:0>  
0000  
0000  
FFF8  
0000  
0000  
0000  
PTPER<15:0>  
SEVTCMP 0406  
SEVTCMP<15:3>  
MDC  
040A  
041A CHPCLKEN  
MDC<15:0>  
CHOPCLK<6:0>  
CHOP  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-13: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP  
Addr  
Offset  
All  
Resets  
File Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
CAM  
Bit 1  
Bit 0  
PWMCON1 0420  
FLTSTAT  
PENH  
CLSTAT TRGSTAT FLTIEN  
CLIEN  
TRGIEN  
ITB  
MDCS  
DTC<1:0>  
XPRES  
SWAP  
IUE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
IOCON1  
FCLCON1  
PDC1  
0422  
0424  
0426  
0428  
042A  
042C  
042E  
0430  
0432  
0434  
0436  
PENL  
POLH  
POLL  
PMOD<1:0>  
OVRENH OVRENL OVRDAT<1:0>  
FLTDAT<1:0>  
CLDAT<1:0>  
FLTPOL  
OSYNC  
IFLTMOD  
CLSRC<4:0>  
CLPOL CLMOD FLTSRC<4:0>  
FLTMOD<1:0>  
PDC1<15:0>  
PHASE1  
DTR1  
PHASE1<15:0>  
DTR1<13:0>  
ALTDTR1<13:0>  
SDC1<15:0>  
ALTDTR1  
SDC1  
SPHASE1  
TRIG1  
SPHASE1<15:0>  
TRGCMP<15:3>  
TRGCON1  
STRIG1  
TRGDIV<3:0>  
DTM  
TRGSTRT<5:0>  
STRGCMP<15:3>  
PWMCAP1<15:3>  
PWMCAP1 0438  
LEBCON1  
AUXCON1  
Legend:  
043A  
043E  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN CLLEBEN  
LEB<6:0>  
HRPDIS  
HRDDIS  
CHOPSEL<3:0>  
CHOPHEN CHOPLEN 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-14:  
HIGH-SPEED PWM GENERATOR 2 REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302  
Addr  
Offset  
All  
Resets  
File Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON2 0440 FLTSTAT CLSTAT TRGSTAT FLTIEN  
CLIEN  
TRGIEN  
ITB  
MDCS  
DTC<1:0>  
OVRDAT<1:0>  
FLTSRC<4:0>  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
IOCON2  
FCLCON2  
PDC2  
0442  
PENH  
PENL  
POLH  
POLL  
PMOD<1:0>  
OVRENH OVRENL  
FLTDAT<1:0>  
CLDAT<1:0>  
FLTPOL  
OSYNC  
0444 IFLTMOD  
0446  
CLSRC<4:0>  
CLPOL  
CLMOD  
FLTMOD<1:0>  
PDC2<15:0>  
PHASE2<15:0>  
PHASE2  
DTR2  
0448  
044A  
044C  
044E  
0450  
0452  
0454  
0456  
DTR2<13:0>  
ALTDTR2  
SDC2  
ALTDTR2<13:0>  
SDC2<15:0>  
SPHASE2<15:0>  
SPHASE2  
TRIG2  
TRGCMP<15:3>  
TRGCON2  
STRIG2  
TRGDIV<3:0>  
DTM  
TRGSTRT<5:0>  
STRGCMP<15:3>  
PWMCAP2<15:3>  
PWMCAP2 0458  
LEBCON2  
AUXCON2  
Legend:  
045A  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN CLLEBEN  
LEB<6:0>  
045E HRPDIS HRDDIS  
CHOPSEL<3:0>  
CHOPHEN CHOPLEN 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-15: HIGH-SPEED PWM GENERATOR 4 REGISTER MAP FOR dsPIC33FJ06GS001, dsPIC33FJ06GS101A AND  
dsPIC33FJ09GS302  
Addr  
Offset  
All  
Resets  
File Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWMCON4 0480 FLTSTAT CLSTAT TRGSTAT FLTIEN  
CLIEN  
TRGIEN  
ITB  
MDCS  
DTC<1:0>  
CAM  
XPRES  
SWAP  
IUE  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
IOCON4  
FCLCON4  
PDC4  
0482  
PENH  
PENL  
POLH  
POLL  
PMOD<1:0>  
OVRENH OVRENL OVRDAT<1:0>  
FLTDAT<1:0>  
FLTSRC<4:0>  
CLDAT<1:0>  
FLTPOL  
OSYNC  
0484 IFLTMOD  
0486  
CLSRC<4:0>  
CLPOL  
CLMOD  
FLTMOD<1:0>  
PDC4<15:0>  
PHASE4<15:0>  
PHASE4  
DTR4  
0488  
048A  
048C  
048E  
0490  
0492  
0494  
0496  
DTR4<13:0>  
ALTDTR4<13:0>  
SDC4<15:0>  
SPHASE4<15:0>  
ALTDTR4  
SDC4  
SPHASE4  
TRIG4  
TRGCMP<15:3>  
TRGCON4  
STRIG4  
TRGDIV<3:0>  
DTM  
TRGSTRT<5:0>  
STRGCMP<15:3>  
PWMCAP4<15:3>  
PWMCAP4 0498  
LEBCON4  
AUXCON4  
Legend:  
049A  
PHR  
PHF  
PLR  
PLF  
FLTLEBEN CLLEBEN  
LEB<6:0>  
049E HRPDIS HRDDIS  
CHOPSEL<3:0>  
CHOPHEN CHOPLEN 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-16: I2C1 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
0200  
0202  
0204  
0206  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
I2C1STAT 0208 ACKSTAT TRSTAT  
ADD10  
IWCOL  
I2C1ADD  
I2C1MSK 020C  
Legend:  
020A  
Address Register  
AMSK<9:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-17: UART1 REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UEN0  
TRMT  
WAKE  
LPBACK ABAUD  
ADDEN  
URXINV  
RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0222 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN UTXBF  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
0224  
0226  
0228  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-18: SPI1 REGISTER MAP FOR dsPIC33FJ06GS101A, dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
Legend:  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF SPIRBF 0000  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMDLY —  
0000  
0000  
0000  
FRMEN SPIFSD FRMPOL  
SPI1 Transmit and Receive Buffer Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-19: CONSTANT CURRENT SOURCE REGISTER MAP  
All  
Resets  
File Name  
ADR  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ISRCCON  
0500  
ISRCEN  
OUTSEL<2:0>  
ISRCCAL<5:0>  
0000  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-20: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON  
0300 ADON  
ADSIDL SLOWCLK  
GSWTRG  
FORM  
EIE  
PCFG7  
ORDER SEQSAMP ASYNCSAMP  
ADCS<2:0>  
0003  
0000  
0000  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
ADPCFG  
ADSTAT  
0302  
0306  
0308  
PCFG6  
P6RDY  
PCFG3 PCFG2 PCFG1 PCFG0  
P3RDY  
P1RDY P0RDY  
ADBASE  
ADCPC0  
ADCPC1  
ADCPC3  
ADCBUF0  
ADCBUF1  
ADCBUF2  
ADCBUF3  
ADBASE<15:1>  
IRQEN0  
030A IRQEN1 PEND1 SWTRG1  
030C IRQEN3 PEND3 SWTRG3  
TRGSRC1<4:0>  
TRGSRC3<4:0>  
PEND0  
SWTRG0  
TRGSRC0<4:0>  
0310  
0320  
0322  
0324  
0326  
IRQEN6  
PEND6  
SWTRG6  
TRGSRC6<4:0>  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADCBUF6 032C  
ADCBUF7 032E  
ADCBUF12 0338  
ADCBUF13 033A  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-21: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS102A AND dsPIC33FJ06GS202A  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON  
0300 ADON  
ADSIDL SLOWCLK  
GSWTRG  
FORM  
EIE  
ORDER SEQSAMP ASYNCSAMP  
ADCS<2:0>  
0003  
0000  
0000  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
ADPCFG  
ADSTAT  
0302  
0306  
0308  
PCFG5  
PCFG4  
PCFG3 PCFG2 PCFG1 PCFG0  
P6RDY  
P2RDY P1RDY P0RDY  
ADBASE  
ADCPC0  
ADCPC1  
ADCPC3  
ADCBUF0  
ADCBUF1  
ADCBUF2  
ADCBUF3  
ADCBUF4  
ADCBUF5  
ADBASE<15:1>  
IRQEN0  
030A IRQEN1 PEND1 SWTRG1  
TRGSRC1<4:0>  
PEND0  
PEND2  
PEND6  
SWTRG0  
SWTRG2  
SWTRG6  
TRGSRC0<4:0>  
TRGSRC2<4:0>  
TRGSRC6<4:0>  
030C  
0310  
0320  
0322  
0324  
0326  
0328  
032A  
IRQEN2  
IRQEN6  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADCBUF12 0338  
ADCBUF13 033A  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-22: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ09GS302  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON  
0300 ADON  
ADSIDL SLOWCLK  
GSWTRG  
FORM  
EIE  
PCFG7  
ORDER SEQSAMP ASYNCSAMP  
ADCS<2:0>  
0003  
0000  
0000  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
ADPCFG  
ADSTAT  
0302  
0306  
0308  
PCFG6  
P6RDY  
PCFG5  
PCFG4  
PCFG3 PCFG2 PCFG1 PCFG0  
P3RDY P2RDY P1RDY P0RDY  
ADBASE  
ADCPC0  
ADCPC1  
ADCPC3  
ADCBUF0  
ADCBUF1  
ADCBUF2  
ADCBUF3  
ADCBUF4  
ADCBUF5  
ADBASE<15:1>  
IRQEN0  
030A IRQEN1 PEND1 SWTRG1  
030C IRQEN3 PEND3 SWTRG3  
TRGSRC1<4:0>  
TRGSRC3<4:0>  
PEND0  
PEND2  
PEND6  
SWTRG0  
SWTRG2  
SWTRG6  
TRGSRC0<4:0>  
IRQEN2  
IRQEN6  
TRGSRC2<4:0>  
0310  
0320  
0322  
0324  
0326  
0328  
032A  
TRGSRC6<4:0>  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADCBUF6 032C  
ADCBUF7 032E  
ADCBUF12 0338  
ADCBUF13 033A  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-23: ANALOG COMPARATOR CONTROL REGISTER MAP FOR dsPIC33FJ06GS001, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302  
All  
Resets  
File Name  
ADR  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
CMPCON1  
CMPDAC1  
CMPCON2  
CMPDAC2  
0540  
0542  
0544  
0546  
CMPON  
CMPSIDL  
HYSSEL<1:0>  
FLTREN FCLKSEL DACOE  
INSEL<1:0>  
INSEL<1:0>  
EXTREF HYSPOL CMPSTAT HGAIN CMPPOL RANGE  
0000  
0000  
0000  
0000  
CMREF<9:0>  
(1)  
CMPON  
CMPSIDL  
HYSSEL<1:0>  
FLTREN FCLKSEL DACOE  
EXTREF HYSPOL CMPSTAT HGAIN CMPPOL RANGE  
CMREF<9:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This bit is not available in the dsPIC33FJ06GS001 device.  
TABLE 4-24: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS001  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
RPINR1  
RPINR2  
RPINR3  
RPINR29  
RPINR30  
RPINR31  
RPINR32  
RPINR33  
RPINR34  
Legend:  
0680  
0682  
0684  
0686  
06BA  
06BC  
06BE  
06C0  
06C2  
06C4  
INT1R<5:0>  
3F00  
003F  
3F00  
003F  
3F00  
3F3F  
3F3F  
3F3F  
3F3F  
003F  
INT2R<5:0>  
T1CKR<5:0>  
T2CKR<5:0>  
FLT1R<5:0>  
FLT3R<5:0>  
FLT5R<5:0>  
FLT7R<5:0>  
FLT2R<5:0>  
FLT4R<5:0>  
FLT6R<5:0>  
FLT8R<5:0>  
SYNCI2R<5:0>  
SYNCI1R<5:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-25: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS101A AND dsPIC33FJ06GS102A  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
0680  
0682  
0684  
0686  
0696  
06A4  
06A8  
06AA  
06BA  
06BC  
06BE  
06C0  
06C2  
06C4  
INT1R<5:0>  
3F00  
003F  
3F00  
003F  
003F  
3F3F  
3F3F  
003F  
3F00  
3F3F  
3F3F  
3F3F  
3F3F  
003F  
RPINR1  
INT2R<5:0>  
RPINR2  
T1CKR<5:0>  
RPINR3  
T2CKR<5:0>  
OCFAR<5:0>  
U1RXR<5:0>  
SDI1R<5:0>  
SS1R<5:0>  
RPINR11  
RPINR18  
RPINR20  
RPINR21  
RPINR29  
RPINR30  
RPINR31  
RPINR32  
RPINR33  
RPINR34  
Legend:  
U1CTSR<5:0>  
SCK1R<5:0>  
FLT1R<5:0>  
FLT3R<5:0>  
FLT5R<5:0>  
FLT7R<5:0>  
FLT2R<5:0>  
FLT4R<5:0>  
FLT6R<5:0>  
FLT8R<5:0>  
SYNCI2R<5:0>  
SYNCI1R<5:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-26: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33FJ06GS202A AND dsPIC33FJ09GS302  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
RPINR1  
RPINR2  
RPINR3  
RPINR7  
RPINR11  
RPINR18  
RPINR20  
RPINR21  
RPINR29  
RPINR30  
RPINR31  
RPINR32  
RPINR33  
RPINR34  
Legend:  
0680  
0682  
0684  
0686  
068E  
0696  
06A4  
06A8  
06AA  
06BA  
06BC  
06BE  
06C0  
06C2  
06C4  
INT1R<5:0>  
3F00  
003F  
3F00  
003F  
003F  
003F  
3F3F  
3F3F  
003F  
3F00  
3F3F  
3F3F  
3F3F  
3F3F  
003F  
INT2R<5:0>  
T1CKR<5:0>  
T2CKR<5:0>  
IC1R<5:0>  
OCFAR<5:0>  
U1RXR<5:0>  
SDI1R<5:0>  
SS1R<5:0>  
U1CTSR<5:0>  
SCK1R<5:0>  
FLT1R<5:0>  
FLT3R<5:0>  
FLT5R<5:0>  
FLT7R<5:0>  
FLT2R<5:0>  
FLT4R<5:0>  
FLT6R<5:0>  
FLT8R<5:0>  
SYNCI2R<5:0>  
SYNCI1R<5:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR16  
RPOR17  
Legend:  
06D0  
06D2  
06D4  
06D6  
06F0  
06F2  
RP1R<5:0>  
RP0R<5:0>  
0000  
0000  
0000  
0000  
0000  
0000  
RP3R<5:0>  
RP5R<5:0>  
RP7R<5:0>  
RP33R<5:0>  
RP35R<5:0>  
RP2R<5:0>  
RP4R<5:0>  
RP6R<5:0>  
RP32R<5:0>  
RP34R<5:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-28: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND  
dsPIC33FJ09GS302  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
RPOR7  
RPOR16  
RPOR17  
Legend:  
06D0  
06D2  
06D4  
06D6  
06D8  
06DA  
06DC  
06DE  
06F0  
06F2  
RP1R<5:0>  
RP0R<5:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
RP3R<5:0>  
RP5R<5:0>  
RP7R<5:0>  
RP9R<5:0>  
RP11R<5:0>  
RP13R<5:0>  
RP15R<5:0>  
RP33<5:0>  
RP35<5:0>  
RP2R<5:0>  
RP4R<5:0>  
RP6R<5:0>  
RP8R<5:0>  
RP10R<5:0>  
RP12R<5:0>  
RP14R<5:0>  
RP32<5:0>  
RP34<5:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-29: PORTA REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
02C6  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1 TRISA0  
001F  
xxxx  
0000  
0000  
RA1  
LATA1  
RA0  
LATA0  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-30: PORTB REGISTER MAP FOR dsPIC33FJ06GS001 AND dsPIC33FJ06GS101A  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8  
02CA  
02CC  
02CE  
TRISB7 TRISB6  
TRISB5  
RB5  
TRISB4  
RB4  
TRISB3  
RB3  
TRISB2  
RB2  
TRISB1 TRISB0  
00FF  
xxxx  
0000  
0000  
RB7  
RB6  
RB1  
LATB1  
RB0  
LATB0  
LATB7  
LATB6  
LATB5  
LATB4  
LATB3  
LATB2  
ODCB  
Legend:  
ODCB7 ODCB6  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33FJ06GS102A, dsPIC33FJ06GS202A AND dsPIC33FJ09GS302  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6  
TRISB5  
RB5  
TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
FFFF  
xxxx  
0000  
0000  
02CA  
02CC  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
LATB10  
RB9  
LATB9  
RB8  
RB7  
RB6  
RB4  
LATB4  
RB3  
LATB3  
RB2  
LATB2  
RB1  
LATB1  
RB0  
LATB0  
LATB15  
LATB14  
LATB13  
LATB12  
LATB11  
LATB8  
LATB7  
LATB6  
LATB5  
ODCB  
Legend:  
02CE ODCB15 ODCB14 ODCB13 ODCB12 ODCB11  
ODCB8 ODCB7 ODCB6  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-32: SYSTEM CONTROL REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
RCON  
0740  
0742  
0744  
0746  
0748  
074C  
074E  
0750  
TRAPR IOPUWR  
COSC<2:0>  
DOZE<2:0>  
CM  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx  
(2)  
OSCCON  
CLKDIV  
PLLFBD  
OSCTUN  
LFSR  
NOSC<2:0>  
CLKLOCK IOLOCK  
PLLPOST<1:0>  
LOCK  
OSWEN 0300  
3040  
ROI  
DOZEN  
FRCDIV<2:0>  
PLLPRE<4:0>  
PLLDIV<8:0>  
0030  
TUN<5:0>  
0000  
LFSR<14:0>  
0000  
REFOCON  
ACLKCON  
ROON  
ROSSLP ROSEL  
RODIV<3:0>  
APSTSCLR<2:0>  
0000  
0000  
ENAPLL APLLCK SELACLK  
ASRCSEL FRCSEL  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
The RCON register Reset values are dependent on the type of Reset.  
The OSCCON register Reset values are dependent on the FOSCx Configuration bits and on type of Reset.  
TABLE 4-33: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP<3:0>  
0000  
NVMKEY<7:0>  
0000  
Legend:  
Note 1:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-34: PMD REGISTER MAP FOR dsPIC33FJ06GS001  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
0770  
0774  
0776  
077A  
077C  
T2MD  
T1MD  
CMPMD  
PWMMD  
I2C1MD  
ADCMD 0000  
PMD3  
PMD4  
PMD6  
PMD7  
Legend:  
REFOMD  
0000  
0000  
0000  
0000  
PWM4MD  
PWM1MD  
CMPMD1  
CMPMD2  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-35: PMD REGISTER MAP FOR dsPIC33FJ06GS101A  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
0770  
0772  
0776  
077A  
T2MD  
T1MD  
PWMMD  
I2C1MD  
U1MD  
SPI1MD  
ADCMD 0000  
PMD2  
PMD4  
PMD6  
Legend:  
OC1MD  
0000  
0000  
0000  
REFOMD  
PWM4MD  
PWM1MD  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-36: PMD REGISTER MAP FOR dsPIC33FJ06GS102A  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
0770  
0772  
0776  
077A  
T2MD  
T1MD  
PWMMD  
I2C1MD  
U1MD  
SPI1MD  
ADCMD 0000  
PMD2  
PMD4  
PMD6  
Legend:  
OC1MD  
0000  
0000  
0000  
REFOMD  
PWM2MD PWM1MD  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-37: PMD REGISTER MAP FOR dsPIC33FJ06GS202A  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
0770  
0772  
0774  
0776  
077A  
077C  
T2MD  
T1MD  
PWMMD  
IC1MD  
I2C1MD  
U1MD  
SPI1MD  
ADCMD 0000  
PMD2  
PMD3  
PMD4  
PMD6  
PMD7  
Legend:  
OC1MD  
0000  
0000  
0000  
0000  
0000  
CMPMD  
REFOMD  
PWM2MD PWM1MD  
CMP2MD CMP1MD  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-38: PMD REGISTER MAP FOR dsPIC33FJ09GS302  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
0770  
0772  
0774  
0776  
077A  
077C  
077E  
T2MD  
T1MD  
PWMMD  
IC1MD  
I2C1MD  
U1MD  
SPI1MD  
ADCMD 0000  
OC1MD 0000  
PMD2  
PMD3  
PMD4  
PMD6  
PMD7  
PMD8  
Legend:  
CMPMD  
0000  
0000  
0000  
0000  
0000  
PWM4MD  
REFOMD  
PWM2MD PWM1MD  
CMP2MD CMP1MD  
CCSMD  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
4.3.1  
SOFTWARE STACK  
4.4  
Instruction Addressing Modes  
In addition to its use as a working register, the W15  
register in the devices is also used as a software Stack  
Pointer. The Stack Pointer always points to the first  
available free word and grows from lower to higher  
addresses. It predecrements for stack pops and post-  
increments for stack pushes, as shown in Figure 4-5.  
For a PC push during any CALLinstruction, the MSb of  
the PC is zero-extended before the push, ensuring that  
the MSb is always clear.  
The addressing modes shown in Table 4-39 form the  
basis of the addressing modes optimized to support the  
specific features of individual instructions. The  
addressing modes provided in the MAC class of  
instructions differ from those in the other instruction  
types.  
4.4.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (Near Data Space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSb  
of the PC prior to the push.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap will not occur. The stack error trap will occur on a  
subsequent push operation. For example, to cause a  
stack error trap when the stack grows beyond address  
0x1000 in RAM, initialize the SPLIM with the value  
0x0FFE.  
4.4.2  
MCU INSTRUCTIONS  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1 is always a working register (that is,  
the addressing mode can only be register direct), which  
is referred to as Wb. Operand 2 can be a W register,  
fetched from data memory, or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
• Register Direct  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-Bit or 10-Bit Literal  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
Note:  
Not all instructions support all of the  
addressing modes shown above.  
FIGURE 4-5:  
CALL STACK FRAME  
Individual instructions can support  
different subsets of these addressing  
modes.  
0x0000  
15  
0
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
DS75018C-page 66  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 4-39: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the File register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the Effective Address (EA).  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
(Register Indexed)  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
4.4.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
4.4.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also referred  
to as MACinstructions, use a simplified set of addressing  
modes to allow the user application to effectively  
manipulate the data pointers through register indirect  
tables.  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
The two-source operand prefetch registers must be  
members of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The Effective Addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (register offset)  
field is shared by both source and  
destination (but typically only used by  
one).  
Note:  
Register Indirect with Register Offset  
Addressing mode is available only for W9  
(in X space) and W11 (in Y space).  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
In summary, the following addressing modes are  
supported by the MACclass of instructions:  
• Register Direct  
• Register Indirect  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-Bit Literal  
• Register Indirect Post-modified by 2  
• Register Indirect Post-modified by 4  
• Register Indirect Post-modified by 6  
• Register Indirect with Register Offset (Indexed)  
4.4.5  
OTHER INSTRUCTIONS  
• 16-Bit Literal  
Besides the addressing modes outlined previously, some  
instructions use literal constants of various sizes. For  
example, BRA (branch) instructions use 16-bit signed  
literals to specify the branch destination directly, whereas  
the DISIinstruction uses a 14-bit unsigned literal field. In  
some instructions, such as ADD Acc, the source of an  
operand or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 67  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
4.5.1  
START AND END ADDRESS  
4.5  
Modulo Addressing  
The Modulo Addressing scheme requires that a  
starting and ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 4-1).  
Modulo Addressing mode is a method used to provide  
an automated means to support circular data buffers  
using hardware. The objective is to remove the need  
for software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
Note:  
Y
space Modulo Addressing EA  
calculations assume word-sized data  
(LSb of every EA is always clear).  
Modulo Addressing can operate in either data or program  
space (since the data pointer mechanism is essentially  
the same for both). One circular buffer can be supported  
in each of the X (which also provides the pointers into  
program space) and Y data spaces. Modulo Addressing  
can operate on any W register pointer. However, it is not  
advisable to use W14 or W15 for Modulo Addressing  
since these two registers are used as the Stack Frame  
Pointer and Stack Pointer, respectively.  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
4.5.2  
W ADDRESS REGISTER SELECTION  
In general, any particular circular buffer can be  
configured to operate in only one direction as there are  
certain restrictions on the buffer start address (for  
incrementing buffers), or end address (for  
decrementing buffers), based upon the direction of the  
buffer.  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags as  
well as a W register field to specify the W Address  
registers. The XWM and YWM fields select the  
registers that will operate with Modulo Addressing:  
• If XWM = 15, X RAGU and X WAGU Modulo  
Addressing is disabled  
The only exception to the usage restrictions is for  
buffers that have a power-of-two length. As these  
buffers satisfy the start and end address criteria, they  
can operate in a bidirectional mode (that is, address  
boundary checks are performed on both the lower and  
upper address boundaries).  
• If YWM = 15, Y AGU Modulo Addressing is  
disabled  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 4-1). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
‘15’ and the YMODEN bit is set at MODCON<14>.  
FIGURE 4-6:  
MODULO ADDRESSING OPERATION EXAMPLE  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
Byte  
Address  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
0x1163  
AGAIN: INC W0, W0  
;increment the fill value  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 32 words  
DS75018C-page 68  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
XB<14:0> is the Bit-Reversed Address modifier, or  
‘pivot point,’ which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
4.5.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. Address boundaries check for addresses  
equal to:  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
• Upper boundary addresses for incrementing buffers  
• Lower boundary addresses for decrementing buffers  
It is important to realize that the address boundaries  
check for addresses less than or greater than the upper  
(for incrementing buffers) and lower (for decrementing  
buffers) boundary addresses (not just equal to).  
Address changes can, therefore, jump beyond  
boundaries and still be adjusted correctly.  
When enabled, Bit-Reversed Addressing is executed  
only for Register Indirect with Pre-Increment or Post-  
Increment Addressing and word-sized data writes. It  
will not function for any other addressing mode or for  
byte-sized data, and normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W Address Pointer is always added to the address  
modifier (XB), and the offset associated with the Regis-  
ter Indirect Addressing mode is ignored. In addition, as  
word-sized data is a requirement, the LSb of the EA is  
ignored (and always clear).  
Note:  
The modulo corrected Effective Address is  
written back to the register only when Pre-  
Modify or Post-Modify Addressing mode is  
used to compute the Effective Address.  
When an address offset (such as  
[W7 + W2]) is used, Modulo Addressing  
correction is performed but the contents of  
the register remain unchanged.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. If an application attempts to do  
so, Bit-Reversed Addressing will assume  
priority when active for the X WAGU and X  
WAGU; Modulo Addressing will be dis-  
abled. However, Modulo Addressing will  
continue to function in the X RAGU.  
4.6  
Bit-Reversed Addressing  
Bit-Reversed Addressing mode is intended to simplify  
data re-ordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, a write to the  
XBREV register should not be immediately followed by  
an indirect read operation using the W register that has  
been designated as the Bit-Reversed Pointer.  
The modifier, which can be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
4.6.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing mode is enabled when all of  
these conditions are met:  
• BWMx bits (W register selection) in the MODCON  
register are any value other than ‘15’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing)  
• BREN bit is set in the XBREV register  
• Addressing mode used is Register Indirect with  
Pre-increment or Post-increment  
If the length of a bit-reversed buffer is M = 2N bytes,  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 69  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 4-7:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
0
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word Bit-Reversed Buffer  
TABLE 4-40: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
DS75018C-page 70  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
4.7.1  
ADDRESSING PROGRAM SPACE  
4.7  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The device architecture uses a 24-bit wide program space  
and a 16-bit wide data space. The architecture is also a  
modified Harvard scheme, meaning that data can also be  
present in the program space. To use this data success-  
fully, it must be accessed in a way that preserves the  
alignment of information in both spaces.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
Aside from normal execution, the device architecture  
provides two methods by which program space can be  
accessed during operation:  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
For remapping operations, the 8-bit Program Space  
Visibility Register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated periodically. It also allows access  
to all bytes of the program word. The remapping  
method allows an application to access a large block of  
data on a read-only basis, which is ideal for look ups  
from a large table of static data. The application can  
only access the least significant word of the program  
word.  
Table 4-41 and Figure 4-8 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, and D<15:0> refers to a data space word.  
TABLE 4-41: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
0
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 71  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 4-8:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The Least Significant bit (LSb) of program space addresses is always fixed as ‘0’ to maintain word  
alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted in the  
configuration memory space.  
DS75018C-page 72  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
- In Byte mode, either the upper or lower byte  
of the lower program word is mapped to the  
lower byte of a data address. The upper byte  
is selected when byte select is ‘1’; the lower  
byte is selected when it is ‘0’.  
4.7.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper 8 bits of a program space word as data.  
TBLRDH (Table Read High):  
- In Word mode, this instruction maps the entire  
upper word of a program address (P<23:16>)  
to a data address. Note that D<15:8>, the  
‘phantom byte’, will always be ‘0’.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
wide word address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space that contains the least significant  
data word. TBLRDHand TBLWTHaccess the space that  
contains the upper data byte.  
- In Byte mode, this instruction maps the upper  
or lower byte of the program word to D<7:0>  
of the data address, in the TBLRDL  
instruction. The data is always ‘0’ when the  
upper ‘phantom’ byte is selected (Byte  
Select = 1).  
Similarly, two table instructions, TBLWTHand TBLWTL,  
are used to write individual bytes or words to a program  
space address. The details of their operation are  
explained in Section 5.0 “Flash Program Memory”.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and  
configuration spaces. When TBLPAG<7> = 0, the table  
page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
TBLRDL(Table Read Low):  
- In Word mode, this instruction maps the  
lower word of the program space location  
(P<15:0>) to a data address (D<15:0>)  
FIGURE 4-9:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
2011-2012 Microchip Technology Inc.  
DS75018C-page 73  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Although each data space address 0x8000 and higher  
maps directly into a corresponding program memory  
address (see Figure 4-10), only the lower 16 bits of the  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.7.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access to stored  
constant data from the data space without the need to  
use special instructions (such as TBLRDLor TBLRDH).  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG  
functions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. By incrementing the PC by 2 for each  
program memory word, the lower 15 bits of data space  
addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
For operations that use PSV and are executed outside  
a REPEATloop, the MOVand MOV.Dinstructionsrequire  
one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV, and are executed inside  
a REPEATloop, these instances require two instruction  
cycles in addition to the specified execution time of the  
instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
Data reads to this area add a cycle to the instruction  
being executed, since two program memory fetches  
are required.  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Any other iteration of the REPEAT loop will allow the  
instruction using PSV to access data, to execute in a  
single cycle.  
FIGURE 4-10:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...whilethelower15bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
DS75018C-page 74  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
pin pairs: PGECx/PGEDx), and three other lines for  
power (VDD), ground (VSS) and Master Clear (MCLR).  
5.0  
FLASH PROGRAM MEMORY  
Note 1: This data sheet summarizes the features  
This allows customers to manufacture boards with  
unprogrammed devices and then program the digital  
signal controller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
of the dsPIC33FJ06GS001/101A/  
102A/202A and dsPIC33FJ09GS302  
families of devices. It is not intended  
to be  
a comprehensive reference  
source. To complement the informa-  
tion in this data sheet, refer to  
Section 5. “Flash Programming”  
(DS70191) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
application can write a single program memory word at  
a time, and erase program memory in blocks or ‘pages’  
of 512 instructions (1536 bytes) at a time.  
5.1  
Table Instructions and Flash  
Programming  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits<7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 5-1.  
These devices contain internal Flash program memory for  
storing and executing application code. The memory is  
readable, writable and erasable during normal operation  
over the entire VDD range.  
Flash memory can be programmed in two ways:  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
• Run-Time Self-Programming (RTSP)  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
ICSP allows a dsPIC33FJ06GS001/101A/102A/202A  
and dsPIC33FJ09GS302 device to be serially  
programmed while in the end application circuit. This is  
done with two lines for programming clock and  
programming data (one of the alternate programming  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
2011-2012 Microchip Technology Inc.  
DS75018C-page 75  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
For example, if the device is operating at +125°C, the  
5.2  
RTSP Operation  
FRC accuracy will be ±5%. If the TUN<5:0> bits (see  
Register 8-4) are set to ‘b111111, the minimum row  
write time is equal to Equation 5-2.  
The dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 Flash program memory array is  
organized into rows of 64 instructions or 192 bytes. RTSP  
allows the user application to erase a page of mem-  
ory, which consists of eight rows (512 instructions) at  
a time, and to program one row or one word at a time.  
Table 25-12 shows typical erase and programming times.  
The 8-row erase pages and single row write rows are  
edge-aligned from the beginning of program memory, on  
boundaries of 1536 bytes and 192 bytes, respectively.  
EQUATION 5-2:  
MINIMUM PAGE  
ERASE TIME  
168517 Cycles  
----------------------------------------------------------------------------------------------  
= 21.85ms  
TRW  
=
7.37 MHz  1 + 0.05  1 0.00375  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers sequentially. The  
instruction words loaded must always be from a group  
of 64 boundary.  
The maximum row write time is equal to Equation 5-3.  
EQUATION 5-3:  
MAXIMUM PAGE  
ERASE TIME  
168517 Cycles  
---------------------------------------------------------------------------------------------  
= 24.16ms  
TRW  
=
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register. A total  
of 64 TBLWTL and TBLWTH instructions are required  
to load the instructions.  
7.37 MHz  1 0.05  1 0.00375  
Setting the WR bit (NVMCON<15>) starts the opera-  
tion, and the WR bit is automatically cleared when the  
operation is finished.  
All of the table write operations are single-word writes  
(two instruction cycles) because only the buffers are writ-  
ten. A programming cycle is required for programming  
each row.  
5.4  
Control Registers  
Two SFRs are used to read and write the program  
Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
5.3  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the  
programming operation is finished.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user application must consecutively write 0x55 and  
0xAA to the NVMKEY register. Refer to Section 5.3  
“Programming Operations” for further details.  
The programming time depends on the FRC accuracy  
(see Table 25-19) and the value of the FRC Oscillator  
Tuning register (see Register 8-4). Use the following  
formula to calculate the minimum and maximum values  
for the Row Write Time, Page Erase Time and Word  
Write Cycle Time parameters (see Table 25-12).  
EQUATION 5-1:  
PROGRAMMING TIME  
T
-------------------------------------------------------------------------------------------------------------------------  
7.37 MHz  FRC Accuracy%  FRC Tuning%  
DS75018C-page 76  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
5.5  
Flash Memory Control Registers  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0  
WR(1)  
R/W-0  
WREN(1)  
R/W-0  
WRERR(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-0  
ERASE(1)  
U-0  
U-0  
R/W-0  
R/W-0  
NVMOP<3:0>(1,2)  
R/W-0  
bit 7  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit(1)  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete. This bit can only be set (not cleared) in software.  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit(1)  
1= Enables Flash program/erase operations  
0= Inhibits Flash program/erase operations  
WRERR: Write Sequence Error Flag bit(1)  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit(1)  
1= Performs the erase operation specified by NVMOP<3:0> on the next WR command  
0= Performs the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(1,2)  
If ERASE = 1:  
1111= No operation  
1101= Erase general segment  
0011= No operation  
0010= Memory page erase operation  
0001= Reserved  
0000= Reserved  
If ERASE = 0:  
1111= No operation  
1101= No operation  
0011= Memory word program operation  
0010= No operation  
0001= Reserved  
0000= Reserved  
Note 1: These bits can only be reset on a Power-on Reset (POR).  
2: All other combinations of NVMOP<3:0> are unimplemented.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 77  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 5-2:  
NVMKEY: NONVOLATILE MEMORY KEY REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
W-0  
bit 7  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMKEY<7:0>: Key Register bits (write-only)  
DS75018C-page 78  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
6.0  
RESETS  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 8. “Reset”  
(DS70192) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
Any active source of Reset will make the SYSRST  
signal active. On system Reset, some of the registers  
associated with the CPU and peripherals are forced to  
a known Reset state, and some are unaffected.  
Note:  
Refer to the specific peripheral section or  
Section 3.0 “CPU” of this data sheet for  
register Reset states.  
All types of device Reset sets a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A POR clears all the bits (except for the POR  
(RCON<0> bit) that are set. The user application can  
set or clear any bit, at any time, during code execution.  
The RCON bits only serve as status bits. Setting a  
particular Reset status bit in software does not cause a  
device Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset is meaningful.  
• MCLR: Master Clear Pin Reset  
• SWR: Software RESETInstruction  
• WDTO: Watchdog Timer Reset  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Condition Device Reset  
- Illegal Opcode Reset  
- Uninitialized W Register Reset  
- Security Reset  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
Configuration Mismatch  
2011-2012 Microchip Technology Inc.  
DS75018C-page 79  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
6.1  
Reset Control Register  
(1)  
REGISTER 6-1:  
R/W-0  
RCON: RESET CONTROL REGISTER  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
TRAPR  
IOPUWR  
VREGS  
bit 15  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A Configuration Mismatch Reset has occurred  
0= A Configuration Mismatch Reset has NOT occurred  
bit 8  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Standby mode during Sleep  
bit 7  
bit 6  
EXTR: External Reset Pin (MCLR) bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset Flag (Instruction) bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
bit 5  
bit 4  
bit 3  
bit 2  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS75018C-page 80  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1)  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER (CONTINUED)  
bit 1  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
bit 0  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 81  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
A warm Reset is the result of all the other Reset  
6.2  
System Reset  
sources, including the RESET instruction. On warm  
Reset, the device will continue to operate from the  
current clock source, as indicated by the Current  
Oscillator Selection bits (COSC<2:0>) in the Oscillator  
Control register (OSCCON<14:12>).  
There are two types of Reset:  
• Cold Reset  
• Warm Reset  
A cold Reset is the result of a Power-on Reset (POR)  
or a Brown-out Reset (BOR). On a cold Reset, the  
FNOSC Configuration bits in the FOSC Configuration  
register select the device clock source.  
The device is kept in a Reset state until the system  
power supplies have stabilized at appropriate levels  
and the oscillator clock is ready. The sequence in  
which this occurs is provided in Figure 6-2.  
TABLE 6-1:  
OSCILLATOR DELAY  
Oscillator  
Oscillator  
Start-up Timer  
Oscillator Mode  
PLL Lock Time  
Total Delay  
Start-up Delay  
(1)  
(1)  
FRC, FRCDIV16, FRCDIVN  
TOSCD  
TOSCD  
(1)  
(3)  
(1,3)  
FRCPLL  
XT  
TOSCD  
TLOCK  
TOSCD + TLOCK  
(1)  
(2)  
(1,2)  
(1,2)  
TOSCD  
TOST  
TOSCD + TOST  
TOSCD + TOST  
(1)  
(2)  
HS  
TOSCD  
TOST  
EC  
(1)  
(2)  
(3)  
(1,2,3)  
XTPLL  
HSPLL  
ECPLL  
LPRC  
TOSCD  
TOST  
TLOCK  
TOSCD + TOST + TLOCK  
TOSCD + TOST + TLOCK  
(1)  
(2)  
(3)  
(1,2,3)  
TOSCD  
TOST  
TLOCK  
(3)  
(3)  
TLOCK  
TLOCK  
(1)  
(1)  
TOSCD  
TOSCD  
Note 1: TOSCD = Oscillator start-up delay (1.1 s max. for FRC, 70 s max. for LPRC). Crystal oscillator start-up  
times vary with crystal characteristics, load capacitance, etc.  
2: TOST = Oscillator Start-up Timer (OST) delay (1024 oscillator clock period). For example, TOST = 102.4 s  
for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.  
3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.  
DS75018C-page 82  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 6-2:  
SYSTEM RESET TIMING  
VBOR  
VPOR  
VDD  
TPOR  
1
POR  
BOR  
TBOR  
2
3
TPWRT  
SYSRST  
4
Oscillator Clock  
TOSCD  
TOST  
TLOCK  
6
TFSCM  
FSCM  
5
Reset  
Device Status  
Run  
Time  
Note 1: POR: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the  
VPOR threshold and the delay, TPOR, has elapsed.  
2: BOR: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the  
delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.  
3: PWRT Timer: The programmable Power-up Timer continues to hold the processor in Reset for a specific period of time (TPWRT)  
after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the appropriate level for full-speed oper-  
ation. After the delay, TPWRT has elapsed and the SYSRST becomes inactive, which in turn, enables the selected oscillator to start  
generating clock cycles.  
4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to  
Section 8.0 “Oscillator Configuration” for more information.  
5: When the oscillator clock is ready, the processor begins execution from location, 0x000000. The user application programs a GOTO  
instruction at the Reset address, which redirects program execution to the appropriate start-up routine.  
6: If the Fail-Safe Clock Monitor (FSCM) is enabled, it begins to monitor the system clock when the system clock is ready and the delay,  
TFSCM, has elapsed.  
TABLE 6-2:  
OSCILLATOR PARAMETERS  
Note:  
When the device exits the Reset con-  
dition (begins normal operation), the  
device operating parameters (voltage,  
frequency, temperature, etc.) must be  
within their operating ranges; otherwise,  
the device may not function correctly.  
The user application must ensure that  
the delay between the time power is first  
applied, and the time SYSRST becomes  
inactive, is long enough to get all  
Symbol  
Parameter  
Value  
VPOR  
TPOR  
VBOR  
TBOR  
POR threshold  
1.8V nominal  
POR extension time 30 s maximum  
BOR threshold 2.65V nominal  
BOR extension time 100 s maximum  
TPWRT Programmable  
Power-up Time delay  
0-128 ms nominal  
operating  
specification.  
parameters  
within  
the  
TFSCM  
Fail-Safe Clock Mon- 900 s maximum  
itor delay  
2011-2012 Microchip Technology Inc.  
DS75018C-page 83  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
6.3  
Power-on Reset (POR)  
6.4  
Brown-out Reset (BOR) and  
Power-up Timer (PWRT)  
A Power-on Reset (POR) circuit ensures the device is  
reset from power-on. The POR circuit is active until  
VDD crosses the VPOR threshold and the delay, TPOR,  
has elapsed. The delay, TPOR, ensures the internal  
device bias circuits become stable.  
The on-chip regulator has a Brown-out Reset (BOR)  
circuit that resets the device when the VDD is too low  
(VDD < VBOR) for proper device operation. The BOR  
circuit keeps the device in Reset until VDD crosses the  
VBOR threshold and the delay, TBOR, has elapsed. The  
delay, TBOR, ensures the voltage regulator output  
becomes stable.  
The device supply voltage characteristics must meet  
the specified starting voltage and rise rate  
requirements to generate the POR. Refer to  
Section 25.0 “Electrical Characteristics” for details.  
The BOR status bit in the Reset Control (RCON<1>)  
register is set to indicate the Brown-out Reset.  
The POR status (POR) bit in the Reset Control  
(RCON<0>) register is set to indicate the Power-on  
Reset.  
The device will not run at full speed after a BOR, as the  
VDD should rise to acceptable levels for full-speed  
operation. The PWRT provides a Power-up Time Delay  
(TPWRT) to ensure that the system power supplies have  
stabilized at the appropriate levels for full-speed  
operation before the SYSRST is released.  
Figure 6-3 shows the typical brown-out scenarios. The  
Reset delay (TBOR + TPWRT) is initiated each time VDD  
rises above the VBOR trip point.  
FIGURE 6-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD Dips Before PWRT Expires  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
DS75018C-page 84  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
6.5  
External Reset (EXTR)  
6.8  
Trap Conflict Reset  
The external Reset is generated by driving the MCLR  
pin low. The MCLR pin is a Schmitt trigger input with an  
additional glitch filter. Reset pulses that are longer than  
the minimum pulse width will generate a Reset. Refer  
to Section 25.0 “Electrical Characteristics” for  
minimum pulse width specifications. The external  
Reset (MCLR) pin (EXTR) bit in the Reset Control  
(RCON) register is set to indicate the MCLR Reset.  
If a lower priority hard trap occurs, while a higher  
priority trap is being processed, a hard Trap Conflict  
Reset occurs. The hard traps include exceptions of  
Priority Level 13 through Level 15, inclusive. The  
address error (Level 13) and oscillator error (Level 14)  
traps fall into this category.  
The Trap Reset (TRAPR) flag in the Reset Control  
register (RCON<15>) is set to indicate the Trap Conflict  
Reset. Refer to Section 7.0 “Interrupt Controller” for  
more information on Trap Conflict Resets.  
6.5.1  
EXTERNAL SUPERVISORY  
CIRCUIT  
6.9  
Illegal Condition Device Reset  
Many systems have external supervisory circuits that  
generate Reset signals to reset multiple devices in the  
system. This external Reset signal can be directly  
connected to the MCLR pin to reset the device when  
the rest of the system is reset.  
An illegal condition device Reset occurs due to the  
following sources:  
• Illegal Opcode Reset  
• Uninitialized W Register Reset  
• Security Reset  
6.5.2  
INTERNAL SUPERVISORY CIRCUIT  
The illegal opcode or Uninitialized W Access Reset  
(IOPUWR) flag in the Reset Control register  
(RCON<14>) is set to indicate the illegal condition  
device Reset.  
When using the internal power supervisory circuit to  
reset the device, the external Reset pin (MCLR) should  
be tied directly or resistively to VDD. In this case, the  
MCLR pin will not be used to generate a Reset. The  
external Reset pin (MCLR) does not have an internal  
pull-up and must not be left unconnected.  
6.9.1  
ILLEGAL OPCODE RESET  
A device Reset is generated if the device attempts to  
execute an illegal opcode value that is fetched from  
program memory.  
6.6  
Software RESET Instruction (SWR)  
Whenever the RESET instruction is executed, the  
device will assert SYSRST, placing the device in a  
special Reset state. This Reset state will not  
re-initialize the clock. The clock source in effect prior to  
the RESET instruction will still remain. SYSRST is  
released at the next instruction cycle and the Reset  
vector fetch will commence.  
The Illegal Opcode Reset function can prevent the  
device from executing program memory sections that  
are used to store constant data. To take advantage of  
the Illegal Opcode Reset, use only the lower 16 bits of  
each program memory section to store the data values.  
The upper 8 bits should be programmed with 0x3F,  
which is an illegal opcode value.  
The Software Reset (SWR) flag (instruction) in the  
Reset Control register (RCON<6>) is set to indicate  
the software Reset.  
6.9.2  
UNINITIALIZED W REGISTER  
RESET  
Any attempt to use the uninitialized W register as an  
Address Pointer will Reset the device. The W register  
array (with the exception of W15) is cleared during all  
Resets and is considered uninitialized until written to.  
6.7  
Watchdog Time-out Reset (WDTO)  
Whenever a Watchdog Timer time-out occurs, the  
device will asynchronously assert SYSRST. The clock  
source will remain unchanged. A WDT time-out during  
Sleep or Idle mode will wake-up the processor, but will  
not reset the processor.  
The Watchdog Timer Time-out (WDTO) flag in the  
Reset Control (RCON<4>) register is set to indicate  
the Watchdog Timer Reset. Refer to Section 22.4  
“Watchdog Timer (WDT)” for more information on  
Watchdog Reset.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 85  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Table 6-3 provides a summary of the Reset flag bit  
operation.  
6.10 Using the RCON Status Bits  
The user application can read the Reset Control  
(RCON) register after any device Reset to determine  
the cause of the Reset.  
Note: The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value, after a  
device Reset, will be meaningful.  
TABLE 6-3:  
Flag Bit  
RESET FLAG BIT OPERATION  
Set by:  
Cleared by:  
TRAPR (RCON<15>)  
IOPWR (RCON<14>)  
Trap conflict event  
POR, BOR  
POR, BOR  
Illegal opcode or uninitialized W register  
access or Security Reset  
CM (RCON<9>)  
Configuration Mismatch  
MCLR Reset  
POR, BOR  
POR  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
RESETinstruction  
WDT time-out  
POR, BOR  
PWRSAVinstruction, CLRWDTinstruction,  
POR, BOR  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
POR, BOR  
POR, BOR  
POR, BOR  
POR  
Note: All Reset flag bits can be set or cleared by user software.  
DS75018C-page 86  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Interrupt vectors are prioritized in terms of their natural  
priority. This priority is linked to their position in the  
7.0  
INTERRUPT CONTROLLER  
Note 1: This data sheet summarizes the features  
vector table. Lower addresses generally have a higher  
natural priority. For example, the interrupt associated  
