JS28F00AP33BFA [MICRON]

Micron Parallel NOR Flash Embedded Memory (P33-65nm);
JS28F00AP33BFA
型号: JS28F00AP33BFA
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

Micron Parallel NOR Flash Embedded Memory (P33-65nm)

光电二极管 内存集成电路 闪存
文件: 总92页 (文件大小:987K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
512Mb, 1Gb, 2Gb: P33-65nm  
Features  
Micron Parallel NOR Flash Embedded  
Memory (P33-65nm)  
JS28F512P33BFD, JS28F512P33TFA, JS28F512P33EFA  
PC28F512P33BFD, PC28F512P33TFA, PC28F512P33EFA  
JS28F00AP33BFA, JS28F00AP33TFA, JS28F00AP33EFA  
PC28F00AP33BFA, PC28F00AP33TFA, PC28F00AP33EFA,  
PC28F00BP33EFA  
• Security  
Features  
• High performance  
– One-time programmable register: 64 OTP bits,  
programmed with unique information from Mi-  
cron; 2112 OTP bits available for customer pro-  
gramming  
• Easy BGA package features  
– 95ns initial access for 512Mb, 1Gb Easy BGA  
– 100ns initial access for 2Gb Easy BGA  
– 25ns 16-word asychronous page read mode  
– 52 MHz (Easy BGA) with zero WAIT states and  
17ns clock-to-data output synchronous burst  
read mode  
– 4-, 8-, 16-, and continuous word options for burst  
mode  
• TSOP package features  
– Absolute write protection: VPP = VSS  
– Power-transition erase/program lockout  
– Individual zero-latency block locking  
– Individual block lock-down  
– Password access  
• Software  
25μs (TYP) program suspend  
25μs (TYP) erase suspend  
– 105ns initial access for 512Mb, 1Gb TSOP  
• Both Easy BGA and TSOP package features  
– Buffered enhanced factory programming (BEFP)  
at 2 MB/s (TYP) using a 512-word buffer  
– 3.0V buffered programming at 1.46 MB/s (TYP)  
using a 512-word buffer  
– Flash Data Integrator optimized  
– Basic command set and extended function Inter-  
face (EFI) command set compatible  
– Common flash interface  
• Density and Packaging  
– 56-lead TSOP package (512Mb, 1Gb)  
– 64-ball Easy BGA package (512Mb, 1Gb, 2Gb)  
– 16-bit wide data bus  
• Quality and reliabilty  
– JESD47 compliant  
• Architecture  
– MLC: highest density at lowest cost  
– Symmetrically blocked architecture (512Mb, 1Gb,  
2Gb)  
– Asymmetrically blocked architecture (512Mb,  
1Gb); four 32KB parameter blocks: top or bottom  
configuration  
– Operating temperature: –40°C to +85°C  
– Minimum 100,000 ERASE cycles per block  
– 65nm process technology  
– 128KB main blocks  
– Blank check to verify an erased block  
• Voltage and power  
– VCC (core) voltage: 2.3–3.6V  
– VCCQ (I/O) voltage: 2.3–3.6V  
– Standy current: 70µA (TYP) for 512Mb; 75µA  
(TYP) for 1Gb  
– 52 MHz continuous synchronous read current:  
21mA (TYP), 24mA (MAX)  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
1
© 2013 Micron Technology, Inc. All rights reserved.  
Products and specifications discussed herein are subject to change by Micron without notice.  
512Mb, 1Gb, 2Gb: P33-65nm  
Features  
Discrete and MCP Part Numbering Information  
Devices are shipped from the factory with memory content bits erased to 1. For available options, such as pack-  
ages or for further information, contact your Micron sales representative. Part numbers can be verified at www.mi-  
cron.com. Feature and specification comparison by device type is available at www.micron.com/products. Con-  
tact the factory for devices not found.  
Note: Not all part numbers listed here are available for ordering.  
Table 1: Discrete Part Number Information  
Part Number Category  
Category Details  
Package  
JS = 56-lead TSOP, lead free  
PC = 64-ball Easy BGA, lead-free  
28F = Micron Flash memory  
Product Line  
Density  
512 = 512Mb  
00A = 1Gb  
00B = 2Gb  
Product Family  
P33 (VCC = 2.3–3.6V; VCCQ = 2.3–3.6V)  
Parameter Location  
B/T = Bottom/Top parameter  
E = Symmetrical Blocks  
Lithography  
Features  
F = 65nm  
*
1. The last digit is assigned randomly to cover packaging media, features, or other specific configuration infor-  
mation. Sample part number: JS28F512P33EF*  
Note:  
Table 2: Standard Part Numbers  
Density  
Configuration  
Medium  
Tray  
JS  
PC  
512Mb  
Bottom boot  
JS28F512P33BFD  
PC28F512P33BFD  
Tape & Reel  
Tray  
Top boot  
Uniform  
JS28F512P33TFA  
PC28F512P33TFA  
Tape & Reel  
Tray  
JS28F512P33EFA  
PC28F512P33EFA  
Tape & Reel  
Tray  
1Gb  
Bottom boot  
Top boot  
Uniform  
JS28F00AP33BFA  
PC28F00AP33BFA  
Tape & Reel  
Tray  
JS28F00AP33TFA  
PC28F00AP33TFA  
Tape & Reel  
Tray  
JS28F00AP33EFA  
PC28F00AP33EFA  
Tape & Reel  
Tray  
2Gb  
Uniform  
PC28F00BP33EFA  
Tape & Reel  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
2
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Features  
Contents  
General Description ......................................................................................................................................... 7  
Virtual Chip Enable Description ........................................................................................................................ 8  
Memory Map ................................................................................................................................................... 9  
Package Dimensions ....................................................................................................................................... 11  
Pinouts and Ballouts ....................................................................................................................................... 13  
Signal Descriptions ......................................................................................................................................... 15  
Bus Operations ............................................................................................................................................... 17  
Read .......................................................................................................................................................... 17  
Write .......................................................................................................................................................... 17  
Output Disable ........................................................................................................................................... 17  
Standby ..................................................................................................................................................... 17  
Reset .......................................................................................................................................................... 18  
Device Command Codes ................................................................................................................................. 19  
Device Command Bus Cycles .......................................................................................................................... 22  
Read Operations ............................................................................................................................................. 24  
Asynchronous Single Word Read ..................................................................................................................... 24  
Asynchronous Page Mode Read (Easy BGA Only) ............................................................................................. 24  
Synchronous Burst Mode Read (Easy BGA Only) .............................................................................................. 25  
Read CFI ........................................................................................................................................................ 25  
Read Device ID ............................................................................................................................................... 25  
Device ID Codes ............................................................................................................................................. 26  
Program Operations ....................................................................................................................................... 27  
Word Programming (40h) ........................................................................................................................... 27  
Buffered Programming (E8h, D0h) .............................................................................................................. 27  
Buffered Enhanced Factory Programming (80h, D0h) ................................................................................... 28  
Program Suspend ....................................................................................................................................... 30  
Program Resume ........................................................................................................................................ 31  
Program Protection .................................................................................................................................... 31  
Erase Operations ............................................................................................................................................ 32  
BLOCK ERASE Command ........................................................................................................................... 32  
BLANK CHECK Command .......................................................................................................................... 32  
ERASE SUSPEND Command ....................................................................................................................... 33  
ERASE RESUME Command ........................................................................................................................ 33  
Erase Protection ......................................................................................................................................... 33  
Security Operations ........................................................................................................................................ 34  
Block Locking ............................................................................................................................................. 34  
BLOCK LOCK Command ............................................................................................................................ 34  
BLOCK UNLOCK Command ....................................................................................................................... 34  
BLOCK LOCK DOWN Command ................................................................................................................. 34  
Block Lock Status ....................................................................................................................................... 34  
Block Locking During Suspend ................................................................................................................... 35  
Selectable OTP Blocks ................................................................................................................................. 36  
Password Access ......................................................................................................................................... 36  
Status Register ................................................................................................................................................ 37  
Read Status Register ................................................................................................................................... 37  
Clear Status Register ................................................................................................................................... 38  
Configuration Register .................................................................................................................................... 39  
Read Configuration Register ....................................................................................................................... 39  
Read Mode ................................................................................................................................................. 39  
Latency Count ............................................................................................................................................ 40  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
3
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Features  
End of Wordline Considerations .................................................................................................................. 41  
WAIT Signal Polarity and Functionality ........................................................................................................ 42  
WAIT Delay ................................................................................................................................................ 43  
Burst Sequence .......................................................................................................................................... 43  
Clock Edge ................................................................................................................................................. 44  
Burst Wrap ................................................................................................................................................. 44  
Burst Length .............................................................................................................................................. 44  
One-Time Programmable Registers ................................................................................................................. 45  
Read OTP Registers ..................................................................................................................................... 45  
Program OTP Registers ............................................................................................................................... 46  
Lock OTP Registers ..................................................................................................................................... 46  
Common Flash Interface ................................................................................................................................ 48  
READ CFI Structure Output ........................................................................................................................ 48  
Flowcharts ..................................................................................................................................................... 62  
Power and Reset Specifications ....................................................................................................................... 71  
Power Supply Decoupling ........................................................................................................................... 72  
Maximum Ratings and Operating Conditions .................................................................................................. 73  
DC Electrical Specifications ............................................................................................................................ 74  
AC Test Conditions and Capacitance ............................................................................................................... 76  
AC Read Specifications ................................................................................................................................... 78  
AC Write Specifications ................................................................................................................................... 85  
Program and Erase Characteristics .................................................................................................................. 91  