with Vector 0 will take priority over interrupts at any  
other vector address.  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 41. “Interrupts  
(Part IV)” (DS70300) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available on the Microchip web  
site (www.microchip.com).  
The devices implement up to 28 unique interrupts and  
four non-maskable traps. These are summarized in  
Table 7-1.  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The interrupt controller reduces the numerous peripheral  
interrupt request signals to a single interrupt request  
signal to the CPU. The controller has the following  
features:  
The AIVT supports debugging by providing a means to  
switch between an application and  
a
support  
environment without requiring the interrupt vectors to  
be reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time. If the AIVT is not  
needed, the AIVT should be programmed with the  
same addresses used in the IVT.  
• Up to eight processor exceptions and  
software traps  
• Seven user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
7.2  
Reset Sequence  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process. A  
device clears its registers in response to a Reset, which  
forces the PC to zero. The digital signal controller then  
begins program execution at location, 0x000000. A GOTO  
instruction at the Reset address can redirect program  
execution to the appropriate start-up routine.  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location,  
000004h. The IVT contains 126 vectors, consisting of  
eight non-maskable trap vectors, plus up to 118 sources  
of interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 87  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 7-1:  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 INTERRUPT  
VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
Interrupt Vector Table (IVT)(1)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
Alternate Interrupt Vector Table (AIVT)(1)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 7-1 for the list of implemented interrupt vectors.  
DS75018C-page 88  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 7-1:  
Vector  
INTERRUPT VECTORS  
Interrupt  
IVT Address  
AIVT Address  
Interrupt Source  
Number Request (IQR)  
Highest Natural Order Priority  
8
9
0
1
0x000014  
0x000114  
0x000116  
0x000118  
0x00011A  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer1  
0x000016  
0x000018  
0x00001A  
10  
2
11  
3
12-14  
15  
4-6  
7
0x00001C-0x000020 0x00011C-0x000120 Reserved  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
T2 – Timer2  
16  
8
Reserved  
17  
9
SPI1E – SPI1 Error  
18  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21-28  
29  
30-56  
57  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Group Convert Done  
Reserved  
19  
20  
21  
22  
23  
Reserved  
24  
SI2C1 – I2C1 Slave Event  
MI2C1 – I2C1 Master Event  
CMP1 – Analog Comparator 1 Interrupt  
CN – Input Change Notification Interrupt  
INT1 – External Interrupt 1  
25  
26  
27  
28  
29-36  
37  
0x00003E-0x0004C 0x00013E-0x00014C Reserved  
0x00004E 0x00014E INT2 – External Interrupt 2  
0x000050-0x000084 0x000150-0x000184 Reserved  
38-64  
65  
0x000086  
0x000186  
PSEM – PWM Special Event Match  
Interrupt  
66-72  
73  
58-64  
65  
0x000088-0x000094 0x000188-0x000194 Reserved  
0x000096 0x000196 U1E – UART1 Error Interrupt  
0x000098-0x0000B2 0x000198-0x0001B2 Reserved  
0x0000B4 0x0001B4 JTAG – Data Ready  
0x0000B6-0x0000CE 0x0001B6-0x0001CE Reserved  
74-87  
88  
66-79  
80  
89-101  
102  
81-93  
94  
0x0000D0  
0x0000D2  
0x0000D4  
0x0000D6  
0x0001D0  
0x0001D2  
0x0001D4  
0x0001D6  
PWM1 – PWM1 Interrupt  
PWM2 – PWM2 Interrupt  
Reserved  
103  
95  
104  
96  
105  
97  
PWM4 – PWM4 Interrupt  
106-110  
111  
98-102  
103  
104-109  
110  
0x0000D8-0x0000E0 0x0001D8-0x0001E0 Reserved  
0x0000E2 0x00001E2 CMP2 – Analog Comparator 2 Interrupt  
0x0000E4-0x0000EE 0x0001E4-0x0001EE Reserved  
112-117  
118  
0x0000F0  
0x0000F2  
0x0000F4  
0x0000F6  
0x0000F8  
0x0000FA  
0x0000FC  
0x0000FE  
0x0001F0  
0x0001F2  
0x0001F4  
0x0001F6  
0x0001F8  
0x0001FA  
0x0001FC  
0x0001FE  
ADC Pair 0 Convert Done  
ADC Pair 1 Convert Done  
ADC Pair 2 Convert Done  
ADC Pair 3 Convert Done  
Reserved  
119  
111  
120  
112  
121  
113  
122  
114  
123  
115  
Reserved  
124  
116  
ADC Pair 6 Convert Done  
Reserved  
125  
117  
Lowest Natural Order Priority  
2011-2012 Microchip Technology Inc.  
DS75018C-page 89  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
7.3.5  
INTTREG  
7.3  
Interrupt Control and Status  
Registers  
The INTTREG register contains the associated interrupt  
vector number and the new CPU Interrupt Priority Level,  
which are latched into the Vector Number  
(VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit  
fields in the INTTREG register. The new Interrupt Priority  
Level is the priority of the pending interrupt.  
The following registers are implemented for the interrupt  
controller:  
• INTCON1  
• INTCON2  
• IFSx  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having Vector Number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit is found in IEC0<0> and the  
INT0IP bits are found in the first position of IPC0  
(IPC0<2:0>).  
• IECx  
• IPCx  
• INTTREG  
7.3.1  
INTCON1 AND INTCON2  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the  
Interrupt Nesting Disable (NSTDIS) bit as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
7.3.6  
STATUS/CONTROL REGISTERS  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers  
contain bits that control interrupt functionality.  
7.3.2  
IFSx  
• The CPU STATUS Register, SR, contains the  
IPL<2:0> bits (SR<7:5>). These bits indicate the  
current CPU Interrupt Priority Level. The user can  
change the current CPU priority level by writing to  
the IPL bits.  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
• The CORCON register contains the IPL3 bit,  
which together with IPL<2:0>, indicates the  
current CPU priority level. IPL3 is a read-only bit  
so that trap events cannot be masked by the user  
software.  
7.3.3  
IECx  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
All Interrupt registers are described in Register 7-1  
through Register 7-35.  
7.3.4  
IPCx  
The IPCx registers are used to set the Interrupt Priority  
Level (IPL) for each source of interrupt. Each user  
interrupt source can be assigned to one of eight priority  
levels.  
DS75018C-page 90  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1)  
REGISTER 7-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA  
R/C-0  
SB  
R-0  
R/C-0  
SAB  
R-0  
DA  
R/W-0  
DC  
OAB  
bit 15  
R/W-0(3)  
bit 7  
Legend:  
bit 8  
R/W-0(3)  
IPL<2:0>(2)  
R/W-0(3)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
C = Clearable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
R = Readable bit  
‘1’ = Bit is set  
x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts are disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1.  
2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL3 = 1. User interrupts are disabled when IPL3 = 1.  
3: The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
(1)  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
Note 1: For complete register details, see Register 3-2.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 91  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 8  
R/W-0  
SFTACERR  
bit 7  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap is disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap is disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B is enabled  
0= Trap is disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Divide-by-Zero Error Trap Status bit  
1= Math error trap was caused by a divide-by-zero  
0= Math error trap was not caused by a divide-by-zero  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Math Error Trap Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
bit 3  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
DS75018C-page 92  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
bit 0  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS75018C-page 93  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-4:  
R/W-0  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ALTIVT  
DISI  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Uses alternate vector table  
0= Uses standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS75018C-page 94  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0  
ADIF  
R/W-0  
U1TXIF(1)  
R/W-0  
U1RXIF(1)  
R/W-0  
SPI1IF(1)  
R/W-0  
SPI1EIF(1)  
U-0  
bit 15  
bit 8  
R/W-0  
T2IF  
U-0  
U-0  
U-0  
R/W-0  
T1IF  
R/W-0  
OC1IF(1)  
R/W-0  
IC1IF(2)  
R/W-0  
INT0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ADIF: ADC Group Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Error Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit(2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.  
2: This bit is not implemented in dsPIC33FJ06GS001/101A/102A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 95  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
U-0  
U-0  
R/W-0  
INT2IF  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
AC1IF(1  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
AC1IF: Analog Comparator 1 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.  
DS75018C-page 96  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-7:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
PSEMIF  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
PSEMIF: PWM Special Event Match Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-0  
Unimplemented: Read as ‘0’  
REGISTER 7-8:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIF(1)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIF: UART1 Error Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 97  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-9:  
R/W-0  
PWM2IF(1)  
IFS5: INTERRUPT FLAG STATUS REGISTER 5  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PWM1IF  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
JTAGIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
PWM2IF: PWM2 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
PWM1IF: PWM1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-1  
bit 0  
Unimplemented: Read as ‘0’  
JTAGIF: JTAG Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A devices.  
DS75018C-page 98  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-10: IFS6: INTERRUPT FLAG STATUS REGISTER 6  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ADCP1IF  
ADCP0IF  
bit 15  
bit 8  
bit 0  
R/W-0  
AC2IF(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PWM4IF(2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ADCP1IF: ADC Pair 1 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP0IF: ADC Pair 0 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-8  
bit 7  
Unimplemented: Read as ‘0’  
AC2IF: Analog Comparator 2 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6-2  
bit 1  
Unimplemented: Read as ‘0’  
PWM4IF: PWM4 Interrupt Flag Status bit(2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.  
2: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 99  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-11: IFS7: INTERRUPT FLAG STATUS REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADCP6IF  
ADCP3IF(1) ADCP2IF(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
ADCP6IF: ADC Pair 6 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
ADCP3IF: ADC Pair 3 Conversion Done Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
ADCP2IF: ADC Pair 2 Conversion Done Interrupt Flag Status bit(2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.  
2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.  
DS75018C-page 100  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
ADIE  
R/W-0  
U1TXIE(1)  
R/W-0  
U1RXIE(1)  
R/W-0  
SPI1IE(1)  
R/W-0  
SPI1EIE(1)  
U-0  
bit 15  
bit 8  
R/W-0  
T2IE  
U-0  
U-0  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE(1)  
R/W-0  
IC1IE(2)  
R/W-0  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ADIE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1EIE: SPI1 Event Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit(2)  
1= Interrupt request is enabled  
0= Interrupt request not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A/102A devices.  
2: This bit is not implemented in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 101  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-13: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
INT2IE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNIE  
R/W-0  
AC1IE(1)  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3  
bit 2  
bit 1  
bit 0  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
AC1IE: Analog Comparator 1 Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.  
DS75018C-page 102  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
PSEMIE  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
PSEMIE: PWM Special Event Match Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8-0  
Unimplemented: Read as ‘0’  
REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIE(1)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIE: UART1 Error Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 103  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5  
R/W-0  
PWM2IE(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PWM1IE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
JTAGIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
PWM2IE: PWM2 Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
PWM1IE: PWM1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-1  
bit 0  
Unimplemented: Read as ‘0’  
JTAGIE: JTAG Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A devices.  
DS75018C-page 104  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-17: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ADCP1IE  
ADCP0IE  
bit 15  
bit 8  
bit 0  
R/W-0  
AC2IE(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PWM4IE(2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ADCP1IE: ADC Pair 1 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP0IE: ADC Pair 0 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-8  
bit 7  
Unimplemented: Read as ‘0  
AC2IE: Analog Comparator 2 Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6-2  
bit 1  
Unimplemented: Read as ‘0’  
PWM4IE: PWM4 Interrupt Enable bit(2)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.  
2: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 105  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-18: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADCP6IE  
ADCP3IE(1) ADCP2IE(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
ADCP6IE: ADC Pair 6 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
ADCP3IE: ADC Pair 3 Conversion Done Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
ADCP2IE: ADC Pair 2 Conversion Done Interrupt Enable bit(2)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.  
2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.  
DS75018C-page 106  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-19: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
OC1IP<2:0>(1)  
R/W-0  
bit 8  
R/W-0  
bit 0  
T1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
IC1IP<2:0>(2)  
R/W-0  
U-0  
R/W-1  
R/W-0  
INT0IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits(2)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.  
2: These bits are not implemented in dsPIC33FJ06GS001/101A/102A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 107  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-20: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
T2IP<2:0>  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11-0  
Unimplemented: Read as ‘0’  
DS75018C-page 108  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-21: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
U1RXIP<2:0>(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
SPI1IP<2:0>(1)  
R/W-0  
bit 8  
bit 15  
U-0  
R/W-1  
R/W-0  
SPI1EIP<2:0>(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 109  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-22: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
U1TXIP<2:0>(1)  
ADIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
ADIP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.  
DS75018C-page 110  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-23: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AC1IP<2:0>(1)  
R/W-0  
bit 8  
R/W-0  
bit 0  
CNIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS101A/102A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 111  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
INT1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
U-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT2IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS75018C-page 112  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PSEMIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PSEMIP<2:0>: PWM Special Event Match Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
U1EIP<2:0>(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
U1EIP<2:0>: UART1 Error Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 113  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-28: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
JTAGIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
JTAGIP<2:0>: JTAG Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS75018C-page 114  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-29: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23  
U-0  
R/W-1  
R/W-0  
PWM2IP(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
PWM1IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
PWM2IP<2:0>: PWM2 Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
PWM1IP<2:0>: PWM1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 115  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-30: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
PWM4IP(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PWM4IP<2:0>: PWM4 Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are not implemented in dsPIC33FJ06GS102A/202A devices.  
DS75018C-page 116  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-31: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 25  
U-0  
R/W-1  
R/W-0  
AC2IP<2:0>(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
AC2IP<2:0>: Analog Comparator 2 Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are not implemented in dsPIC33FJ06GS101A/102A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 117  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-32: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
ADCP1IP<2:0>  
ADCP0IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
ADCP1IP<2:0>: ADC Pair 1 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
ADCP0IP<2:0>: ADC Pair 0 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS75018C-page 118  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-33: IPC28: INTERRUPT PRIORITY CONTROL REGISTER 28  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
ADCP3IP<2:0>(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
ADCP2IP<2:0>(2)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
ADCP3IP<2:0>: ADC Pair 3 Conversion Done Interrupt Priority bits(1)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ADCP2IP<2:0>: ADC Pair 2 Conversion Done Interrupt Priority bits(2)  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS102A/202A devices.  
2: These bits are not implemented in dsPIC33FJ06GS001/101A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 119  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-34: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
ADCP6IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
ADCP6IP<2:0>: ADC Pair 6 Conversion Done Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS75018C-page 120  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
0111111= Interrupt vector pending is Number 135  
0000001= Interrupt vector pending is Number 9  
0000000= Interrupt vector pending is Number 8  
2011-2012 Microchip Technology Inc.  
DS75018C-page 121  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
Complete the following steps to configure an interrupt  
source at initialization:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
The following steps outline the procedure to disable all  
user interrupts:  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources can be programmed  
to the same non-zero value.  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to Priority Level 7 by inclusive  
ORing the value, 0xE0 with SRL.  
To enable user interrupts, the POP instruction can be  
used to restore the previous SR value.  
Note: At a device Reset, the IPCx registers are  
initialized such that all user interrupt  
sources are assigned to Priority Level 4.  
Note:  
Only user interrupts with a priority level of  
7 or lower can be disabled. Trap sources  
(Level 8-Level 15) cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of Priority Levels 1-6 for a fixed  
period of time. Level 7 interrupt sources are not  
disabled by the DISI instruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method used to declare an ISR and initialize the  
IVT with the correct vector address depends on the  
programming language (C or assembler) and the  
language development toolsuite used to develop the  
application.  
In general, the user application must clear the interrupt  
flag in the appropriate IFSx register for the source of  
the interrupt that the ISR handles; otherwise, the pro-  
gram will re-enter the ISR immediately after exiting the  
routine. If the ISR is coded in assembly language, it  
must be terminated using a RETFIE instruction to  
unstack the saved PC value, SRL value and the old  
CPU priority level.  
DS75018C-page 122  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The oscillator system provides:  
• External and internal oscillator options as clock  
8.0 OSCILLATORCONFIGURATION  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 42. “Oscillator  
(Part IV)” (DS70307) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com).  
sources  
• An on-chip Phase Lock Loop (PLL) to scale the  
internal operating frequency to the required system  
clock frequency  
• An internal FRC oscillator that can also be used with  
the PLL, thereby allowing full-speed operation  
without any external clock generation hardware  
• Clock switching between various clock sources  
• Programmable clock postscaler for system power  
savings  
• A Fail-Safe Clock Monitor (FSCM) that detects clock  
failure and takes fail-safe measures  
• An Oscillator Control register (OSCCON)  
• Nonvolatile Configuration bits for main oscillator  
selection  
• An auxiliary PLL for ADC and PWM  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
FIGURE 8-1:  
OSCILLATOR SYSTEM DIAGRAM  
DOZE<2:0>  
Primary Oscillator  
POSCCLK  
OSC1  
XT, HS, EC  
S2  
(2)  
R
XTPLL, HSPLL,  
ECPLL, FRCPLL  
(3)  
FCY  
S3  
(1)  
S1/S3  
PLL  
S1  
(1)  
FVCO  
OSC2  
POSCMD<1:0>  
(3)  
FP  
FRCDIVN  
FRC  
Oscillator  
÷ 2  
FRCCLK  
S7  
FOSC  
FRCDIV<2:0>  
FRCDIV16  
FRC  
S6  
S0  
TUN<5:0>  
÷ 16  
LPRC  
LPRC  
Oscillator  
S5  
Reference Clock Generation  
POSCCLK  
Clock Switch  
Reset  
Clock Fail  
S7  
REFCLKO  
÷ N  
FOSC  
WDT, PWRT,  
NOSC<2:0> FNOSC<2:0>  
RPx  
FSCM  
ROSEL RODIV<3:0>  
Auxiliary Clock Generation  
FRCCLK  
(1)  
FVCO  
POSCCLK  
(1)  
APLL  
x16  
(1)  
To PWM/ADC  
ACLK, FADC  
÷ N  
To LFSR  
ASRCSEL  
FRCSEL  
ENAPLL  
SELACLK  
APSTSCLR<2:0>  
Note 1: See Section 8.1.3 “PLL Configuration” and Section 8.2 “Auxiliary Clock Generation” for configuration restrictions.  
2: If the oscillator is used with XT or HS modes, an external parallel resistor with the value of 1 Mmust be connected.  
3: The term, FP, refers to the clock source for all the peripherals, while FCY refers to the clock source for the CPU. Throughout this  
document, FP and FCY are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is  
used in any ratio other than 1:1, which is the default.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 123  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
output frequencies for device operation. PLL  
configuration is described in Section 8.1.3 “PLL  
Configuration”.  
8.1  
CPU Clocking System  
The devices provide six system clock options:  
• Fast RC (FRC) Oscillator  
The FRC frequency depends on the FRC accuracy  
(see Table 25-20) and the value of the FRC Oscillator  
Tuning register (see Register 8-4).  
• FRC Oscillator with PLL  
• Primary (XT, HS or EC) Oscillator  
• Primary Oscillator with PLL  
• Low-Power RC (LPRC) Oscillator  
• FRC Oscillator with Postscaler  
8.1.2  
SYSTEM CLOCK SELECTION  
The oscillator source used at a device Power-on Reset  
event is selected using Configuration bit settings. The  
Oscillator Configuration bit settings are located in the  
Configuration registers in the program memory. (Refer  
to Section 22.1 “Configuration Bits” for further  
details.) The initial Oscillator Selection Configuration  
bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary  
8.1.1  
SYSTEM CLOCK SOURCES  
The Fast RC (FRC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. User software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> (CLKDIV<10:8>) bits.  
Oscillator  
Mode  
Select  
Configuration  
bits,  
POSCMD<1:0> (FOSC<1:0>), select the oscillator  
source that is used at a Power-on Reset. The FRC  
primary oscillator is the default (unprogrammed)  
selection.  
The primary oscillator can use one of the following as  
its clock source:  
• XT (Crystal): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins.  
The Configuration bits allow users to choose among  
12 different clock modes, shown in Table 8-1.  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected), FOSC, is divided by 2  
to generate the device instruction clock (FCY) and the  
peripheral clock time base (FP). FCY defines the  
operating speed of the device and speeds up to  
40 MHz are supported by the device architecture.  
• HS (High-Speed Crystal): Crystals in the range of  
10 MHz to 32 MHz. The crystal is connected to  
the OSC1 and OSC2 pins.  
• EC (External Clock): The external clock signal is  
directly applied to the OSC1 pin.  
The LPRC internal oscIllator runs at a nominal  
frequency of 32.768 kHz. It is also used as a reference  
clock by the Watchdog Timer (WDT) and Fail-Safe  
Clock Monitor (FSCM).  
Instruction execution speed or device operating  
frequency, FCY, is given by Equation 8-1.  
EQUATION 8-1:  
DEVICE OPERATING  
FREQUENCY  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip  
Phase Lock Loop (PLL) to provide a wide range of  
FCY = FOSC/2  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode Oscillator Source POSCMD<1:0> FNOSC<2:0> See Note  
Fast RC Oscillator with Divide-by-N (FRCDIVN)  
Fast RC Oscillator with Divide-by-16 (FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Reserved  
Internal  
Internal  
Internal  
Reserved  
Primary  
Primary  
Primary  
Primary  
Primary  
Primary  
Internal  
Internal  
xx  
xx  
xx  
xx  
10  
01  
00  
10  
01  
00  
xx  
xx  
111  
110  
101  
100  
011  
011  
011  
010  
010  
010  
001  
000  
1, 2  
1
1
1
Primary Oscillator (HS) with PLL (HSPLL)  
Primary Oscillator (XT) with PLL (XTPLL)  
Primary Oscillator (EC) with PLL (ECPLL)  
Primary Oscillator (HS)  
1
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
1
1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
DS75018C-page 124  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
• If PLLPOST<1:0> = 00, then N2 = 2. This pro-  
vides a FOSC of 160/2 = 80 MHz. The resultant  
device operating speed is 80/2 = 40 MIPS.  
8.1.3  
PLL CONFIGURATION  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides significant flexibility in  
selecting the device operating speed. A block diagram  
of the PLL is shown in Figure 8-2.  
EQUATION 8-3:  
XT WITH PLL MODE  
EXAMPLE  
FOSC  
1
2
10000000 * 32  
FCY =  
=
= 40 MIPS  
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2,  
3, ... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected in the range of 0.8 MHz to 8 MHz. The  
prescale factor, ‘N1’, is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
(
)
2
2 * 2  
8.2  
Auxiliary Clock Generation  
The auxiliary clock generation is used for a peripherals  
that need to operate at a frequency unrelated to the  
system clock, such as a PWM or ADC.  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, ‘M’,  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
The primary oscillator and internal FRC oscillator  
sources can be used with an auxiliary PLL to obtain the  
auxiliary clock. The auxiliary PLL has a fixed 16x  
multiplication factor.  
The auxiliary clock has the following configuration  
restrictions:  
The VCO output is further divided by a postscale factor,  
‘N2’. This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4, or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 80 MHz, which  
generates device operating speeds of 6.25-40 MIPS.  
• For proper PWM operation, auxiliary clock genera-  
tion must be configured for 120 MHz (see  
Parameter OS56 in Table 25-18 in Section 25.0  
“Electrical Characteristics”). If a slower frequency  
is desired, the PWM Input Clock Prescaler (Divider)  
Select bits (PCLKDIV<2:0>) should be used.  
For a primary oscillator or FRC oscillator, output ‘FIN’,  
the PLL output ‘FOSC’, is given by Equation 8-2.  
To achieve 1.04 ns PWM resolution, the auxiliary  
clock must use the 16x auxiliary PLL (APLL). All  
other clock sources will have a minimum PWM  
resolution of 8 ns.  
EQUATION 8-2:  
FOSC CALCULATION  
M
N1 * N2  
FOSC = FIN *  
(
)
• If the primary PLL is used as a source for the  
auxiliary clock, the primary PLL should be  
configured up to a maximum operation of 30 MIPS  
or less  
For example, suppose a 10 MHz crystal is being used  
with the selected oscillator mode of XT with PLL (see  
Equation 8-3).  
• If PLLPRE<4:0> = 0, then N1 = 2. This yields a  
VCO input of 10/2 = 5 MHz, which is within the  
acceptable range of 0.8-8 MHz.  
8.3  
Reference Clock Generation  
The reference clock output logic provides the user with  
the ability to output a clock signal based on the system  
clock or the crystal oscillator on a device pin. The user  
application can specify a wide range of clock scaling  
prior to outputting the reference clock.  
• If PLLDIV<8:0> = 0x1E, then M = 32. This yields a  
VCO output of 5 x 32 = 160 MHz, which is within  
the 100-200 MHz ranged needed.  
FIGURE 8-2: dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 PLL BLOCK DIAGRAM  
FVCO  
0.8-8.0 MHz  
Here  
12.5-80 MHz  
Here  
100-200 MHz  
(1)  
(1)  
(1)  
Here  
Source (Crystal, External  
Clock or Internal RC)  
FOSC  
PLLPRE  
VCO  
PLLPOST  
X
PLLDIV  
N2  
N1  
Divide by  
2-33  
Divide by  
2, 4, 8  
M
Divide by  
2-513  
Note 1: This frequency range must be satisfied at all times.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 125  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
8.4  
Oscillator Control Registers  
(1,3)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
NOSC<2:0>(2)  
R/W-y  
bit 8  
COSC<2:0>  
bit 15  
R/W-0  
CLKLOCK  
bit 7  
R/W-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
U-0  
R/W-0  
IOLOCK  
LOCK  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
111= Fast RC Oscillator (FRC) with divide-by-n  
110= Fast RC Oscillator (FRC) with divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Reserved  
011= Primary Oscillator (XT, HS, EC) with PLL  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator (FRC) with PLL  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(2)  
111= Fast RC Oscillator (FRC) with divide-by-n  
110= Fast RC Oscillator (FRC) with divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Reserved  
011= Primary Oscillator (XT, HS, EC) with PLL  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator (FRC) with PLL  
000= Fast RC Oscillator (FRC)  
bit 7  
CLKLOCK: Clock Lock Enable bit  
If clock switching is enabled and FSCM is disabled, FCKSM<1:0> (FOSC<7:6>) bits = 0b01):  
1= Clock switching is disabled, system clock source is locked  
0= Clock switching is enabled, system clock source can be modified by clock switching  
bit 6  
bit 5  
IOLOCK: Peripheral Pin Select Lock bit  
1= Peripherial Pin Select is locked, write to Peripheral Pin Select registers is not allowed  
0= Peripherial Pin Select is not locked, write to Peripheral Pin Select registers is allowed  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
Note 1: Writes to this register require an unlock sequence. Refer to Section 42. “Oscillator (Part IV)” (DS70307)  
in the “dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permit-  
ted. This applies to clock switches in either direction. In these instances, the application must switch to  
FRC mode as a transition clock source between the two PLL modes.  
3: This register is reset only on a Power-on Reset (POR).  
DS75018C-page 126  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1,3)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
(CONTINUED)  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence. Refer to Section 42. “Oscillator (Part IV)” (DS70307)  
in the “dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permit-  
ted. This applies to clock switches in either direction. In these instances, the application must switch to  
FRC mode as a transition clock source between the two PLL modes.  
3: This register is reset only on a Power-on Reset (POR).  
2011-2012 Microchip Technology Inc.  
DS75018C-page 127  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(2)  
REGISTER 8-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
DOZE<2:0>  
FRCDIV<2:0>  
bit 15  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST<1:0>  
PLLPRE<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
111= FCY/128  
110= FCY/64  
101= FCY/32  
100= FCY/16  
011= FCY/8 (default)  
010= FCY/4  
001= FCY/2  
000= FCY/1  
bit 11  
DOZEN: Doze Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio is forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
111= FRC divide-by-256  
110= FRC divide-by-64  
101= FRC divide-by-32  
100= FRC divide-by-16  
011= FRC divide-by-8  
010= FRC divide-by-4  
001= FRC divide-by-2  
000= FRC divide-by-1 (default)  
bit 7-6  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
11= Output/8  
10= Reserved  
01= Output/4 (default)  
00= Output/2  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
11111= Input/33  
00001= Input/3  
00000= Input/2 (default)  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
2: This register is reset only on a Power-on Reset (POR).  
DS75018C-page 128  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1)  
REGISTER 8-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV8  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
111111111= 513  
000110000= 50 (default)  
000000010= 4  
000000001= 3  
000000000= 2  
Note 1: This register is reset only on a Power-on Reset (POR).  
2011-2012 Microchip Technology Inc.  
DS75018C-page 129  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(2)  
REGISTER 8-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Center frequency + 11.625% (8.23 MHz)  
011110= Center frequency + 11.25% (8.20 MHz)  
000001= Center frequency + 0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
111111= Center frequency – 0.375% (7.345 MHz)  
100001= Center frequency – 11.625% (6.52 MHz)  
100000= Center frequency – 12% (6.49 MHz)  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither  
characterized nor tested.  
2: This register is reset only on a Power-on Reset (POR).  
DS75018C-page 130  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1)  
REGISTER 8-5:  
ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER  
R/W-0  
R-0  
R/W-1  
U-0  
U-0  
R/W-1  
R/W-1  
APSTSCLR<2:0>(2)  
R/W-1  
bit 8  
ENAPLL  
APLLCK  
SELACLK  
bit 15  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ASRCSEL  
FRCSEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
ENAPLL: Auxiliary PLL Enable bit  
1= APLL is enabled  
0= APLL is disabled  
APLLCK: APLL Locked Status bit (read-only)  
1= Indicates that auxiliary PLL is in lock  
0= Indicates that auxiliary PLL is not in lock  
SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit  
1= Auxiliary oscillators provides the source clock for auxiliary clock divider  
0= Primary PLL (FVCO) provides the source clock for auxiliary clock divider  
bit 12-11  
bit 10-8  
Unimplemented: Read as ‘0’  
APSTSCLR<2:0>: Auxiliary Clock Output Divider bits(2)  
111= Divided by 1  
110= Divided by 2  
101= Divided by 4  
100= Divided by 8  
011= Divided by 16  
010= Divided by 32  
001= Divided by 64  
000= Divided by 256  
bit 7  
ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit  
1= Primary oscillator is the clock source  
0= No clock input is selected  
bit 6  
FRCSEL: Select Reference Clock Source for Auxiliary PLL bit  
1= Selects FRC clock for auxiliary PLL  
0= Input clock source is determined by ASRCSEL bit setting  
bit 5-0  
Unimplemented: Read as ‘0’  
Note 1: This register is reset only on a Power-on Reset (POR).  
2: The auxiliary clock postscaler must be configured to divide-by-1 (APSTSCLR<2:0> = 111) for proper  
operation of the PWM module.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 131  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 8-6:  
R/W-0  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
ROON  
ROSSLP  
ROSEL  
RODIV<3:0>(1)  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROON: Reference Oscillator Output Enable bit  
1= Reference oscillator output is enabled on REFCLK0 pin(2)  
0= Reference oscillator output is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ROSSLP: Reference Oscillator Run in Sleep bit  
1= Reference oscillator output continues to run in Sleep  
0= Reference oscillator output is disabled in Sleep  
bit 12  
ROSEL: Reference Oscillator Source Select bit  
1= Oscillator crystal used as the reference clock  
0= System clock used as the reference clock  
bit 11-8  
RODIV<3:0>: Reference Oscillator Divider bits(1)  
1111= Reference clock divided by 32,768  
1110= Reference clock divided by 16,384  
1101= Reference clock divided by 8,192  
1100= Reference clock divided by 4,096  
1011= Reference clock divided by 2,048  
1010= Reference clock divided by 1,024  
1001= Reference clock divided by 512  
1000= Reference clock divided by 256  
0111= Reference clock divided by 128  
0110= Reference clock divided by 64  
0101= Reference clock divided by 32  
0100= Reference clock divided by 16  
0011= Reference clock divided by 8  
0010= Reference clock divided by 4  
0001= Reference clock divided by 2  
0000= Reference clock  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.  
2: This pin is remappable; refer to Section 10.6 “Peripheral Pin Select (PPS)” for more information.  
DS75018C-page 132  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 8-7:  
LFSR: LINEAR FEEDBACK SHIFT REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
LFSR<14:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LFSR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
LFSR<14:0>: Pseudo Random FRC Trim Value bits  
bit 14-0  
2011-2012 Microchip Technology Inc.  
DS75018C-page 133  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
8.5  
Clock Switching Operation  
Applications are free to switch among any of the four  
clock sources (primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects of this flexibility, devices have a safeguard lock  
built into the switch process.  
1. The clock switching hardware compares the  
COSC<2:0> status bits with the new value of the  
NOSC<2:0> control bits. If they are the same,  
the clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
Note:  
Primary Oscillator mode has three different  
submodes (XT, HS and EC), which are  
determined by the POSCMD<1:0>  
Configuration bits. While an application  
can switch to and from Primary Oscillator  
mode in software, it cannot switch among  
the different primary submodes without  
reprogramming the device.  
2. If a valid clock switch has been initiated, the  
LOCK  
(OSCCON<5>)  
and  
the  
CF  
(OSCCON<3>) status bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
8.5.1  
ENABLING CLOCK SWITCHING  
To enable clock switching, the FCKSM1 Configuration bit  
in the FOSC Configuration register must be programmed  
to ‘0’. (Refer to Section 22.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is unpro-  
grammed (‘1’), the clock switching function and Fail-Safe  
Clock Monitor function are disabled. This is the default  
setting.  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the  
NOSC<2:0> bit values are transferred to the  
COSC<2:0> status bits.  
The NOSC<2:0> control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching  
is disabled. However, the COSC<2:0> bits  
(OSCCON<14:12>) reflect the clock source selected  
by the FNOSC Configuration bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM is  
enabled).  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing-sensitive code should not be  
executed during this time.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
2: Direct clock switches between any  
Primary Oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL modes.  
3: Refer to Section 42. “Oscillator  
(Part IV)” (DS70307) in the “dsPIC33F/  
PIC24H Family Reference Manual” for  
details.  
8.5.2  
OSCILLATOR SWITCHING SEQUENCE  
To perform a clock switch, the following basic sequence  
is required:  
1. If desired, read the COSC<2:0> bits to  
determine the current oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write the appropriate value to the NOSC<2:0>  
control bits for the new oscillator source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit (OSCCON<0>) to initiate the  
oscillator switch.  
DS75018C-page 134  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
8.6  
Fail-Safe Clock Monitor (FSCM)  
8.7  
Pseudo-Random Generator  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate, even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
The pseudo-random generator is implemented with a  
15-bit Linear Feedback Shift Register (LFSR), which is  
a shift register with a few exclusive OR gates. The shift  
register is clocked by the PWM clock and is a read-only  
register. The purpose of this feature is to provide the  
ability to randomly change the period or the active  
portion of the PWM.  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. Then, the  
application program can either attempt to restart the  
oscillator or execute a controlled shutdown. The trap  
can be treated as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector.  
A firmware routine can be used to read “n” random bits  
from the LFSR register and combine them, by either  
summing or performing another logical operation with  
the PWM period of the Duty Cycle registers. The result  
will be a PWM signal whose nominal period (or duty  
cycle) is the desired one, but whose effective value  
changes randomly. This capability will help in reducing  
the EMI/EMC emissions by spreading the power over a  
wider frequency range.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
Figure 8-3 provides a block diagram of the LFSR.  
FIGURE 8-3:  
LFSR BLOCK DIAGRAM  
All Zero Detect  
LFSR  
15  
D
D
Q0  
Q
Q1  
Q
D
D
D
D
D
D
D
D
D
D
D
D
D
Q14  
Q2  
Q
Q3  
Q
Q4  
Q
Q5  
Q
Q6  
Q
Q7  
Q
Q8  
Q
Q9  
Q
Q10  
Q11  
Q12  
Q13  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
Q
Q
Q
Q
Q
2011-2012 Microchip Technology Inc.  
DS75018C-page 135  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 136  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
9.2  
Instruction-Based Power-Saving  
Modes  
9.0  
POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 9. “Watchdog  
Timer (WDT) and Power-Saving  
Modes” (DS70196) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available from the Microchip web  
site (www.microchip.com).  
The devices have two special power-saving modes that  
are entered through the execution of a special PWRSAV  
instruction. Sleep mode stops clock operation and halts all  
code execution. Idle mode halts the CPU and code  
execution, but allows peripheral modules to continue  
operation. The assembler syntax of the PWRSAV  
instruction is shown in Example 9-1.  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to wake-up.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
9.2.1  
SLEEP MODE  
The following occur in Sleep mode:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
These devices provide the ability to manage power  
consumption by selectively managing clocking to the  
CPU and the peripherals. In general, a lower clock  
frequency and a reduction in the number of circuits being  
clocked constitutes lower consumed power. Devices can  
manage power consumption in four different ways:  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
• The Fail-Safe Clock Monitor does not operate  
since the system clock source is disabled.  
• Clock Frequency  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled.  
• Instruction-Based Sleep and Idle modes  
• Software Controlled Doze mode  
• Selective Peripheral Control in Software  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
Combinations of these methods can be used to  
selectively tailor an application’s power consumption  
while still maintaining critical application features, such  
as timing-sensitive communications.  
• Some device features or peripherals may continue  
to operate. This includes items, such as the Input  
Change Notification (ICN) on the I/O ports or  
peripherals that use an external clock input.  
• Any peripheral that requires the system clock  
source for its operation is disabled.  
9.1  
Clock Frequency and Clock  
Switching  
The device will wake-up from Sleep mode on any of  
these events:  
These devices allow a wide range of clock frequencies  
to be selected under application control. If the system  
clock configuration is not locked, users can choose  
low-power or high-precision oscillators by simply  
changing the NOSC<2:0> bits (OSCCON<10:8>). The  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
• A WDT time-out  
process of changing  
a
system clock during  
On wake-up from Sleep mode, the processor restarts  
with the same clock source that was active when Sleep  
mode was entered.  
operation, as well as limitations to the process, are  
discussed in more detail in Section 8.0 “Oscillator  
Configuration”.  
EXAMPLE 9-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
2011-2012 Microchip Technology Inc.  
DS75018C-page 137  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default setting.  
9.2.2  
IDLE MODE  
The following occur in Idle mode:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Peripheral Module Disable”).  
Programs can use Doze mode to selectively reduce  
power consumption in event-driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU Idles, waiting for something to invoke an  
interrupt routine. An automatic return to full-speed CPU  
operation on interrupts can be enabled by setting the  
ROI bit (CLKDIV<15>). By default, interrupt events  
have no effect on Doze mode operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake-up from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled  
• Any device Reset  
• A WDT time-out  
9.4  
Peripheral Module Disable  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
On wake-up from Idle mode, the clock is reapplied to  
the CPU and instruction execution will begin (2-4 clock  
cycles later), starting with the instruction following the  
PWRSAVinstruction, or the first instruction in the ISR.  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
A peripheral module is enabled only if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC® DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
9.3  
Doze Mode  
The preferred strategies for reducing power  
consumption are changing clock speed and invoking  
one of the power-saving modes. In some  
circumstances, this may not be practical. For example,  
it may be necessary for an application to maintain  
uninterrupted synchronous communication, even while  
it is doing nothing else. Reducing system clock speed  
can introduce communication errors, while using a  
power-saving mode can stop communications  
completely.  
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of one  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of one instruction  
cycle (assuming the module control regis-  
ters are already configured to enable  
module operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed, while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS75018C-page 138  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
9.5  
PMD Control Registers  
REGISTER 9-1:  
PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
T2MD  
R/W-0  
T1MD  
U-0  
R/W-0  
PWMMD(1)  
U-0  
bit 15  
bit 8  
R/W-0  
I2C1MD  
bit 7  
U-0  
R/W-0  
U1MD(2)  
U-0  
R/W-0  
SPI1MD(2)  
U-0  
U-0  
R/W-0  
ADCMD  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
bit 11  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
PWMMD: PWM Module Disable bit(1)  
1= PWM module is disabled  
0= PWM module is enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
U1MD: UART1 Module Disable bit(2)  
1= UART1 module is disabled  
0= UART1 module is enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SPI1MD: SPI1 Module Disable bit(2)  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
ADCMD: ADC Module Disable bit  
1= ADC module is disabled  
0= ADC module is enabled  
Note 1: Once the PWM module is re-enabled (PWMMD is set to ‘1’ and then set to ‘0’), all PWM registers must be  
re-initialized.  
2: This bit is not implemented in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 139  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 9-2:  
PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IC1MD(1)  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
OC1MD(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
IC1MD: Input Capture 1 Module Disable bit(1)  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
OC1MD: Output Compare 1 Module Disable bit(2)  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
Note 1: This bit is not implemented in dsPIC33FJ06GS001/101A/102A devices.  
2: This bit is not implemented in the dsPIC33FJ06GS001 device.  
DS75018C-page 140  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 9-3:  
PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CMPMD(1)  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CMPMD: Analog Comparator Module Disable bit(1)  
1= Analog comparator module is disabled  
0= Analog comparator module is enabled  
bit 9-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.  
REGISTER 9-4:  
PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
REFOMD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
REFOMD: Reference Clock Generator Module Disable bit  
1= Reference clock generator module is disabled  
0= Reference clock generator module is enabled  
bit 2-0  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS75018C-page 141  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 9-5:  
PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PWM4MD(1)  
U-0  
R/W-0  
R/W-0  
PWM2MD(2) PWM1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
PWM4MD: PWM Generator 4 Module Disable bit(1)  
1= PWM Generator 4 module is disabled  
0= PWM Generator 4 module is enabled  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
PWM2MD: PWM Generator 2 Module Disable bit(2)  
1= PWM Generator 2 module is disabled  
0= PWM Generator 2 module is enabled  
bit 8  
PWM1MD: PWM Generator 1 Module Disable bit  
1= PWM Generator 1 module is disabled  
0= PWM Generator 1 module is enabled  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.  
2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.  
DS75018C-page 142  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 9-6:  
PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CMP2MD(1) CMP1MD(1)  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
CMP2MD: Analog Comparator 2 Module Disable bit(1)  
1= Analog Comparator 2 module is disabled  
0= Analog Comparator 2 module is enabled  
bit 8  
CMP1MD: Analog Comparator 1 Module Disable bit(1)  
1= Analog Comparator 1 module is disabled  
0= Analog Comparator 1 module is enabled  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 143  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 9-7:  
PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCSMD(1)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
CCSMD: Constant Current Source Module Disable bit(1)  
1= Constant current source module is disabled  
0= Constant current source module is enabled  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A/202A devices.  
DS75018C-page 144  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
When a peripheral is enabled and the peripheral is  
10.0 I/O PORTS  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled, but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 10. “I/O Ports”  
(DS70193) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available on the Microchip web site  
(www.microchip.com).  
All port pins have three registers directly associated  
with their operation as digital I/O. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx) read the latch.  
Writes to the latch write the latch. Reads from the port  
(PORTx) read the port pins, while writes to the port pins  
write the latch.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pin will read as zeros.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared among the peripherals and the  
parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
10.1 Parallel I/O (PIO) Ports  
Generally a parallel I/O port that shares a pin with a  
peripheral is subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 145  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Output Multiplexers  
Peripheral Module  
Peripheral Input Data  
I/O  
Peripheral Module Enable  
1
Output Enable  
Peripheral Output Enable  
Peripheral Output Data  
PIO Module  
0
1
0
Output Data  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
DS75018C-page 146  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
10.2 Open-Drain Configuration  
10.4 I/O Port Write/Read Timing  
In addition to the PORT, LAT and TRIS registers for  
data control, some digital only port pins can also be  
individually configured for either digital or open-drain  
output. This is controlled by the Open-Drain Control  
register, ODCx, associated with each port. Setting any  
of the bits configures the corresponding pin to act as an  
open-drain output.  
Oneinstructioncycleisrequiredbetweenaportdirection  
change or port write operation and a read operation of  
the same port. Typically, this instruction would be a NOP.  
An example is shown in Example 10-1.  
10.5 Input Change Notification  
The Input Change Notification function of the I/O  
ports allows devices to generate interrupt requests to  
the processor in response to a Change-of-State (COS)  
on selected input pins. This feature can detect input  
Change-of-States (COS), even in Sleep mode when  
the clocks are disabled. Depending on the device pin  
count, up to 16 external signals (CNx pin) can be  
selected (enabled) for generating an interrupt request  
on a Change-of-State.  
The open-drain feature allows the generation of  
outputs higher than VDD (for example, 5V), on any  
desired 5V tolerant pins, by using external pull-up  
resistors. The maximum open-drain voltage allowed is  
the same as the maximum VIH specification.  
Refer to the Pin Diagramssection for the available  
pins and their functionality.  
10.3 Configuring Analog Port Pins  
Four control registers are associated with the CN  
module. The CNEN1 register contains the interrupt  
enable control bits for each of the CN input pins. Setting  
any of these bits enables a CN interrupt for the  
corresponding pin.  
The ADPCFG and TRIS registers control the operation  
of the Analog-to-Digital port pins. The port pins that are  
to function as analog inputs must have their corre-  
sponding TRIS bit set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source connected to the  
pin and eliminate the need for external resistors when  
the push button or keypad devices are connected. The  
pull-ups are enabled separately, using the CNPU1 reg-  
ister, which contains the control bits for each of the CN  
pins. Setting any of the control bits enables the weak  
pull-ups for the corresponding pins.  
The ADPCFG register has a default value of 0x0000;  
therefore, all pins that share ANx functions are analog  
(not digital) by default.  
When the PORT register is read, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin, defined as a  
digital input (including the ANx pins), can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
Pull-ups on change notification pins  
should always be disabled when the port  
pin is configured as a digital output.  
EXAMPLE 10-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
BTSS PORTB, #13  
; Next Instruction  
2011-2012 Microchip Technology Inc.  
DS75018C-page 147  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
10.6.2.1  
Input Mapping  
10.6 Peripheral Pin Select (PPS)  
The inputs of the Peripheral Pin Select options are  
mapped on the basis of the peripheral. A control register  
associated with a peripheral dictates the pin it will be  
mapped to. The RPINRx registers are used to configure  
peripheral input mapping (see Register 10-1 through  
Register 10-15). Each register contains sets of 6-bit  
fields, with each set associated with one of the  
Peripheral Pin Select configuration enables peripheral  
set selection and placement on a wide range of I/O  
pins. By increasing the pinout options available on a  
particular device, programmers can better tailor the  
microcontroller to their entire application, rather than  
trimming the application to fit the device.  
The Peripheral Pin Select configuration feature operates  
over a fixed subset of digital I/O pins. Programmers can  
independently map the input and/or output of most  
digital peripherals to any one of these I/O pins.  
Peripheral Pin Select is performed in software and gen-  
erally does not require the device to be reprogrammed.  
Hardware safeguards are included that prevent acciden-  
tal or spurious changes to the peripheral mapping once  
it has been established.  
remappable peripherals. Programming  
a given  
peripheral’s bit field with an appropriate 6-bit value maps  
the RPn pin with that value to that peripheral. For any  
given device, the valid range of values for any bit field  
corresponds to the maximum number of Peripheral Pin  
Selections supported by the device.  
Figure 10-2 illustrates the remappable pin selection for  
the U1RX input.  
Note:  
For input mapping only, the Peripheral Pin  
Select (PPS) functionality does not have  
priority over the TRISx settings. There-  
fore, when configuring the RPx pin for  
input, the corresponding bit in the TRISx  
register must also be configured for input  
(i.e., set to ‘1’).  
10.6.1  
AVAILABLE PINS  
The Peripheral Pin Select feature is used with a range  
of up to 16 pins. The number of available pins depends  
on the particular device and its pin count. Pins that  
support the Peripheral Pin Select feature include the  
designation, “RPn”, in their full pin designation, where  
“RP” designates a remappable peripheral and “n” is the  
remappable pin number.  
FIGURE 10-2:  
REMAPPABLE MUX  
INPUT FOR U1RX  
10.6.2  
CONTROLLING PERIPHERAL PIN  
SELECT  
U1RXR<5:0>  
0
Peripheral Pin Select features are controlled through  
two sets of Special Function Registers: one to map  
peripheral inputs and one to map outputs. Because  
they are separately controlled, a particular peripheral’s  
input and output (if the peripheral has both) can be  
placed on any selectable function pin without  
constraint.  
RP0  
RP1  
RP2  
1
U1RX Input  
to Peripheral  
2
The association of a peripheral to a peripheral select-  
able pin is handled in two different ways, depending on  
whether an input or output is being mapped.  
15  
RP15  
DS75018C-page 148  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)  
Configuration  
Input Name  
Function Name  
Register  
Bits  
External Interrupt 1  
External Interrupt 2  
Timer1 External Clock  
Timer2 External Clock  
Input Capture 1  
INT1  
INT2  
RPINR0  
RPINR1  
INT1R<5:0>  
INT2R<5:0>  
T1CKR<5:0>  
T2CKR<5:0>  
IC1R<5:0>  
T1CK  
T2CK  
IC1  
RPINR2  
RPINR3  
RPINR7  
Output Compare Fault A  
UART1 Receive  
OCFA  
U1RX  
U1CTS  
SDI1  
RPINR11  
RPINR18  
RPINR18  
RPINR20  
RPINR20  
RPINR21  
RPINR29  
RPINR30  
RPINR30  
RPINR31  
RPINR31  
RPINR32  
RPINR32  
RPINR33  
RPINR33  
RPINR34  
OCFAR<5:0>  
U1RXR<5:0>  
U1CTSR<5:0>  
SDI1R<5:0>  
SCK1R<5:0>  
SS1R<5:0>  
UART1 Clear-to-Send  
SPI Data Input 1  
SPI Clock Input 1  
SCK1  
SS1  
SPI Slave Select Input 1  
PWM Fault Input  
FLT1  
FLT1R<5:0>  
FLT2R<5:0>  
FLT3R<5:0>  
FLT4R<5:0>  
FLT5R<5:0>  
FLT6R<5:0>  
FLT7R<5:0>  
FLT8R<5:0>  
SYNCI1R<5:0>  
SYNCI2R<5:0>  
PWM Fault Input  
FLT2  
PWM Fault Input  
FLT3  
PWM Fault Input  
FLT4  
PWM Fault Input  
FLT5  
PWM Fault Input  
FLT6  
PWM Fault Input  
FLT7  
PWM Fault Input  
FLT8  
External Synchronization Signal to PWM Master Time Base  
External Synchronization Signal to PWM Master Time Base  
SYNCI1  
SYNCI2  
2011-2012 Microchip Technology Inc.  
DS75018C-page 149  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
10.6.2.2  
Output Mapping  
FIGURE 10-3:  
MULTIPLEXING OF  
REMAPPABLE OUTPUT  
FOR RPn  
In contrast to inputs, the outputs of the Peripheral Pin  
Select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Like the RPINRx registers, each register contains sets  
of 6-bit fields, with each set associated with one RPn  
pin (see Register 10-16 through Register 10-25). The  
value of the bit field corresponds to one of the  
peripherals and that peripheral’s output is mapped to  
the pin (see Table 10-2 and Figure 10-3).  
RPORn<5:0>  
Default  
0
3
4
U1TX Output Enable  
U1RTS Output Enable  
Output Enable  
The list of peripherals for output mapping also includes  
a null value of ‘00000’ because of the mapping  
technique. This permits any given pin to remain  
unconnected from the output of any of the pin  
selectable peripherals.  
OC1 Output Enable  
18  
45  
PWM4L Output Enable  
Default  
0
3
4
U1TX Output  
U1RTS Output  
RPn  
Output Data  
OC1 Output  
18  
45  
PWM4L Output  
TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)  
Function  
NULL  
RPORn<5:0>  
Output Name  
000000  
000011  
000100  
000111  
001000  
001001  
010010  
100101  
100110  
100111  
101000  
101100  
101101  
RPn tied to default port pin  
RPn tied to UART1 transmit  
U1TX  
U1RTS  
SDO1  
RPn tied to UART1 Ready-to-Send  
RPn tied to SPI1 data output  
SCK1  
RPn tied to SPI1 clock output  
RPn tied to SPI1 slave select output  
RPn tied to Output Compare 1  
SS1  
OC1  
SYNCO1  
REFCLKO  
ACMP1  
ACMP2  
PWM4H  
PWM4L  
RPn tied to external device synchronization signal via PWM master time base  
REFCLK output signal  
RPn tied to Analog Comparator 1 output  
RPn tied to Analog Comparator 2 output  
RPn tied to PWM output pins associated with PWM Generator 4  
RPn tied to PWM output pins associated with PWM Generator 4  
DS75018C-page 150  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the Peripheral Pin Selects to be configured  
with a single unlock sequence, followed by an update  
to all control registers, then locked with a second lock  
sequence.  
10.6.2.3  
Virtual Pins  
Four virtual RPn pins (RP32, RP33, RP34 and RP35)  
are supported, which are identical in functionality to all  
other RPn pins, with the exception of pinouts. These  
four pins are internal to the devices and are not  
connected to a physical device pin.  
These pins provide a simple way for inter-peripheral  
connection without utilizing a physical pin. For example,  
the output of the analog comparator can be connected to  
RP32 and the PWM Fault input can be configured for  
RP32 as well. This configuration allows the analog  
comparator to trigger PWM Faults without the use of an  
actual physical pin on the device.  
10.6.3.2  
Continuous State Monitoring  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a Configuration Mismatch Reset will  
be triggered.  
10.6.3  
CONTROLLING CONFIGURATION  
CHANGES  
10.6.3.3  
Configuration Bit Pin Select Lock  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. dsPIC33F devices include three features to  
prevent alterations to the peripheral map:  
As an additional level of safety, the device can be  
configured to prevent more than one write session to  
the RPINRx and RPORx registers. The IOL1WAY  
(FOSC<5>) Configuration bit blocks the IOLOCK bit  
from being cleared, after it has been set once. If  
IOLOCK remains set, the register unlock procedure will  
not execute and the Peripheral Pin Select Control  
registers cannot be written to. The only way to clear the  
bit and re-enable peripheral remapping is to perform a  
device Reset.  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit pin select lock  
10.6.3.1  
Control Register Lock  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes  
appear to execute normally, but the contents of the  
registers remain unchanged. To change these  
registers, they must be unlocked in hardware. The  
register lock is controlled by the IOLOCK bit  
(OSCCON<6>). Setting IOLOCK prevents writes to the  
control registers; clearing IOLOCK allows writes.  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows user applications unlimited access  
(with the proper use of the unlock sequence) to the  
Peripheral Pin Select registers.  
To set or clear IOLOCK, a specific command sequence  
must be executed:  
1. Write 0x46 to OSCCON<7:0>.  
2. Write 0x57 to OSCCON<7:0>.  
3. Clear (or set) IOLOCK as a single operation.  
Note:  
MPLAB® C30 provides built-in  
C
language functions for unlocking the  
OSCCON register:  
__builtin_write_OSCCONL(value)  
__builtin_write_OSCCONH(value)  
See the MPLAB C30 Help files for more  
information.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 151  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
4. Each CN pin has a configurable internal weak  
10.7 I/O Helpful Tips  
pull-up resistor. The pull-ups act as a current  
1. In some cases, certain pins, as defined in  
source connected to the pin and eliminates the  
Table 25-9 under “Injection Current”, have internal  
need for external resistors in certain applica-  
protection diodes to VDD and VSS. The term,  
tions. The internal pull-up is to ~(VDD – 0.8), not  
“Injection Current”, is also referred to as “Clamp  
VDD. This is still above the minimum VIH of  
Current”. On designated pins, with sufficient exter-  
CMOS and TTL devices.  
nal current limiting precautions by the user, I/O pin  
5. When driving LEDs directly, the I/O pin can  
input voltages are allowed to be greater or less  
source or sink more current than what is  
than the data sheet absolute maximum ratings  
specified in the VOH/IOH and VOL/IOL DC Char-  
with respect to the VSS and VDD supplies. Note  
acteristics specification. The respective IOH and  
that when the user application forward biases  
IOL current rating only applies to maintaining the  
either of the high or low side internal input clamp  
corresponding output at or above the VOH, and  
diodes, that the resulting current being injected  
at or below the VOL levels. However, for LEDs,  
into the device that is clamped internally by the  
unlike digital inputs of an externally connected  
VDD and VSS power rails, may affect the ADC  
device, they are not governed by the same min-  
accuracy by four to six counts.  
imum VIH/VIL levels. An I/O pin output can safely  
sink or source any current less than that listed in  
the “Absolute Maximum Ratings(1)” in  
Section 25.0, Electrical Characteristics of this  
2. I/O pins that are shared with any analog input pin  
(i.e., ANx) are always analog pins by default after  
any Reset. Consequently, any pin(s) configured as  
an analog input pin, automatically disables the dig-  
ital input pin buffer. As such, any attempt to read a  
data sheet. For example:  
VOH = 2.4V @ IOL = -6 mA and VDD = 3.3V  
digital input pin will always return a ‘0’, regardless  
of the digital logic level on the pin if the analog pin  
is configured. To use a pin as a digital I/O pin on a  
shared ANx pin, the user application needs to con-  
figure the Analog Pin register in the ADC module  
(i.e., ADPCFG) by setting the appropriate bit that  
corresponds to that I/O port pin to a ‘1’. On devices  
with more than one ADC, both analog pin configu-  
rations for both ADC modules must be configured  
as a digital I/O pin for that pin to function as a  
digital I/O pin.  
The maximum output current sourced by any  
4x I/O pin = 15 mA.  
LED source current <15 mA is technically permitted.  
Refer to the VOH/IOH graphs in Section 26.0 “DC  
and AC Device Characteristics Graphs” for  
additional information.  
10.8 I/O Resources  
Many useful resources related to I/O are provided on  
the Microchip web site (www.microchip.com).  
Note:  
Although it is not possible to use a digital  
input pin when its analog function is  
enabled, it is possible to use the digital I/O  
output function, TRISx = 0x0, while the  
analog function is also enabled. However,  
this is not recommended, particularly if the  
analog input is connected to an external  
analog voltage source, which would  
create signal contention between the  
analog signal and the output pin driver.  
10.8.1  
KEY RESOURCES  
“dsPIC33F/PIC24H Family Reference Manual”,  
Section 10. “I/O Ports” (DS70193)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related “dsPIC33F/PIC24H Family Reference  
Manual” Sections  
3. Most I/O pins have multiple functions. Referring to  
the device pin diagrams in the data sheet, the  
priorities of the functions allocated to any pins are  
indicated by reading the pin name from left-to-right.  
The left most function name takes precedence over  
any function to its right in the naming convention; for  
example: AN2/CMP1C/CMP2A/RA2. This indi-  
cates that AN2 is the highest priority in this example  
and will supersede all other functions to its right in  
the list. Those other functions to its right, even if  
enabled, would not work as long as any other func-  
tion to its left was enabled. This rule applies to all of  
the functions listed for a given pin.  
• Development Tools  
DS75018C-page 152  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Not all Output Remappable Peripheral registers are  
10.9 Peripheral Pin Select Registers  
implemented on all devices. See the register  
The following registers are implemented for remappable  
description of the specific register for further details.  
peripheral configuration:  
• 15 Input Remappable Peripheral Registers  
• 19 Output Remappable Peripheral Registers  
Note:  
Input and output register values can only  
be changed if IOLOCK (OSCCON<6>) = 0.  
See Section 10.6.3.1 “Control Register  
Lock” for a specific command sequence.  
REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
INT1R<5:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS75018C-page 153  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
INT2R<5:0>: Assign External Interrupt 2 (INTR2) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS75018C-page 154  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
T1CKR<5:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
T1CKR<5:0>: Assign Timer1 External Clock (T1CK) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS75018C-page 155  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-4: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T2CKR<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
T2CKR<5:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS75018C-page 156  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
IC1R<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IC1R<5:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits(1)  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A/102A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 157  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFAR<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
OCFAR<5:0>: Assign Output Compare A (OCFA) to the Corresponding RPn Pin bits(1)  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.  
DS75018C-page 158  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-7: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
U1CTSR<5:0>(1)  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1RXR<5:0>(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits(1)  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
U1RXR<5:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits(1)  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 159  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-8: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
SCK1R<5:0>(1)  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI1R<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
SCK1R<5:0>: Assign SPI1 Clock Input (SCK1) to the Corresponding RPn Pin bits(1)  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits(1)  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.  
DS75018C-page 160  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-9: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS1R<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SS1R<5:0>: Assign SPI1 Slave Select Input (SS1) to the Corresponding RPn Pin bits(1)  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
Note 1: These bits are not implemented in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 161  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-10: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
FLT1R<5:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FLT1R<5:0>: Assign PWM Fault Input 1 (FLT1) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
DS75018C-page 162  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-11: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
FLT3R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLT2R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FLT3R<5:0>: Assign PWM Fault Input 3 (FLT3) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FLT2R<5:0>: Assign PWM Fault Input 2 (FLT2) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
2011-2012 Microchip Technology Inc.  
DS75018C-page 163  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-12: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
FLT5R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLT4R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FLT5R<5:0>: Assign PWM Fault Input 5 (FLT5) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FLT4R<5:0>: Assign PWM Fault Input 4 (FLT4) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS75018C-page 164  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-13: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
FLT7R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLT6R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FLT7R<5:0>: Assign PWM Fault Input 7 (FLT7) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FLT6R<5:0>: Assign PWM Fault Input 6 (FLT6) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
2011-2012 Microchip Technology Inc.  
DS75018C-page 165  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-14: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
SYNCI1R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLT8R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
SYNCI1R<5:0>: Assign PWM Master Time Base External Synchronization Signal to the  
Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FLT8R<5:0>: Assign PWM Fault Input 8 (FLT8) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS75018C-page 166  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-15: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SYNCI2R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SYNCI2R<5:0>: Assign PWM Master Time Base External Synchronization Signal to the  
Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
2011-2012 Microchip Technology Inc.  
DS75018C-page 167  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-16: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP1R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP0R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP1R<5:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP0R<5:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
REGISTER 10-17: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP3R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
RP2R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP3R<5:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP2R<5:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
DS75018C-page 168  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-18: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP5R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP4R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP5R<5:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP4R<5:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
REGISTER 10-19: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP7R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
RP6R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP7R<5:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP6R<5:0>: Peripheral Output Function is Assigned to RP6 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
2011-2012 Microchip Technology Inc.  
DS75018C-page 169  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-20: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP9R<5:0>(1)  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP8R<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP9R<5:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP8R<5:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.  
REGISTER 10-21: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP11R<5:0>(1)  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
RP10R<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.  
DS75018C-page 170  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-22: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP13R<5:0>(1)  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP12R<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP13R<5:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP12R<5:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.  
REGISTER 10-23: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP15R<5:0>(1)  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
RP14R<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP15R<5:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP14R<5:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits(1)  
(see Table 10-2 for peripheral function numbers)  
Note 1: These bits are not implemented in dsPIC33FJ06GS001/101A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 171  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 10-24: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP33R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP32R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP33R<5:0>: Peripheral Output Function is Assigned to RP33 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP32R<5:0>: Peripheral Output Function is Assigned to RP32 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
REGISTER 10-25: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP35R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
RP34R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP34R<5:0>: Peripheral Output Function is Assigned to RP34 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
DS75018C-page 172  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The unique features of Timer1 allow it to be used for  
Real-Time Clock applications. A block diagram of  
Timer1 is shown in Figure 11-1.  
11.0 TIMER1  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 11. “Timers”  
(DS70205) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
The Timer1 module can operate in one of the following  
modes:  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
• Asynchronous Counter mode  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
In Synchronous and Asynchronous Counter modes,  
the input clock is derived from the external clock input  
at the T1CK pin.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Timer1 modes are determined by the following bits:  
• Timer1 Clock Source Control bit: TCS (T1CON<1>)  
• Timer1 Synchronization Control bit: TSYNC  
(T1CON<2>)  
The Timer1 module is a 16-bit timer, which can serve  
as a time counter for the Real-Time Clock (RTC) or  
operate as a free-running interval timer/counter.  
• Timer1 Gate Control bit: TGATE (T1CON<6>)  
The Timer1 control bit settings for different operating  
modes are given in the Table 11-1.  
The Timer1 module has the following unique features  
over other timers:  
TABLE 11-1: TIMER1 MODE SETTINGS  
• Can be operated from the low-power 32 kHz  
crystal oscillator available on the device  
Mode  
Timer1  
TCS  
TGATE  
TSYNC  
• Can be operated in Asynchronous Counter mode  
from an external clock source  
0
0
1
0
1
x
x
x
1
Gated Timer1  
• The Timer1 External Clock Input (T1CK) can  
optionally be synchronized to the internal device  
clock and the clock synchronization is performed  
after the prescaler  
Synchronous  
Counter  
Asynchronous  
Counter  
1
x
0
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
Falling Edge  
Gate  
Sync  
1
0
Detect  
Set T1IF Flag  
FP  
10  
Prescaler  
(/n)  
TGATE  
Reset  
Equal  
TMR1  
00  
x1  
TCKPS<1:0>  
0
1
T1CK  
Prescaler  
(/n)  
Comparator  
PR1  
Sync  
TGATE  
TCS  
TSYNC  
TCKPS<1:0>  
2011-2012 Microchip Technology Inc.  
DS75018C-page 173  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
11.1  
Timer1 Control Register  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11 = 1:256  
10 = 1:64  
01 = 1:8  
00 = 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronizes external clock input  
0= Does not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from T1CK pin (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
DS75018C-page 174  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
12.0 TIMER2 FEATURES  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 11. “Timers”  
(DS70205) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available on the Microchip web site  
(www.microchip.com).  
In Synchronous Counter mode, the input clock is  
derived from the external clock input at the TxCK pin.  
The Timer modes are determined by the following bits:  
• TCS (TxCON<1>): Timer Clock Source Control bit  
• TGATE (TxCON<6>): Timer Gate Control bit  
The Timer control bit settings for different operating  
modes are given in Table 12-1.  
TABLE 12-1: TIMER MODE SETTINGS  
Mode  
TCS  
TGATE  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Timer  
0
0
1
0
1
x
Gated Timer  
Synchronous Counter  
12.1 16-Bit Operation  
Timer2 is a Type B timer with an external clock input  
(TxCK) that is always synchronized to the internal  
device clock and the clock synchronization is  
performed after the prescaler.  
To configure any of the timers for individual 16-bit  
operation:  
1. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
The Timer2 module can operate in one of the following  
modes:  
2. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
• Timer mode  
3. Load the Timer Period value into the PRx  
register.  
• Gated Timer mode  
• Synchronous Counter mode  
4. If interrupts are required, set the Timerx Interrupt  
Enable bit, TxIE. Use the priority bits,  
TxIP<2:0>, to set the interrupt priority.  
5. Set the TON bit.  
FIGURE 12-1:  
TYPE B TIMER BLOCK DIAGRAM (x = 2)  
Falling Edge  
Detect  
Gate  
Sync  
1
Set TxIF Flag  
FP  
10  
00  
0
Prescaler  
(/n)  
Reset  
Equal  
TMRx  
Comparator  
PRx  
TCKPS<1:0>  
Sync  
TGATE  
Prescaler  
(/n)  
x1  
TxCK  
TCKPS<1:0>  
TGATE  
TCS  
2011-2012 Microchip Technology Inc.  
DS75018C-page 175  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
12.2 Timer2 Control Register  
REGISTER 12-1: T2CON: TIMER2 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
1= Starts 16-bit timer  
0= Stops 16-bit timer  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinues timer operation when device enters Idle mode  
0= Continues timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit  
1= External clock from T2CK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
DS75018C-page 176  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
• Simple Capture Event modes:  
13.0 INPUT CAPTURE  
- Capture timer value on every falling edge of  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 12. “Input Cap-  
ture” (DS70198) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available on the Microchip web  
site (www.microchip.com).  
input at IC1 pin  
- Capture timer value on every rising edge of  
input at IC1 pin  
• Capture timer value on every edge (rising  
and falling)  
• Prescaler Capture Event modes:  
- Capture timer value on every 4th rising edge  
of input at IC1 pin  
- Capture timer value on every 16th rising  
edge of input at IC1 pin  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The input capture module uses the Timer2 module  
as its timer; however, it can use either an internal or  
external clock.  
Other operational features include:  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
• Interrupt on input capture event  
• 4-word FIFO buffer for capture values:  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the IC1 pin. The events that cause a capture event  
are listed below in three categories:  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
• Use of input capture to provide additional sources  
of external interrupts  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
TMR2  
16  
Edge Detection Logic  
and  
Clock Synchronizer  
FIFO  
R/W  
Logic  
Prescaler  
Counter  
(1, 4, 16)  
IC1 Pin  
ICM<2:0> (IC1CON<2:0>)  
3
Mode Select  
ICOV, ICBNE (IC1CON<4:3>)  
IC1BUF  
ICI<1:0>  
Interrupt  
Logic  
IC1CON  
System Bus  
Set Flag IC1IF  
(in IFS0 Register)  
2011-2012 Microchip Technology Inc.  
DS75018C-page 177  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
13.1 Input Capture Registers  
REGISTER 13-1: IC1CON: INPUT CAPTURE 1 CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
ICTMR(1)  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Module Stop in Idle Control bit  
1= Input capture module halts in CPU Idle mode  
0= Input capture module continues to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bit(1)  
1= TMR2 contents are captured on capture event  
0= Reserved  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode. Rising edge  
detect only; all other control bits are not applicable.  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling). ICI<1:0> bits do not control interrupt generation  
for this mode.  
000= Input capture module is turned off  
Note 1: This bit is not available in dsPIC33FJ06GS001/101A/102A devices.  
DS75018C-page 178  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
output pulse, or a sequence of output pulses, by  
changing the state of the output pin on the compare  
14.0 OUTPUT COMPARE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 13. “Output  
Compare” (DS70209) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available on the Microchip web  
site (www.microchip.com).  
match events. The output compare module can also  
generate interrupts on compare match events.  
The output compare module has multiple operating  
modes:  
• Active-Low One-Shot mode  
• Active-High One-Shot mode  
Toggle mode  
• Delayed One-Shot mode  
• Continuous Pulse mode  
• PWM mode without Fault Protection  
• PWM mode with Fault Protection  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Note:  
The output compare module is not  
implemented in the dsPIC33FJ06GS001  
device.  
If a Fault condition is detected on the OCFA pin, the  
output pin(s) of the output compare module are placed  
in tri-state. The user may elect to use a pull-down or  
pull-up resistor on the PWM pin to provide for a desired  
state if a Fault condition occurs.  
The output compare module can select either Timer1 or  
Timer2 for its time base. The module compares the  
value of the timer with the value of one or two Compare  
registers, depending on the operating mode selected.  
The state of the output pin changes when the timer  
value matches the Output Compare register value. The  
output compare module generates either a single  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit,  
OC1IF  
OC1RS  
OC1R  
Output  
Logic  
S
R
Q
OC1  
Output Enable  
3
OCM<2:0>  
Mode Select  
OCFA  
Comparator  
16  
TMR2  
TMR2  
Rollover  
2011-2012 Microchip Technology Inc.  
DS75018C-page 179  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
application must disable the associated timer when  
writing to the Output Compare Control registers to  
Configure the Output Compare modes by setting the  
avoid malfunctions.  
14.1 Output Compare Modes  
appropriate Output Compare Mode (OCM<2:0>) bits in  
Note:  
Refer to Section 13. “Output Compare”  
(DS70209) in the “dsPIC33F/PIC24H  
Family Reference Manual” for OC1R and  
OC1RS register restrictions.  
the Output Compare Control (OC1CON<2:0>) register.  
Table 14-1 lists the different bit settings for the Output  
Compare modes. Figure 14-2 illustrates the output  
compare operation for various modes. The user  
TABLE 14-1: OUTPUT COMPARE MODES  
OCM<2:0>  
Mode  
Module Disabled  
OC1 Pin Initial State  
OC1 Interrupt Generation  
000  
001  
010  
011  
100  
101  
110  
Controlled by GPIO register  
Active-Low One-Shot  
Active-High One-Shot  
Toggle  
0
1
OC1 rising edge  
OC1 falling edge  
Current output is maintained OC1 rising and falling edge  
Delayed One-Shot  
Continuous Pulse  
PWM without Fault Protection  
0
0
OC1 falling edge  
OC1 falling edge  
No interrupt  
0’ if OC1R is zero,  
1’ if OC1R is non-zero  
111  
PWM with Fault Protection  
0’ if OC1R is zero,  
OCFA falling edge for OC1 to OC4  
1’ if OC1R is non-zero  
FIGURE 14-2:  
OUTPUT COMPARE OPERATION  
Output Compare  
Mode Enabled  
Timerx is Reset on  
Period Match  
OC1RS  
OC1R  
TMRx  
Active-Low One-Shot  
(OCM<2:0> = 001)  
Active-High One-Shot  
(OCM<2:0> = 010)  
Toggle  
(OCM<2:0> = 011)  
Delayed One-Shot  
(OCM<2:0> = 100)  
Continuous Pulse  
(OCM<2:0> = 101)  
PWM  
(OCM<2:0> = 110or 111)  
DS75018C-page 180  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
14.2 Output Compare Control Registers  
REGISTER 14-1: OC1CON: OUTPUT COMPARE 1 CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R-0, HC  
OCFLT  
U-0  
R/W-0  
R/W-0  
OCM<2:0>  
bit 7  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare 1 halts in CPU Idle mode  
0= Output Compare 1 continues to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in hardware only)  
0= No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OC1, Fault pin is enabled  
110= PWM mode on OC1, Fault pin is disabled  
101= Initializes OC1 pin low, generates continuous output pulses on OC1 pin  
100= Initializes OC1 pin low, generates single output pulse on OC1 pin  
011= Compare event toggles OC1 pin  
010= Initializes OC1 pin high, compare event forces OC1 pin low  
001= Initializes OC1 pin low, compare event forces OC1 pin high  
000= Output compare channel is disabled  
2011-2012 Microchip Technology Inc.  
DS75018C-page 181  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 182  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
• Supported PWM modes:  
15.0 HIGH-SPEED PWM  
- Standard Edge-Aligned  
Note 1: This data sheet summarizes the features  
- True Independent Output  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
- Complementary  
- Center-Aligned  
- Push-Pull  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 43. “High-Speed  
PWM” (DS70323) in the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available on the Microchip web  
site (www.microchip.com).  
- Multiphase  
- Variable Phase  
- Fixed Off Time  
- Current Reset  
- Current Limit  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Independent Fault/Current-Limit inputs for each of  
the six PWM outputs  
• Output override control  
• Special Event Trigger  
• PWM capture feature  
• Prescaler for input clock  
The high-speed PWM module supports a wide variety  
of PWM modes and output formats. This PWM module  
is ideal for power conversion applications, such as:  
• Dual trigger from PWM to ADC  
• PWMxH, PWMxL output pin swapping  
• Remappable PWM4H, PWM4L pins  
• AC/DC Converters  
• DC/DC Converters  
• Power Factor Correction (PFC)  
• Uninterruptible Power Supply (UPS)  
• Inverters  
• On-the-fly PWM frequency, duty cycle and  
phase-shift changes  
• Disabling of individual PWM generators to reduce  
power consumption  
• Leading-Edge Blanking (LEB) functionality  
• Battery Chargers  
• PWM output chopping (see Note 1)  
• Digital Lighting  
Note 1: The chopping function performs a logical  
AND of the PWM outputs with a very  
high-frequency clock signal. The chop-  
ping frequency is typically hundreds or  
thousands of time higher in frequency, as  
compared to the PWM frequency. Chop-  
ping a PWM signal constrains the use of  
a pulse transformer to cross the isolation  
barrier.  
15.1 Features Overview  
The high-speed PWM module incorporates the  
following features:  
• Two to three PWM generators with four to six  
outputs  
• Individual time base and duty cycle for each of the  
six PWM outputs  
Figure 15-1 conceptualizes the PWM module in a  
simplified block diagram. Figure 15-2 illustrates how  
the module hardware is partitioned for each PWM out-  
put pair for the Complementary PWM mode. Each  
functional unit of the PWM module is discussed in  
subsequent sections.  
• Dead time for rising and falling edges:  
• Duty cycle resolution of 1.04 ns(1,2)  
• Dead-time resolution of 1.04 ns(1,2)  
• Phase-shift resolution of 1.04 ns(1,2)  
• Frequency resolution of 1.04 ns(1,2)  
The PWM module contains three PWM generators.  
The module has up to six PWM output pins: PWM1H,  
PWM1L, PWM2H, PWM2L, PWM4H and PWM4L. For  
complementary outputs, these six I/O pins are grouped  
into H/L pairs.  
Note 1: Resolution is 8.32 ns in Center-Aligned  
PWM mode.  
2: Resolution is 8.32 ns for  
dsPIC33FJ06GS001 devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 183  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
A multiphase PWM is often used to improve DC/DC  
Converter load transient response, and reduce the size  
of output filter capacitors and inductors. Multiple DC/  
DC Converters are often operated in parallel, but  
15.2 Feature Description  
The PWM module is designed for applications that  
require:  
• High-resolution at high PWM frequencies  
phase-shifted in time. A single PWM output, operating  
at 250 kHz, has a period of 4 s, but an array of four  
PWM channels staggered by 1 s each, yields an  
effective switching frequency of 1 MHz. Multiphase  
• The ability to drive Standard, Edge-Aligned,  
Center-Aligned Complementary mode, and  
Push-Pull mode outputs  
PWM applications typically use  
relationship.  
a
fixed-phase  
• The ability to create multiphase PWM outputs  
For Center-Aligned mode, the duty cycle, period, phase  
and dead-time resolutions will be 8.32 ns.  
A variable phase PWM is useful in Zero Voltage  
Transition (ZVT) power converters. Here, the PWM  
duty cycle is always 50%, and the power flow is  
controlled by varying the relative phase-shift between  
the two PWM generators.  
Two common, medium power converter topologies are  
push-pull and half-bridge. These designs require the  
PWM output signal to be switched between alternate  
pins, as provided by the Push-Pull PWM mode.  
A phase-shifted PWM describes the situation where  
each PWM generator provides outputs, but the phase  
relationship between the generator outputs is  
specifiable and changeable.  
DS75018C-page 184  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 15-1:  
SIMPLIFIED CONCEPTUAL BLOCK DIAGRAM OF HIGH-SPEED PWM  
Pin and Mode Control  
PWMCONx  
LEBCONx  
TRGCONx  
Control for Blanking External Input Signals  
ADC Trigger Control  
Dead-Time Control  
ALTDTRx, DTRx  
PTCON  
PWM Enable and Mode Control  
MDC  
Master Duty Cycle Register  
PDC1  
MUX  
Latch  
PWM  
Generator 1  
PWM1H  
PWM1L  
Channel 1  
Dead-Time Generator  
Comparator  
Timer  
Phase  
PDC2  
MUX  
Latch  
PWM2H  
PWM2L  
Channel 2  
Dead-Time Generator  
PWM  
Generator 2  
(2)  
Comparator  
Timer  
Phase  
PDC4  
PWM  
Generator 4  
MUX  
Latch  
(3)  
Channel 4  
Dead-Time Generator  
(1)  
PWM4H  
Comparator  
Timer  
(1)  
PWM4L  
CHOP  
Chop Clock  
Generator  
Timer Period  
Phase  
Fault Control  
Logic  
(1)  
FLTX  
Master Time Base  
PTPER  
(1)  
SYNCO1  
External Time Base  
Synchronization  
PTMR  
(1)  
SYNCIX  
Special Event  
Postscaler  
Special Event  
Trigger  
Comparator  
Special Event  
Comparison Value  
Pin Override Control  
SEVTCMP  
IOCONx  
Fault Mode and Pin Control  
FCLCONx  
Note 1: These pins are remappable.  
2: This PWM generator is not available in dsPIC33FJ06GS001/101A devices.  
3: This PWM generator is only available in dsPIC33FJ06GS001/101A and dsPIC33FJ09GS302A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 185  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 15-2:  
PARTITIONED OUTPUT PAIR, COMPLEMENTARY PWM MODE  
Phase Offset  
TMRx < PDC  
M
U
X
PWM  
Override  
Logic  
Dead-Time  
Logic  
PWMXH  
PWMXL  
Timer/Counter  
Duty Cycle Comparator  
M
U
X
Channel Override Values  
PWM Duty Cycle Register  
Fault Override Values  
Fault Active  
Fault Pin Assignment Logic  
Fault Pin  
TRGCONx: PWMx Trigger Control Register  
IOCONx: PWMx I/O Control Register  
15.3 PWM Control Registers  
The following registers control the operation of the  
high-speed PWM module.  
FCLCONx: PWMx Fault Current-Limit Control  
Register  
PTCON: PWM Time Base Control Register  
PTCON2: PWM Clock Divider Select Register 2  
PTPER: PWM Master Time Base Register(1)  
TRIGx: PWMx Primary Trigger Compare Value  
Register  
STRIGx: PWMx Secondary Trigger Compare  
Value Register  
SEVTCMP: PWM Special Event Compare  
Register  
LEBCONx: PWMx Leading-Edge Blanking  
Control Register  
MDC: PWM Master Duty Cycle Register  
PWMCONx: PWMx Control Register  
PWMCAPx: Primary PWMx Time Base Capture  
Register  