Revision History ............................................................................................................................................. 92  
Rev. C – 12/13 ............................................................................................................................................. 92  
Rev. B – 11/13 ............................................................................................................................................. 92  
Rev. A – 8/13 ............................................................................................................................................... 92  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
4
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Features  
List of Figures  
Figure 1: Easy BGA Block Diagram ................................................................................................................... 8  
Figure 2: Memory Map – 512Mb and 1Gb ......................................................................................................... 9  
Figure 3: Memory Map – 2Gb ......................................................................................................................... 10  
Figure 4: 56-Pin TSOP – 14mm x 20mm .......................................................................................................... 11  
Figure 5: 64-Ball Easy BGA – 8mm x 10mm x 1.2mm ....................................................................................... 12  
Figure 6: 56-Lead TSOP Pinout – 512Mb and 1Gb ........................................................................................... 13  
Figure 7: 64-Ball Easy BGA (Top View – Balls Down) – 512Mb, 1Gb, and 2Gb .................................................... 14  
Figure 8: Example VPP Supply Connections .................................................................................................... 31  
Figure 9: Block Locking State Diagram ........................................................................................................... 35  
Figure 10: First Access Latency Count ............................................................................................................ 40  
Figure 11: Example Latency Count Setting Using Code 3 ................................................................................. 41  
Figure 12: End of Wordline Timing Diagram ................................................................................................... 41  
Figure 13: OTP Register Map .......................................................................................................................... 46  
Figure 14: Word Program Procedure ............................................................................................................... 62  
Figure 15: Buffer Program Procedure .............................................................................................................. 63  
Figure 16: Buffered Enhanced Factory Programming (BEFP) Procedure ........................................................... 64  
Figure 17: Block Erase Procedure ................................................................................................................... 65  
Figure 18: Program Suspend/Resume Procedure ............................................................................................ 66  
Figure 19: Erase Suspend/Resume Procedure ................................................................................................. 67  
Figure 20: Block Lock Operations Procedure ................................................................................................... 68  
Figure 21: OTP Register Programming Procedure ............................................................................................ 69  
Figure 22: Status Register Procedure .............................................................................................................. 70  
Figure 23: Reset Operation Waveforms ........................................................................................................... 72  
Figure 24: AC Input/Output Reference Timing ................................................................................................ 76  
Figure 25: Transient Equivalent Load Circuit .................................................................................................. 76  
Figure 26: Clock Input AC Waveform .............................................................................................................. 76  
Figure 27: Asynchronous Single-Word Read (ADV# LOW) ................................................................................ 80  
Figure 28: Asynchronous Single-Word Read (ADV# Latch) ............................................................................... 80  
Figure 29: Asynchronous Page Mode Read ...................................................................................................... 81  
Figure 30: Synchronous Single-Word Array or Nonarray Read .......................................................................... 82  
Figure 31: Continuous Burst Read with Output Delay ..................................................................................... 83  
Figure 32: Synchronous Burst Mode 4-Word Read ........................................................................................... 84  
Figure 33: Write to Write Timing .................................................................................................................... 87  
Figure 34: Asynchronous Read to Write Timing ............................................................................................... 87  
Figure 35: Write to Asynchronous Read Timing ............................................................................................... 88  
Figure 36: Synchronous Read to Write Timing ................................................................................................ 89  
Figure 37: Write to Synchronous Read Timing ................................................................................................ 90  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
5
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Features  
List of Tables  
Table 1: Discrete Part Number Information ...................................................................................................... 2  
Table 2: Standard Part Numbers ....................................................................................................................... 2  
Table 3: Virtual Chip Enable Truth Table for Easy BGA Packages ........................................................................ 8  
Table 4: TSOP and Easy BGA Signal Descriptions ............................................................................................ 15  
Table 5: Bus Operations ................................................................................................................................. 17  
Table 6: Command Codes and Definitions ...................................................................................................... 19  
Table 7: Command Bus Cycles ....................................................................................................................... 22  
Table 8: Device ID Information ...................................................................................................................... 25  
Table 9: Device ID codes ................................................................................................................................ 26  
Table 10: BEFP Requirements ........................................................................................................................ 29  
Table 11: BEFP Considerations ...................................................................................................................... 29  
Table 12: Status Register Description .............................................................................................................. 37  
Table 13: Read Configuration Register ............................................................................................................ 39  
Table 14: End of Wordline Data and WAIT State Comparison ........................................................................... 42  
Table 15: WAIT Functionality Table ................................................................................................................ 42  
Table 16: Burst Sequence Word Ordering ........................................................................................................ 43  
Table 17: Example of CFI Output (x16 device) as a Function of Device and Mode ............................................. 48  
Table 18: CFI Database: Addresses and Sections ............................................................................................. 49  
Table 19: CFI ID String ................................................................................................................................... 49  
Table 20: System Interface Information .......................................................................................................... 50  
Table 21: Device Geometry ............................................................................................................................ 51  
Table 22: Block Region Map Information ........................................................................................................ 51  
Table 23: Primary Vendor-Specific Extended Query ........................................................................................ 52  
Table 24: Optional Features Field ................................................................................................................... 54  
Table 25: One Time Programmable (OTP) Space Information .......................................................................... 54  
Table 26: Burst Read Information ................................................................................................................... 55  
Table 27: Partition and Block Erase Region Information .................................................................................. 56  
Table 28: Partition Region 1 Information: Top and Bottom Offset/Address ....................................................... 57  
Table 29: Partition Region 1 Information ........................................................................................................ 57  
Table 30: Partition Region 1: Partition and Erase Block Map Information ......................................................... 60  
Table 31: CFI Link Information – 2Gb ............................................................................................................. 61  
Table 32: Power and Reset .............................................................................................................................. 71  
Table 33: Maximum Ratings ........................................................................................................................... 73  
Table 34: Operating Conditions ...................................................................................................................... 73  
Table 35: DC Current Characteristics .............................................................................................................. 74  
Table 36: DC Voltage Characteristics .............................................................................................................. 75  
Table 37: Test Configuration: Worst-Case Speed Condition .............................................................................. 76  
Table 38: Capacitance .................................................................................................................................... 77  
Table 39: AC Read Specifications .................................................................................................................... 78  
Table 40: AC Write Specifications ................................................................................................................... 85  
Table 41: Program and Erase Specifications .................................................................................................... 91  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
6
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
General Description  
General Description  
The Micron Parallel NOR Flash memory is the latest generation of Flash memory devi-  
ces. Benefits include more density in less space, high-speed interface device, and sup-  
port for code and data storage. Features include high-performance synchronous-burst  
read mode, fast asynchronous access times, low power, flexible security options, and  
three industry-standard package choices. The product family is manufactured using Mi-  
cron 65nm process technology.  
The NOR Flash device provides high performance at low voltage on a 16-bit data bus.  
Individually erasable memory blocks are sized for optimum code and data storage.  
Upon initial power up or return from reset, the device defaults to asynchronous page-  
mode read. Configuring the read configuration register enables synchronous burst-  
mode reads. In synchronous burst mode, output data is synchronized with a user-sup-  
plied clock signal. A WAIT signal provides easy CPU-to-flash memory synchronization.  
In addition to the enhanced architecture and interface, the device incorporates technol-  
ogy that enables fast factory PROGRAM and ERASE operations. Designed for low-volt-  
age systems, the devIce supports READ operations with VCC at the low voltages, and  
ERASE and PROGRAM operations with VPP at the low voltages or VPPH. Buffered en-  
hanced factory programming (BEFP) provides the fastest Flash array programming per-  
formance with VPP at VPPH, which increases factory throughput. With VPP at low voltag-  
es, VCC and VPP can be tied together for a simple, ultra low-power design. In addition to  
voltage flexibility, a dedicated VPP connection provides complete data protection when  
VPP VPPLK  
.
A command user interface is the interface between the system processor and all inter-  
nal operations of the device. The device automatically executes the algorithms and tim-  
ings necessary for block erase and program. A status register indicates ERASE or PRO-  
GRAM completion and any errors that may have occurred.  
An industry-standard command sequence invokes program and erase automation.  
Each ERASE operation erases one block. The erase suspend feature enables system soft-  
ware to pause an ERASE cycle to read or program data in another block. Program sus-  
pend enables system software to pause programming to read other locations. Data is  
programmed in word increments (16 bits).  
The protection register enables unique device identification that can be used to in-  
crease system security. The individual block lock feature provides zero-latency block  
locking and unlocking. The device includes enhanced protection via password access;  
this new feature supports write and/or read access protection of user-defined blocks. In  
addition, the device also provides the full-device OTP security feature.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
7
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Virtual Chip Enable Description  
Virtual Chip Enable Description  
The 2Gb device employs a virtual chip enable feature, which combines two 1Gb die  
with a common chip enable, CE# for Easy BGA packages. The maximum address bit is  
then used to select between the die pair with CE# asserted. When CE# is asserted and  
the maximum address bit is LOW, the lower parameter die is selected; when CE# is as-  
serted and the maximum address bit is HIGH, the upper parameter die is selected.  
Table 3: Virtual Chip Enable Truth Table for Easy BGA Packages  
Die Selected  
CE#  
A[MAX]  
Lower parameter die  
Upper parameter die  
L
L
L
H
Figure 1: Easy BGA Block Diagram  
Easy BGA (Dual Die) Top/Bottom  
Parameter Configuration  
Top Parameter Die  
CE#  
WP#  
OE#  
RST#  
V
CC  
V
WE#  
CLK  
PP  
V
CCQ  
Bottom Parameter Die  
V
ADV#  
SS  
DQ[15:0]  
WAIT  
A[MAX:1]  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
8
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Memory Map  
Memory Map  
Figure 2: Memory Map – 512Mb and 1Gb  
A[25:1] 512Mb and A[26:1] 1Gb  
64 KWord Block 1026  
64 KWord Block 514  
64 KWord Block 258  
64 KWord Block 1023  
64 KWord Block 511  
3FF0000 - 3FFFFFF  
1FF0000 - 1FFFFFF  
3FF0000 - 3FFFFFF  
1FF0000 - 1FFFFFF  
FF0000 - FFFFFF  
1Gb  
512Mb  
1Gb  
512Mb  
FF0000 - FFFFFF  
020000 - 02FFFF  
64 KWord Block 255  
64 KWord Block 5  
64 KWord Block 4  
16 KWord Block 3  
16 KWord Block 2  
16 KWord Block 1  
16 KWord Block 0  
010000 - 01FFFF  
00C000 - 00FFFF  
008000 - 00BFFF  
004000 - 007FFF  
000000 - 003FFF  
030000 - 03FFFF  
020000 - 02FFFF  
010000 - 01FFFF  
000000 - 00FFFF  
64 KWord Block 3  
64 KWord Block 2  
64 KWord Block 1  
64 KWord Block 0  
Bottom Boot 512Mb and 1Gb, World-Wide x16 Mode  
Symetrically Blocked 512Mb and 1Gb, World-Wide x16 Mode  
1FFC000 - 1FFFFFF  
16 KWord Block 514  
16 KWord Block 513  
16 KWord Block 512  
16 KWord Block 511  
64 KWord Block 510  
3FFC000 - 3FFFFFF  
3FF8000 - 3FFBFFF  
3FF4000 - 3FF7FFF  
3FF0000 - 3FF3FFF  
3FE0000 - 3FEFFFF  
16 KWord Block 1026  
16 KWord Block 1025  
16 KWord Block 1024  
16 KWord Block 1023  
64 KWord Block 1022  
1FF8000 - 1FFBFFF  
1FF4000 - 1FF7FFF  
1FF0000 - 1FF3FFF  
1FE0000 - 1FEFFFF  
512Mb  
1Gb  
010000 - 01FFFF  
000000 - 00FFFF  
64 KWord Block 1  
64 KWord Block 0  
010000 - 01FFFF  
000000 - 00FFFF  
64 KWord Block 1  
64 KWord Block 0  
Top Boot 512Mb, World Wide x16 Mode  
Top Boot 1Gb, World Wide x16 Mode  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
9
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Memory Map  
Figure 3: Memory Map – 2Gb  
A[27:1] 2Gb (1Gb/1Gb)  
64 KWord Block 2047  
7FF0000 - 7FFFFFF  
4011000 - 401FFFF  
4000000 - 400FFFF  
3FF0000 - 3FFFFFF  
64 KWord Block 1025  
64 KWord Block 1024  
64 KWord Block 1023  
1FF0000 - 1FFFFFF  
FF0000 - FFFFFF  
64 KWord Block 511  
64 KWord Block 255  
2Gb  
1Gb  
512Mb  
020000 - 02FFFF  
010000 - 01FFFF  
000000 - 00FFFF  
64 KWord Block 2  
64 KWord Block 1  
64 KWord Block 0  
World-Wide x16 Mode  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
10  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Package Dimensions  
Package Dimensions  
Figure 4: 56-Pin TSOP – 14mm x 20mm  
20 ±0.2  
18.4 ±0.2  
0.995 ±0.03  
Pin #1 index  
See notes 2  
See note 2  
0.5 TYP  
14.00 ±0.2  
0.22 ±0.05  
See note 2  
See note 2  
0.25 ±0.1  
0.15 ±0.05  
0.10  
+2°  
3°  
-3°  
See Detail A  
Seating  
plane  
1.20 MAX  
0.05 MIN  
0.60 ±0.10  
Detail A  
1. All dimensions are in millimeters. Drawing not to scale.  
Notes:  
2. One dimple on package denotes pin 1; if two dimples, then the larger dimple denotes  
pin 1. Pin 1 will always be in the upper left corner of the package, in reference to the  
product mark.  
3. For the lead width value of 0.22 ±0.05, there is also a legacy value of 0.15 ±0.05.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
11  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Package Dimensions  
Figure 5: 64-Ball Easy BGA – 8mm x 10mm x 1.2mm  
0.78 TYP  
0.25 MIN  
Seating  
plane  
0.1  
Ball A1 ID  
1.00 TYP  
64X Ø0.43 ±0.1  
1.5 ±0.1  
Ball A1 ID  
8
7
6
5
4
3
2
1
0.5 ±0.1  
A
B
C
D
E
8 ±0.1  
F
1.00 TYP  
G
H
10 ±0.1  
1.20 MAX  
1. All dimensions are in millimeters. Drawing not to scale.  
Notes:  
2. The 512Mb device does not contain the A1 ID ball located on the back side of the de-  
vice.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
12  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Pinouts and Ballouts  
Pinouts and Ballouts  
Figure 6: 56-Lead TSOP Pinout – 512Mb and 1Gb  
WAIT  
A17  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
A 16  
A 15  
DQ15  
DQ7  
DQ14  
DQ 6  
DQ13  
DQ5  
DQ12  
DQ4  
ADV#  
CLK  
A 14  
A 13  
A 12  
A 11  
A 10  
A 9  
A 23  
A 22  
A 21  
VSS  
RFU  
WE #  
WP #  
A 20  
A 19  
A 18  
A 8  
A 7  
A 6  
A 5  
A 4  
A 3  
A 2  
A24  
A25  
A26  
56-Lead TSOP Pinout  
14mm x 20mm  
RST#  
VPP  
DQ11  
DQ 3  
DQ10  
DQ 2  
VCCQ  
DQ 9  
DQ1  
DQ 8  
DQ 0  
VCC  
Top View  
OE#  
VSS  
CE#  
A 1  
1. A1 is the least significant address bit.  
Notes:  
2. ADV# must be tied to VSS or driven to LOW throughout the asynchronous read mode.  
3. A25 is valid for 512Mb densities and above; otherwise, it is a no connect (NC).  
4. A26 is valid for 1Gb densities and above; otherwise, it is a no connect (NC).  
5. One dimple on package denotes Pin 1 which will always be in the upper left corner of  
the package, in reference to the product mark.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
13  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Pinouts and Ballouts  
Figure 7: 64-Ball Easy BGA (Top View – Balls Down) – 512Mb, 1Gb, and 2Gb  
1
2
3
4
5
6
7
8
A
B
C
D
E
A1  
A2  
A6  
A8  
A9  
V
A13  
A14  
V
A18 A22  
PP  
CC  
V
CE#  
A25 A19 A26  
SS  
A3  
A4  
A7  
A5  
A10 A12  
A15 WP#  
A20 A21  
A16 A17  
A11 RST# V  
V
CCQ  
CCQ  
DQ8 DQ1 DQ9 DQ3 DQ4  
CLK DQ15 RFU  
F
RFU DQ0 DQ10 DQ11 DQ12 ADV# WAIT OE#  
G
H
A23 RFU DQ2 V  
DQ5 DQ6 DQ14 WE#  
CCQ  
A27  
DQ13  
DQ7 A24  
V
V
V
V
SS  
SS  
CC  
SS  
1. A1 is the least significant address bit.  
Notes:  
2. A25 is valid for 512Mb densities and above; otherwise, it is a no connect (NC).  
3. A26 is valid for 1Gb densities and above; otherwise, it is a no connect (NC).  
4. A27 is valid for 2Gb densities and above; otherwise, it is a no connect (NC).  
5. One dimple on package denotes Pin 1 which will always be in the upper left corner of  
the package, in reference to the product mark.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
14  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Signal Descriptions  
Signal Descriptions  
Table 4: TSOP and Easy BGA Signal Descriptions  
Symbol  
Type  
Name and Function  
A[MAX:1]  
Input  
Address inputs: Device address inputs.  
Note: Unused active address pins should not be left floating; tie them to VCCQ or VSS ac-  
cording to specific design requirements.  
ADV#  
CE#  
Input  
Input  
Input  
Address valid: Active LOW input. During synchronous READ operations, addresses are  
latched on the rising edge of ADV#, or on the next valid CLK edge with ADV# LOW, which-  
ever occurs first. In asynchronous mode, the address is latched when ADV# goes HIGH or  
continuously flows through if ADV# is held LOW.  
Note: Designs not using ADV# must tie it to VSS to allow addresses to flow through.  
Chip enable: Active LOW input. CE# LOW selects the associated die. When asserted, inter-  
nal control logic, input buffers, decoders, and sense amplifiers are active. When de-asser-  
ted, the associated die is deselected, power is reduced to standby levels, data and wait  
outputs are placed in High-Z.  
Note: CE# must be driven HIGH when device is not in use.  
CLK  
Clock: Synchronizes the device with the system bus frequency in synchronous-read mode.  
During synchronous READs, addresses are latched on the rising edge of ADV#, or on the  
next valid CLK edge with ADV# LOW, whichever occurs first.  
Note: Designs not using CLK for synchronous read mode must tie it to VCCQ or VSS.  
OE#  
Input  
Input  
Output enable: Active LOW input. OE# LOW enables the device’s output data buffers  
during READ cycles. OE# HIGH places the data outputs and WAIT in High-Z.  
RST#  
Reset: Active LOW input. RST# resets internal automation and inhibits WRITE operations.  
This provides data protection during power transitions. RST# HIGH enables normal opera-  
tion. Exit from reset places the device in asynchronous read array mode.  
WP#  
Input  
Write protect: Active LOW input. WP# LOW enables the lock-down mechanism. Blocks in  
lock-down cannot be unlocked with the Unlock command. WP# HIGH overrides the lock-  
down function enabling blocks to be erased or programmed using software commands.  
Note: Designs not using WP# for protection could tie it to VCCQ or VSS without additional  
capacitor.  
WE#  
VPP  
Input  
Write enable: Active LOW input. WE# controls writes to the device. Address and data are  
latched on the rising edge of WE# or CE#, whichever occurs first.  
Power/Input Erase and program power: A valid voltage on this pin allows erasing or programming.  
Memory contents cannot be altered when VPP VPPLK. Block erase and program at invalid  
VPP voltages should not be attempted.  