PDCx: PWMx Generator Duty Cycle Register(1)  
PHASEx: PWMx Primary Phase Shift Register  
DTRx: PWMx Dead-Time Register  
• CHOP: PWM Chop Clock Generator Register  
• AUXCONx: PWMx Auxiliary Control Register  
ALTDTRx: PWMx Alternate Dead-Time Register  
SDCx: PWMx Secondary Duty Cycle Register(1)  
SPHASEx: PWMx Secondary Phase Shift  
Register  
DS75018C-page 186  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER  
R/W-0  
PTEN  
U-0  
R/W-0  
HS/HC-0  
SESTAT  
R/W-0  
SEIEN  
R/W-0  
R/W-0  
R/W-0  
PTSIDL  
EIPU(1) SYNCPOL(1) SYNCOEN(1)  
bit 15  
bit 8  
R/W-0  
SYNCEN(1)  
U-0  
R/W-0  
SYNCSRC<1:0>(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
SEVTPS<3:0>(1)  
bit 7  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
PTEN: PWM Module Enable bit  
1= PWM module is enabled  
0= PWM module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PTSIDL: PWM Time Base Stop in Idle Mode bit  
1= PWM time base halts in CPU Idle mode  
0= PWM time base runs in CPU Idle mode  
bit 12  
bit 11  
bit 10  
bit 9  
SESTAT: Special Event Interrupt Status bit  
1= Special event interrupt is pending  
0= Special event interrupt is not pending  
SEIEN: Special Event Interrupt Enable bit  
1= Special event interrupt is enabled  
0= Special event interrupt is disabled  
EIPU: Enable Immediate Period Updates bit(1)  
1= Active Period register is updated immediately  
0= Active Period register updates occur on PWM cycle boundaries  
SYNCPOL: Synchronization Input/Output Polarity bit(1)  
1= SYNCIx and SYNCO1 polarity is inverted (active-low)  
0= SYNCIx and SYNCO1 are active-high  
bit 8  
SYNCOEN: Primary Time Base Sync Enable bit(1)  
1= SYNCO1 output is enabled  
0= SYNCO1 output is disabled  
bit 7  
SYNCEN: External Time Base Synchronization Enable bit(1)  
1= External synchronization of primary time base is enabled  
0= External synchronization of primary time base is disabled  
bit 6  
Unimplemented: Read as ‘0’  
SYNCSRC<1:0>: Synchronous Source Selection bits(1)  
bit 5-4  
11= Reserved  
10= Reserved  
01= SYNCI2  
00= SYNCI1  
bit 3-0  
SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits(1)  
1111= 1:16 Postscaler generates a Special Event Trigger on every sixteenth compare match event  
0001= 1:2 Postscaler generates a Special Event Trigger on every second compare match event  
0000= 1:1 Postscaler generates a Special Event Trigger on every compare match event  
Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user  
application must program the Period register with a value that is slightly larger than the expected period of  
the external synchronization input signal.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 187  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PCLKDIV<2:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(1)  
111= Reserved  
110= Divide-by-64, maximum PWM timing resolution  
101= Divide-by-32, maximum PWM timing resolution  
100= Divide-by-16, maximum PWM timing resolution  
011= Divide-by-8, maximum PWM timing resolution  
010= Divide-by-4, maximum PWM timing resolution  
001= Divide-by-2, maximum PWM timing resolution  
000= Divide-by-1, maximum PWM timing resolution (power-on default)  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
(1)  
REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER  
R/W-1  
bit 15  
R/W-1  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-1  
bit 8  
R/W-0  
bit 0  
PTPER <15:8>  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
PTPER <7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits  
Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.  
DS75018C-page 188  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SEVTCMP <15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
SEVTCMP <7:3>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
SEVTCMP<15:3>: Special Event Compare Count Value bits  
Unimplemented: Read as ‘0’  
REGISTER 15-5: MDC: PWM MASTER DUTY CYCLE REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
MDC<15:8>(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MDC<7:0>(1,2)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
MDC<15:0>: Master PWM Duty Cycle Value bits(1,2)  
Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009,  
while the maximum pulse width generated corresponds to a value of Period – 0x0008.  
2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of  
operation), the PWM duty cycle resolution will degrade from 1 LSb to 3 LSbs.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 189  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER  
HS/HC-0  
FLTSTAT(1)  
HS/HC-0  
CLSTAT(1)  
HS/HC-0  
R/W-0  
R/W-0  
CLIEN  
R/W-0  
R/W-0  
ITB(3)  
R/W-0  
MDCS(3)  
TRGSTAT  
FLTIEN  
TRGIEN  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
CAM(2,3)  
R/W-0  
XPRES(4)  
R/W-0  
IUE  
DTC<1:0>  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
FLTSTAT: Fault Interrupt Status bit(1)  
1= Fault interrupt is pending  
0= No Fault interrupt is pending; this bit is cleared by setting FLTIEN = 0  
CLSTAT: Current-Limit Interrupt Status bit(1)  
1= Current-limit interrupt is pending  
0= No current-limit interrupt is pending; this bit is cleared by setting CLIEN = 0  
TRGSTAT: Trigger Interrupt Status bit  
1= Trigger interrupt is pending  
0= No trigger interrupt is pending; this bit is cleared by setting TRGIEN = 0  
FLTIEN: Fault Interrupt Enable bit  
1= Fault interrupt is enabled  
0= Fault interrupt is disabled and the FLTSTAT bit is cleared  
CLIEN: Current-Limit Interrupt Enable bit  
1= Current-limit interrupt is enabled  
0= Current-limit interrupt is disabled and the CLSTAT bit is cleared  
TRGIEN: Trigger Interrupt Enable bit  
1= A trigger event generates an interrupt request  
0= Trigger event interrupts are disabled and the TRGSTAT bit is cleared  
ITB: Independent Time Base Mode bit(3)  
1= PHASEx/SPHASEx register provides time base period for this PWM generator  
0= PTPER register provides timing for this PWM generator  
bit 8  
MDCS: Master Duty Cycle Register Select bit(3)  
1= MDC register provides duty cycle information for this PWM generator  
0= PDCx/SDCx register provides duty cycle information for this PWM generator  
bit 7-6  
DTC<1:0>: Dead-Time Control bits  
11= Reserved  
10= Dead-time function is disabled  
01= Negative dead time actively applied for all output modes  
00= Positive dead time actively applied for all output modes  
bit 5-3  
Unimplemented: Read as ‘0’  
Note 1: Software must clear the interrupt status here and the corresponding IFSx bit in the interrupt controller.  
2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the  
CAM bit is ignored.  
3: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
4: To operate in External Period Reset mode, configure the CLMOD (FCLCONx<8>) bit = 0and  
ITB (PWMCONx<9>) bit = 1.  
DS75018C-page 190  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)  
bit 2  
bit 1  
bit 0  
CAM: Center-Aligned Mode Enable bit(2,3)  
1= Center-Aligned mode is enabled  
0= Center-Aligned mode is disabled  
XPRES: External PWM Reset Control bit(4)  
1= Current-limit source resets time base for this PWM generator if it is in Independent Time Base mode  
0= External pins do not affect PWM time base  
IUE: Immediate Update Enable bit  
1= Updates to the active MDC/PDCx/SDCx registers are immediate  
0= Updates to the active MDC/PDCx/SDCx registers are synchronized to the PWM time base  
Note 1: Software must clear the interrupt status here and the corresponding IFSx bit in the interrupt controller.  
2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the  
CAM bit is ignored.  
3: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
4: To operate in External Period Reset mode, configure the CLMOD (FCLCONx<8>) bit = 0and  
ITB (PWMCONx<9>) bit = 1.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 191  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1)  
REGISTER 15-7: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
PDCx<15:8>(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PDCx<7:0>(2)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDCx<15:0>: PWMx Generator # Duty Cycle Value bits(2)  
Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary,  
Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and  
PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of  
0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.  
2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of  
operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.  
(1)  
REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
SDCx<15:8>(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SDCx<7:0>(2)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
SDCx<15:0>: Secondary Duty Cycle for PWMxL Output Pin bits(2)  
Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the  
SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the  
PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to  
a value of Period-0x0008.  
2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of  
operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.  
DS75018C-page 192  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-9: PHASEx: PWMx PRIMARY PHASE SHIFT REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
PHASEx<15:8>(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
PHASEx<7:0>(1,2)  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PHASEx<15:0>: PWMx Phase Shift Value or Independent Time Base Period for PWM Generator bits(1,2)  
Note 1: If the ITB (PWMCONx<9>) bit = 0, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01  
or 10), PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs.  
• True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11),  
PHASEx<15:0> = Phase shift value for PWMxL only.  
2: If the ITB (PWMCONx<9>) bit = 1, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01  
or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL.  
• True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11),  
PHASEx<15:0> = Independent time base period value for PWMxL only.  
The smallest pulse width that can be generated on the PWM output corresponds to a value of  
0x0008, while the maximum pulse width generated corresponds to a value of Period-0x0008.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 193  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-10: SPHASEx: PWMx SECONDARY PHASE SHIFT REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
SPHASEx<15:8>(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
SPHASEx<7:0>(1,2)  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
SPHASEx<15:0>: Secondary Phase Offset for PWMxL Output Pin bits(1,2)  
(used in Independent PWM mode only)  
Note 1: If the ITB (PWMCONx<9>) bit = 0, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01  
or 10), SPHASEx<15:0> = Not used.  
• True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11),  
PHASEx<15:0> = Phase shift value for PWMxL only.  
2: If the ITB (PWMCONx<9>) bit = 1, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01  
or 10), SPHASEx<15:0> = Not used.  
• True Independent Output mode PMOD<1:0> (IOCONx<11:10>) = 11),  
PHASEx<15:0> = Independent time base period value for PWMxL only.  
DS75018C-page 194  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
.
REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
DTRx<13:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DTRx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits  
REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
ALTDTRx<13:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALTDTR <7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits  
2011-2012 Microchip Technology Inc.  
DS75018C-page 195  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-13: TRGCONx: PWMx TRIGGER CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
TRGDIV<3:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
DTM(1)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRGSTRT<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
TRGDIV<3:0>: Trigger # Output Divider bits  
1111= Trigger output for every 16th trigger event  
1110= Trigger output for every 15th trigger event  
1101= Trigger output for every 14th trigger event  
1100= Trigger output for every 13th trigger event  
1011= Trigger output for every 12th trigger event  
1010= Trigger output for every 11th trigger event  
1001= Trigger output for every 10th trigger event  
1000= Trigger output for every 9th trigger event  
0111= Trigger output for every 8th trigger event  
0110= Trigger output for every 7th trigger event  
0101= Trigger output for every 6th trigger event  
0100= Trigger output for every 5th trigger event  
0011= Trigger output for every 4th trigger event  
0010= Trigger output for every 3rd trigger event  
0001= Trigger output for every 2nd trigger event  
0000= Trigger output for every trigger event  
bit 11-8  
bit 7  
Unimplemented: Read as ‘0’  
DTM: Dual Trigger Mode bit(1)  
1= Secondary trigger event is combined with the primary trigger event to create the PWM trigger.  
0= Secondary trigger event is not combined with the primary trigger event to create the PWM trigger;  
two separate PWM triggers are generated  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-0  
TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits  
111111= Wait 63 PWM cycles before generating the first trigger event after the module is enabled  
000010= Wait 2 PWM cycles before generating the first trigger event after the module is enabled  
000001= Wait 1 PWM cycle before generating the first trigger event after the module is enabled  
000000= Wait 0 PWM cycle before generating the first trigger event after the module is enabled  
Note 1: The secondary generator cannot generate PWM trigger interrupts.  
DS75018C-page 196  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER  
R/W-0  
PENH  
R/W-0  
PENL  
R/W-0  
POLH  
R/W-0  
POLL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMOD<1:0>(1)  
OVRENH  
OVRENL  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
FLTDAT<1:0>(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SWAP  
R/W-0  
OVRDAT<1:0>  
CLDAT<1:0>(2)  
OSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PENH: PWMxH Output Pin Ownership bit  
1= PWM module controls PWMxH pin  
0= GPIO module controls PWMxH pin  
bit 14  
PENL: PWMxL Output Pin Ownership bit  
1= PWM module controls PWMxL pin  
0= GPIO module controls PWMxL pin  
bit 13  
POLH: PWMxH Output Pin Polarity bit  
1= PWMxH pin is active-low  
0= PWMxH pin is active-high  
bit 12  
POLL: PWMxL Output Pin Polarity bit  
1= PWMxL pin is active-low  
0= PWMxL pin is active-high  
bit 11-10  
PMOD<1:0>: PWMx I/O Pin Mode bits(1)  
11= PWM I/O pin pair is in the True Independent Output mode  
10= PWM I/O pin pair is in the Push-Pull Output mode  
01= PWM I/O pin pair is in the Redundant Output mode  
00= PWM I/O pin pair is in the Complementary Output mode  
bit 9  
OVRENH: Override Enable for PWMxH Pin bit  
1= OVRDAT<1> provides data for output on PWMxH pin  
0= PWM generator provides data for PWMxH pin  
bit 8  
OVRENL: Override Enable for PWMxL Pin bit  
1= OVRDAT<0> provides data for output on PWMxL pin  
0= PWM generator provides data for PWMxL pin  
bit 7-6  
bit 5-4  
OVRDAT<1:0>: Data for PWMxH and PWMxL Pins if Override is Enabled bits  
If OVERENH = 1then OVRDAT<1> provides data for PWMxH.  
If OVERENL = 1then OVRDAT<0> provides data for PWMxL.  
FLTDAT<1:0>: State for PWMxH and PWMxL Pins if FLTMOD is Enabled bits(2)  
IFLTMOD (FCLCONx<15>) = 0, Normal Fault mode:  
If Fault is active, then FLTDAT<1> provides the state for PWMxH.  
If Fault is active, then FLTDAT<0> provides the state for PWMxL.  
IFLTMOD (FCLCONx<15>) = 1, Independent Fault mode:  
If current-limit is active, then FLTDAT<1> provides the state for PWMxH.  
If Fault is active, then FLTDAT<0> provides the state for PWMxL.  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
2: State represents the active/inactive state of the PWM module depending on the POLH and POLL bit  
settings.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 197  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER (CONTINUED)  
bit 3-2  
CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMODE is Enabled bits(2)  
IFLTMOD (FCLCONx<15>) = 0, Normal Fault mode:  
If current-limit is active, then CLDAT<1> provides the state for PWMxH.  
If current-limit is active, then CLDAT<0> provides the state for PWMxL.  
IFLTMOD (FCLCONx<15>) = 1, Independent Fault mode:  
CLDAT<1:0> is ignored.  
bit 1  
bit 0  
SWAP<1:0>: SWAP PWMxH and PWMxL pins  
1= PWMxH output signal is connected to PWMxL pin and PWMxL signal is connected to PWMxH pins  
0= PWMxH and PWMxL pins are mapped to their respective pins  
OSYNC: Output Override Synchronization bit  
1= Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base  
0= Output overrides via the OVRDAT<1:0> bits occur on next CPU clock boundary  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
2: State represents the active/inactive state of the PWM module depending on the POLH and POLL bit  
settings.  
DS75018C-page 198  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IFLTMOD  
CLSRC<4:0>(2,3)  
CLPOL(1)  
CLMOD  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
R/W-0  
R/W-0  
FLTSRC<4:0>(2,3)  
R/W-0  
R/W-0  
R/W-0  
FLTPOL(1)  
R/W-0  
FLTMOD<1:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
IFLTMOD: Independent Fault Mode Enable bit  
1= Independent Fault mode: Current-limit input maps FLTDAT<1> to PWMxH output and Fault input  
maps FLTDAT<0> to PWMxL output. The CLDAT<1:0> bits are not used for override functions.  
0= Normal Fault mode: Current-limit feature maps CLDAT<1:0> bits to the PWMxH and PWMxL  
outputs. The PWM Fault feature maps FLTDAT<1:0> to the PWMxH and PWMxL outputs.  
bit 14-10  
CLSRC<4:0>: Current-Limit Control Signal Source Select for PWMx # Generator bits(2,3)  
11111= Reserved  
01000= Reserved  
00111= Fault 8  
00110= Fault 7  
00101= Fault 6  
00100= Fault 5  
00011= Fault 4  
00010= Fault 3  
00001= Fault 2  
00000= Fault 1  
bit 9  
bit 8  
CLPOL: Current-Limit Polarity for PWMx Generator # bit(1)  
1= The selected current-limit source is active-low  
0= The selected current-limit source is active-high  
CLMOD: Current-Limit Mode Enable bit for PWMx Generator # bit  
1= Current-limit function is enabled  
0= Current-limit function is disabled  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
2: When Independent Fault mode is enabled (IFLTMOD<1:0> = 1), and Fault 1 is used for Current-Limit  
mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an  
unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.  
3: When Independent Fault mode is enabled (IFLTMOD<1:0> = 1) and Fault 1 is used for Fault mode  
(FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an  
unused current-limit source to prevent the current-limit source from disabling both the PWMxH and  
PWMxL outputs.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 199  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)  
bit 7-3  
FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits(2,3)  
11111= Reserved  
01000= Reserved  
00111= Fault 8  
00110= Fault 7  
00101= Fault 6  
00100= Fault 5  
00011= Fault 4  
00010= Fault 3  
00001= Fault 2  
00000= Fault 1  
bit 2  
FLTPOL: Fault Polarity for PWMx Generator # bit(1)  
1= The selected Fault source is active-low  
0= The selected Fault source is active-high  
bit 1-0  
FLTMOD<1:0>: Fault Mode for PWMx Generator # bits  
11= Fault input is disabled  
10= Reserved  
01= The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)  
00= The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
2: When Independent Fault mode is enabled (IFLTMOD<1:0> = 1), and Fault 1 is used for Current-Limit  
mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an  
unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.  
3: When Independent Fault mode is enabled (IFLTMOD<1:0> = 1) and Fault 1 is used for Fault mode  
(FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an  
unused current-limit source to prevent the current-limit source from disabling both the PWMxH and  
PWMxL outputs.  
DS75018C-page 200  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-16: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
TRGCMP<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
TRGCMP<7:3>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
TRGCMP<15:3>: Trigger Control Value bits  
When primary PWM functions in local time base, this register contains the compare values that can  
trigger the ADC module.  
Unimplemented: Read as ‘0’  
REGISTER 15-17: STRIGx: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
STRGCMP<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
STRGCMP<7:3>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
STRGCMP<15:3>: Secondary Trigger Control Value bits  
When secondary PWM functions in local time base, this register contains the compare values that can  
trigger the ADC module.  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS75018C-page 201  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-18: LEBCONx: PWMx LEADING-EDGE BLANKING CONTROL REGISTER  
R/W-0  
PHR  
R/W-0  
PHF  
R/W-0  
PLR  
R/W-0  
PLF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLTLEBEN  
CLLEBEN  
LEB<6:5>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
LEB<4:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
PHR: PWMxH Rising Edge Trigger Enable bit  
1= Rising edge of PWMxH will trigger LEB counter  
0= LEB ignores rising edge of PWMxH  
PHF: PWMxH Falling Edge Trigger Enable bit  
1= Falling edge of PWMxH will trigger LEB counter  
0= LEB ignores falling edge of PWMxH  
PLR: PWMxL Rising Edge Trigger Enable bit  
1= Rising edge of PWMxL will trigger LEB counter  
0= LEB ignores rising edge of PWMxL  
PLF: PWMxL Falling Edge Trigger Enable bit  
1= Falling edge of PWMxL will trigger LEB counter  
0= LEB ignores falling edge of PWMxL  
FLTLEBEN: Fault Input LEB Enable bit  
1= Leading-edge blanking is applied to selected Fault input  
0= Leading-edge blanking is not applied to selected Fault input  
CLLEBEN: Current-Limit LEB Enable bit  
1= Leading-edge blanking is applied to selected current-limit input  
0= Leading-edge blanking is not applied to selected current-limit input  
bit 9-3  
bit 2-0  
LEB<6:0>: Leading-Edge Blanking for Current-Limit and Fault Inputs bits  
The value is 8.32 nsec increments.  
Unimplemented: Read as ‘0’  
DS75018C-page 202  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-19: PWMCAPx: PRIMARY PWMx TIME BASE CAPTURE REGISTER  
R-0  
bit 15  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PWMCAP<15:8>(1,2)  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
U-0  
U-0  
U-0  
PWMCAP<7:3>(1,2)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
PWMCAP<15:3>: Captured PWM Time Base Value bits(1,2)  
The value in this register represents the captured PWM time base value when a leading edge is  
detected on the current-limit input.  
Unimplemented: Read as ‘0’  
Note 1: The capture feature is only available on primary output (PWMxH).  
2: This feature is active only after LEB processing on the current-limit input signal is complete.  
REGISTER 15-20: CHOP: PWM CHOP CLOCK GENERATOR REGISTER  
R/W-0  
CHPCLKEN  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CHOPCLK<6:5>  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
CHOPCLK<4:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CHPCLKEN: Enable Chop Clock Generator bit  
1= Chop clock generator is enabled  
0= Chop clock generator is disabled  
bit 14-10  
bit 9-3  
Unimplemented: Read as ‘0’  
CHOPCLK<6:0>: Chop Clock Divider bits  
The frequency of the chop clock signal is given by the following expression:  
Chop Frequency = 1/(16.64 * (CHOPCLK<6:0> + 1) * Primary Master PWM Input Clock/PCLKDIV<2:0>)  
bit 2-0  
Unimplemented: Read as ‘0’  
2011-2012 Microchip Technology Inc.  
DS75018C-page 203  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 15-21: AUXCONx: PWMx AUXILIARY CONTROL REGISTER  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
UW-0  
HRPDIS  
HRDDIS  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHOPLEN  
bit 0  
CHOPSEL<3:0>  
CHOPHEN  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
HRPDIS: High-Resolution PWMx Period Disable bit  
1= High-resolution PWMx period is enabled  
0= High-resolution PWMx period is disabled  
HRDDIS: High-Resolution PWMx Duty Cycle Disable bit  
1= High-resolution PWMx duty cycle is enabled  
0= High-resolution PWMx duty cycle is disabled  
bit 13-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHOPSEL<3:0>: PWMx Chop Clock Source Select bits  
The selected signal will enable and disable (CHOP) the selected PWMx outputs.  
1001= Reserved  
1000= Reserved  
0111= Reserved  
0110= Reserved  
0101= Reserved  
0100= PWM4H is selected as CHOP clock source  
0011= Reserved  
0010= PWM2H is selected as CHOP clock source  
0001= PWM1H is selected as CHOP clock source  
0000= Chop clock generator is selected as CHOP clock source  
bit 1  
bit 0  
CHOPHEN: PWMxH Output Chopping Enable bit  
1= PWMxH chopping function is enabled  
0= PWMxH chopping function is disabled  
CHOPLEN: PWMxL Output Chopping Enable bit  
1= PWMxL chopping function is enabled  
0= PWMxL chopping function is disabled  
DS75018C-page 204  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The Serial Peripheral Interface (SPI) module is a  
16.0 SERIAL PERIPHERAL  
synchronous serial interface useful for communicating  
INTERFACE (SPI)  
with other peripheral or microcontroller devices. These  
peripheral devices can be serial EEPROMs, shift  
Note 1: This data sheet summarizes the features  
registers, display drivers, Analog-to-Digital Converters,  
of the dsPIC33FJ06GS001/101A/102A/  
etc. The SPI module is compatible with Motorola® SPI  
202A and dsPIC33FJ09GS302 family of  
devices. It is not intended to be a compre-  
and SIOP.  
hensive reference source. To complement  
the information in this data sheet, refer to  
Section 18. “Serial Peripheral Interface  
(SPI)” (DS70206) of the “dsPIC33F/  
PIC24H Family Reference Manual”, which  
is available from the Microchip web site  
(www.microchip.com).  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates status conditions.  
The serial interface consists of 4 pins:  
• SDIx (serial data input)  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• SDOx (serial data output)  
• SCKx (shift clock input or output)  
• SSx (active-low slave select)  
In Master mode operation, SCKx is a clock output; in  
Slave mode, it is a clock input.  
FIGURE 16-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
SSx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
2011-2012 Microchip Technology Inc.  
DS75018C-page 205  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
To avoid invalid slave read data to the master, the  
16.1 SPI Helpful Tips  
user’s master software must ensure enough time for  
1. In Frame mode, if there is a possibility that the  
slave software to fill its write buffer before the user  
master may not be initialized before the slave:  
application initiates a master write/read cycle. It is  
a) If FRMPOL (SPIxCON2<13>) = 1, use a  
always advisable to preload the SPIxBUF Transmit  
register in advance of the next master transaction  
cycle. SPIxBUF is transferred to the SPI Shift register  
and is empty once the data transmission begins.  
pull-down resistor on SSx.  
b) If FRMPOL = 0, use a pull-up resistor on  
SSx.  
Note:  
This insures that the first frame  
transmission after initialization is not  
shifted or corrupted.  
16.2 SPI Resources  
Many useful resources related to SPI are provided on  
the Microchip web site (www.microchip.com).  
2. In Non-Framed 3-Wire mode, (i.e., not using  
SSx from a master):  
16.2.1  
KEY RESOURCES  
a) If CKP (SPIxCON1<6>) = 1, always place a  
Section 18. “Serial Peripheral Interface (SPI)”  
pull-up resistor on SSx.  
(DS70206)  
b) If CKP = 0, always place a pull-down  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
resistor on SSx.  
Note:  
This will insure that during power-up and  
initialization the master/slave will not lose  
Sync due to an errant SCK transition that  
would cause the slave to accumulate data  
shift errors for both transmit and receive  
appearing as corrupted data.  
• All related “dsPIC33F/PIC24H Family Reference  
Manual” Sections  
• Development Tools  
3. FRMEN (SPIxCON2<15>) = 1 and SSEN  
(SPIxCON1<7>) = 1 are exclusive and invalid.  
In Frame mode, SCKx is continuous and the  
Frame Sync pulse is active on the SSx pin,  
which indicates the start of a data frame.  
Note:  
Not all third-party devices support Frame  
mode timing. Refer to the SPI electrical  
characteristics for details.  
4. In Master mode only, set the SMP bit  
(SPIxCON1<9>) to a ‘1’ for the fastest SPI data  
rate possible. The SMP bit can only be set at the  
same time or after the MSTEN bit  
(SPIxCON1<5>) is set.  
DS75018C-page 206  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
16.3  
SPI Control Registers  
REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded; the user software has not read the previous  
data in the SPIxBUF register  
0= No overflow has occurred  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
Automatically set in hardware when the CPU writes to the SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive is complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads the SPIxBUF location, reading SPIxRXB.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 207  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(3)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
SPRE<2:0>(2)  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
PPRE<1:0>(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx Pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled; pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx Pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data is sampled at end of data output time  
0= Input data is sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)(3)  
1= SSx pin is used for Slave mode  
0= SSx pin is not used by module; pin is controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: This bit is not used in Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes (FRMEN = 1).  
2: Do not set both Primary and Secondary prescalers to a value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
DS75018C-page 208  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE<2:0>: Secondary Prescale bits (Master mode)(2)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)(2)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: This bit is not used in Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes (FRMEN = 1).  
2: Do not set both Primary and Secondary prescalers to a value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 209  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled (SSx pin used as Frame Sync pulse input/output)  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame Sync pulse input (slave)  
0= Frame Sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame Sync pulse is active-high  
0= Frame Sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame Sync pulse coincides with first bit clock  
0= Frame Sync pulse precedes first bit clock  
bit 0  
Unimplemented: This bit must not be set to ‘1’ by the user application  
DS75018C-page 210  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
17.1 Operating Modes  
17.0 INTER-INTEGRATED  
2
CIRCUIT™ (I C™)  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7-bit and 10-bit addressing.  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
Section 19. “Inter-Integrated Circuit  
(I2C™)” (DS70195) in the “dsPIC33F/  
PIC24H Family Reference Manual”, which  
is available on the Microchip web site  
(www.microchip.com).  
The following types of I2C operation are supported:  
• I2C slave operation with 7-bit addressing  
• I2C slave operation with 10-bit addressing  
• I2C master operation with 7-bit or 10-bit addressing  
For details about the communication sequence in each  
of these modes, please see the Microchip web site  
(www.microchip.com) for the latest “dsPIC33F/PIC24H  
Family Reference Manual” sections.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Inter-Integrated Circuit™ (I2C™) module provides  
complete hardware support for both Slave and  
Multi-Master modes of the I2C serial communication  
standard with a 16-bit interface.  
The I2C module has a 2-pin interface:  
• The SCL1 pin is the clock  
• The SDA1 pin is data  
The I2C module offers the following key features:  
• I2C interface supporting both Master and Slave  
modes of operation  
• I2C Slave mode supports 7-bit and  
10-bit addressing  
• I2C Master mode supports 7-bit and  
10-bit addressing  
• I2C port allows bidirectional transfers between  
master and slaves  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control)  
• I2C supports multi-master operation, detects bus  
collision and arbitrates accordingly  
2011-2012 Microchip Technology Inc.  
DS75018C-page 211  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
2
FIGURE 17-1:  
I C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2C1RCV  
Read  
Shift  
Clock  
SCL1  
SDA1  
I2C1RSR  
LSb  
Address Match  
Write  
Read  
Match Detect  
I2C1MSK  
Write  
Read  
I2C1ADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2C1STAT  
I2C1CON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2C1TRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2C1BRG  
DS75018C-page 212  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
17.2 I2C Registers  
• I2C1TRN is the transmit register to which bytes  
are written during a transmit operation  
I2C1CON and I2C1STAT are control and status  
registers, respectively. The I2C1CON register is  
readable and writable. The lower six bits of I2C1STAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write:  
• The I2C1ADD register holds the slave address  
• A status bit, ADD10, indicates 10-Bit Address  
mode  
• The I2C1BRG acts as the Baud Rate Generator  
(BRG) reload value  
• I2C1RSR is the shift register used for shifting data  
internal to the module and the user application  
has no access to it  
In receive operations, I2C1RSR and I2C1RCV  
together form  
a double-buffered receiver. When  
I2C1RSR receives a complete byte, it is transferred to  
I2C1RCV, and an interrupt pulse is generated.  
• I2C1RCV is the receive buffer and the register to  
which data bytes are written, or from which data  
bytes are read  
REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1, HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC R/W-0, HC  
ACKEN RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
I2CEN: I2C1 Enable bit  
1= Enables the I2C1 module and configures the SDA1 and SCL1 pins as serial port pins  
0= Disables the I2C1 module; all I2C pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters an Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCL1 Release Control bit (when operating as I2C slave)  
1= Releases SCL1 clock  
0= Holds SCL1 clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware is clear  
at beginning of slave transmission. Hardware is clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware is clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses Acknowledged  
0= IPMI mode is disabled  
A10M: 10-Bit Slave Address bit  
1= I2C1ADD is a 10-bit slave address  
0= I2C1ADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control is disabled  
0= Slew rate control is enabled  
2011-2012 Microchip Technology Inc.  
DS75018C-page 213  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 17-1: I2C1CON: I2C1 CONTROL REGISTER (CONTINUED)  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with SMBus specification  
0= Disables SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enables interrupt when a general call address is received in the I2C1RSR  
(module is enabled for reception)  
0= General call address is disabled  
bit 6  
bit 5  
bit 4  
STREN: SCL1 Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enables software or receives clock stretching  
0= Disables software or receives clock stretching  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that is transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiates Acknowledge sequence on SDA1 and SCL1 pins and transmits ACKDT data bit.  
Hardware is clear at end of master Acknowledge sequence.  
0= Acknowledge sequence is not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware is clear at end of eighth bit of master receive data byte.  
0= Receive sequence is not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiates Stop condition on SDA1 and SCL1 pins. Hardware is clear at end of master Stop sequence.  
0= Stop condition is not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiates Repeated Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master  
Repeated Start sequence.  
0= Repeated Start condition is not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiates Start condition on SDA1 and SCL1 pins. Hardware is clear at end of master Start  
sequence.  
0= Start condition is not in progress  
DS75018C-page 214  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 17-2: I2C1STAT: I2C1 STATUS REGISTER  
R-0, HSC  
ACKSTAT  
bit 15  
R-0, HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0, HSC  
BCL  
R-0, HSC  
GCSTAT  
R-0, HSC  
ADD10  
bit 8  
R/C-0, HS R/C-0, HS  
IWCOL I2COV  
bit 7  
R-0, HSC  
D_A  
R/C-0, HSC  
P
R/C-0, HSC  
S
R-0, HSC  
R_W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
bit 0  
Legend:  
HS = Hardware Settable bit’ HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’ C = Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C master, applicable to master transmit operation)  
1= NACK is received from slave  
0= ACK is received from slave  
Hardware is set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware is set at beginning of master transmission. Hardware is clear at end of slave Acknowledge.  
bit 13-11 Unimplemented: Read as ‘0’  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware is set at detection of bus collision.  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware is set when address matches general call address. Hardware is clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware is set at match of 2nd byte of matched 10-bit address. Hardware is clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write to the I2C1TRN register failed because the I2C module is busy  
0= No collision  
Hardware is set at occurrence of write to I2C1TRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2C1RCV register is still holding the previous byte  
0= No overflow  
Hardware is set at attempt to transfer I2C1RSR to I2C1RCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was the device address  
Hardware is clear at device address match. Hardware is set by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 215  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 17-2: I2C1STAT: I2C1 STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware is set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive is complete, I2C1RCV is full  
0= Receive is not complete, I2C1RCV is empty  
Hardware is set when I2C1RCV is written with received byte. Hardware is clear when software reads  
I2C1RCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit is in progress, I2C1TRN is full  
0= Transmit is complete, I2C1TRN is empty  
Hardware is set when software writes I2C1TRN. Hardware is clear at completion of data transmission.  
DS75018C-page 216  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 17-3: I2C1MSK: I2C1 SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK<9:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK<9:0>: Mask for Address bit x Select bits  
1= Enables masking for bit x of incoming message address; bit match not required in this position  
0= Disables masking for bit x; bit match required in this position  
2011-2012 Microchip Technology Inc.  
DS75018C-page 217  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 218  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The primary features of the UART module are:  
18.0 UNIVERSAL ASYNCHRONOUS  
• Full-duplex, 8-bit or 9-bit data transmission  
through the U1TX and U1RX pins  
RECEIVER TRANSMITTER  
(UART)  
• Even, Odd or No Parity options (for 8-bit data)  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 17. “UART”  
(DS70188) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available on the Microchip web site  
(www.microchip.com).  
• One or two Stop bits  
• Hardware flow control option with U1CTS and  
U1RTS pins  
• Fully integrated Baud Rate Generator (BRG) with  
16-bit prescaler  
• Baud rates ranging from 10 Mbps to 38 bps at  
40 MIPS  
• 4-deep First-In First-Out (FIFO) transmit data  
buffer  
• 4-deep FIFO receive data buffer  
• Parity, framing and buffer overrun error detection  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Support for 9-bit mode with address detect  
(9th bit = 1)  
• Transmit and Receive interrupts  
• Separate interrupt for all UART error conditions  
• Loopback mode for diagnostic support  
• Support for Sync and Break characters  
• Support for automatic baud rate detection  
• IrDA encoder and decoder logic  
The Universal Asynchronous Receiver Transmitter  
(UART) module is a serial I/O module. The UART is a  
full-duplex, asynchronous system that can communicate  
with peripheral devices, such as personal computers,  
LIN/J2602, RS-232 and RS-485 interfaces. The module  
also supports a hardware flow control option with the  
U1CTS and U1RTS pins, and also includes an IrDA®  
encoder and decoder.  
• 16x baud clock output for IrDA® support  
A simplified block diagram of the UART module is  
shown in Figure 18-1. The UART module consists of  
these key hardware elements:  
• BRG  
Note:  
The dsPIC33FJ06GS001 device does not  
have a UART module.  
• Asynchronous transmitter  
• Asynchronous receiver  
FIGURE 18-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
Hardware Flow Control  
UART Receiver  
U1RTS/BCLK  
U1CTS  
U1RX  
U1TX  
UART Transmitter  
2011-2012 Microchip Technology Inc.  
DS75018C-page 219  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
18.1 UART Helpful Tips  
18.2 UART Resources  
1. In multinode, direct-connect UART networks,  
UART receive inputs react to the complemen-  
tary logic level defined by the URXINV bit  
(U1MODE<4>), which defines the Idle state, the  
default of which is logic high, (i.e., URXINV = 0).  
Because remote devices do not initialize at the  
same time, it is likely that one of the devices,  
because the RX line is floating, will trigger a  
Start bit detection and will cause the first byte  
received after the device has been initialized to  
be invalid. To avoid this situation, the user  
should use a pull-up or pull-down resistor on the  
RX pin, depending on the value of the URXINV  
bit.  
Many useful resources related to UART are provided  
on the Microchip web site (www.microchip.com).  
18.2.1  
KEY RESOURCES  
Section 17. “UART” (DS70188) in the  
“dsPIC33F/PIC24H Family Reference Manual”  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related “dsPIC33F/PIC24H Family Reference  
Manual” Sections  
• Development Tools  
a) If URXINV = 0, use a pull-up resistor on the  
RX pin.  
b) If URXINV = 1, use a pull-down resistor on  
the RX pin.  
2. The first character received on a wake-up from  
Sleep mode, caused by activity on the UxRX pin  
of the UART module, will be invalid. In Sleep  
mode, peripheral clocks are disabled. By the time  
the oscillator system has restarted and stabilized  
from Sleep mode, the baud rate bit sampling  
clock, relative to the incoming UxRX bit timing, is  
no longer synchronized. This results in the first  
character being invalid; this is to be expected.  
DS75018C-page 220  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
18.3 UART Registers  
REGISTER 18-1: U1MODE: UART1 MODE REGISTER  
R/W-0  
UARTEN(1,3)  
bit 15  
U-0  
R/W-0  
USIDL(3)  
R/W-0  
IREN(2,3)  
R/W-0  
RTSMD(3)  
U-0  
R/W-0  
R/W-0  
UEN<1:0>(3)  
bit 8  
R/W-0, HC  
WAKE(3)  
bit 7  
R/W-0  
LPBACK(3)  
R/W-0, HC  
ABAUD(3)  
R/W-0  
URXINV(3)  
R/W-0  
BRGH(3)  
R/W-0  
R/W-0  
R/W-0  
STSEL(3)  
PDSEL<1:0>(3)  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
UARTEN: UART1 Enable bit(1,3)  
1= UART1 is enabled; all UART1 pins are controlled by UART1, as defined by UEN<1:0>  
0= UART1 is disabled; all UART1 pins are controlled by port latches; UART1 power consumption  
is minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit(3)  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2,3)  
1= IrDA® encoder and decoder are enabled  
0= IrDA® encoder and decoder are disabled  
RTSMD: Mode Selection for U1RTS Pin bit(3)  
1= U1RTS pin is in Simplex mode  
0= U1RTS pin is in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
UEN<1:0>: UART1 Pin Enable bits(3)  
11= U1TX, U1RX and BCLK pins are enabled and used; U1CTS pin is controlled by port latches  
10= U1TX, U1RX, U1CTS and U1RTS pins are enabled and used  
01= U1TX, U1RX and U1RTS pins are enabled and used; U1CTS pin is controlled by port latches  
00= U1TX and U1RX pins are enabled and used; U1CTS and U1RTS/BCLK pins are controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit(3)  
1= UART1 will continue to sample the U1RX pin; interrupt is generated on falling edge; bit is cleared  
in hardware on following rising edge  
0= No wake-up is enabled  
bit 6  
bit 5  
LPBACK: UART1 Loopback Mode Select bit(3)  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit(3)  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (0x55)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement is disabled or completed  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
3: This bit is not available in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 221  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 18-1: U1MODE: UART1 MODE REGISTER (CONTINUED)  
bit 4  
URXINV: Receive Polarity Inversion bit(3)  
1= U1RX Idle state is ‘0’  
0= U1RX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit(3)  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits(3)  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit(3)  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
3: This bit is not available in the dsPIC33FJ06GS001 device.  
DS75018C-page 222  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 18-2: U1STA: UART1 STATUS AND CONTROL REGISTER  
R/W-0  
UTXISEL1(2)  
bit 15  
R/W-0  
UTXINV(2)  
R/W-0  
UTXISEL0(2)  
U-0  
R/W-0, HC  
UTXBRK(2) UTXEN(1,2) UTXBF(2)  
R/W-0  
R-0  
R-1  
TRMT(2)  
bit 8  
R/W-0  
URXISEL<1:0>(2)  
R/W-0  
R/W-0  
ADDEN(2)  
R-1  
RIDLE(2)  
R-0  
PERR(2)  
R-0  
FERR(2)  
R/C-0  
OERR(2)  
R-0  
URXDA(2)  
bit 0  
bit 7  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15,13  
‘1’ = Bit is set  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits(2)  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result,  
the transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies that there is  
at least one character open in the transmit buffer)  
bit 14  
UTXINV: Transmit Polarity Inversion bit(2)  
If IREN = 0:  
1= U1TX Idle state is ‘0’  
0= U1TX Idle state is ‘1’  
If IREN = 1:  
1= IrDA® encoded U1TX Idle state is ‘1’  
0= IrDA encoded U1TX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit(2)  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission is disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(1,2)  
1= Transmit is enabled, U1TX pin is controlled by UART1  
0= Transmit is disabled, any pending transmission is aborted and buffer is reset; U1TX pin is  
controlled by port  
bit 9  
bit 8  
UTXBF: Transmit Buffer Full Status bit (read-only)(2)  
1= Transmit buffer is full  
0= Transmit buffer is not full; at least one more character can be written  
TRMT: Transmit Shift Register Empty bit (read-only)(2)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
2: This bit is not available in the dsPIC33FJ06GS001 device.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 223  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 18-2: U1STA: UART1 STATUS AND CONTROL REGISTER (CONTINUED)  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits(2)  
11= Interrupt is set on U1RSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on U1RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the U1RSR to the receive  
buffer; receive buffer has one or more characters  
bit 5  
bit 4  
bit 3  
bit 2  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)(2)  
1= Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect  
0= Address Detect mode is disabled  
RIDLE: Receiver Idle bit (read-only)(2)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)(2)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)(2)  
1= Framing error has been detected for the current character (character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
bit 1  
bit 0  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)(2)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed. Clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the U1RSR to the empty state.  
URXDA: Receive Buffer Data Available bit (read-only)(2)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
2: This bit is not available in the dsPIC33FJ06GS001 device.  
DS75018C-page 224  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Up to three inputs may be sampled at a time (two inputs  
from the dedicated Sample-and-Hold circuits and one  
from the shared Sample-and-Hold circuit). If multiple  
inputs request conversion, the ADC will convert them in  
19.0 HIGH-SPEED 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
a sequential manner, starting with the lowest order  
Note 1: This data sheet summarizes the features  
input.  
of the dsPIC33FJ06GS001/101A/102A/  
This ADC design provides each pair of analog inputs  
(AN1, AN0), (AN3, AN2),..., the ability to specify its own  
trigger source out of a maximum of sixteen different  
trigger sources. This capability allows this ADC to  
sample and convert analog inputs that are associated  
with PWM generators operating on independent time  
bases.  
202A and dsPIC33FJ09GS302 families of  
devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to Section 44. “High-Speed 10-Bit  
ADC” (DS70321) in the “dsPIC33F/  
PIC24H Family Reference Manual”, which  
is available on the Microchip web site  
(www.microchip.com).  
The user application typically requires synchronization  
between analog data sampling and PWM output to the  
application circuit. The very high-speed operation of  
this ADC module allows “data on demand”.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
In addition, several hardware features have been  
added to the peripheral interface to improve real-time  
performance in a typical DSP-based application:  
• Result alignment options  
• Automated sampling  
The dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 family of devices provides  
high-speed successive approximation, Analog-to-Digital  
conversions to support applications such as AC-to-DC  
and DC-to-DC Power Converters.  
• External conversion start control  
• Two internal inputs to monitor INTREF and  
EXTREF input signals (not available in  
dsPIC33FJ06GS101A/102A devices)  
Block diagrams of the ADC module are shown in  
Figure 19-1 through Figure 19-5.  
19.1 Features Overview  
The ADC module comprises the following features:  
19.3 Module Functionality  
• 10-bit resolution  
The high-speed, 10-bit ADC module is designed to  
support power conversion applications when used with  
the high-speed PWM module. The ADC has one SAR  
and only one conversion can be processed at a time,  
yielding a conversion rate of 2 Msps or the equivalent of  
one 10-bit conversion, in half a microsecond (0.5 µs).  
• Unipolar inputs  
• One Successive Approximation Register (SAR)  
• Up to eight external input channels  
• Up to two internal analog inputs  
• Dedicated result register for each analog input  
• ±1 LSB accuracy at 3.3V  
The ADC module supports up to eight external analog  
inputs and two internal analog inputs. To monitor  
reference voltage, two internal inputs, AN12 and AN13,  
are connected to the EXTREF and INTREF voltages,  
respectively.  
• Single supply operation  
• 2 Msps conversion rate at 3.3V  
• Low-power CMOS technology  
Note:  
The dsPIC33FJ06GS101A/102A devices  
do not have the internal connection to  
EXTREF.  
19.2 Module Description  
This ADC module is designed for applications that  
require low latency between the request for conversion  
and the resultant output data. Typical applications  
include:  
The analog reference voltage is defined as the device  
supply voltage (AVDD/AVSS).  
• AC/DC Power Supplies  
• DC/DC Converters  
• Power Factor Correction (PFC)  
This ADC works with the high-speed PWM module in  
power control applications that require high-frequency  
control loops. This small conversion delay reduces the  
“phase lag” between measurement and control system  
response.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 225  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 19-1:  
ADC BLOCK DIAGRAM FOR THE dsPIC33FJ06GS001 DEVICE  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
Eight  
16-Bit  
Registers  
SAR  
Core  
(1)  
AN12  
(EXTREF)  
AN1  
AN2  
AN3  
AN6  
Shared Sample-and-Hold  
AN7  
(2)  
AN13  
(INTREF)  
Note 1: To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled and EXTREF must be selected as the  
comparator reference.  
2: AN13 (INTREF) is an internal analog input and is not available on a pin.  
DS75018C-page 226  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 19-2:  
ADC BLOCK DIAGRAM FOR THE dsPIC33FJ06GS101A DEVICE  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
AN2  
Eight  
16-Bit  
Registers  
SAR  
Core  
AN1  
AN3  
AN6  
Shared Sample-and-Hold  
AN7  
2011-2012 Microchip Technology Inc.  
DS75018C-page 227  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 19-3:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ06GS102A DEVICE  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
AN2  
Eight  
16-Bit  
Registers  
SAR  
Core  
AN1  
AN3  
AN4  
AN5  
Shared Sample-and-Hold  
DS75018C-page 228  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 19-4:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ06GS202A DEVICE  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
AN2  
(1)  
AN12  
Eight  
16-Bit  
Registers  
SAR  
Core  
(EXTREF)  
AN1  
AN3  
AN4  
AN5  
Shared Sample-and-Hold  
(2)  
AN13  
(INTREF)  
Note 1: To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled and EXTREF must be selected as the  
comparator reference.  
2: AN13 (INTREF) is an internal analog input and is not available on a pin.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 229  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 19-5:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ09GS302 DEVICE  
Even Numbered Inputs with Dedicated  
Sample-and-Hold (S&H) Circuits  
AN0  
AN2  
(1)  
AN12  
Eight  
16-Bit  
Registers  
SAR  
Core  
(EXTREF)  
AN1  
AN3  
Shared Sample-and-Hold  
AN4  
AN5  
AN6  
AN7  
(2)  
AN13  
(INTREF)  
Note 1: To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled and EXTREF must be selected as the  
comparator reference.  
2: AN13 (INTREF) is an internal analog input and is not available on a pin.  
DS75018C-page 230  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
19.4 ADC Control Registers  
Note:  
A unique feature of the ADC module is its  
ability to sample inputs in an asynchronous  
The ADC module uses the following control and status  
registers:  
manner.  
Individual  
Sample-and-Hold  
circuits can be triggered independently of  
each other.  
ADCON: ADC Control Register  
ADSTAT: ADC Status Register  
ADBASE: ADC Base Register(1)  
ADPCFG: ADC Port Configuration Register  
ADCPC0: ADC Convert Pair Control Register 0  
ADCPC1: ADC Convert Pair Control Register 1  
ADCPC3: ADC Convert Pair Control Register 3(1)  
The ADCON register controls the operation of the  
ADC module. The ADSTAT register displays the  
status of the conversion processes. The ADPCFG  
register configures the port pins as analog inputs or  
as digital I/Os. The ADCPCx registers control the  
triggering of the ADC conversions. See Register 19-1  
through Register 19-7 for detailed bit configurations.  
REGISTER 19-1: ADCON: ADC CONTROL REGISTER  
R/W-0  
ADON  
U-0  
R/W-0  
R/W-0  
SLOWCLK(1)  
U-0  
R/W-0  
U-0  
R/W-0  
FORM(1)  
ADSIDL  
GSWTRG  
bit 15  
bit 8  
R/W-1  
bit 0  
R/W-0  
EIE(1)  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-1  
ADCS<2:0>(1)  
ORDER(1) SEQSAMP(1) ASYNCSAMP(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADON: ADC Operating Mode bit  
1= ADC module is operating  
0= ADC module is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SLOWCLK: Enable Slow Clock Divider bit(1)  
1= ADC is clocked by the auxiliary PLL (ACLK)  
0= ADC is clocked by the primary PLL (FVCO)  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
GSWTRG: Global Software Trigger bit  
When this bit is set by the user, it will trigger conversions if selected by the TRGSRC<4:0> bits in the  
ADCPCx registers. This bit must be cleared by the user prior to initiating another global trigger (i.e., this  
bit is not auto-clearing).  
bit 9  
Unimplemented: Read as ‘0’  
Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).  
2011-2012 Microchip Technology Inc.  
DS75018C-page 231  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 19-1: ADCON: ADC CONTROL REGISTER (CONTINUED)  
bit 8  
bit 7  
bit 6  
bit 5  
FORM: Data Output Format bit(1)  
1= Fractional (DOUT = dddd dddd dd00 0000)  
0= Integer (DOUT = 0000 00dd dddd dddd)  
EIE: Early Interrupt Enable bit(1)  
1= Interrupt is generated after first conversion is completed  
0= Interrupt is generated after second conversion is completed  
ORDER: Conversion Order bit(1)  
1= Odd numbered analog input is converted first, followed by conversion of even numbered input  
0= Even numbered analog input is converted first, followed by conversion of odd numbered input  
SEQSAMP: Sequential Sample Enable bit(1)  
1= Shared Sample-and-Hold (S&H) circuit is sampled at the start of the second conversion if  
ORDER = 0. If ORDER = 1, then the shared S&H is sampled at the start of the first conversion.  
0= Shared S&H is sampled at the same time the dedicated S&H is sampled if the shared S&H is not  
currently busy with an existing conversion process. If the shared S&H is busy at the time the  
dedicated S&H is sampled, then the shared S&H will sample at the start of the new conversion  
cycle.  
bit 4  
ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit(1)  
1= The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger  
pulse is detected  
0= The dedicated S&H starts sampling when the trigger event is detected and completes the sampling  
process in two ADC clock cycles  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ADCS<2:0>: Analog-to-Digital Conversion Clock Divider Select bits(1)  
111= FADC/8  
110= FADC/7  
101= FADC/6  
100= FADC/5  
011= FADC/4 (default)  
010= FADC/3  
001= FADC/2  
000= FADC/1  
Note 1: This control bit can only be changed while the ADC is disabled (ADON = 0).  
DS75018C-page 232  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 19-2: ADSTAT: ADC STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/C-0, HS  
P6RDY  
U-0  
U-0  
R/C-0, HS  
P3RDY(1)  
R/C-0, HS  
P2RDY(2)  
R/C-0, HS  
P1RDY  
R/C-0, HS  
P0RDY  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15-7  
bit 6  
Unimplemented: Read as ‘0’  
P6RDY: Conversion Data for Pair 6 Ready bit  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
P3RDY: Conversion Data for Pair 3 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P2RDY: Conversion Data for Pair 3 Ready bit(2)  
bit 2  
bit 1  
bit 0  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P1RDY: Conversion Data for Pair 1 Ready bit  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P0RDY: Conversion Data for Pair 0 Ready bit  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.  
2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 233  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1)  
REGISTER 19-3: ADBASE: ADC BASE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADBASE<15:8>(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADBASE<7:1>(2)  
R/W-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
ADBASE<15:1>: ADC Base Register bits(2)  
This register contains the base address of the user’s ADC Interrupt Service Routine (ISR) jump table.  
This register, when read, contains the sum of the ADBASE register contents and the encoded value  
of the PxRDY status bits.  
The encoder logic provides the bit number of the highest priority PxRDY bits, where P0RDY is the  
highest priority and P6RDY is the lowest priority.  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: As an alternative to using the ADBASE register, the ADCP0-6 ADC Pair Conversion Complete Interrupts  
can be used to invoke A to D conversion completion routines for individual ADC input pairs.  
2: The encoding results are shifted left two bits, so bits 1-0 of the result are always zero.  
DS75018C-page 234  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 19-4: ADPCFG: ADC PORT CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
PCFG7(1)  
R/W-0  
PCFG6(1)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
PCFG<7:6>: Analog-to-Digital Port Configuration Control bits(1)  
1= Port pin is in Digital mode; port read input is enabled; Analog-to-Digital input multiplexer is  
connected to AVSS  
0= Port pin is in Analog mode; port read input is disabled; Analog-to-Digital samples pin voltage  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
PCFG<3:0>: Analog-to-Digital Port Configuration Control bits  
1= Port pin is in Digital mode; port read input is enabled; Analog-to-Digital input multiplexer is  
connected to AVSS  
0= Port pin is in Analog mode; port read input is disabled; Analog-to-Digital samples pin voltage  
Note 1: This bit is not implemented in dsPIC33FJ06GS102A/202A devices.  
2: This bit is not implemented in dsPIC33FJ06GS001/101A devices.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 235  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 19-5: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
IRQEN1  
PEND1  
SWTRG1  
TRGSRC1<4:0>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN0  
PEND0  
SWTRG0  
TRGSRC0<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
IRQEN1: Interrupt Request Enable 1 bit  
1= Enables IRQ generation when requested conversion of channels AN3 and AN2 is completed  
0= IRQ is not generated  
PEND1: Pending Conversion Status 1 bit  
1= Conversion of channels AN3 and AN2 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG1: Software Trigger 1 bit  
1= Starts conversion of AN3 and AN2 (if selected by the TRGSRCx bits)(1)  
This bit is automatically cleared by hardware when the PEND1 bit is set.  
0= Conversion has not started  
bit 12-8  
TRGSRC1<4:0>: Trigger 1 Source Selection bits  
Selects trigger source for conversion of analog channels AN3 and AN2.  
11111= Timer2 period match  
11011= Reserved  
11010= PWM Generator 4 current-limit ADC trigger  
11001= Reserved  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= Reserved  
10010= Reserved  
10001= PWM Generator 4 secondary trigger is selected  
10000= Reserved  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= Reserved  
01100= Timer1 period match  
01000= Reserved  
00111= PWM Generator 4 primary trigger is selected  
00110= Reserved  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger is selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ‘1’. If other conversions  
are in progress, then conversion will be performed when the conversion resources are available.  
DS75018C-page 236  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 19-5: ADCPC0: ADC CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)  
bit 7  
bit 6  
bit 5  
IRQEN0: Interrupt Request Enable 0 bit  
1= Enables IRQ generation when requested conversion of channels AN1 and AN0 is completed  
0= IRQ is not generated  
PEND0: Pending Conversion Status 0 bit  
1= Conversion of channels AN1 and AN0 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG0: Software Trigger 0 bit  
1= Starts conversion of AN1 and AN0 (if selected by the TRGSRCx bits)(1)  
This bit is automatically cleared by hardware when the PEND0 bit is set.  
0= Conversion has not started  
bit 4-0  
TRGSRC0<4:0>: Trigger 0 Source Selection bits  
Selects trigger source for conversion of analog channels AN1 and AN0.  
11111= Timer2 period match  
11011= Reserved  
11010= PWM Generator 4 current-limit ADC trigger  
11001= Reserved  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= Reserved  
10010= Reserved  
10001= PWM Generator 4 secondary trigger is selected  
10000= Reserved  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= Reserved  
01100= Timer1 period match  
01000= Reserved  
00111= PWM Generator 4 primary trigger is selected  
00110= Reserved  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger is selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
Note 1: The trigger source must be set as a global software trigger prior to setting this bit to ‘1’. If other conversions  
are in progress, then conversion will be performed when the conversion resources are available.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 237  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 19-6: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1  
R/W-0  
IRQEN3(1)  
R/W-0  
PEND3(1)  
R/W-0  
SWTRG3(1)  
R/W-0  
R/W-0  
R/W-0  
TRGSRC3<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
R/W-0  
IRQEN2(2)  
R/W-0  
PEND2(2)  
R/W-0  
SWTRG2(2)  
R/W-0  
R/W-0  
R/W-0  
TRGSRC2<4:0>(2)  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
IRQEN3: Interrupt Request Enable 3 bit(1)  
1= Enables IRQ generation when requested conversion of channels AN7 and AN6 is completed  
0= IRQ is not generated  
PEND3: Pending Conversion Status 3 bit(1)  
1= Conversion of channels AN7 and AN6 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG3: Software Trigger 3 bit(1)  
1= Starts conversion of AN7 and AN6 (if selected by the TRGSRCx bits)(3)  
This bit is automatically cleared by hardware when the PEND3 bit is set.  
0= Conversion has not started  
bit 12-8  
TRGSRC3<4:0>: Trigger 3 Source Selection bits(1)  
Selects trigger source for conversion of analog channels AN7 and AN6.  
11111= Timer2 period match  
11011= Reserved  
11010= PWM Generator 4 current-limit ADC trigger  
11001= Reserved  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= Reserved  
10010= Reserved  
10001= PWM Generator 4 secondary trigger is selected  
10000= Reserved  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= Reserved  
01100= Timer1 period match  
01000= Reserved  
00111= PWM Generator 4 primary trigger is selected  
00110= Reserved  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger is selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
Note 1: This bit is available in dsPIC33FJ06GS001/101A and dsPIC33FJ09GS302 devices only.  
2: This bit is available in dsPIC33FJ06GS102A/201A and dsPIC33FJ09GS302 devices only.  
3: The trigger source must be set as a global software trigger prior to setting this bit to ‘1’. If other conversions  
are in progress, conversion will be performed when the conversion resources are available.  
DS75018C-page 238  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 19-6: ADCPC1: ADC CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)  
bit 7  
bit 6  
bit 5  
IRQEN2: Interrupt Request Enable 2 bit(2)  
1= Enables IRQ generation when requested conversion of channels AN5 and AN4 is completed  
0= IRQ is not generated  
PEND2: Pending Conversion Status 2 bit(2)  
1= Conversion of channels AN5 and AN4 is pending; set when selected trigger is asserted.  
0= Conversion is complete  
SWTRG2: Software Trigger 2 bit(2)  
1= Starts conversion of AN5 and AN4 (if selected by the TRGSRCx bits)(3)  
This bit is automatically cleared by hardware when the PEND2 bit is set.  
0= Conversion has not started  
bit 4-0  
TRGSRC2<4:0>: Trigger 2 Source Selection bits(2)  
Selects trigger source for conversion of analog channels AN5 and AN4.  
11111= Timer2 period match  
11011= Reserved  
11010= PWM Generator 4 current-limit ADC trigger  
11001= Reserved  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= Reserved  
10010= Reserved  
10001= PWM Generator 4 secondary trigger is selected  
10000= Reserved  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= Reserved  
01100= Timer1 period match  
01000= Reserved  
00111= PWM Generator 4 primary trigger is selected  
00110= Reserved  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger is selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
Note 1: This bit is available in dsPIC33FJ06GS001/101A and dsPIC33FJ09GS302 devices only.  
2: This bit is available in dsPIC33FJ06GS102A/201A and dsPIC33FJ09GS302 devices only.  
3: The trigger source must be set as a global software trigger prior to setting this bit to ‘1’. If other conversions  
are in progress, conversion will be performed when the conversion resources are available.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 239  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1)  
REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN6  
PEND6  
SWTRG6  
TRGSRC6<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IRQEN6: Interrupt Request Enable 6 bit  
1= Enable IRQ generation when requested conversion of channels AN13 and AN12 is completed  
0= IRQ is not generated  
bit 6  
bit 5  
PEND6: Pending Conversion Status 6 bit  
1= Conversion of channels AN13 and AN 12 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG6: Software Trigger 6 bit  
1= Starts conversion of AN13 (INTREF) and AN12 (EXTREF) if selected by TRGSRC bits(2)  
This bit is automatically cleared by hardware when the PEND6 bit is set.  
0= Conversion has not started  
Note 1: If other conversions are in progress, conversion will be performed when the conversion resources are  
available.  
2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the  
dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not  
have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.  
DS75018C-page 240  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
(1)  
REGISTER 19-7: ADCPC3: ADC CONVERT PAIR CONTROL REGISTER 3 (CONTINUED)  
bit 4-0  
TRGSRC6<4:0>: Trigger 6 Source Selection bits  
Selects trigger source for conversion of analog channels AN13 and AN12.  
11111= Timer2 period match  
11011= Reserved  
11010= PWM Generator 4 current-limit ADC trigger  
11001= Reserved  
11000= PWM Generator 2 current-limit ADC trigger  
10111= PWM Generator 1 current-limit ADC trigger  
10110= Reserved  
10010= Reserved  
10001= PWM Generator 4 secondary trigger is selected  
10000= Reserved  
01111= PWM Generator 2 secondary trigger is selected  
01110= PWM Generator 1 secondary trigger is selected  
01101= Reserved  
01100= Timer1 period match  
01000= Reserved  
00111= PWM Generator 4 primary trigger is selected  
00110= Reserved  
00101= PWM Generator 2 primary trigger is selected  
00100= PWM Generator 1 primary trigger is selected  
00011= PWM Special Event Trigger is selected  
00010= Global software trigger is selected  
00001= Individual software trigger is selected  
00000= No conversion is enabled  
Note 1: If other conversions are in progress, conversion will be performed when the conversion resources are  
available.  
2: AN13 is internally connected to Vref in all devices. AN12 is internally connected to the EXTREF pin in the  
dsPIC33FJ06001/202A and dsPIC33FJ09GS302 devices. The dsPIC33FJ06GS101A/102A devices not  
have an EXTREF pin; therefore, any data read on the corresponding AN12 input will be invalid.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 241  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 242  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
• DACOUT pin to provide DAC output  
20.0 HIGH-SPEED ANALOG  
• DACOUT amplifier (1x, 1.8x)  
COMPARATOR  
• Selectable hysteresis  
Note 1: This data sheet summarizes the features  
• DAC has three ranges of operation:  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 families  
- AVDD/2  
- Internal Reference (INTREF)  
- External Reference (EXTREF)  
• ADC sample and convert trigger capability  
• Disable capability reduces power consumption  
• Functional support for PWM module:  
- PWM duty cycle control  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to Section 45. “High-Speed  
Analog Comparator” (DS70296) in the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available on the  
Microchip web site (www.microchip.com).  
- PWM period control  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
- PWM Fault detect  
20.2 Module Description  
Figure 20-1 shows a functional block diagram of one  
analog comparator from the high-speed analog  
comparator module. The analog comparator provides  
high-speed operation with a typical delay of 20 ns. The  
comparator has a typical offset voltage of ±5 mV. The  
negative input of the comparator is always connected  
to the DAC circuit. The positive input of the comparator  
is connected to an analog multiplexer that selects the  
desired source pin.  
The high-speed analog comparator module monitors  
current and/or voltage transients that may be too fast  
for the CPU and ADC to capture.  
20.1 Features Overview  
The SMPS comparator module offers the following  
major features:  
The analog comparator input pins are typically shared  
with pins used by the Analog-to-Digital Converter  
(ADC) module. Both the comparator and the ADC can  
use the same pins at the same time. This capability  
enables a user to measure an input voltage with the  
ADC and detect voltage transients with the  
comparator.  
• Eight selectable comparator inputs  
• Up to two analog comparators  
• 10-bit DAC for each analog comparator  
• Programmable output polarity  
• Interrupt generation capability  
FIGURE 20-1:  
HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM  
INSEL<1:0>  
CMPxA(1)  
CMPxB(1)  
Trigger to PWM  
M
U
X
CMPx(1)  
Pulse Stretcher  
and  
Digital Filter  
0
1
CMPxC(1)  
CMPxD(1)  
Status  
CMPPOL  
RANGE  
Interrupt Request  
DACOUT  
AVDD/2  
INTREF(2)  
M
U
X
DAC  
AMP  
HGAIN  
AVSS  
10  
CMREF  
Output  
Buffer(3)  
EXTREF(2)  
DACOE  
Note 1: x = 1 and 2.  
2: For the INTREF and EXTREF values, refer to the DAC Module Specifications (Table 25-42) in Section 25.0  
“Electrical Characteristics”.  
3: The output buffer is shared between the DACs and only one DAC can be enabled to drive this buffer.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 243  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
20.3 Module Applications  
20.5 DAC Buffer Gain  
This module provides a means for the SMPS dsPIC  
DSC devices to monitor voltage and currents in a  
power conversion application. The ability to detect  
transient conditions and stimulate the dsPIC DSC  
processor and/or peripherals, without requiring the  
processor and ADC to constantly monitor voltages or  
currents, frees the dsPIC DSC to perform other tasks.  
The output of the DAC is buffered/amplified via the  
DAC buffer. The block functions as a 1x gain amplifier  
or as a 1.8x gain amplifier. The gain selection is con-  
trolled via the HGAIN bit in the CMPCONx register.  
Using the 1.8x gain option will raise the reference  
voltage to the analog comparator to a maximum of  
2.8V. Using a higher reference voltage for the analog  
comparator can improve the signal-to-noise ratio in an  
application.  
The comparator module has a high-speed comparator,  
an associated 10-bit DAC and a DAC output amplifier  
that provide a programmable reference voltage to the  
inverting input of the comparator. The polarity of the  
comparator output is user-programmable. The output  
of the module can be used in the following modes:  
20.6 Comparator Input Range  
The comparator has an input voltage range from -0.2V  
to AVDD + 0.2V, making it a rail-to-rail input.  
• Generate an Interrupt  
• Trigger an ADC Sample and Convert Process  
• Truncate the PWM Signal (current limit)  
• Truncate the PWM Period (current minimum)  
• Disable the PWM Outputs (Fault latch)  
20.7 Digital Logic  
The CMPCONx register (see Register 20-1) provides  
the control logic that configures the High-Speed Analog  
Comparator module. The digital logic provides a pulse  
stretcher. The analog comparator can respond to very  
fast transient signals. After the comparator output is  
given the desired polarity, the signal is passed to this  
pulse stretching circuit. The pulse stretching circuit has  
an asynchronous set function and a delay circuit that  
insure the minimum pulse width is three system clock  
cycles wide so that the attached circuitry can properly  
respond.  
The output of the comparator module may be used in  
multiple modes at the same time, such as: 1) generate  
an interrupt, 2) have the ADC take a sample and con-  
vert it, and 3) truncate the PWM output in response to  
a voltage being detected beyond its expected value.  
The comparator module can also be used to wake-up  
the system from Sleep or Idle mode when the analog  
input voltage exceeds the programmed threshold  
voltage.  
The stretch circuit is followed by a digital filter. The  
digital filter is enabled via the FLTREN bit in the  
CMPCONx register. The digital filter operates with the  
clock specified via the FCLKSEL bit in the CMPCONx  
register. The comparator signal must be stable in a high  
or low state for at least three of the selected clock  
cycles for it to pass through the digital filter.  
20.4 DAC  
The range of the DAC is controlled via an analog  
multiplexer that selects either AVDD/2, an internal  
reference source, INTREF, or an external reference  
source, EXTREF. The full range of the DAC (AVDD/2)  
will typically be used when the chosen input source pin  
is shared with the ADC. The reduced range option  
(INTREF) will likely be used when monitoring current  
levels using a current sense resistor. Usually, the  
measured voltages in such applications are small  
(<1.25V); therefore, the option of using a reduced  
reference range for the comparator extends the  
available DAC resolution in these applications. The  
use of an external reference enables the user to  
During Sleep mode, the clock signal inputs to the  
module are disabled. However, the module’s analog  
components may continue to function in a reduced  
power manner to allow the user to wake-up the device  
when a signal is applied to a comparator input.  
In Sleep mode, the clocks are stopped; however, the  
analog comparator signal has an asynchronous con-  
nection across the filter that allows interrupts to be  
generated regardless of the stopped clocks.  
connect to  
application.  
a reference that better suits their  
The comparator can be disabled while in Idle mode if  
the CMPSIDL bit is set. If a device has multiple compar-  
ators, and any CMPSIDL bit is set, the entire group of  
comparators will be disabled while in Idle mode. The  
advantage is reduced power consumption. Moreover,  
this behavior reduces complexity in the design of the  
clock control logic for this module.  
DACOUT, shown in Figure 20-1, can only be  
associated with a single comparator at a given time.  
Note:  
It should be ensured in software that  
multiple DACOE bits are not set. The  
output on the DACOUT pin will be indeter-  
minate if multiple comparators enable the  
DAC output.  
DS75018C-page 244  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
20.8 Hysteresis  
20.9 Interaction with I/O Buffers  
An additional feature of the module is hysteresis con-  
trol. Hysteresis can be enabled or disabled and its  
amplitude can be controlled by the HYSSEL<1:0> bits  
in the CMPCONx register. Three different values are  
available: 15 mV, 30 mV and 45 mV. It is also possible  
to select the edge (rising or falling) to which hysteresis  
is to be applied.  
If the module is enabled and a pin has been selected  
as the source for the comparator, then the chosen I/O  
pad must disable the digital input buffer associated  
with the pad to prevent excessive currents in the digital  
buffer due to analog input voltages.  
20.10 DAC Output Range  
Hysteresis control prevents the comparator output from  
continuously changing state because of small  
perturbations (noise) at the input (see Figure 20-2).  
The DAC has a limitation for the maximum reference  
voltage input of (AVDD – 1.5) volts. An external  
reference voltage input should not exceed this value or  
the reference DAC output will become indeterminate.  
FIGURE 20-2:  
HYSTERESIS CONTROL  
20.11 Analog Comparator Registers  
Output  
The high-speed analog comparator module is  
controlled by the following registers:  
CMPCONx: Comparator Control x Register  
CMPDACx: Comparator DAC Control x Register  
Hysteresis Range  
(15 mV/30 mV/45 mV)  
Input  
2011-2012 Microchip Technology Inc.  
DS75018C-page 245  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 20-1: CMPCONx: COMPARATOR CONTROL x REGISTER  
R/W-0  
CMPON(1)  
U-0  
R/W-0  
CMPSIDL(1)  
R/W-0  
HYSSEL<1:0>(1)  
R/W-0  
R/W-0  
FLTREN(1)  
R/W-0  
FCLKSEL(1) DACOE(1)  
bit 8  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HGAIN(1)  
R/W-0  
CMPPOL(1)  
R/W-0  
RANGE(1)  
bit 0  
INSEL<1:0>(1)  
EXTREF(1) HYSPOL(1) CMPSTAT(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMPON: Comparator Operating Mode bit(1)  
1= Comparator module is enabled  
0= Comparator module is disabled (reduces power consumption)  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CMPSIDL: Stop in Idle Mode bit(1)  
1= Discontinues module operation when device enters Idle mode.  
0= Continues module operation in Idle mode  
If a device has multiple comparators, any CMPSIDL bit that is set to ‘1’ disables all comparators while  
in Idle mode.  
bit 12-11  
HYSSEL<1:0>: Comparator Hysteresis Select bits(1)  
11= 45 mV hysteresis  
10= 30 mV hysteresis  
01= 15 mV hysteresis  
00= No hysteresis is selected  
bit 10  
bit 9  
FLTREN: Digital Filter Enable bit(1)  
1= Digital filter is enabled  
0= Digital filter is disabled  
FCLKSEL: Digital Filter and Pulse Stretcher Clock Select bit(1)  
1= Digital filter and pulse stretcher operate with the PWM clock  
0= Digital filter and pulse stretcher operate with the system clock  
bit 8  
DACOE: DAC Output Enable(1)  
1= DAC analog voltage is output to DACOUT pin(2)  
0= DAC analog voltage is not connected to DACOUT pin  
bit 7-6  
INSEL<1:0>: Input Source Select for Comparator bits(1)  
11= Select CMPxD input pin  
10= Select CMPxC input pin  
01= Select CMPxB input pin  
00= Select CMPxA input pin  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.  
2: DACOUT can be associated only with a single comparator at any given time. The software must ensure  
that multiple comparators do not enable the DAC output by setting their respective DACOE bit.  
3: For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in Section 25.0 “Electrical  
Characteristics”.  
DS75018C-page 246  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 20-1: CMPCONx: COMPARATOR CONTROL x REGISTER (CONTINUED)  
bit 5  
EXTREF: Enable External Reference bit(1)  
1= External source provides reference to DAC (maximum DAC voltage determined by external  
voltage source)  
0= Internal reference sources provide reference to DAC (maximum DAC voltage determined by  
RANGE bit setting)  
bit 4  
HYSPOL: Comparator Hysteresis Polarity Select bit(1)  
1= Hysteresis is applied to the falling edge of the comparator output  
0= Hysteresis is applied to the rising edge of the comparator output  
bit 3  
bit 2  
CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit(1)  
HGAIN: DAC Gain Enable bit(1)  
1= Reference DAC output to comparator is scaled at 1.8x  
0= Reference DAC output to comparator is scaled at 1.0x  
bit 1  
bit 0  
CMPPOL: Comparator Output Polarity Control bit(1)  
1= Output is inverted  
0= Output is non-inverted  
RANGE: Selects DAC Output Voltage Range bit(1)  
1= High Range: Max DAC Value = AVDD/2, 1.65V at 3.3V AVDD  
0= Low Range: Max DAC Value = INTREF(3)  
Note 1: This bit is not implemented in dsPIC33FJ06GS101A/102A devices.  
2: DACOUT can be associated only with a single comparator at any given time. The software must ensure  
that multiple comparators do not enable the DAC output by setting their respective DACOE bit.  
3: For the INTREF value, refer to the DAC Module Specifications (Table 25-42) in Section 25.0 “Electrical  
Characteristics”.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 247  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 20-2: CMPDACx: COMPARATOR DAC CONTROL x REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CMREF<9:8>(1)  
R/W-0  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
CMREF<7:0>(1)  
R/W-0  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
CMREF<9:0>: Comparator Reference Voltage Select bits(1)  
1111111111= (CMREF * INTREF/1024) or (CMREF * (AVDD/2)/1024) volts depending on RANGE  
bit or (CMREF * EXTREF/1024) if EXTREF is set  
0000000000= 0.0 volts  
Note 1: These bits are not implemented in dsPIC33FJ06GS101A/102A devices.  
DS75018C-page 248  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
The constant current source module is a precision  
current generator and is used in conjunction with ADC  
to measure the resistance of external resistors  
21.0 CONSTANT CURRENT  
SOURCE  
connected to device pins.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
21.1 Features Overview  
202A and dsPIC33FJ09GS302 families  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this  
data sheet, refer to Section 19.  
“Inter-Integrated Circuit (I2C™)”  
(DS70195) in the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available on the Microchip web site  
(www.microchip.com).  
The constant current source module offers the following  
major features:  
• Constant current generator (10 µA nominal)  
• Internal selectable connection to one out of four pins  
• Enable/disable bit  
21.2 Module Description  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Figure 21-1 shows a functional block diagram of the  
constant current source module. It consists of a  
precision current generator with a nominal value of  
10 µA. The module can be enabled and disabled using  
the ISRCEN bit in the ISRCCON register. The output  
of the current generator is internally connected to one  
out of up to 4 pins. The OUTSEL<2:0> bits in the  
ISRCCON register allow selection of the target pin.  
The current source is calibrated during testing.  
FIGURE 21-1:  
CONSTANT CURRENT SOURCE MODULE BLOCK DIAGRAM  
Constant Current Source  
ISRC1  
ISRC2  
ISRC3  
M
U
X
ISRC4  
ISRCEN  
OUTSEL<2:0>  
2011-2012 Microchip Technology Inc.  
DS75018C-page 249  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
21.3 Current Source Control Register  
(1)  
REGISTER 21-1: ISRCCON: CONSTANT CURRENT SOURCE CONTROL REGISTER  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
ISRCEN  
OUTSEL<2:0>  
bit 15  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ISRCCAL<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ISRCEN: Current Source Enable bit  
1= Current source is enabled  
0= Current source is disabled  
bit 14-11  
bit 10-8  
Unimplemented: Read as ‘0’  
OUTSEL<2:0>: Output Current Select bits  
111= Reserved  
110= Reserved  
101= Reserved  
100= Select input pin, ISRC4 (AN4)  
011= Select input pin, ISRC3 (AN5)  
010= Select input pin, ISRC2 (AN6)  
001= Select input pin, ISRC1 (AN7)  
000= No output is selected  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ISRCCAL<5:0>: Current Source Calibration bits  
The calibration value must be copied from Flash address, 0x800840, into these bits. Refer to the  
Constant Current Source Calibration Register (Register 22-1) in Section 22.0 “Special Features”  
for more information.  
Note 1: This register is available in the dsPIC33FJ09GS302 device only.  
DS75018C-page 250  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
22.1 Configuration Bits  
22.0 SPECIAL FEATURES  
The configuration bytes are implemented as volatile  
memory. This means that configuration data must be  
programmed each time the device is powered up. Con-  
figuration data is stored in the words at the top of the  
on-chip program memory space, known as the Flash  
Configuration Words. Their specific locations are  
shown in Table 22-1 and Table 22-2. The configuration  
data is automatically loaded from the Flash Configura-  
tion Words to the proper Configuration registers during  
device Resets.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 devices.  
It is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 24. “Programming and Diag-  
nostics” (DS70207) and Section 25.  
“Device Configuration” (DS70194)  
in the “dsPIC33F/PIC24H Family  
Reference Manual”, which are avail-  
able from the Microchip web site  
(www.microchip.com).  
Note:  
Configuration data is reloaded on all types  
of device Resets.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration byte for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
The upper 2 bytes of all Flash Configuration Words in  
program memory should always be ‘1111 1111 1111  
1111’. This makes them appear to be NOPinstructions  
in the remote event that their locations are ever exe-  
cuted by accident. Since Configuration bits are not  
implemented in the corresponding locations, writing  
1’s to these locations has no effect on device  
operation.  
The dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 family of devices includes several  
features that are included to maximize application  
flexibility and reliability, and minimize cost through  
elimination of external components. These features are:  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection  
Note:  
Performing a page erase operation on the  
last page of program memory, clears the  
Flash Configuration Words, enabling code  
protection as a result. Therefore, users  
should avoid performing page erase  
operations on the last page of program  
memory  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
• Brown-out Reset (BOR)  
The Configuration Flash Byte maps are shown in  
Table 22-1 and Table 22-2.  
The Constant Current Source Calibration register is  
shown in Register 22-1.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 251  
TABLE 22-1: CONFIGURATION FLASH BYTES FOR dsPIC33FJ06GS001/101A/X02A DEVICES  
Address  
Name  
Bits 23-8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
000FF0 FICD  
000FF4 FWDT  
000FF6 FOSC  
000FF8 FOSCSEL  
000FFA FGS  
Reserved(1)  
FWDTEN  
JTAGEN  
PLLKEN  
IOL1WAY  
Reserved(2)  
ICS<1:0>  
WDTPRE  
WDTPOST<3:0>  
FCKSM<1:0>  
OSCIOFNC  
POSCMD<1:0>  
FNOSC<2:0>  
IESO  
GCP  
GWRP  
Legend: — = unimplemented, read as ‘1’.  
Note 1: This bit is reserved for use by development tools.  
2: This bit is reserved; program as ‘0’.  
TABLE 22-2: CONFIGURATION FLASH BYTES FOR dsPIC33FJ09GS302 DEVICES  
Address  
Name  
Bits 23-8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0017F0 FICD  
0017F4 FWDT  
0017F6 FOSC  
0017F8 FOSCSEL  
0017FA FGS  
Reserved(1)  
FWDTEN  
JTAGEN  
PLLKEN  
IOL1WAY  
Reserved(2)  
ICS<1:0>  
WDTPRE  
WDTPOST<3:0>  
FCKSM<1:0>  
OSCIOFNC  
POSCMD<1:0>  
FNOSC<2:0>  
GCP  
IESO  
GWRP  
Legend: — = unimplemented, read as ‘1’.  
Note 1: This bit is reserved for use by development tools.  
2: This bit is reserved; program as ‘0’.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
REGISTER 22-1: CONSTANT CURRENT SOURCE CALIBRATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 23  
bit 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
CCSCAL<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 23-6  
bit 5-0  
Unimplemented: Read as ‘0’  
CCSCAL<5:0>: Constant Current Source Calibration bits  
The value of these bits must be copied into the ISRCCAL<5:0> bits (ISRCCON<5:0>). Refer to the  
Current Source Control register (Register 21-1) in Section 21.0 “Constant Current Source”.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 253  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION  
Bit Field  
Description  
General Segment Code-Protect bit  
GCP  
1= User program memory is not code-protected  
0= Code protection is enabled for the entire program memory space  
GWRP  
IESO  
General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
Two-Speed Oscillator Start-up Enable bit  
1= Start up device with FRC, then automatically switch to the user-selected oscillator source  
when ready  
0= Start up device with user-selected oscillator source  
FNOSC<2:0>  
Oscillator Selection bits  
111= Fast RC Oscillator with divide-by-N (FRCDIVN)  
110= Reserved; do not use  
101= Low-Power RC Oscillator (LPRC)  
100= Reserved; do not use  
011= Primary Oscillator with PLL module (MS + PLL, EC + PLL)  
010= Primary Oscillator (MS, HS, EC)  
001= Fast RC Oscillator with divide-by-N with PLL module  
(FRCDIVN + PLL)  
000= Fast RC Oscillator (FRC)  
FCKSM<1:0>  
Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
IOL1WAY  
Peripheral Pin Select Configuration bit  
1= Allow only one reconfiguration  
0= Allow multiple reconfigurations  
OSCIOFNC  
POSCMD<1:0>  
OSC2 Pin Function bit (except in MS and HS modes)  
1= OSC2 is the clock output  
0= OSC2 is the general purpose digital I/O pin  
Primary Oscillator Mode Select bits  
11= Primary Oscillator is disabled  
10= HS Crystal Oscillator mode (10 MHz-32 MHz)  
01= MS Crystal Oscillator mode (3 MHz-10 MHz)  
00= EC (External Clock) mode (DC-32 MHz)  
FWDTEN  
Watchdog Timer Enable bit  
1= Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN  
bit in the RCON register will have no effect)  
0= Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing  
the SWDTEN bit in the RCON register)  
WDTPRE  
Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
WDTPOST<3:0>  
Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
0001= 1:2  
0000= 1:1  
DS75018C-page 254  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 22-3: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
PLLKEN  
Description  
PLL Lock Enable bit  
1= Clock switch to PLL source will wait until the PLL lock signal is valid  
0= Clock switch will not wait for the PLL lock signal  
JTAGEN  
ICS<1:0>  
JTAG Enable bit  
1= JTAG is enabled  
0= JTAG is disabled  
ICD Communication Channel Select bits  
11= Communicate on PGEC1 and PGED1  
10= Communicate on PGEC2 and PGED2  
01= Communicate on PGEC3 and PGED3  
00= Reserved, do not use  
2011-2012 Microchip Technology Inc.  
DS75018C-page 255  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
22.2 On-Chip Voltage Regulator  
22.3 Brown-out Reset (BOR)  
The devices power their core digital logic at a nominal  
2.5V. This can create a conflict for designs that are  
required to operate at a higher typical voltage, such as  
3.3V. To simplify system design, all devices incorporate  
an on-chip regulator that allows the device to run its core  
logic from VDD.  
The Brown-out Reset (BOR) module is based on an  
internal voltage reference circuit. The main purpose of  
the BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (for  
example, missing portions of the AC cycle waveform  
due to bad power transmission lines or voltage sags  
due to excessive current draw when a large inductive  
load is turned on).  
The regulator provides power to the core from the other  
VDD pins. When the regulator is enabled, a low-ESR  
(less than 5 ohms) capacitor (such as tantalum or  
ceramic) must be connected to the VCAP pin  
(Figure 22-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter  
capacitor is provided in Table 25-13, located in  
Section 25.1 “DC Characteristics”.  
A BOR generates a Reset pulse which resets the  
device. The BOR selects the clock source, based on  
the device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>).  
If an oscillator mode is selected, the BOR activates the  
Oscillator Start-up Timer (OST). The system clock is  
held until the OST expires. If the PLL is used, the clock  
is held until the LOCK bit (OSCCON<5>) is ‘1’.  
Note: It is important for the low-ESR capacitor to be  
placed as close as possible to the VCAP pin.  
On a POR, it takes approximately 20 s for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
Concurrently, the PWRT time-out (TPWRT) is applied  
before the internal Reset is released. If TPWRT = 0and  
a crystal oscillator is being used, then a nominal delay  
of, TFSCM = 100, is applied. The total delay in this case  
is TFSCM.  
The BOR status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit continues to  
operate while in Sleep or Idle modes and resets the  
device should VDD fall below the BOR threshold  
voltage.  
FIGURE 22-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
REGULATOR  
(1,2,3)  
3.3V  
dsPIC33F  
VDD  
VCAP  
VSS  
CEFC  
10  
µF  
Tantalum  
Note 1: These are typical operating voltages. Refer to  
Table 25-13 located in Section 25.1 “DC  
Characteristics” for the full operating ranges  
of VDD.  
2: It is important for the low-ESR capacitor to  
be placed as close as possible to the VCAP  
pin.  
3: Typical VCAP pin voltage = 2.5V when  
VDD VDDMIN.  
DS75018C-page 256  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
22.4.2  
SLEEP AND IDLE MODES  
22.4 Watchdog Timer (WDT)  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAV instruction was  
executed. The corresponding SLEEP bit (RCON<3>)  
or IDLE bit (RCON<2>) will need to be cleared in  
software after the device wakes up.  
The Watchdog Timer (WDT) is driven by the LPRC  
oscillator. When the WDT is enabled, the clock source is  
also enabled.  
22.4.1  
PRESCALER/POSTSCALER  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler that can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit  
(FWDT<4>). With a 32 kHz input, the prescaler yields  
a nominal WDT time-out period (TWDT) of 1 ms in 5-bit  
mode or 4 ms in 7-bit mode.  
22.4.3  
ENABLING WDT  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register  
(FWDT<7>). When the FWDTEN Configuration bit is  
set, the WDT is always enabled.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>), which allow the  
selection of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler, time-out periods ranging from  
1 ms to 131 seconds can be achieved.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user application to enable the  
WDT for critical code segments and disable the WDT  
during non-critical segments for maximum power  
savings.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC<2:0> bits) or by  
hardware (i.e., Fail-Safe Clock Monitor)  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
FIGURE 22-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPOST<3:0>  
WDTPRE  
Prescaler  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