Set VPP = VPPL for in-system PROGRAM and ERASE operations. To accommodate resistor or  
diode drops from the system supply, the VIH level of VPP can be as low as VPPL,min . VPP must  
remain above VPPL,min to perform in-system modification. VPP may be 0V during READ op-  
erations.  
VPP can be connected to 9V for a cumulative total not to exceed 80 hours. Extended use of  
this pin at 9V may reduce block cycling capability.  
DQ[15:0]  
Input/Output Data input/output: Inputs data and commands during WRITE cycles; outputs data during  
memory, status register, protection register, and read configuration register reads. Data  
balls float when the CE# or OE# are de-asserted. Data is internally latched during writes.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
15  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Signal Descriptions  
Table 4: TSOP and Easy BGA Signal Descriptions (Continued)  
Symbol  
Type  
Name and Function  
WAIT  
Output  
Wait: Indicates data valid in synchronous array or non-array burst reads. Read configura-  
tion register bit 10 (RCR.10, WT) determines its polarity when asserted. This signal's active  
output is VOL or VOH when CE# and OE# are VIL. WAIT is High-Z if CE# or OE# is VIH.  
• In synchronous array or non-array read modes, this signal indicates invalid data when as-  
serted and valid data when de-asserted.  
• In asynchronous page mode, and all write modes, this signal is de-asserted.  
VCC  
Power  
Device core power supply: Core (logic) source voltage. Writes to the array are inhibited  
when VCC VLKO. Operations at invalid VCC voltages should not be attempted.  
VCCQ  
VSS  
Power  
Power  
Output power supply: Output-driver source voltage.  
Ground: Connect to system ground. Do not float any VSS connection.  
RFU  
Reserved for future use: Reserved by Micron for future device functionality and en-  
hancement. These should be treated in the same way as a DU signal.  
DU  
NC  
Do not use: Do not connect to any other signal, or power supply; must be left floating.  
No connect: No internal connection; can be driven or floated.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
16  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Bus Operations  
Bus Operations  
CE# LOW and RST# HIGH enable READ operations. The device internally decodes up-  
per address inputs to determine the accessed block. ADV# LOW opens the internal ad-  
dress latches. OE# LOW activates the outputs and gates selected data onto the I/O bus.  
Bus cycles to/from the device conform to standard microprocessor bus operations. Bus  
operations and the logic levels that must be applied to the device control signal inputs  
are shown here.  
Table 5: Bus Operations  
Bus Operation  
RST#  
H
CLK  
ADV#  
CE#  
OE#  
WE#  
H
WAIT  
De-asserted  
Driven  
DQ[15:0]  
Output  
Notes  
READ  
Asynchronous  
Synchronous  
X
L
L
L
L
L
L
-
-
H
Run-  
ning  
H
Output  
WRITE  
H
H
H
L
X
X
X
X
L
L
L
H
H
X
X
L
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
Input  
High-Z  
High-Z  
High-Z  
1
2
OUTPUT DISABLE  
STANDBY  
X
X
X
H
X
2
RESET  
2, 3  
1. Refer to the Device Command Bus Cycles for valid DQ[15:0] during a WRITE operation.  
2. X = "Don’t Care" (H or L).  
Notes:  
3. RST# must be at VSS ± 0.2V to meet the maximum specified power-down current.  
Read  
To perform a READ operation, RST# and WE# must be de-asserted while CE# and OE#  
are asserted. CE# is the device-select control. When asserted, it enables the device. OE#  
is the data-output control. When asserted, the addressed flash memory data is driven  
onto the I/O bus.  
Write  
To perform a WRITE operation, both CE# and WE# are asserted while RST# and OE# are  
de-asserted. During a WRITE operation, address and data are latched on the rising edge  
of WE# or CE#, whichever occurs first. The Command Bus Cycles table shows the bus  
cycle sequence for each of the supported device commands, while the Command Codes  
and Definitions table describes each command.  
Note: WRITE operations with invalid VCC and/or VPP voltages can produce spurious re-  
sults and should not be attempted.  
Output Disable  
Standby  
When OE# is de-asserted, device outputs DQ[15:0] are disabled and placed in High-Z  
state, WAIT is also placed in High-Z.  
When CE# is de-asserted the device is deselected and placed in standby, substantially  
reducing power consumption. In standby, the data outputs are placed in High-Z, inde-  
pendent of the level placed on OE#. Standby current (ICCS) is the average current meas-  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
17  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Bus Operations  
ured over any 5ms time interval, 5μs after CE# is de-asserted. During standby, average  
current is measured over the same time interval 5μs after CE# is de-asserted.  
When the device is deselected (while CE# is de-asserted) during a PROGRAM or ERASE  
operation, it continues to consume active power until the PROGRAM or ERASE opera-  
tion is completed.  
Reset  
As with any automated device, it is important to assert RST# when the system is reset.  
When the system comes out of reset, the system processor attempts to read from the  
device if it is the system boot device. If a CPU reset occurs with no device reset, improp-  
er CPU initialization may occur because the device may be providing status informa-  
tion rather than array data. Micron devices enable proper CPU initialization following a  
system reset through the use of the RST# input. RST# should be controlled by the same  
low-true reset signal that resets the system CPU.  
After initial power-up or reset, the device defaults to asynchronous read array mode,  
and the status register is set to 0x80. Asserting RST# de-energizes all internal circuits,  
and places the output drivers in High-Z. When RST# is asserted, the device shuts down  
the operation in progress, a process which takes a minimum amount of time to com-  
plete. When RST# has been de-asserted, the device is reset to asynchronous read array  
state.  
When device returns from a reset (RST# de-asserted), a minimum wait is required be-  
fore the initial read access outputs valid data. Also, a minimum delay is required after a  
reset before a write cycle can be initiated. After this wake-up interval passes, normal op-  
eration is restored.  
Note: If RST# is asserted during a PROGRAM or ERASE operation, the operation is ter-  
minated and the memory contents at the aborted location (for a program) or block (for  
an erase) are no longer valid, because the data may have been only partially written or  
erased.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
18  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Device Command Codes  
Device Command Codes  
The system CPU provides control of all in-system READ, WRITE, and ERASE operations  
of the device via the system bus. The device manages all block-erase and word-program  
algorithms.  
Device commands are written to the CUI to control all device operations. The CUI does  
not occupy an addressable memory location; it is the mechanism through which the  
device is controlled.  
Note: For a dual device, all setup commands should be re-issued to the device when a  
different die is selected.  
Table 6: Command Codes and Definitions  
Mode  
Device Mode  
Read array  
Code  
0xFF  
Description  
Read  
Places the device in read array mode. Array data is output on DQ[15:0].  
Read status register  
0x70  
Places the device in read status register mode. The device enters this  
mode after a PROGRAM or ERASE command is issued. Status register  
data is output on DQ[7:0].  
Read device ID or  
read configuration  
register  
0x90  
Places device in read device identifier mode. Subsequent reads output  
manufacturer/device codes, configuration register data, block lock sta-  
tus, or protection register data on DQ[15:0].  
Read CFI  
0x98  
0x50  
0x40  
Places the device in read CFI mode. Subsequent reads output CFI infor-  
mation on DQ[7:0].  
Clear status register  
Word program setup  
The device sets status register error bits. The clear status register com-  
mand is used to clear the SR error bits.  
Write  
First cycle of a 2-cycle programming command; prepares the CUI for a  
WRITE operation. On the next write cycle, the address and data are  
latched and the device executes the programming algorithm at the ad-  
dressed location. During PROGRAM operations, the device responds  
only to READ STATUS REGISTER and PROGRAM SUSPEND commands.  
CE# or OE# must be toggled to update the status register in asynchro-  
nous read. CE# or ADV# must be toggled to update the status register  
data for synchronous non-array reads. The READ ARRAY command  
must be issued to read array data after programming has finished.  
Buffered program  
0xE8  
0xD0  
This command loads a variable number of words up to the buffer size  
of 512 words onto the program buffer.  
Buffered program  
confirm  
The CONFIRM command is issued after the data streaming for writing  
into the buffer is completed. The device then performs the buffered  
program algorithm, writing the data from the buffer to the memory  
array.  
BEFP setup  
0x80  
0xD0  
First cycle of a two-cycle command; initiates buffered enhanced factory  
program mode (BEFP). The CUI then waits for the BEFP CONFIRM com-  
mand, 0xD0, that initiates the BEFP algorithm. All other commands are  
ignored when BEFP mode begins.  
BEFP confirm  
If the previous command was BEFP SETUP (0x80), the CUI latches the  
address and data, and prepares the device for BEFP mode.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
19  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Device Command Codes  
Table 6: Command Codes and Definitions (Continued)  
Mode  
Device Mode  
Code  
Description  
Erase  
Block erase setup  
0x20  
First cycle of a two-cycle command; prepares the CUI for a BLOCK  
ERASE operation. The device performs the erase algorithm on the  
block addressed by the ERASE CONFIRM command. If the next com-  
mand is not the ERASE CONFIRM (0xD0) command, the CUI sets status  
register bits SR4 and SR5, and places the device in read status register  
mode.  
Block erase confirm  
0xD0  
0xB0  
If the first command was BLOCK ERASE SETUP (0x20), the CUI latches  
the address and data, and the device erases the addressed block. Dur-  
ing BLOCK ERASE operations, the device responds only to READ STATUS  
REGISTER and ERASE SUSPEND commands. CE# or OE# must be toggled  
to update the status register in asynchronous read. CE# or ADV# must  
be toggled to update the status register data for synchronous non-ar-  
ray reads.  
Suspend  
Program or erase  
suspend  
This command issued to any device address initiates a suspend of the  
currently-executing program or BLOCK ERASE operation. The status  
register indicates successful suspend operation by setting either SR2  
(program suspended) or SR6 (erase suspended), along with SR7 (ready).  
The device remains in the suspend mode regardless of control signal  
states (except for RST# asserted).  