RS  
RS  
Postscaler  
(Divide-by-N1)  
(Divide-by-N2)  
WDT  
Reset  
LPRC Clock  
0
WDT Window Select  
CLRWDTInstruction  
2011-2012 Microchip Technology Inc.  
DS75018C-page 257  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
22.5 JTAG Interface  
22.7 In-Circuit Debugger  
A JTAG interface is implemented, which supports  
boundary scan device testing, as well as in-circuit  
programming. Detailed information on this interface will  
be provided in future revisions of this document.  
The dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 devices provide simple debug-  
ging functionality through the PGECx (Emulation/  
Debug Clock) and PGEDx (Emulation/Debug Data) pin  
functions.  
22.6  
In-Circuit Serial Programming  
Any of the three pairs of debugging clock/data pins can  
be used:  
The dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302 family of digital signal controllers  
can be serially programmed while in the end  
application circuit. This is done with two lines for clock  
and data, and three other lines for power, ground and  
the programming sequence. Serial programming  
allows customers to manufacture boards with  
unprogrammed devices and then program the digital  
signal controller just before shipping the product. Serial  
programming also allows the most recent firmware or a  
custom firmware to be programmed. Refer to the  
“dsPIC33F/PIC24H Flash Programming Specification”  
(DS70152) for details about In-Circuit Serial  
Programming (ICSP™).  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS and the PGECx/PGEDx pin pair. In  
addition, when the feature is enabled, some of the  
resources are not available for general use. These  
resources include the first 80 bytes of data RAM and  
two I/O pins.  
Any of the three pairs of programming clock/data pins  
can be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
DS75018C-page 258  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
23.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS001/101A/102A/  
202A and dsPIC33FJ09GS302 devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
“dsPIC33F/PIC24H Family Reference  
Manual” sections.  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement can  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The instruction set for this family of dsPIC33F devices  
is identical to the instruction set for dsPIC30F devices.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The second source operand, which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions can use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• DSP operations  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write-back destination  
• Control operations  
Table 23-1 shows the general symbols used in  
describing the instructions.  
The dsPIC33F instruction set summary in Table 23-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
The other DSP instructions do not involve any  
multiplication and can include:  
• The accumulator to be used (required)  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
• The amount of shift specified by a W register,  
‘Wn’, or a literal value  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
The control instructions can use some of the following  
operands:  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
• A program memory address  
• The mode of the table read and table write  
instructions  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value, ‘f’  
• The destination, which could be either the file  
register, ‘f’, or the W0 register, which is denoted  
as ‘WREG’  
2011-2012 Microchip Technology Inc.  
DS75018C-page 259  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Most instructions are  
a
single word. Certain  
(unconditional/computed branch), indirect CALL/GOTO,  
all table reads and writes and RETURN/RETFIE  
instructions, which are single-word instructions but take  
two or three cycles. Certain instructions that involve  
skipping over the subsequent instruction require either  
two or three cycles if the skip is performed, depending  
on whether the instruction being skipped is a single-word  
or two-word instruction. Moreover, double-word moves  
require two cycles.  
double-word instructions are designed to provide all the  
required information in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP.  
The double-word instructions execute in two instruction  
cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
Program Counter is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles with the additional instruction cycle(s)  
executed as a NOP. Notable exceptions are the BRA  
Note:  
For more details on the instruction set,  
refer to the “16-Bit MCU and DSC  
Programmer’s  
Reference  
Manual”  
(DS70157).  
TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means “literal defined by text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator Write-Back Destination Address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word-addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, can be blank  
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor Working register pair (Direct Addressing)  
DS75018C-page 260  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier Working register pair for Square instructions   
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Multiplicand and Multiplier Working register pair for DSP instructions   
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 Working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 Destination Working registers {W0...W15}  
One of 16 Source Working registers {W0...W15}  
W0 (Working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register   
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X Data Space Prefetch Address register for DSP instructions  
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,  
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X Data Space Prefetch Destination register for DSP instructions {W4...W7}  
Y Data Space Prefetch Address register for DSP instructions  
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,  
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,  
[W11 + W12], none}  
Wyd  
Y Data Space Prefetch Destination register for DSP instructions {W4...W7}  
2011-2012 Microchip Technology Inc.  
DS75018C-page 261  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 23-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
AND  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
Wd = Wb + lit5 + (C)  
1
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater Than or Equal  
Branch if Unsigned Greater Than or Equal  
Branch if Greater Than  
Branch if Unsigned Greater Than  
Branch if Less Than or Equal  
Branch if Unsigned Less Than or Equal  
Branch if Less Than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less Than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A Overflow  
Branch if Accumulator B Overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A Saturated  
Branch if Accumulator B Saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
9
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
1
None  
Bit Toggle Ws  
1
None  
DS75018C-page 262  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
10  
BTSC  
BTSS  
BTST  
BTSC  
BTSC  
BTSS  
BTSS  
f,#bit4  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
Bit Test f, Skip if Clear  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
11  
12  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
C
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
CLR  
CLR  
CLR  
CLRWDT  
COM  
COM  
COM  
CP  
lit23  
None  
Wn  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
WREG  
WREG = 0x0000  
None  
Ws  
Ws = 0x0000  
None  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
f
f,WREG  
Ws,Wd  
f
WREG = f  
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = Decimal Adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
DEC  
Wd = Ws – 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
Wd = Ws – 2  
Disable Interrupts for k Instruction Cycles  
2011-2012 Microchip Technology Inc.  
DS75018C-page 263  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Signed 32/16-bit Integer Divide  
Wm,Wn  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to Address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to Indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit Literal to Wn  
Move 8-bit Literal to Wn  
Move Wn to f  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and Store Accumulator  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS75018C-page 264  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
2
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with Literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
2011-2012 Microchip Technology Inc.  
DS75018C-page 265  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = Sign-Extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
Wn = Wn – lit10  
SUB  
SUB  
Wd = Wb – Ws  
SUB  
Wd = Wb – lit5  
73  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
f = f – WREG – (C)  
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
74  
75  
SUBR  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG – f  
Wd = Ws – Wb  
Wd = lit5 – Wb  
SUBBR  
f = WREG – f – (C)  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
Wd = lit5 – Wb – (C)  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
76  
SWAP  
Wn  
None  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
None  
XOR  
f
N,Z  
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
Wd = Wb .XOR. lit5  
Wnd = Zero-Extend Ws  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
N,Z  
83  
ZE  
ZE  
C,Z,N  
DS75018C-page 266  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
24.1 MPLAB Integrated Development  
Environment Software  
24.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 267  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
24.2 MPLAB C Compilers for Various  
Device Families  
24.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
24.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
24.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
24.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multipurpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS75018C-page 268  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
24.7 MPLAB SIM Software Simulator  
24.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip’s most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer’s PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
24.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
24.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer’s PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 269  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
24.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
24.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
24.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS75018C-page 270  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
25.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 electrical  
characteristics. Additional information will be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings are listed below. Exposure to these maximum rating conditions for extended periods may  
affect device reliability. Functional operation of the device at these or any other conditions above the parameters  
indicated in the operation listings of this specification is not implied.  
Absolute Maximum Ratings(1)  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS .......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant, with respect to VSS(3).................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS, when VDD 3.0V(3).................................................. -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to Vss, when VDD < 3.0V(3)........................................ -0.3V to (VDD + 0.3V)  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum current sourced/sunk by any 4x I/O pin..................................................................................................15 mA  
Maximum current sourced/sunk by any 16x I/O pin................................................................................................45 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).  
3: See the Pin Diagramssection for 5V tolerant pins.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 271  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
25.1 DC Characteristics  
TABLE 25-1: OPERATING MIPS vs. VOLTAGE  
Maximum MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
dsPIC33FJ06GS001/101A/102A/202A  
and dsPIC33FJ09GS302  
VBOR-3.6V(1)  
VBOR-3.6V(1)  
-40°C to +85°C  
-40°C to +125°C  
40  
40  
Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer  
to Parameter BO10 in Table 25-11 for BOR values.  
TABLE 25-2: THERMAL OPERATING CONDITIONS  
Rating  
Industrial Temperature Devices  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Extended Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+125  
°C  
°C  
Power Dissipation  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ.  
Max.  
Unit  
Notes  
Package Thermal Resistance, 18-Pin SOIC  
Package Thermal Resistance, 18-pin PDIP  
Package Thermal Resistance, 20-pin SSOP  
Package Thermal Resistance, 28-Pin QFN-S  
Package Thermal Resistance, 28-pin SSOP  
Package Thermal Resistance, 28-Pin SOIC  
Package Thermal Resistance, 28-Pin SPDIP  
Package Thermal Resistance, 36-Pin VTLA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
57  
66  
64  
34  
71  
47  
45  
29  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
DS75018C-page 272  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
Operating Voltage  
DC10 VDD  
DC12 VDR  
Supply Voltage(4)  
VBOR  
1.8  
3.6  
V
V
Industrial and Extended  
RAM Data Retention  
Voltage(2)  
DC16 VPOR  
DC17 SVDD  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
VDD Rise Rate(3)  
VSS  
V
0.03  
V/ms 0-3.0V in 0.1s  
to Ensure Internal  
Power-on Reset Signal  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: This is the limit to which VDD may be lowered without losing RAM data.  
3: These parameters are characterized but not tested in manufacturing.  
4: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to  
Parameter BO10 in Table 25-11 for BOR values.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 273  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
Operating Current (IDD)(2)  
Typical(1)  
Max.  
Units  
Conditions  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
DC25d  
DC25a  
DC25b  
DC25c  
15  
15  
15  
15  
23  
23  
23  
23  
25  
25  
25  
25  
34  
34  
34  
34  
43  
43  
43  
43  
83  
83  
83  
83  
23  
23  
23  
23  
34  
34  
34  
34  
38  
38  
38  
38  
51  
51  
51  
51  
64  
64  
64  
64  
125  
125  
125  
125  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
16 MIPS(3)  
20 MIPS(3)  
30 MIPS(3)  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
40 MIPS(3)  
40 MIPS  
See Note 2, except PWM and ADC  
are operating at maximum speed  
(PTCON2 = 0x0000)  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD; WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are  
all zeroed)  
• CPU is executing while(1)statement  
3: These parameters are characterized but not tested in manufacturing.  
DS75018C-page 274  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
Typical(1)  
Max.  
Units  
Conditions  
Idle Current (IIDLE): Core Off Clock On Base Current(2)  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43d  
DC43a  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
13  
13  
13  
13  
16  
16  
16  
16  
17  
17  
17  
17  
20  
20  
20  
20  
23  
23  
23  
23  
21  
21  
21  
21  
24  
24  
24  
24  
27  
27  
27  
27  
32  
32  
32  
32  
37  
37  
37  
37  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
10 MIPS  
16 MIPS(3)  
20 MIPS(3)  
30 MIPS(3)  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
3.3V  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: Base Idle current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from  
rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD; WDT and FSCM are disabled  
• No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are  
all zeroed)  
3: These parameters are characterized but not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 275  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
Power-Down Current (IPD)(2,4)  
Typical(1)  
Max.  
Units  
Conditions  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
125  
135  
235  
565  
40  
500  
500  
500  
950  
50  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current  
40  
50  
+25°C  
+85°C  
+125°C  
(3)  
Watchdog Timer Current: IWDT  
40  
50  
80  
90  
Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.  
2: IPD current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from  
rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• All peripheral modules are disabled (PMDx bits are all ‘1’s)  
• VREGS bit (RCON<8>) = 1(i.e., core regulator is set to standby while the device is in Sleep mode)  
3: The current is the additional current consumed when the WDT module is enabled. This current should  
be added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
DS75018C-page 276  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
Typical(1)  
Max.  
Doze Ratio  
Units  
Conditions  
Doze Current (IDOZE)(2)  
DC73a  
DC73f  
DC73g  
DC70a  
DC70f  
DC70g  
DC71a  
DC71f  
DC71g  
DC72a  
DC72f  
DC72g  
30  
45  
23  
23  
45  
23  
23  
45  
23  
23  
45  
23  
23  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
16  
16  
30  
16  
16  
30  
16  
16  
30  
16  
16  
-40°C  
+25°C  
+85°C  
+125°C  
3.3V  
40 MIPS  
40 MIPS  
40 MIPS  
40 MIPS  
1:64  
1:128  
1:2  
3.3V  
3.3V  
3.3V  
1:64  
1:128  
1:2  
1:64  
1:128  
Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.  
2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on  
the current consumption. The test conditions for all IDOZE measurements are as follows:  
• Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD; WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are  
all zeroed)  
• CPU is executing while(1)statement  
2011-2012 Microchip Technology Inc.  
DS75018C-page 277  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Input Low Voltage  
Min.  
Typ.(1) Max. Units  
Conditions  
VIL  
DI10  
I/O Pins  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
DI15  
MCLR  
DI16  
I/O Pins with OSC1  
SDA1, SCL1  
SDA1, SCL1  
Input High Voltage  
DI18  
SMBus disabled  
SMBus enabled  
DI19  
VIH  
DI20  
DI21  
I/O Pins Not 5V Tolerant(4)  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
I/O Pins 5V Tolerant(4)  
DI28  
DI29  
SDA1, SCL1  
SDA1, SCL1  
0.7 VDD  
2.1  
5.5  
5.5  
V
V
SMBus disabled  
SMBus enabled  
ICNPU  
CNx Pull-up Current  
DI30  
IIL  
250  
A VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2,3,4)  
DI50  
I/O Pins:  
4x Sink Driver Pins  
RA0-RA2, RB0-RB2, RB5-RB10,  
RB15  
±2  
±8  
A  
A  
VSS VPIN VDD,  
Pin at high-impedance  
16x Sink Driver Pins  
RA3, RA4, RB3, RB4, RB11-RB14  
VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
A VSS VPIN VDD  
A VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See the Pin Diagramssection for the list of 5V tolerant I/O pins.  
5: VIL source < (VSS – 0.3); characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V; characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit; characterized but not tested.  
DS75018C-page 278  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Typ.(1) Max. Units  
Conditions  
IICL  
Input Low Injection Current  
DI60a  
0
-5(5,8)  
mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR,  
VCAP and RB5  
IICH  
Input High Injection Current  
DI60b  
0
+5(6,7,8) mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR,  
VCAP, RB5 and digital 5V  
tolerant designated pins  
IICT  
Total Input Injection Current  
DI60c  
(sum of all I/O and control pins)  
-20(9)  
+20(9)  
mA Absolute instantaneous  
sum of all ± input  
injection currents from  
all I/O pins  
( | IICL + | IICH | )    
IICT  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See the Pin Diagramssection for the list of 5V tolerant I/O pins.  
5: VIL source < (VSS – 0.3); characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V; characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins, not excluded under IICL or IICH conditions, are permitted  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit; characterized but not tested.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 279  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Output Low Voltage  
I/O Pins:  
4x Sink Driver Pins – RA0-RA2,  
RB0-RB2, RB5-RB10, RB15  
Min.  
Typ. Max. Units  
Conditions  
DO10 VOL  
0.4  
0.4  
V
V
V
V
V
IOL 6 mA, VDD = 3.3V(1)  
Output Low Voltage  
I/O Pins:  
16x Sink Driver Pins – RA3, RA4,  
RB3, RB4, RB11-RB14  
IOL 18 mA, VDD = 3.3V(1)  
IOH -6 mA, VDD = 3.3V(1)  
IOH -18 mA, VDD = 3.3V(1)  
DO20 VOH  
Output High Voltage  
I/O Pins:  
4x Source Driver Pins – RA0-RA2,  
RB0-RB2, RB5-RB10, RB15  
2.4  
2.4  
Output High Voltage  
I/O Pins:  
16x Source Driver Pins – RA3,  
RA4, RB3, RB4, RB11-RB14  
DO20A VOH1  
Output High Voltage  
I/O Pins:  
4x Source Driver Pins – RA0-RA2,  
RB0-RB2, RB5-RB10, RB15  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
IOH -12 mA, VDD = 3.3V(1)  
IOH -11 mA, VDD = 3.3V(1)  
IOH -3 mA, VDD = 3.3V(1)  
IOH -30 mA, VDD = 3.3V(1)  
IOH -25 mA, VDD = 3.3V(1)  
IOH -8 mA, VDD = 3.3V(1)  
Output High Voltage  
I/O Pins:  
16x Source Driver Pins – RA3,  
RA4, RB3, RB4, RB11-RB14  
V
Note 1: These parameters are characterized, but not tested.  
TABLE 25-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 3.0V to 3.6V(3)  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param.  
Symbol  
Characteristic  
Min.(1) Typ.  
Max.  
Units  
Conditions  
BO10  
VBOR  
BOR Event on VDD Transition  
High-to-Low  
2.55  
2.96  
V
(See Note 2)  
BOR Event is Tied to VDD Core  
Voltage Decrease  
Note 1: These parameters are for design guidance only and are not tested in manufacturing.  
2: The device will operate as normal until the VDDMIN threshold is reached.  
3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN.  
DS75018C-page 280  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min. Typ.(1) Max. Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10,000  
VMIN  
E/W -40C to +125C  
VPR  
VDD for Read  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
VMIN  
20  
10  
3.6  
V
VMIN = Minimum operating  
voltage  
D134  
D135  
TRETD  
IDDP  
Year Provided no other specifications  
are violated, -40C to +125C  
Supply Current during  
Programming  
mA  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
Page Erase Time  
20.1  
19.5  
42.3  
41.1  
26.5  
27.3  
55.9  
57.6  
ms TPE = 168517 FRC cycles,  
TA = +85°C(2)  
Page Erase Time  
ms TPE = 168517 FRC cycles,  
TA = +125°C(2)  
Word Write Cycle Time  
Word Write Cycle Time  
µs TWW = 355 FRC cycles,  
TA = +85°C(2)  
µs TWW = 355 FRC cycles,  
TA = +125°C(2)  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = ‘b011111(for Minimum), TUN<5:0> = ‘b100000(for  
Maximum). This parameter depends on the FRC accuracy (see Table 25-20) and the value of the FRC  
Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and  
Maximum time, see Section 5.3 “Programming Operations”.  
TABLE 25-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value(1)  
4.7  
10  
F  
Capacitor must be low  
series resistance  
(< 0.5 Ohms)  
Note 1: Typical VCAP voltage = 2.5 volts when VDD VDDMIN.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 281  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
25.2 AC Characteristics and Timing Parameters  
This section defines dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302 AC characteristics and timing  
parameters.  
TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Table 25-1.  
FIGURE 25-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param. Symbol  
Characteristic  
OSC2 Pin  
Min.  
Typ. Max. Units  
Conditions  
DO50 COSCO  
15  
pF In XT and HS modes when external  
clock is used to drive OSC1  
DO56 CIO  
DO58 CB  
All I/O Pins and OSC2  
SCL1, SDA1  
50  
pF EC mode  
pF In I2C™ mode  
400  
DS75018C-page 282  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS25  
OS30 OS30  
OS31 OS31  
OS41  
OS40  
TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
40  
MHz EC  
Oscillator Crystal Frequency  
3.0  
10  
10  
32  
MHz XT  
MHz HS  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2)  
12.5  
25  
DC  
DC  
ns  
ns  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
0.375 x TOSC  
0.625 x TOSC  
ns  
EC  
EC  
OS31  
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
ns  
OS40  
OS41  
OS42  
TckR  
TckF  
GM  
CLKO Rise Time(3)  
CLKO Fall Time(3)  
14  
5.2  
5.2  
16  
18  
ns  
ns  
External Oscillator  
mA/V VDD = 3.3V  
TA = +25ºC  
Transconductance(4)  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type, under standard operating conditions,  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 283  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range  
0.8  
8
MHz ECPLL, XTPLL modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency  
100  
200  
MHz  
mS  
OS52  
OS53  
TLOCK  
DCLK  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)(2)  
0.9  
-3  
1.5  
0.5  
3.1  
3
%
Measured over 100 ms  
period  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested in manufacturing.  
2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is  
based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases  
or communication clocks use this formula:  
DCLK  
Peripheral Clock Jitter = -----------------------------------------------------------------------  
FOSC  
-------------------------------------------------------------  
Peripheral Bit Rate Clock  
For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCK) is 2 MHz.  
DCLK  
3%  
3%  
-------  
-----------------------------  
---------  
SPI SCK Jitter =  
=
=
= 0.75%  
4
16  
32 MHz  
--------------------  
2 MHz  
TABLE 25-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
OS56  
OS57  
OS58  
FHPOUT On-Chip 16x PLL CCO  
Frequency  
112  
118  
120  
MHz  
FHPIN  
On-Chip 16x PLL Phase  
Detector Input Frequency  
7.0  
7.37  
7.5  
10  
MHz  
µs  
TSU  
Frequency Generator Lock  
Time  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested in manufacturing.  
DS75018C-page 284  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-19: AC CHARACTERISTICS: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for Extended  
Param.  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1)  
F20a  
F20b  
FRC  
FRC  
-2  
-5  
+2  
+5  
%
%
-40°C TA +85°C  
VDD = 3.0-3.6V  
-40°C TA +125°C VDD = 3.0-3.6V  
Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.  
TABLE 25-20: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
LPRC @ 32.768 kHz(1)  
F21a  
F21b  
LPRC  
LPRC  
-20  
-70  
+20  
+70  
%
%
-40°C TA +85°C  
VDD = 3.0-3.6V  
-40°C TA +125°C VDD = 3.0-3.6V  
Note 1: The change of LPRC frequency as VDD changes.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 285  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-3:  
I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-21: I/O TIMING REQUIREMENTS  
AC CHARACTERISTICS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Typ.(1) Max. Units  
Conditions  
DO31  
TIOR  
I/O Pins: 4x Sink Driver Pins  
RA0-RA2, RB0-RB2, RB5-RB10,  
RB15  
10  
25  
ns  
Refer to Figure 25-1  
for test conditions  
I/O Pins: 16x Sink Driver Pins  
RA3, RA4, RB3, RB4, RB11-RB14  
6
15  
25  
ns  
ns  
DO32  
TIOF  
I/O Pins: 4x Sink Driver Pins  
RA0-RA2, RB0-RB2, RB5-RB10,  
RB15  
10  
Refer to Figure 25-1  
for test conditions  
I/O Pins: 16x Sink Driver Pins  
6
15  
ns  
RA3, RA4, RB3, RB4, RB11-RB14  
DI35  
DI40  
TINP  
INTx Pin High or Low Time (input)  
CNx High or Low Time (input)  
20  
2
ns  
TRBP  
TCY  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
DS75018C-page 286  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2)  
Max. Units  
Conditions  
SY10  
SY11  
SY12  
SY13  
TMCL  
TPWRT  
TPOR  
TIOZ  
MCLR Pulse Width (low)  
Power-up Timer Period  
Power-on Reset Delay  
2
3
64  
s  
ms  
s  
s  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
10  
30  
1.2  
I/O High-Impedance from MCLR 0.68  
Low or Watchdog Timer Reset  
0.72  
SY30  
TOST  
Oscillator Start-up Time  
1024 TOSC  
TOSC = OSC1 period  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 287  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-5:  
TIMER1 AND TIMER2 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 25-1 for load conditions.  
(1)  
TABLE 25-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic  
TxCK High Synchronous,  
Min.  
Typ.  
Max.  
Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TCY + 20  
ns Must also meet  
Parameter TA15,  
Time  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
(TCY + 20)/N  
ns  
Asynchronous  
20  
ns  
TxCK Low Synchronous,  
TCY + 20  
ns Must also meet  
Parameter TA15,  
Time  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
(TCY + 20)/N  
ns  
Asynchronous  
20  
ns  
TxCK Input Synchronous,  
2 TCY + 40  
ns  
Period  
no prescaler  
Synchronous,  
with prescaler  
Greater of:  
40 ns or  
N = prescale  
value  
(2 TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
40  
ns  
OS60 Ft1  
T1CK Oscillator Input  
Frequency Range  
DC  
50  
kHz  
(oscillator enabled by setting  
bit, TCS (T1CON<1>))  
TA20  
TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer  
0.75 TCY + 40  
1.75 TCY + 40  
Increment  
Note 1: Timer1 is a Type A.  
DS75018C-page 288  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param.  
Symbol  
TTXH  
Characteristic  
Min.  
Typ.  
Max. Units  
Conditions  
TB10  
TxCK High Time Synchronous  
Greater of:  
20 ns or  
(TCY + 20)/N  
ns Must also meet  
Parameter TB15  
N = prescale  
value (1, 8, 64, 256)  
TB11  
TB15  
TTXL  
TTXP  
TxCK Low Time  
Synchronous  
Greater of:  
20 ns or  
(TCY + 20)/N  
ns Must also meet  
Parameter TB15  
N = prescale  
value (1, 8, 64, 256)  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 40  
ns N = prescale  
value (1, 8, 64, 256)  
Synchronous, Greater of:  
with prescaler  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
2011-2012 Microchip Technology Inc.  
DS75018C-page 289  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-6:  
INPUT CAPTURE (CAP1) TIMING CHARACTERISTICS  
IC1  
IC10  
IC11  
IC15  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-25: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic(1)  
Min.  
Max.  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
IC1 Input Low Time No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
IC1 Input High Time No prescaler  
With prescaler  
0.5 TCY + 20  
10  
IC1 Input Period  
(TCY + 40)/N  
N = prescale value  
(1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 25-7:  
OUTPUT COMPARE MODULE (OC1) TIMING CHARACTERISTICS  
OC1  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OC1 Output Fall Time  
OC1 Output Rise Time  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS75018C-page 290  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-8:  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA  
OC1  
OC15  
Active  
Tri-State  
TABLE 25-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
OC15  
OC20  
TFD  
Fault Input to PWM I/O  
Change  
TCY + 20  
ns  
TFLT  
Fault Input Pulse Width  
TCY + 20  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 291  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-9:  
HIGH-SPEED PWM MODULE FAULT TIMING CHARACTERISTICS  
MP30  
FLTx  
MP20  
PWMx  
FIGURE 25-10:  
HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS  
MP11 MP10  
PWMx  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-28: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
MP10  
MP11  
TFPWM  
TRPWM  
TFD  
PWM Output Fall Time  
PWM Output Rise Time  
2.5  
2.5  
15  
ns  
ns  
ns  
Fault Input to PWM  
I/O Change  
MP20  
MP30  
TFH  
Minimum PWM Fault Pulse  
Width  
8
ns  
ns  
DTC<10> = 10  
ACLK = 120 MHz  
MP31  
MP32  
TPDLY  
ACLK  
Tap Delay  
1.04  
PWM Input Clock  
120  
MHz See Note 2, Note 3  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: This parameter is a maximum allowed input clock for the PWM module.  
3: The maximum value for this parameter applies to dsPIC33FJ06GS101A/102A/202A/302 devices only.  
DS75018C-page 292  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-29: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
15 MHz  
9 MHz  
Table 25-30  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 25-31  
9 MHz  
Table 25-32  
0
1
15 MHz  
11 MHz  
15 MHz  
11 MHz  
Table 25-33  
Table 25-34  
Table 25-35  
Table 25-36  
1
0
1
1
0
0
1
0
0
0
0
FIGURE 25-11:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0)  
TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SP30, SP31  
SP30, SP31  
Note: Refer to Figure 25-1 for load conditions.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 293  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-12:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1)  
TIMING CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-30: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP20  
Maximum SCKx Frequency  
SCKx Output Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SCKx Output Rise Time  
30  
6
20  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, SDOx Data Output Setup to  
TdiV2scL  
First SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS75018C-page 294  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-13:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)  
TIMING CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
MSb  
LSb  
SDOx  
SDIx  
SP30, SP31  
SP40  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-31: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP20  
Maximum SCKx Frequency  
SCKx Output Fall Time  
9
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Output Rise Time  
30  
30  
30  
6
20  
See Parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 295  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-14:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)  
TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30, SP31  
MSb In  
SP30, SP31  
LSb In  
Bit 14 - - - -1  
SP40  
SP41  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-32: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
Maximum SCKx Frequency  
9
MHz -40ºC to +125ºC and  
see Note 3  
SP20  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Fall Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
and Note 4  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO31  
and Note 4  
See Parameter DO32  
and Note 4  
See Parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS75018C-page 296  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-15:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)  
TIMING CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
MSb  
LSb  
SDOx  
SDIx  
Bit 14 - - - - - -1  
SP30,SP31  
SP51  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
SP40  
Note: Refer to Figure 25-1 for load conditions.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 297  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-33: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter  
DO32 and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter  
DO31 and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter  
DO32 and Note 4  
See Parameter  
DO31 and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS75018C-page 298  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-16:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)  
TIMING CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP72  
SP73  
SP70  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP35  
SP52  
MSb  
LSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP30,SP31  
SP51  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
SP40  
Note: Refer to Figure 25-1 for load conditions.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 299  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-34: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter  
DO32 and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter  
DO31 and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter  
DO32 and Note 4  
See Parameter  
DO31 and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS75018C-page 300  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-17:  
SPIx SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0)  
TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP35  
LSb  
MSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 25-1 for load conditions.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 301  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-35: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter  
DO32 and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SCKx Input Rise Time  
6
20  
50  
See Parameter  
DO31 and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter  
DO32 and Note 4  
See Parameter  
DO31 and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
120  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS75018C-page 302  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-18:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)  
TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
SP35  
MSb  
LSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 25-1 for load conditions.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 303  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-36: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP72  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
MHz See Note 3  
TscF  
TscR  
TdoF  
TdoR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter  
DO32 and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SCKx Input Rise Time  
6
20  
50  
See Parameter  
DO31 and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter  
DO32 and Note 4  
See Parameter  
DO31 and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
30  
120  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
See Note 4  
See Note 4  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS75018C-page 304  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-19:  
I2C1 BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCL1  
SDA1  
IM31  
IM34  
IM30  
IM33  
Start  
Condition  
Stop  
Condition  
Note: Refer to Figure 25-1 for load conditions.  
FIGURE 25-20:  
I2C1 BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCL1  
IM11  
IM26  
IM10  
IM33  
IM25  
SDA1  
In  
IM45  
IM40  
IM40  
SDA1  
Out  
Note: Refer to Figure 25-1 for load conditions.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 305  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-37: I2C1 BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.(1)  
Max.  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
ns  
1 MHz mode(2) TCY/2 (BRG + 1)  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDA1 and SCL1 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 pF to 400 pF  
Fall Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
SDA1 and SCL1 100 kHz mode  
CB is specified to be  
from 10 pF to 400 pF  
Rise Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
IM50  
IM51  
CB  
Bus Capacitive Loading  
400  
390  
TPGD  
Pulse Gobbler Delay  
65  
See Note 3  
Note 1: BRG is the value of the I2C™ Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit  
(I2C™)” (DS70195) in the “dsPIC33F/PIC24H Family Reference Manual”.  
2: Maximum pin capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).  
3: Typical value for this parameter is 130 ns.  
DS75018C-page 306  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
FIGURE 25-21:  
I2C1 BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCL1  
SDA1  
IS34  
IS31  
IS30  
IS33  
Stop  
Condition  
Start  
Condition  
FIGURE 25-22:  
I2C1 BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCL1  
IS30  
IS26  
IS31  
IS33  
IS25  
SDA1  
In  
IS45  
IS40  
IS40  
SDA1  
Out  
2011-2012 Microchip Technology Inc.  
DS75018C-page 307  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-38: I2C1 BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Max. Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
4.7  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
s  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
s  
s  
IS11  
THI:SCL Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1 MHz mode(2)  
0.6  
s  
Device must operate at a  
minimum of 10 MHz  
0.5  
300  
300  
100  
1000  
300  
300  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDA1 and SCL1 100 kHz mode  
CB is specified to be from  
10 pF to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
SDA1 and SCL1 100 kHz mode  
CB is specified to be from  
10 pF to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only).  
DS75018C-page 308  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
=
TABLE 25-39: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V and 3.6V  
(unless otherwise stated)  
Operating temperature  
(2)  
AC CHARACTERISTICS  
Param. Symbol  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
Device Supply  
AD01  
AD02  
AVDD  
AVSS  
Module VDD Supply  
Module VSS Supply  
AVDD is internally connected  
to VDD on 18-pin and 28-pin  
devices. See parameters  
(DC10) in Table 25-4.  
AVSS is internally connected to  
VSS on 18-pin and 28-pin  
devices  
Analog Input  
AD10  
AD11  
AD12  
AD13  
VINH-VINL Full-Scale Input Span  
VSS  
AVSS  
VDD  
AVDD  
V
V
VIN  
IAD  
Absolute Input Voltage  
Operating Current  
Leakage Current  
8
mA  
±0.6  
A VINL = AVSS = 0V,  
AVDD = 3.3V,  
Source Impedance = 100  
AD17  
RIN  
Recommended Impedance  
of Analog Voltage Source  
100  
DC Accuracy @ 1.5 Msps for 18 and 28-Pin Devices  
AD20a Nr  
AD21a INL  
Resolution  
10 data bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-0.5  
-0.9  
-0.3/+0.5  
±0.6  
10  
+1.2  
+0.9  
20  
LSb See Note 3  
LSb See Note 3  
LSb See Note 3  
LSb See Note 3  
AD22a DNL  
AD23a GERR  
AD24a EOFF  
Offset Error  
10  
20  
(1)  
AD25a  
Monotonicity  
Guaranteed  
DC Accuracy @ 2.0 Msps for 18 and 28-Pin Devices  
AD20b Nr  
Resolution  
10 data bits  
AD21b INL  
AD22b DNL  
AD23b GERR  
AD24b EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-1  
-1.5  
±1.5  
±2  
+2.8  
+2.8  
20  
LSb  
LSb  
LSb  
LSb  
10  
Offset Error  
10  
20  
(1)  
AD25b  
Monotonicity  
Guaranteed  
DC Accuracy @ 2.0 Msps for 20 and 36-Pin Devices  
AD20c Nr  
Resolution  
10 data bits  
AD21c INL  
AD22c DNL  
AD23c GERR  
AD24c EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
> -2  
> -1  
±0.5  
±0.5  
10  
< 2  
< 1  
20  
20  
LSb See Note 3  
LSb See Note 3  
LSb See Note 3  
LSb See Note 3  
Offset Error  
10  
(1)  
AD25c  
Monotonicity  
Guaranteed  
Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no missing codes.  
2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog  
modules, such as the ADC, etc., will function, but with degraded performance below VDDMIN. Refer to  
Parameter BO10 in Table 25-11 for BOR values.  
3: These parameters are characterized by similarity, but are not tested in manufacturing.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 309  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-39: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V and 3.6V  
(unless otherwise stated)  
Operating temperature  
(2)  
AC CHARACTERISTICS  
Param. Symbol  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
Dynamic Performance  
AD30  
AD31  
AD32  
AD33  
AD34  
THD  
Total Harmonic Distortion  
Signal to Noise and Distortion  
Spurious Free Dynamic Range  
Input Signal Bandwidth  
-73  
58  
1
dB  
dB  
SINAD  
SFDR  
FNYQ  
-73  
dB  
MHz  
bits  
ENOB  
Effective Number of Bits  
9.4  
Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage and has no missing codes.  
2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog  
modules, such as the ADC, etc., will function, but with degraded performance below VDDMIN. Refer to  
Parameter BO10 in Table 25-11 for BOR values.  
3: These parameters are characterized by similarity, but are not tested in manufacturing.  
TABLE 25-40: 10-BIT HIGH-SPEED ADC MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Clock Parameters  
Typ.(1)  
Max.  
Units  
Conditions  
AD50b TAD  
ADC Clock Period  
35.8  
ns  
Conversion Rate  
AD55b tCONV  
AD56b FCNV  
Conversion Time  
14 TAD  
Throughput Rate  
Devices with Single SAR  
2.0  
10  
Msps  
s  
Timing Parameters  
1.0 —  
AD63b tDPU  
Time to Stabilize Analog Stage  
from ADC Off to ADC On  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 25-23:  
ANALOG-TO-DIGITAL CONVERSION TIMING PER INPUT  
tCONV  
Trigger Pulse  
TAD  
1
ADC Clock  
ADC Data  
9
8
2
0
Old Data  
New Data  
ADBUFxx  
CONV  
DS75018C-page 310  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-41: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS(2)  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol Characteristic  
Min.  
Typ.  
Max.  
Units  
Comments  
CM10  
CM11  
VIOFF  
VICM  
Input Offset Voltage  
-58  
0
+14/-40  
66  
mV  
V
Input Common-Mode  
Voltage Range(1)  
AVDD  
CM14  
TRESP  
Large Signal Response  
21  
30  
49  
ns V+ input step of 100 mv while  
V- input held at AVDD/2. Delay  
measured from analog input pin to  
PWM output pin.  
Note 1: These parameters are for design guidance only and are not tested in manufacturing.  
2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer  
to Parameter BO10 in Table 25-11 for BOR values.  
TABLE 25-42: DAC MODULE SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
AC and DC CHARACTERISTICS(2)  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol Characteristic  
Min.  
Typ.  
Max.  
Units  
Comments  
DA01  
DA08  
DA02  
DA03  
EXTREF External Voltage Reference(1)  
INTREF Internal Voltage Reference(1)  
0
AVDD – 1.6  
1.35  
V
V
1.15  
1.25  
CVRES  
INL  
Resolution  
10  
Bits  
Integral Nonlinearity Error  
-7  
-1  
+7  
LSB AVDD = 3.3V,  
DACREF = (AVDD/2)V  
DA04  
DA05  
DA06  
DA07  
DNL  
EOFF  
EG  
Differential Nonlinearity Error  
Offset Error  
-5  
-0.5  
-0.8  
+5  
2.6  
LSB  
%
0.4  
0.4  
711  
Gain Error  
Settling Time(1)  
-1.8  
5.2  
%
TSET  
1551  
2100  
ns  
Measured when  
RANGE = 1(high range)  
and the CMREF<9:0> bits  
transition from 0x1FF to  
0x300  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to  
Parameter BO10 in Table 25-11 for BOR values.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 311  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-43: DAC OUTPUT (DACOUT PIN) DC SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS(1)  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol Characteristic  
Min.  
Typ.  
Max.  
Units  
Comments  
DA11 RLOAD  
CLOAD  
DA12 IOUT  
Resistive Output Load  
Impedance  
3K  
Ohm  
Output Load  
Capacitance  
300  
35  
pF Including output pin  
capacitance  
Output Current Drive  
Strength  
200  
µA Sink and source  
DA13 VRANGE Output Drive Voltage AVSS + 250 mV  
Range at Current  
AVDD – 900 mV  
V
Drive of 200 mA  
DA14 VLRANGE Output Drive Voltage  
Range at Reduced  
AVSS + 5 mV  
AVDD – 500 mV  
1.3 x IOUT  
V
Current Drive of 50 mA  
DA15 IDD  
Current Consumed  
when Module Is  
Enabled  
µA Module will always con-  
sume this current even if  
no load is connected to  
the output  
DA16 ROUTON Output Impedance  
when Module is  
820  
Ohms  
Enabled  
DA30 VOFFSET Input Offset Voltage  
10  
10  
mV  
Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer  
to Parameter BO10 in Table 25-11 for BOR values.  
TABLE 25-44: DAC GAIN STAGE TO COMPARATOR SPECIFICATIONS  
Standard Operating Conditions  
(unless otherwise stated)  
DC CHARACTERISTICS(1)  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
DA15  
IDD  
Current Consumed when  
Module Is Enabled.  
60  
µA Module will always consume this  
current even if no load is  
connected to the output  
DA32  
DA33  
G
Amplifier Gain  
1.0  
1.8  
2.0  
GBWP  
Gain Bandwidth Product  
MHz At 1 pF load capacitance.  
Measured with sine wave output  
signal of 1V peak-to-peak with a  
midpoint value of 1.2V. Voltage  
excursion from 0.7 to 1.7V.  
DA34  
DA07  
SR  
TS  
Slew Rate  
5
V/µs Slew rate between 10% and 90%  
of AVDD  
Settling Time  
200  
ns  
Settling time to 3%  
Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer  
to Parameter BO10 in Table 25-11 for BOR values.  
DS75018C-page 312  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
TABLE 25-45: CONSTANT CURRENT SOURCE SPECIFICATIONS  
Standard Operating Conditions  
(unless otherwise stated)  
Operating temperature: -40°C TA +85°C for Industrial  
DC CHARACTERISTICS(1)  
-40°C TA +125°C for Extended  
Param. Symbol Characteristic  
Min.  
Typ. Max. Units  
Conditions  
CC01  
CC02  
IDD  
Current Consumption  
30  
±3  
µA  
%
IREG  
Regulation of Current with  
Voltage On  
CC03  
IOUT  
Current Output at Terminal  
10  
µA  
Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device  
analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer  
to Parameter BO10 in Table 25-11 for BOR values.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 313  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 314  
2011-2012 Microchip Technology Inc.  
26.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS  
Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes  
only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating  
range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
FIGURE 26-1:  
VOH – 4x DRIVER PINS  
FIGURE 26-3:  
.
VOL – 4x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
Absolute Maximum  
Absolute Maximum  
FIGURE 26-4:  
VOL – 16x DRIVER PINS  
FIGURE 26-2:  
VOH – 16x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
Absolute Maximum  
3V  
Absolute Maximum  
FIGURE 26-5:  
TYPICAL IPD CURRENT @ VDD = 3.3V  
FIGURE 26-7:  
TYPICAL IDD CURRENT @ VDD = 3.3V, +25ºC  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
85  
80  
75  
70  
65  
60  
55  
0
50  
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Celsius)  
TYPICAL IDOZE CURRENT @ VDD = 3.3V  
MIPS  
FIGURE 26-6:  
FIGURE 26-8:  
TYPICAL IIDLE CURRENT @ VDD = 3.3V, +25ºC  
40  
35  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
6
4
2
0
10  
15  
20  
25  
30  
35  
40  
0
1:1  
1:2  
1:8  
1:128  
MIPS  
1:64  
Doze Ratio  
FIGURE 26-9:  
TYPICAL FRC FREQUENCY @ VDD = 3.3V  
FIGURE 26-11:  
TYPICAL LPRC FREQUENCY @ VDD = 3.3V  
7.38  
32.6  
32.55  
32.5  
7.36  
7.34  
7.32  
7.3  
32.45  
32.4  
32.35  
32.3  
-40  
7.28  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Celsius)  
7.26  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Celsius)  
FIGURE 26-10:  
TYPICAL INTREF @ VDD = 3.3V  
1.25  
1.24  
1.24  
1.23  
1.23  
1.22  
1.22  
1.21  
1.21  
1.20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Celsius)  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 318  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
27.0 PACKAGING INFORMATION  
27.1 Package Marking Information  
18-Lead PDIP  
Example  
dsPIC30F3012  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
30I/P  
e3  
0610017  
18-Lead SOIC (.300”)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
dsPIC33FJ06  
GS101-I/SO  
e
3
YYWWNNN  
0830235  
20-Lead SSOP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
dsPIC33FJ12  
MC201-I/SS  
e
3
YYWWNNN  
0730235  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 319  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
27.1 Package Marking Information (Continued)  
28-Lead SPDIP  
Example  
dsPIC33FJ16MC  
102-E/SP  
0730235  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
e
3
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
dsPIC33FJ16MC  
102-E/SO  
e
3
0730235  
YYWWNNN  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
33FJ16MC  
102-E/SS  
e
3
YYWWNNN  
0730235  
28-Lead QFN-S  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJJ16MC  
102E/MM  
0730235  
e3  
36-Lead VTLA  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJJ16MC  
102E/TL  
0730235  
e
3
DS75018C-page 320  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
27.2 Package Details  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
NOTE 1  
E1  
2
3
1
D
E
A2  
A
L
c
A1  
b1  
e
b
eB  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢁ<  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢁꢕ  
ꢂꢁꢛꢘ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢁꢘ  
ꢂꢕꢁꢘ  
ꢂ-ꢕꢕ  
ꢂꢎꢖꢕ  
ꢂ<<ꢕ  
ꢂꢁꢁꢘ  
ꢂꢕꢕ<  
ꢂꢕꢖꢘ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢕ  
M
ꢂ-ꢁꢕ  
ꢂꢎꢘꢕ  
ꢂꢛꢕꢕ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕ?ꢕ  
ꢂꢕꢁ<  
M
ꢂ-ꢎꢘ  
ꢂꢎ<ꢕ  
ꢂꢛꢎꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢖ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢕꢜ1  
2011-2012 Microchip Technology Inc.  
DS75018C-page 321  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS75018C-page 322  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS75018C-page 323  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS75018C-page 324  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
!ꢕꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ"#$ꢌꢑ%ꢇ"ꢖꢅꢉꢉꢇ&ꢏꢋꢉꢌꢑꢄꢇꢒ""ꢓꢇMꢇ'(ꢔꢕꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ""&ꢈꢛꢇ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢎꢕ  
ꢕꢂ?ꢘꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢄꢅ&  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
M
M
ꢁꢂꢜꢘ  
M
ꢜꢂ<ꢕ  
ꢘꢂ-ꢕ  
ꢜꢂꢎꢕ  
ꢕꢂꢜꢘ  
ꢁꢂꢎꢘꢀꢝ.3  
M
ꢎꢂꢕꢕ  
ꢁꢂ<ꢘ  
M
<ꢂꢎꢕ  
ꢘꢂ?ꢕ  
ꢜꢂꢘꢕ  
ꢕꢂꢛꢘ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
9ꢁ  
ꢁꢂ?ꢘ  
ꢕꢂꢕꢘ  
ꢜꢂꢖꢕ  
ꢘꢂꢕꢕ  
?ꢂꢛꢕ  
ꢕꢂꢘꢘ  
ꢕꢂꢕꢛ  
ꢕꢟ  
ꢕꢂꢎꢘ  
<ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
)
ꢕꢂꢎꢎ  
M
ꢕꢂ-<  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢎꢕꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜꢎ1  
2011-2012 Microchip Technology Inc.  
DS75018C-page 325  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS75018C-page 326  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
!ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ"#$ꢌꢑ%ꢇ"ꢖꢅꢉꢉꢇ&ꢏꢋꢉꢌꢑꢄꢇꢒ""ꢓꢇMꢇ'(ꢔꢕꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ""&ꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢎ<  
ꢕꢂ?ꢘꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢄꢅ&  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
M
M
ꢁꢂꢜꢘ  
M
ꢜꢂ<ꢕ  
ꢘꢂ-ꢕ  
ꢁꢕꢂꢎꢕ  
ꢕꢂꢜꢘ  
ꢁꢂꢎꢘꢀꢝ.3  
M
ꢎꢂꢕꢕ  
ꢁꢂ<ꢘ  
M
<ꢂꢎꢕ  
ꢘꢂ?ꢕ  
ꢁꢕꢂꢘꢕ  
ꢕꢂꢛꢘ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
9ꢁ  
ꢁꢂ?ꢘ  
ꢕꢂꢕꢘ  
ꢜꢂꢖꢕ  
ꢘꢂꢕꢕ  
ꢛꢂꢛꢕ  
ꢕꢂꢘꢘ  
ꢕꢂꢕꢛ  
ꢕꢟ  
ꢕꢂꢎꢘ  
<ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
)
ꢕꢂꢎꢎ  
M
ꢕꢂ-<  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢎꢕꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜ-1  
2011-2012 Microchip Technology Inc.  
DS75018C-page 327  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS75018C-page 328  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS75018C-page 329  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS75018C-page 330  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2012 Microchip Technology Inc.  
DS75018C-page 331  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
!ꢁꢂꢃꢄꢅꢆꢇ"%ꢌꢑꢑꢙꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒ"ꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚ"ꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎ<  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢕꢕ  
ꢂꢁꢘꢕ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢎꢕ  
ꢂꢕꢁꢘ  
ꢂꢎꢛꢕ  
ꢂꢎꢖꢕ  
ꢁꢂ-ꢖꢘ  
ꢂꢁꢁꢕ  
ꢂꢕꢕ<  
ꢂꢕꢖꢕ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢘ  
M
ꢂ-ꢁꢕ  
ꢂꢎ<ꢘ  
ꢁꢂ-?ꢘ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕꢘꢕ  
ꢂꢕꢁ<  
M
ꢂ--ꢘ  
ꢂꢎꢛꢘ  
ꢁꢂꢖꢕꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢘ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜꢕ1  
DS75018C-page 332  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
2011-2012 Microchip Technology Inc.  
DS75018C-page 333  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
DS75018C-page 334  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
!ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ)ꢏꢅꢆꢇ*ꢉꢅꢋ+ꢇꢜꢘꢇꢃꢄꢅꢆꢇꢈꢅꢍ%ꢅ,ꢄꢇꢒ--ꢓꢇMꢇ././ꢕ(0ꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ)*ꢜꢂ"ꢛ  
1ꢌꢋ#ꢇꢕ(2ꢕꢇꢖꢖꢇ3ꢘꢑꢋꢅꢍꢋꢇꢃꢄꢑ,ꢋ#  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
2011-2012 Microchip Technology Inc.  
DS75018C-page 335  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
DS75018C-page 336  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
2011-2012 Microchip Technology Inc.  
DS75018C-page 337  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 338  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Where applicable, new sections were added to each  
peripheral chapter that provide information and links to  
APPENDIX A: REVISION HISTORY  
related resources, as well as helpful tips. For  
examples, see Section 18.1 “UART Helpful Tips”  
Revision A (July 2011)  
and Section 18.1 “UART Helpful Tips”.  
This is the initial released version of this document.  
The data sheet status was updated from Advance  
Information to Preliminary.  
Revision B (February 2012)  
In addition, all occurrences to the package known as  
TLA were updated to VTLA.  
This revision includes formatting changes and minor  
typographical updates throughout the data sheet text.  
All other major changes are referenced by their  
respective section in Table A-1.  
TABLE A-1:  
Section Name  
“16-Bit Microcontrollers and  
MAJOR SECTION UPDATES  
Update Description  
The previous content was reorganized and is now presented as the first page of  
Digital Signal Controllers with the data sheet.  
High-Speed PWM, ADC and  
Comparators”  
Relocated the Referenced Sources content, which was previously presented in  
Section 1.0 “Device Overview”.  
Section 2.0 “Guidelines for  
Getting Started with 16-Bit  
Digital Signal Controllers”  
Updated the Recommended Minimum Connection diagram (see Figure 2-1).  
Section 4.0 “Memory  
Organization”  
Updated the Program Memory Map (see Figure 4-1).  
Updated bits 10-8 in IPC27 of the Interrupt Controller Register Map for  
dsPIC33FJ06GS001 Devices (see Table 4-4).  
Renamed the CHOPCLK<6:0> bits in the CHOP register to: CHOP<6:0> in the  
High-Speed PWM Register Map (see Table 4-12).  
Removed RPINR11 from the Peripheral Pin Select Input Register Map for the  
dsPIC33FJ06GS001 Device (see Table 4-24).  
Added the REFOMD bit to PMD4 in the PMD Register Map for the  
dsPIC33FJ06GS001 device (see Table 4-34).  
Section 21.0 “Constant Current Added the Current Source Calibration bits (ISRCCAL<5:0>) to the Current  
Source” Source Control register (see Register 21-1).  
Section 22.0 “Special Features” Added the Constant Current Source Calibration Register (see Register 22-1).  
Section 25.0 “Electrical  
Characteristics”  
Updated the Absolute Maximum Ratings(1).  
Added Note 1 to the Operating MIPS vs. Voltage specification (see Table 25-1).  
Updated all DC Characteristics: I/O Pin Output Specifications (see Table 25-10).  
Updated the typical value for Parameters F20a and F20b in the Internal FRC  
Accuracy specification (see Table 25-19).  
Updated the minimum and maximum values for Parameter TA20, and the  
minimum value for Parameter TA11 in the Timer1 External Clock Timing  
Requirements (see Table 25-23).  
Updated the OC/PWM Module Timing Characteristics diagram (see Figure 25-8).  
Updated the minimum and maximum values for the Simple OC/PWM Mode  
Timing Requirements (see Table 25-27).  
Added Note 4 and Note 5 to the 10-Bit, High-Speed ADC Module Specifications  
(see Table 25-39).  
Section 26.0 “DC and AC  
Added new chapter.  
Device Characteristics Graphs”  
2011-2012 Microchip Technology Inc.  
DS75018C-page 339  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Revision C (August 2012)  
This revision includes minor typographical updates and  
content corrections. Major changes include new figures  
in Section 26.0 “DC and AC Device Characteristics  
Graphs”, updated values in Table 25-39 in Section 25.0  
“Electrical Characteristics” and updated package  
drawings in Section 27.0 “Packaging Information”.  
DS75018C-page 340  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
INDEX  
A
C
AC Characteristics ............................................................ 282  
Internal LPRC Accuracy............................................ 285  
Internal RC Accuracy................................................ 285  
Load Conditions........................................................ 282  
Temperature and Voltage Specifications.................. 282  
Alternate Interrupt Vector Table (AIVT) .............................. 87  
Arithmetic Logic Unit (ALU)................................................. 31  
Assembler  
C Compilers  
MPLAB C18.............................................................. 268  
Capacitor on Internal Voltage Regulator (VCAP)................. 18  
Clock Switching ................................................................ 134  
Enabling.................................................................... 134  
Sequence ................................................................. 134  
Code Examples  
Port Write/Read........................................................ 147  
PWRSAV Instruction Syntax .................................... 137  
Code Protection................................................................ 251  
Configuration Bits ............................................................. 251  
Description................................................................ 254  
Configuring Analog Port Pins............................................ 147  
Constant Current Source  
MPASM Assembler................................................... 268  
Auxiliary Clock Generation................................................ 125  
B
Bit-Reversed Addressing .................................................... 69  
Example...................................................................... 70  
Implementation ........................................................... 69  
Sequence Table (16-Entry)......................................... 70  
Block Diagrams  
Description................................................................ 249  
Features ................................................................... 249  
CPU  
16-Bit Timer1 Module................................................ 173  
Boost Converter Implementation ................................ 21  
Connections for On-Chip Voltage Regulator............. 256  
Constant Current Source .......................................... 249  
CPU Core.................................................................... 26  
Digital PFC.................................................................. 21  
DSP Engine ................................................................ 32  
dsPIC33FJ06GS001 Device ADC ............................ 226  
Barrel Shifter............................................................... 35  
Control Registers........................................................ 28  
Data Addressing Overview......................................... 25  
DSP Engine Overview................................................ 25  
MCU Special Features ............................................... 26  
Special Features....................................................... 251  
CPU Clocking System ...................................................... 124  
PLL Configuration..................................................... 125  
Selection................................................................... 124  
Sources .................................................................... 124  
Customer Change Notification Service............................. 346  
Customer Notification Service .......................................... 346  
Customer Support............................................................. 346  
dsPIC33FJ06GS001/101A/102A/202A  
and  
dsPIC33FJ09GS302........................................... 14  
dsPIC33FJ06GS101A Device ADC.......................... 227  
dsPIC33FJ06GS102A Device ADC.......................... 228  
dsPIC33FJ06GS202A Device ADC.......................... 229  
dsPIC33FJ09GS302 Device ADC ............................ 230  
High-Speed Analog Comparator............................... 243  
Hysteresis Control..................................................... 245  
I2C............................................................................. 212  
Input Capture ............................................................ 177  
Interleaved PFC.......................................................... 22  
MCLR Pin Connections............................................... 18  
Multiplexing of Remappable Output for RPn............. 150  
Oscillator System...................................................... 123  
Output Compare ....................................................... 179  
Partitioned Output Pair, Complementary  
D
DAC.................................................................................. 244  
Buffer Gain ............................................................... 244  
Output Range ........................................................... 245  
Data Accumulators and Adder/Subtracter .......................... 33  
Data Space Write Saturation...................................... 35  
Overflow and Saturation............................................. 33  
Round Logic ............................................................... 34  
Write Back .................................................................. 34  
Data Address Space........................................................... 39  
Alignment.................................................................... 39  
Memory Map for Devices with 1 Kbyte of RAM.......... 41  
Memory Map for Devices with 256 Bytes of RAM ...... 40  
Near Data Space........................................................ 39  
Software Stack ........................................................... 66  
Width .......................................................................... 39  
X and Y Data .............................................................. 42  
DC and AC Characteristics  
PWM Mode....................................................... 186  
Phase-Shifted Full-Bridge Converter .......................... 23  
PLL............................................................................ 125  
Recommended Minimum Connection......................... 18  
Remappable MUX Input for U1RX............................ 148  
Reset System.............................................................. 79  
Shared Port Structure ............................................... 146  
Simplified Conceptual High-Speed PWM ................. 185  
Single-Phase Synchronous Buck Converter............... 22  
SPI ............................................................................ 205  
Type B Timer2 .......................................................... 175  
UART ........................................................................ 219  
Watchdog Timer (WDT)............................................ 257  
Brown-out Reset (BOR)............................................ 251, 256  
Graphs and Tables................................................... 315  
DC Characteristics  
Doze Current (IDOZE)................................................ 277  
I/O Pin Input Specifications ...................................... 278  
I/O Pin Output Specifications.................................... 280  
Idle Current (IIDLE).................................................... 275  
Operating Current (IDD) ............................................ 274  
Operating MIPS vs. Voltage ..................................... 272  
Power-Down Current (IPD)........................................ 276  
Program Memory...................................................... 281  
Temperature and Voltage Specifications.................. 273  
2011-2012 Microchip Technology Inc.  
DS75018C-page 341  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
DC Specifications  
DAC Output (DACOUT Pin)......................................312  
Instruction Addressing Modes ............................................ 66  
File Register Instructions ............................................ 66  
Fundamental Modes Supported ................................. 67  
MAC Instructions ........................................................ 67  
MCU Instructions ........................................................ 66  
Move and Accumulator Instructions............................ 67  
Other Instructions ....................................................... 67  
Instruction Set  
Overview................................................................... 262  
Summary .................................................................. 259  
Instruction-Based Power-Saving Modes........................... 137  
Idle............................................................................ 138  
Sleep ........................................................................ 137  
Interfacing Program and Data Memory Spaces.................. 71  
Internal RC Oscillator  
Use with WDT........................................................... 257  
Internet Address ............................................................... 346  
Interrupt Control and Status Registers ............................... 90  
IECx............................................................................ 90  
IFSx ............................................................................ 90  
INTCON1.................................................................... 90  
INTCON2.................................................................... 90  
INTTREG.................................................................... 90  
IPCx............................................................................ 90  
Interrupt Setup Procedures............................................... 122  
Initialization............................................................... 122  
Interrupt Disable ....................................................... 122  
Interrupt Service Routine.......................................... 122  
Trap Service Routine................................................ 122  
Interrupt Vector Table (IVT)................................................ 87  
Interrupts Coincident with Power Save Instructions ......... 138  
Development Support .......................................................267  
Doze Mode........................................................................138  
DSC Guidelines...................................................................17  
Basic Connection Requirements.................................17  
Decoupling Capacitors................................................17  
DSP Engine.........................................................................31  
Multiplier......................................................................33  
E
Electrical Characteristics...................................................271  
Absolute Maximum Ratings ......................................271  
Equations  
Device Operating Frequency ....................................124  
FOSC Calculation.......................................................125  
Maximum Page Erase Time........................................76  
Minimum Page Erase Time.........................................76  
XT with PLL Mode Example......................................125  
Errata ..................................................................................11  
F
Fail-Safe Clock Monitor (FSCM) .......................................135  
Flash Program Memory.......................................................75  
Control Registers ........................................................76  
Operations ..................................................................76  
Table Instructions........................................................75  
Flexible Configuration .......................................................251  
H
High-Speed 10-Bit ADC ....................................................225  
Description................................................................225  
Features....................................................................225  
Functionality..............................................................225  
High-Speed Analog Comparator.......................................243  
Applications...............................................................244  
Control Registers ......................................................245  
DAC ..........................................................................244  
Digital Logic ..............................................................244  
Hysteresis .................................................................245  
Input Range ..............................................................244  
Interaction with I/O Buffers........................................245  
High-Speed PWM .............................................................183  
Control Registers ......................................................186  
J
JTAG Boundary Scan Interface........................................ 251  
JTAG Interface.................................................................. 258  
L
LEBCONx (PWMx Leading-Edge Blanking Control) ........ 202  
M
Master Clear (MCLR).......................................................... 18  
Memory Organization ......................................................... 37  
Microchip Internet Web Site.............................................. 346  
Modulo Addressing............................................................. 68  
Applicability................................................................. 69  
Operation Example..................................................... 68  
Start and End Address ............................................... 68  
W Address Register Selection.................................... 68  
MPLAB ASM30 Assembler, Linker, Librarian................... 268  
MPLAB Integrated Development  
I
I/O Ports............................................................................145  
Helpful Tips...............................................................152  
Parallel I/O (PIO).......................................................145  
Resources.................................................................152  
Write/Read Timing ....................................................147  
I2C  
Operating Modes ......................................................211  
Registers...................................................................213  
In-Circuit Debugger...........................................................258  
In-Circuit Emulation...........................................................251  
In-Circuit Serial Programming (ICSP) .......................251, 258  
Analog, Digital Pins Configuration ..............................20  
Pins.............................................................................19  
Input Capture ....................................................................177  
Input Change Notification..................................................147  
Environment Software .............................................. 267  
MPLAB PM3 Device Programmer .................................... 270  
MPLAB REAL ICE In-Circuit Emulator System ................ 269  
MPLINK Object Linker/MPLIB Object Librarian................ 268  
O
Open-Drain Configuration................................................. 147  
Oscillator  
External Pins .............................................................. 19  
Value Conditions on Start-up...................................... 20  
Oscillator Configuration .................................................... 123  
Output Compare ............................................................... 179  
DS75018C-page 342  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
IFS0 (Interrupt Flag Status 0)..................................... 95  
P
IFS1 (Interrupt Flag Status 1)..................................... 96  
IFS3 (Interrupt Flag Status 3)..................................... 97  
IFS4 (Interrupt Flag Status 4)..................................... 97  
IFS5 (Interrupt Flag Status 5)..................................... 98  
IFS6 (Interrupt Flag Status 6)..................................... 99  
IFS7 (Interrupt Flag Status 7)................................... 100  
INTCON1 (Interrupt Control 1) ................................... 92  
INTCON2 (Interrupt Control 2) ................................... 94  
INTTREG (Interrupt Control and Status) .................. 121  
IOCONx (PWMx I/O Control).................................... 197  
IPC0 (Interrupt Priority Control 0)............................. 107  
IPC1 (Interrupt Priority Control 1)............................. 108  
IPC14 (Interrupt Priority Control 14)......................... 113  
IPC16 (Interrupt Priority Control 16)......................... 113  
IPC2 (Interrupt Priority Control 2)............................. 109  
IPC20 (Interrupt Priority Control 20)......................... 114  
IPC23 (Interrupt Priority Control 23)......................... 115  
IPC24 (Interrupt Priority Control 24)......................... 116  
IPC25 (Interrupt Priority Control 25)......................... 117  
IPC27 (Interrupt Priority Control 27)......................... 118  
IPC28 (Interrupt Priority Control 28)......................... 119  
IPC29 (Interrupt Priority Control 29)......................... 120  
IPC3 (Interrupt Priority Control 3)............................. 110  
IPC4 (Interrupt Priority Control 4)............................. 111  
IPC5 (Interrupt Priority Control 5)............................. 112  
IPC7 (Interrupt Priority Control 7)............................. 112  
ISRCCON (Constant Current Source Control) ......... 250  
LFSR (Linear Feedback Shift).................................. 133  
MDC (PWM Master Duty Cycle)............................... 189  
NVMCON (Flash Memory Control)............................. 77  
NVMKEY (Nonvolatile Memory Key).......................... 78  
OC1CON (Output Compare 1 Control)..................... 181  
OSCCON (Oscillator Control)................................... 126  
OSCTUN (Oscillator Tuning).................................... 130  
PDCx (PWMx Generator Duty Cycle)....................... 192  
PHASEx (PWMx Primary Phase Shift)..................... 193  
PLLFBD (PLL Feedback Divisor) ............................. 129  
PMD1 (Peripheral Module Disable Control 1) .......... 139  
PMD2 (Peripheral Module Disable Control 2) .......... 140  
PMD3 (Peripheral Module Disable Control 3) .......... 141  
PMD4 (Peripheral Module Disable Control 4) .......... 141  
PMD6 (Peripheral Module Disable Control 6) .......... 142  
PMD7 (Peripheral Module Disable Control 7) .......... 143  
PMD8 (Peripheral Module Disable Control 8) .......... 144  
PTCON (PWM Time Base Control).......................... 187  
PTCON2 (PWM Clock Divider Select 2)................... 188  
PTPER (PWM Master Time Base) ........................... 188  
PWMCAPx (Primary PWMx Time Base Capture) .... 203  
PWMCONx (PWMx Control) .................................... 190  
RCON (Reset Control)................................................ 80  
REFOCON (Reference Oscillator Control)............... 132  
RPINR0 (Peripheral Pin Select Input 0) ................... 153  
RPINR1 (Peripheral Pin Select Input 1) ................... 154  
RPINR11 (Peripheral Pin Select Input 11) ............... 158  
RPINR18 (Peripheral Pin Select Input 18) ............... 159  
RPINR2 (Peripheral Pin Select Input 2) ................... 155  
RPINR20 (Peripheral Pin Select Input 20) ............... 160  
RPINR21 (Peripheral Pin Select Input 21) ............... 161  
RPINR29 (Peripheral Pin Select Input 29) ............... 162  
RPINR3 (Peripheral Pin Select Input 3) ................... 156  
RPINR30 (Peripheral Pin Select Input 30) ............... 163  
RPINR31 (Peripheral Pin Select Input 31) ............... 164  
RPINR32 (Peripheral Pin Select Input 32) ............... 165  
RPINR33 (Peripheral Pin Select Input 33) ............... 166  
RPINR34 (Peripheral Pin Select Input 34) ............... 167  
Packaging ......................................................................... 319  
Details....................................................................... 321  
Marking ..................................................................... 319  
Peripheral Module Disable (PMD) .................................... 138  
Peripheral Pin Select (PPS).............................................. 148  
Registers................................................................... 153  
Pinout I/O Descriptions ....................................................... 15  
Power-on Reset (POR)....................................................... 84  
Power-Saving Features .................................................... 137  
Clock Frequency and Switching................................ 137  
Program Address Space..................................................... 37  
Construction................................................................ 71  
Data Access from Program Memory Using  
Program Space Visibility..................................... 74  
Data Access from Program Memory Using  
Table Instructions ............................................... 73  
Data Access from, Address Generation...................... 72  
Memory Maps ............................................................. 37  
Table Read Instructions  
TBLRDH ............................................................. 73  
TBLRDL.............................................................. 73  
Visibility Operation ...................................................... 74  
Program Memory  
Interrupt Vector ........................................................... 38  
Organization................................................................ 38  
Reset Vector ............................................................... 38  
Pseudo-Random Generator.............................................. 135  
R
Reader Response............................................................. 347  
Reference Clock Generation............................................. 125  
Register Maps  
Configuration Flash Bytes  
(dsPIC33FJ06GS001/101A/X02A) ................... 252  
Configuration Flash Bytes  
(dsPIC33FJ09GS302) ...................................... 252  
Registers  
ACLKCON (Auxiliary Clock Divisor Control)............. 131  
ADCON (ADC Control) ............................................. 231  
ADCPC0 (ADC Convert Pair Control 0).................... 236  
ADCPC1 (ADC Convert Pair Control 1).................... 238  
ADCPC3 (ADC Convert Pair Control 3).................... 240  
ADPCFG (ADC Port Configuration).......................... 235  
ADSTAT (ADC Status).............................................. 233  
ALTDTRx (PWMx Alternate Dead-Time).................. 195  
AUXCONx (PWM Auxiliary Control) ......................... 204  
CHOP (PWM Chop Clock Generator)....................... 203  
CLKDIV (Clock Divisor)............................................. 128  
CMPCONx (Comparator Control x) .......................... 246  
CMPDACx (Comparator DAC Control x) .................. 248  
Constant Current Source Calibration........................ 253  
CORCON (Core Control) ...................................... 30, 91  
DTRx (PWMx Dead-Time)........................................ 195  
FCLCONx (PWMx Fault Current-Limit Control)........ 199  
I2C1CON (I2C1 Control)........................................... 213  
I2C1MSK (I2C1 Slave Mode Address Mask)............ 217  
I2C1STAT (I2C1 Status)........................................... 215  
IC1CON (Input Capture 1 Control)............................ 178  
IEC0 (Interrupt Enable Control 0) ............................. 101  
IEC1 (Interrupt Enable Control 1) ............................. 102  
IEC3 (Interrupt Enable Control 3) ............................. 103  
IEC4 (Interrupt Enable Control 4) ............................. 103  
IEC5 (Interrupt Enable Control 5) ............................. 104  
IEC6 (Interrupt Enable Control 6) ............................. 105  
IEC7 (Interrupt Enable Control 7) ............................. 106  
2011-2012 Microchip Technology Inc.  
DS75018C-page 343  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
RPINR7 (Peripheral Pin Select Input 7)....................157  
RPOR0 (Peripheral Pin Select Output 0)..................168  
RPOR1 (Peripheral Pin Select Output 1)..................168  
RPOR16 (Peripheral Pin Select Output 16)..............172  
RPOR17 (Peripheral Pin Select Output 17)..............172  
RPOR2 (Peripheral Pin Select Output 2)..................169  
RPOR3 (Peripheral Pin Select Output 3)..................169  
RPOR4 (Peripheral Pin Select Output 4)..................170  
RPOR5 (Peripheral Pin Select Output 5)..................170  
RPOR6 (Peripheral Pin Select Output 6)..................171  
RPOR7 (Peripheral Pin Select Output 7)..................171  
SDCx (PWMx Secondary Duty Cycle)......................192  
SEVTCMP (PWM Special Event Compare)..............189  
SPHASEx (PWMx Secondary Phase Shift) ..............194  
SPIxCON1 (SPIx Control 1)......................................208  
SPIxCON2 (SPIx Control 2)......................................210  
SPIxSTAT (SPIx Status and Control) .......................207  
SR (CPU STATUS).....................................................91  
SR (CPU Status).........................................................28  
STRIGx (PWMx Secondary Trigger  
High-Speed PWM Generator 2 for  
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,  
dsPIC33FJ09GS302...............................................53  
High-Speed PWM Generator 4 for dsPIC33FJ06GS001,  
dsPIC33FJ06GS101A, dsPIC33FJ09GS302 ........54  
I2C1 .................................................................................55  
Input Capture for dsPIC33FJ06GS202A,  
dsPIC33FJ09GS302...............................................51  
Interrupt Controller for dsPIC33FJ06GS001 ..................46  
Interrupt Controller for dsPIC33FJ06GS002A................48  
Interrupt Controller for dsPIC33FJ06GS101A................47  
Interrupt Controller for dsPIC33FJ06GS202A................49  
Interrupt Controller for dsPIC33FJ09GS302 ..................50  
NVM.................................................................................63  
Output Compare for dsPIC33FJ06GS101A,  
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,  
dsPIC33FJ09GS302...............................................51  
Peripheral Pin Select Input for dsPIC33FJ06GS001 .....59  
Peripheral Pin Select Input for dsPIC33FJ06GS101A,  
dsPIC33FJ06GS102A ............................................59  
Peripheral Pin Select Input for dsPIC33FJ06GS202A,  
dsPIC33FJ09GS302...............................................60  
Peripheral Pin Select Output for dsPIC33FJ06GS001,  
dsPIC33FJ06GS101A ............................................60  
Peripheral Pin Select Output for dsPIC33FJ06GS102A,  
dsPIC33FJ06GS202A, dsPIC33FJ09GS302 ........61  
PMD for dsPIC33FJ06GS001..................................... 64  
PMD for dsPIC33FJ06GS101A .................................. 64  
PMD for dsPIC33FJ06GS102A .................................. 64  
PMD for dsPIC33FJ06GS202A .................................. 65  
PMD for dsPIC33FJ09GS302..................................... 65  
PORTA ....................................................................... 62  
PORTB for dsPIC33FJ06GS001,  
Compare Value)................................................201  
T1CON (Timer1 Control)...........................................174  
T2CON (Timer2 Control)...........................................176  
TRGCONx (PWMx Trigger Control)..........................196  
TRIGx (PWMx Primary Trigger Compare Value)......201  
U1MODE (UART1 Mode) .........................................221  
U1STA (UART1 Status and Control) ........................223  
Reset  
Brown-out Reset (BOR)........................................79, 84  
Configuration Mismatch Reset (CM)...........................79  
Illegal Condition Device Reset (IOPUWR)..................79  
Illegal Opcode.....................................................79  
Security...............................................................79  
Uninitialized W Register......................................79  
Illegal Device Reset ....................................................85  
Illegal Opcode.............................................................85  
Master Clear Reset (MCLR) .......................................79  
Power-on Reset (POR)...............................................79  
Power-up Timer Reset (PWRT) ..................................84  
Software RESET Instruction .......................................79  
System Reset  
dsPIC33FJ06GS101A ............................................62  
PORTB for dsPIC33FJ06GS102A,  
dsPIC33FJ06GS202A, dsPIC33FJ09GS302 ........62  
SPI1 for dsPIC33FJ06GS101A, dsPIC33FJ06GS102A,  
dsPIC33FJ09GS202A, dsPIC33FJ09GS302 ........55  
System Control................................................................63  
Timers..............................................................................51  
UART1 for dsPIC33FJ06GS101A,  
Cold Reset ..........................................................82  
Warm Reset........................................................82  
Trap Conflict................................................................85  
Trap Conflict Reset (TRAPR)......................................79  
Uninitialized W Register..............................................85  
Watchdog Timer Out Reset (WDTO)..........................79  
Reset Sequence..................................................................87  
Revision History ................................................................339  
dsPIC33FJ06GS102A, dsPIC33FJ06GS202A,  
dsPIC33FJ09GS302 ........................................... 55  
Software RESET Instruction (SWR) ................................... 85  
Software Simulator (MPLAB SIM) .................................... 269  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame ..................................................... 66  
Symbols Used in Opcode Descriptions ............................ 260  
T
S
Thermal Packaging Characteristics.................................. 272  
Timer1............................................................................... 173  
Timer2............................................................................... 175  
Timing Diagrams  
Serial Peripheral Interface (SPI) .......................................205  
SFR Maps  
Change Notification for  
dsPIC33FJ06GS001, dsPIC33FJ06GS101A......45  
Change Notification for dsPIC33FJ06GS102A,  
dsPIC33FJ06GS202A, dsPIC33FJ09GS302......45  
Constant Current Source ............................................56  
CPU Core....................................................................43  
High-Speed 10-Bit ADC for dsPIC33FJ06GS001,  
dsPIC33FJ06GS101A.........................................56  
High-Speed 10-Bit ADC for dsPIC33FJ06GS102A,  
dsPIC33FJ06GS202A.........................................57  
High-Speed 10-Bit ADC for dsPIC33FJ09GS302.......58  
High-Speed PWM .......................................................52  
High-Speed PWM Generator 1...................................52  
Analog-to-Digital Conversion per Input..................... 310  
Brown-out Situations................................................... 84  
External Clock........................................................... 283  
High-Speed PWM..................................................... 292  
High-Speed PWM Fault............................................ 292  
I/O............................................................................. 286  
I2C1 Bus Data (Master Mode).................................. 305  
I2C1 Bus Data (Slave Mode).................................... 307  
I2C1 Bus Start/Stop Bits (Master Mode)................... 305  
I2C1 Bus Start/Stop Bits (Slave Mode)..................... 307  
Input Capture (CAP1) ............................................... 290  
OC/PWM................................................................... 291  
DS75018C-page 344  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
Output Compare (OC1)............................................. 290  
Reset, Watchdog Timer, Oscillator Start-up  
Reset, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer and Brown-out  
Timer and Power-up Timer............................... 287  
SPIx Master Mode (Full-Duplex, CKE = 0,  
CKP = x, SMP = 1) ........................................... 296  
SPIx Master Mode (Full-Duplex, CKE = 1,  
CKP = x, SMP = 1) ........................................... 295  
SPIx Master Mode (Half-Duplex, Transmit Only,  
CKE = 0) ........................................................... 293  
SPIx Master Mode (Half-Duplex, Transmit Only,  
CKE = 1) ........................................................... 294  
SPIx Slave Mode (Full-Duplex, CKE = 0,  
Reset Requirements......................................... 287  
Simple OC/PWM Mode Requirements..................... 291  
SPIx Master Mode (Full-Duplex, CKE = 0,  
CKP = x, SMP = 1) Requirements.................... 296  
SPIx Master Mode (Full-Duplex, CKE = 1,  
CKP = x, SMP = 1) Requirements.................... 295  
SPIx Master Mode (Half-Duplex, Transmit Only)  
Requirements ................................................... 294  
SPIx Maximum Data Clock Rate Summary.............. 293  
SPIx Slave Mode (Full-Duplex, CKE = 0,  
CKP = 0, SMP = 0) ........................................... 303  
SPIx Slave Mode (Full-Duplex, CKE = 0,  
CKP = 0, SMP = 0) Requirements.................... 304  
SPIx Slave Mode (Full-Duplex, CKE = 0,  
CKP = 1, SMP = 0) ........................................... 301  
SPIx Slave Mode (Full-Duplex, CKE = 1,  
CKP = 1, SMP = 0) Requirements.................... 302  
SPIx Slave Mode (Full-Duplex, CKE = 1,  
CKP = 0, SMP = 0) ........................................... 297  
SPIx Slave Mode (Full-Duplex, CKE = 1,  
CKP = 0, SMP = 0) Requirements.................... 298  
SPIx Slave Mode (Full-Duplex, CKE = 1,  
CKP = 1, SMP = 0) ........................................... 299  
System Reset.............................................................. 83  
Timer1, Timer2 External Clock ................................. 288  
Timing Specifications  
CKP = 1, SMP = 0) Requirements.................... 300  
Timer1 External Clock Requirements....................... 288  
Timer2 External Clock Requirements....................... 289  
U
10-Bit High-Speed ADC............................................ 309  
10-Bit High-Speed ADC Requirements..................... 310  
Auxiliary PLL Clock................................................... 284  
Capacitive Loading Requirements on  
Universal Asynchronous Receiver  
Transmitter (UART) .................................................. 219  
Helpful Tips............................................................... 220  
Resources ................................................................ 220  
Using the RCON Status Bits............................................... 86  
Output Pins....................................................... 282  
Constant Current Source .......................................... 313  
DAC .......................................................................... 311  
DAC Gain Stage to Comparator ............................... 312  
External Clock Requirements ................................... 283  
High-Speed ADC Comparator .................................. 311  
High-Speed PWM Requirements.............................. 292  
I/O Requirements...................................................... 286  
I2C1 Bus Data Requirements (Master Mode)........... 306  
I2C1 Bus Data Requirements (Slave Mode)............. 308  
Input Capture Requirements..................................... 290  
Output Compare Requirements................................ 290  
PLL Clock.................................................................. 284  
V
Voltage Regulator (On-Chip) ............................................ 256  
W
Watchdog Timer (WDT)............................................ 251, 257  
Watchdog Timer Time-out Reset (WDTO) ......................... 85  
WWW Address ................................................................. 346  
WWW, On-Line Support ..................................................... 11  
2011-2012 Microchip Technology Inc.  
DS75018C-page 345  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 346  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQs), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2011-2012 Microchip Technology Inc.  
DS75018C-page 347  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
dsPIC33FJ06GS001/101A/102A/202A and  
dsPIC33FJ09GS302  
DS75018C  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS75018C-page 348  
2011-2012 Microchip Technology Inc.  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
dsPIC 33 FJ 06 GS0 01 T - E / SP - XXX  
a) dsPIC33FJ06GS001-I/SS:  
SMPS dsPIC33, 6-Kbyte program  
memory, 20-pin, Industrial  
temp.,SSOP package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
=
=
16-bit Digital Signal Controller  
Flash program memory, 3.3V  
Flash Memory Family: FJ  
Product Group:  
GS0  
=
=
=
=
Switch Mode Power Supply (SMPS) family  
Switch Mode Power Supply (SMPS) family  
Switch Mode Power Supply (SMPS) family  
Switch Mode Power Supply (SMPS) family  
GS1  
GS2  
GS3  
Pin Count:  
01  
02  
=
=
18-pin, 20-pin  
28-pin, 36-pin  
Temperature Range:  
Package:  
I
=
=
-40C to+85C (Industrial)  
-40C to+125C (Extended)  
E
P
=
=
=
=
=
=
Plastic Dual In-line – 300 mil (PDIP)  
SO  
SS  
SP  
MM  
TL  
Plastic Small Outline – Wide – 7.50 mm body (SOIC)  
Plastic Shrink Small Outline – 5.30 mm body (SSOP)  
Skinny Plastic Dual In-Line – 300 mil body (SPDIP)  
Plastic Quad Flat, No Lead Package – 6x6x0.9 mm body (QFN-S)  
Very Thin Leadless Array – 5x5x0.9 mm body (VTLA)  
2011-2012 Microchip Technology Inc.  
DS75018C-page 349  
dsPIC33FJ06GS001/101A/102A/202A and dsPIC33FJ09GS302  
NOTES:  
DS75018C-page 350  
2011-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
PIC32 logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62076-494-7  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2011-2012 Microchip Technology Inc.  
DS75018C-page 351  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS75018C-page 352  
2011-2012 Microchip Technology Inc.  