Suspend resume  
Block lock setup  
0xD0  
0x60  
This command issued to any device address resumes the suspended  
PROGRAM or BLOCK ERASE operation.  
Protection  
First cycle of a two-cycle command; prepares the CUI for block lock con-  
figuration changes. If the next command is not BLOCK LOCK (0x01),  
BLOCK UNLOCK (0xD0), or BLOCK LOCK DOWN (0x2F), the CUI sets sta-  
tus register bits SR5 and SR4, indicating a command sequence error.  
Block lock  
0x01  
0xD0  
If the previous command was BLOCK LOCK SETUP (0x60), the addressed  
block is locked.  
Block unlock  
If the previous command was BLOCK LOCK SETUP (0x60), the addressed  
block is unlocked. If the addressed block is in a lock down state, the op-  
eration has no effect.  
Block lock down  
0x2F  
0xC0  
If the previous command was BLOCK LOCK SETUP (0x60), the addressed  
block is locked down.  
OTP register or lock  
register program set-  
up  
First cycle of a two-cycle command; prepares the device for a OTP REG-  
ISTER or LOCK REGISTER PROGRAM operation. The second cycle latches  
the register address and data, and starts the programming algorithm  
to program data the OTP array.  
Configuration Read configuration  
register setup  
0x60  
0x03  
First cycle of a two-cycle command; prepares the CUI for device read  
configuration. If the SET READ CONFIGURATION REGISTER command  
(0x03) is not the next command, the CUI sets status register bits SR4  
and SR5, indicating a command sequence error.  
Read configuration  
register  
If the previous command was READ CONFIGURATION REGISTER SETUP  
(0x60), the CUI latches the address and writes A[16:1] to the read con-  
figuration register for Easy BGA and TSOP, A[15:0] for QUAD+. Follow-  
ing a CONFIGURE READ CONFIGURATION REGISTER command, subse-  
quent READ operations access array data.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
20  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Device Command Codes  
Table 6: Command Codes and Definitions (Continued)  
Mode  
Device Mode  
Code  
Description  
Blank Check  
Block blank check  
0xBC  
First cycle of a two-cycle command; initiates the BLANK CHECK opera-  
tion on a main block.  
Block blank check  
confirm  
0xD0  
0xEB  
Second cycle of blank check command sequence; it latches the block  
address and executes blank check on the main array block.  
EFI  
Extended function  
interface  
First cycle of a multiple-cycle command; initiate operation using exten-  
ded function interface. The second cycle is a Sub-Op-Code, the data  
written on third cycle is one less than the word count; the allowable  
value on this cycle are 0–511. The subsequent cycles load data words in-  
to the program buffer at a specified address until word count is ach-  
ieved.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
21  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Device Command Bus Cycles  
Device Command Bus Cycles  
Device operations are initiated by writing specific device commands to the command  
user interface (CUI). Several commands are used to modify array data including WORD  
PROGRAM and BLOCK ERASE commands. Writing either command to the CUI initiates  
a sequence of internally timed functions that culminate in the completion of the re-  
quested task. However, the operation can be aborted by either asserting RST# or by is-  
suing an appropriate suspend command.  
Table 7: Command Bus Cycles  
First Bus Cycle  
Second Bus Cycle  
Bus  
Cycles  
Mode  
Command  
Op  
Addr1  
DnA  
DnA  
DnA  
DnA  
DnA  
WA  
Data2  
Op  
Addr1  
Data2  
Read  
READ ARRAY  
1
2  
2  
2
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
0xFF  
0x90  
0x98  
0x70  
0x50  
0x40  
0xE8  
0x80  
READ DEVICE IDENTIFIER  
READ CFI  
READ  
DBA + IA  
ID  
READ DBA + CFI-A  
CFI-D  
SRD  
READ STATUS REGISTER  
CLEAR STATUS REGISTER  
WORD PROGRAM  
BUFFERED PROGRAM3  
READ  
DnA  
1
Program  
2
WRITE  
WRITE  
WRITE  
WA  
WA  
WA  
WD  
N - 1  
0xD0  
>2  
>2  
WA  
BUFFERED ENHANCED  
FACTORY PROGRAM  
(BEFP)4  
WA  
Erase  
BLOCK ERASE  
2
1
1
2
2
2
2
2
2
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
BA  
DnA  
DnA  
BA  
0x20  
0xB0  
0xD0  
0x60  
0x60  
0x60  
0xC0  
0xC0  
0x60  
WRITE  
BA  
0xD0  
Suspend  
PROGRAM/ERASE SUSPEND  
PROGRAM/ERASE RESUME  
BLOCK LOCK  
Protection  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
WRITE  
BA  
0x01  
0xD0  
0x2F  
OTP-D  
LRD  
0x03  
BLOCK UNLOCK  
BA  
BA  
BLOCK LOCK DOWN  
PROGRAM OTP REGISTER  
PROGRAM LOCK REGISTER  
BA  
BA  
PRA  
LRA  
RCD  
OTP-RA  
LRA  
RCD  
Configuration CONFIGURE READ  
CONFIGURATION REGISTER  
BLOCK BLANK CHECK  
Blank Check  
EFI  
2
WRITE  
WRITE  
BA  
0xBC  
0xEB  
WRITE  
Write  
BA  
D0  
EXTENDED FUNCTION  
INTERFACE 5  
>2  
WA  
WA  
Sub-Op code  
1. First command cycle address should be the same as the operation’s target address. DBA  
= Device base address (needed for dual die 512Mb device); DnA = Address within the de-  
vice; IA = Identification code address offset; CFI-A = Read CFI address offset; WA = Word  
address of memory location to be written; BA = Address within the block; OTP-RA = Pro-  
tection register address; LRA = Lock register address; RCD = Read configuration register  
data on A[16:1] for Easy BGA and TSOP, A[15:0] for QUAD+ package.  
Notes:  
2. ID = Identifier data; CFI-D = CFI data on DQ[15:0]; SRD = Status register data; WD = Word  
data; N = Word count of data to be loaded into the write buffer; OTP-D = Protection  
register data; LRD = Lock register data.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
22  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Device Command Bus Cycles  
3. The second cycle of the BUFFERED PROGRAM command is the word count of the data to  
be loaded into the write buffer. This is followed by up to 512 words of data. Then the  
CONFIRM command (0xD0) is issued, triggering the array programming operation.  
4. The CONFIRM command (0xD0) is followed by the buffer data.  
5. The second cycle is a Sub-Op-Code, the data written on third cycle is N-1; 1N 512.  
The subsequent cycles load data words into the program buffer at a specified address  
until word count is achieved, after the data words are loaded, the final cycle is the con-  
firm cycle 0xD0).  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
23  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Read Operations  
Read Operations  
The device supports two read modes: asynchronous page mode and synchronous burst  
mode. Asynchronous page mode is the default read mode after device power-up or a re-  
set. Under asynchronous page mode, the device can also perform single word read. The  
read configuration register must be configured to enable synchronous burst reads of the  
array.  
The device can be in any of four read states: read array, read identifier, read status, or  
read CFI. Upon power-up, or after a reset, the device defaults to read array. To change  
the read state, the appropriate READ command must be written to the device.  
Asynchronous Single Word Read  
To perform an asynchronous single word read, an address is driven onto the address  
bus, and CE# is asserted.  
Note: To perform an asynchronous single word read for a TSOP package, ADV# must be  
LOW throughout the READ cycle. For an Easy BGA package, ADV# can be driven HIGH  
to latch the address or be held LOW throughout the READ cycle.  
WE# and RST# must already have been de-asserted. WAIT is set to a de-asserted state  
during single word mode, as determined by bit 10 of the read configuration register.  
CLK is not used for asynchronous single word reads, and is ignored. If asynchronous  
reads are to be performed only, CLK should be tied to a valid VIH or VSS level, WAIT can  
be floated, and ADV# must be tied to ground. After OE# is asserted, the data is driven  
onto DQ[15:0] after an initial access time tAVQV or tGLQV delay.  
Asynchronous Page Mode Read (Easy BGA Only)  
Note: Asynchronous Page Mode Read is supported only in the main array.  
Following a device power-up or reset, asynchronous page mode is the default read  
mode and the device is set to read array. However, to perform array reads after any other  
device operation (WRITE operation), the READ ARRAY command must be issued in or-  
der to read from the array.  
Asynchronous page mode reads can only be performed when read configuration regis-  
ter bit RCR15 is set.  
To perform an asynchronous page-mode read, an address is driven onto the address  
bus, and CE# and ADV# are asserted. WE# and RST# must already have been de-asser-  
ted. WAIT is de-asserted during asynchronous page mode. ADV# can be driven HIGH to  
latch the address, or it must be held LOW throughout the READ cycle. CLK is not used  
for asynchronous page mode reads, and is ignored. If only asynchronous reads are to be  
performed, CLK should be tied to a valid VIH or VSS level, WAIT signal can be floated,  
and ADV# must be tied to ground. Array data is driven onto DQ[15:0] after an initial ac-  
cess time tAVQV delay.  
In asynchronous page mode, 16 data words are “sensed” simultaneously from the array  
and loaded into an internal page buffer. The buffer word corresponding to the initial  
address on the address bus is driven onto DQ[15:0] after the initial access delay. The  
lowest four address bits determine which word of the 16-word page is output from the  
data buffer at any given time.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
24  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Synchronous Burst Mode Read (Easy BGA Only)  
Synchronous Burst Mode Read (Easy BGA Only)  
Read configuration register bits RCR[15:0] must be set before synchronous burst opera-  
tion can be performed. Synchronous burst mode can be performed for both array and  
non-array reads such as read ID, read status, or read query.  
To perform a synchronous burst read, an initial address is driven onto the address bus,  
and CE# and ADV# are asserted. WE# and RST# must already have been de-asserted.  
ADV# is asserted, and then de-asserted to latch the address. Alternately, ADV# can re-  
main asserted throughout the burst access, in which case the address is latched on the  
next valid CLK edge while ADV# is asserted.  
During synchronous array and non-array read modes, the first word is output from the  
data buffer on the next valid CLK edge after the initial access latency delay. Subsequent  
data is output on valid CLK edges following a minimum delay. However, for a synchro-  
nous non-array read, the same word of data will be output on successive clock edges  
until the burst length requirements are satisfied. Refer to the timing diagrams for more  
detailed information.  
Read CFI  
The READ CFI command instructs the device to output CFI data when read. See Com-  
mon Flash Interface for details on issuing the READ CFI command, and for details on  
addresses and offsets within the CFI database.  
Read Device ID  
The READ DEVICE IDENTIFIER command instructs the device to output manufacturer  
code, device identifier code, block lock status, protection register data, or configuration  
register data.  
Table 8: Device ID Information  
Item  
Address  
Data  
Manufacturer code  
Device ID code  
0x00  
0x01  
0x89  
ID (see the Device ID Codes table )  
Block lock configuration  
Block is unlocked  
Block is locked  
Block is not locked down  
Block is locked down  
Block base address + 0x02  
Lock bit  
DQ0 = 0b0  
DQ0 = 0b1  
DQ1 = 0b0  
DQ1 = 0b1  
Read configuration register  
General purpose register  
Lock register 0  
0x05  
Device base address + 0x07  
0x80  
RCR contents  
General purpose register data  
PR-LK0 data  
64-bit factory-programmed OTP register  
64-bit user-programmable OTP register  
Lock register 1  
0x81–0x84  
Factory OTP register data  
User OTP register data  
PR-LK1 OTP register lock data  
OTP register data  
0x85–0x88  
0x89  
128-bit user-programmable protection regis-  
ters  
0x8A–0x109  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
25  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Device ID Codes  
Device ID Codes  
Table 9: Device ID codes  
Device Identifier Codes  
Device  
ID Code Type  
Density  
512Mb  
1Gb  
–T (Top Parameter)  
–B (Bottom Parameter)  
–E/F (Symmetrical Blocks)  
Device Code  
8964  
8966  
8965  
8967  
899E  
899F  
1. The 2Gb devices do not have a unique device ID associated with them. Each die within  
the stack can be identified by device ID codes.  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
26  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Program Operations  
Program Operations  
Successful programming requires the addressed block to be unlocked. If the block is  
locked down, WP# must be de-asserted and the block must be unlocked before at-  
tempting to program the block. Attempting to program a locked block causes a program  
error (SR4 and SR1 set) and termination of the operation. See Security Modes for details  
on locking and unlocking blocks.  
Word Programming (40h)  
Word programming operations are initiated by writing the WORD PROGRAM SETUP  
command to the device (see the Command Codes and Definitions table). This is fol-  
lowed by a second write to the device with the address and data to be programmed. The  
device outputs status register data when read (see the Word Program Flowchart). VPP  
must be above VPPLK, and within the specified VPPL MIN/MAX values.  
During programming, the device executes a sequence of internally-timed events that  
program the desired data bits at the addressed location, and verifies that the bits are  
sufficiently programmed. Programming the array changes 1s to 0s. Memory array bits  
that are 0s can be changed to 1s only by erasing the block (see Erase Operations).  
The status register can be examined for programming progress and errors by reading at  
any address. The device remains in the read status register state until another com-  
mand is written to the device.  
SR7 indicates the programming status while the sequence executes. Commands that  
can be issued to the device during programming are PROGRAM SUSPEND, READ STA-  
TUS REGISTER, READ DEVICE IDENTIFIER, READ CFI, and READ ARRAY (this returns  
unknown data).  
When programming has finished, SR4 (when set) indicates a programming failure. If  
SR3 is set, the device could not perform the WORD PROGRAMMING operation because  
VPP was outside of its acceptable limits. If SR1 is set, the WORD PROGRAMMING opera-  
tion attempted to program a locked block, causing the operation to abort.  
Before issuing a new command, the status register contents should be examined and  
then cleared using the CLEAR STATUS REGISTER command. Any valid command can  
follow, when word programming has completed.  
Buffered Programming (E8h, D0h)  
The device features a 512-word buffer to enable optimum programming performance.  
For buffered programming, data is first written to an on-chip write buffer. Then the buf-  
fer data is programmed into the array in buffer-size increments. This can improve sys-  
tem programming performance significantly over non-buffered programming.  
When the BUFFERED PROGRAMMING SETUP command is issued, status register in-  
formation is updated and reflects the availability of the buffer. SR7 indicates buffer  
availability: if set, the buffer is available; if cleared, the buffer is not available.  
Note: The device default state is to output SR data after the BUFFERED PROGRAM-  
MING SETUP command. CE# and OE# LOW drive device to update status register. It is  
not allowed to issue 70h to read SR data after E8h command; otherwise, 70h would be  
counted as word count.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
27  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Program Operations  
On the next write, a word count is written to the device at the buffer address. This tells  
the device how many data words will be written to the buffer, up to the maximum size  
of the buffer.  
On the next write, a device start address is given along with the first data to be written to  
the flash memory array. Subsequent writes provide additional device addresses and da-  
ta. All data addresses must lie within the start address plus the word count. Optimum  
programming performance and lower power usage are obtained by aligning the starting  
address at the beginning of a 512-word boundary (A[9:1] = 0x00 for Easy BGA and TSOP,  
A[8:0] for QUAD+ package; see Part Numbering Information). The maximum buffer size  
would be 256-word if the misaligned address range is crossing a 512-word boundary  
during programming.  
After the last data is written to the buffer, the BUFFERED PROGRAMMING CONFIRM  
command must be issued to the original block address. The device begins to program  
buffer contents to the array. If a command other than the BUFFERED PROGRAMMING  
CONFIRM command is written to the device, a command sequence error occurs and  
SR[7,5,4] are set. If an error occurs while writing to the array, the device stops program-  
ming, and SR[7,4] are set, indicating a programming failure.  
When buffered programming has completed, additional buffer writes can be initiated  
by issuing another BUFFERED PROGRAMMING SETUP command and repeating the  
buffered program sequence. Buffered programming may be performed with VPP = VPPL  
or VPPH (see Operating Conditions for limitations when operating the device with VPP  
VPPH).  
=
If an attempt is made to program past an erase-block boundary using the BUFFERED  
PROGRAM command, the device aborts the operation. This generates a command se-  
quence error, and SR[5,4] are set.  
If buffered programming is attempted while VPP is at or below VPPLK, SR[4,3] are set. If  
any errors are detected that have set status register bits, the status register should be  
cleared using the CLEAR STATUS REGISTER command.  
Buffered Enhanced Factory Programming (80h, D0h)  
Buffered enhanced factory programming (BEFP) speeds up multilevel cell (MLC) pro-  
gramming. The enhanced programming algorithm used in BEFP eliminates traditional  
programming elements that drive up overhead in device programmer systems.  
BEFP consists of three phases: setup, program/verify, and exit (see the BEFP Flowchart).  
It uses a write buffer to spread MLC program performance across 512 data words. Verifi-  
cation occurs in the same phase as programming to accurately program the cell to the  
correct bit state.  
A single two-cycle command sequence programs the entire block of data. This en-  
hancement eliminates three write cycles per buffer: two commands and the word count  
for each set of 512 data words. Host programmer bus cycles fill the device write buffer  
followed by a status check. SR0 indicates when data from the buffer has been program-  
med into sequential array locations.  
Following the buffer-to-flash array programming sequence, the device increments in-  
ternal addressing to automatically select the next 512-word array boundary. This aspect  
of BEFP saves host programming equipment the address bus setup overhead.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
28  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Program Operations  
With adequate continuity testing, programming equipment can rely on the device’s in-  
ternal verification to ensure that the device has programmed properly. This eliminates  
the external post-program verification and its associated overhead.  
Table 10: BEFP Requirements  
Parameter/Issue  
Case temperature  
VCC  
Requirement  
Notes  
TC = 30°C ± 10°C  
Nominal VCC  
VPP  
Driven to VPPH  
Setup and confirm  
Programming  
Target block must be unlocked before issuing the BEFP Setup and Confirm commands.  
The first-word address (WA0) of the block to be programmed must be held constant  
from the setup phase through all data streaming into the target block, until transition  
to the exit phase is desired.  
Buffer alignment  
WA0 must align with the start of an array buffer boundary.  
1
1. Word buffer boundaries in the array are determined by the lowest 9 address bits (0x000  
through 0x1FF). The alignment start point is 0x000.  
Note:  
Table 11: BEFP Considerations  
Parameter/Issue  
Requirement  
Notes  
Cycling  
For optimum performance, cycling must be limited below 50 ERASE cycles per block.  
1
2
Programming blocks BEFP programs one block at a time; all buffer data must fall within a single block.  
Suspend BEFP cannot be suspended.  
Programming the ar- Programming to the array can occur only when the buffer is full.  
ray  
3
1. Some degradation in performance may occur if this limit is exceeded, but the internal  
algorithm continues to work properly.  
Notes:  
2. If the internal address counter increments beyond the block's maximum address, ad-  
dressing wraps around to the beginning of the block.  
3. If the number of words is less than 512, remaining locations must be filled with 0xFFFF.  
BEFP Setup Phase: After receiving the BEFP SETUP and CONFIRM command se-  
quence, SR7 (ready) is cleared, indicating that the device is busy with BEFP algorithm  
startup. A delay before checking SR7 is required to allow the device enough time to per-  
form all of its setups and checks (block lock status, VPP level, etc.). If an error is detected,  
SR4 is set and BEFP operation terminates. If the block was found to be locked, SR1 is  
also set. SR3 is set if the error occurred due to an incorrect VPP level.  