相关型号:

dsPIC33FJ128GP202

16-bit Digital Signal Controllers (up to 128 KB Flash and 16K SRAM) with Advanced Analog
MICROCHIP

DSPIC33FJ128GP202T-I/MM

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQCC28, 6 X 6 MM, 0.90 MM HEIGHT, PLASTIC, QFN-28
MICROCHIP

dsPIC33FJ128GP204

16-bit Digital Signal Controllers (up to 128 KB Flash and 16K SRAM) with Advanced Analog
MICROCHIP

DSPIC33FJ128GP204-I/ML

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQCC44, 8 X 8 MM, LEAD FREE, PLASTIC, QFN-44
MICROCHIP

DSPIC33FJ128GP204T-E/ML

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQCC44, 8 X 8 MM, LEAD FREE, PLASTIC, QFN-44
MICROCHIP

DSPIC33FJ128GP206

Flash Programming Specification
MICROCHIP

DSPIC33FJ128GP206A

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC33FJ128GP206T-I/PT

16-BIT, FLASH, 32 MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, MS-026, TQFP-64
MICROCHIP

DSPIC33FJ128GP306

Flash Programming Specification
MICROCHIP

DSPIC33FJ128GP306A

High-Performance, 16-bit Digital Signal Controllers
MICROCHIP

DSPIC33FJ128GP306AI/MR

16-BIT, FLASH, 40 MHz, MICROCONTROLLER, PQCC64, 9 X 9 MM, 0.90 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, PLASTIC, QFN-64
MICROCHIP

DSPIC33FJ128GP306AT-IPT

16-bit Digital Signal Controllers (up to 256 KB Flash and 30 KB SRAM) with Advanced Analog
MICROCHIP