Note: Reading from the device after the BEFP SETUP and CONFIRM command se-  
quence outputs status register data. Do not issue the READ STATUS REGISTER com-  
mand; it will be interpreted as data to be loaded into the buffer.  
BEFP Program/Verify Phase: After the BEFP setup phase has completed, the host pro-  
gramming system must check SR[7,0] to determine the availability of the write buffer  
for data streaming. SR7 cleared indicates the device is busy and the BEFP program/veri-  
fy phase is activated. SR0 indicates the write buffer is available.  
Two basic sequences repeat in this phase: loading of the write buffer, followed by buffer  
data programming to the array. For BEFP, the count value for buffer loading is always  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
29  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Program Operations  
the maximum buffer size of 512 words. During the buffer-loading sequence, data is stor-  
ed to sequential buffer locations starting at address 0x00. Programming of the buffer  
contents to the array starts as soon as the buffer is full. If the number of words is less  
than 512, the remaining buffer locations must be filled with 0xFFFF.  
Note: The buffer must be completely filled for programming to occur. Supplying an ad-  
dress outside of the current block's range during a buffer-fill sequence causes the algo-  
rithm to exit immediately. Any data previously loaded into the buffer during the fill cy-  
cle is not programmed into the array.  
The starting address for data entry must be buffer size aligned; if not, the BEFP algo-  
rithm will be aborted, the program fails, and the (SR4) flag will be set.  
Data words from the write buffer are directed to sequential memory locations in the ar-  
ray; programming continues from where the previous buffer sequence ended. The host  
programming system must poll SR0 to determine when the buffer program sequence  
completes. SR0 cleared indicates that all buffer data has been transferred to the array;  
SR0 set indicates that the buffer is not available yet for the next fill cycle. The host sys-  
tem may check full status for errors at any time, but it is only necessary on a block basis  
after BEFP exit. After the buffer fill cycle, no WRITE cycles should be issued to the de-  
vice until SR0 = 0 and the device is ready for the next buffer fill.  
Note: Any spurious writes are ignored after a BUFFER FILL operation and when internal  
program is proceeding.  
The host programming system continues the BEFP algorithm by providing the next  
group of data words to be written to the buffer. Alternatively, it can terminate this phase  
by changing the block address to one outside of the current block’s range.  
The program/verify phase concludes when the programmer writes to a different block  
address; data supplied must be 0xFFFF. Upon program/verify phase completion, the de-  
vice enters the BEFP exit phase.  
Program Suspend  
Issuing the PROGRAM SUSPEND command while programming suspends the pro-  
gramming operation. This allows data to be accessed from the device other than the  
one being programmed. The PROGRAM SUSPEND command can be issued to any de-  
vice address. A PROGRAM operation can be suspended to perform reads only. Addition-  
ally, a PROGRAM operation that is running during an erase suspend can be suspended  
to perform a READ operation.  
When a programming operation is executing, issuing the PROGRAM SUSPEND com-  
mand requests the device to suspend the programming algorithm at predetermined  
points. The device continues to output status register data after the PROGRAM SUS-  
PEND command is issued. Programming is suspended when SR[7,2] are set.  
To read data from the device, the READ ARRAY command must be issued. READ ARRAY,  
READ STATUS REGISTER, READ DEVICE IDENTIFIER, READ CFI, and PROGRAM RE-  
SUME valid commands during a program suspend.  
During a program suspend, de-asserting CE# places the device in standby, reducing ac-  
tive current. VPP must remain at its programming level, and WP# must remain un-  
changed while in program suspend. If RST# is asserted, the device is reset.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
30  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Program Operations  
Program Resume  
The RESUME command instructs the device to continue programming, and automati-  
cally clears SR[7,2]. This command can be written to any address. If error bits are set,  
the status register should be cleared before issuing the next command. RST# must re-  
main de-asserted.  
Program Protection  
When VPP = VIL, absolute hardware write protection is provided for all device blocks. If  
VPP is at or below VPPLK, programming operations halt and SR3 is set, indicating a VPP  
level error. Block lock registers are not affected by the voltage level on VPP; they may still  
be programmed and read, even if VPP is less than VPPLK  
-
.
Figure 8: Example VPP Supply Connections  
VCC  
VPP  
VCC  
VPP  
VCC  
VCC  
VPP  
PROT#  
<
10K Ω  
-Factory programming with VPP = VPPH  
-Complete with program/erase  
-Low voltage programming only  
-Logic control of device protection  
protection when VPP  
<
VPPLK  
VCC  
VCC  
VPP  
VCC  
VCC  
VPP  
VPP  
V
PPH  
=
-Low voltage and factory programming  
-Low voltage programming only  
-Full device protection unavailable  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
31  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Erase Operations  
Erase Operations  
BLOCK ERASE Command  
ERASE operations are performed on a block basis. An entire block is erased each time a  
BLOCK ERASE command sequence is issued, and only one block is erased at a time.  
When a block is erased, each bit within that block reads as a logical 1.  
A BLOCK ERASE operation is initiated by writing the BLOCK ERASE SETUP command  
to the address of the block to be erased, followed by the BLOCK ERASE CONFIRM com-  
mand. If the device is placed in standby (CE# de-asserted) during a BLOCK ERASE oper-  
ation, the device completes the operation before entering standby. The VPP value must  
be above VPPLK and the block must be unlocked.  
During a BLOCK ERASE operation, the device executes a sequence of internally-timed  
events that conditions, erases, and verifies all bits within the block. Erasing the array  
changes the value in each cell from a 1 to a 0. Memory block array cells that with a value  
of 1 can be changed to 0 only by programming the block.  
The status register can be examined for block erase progress and errors by reading any  
address. The device remains in the read status register state until another command is  
written. SR0 indicates whether the addressed block is erasing. SR7 is set upon erase  
completion.  
SR7 indicates block erase status while the sequence executes. When the BLOCK ERASE  
operation has completed, SR5 = 1 (set) indicates an erase failure. SR3 = 1 indicates that  
the device could not perform the BLOCK ERASE operation because VPP was outside of  
its acceptable limits. SR1 = 1 indicates that the BLOCK ERASE operation attempted to  
erase a locked block, causing the operation to abort.  
Before issuing a new command, the status register contents should be examined and  
then cleared using the CLEAR STATUS REGISTER command. Any valid command can  
follow after the BLOCK ERASE operation has completed.  
The BLOCK ERASE operation is aborted by performing a reset or powering down the  
device. In either case, data integrity cannot be ensured, and it is recommended to erase  
again the blocks aborted.  
BLANK CHECK Command  
The BLANK CHECK operation determines whether a specified main block is blank; that  
is, completely erased. Other than a BLANK CHECK operation, only a BLOCK ERASE op-  
eration can ensure a block is completely erased. BLANK CHECK is especially useful  
when a BLOCK ERASE operation is interrupted by a power loss event.  
A BLANK CHECK operation can apply to only one block at a time. The only operation  
allowed simultaneously is a READ STATUS REGISTER operation. SUSPEND and RE-  
SUME operations and a BLANK CHECK operation are mutually exclusive.  
A BLANK CHECK operation is initiated by writing the BLANK CHECK SETUP command  
to the block address, followed by the CHECK CONFIRM command. When a successful  
command sequence is entered, the device automatically enters the read status state.  
The device then reads the entire specified block and determines whether any bit in the  
block is programmed or over-erased.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
32  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Erase Operations  
BLANK CHECK operation progress and errors are determined by reading the status reg-  
ister at any address within the block being accessed. SR7 = 0 is a BLANK CHECK busy  
status. SR7 = 1 is a BLANK CHECK operation complete status. The status register should  
be checked for any errors and then cleared. If the BLANK CHECK operation fails, mean-  
ing the block is not completely erased, SR5 = 1. CE# or OE# toggle (during polling) up-  
dates the status register.  
The READ STATUS REGISTER command must always be followed by a CLEAR STATUS  
REGISTER command. The device remains in status register mode until another com-  
mand is written to the device. Any command can follow once the BLANK CHECK com-  
mand is complete.  
ERASE SUSPEND Command  
The ERASE SUSPEND command suspends a BLOCK ERASE operation that is in pro-  
gress, enabling access to data in memory locations other than the one being erased. The  
ERASE SUSPEND command can be issued to any device address. A BLOCK ERASE oper-  
ation can be suspended to perform a WORD or BUFFER PROGRAM operation, or a  
READ operation within any block except the block that is erase suspended.  
When a BLOCK ERASE operation is executing, issuing the ERASE SUSPEND command  
requests the device to suspend the erase algorithm at predetermined points. The device  
continues to output status register data after the ERASE SUSPEND command is issued.  
Block erase is suspended when SR[7,6] are set.  
To read data from the device (other than an erase-suspended block), the READ ARRAY  
command must be issued. During erase suspend, a PROGRAM command can be issued  
to any block other than the erase-suspended block. Block erase cannot resume until  
program operations initiated during erase suspend complete. READ ARRAY, READ STA-  
TUS REGISTER, READ DEVICE IDENTIFIER, READ CFI, and ERASE RESUME are valid  
commands during erase suspend. Additionally, CLEAR STATUS REGISTER, PROGRAM,  
PROGRAM SUSPEND, BLOCK LOCK, BLOCK UNLOCK, and BLOCK LOCK DOWN are  
valid commands during an ERASE SUSPEND operation.  
During an erase suspend, de-asserting CE# places the device in standby, reducing active  
current. VPP must remain at a valid level, and WP# must remain unchanged while in  
erase suspend. If RST# is asserted, the device is reset.  
ERASE RESUME Command  
The ERASE RESUME command instructs the device to continue erasing, and automati-  
cally clears SR[7,6]. This command can be written to any address. If status register error  
bits are set, the status register should be cleared before issuing the next instruction.  
RST# must remain de-asserted.  
Erase Protection  
When VPP = VIL, absolute hardware erase protection is provided for all device blocks. If  
VPP is at or below VPPLK, ERASE operations halt and SR3 is set indicating a VPP-level er-  
ror.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
33  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Security Operations  
Security Operations  
Block Locking  
Individual instant block locking is used to protect user code and/or data within the  
flash memory array. All blocks power-up in a locked state to protect array data from be-  
ing altered during power transitions. Any block can be locked or unlocked with no la-  
tency. Locked blocks cannot be programmed or erased; they can only be read.  
Software-controlled security is implemented using the BLOCK LOCK and BLOCK UN-  
LOCK commands. Hardware-controlled security can be implemented using the BLOCK  
LOCK DOWN command along with asserting WP#. Also, VPP data security can be used  
to inhibit PROGRAM and ERASE operations.  
BLOCK LOCK Command  
To lock a block, issue the BLOCK LOCK SETUP command, followed by the BLOCK LOCK  
command issued to the desired block’s address. If the SET READ CONFIGURATION  
REGISTER command is issued after the BLOCK LOCK SETUP command, the device  
configures the RCR instead.  
BLOCK LOCK and UNLOCK operations are not affected by the voltage level on VPP. The  
block lock bits may be modified and/or read even if VPP is at or below VPPLK  
.
BLOCK UNLOCK Command  
The BLOCK UNLOCK command is used to unlock blocks. Unlocked blocks can be read,  
programmed, and erased. Unlocked blocks return to a locked state when the device is  
reset or powered down. If a block is in a lock-down state, WP# must be de-asserted be-  
fore it can be unlocked.  
BLOCK LOCK DOWN Command  
A locked or unlocked block can be locked-down by writing the BLOCK LOCK DOWN  
command sequence. Blocks in a lock-down state cannot be programmed or erased;  
they can only be read. However, unlike locked blocks, their locked state cannot be  
changed by software commands alone. A locked-down block can only be unlocked by  
issuing the BLOCK UNLOCK command with WP# de-asserted. To return an unlocked  
block to locked-down state, a BLOCK LOCK DOWN command must be issued prior to  
changing WP# to VIL. Locked-down blocks revert to the locked state upon reset or power  
up the device.  
Block Lock Status  
The READ DEVICE IDENTIFIER command is used to determine a block’s lock status.  
DQ[1:0] display the addressed block’s lock status; DQ0 is the addressed block’s lock bit,  
while DQ1 is the addressed block’s lock-down bit.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
34  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Security Operations  
Figure 9: Block Locking State Diagram  
(Power-up/  
Reset default)  
[000]  
D0h  
01h  
[001]  
2Fh  
Program/Erase Allowed  
WP# = VIL = 0  
Program/Erase Prevented  
2Fh  
WP# = VIL = 0  
WP# toggle  
D0h, 01h, or 2Fh  
[010]  
[011] (Locked down)  
(Virtual lock-down)  
WP# toggle  
(Lock down  
disabled,  
D0h  
D0h  
[110]  
[100]  
01h/2Fh  
[111]  
WP# = VIH  
)
Program/Erase Allowed  
WP# = VIH = 1  
Program/Erase Prevented  
WP# = VIH = 1  
2Fh  
01h  
2Fh  
(Power-up/  
Reset default)  
[101]  
1. D0h = UNLOCK command; 01h = LOCK command; 60h (not shown) LOCK SETUP com-  
mand; 2Fh = LOCK DOWN command.  
Note:  
Block Locking During Suspend  
Block lock and unlock changes can be performed during an erase suspend. To change  
block locking during an ERASE operation, first issue the ERASE SUSPEND command.  
Monitor the status register until SR7 and SR6 are set, indicating the device is suspended  
and ready to accept another command.  
Next, write the desired lock command sequence to a block, which changes the lock  
state of that block. After completing BLOCK LOCK or BLOCK UNLOCK operations, re-  
sume the ERASE operation using the ERASE RESUME command.  
Note:  
A BLOCK LOCK SETUP command followed by any command other than BLOCK LOCK,  
BLOCK UNLOCK, or BLOCK LOCK DOWN produces a command sequence error and  
set SR4 and SR5. If a command sequence error occurs during an erase suspend, SR4 and  
SR5 remains set, even after the erase operation is resumed. Unless the Status Register is  
cleared using the CLEAR STATUS REGISTER command before resuming the ERASE op-  
eration, possible erase errors may be masked by the command sequence error.  
If a block is locked or locked-down during an erase suspend of the same block, the lock  
status bits change immediately. However, the ERASE operation completes when it is re-  
sumed. BLOCK LOCK operations cannot occur during a program suspend.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
35  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Security Operations  
Selectable OTP Blocks  
The OTP security feature on the device is backward-compatible to the earlier genera-  
tion devices. Contact your local Micron representative for details about its implementa-  
tion.  
Password Access  
The password access is a security enhancement offered on the device. This feature pro-  
tects information stored in array blocks by preventing content alteration or reads until a  
valid 64-bit password is received. The password access may be combined with nonvola-  
tile protection and/or volatile protection to create a multi-tiered solution.  
Contact your Micron sales office for further details concerning password access.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
36  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Status Register  
Status Register  
Read Status Register  
To read the status register, issue the READ STATUS REGISTER command at any address.  
Status register information is available at the address that the READ STATUS REGISTER,  
WORD PROGRAM, or BLOCK ERASE command is issued to. Status register data is auto-  
matically made available following a word program, block erase, or block lock com-  
mand sequence. Reads from the device after any of these command sequences will out-  
put the devices status until another valid command is written (e.g. READ ARRAY com-  
mand).  
The status register is read using single asynchronous mode or synchronous burst mode  
reads. Status register data is output on DQ[7:0], while 0x00 is output on DQ[15:8]. In  
asynchronous mode, the falling edge of OE# or CE# (whichever occurs first) updates  
and latches the status register contents. However, when reading the status register in  
synchronous burst mode, CE# or ADV# must be toggled to update status data.  
The device write status bit (SR7) provides the overall status of the device. SR[6:1]  
present status and error information about the PROGRAM, ERASE, SUSPEND, VPP, and  
BLOCK LOCK operations.  
Note: Reading the status register is a nonarray READ operation. When the operation oc-  
curs in asynchronous page mode, only the first data is valid and all subsequent data are  
undefined. When the operation occurs in synchronous burst mode, the same data word  
requested will be output on successive clock edges until the burst length requirements  
are satisfied.  
Table 12: Status Register Description  
Notes apply to entire table  
Bits Name  
Bit Settings  
Description  
7
Device write status  
(DWS)  
0 = Busy  
1 = Ready  
Status bit: Indicates whether a PROGRAM or  
ERASE command cycle is in progress.  
6
Erase Suspend Status  
(ESS)  
0 = Not in effect  
1 = In effect  
Status bit: Indicates whether an ERASE operation  
has been or is going to be suspended.  
5:4  
Erase/Blank check status 00 = PROGRAM/ERASE successful Status/Error bit: Indicates whether an ERASE/  
(ES)  
01 = PROGRAM error  
10 = ERASE/BLANK CHECK error  
11 = Command sequence error  
BLANK CHECK or PROGRAM operation was success-  
ful. When an error is returned, the operation is  
aborted.  
Program status (PS)  
3
2
1
0
VPP status (VPPS)  
0 = Within limits  
1 = Exceeded limits (VPP VPPLK  
Status bit: Indicates whether a PROGRAM/ERASE  
operation is within acceptable voltage range limits.  
)
Program suspend status 0 = Not in effect  
(PSS)  
Status bit: Indicates whether a PROGRAM opera-  
tion has been or is going to be suspended.  
1 = In effect  
Block lock status (BLS)  
0 = Not locked  
1 = Locked (operation aborted)  
Status bit: Indicates whether a block is locked  
when a PROGRAM or ERASE operation is initiated.  
BEFP status (BWS)  
Notes:  
0 = BEFP complete  
1 = BEFP in progress  
Status bit: Indicates whether BEFP data has com-  
pleted loading into the buffer.  
1. Default value = 0x80.  
2. Always clear the status register prior to resuming ERASE operations. This eliminates sta-  
tus register ambiguity when issuing commands during ERASE SUSPEND. If a command  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
37  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Status Register  
sequence error occurs during an ERASE SUSPEND, the status register contains the com-  
mand sequence error status (SR[7,5,4] set). When the ERASE operation resumes and fin-  
ishes, possible errors during the operation cannot be detected via the status register be-  
cause it contains the previous error status.  
3. When bits 5:4 indicate a PROGRAM/ERASE operation error, either a CLEAR STATUS REG-  
ISTER 50h) or a RESET command must be issued with a 15µs delay.  
Clear Status Register  
The CLEAR STATUS REGISTER command clears the status register. It functions inde-  
pendently of VPP. The device sets and clears SR[7,6,2], but it sets bits SR[5:3,1] without  
clearing them. The status register should be cleared before starting a command se-  
quence to avoid any ambiguity. A device reset also clears the status register.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
38  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Configuration Register  
Configuration Register  
Read Configuration Register  
The read configuration register (RCR) is a 16-bit read/write register used to select bus  
read mode (synchronous or asynchronous) and to configure device synchronous burst  
read characteristics. To modify RCR settings, use the CONFIGURE READ CONFIGURA-  
TION REGISTER command. RCR contents can be examined using the READ DEVICE  
IDENTIFIER command and then reading from offset 0x05. On power-up or exit from re-  
set, the RCR defaults to asynchronous mode. RCR bits are described in more detail be-  
low.  
Note: Reading the configuration register is a nonarray READ operation. When the oper-  
ation occurs in asynchronous page mode, only the first data is valid, and all subsequent  
data are undefined. When the operation occurs in synchronous burst mode, the same  
word of data requested will be output on successive clock edges until the burst length  
requirements are satisfied.  
Table 13: Read Configuration Register  
Bits Name  
Settings/Description  
15 Read mode (RM)  
0 = Synchronous burst mode read  
1 = Asynchronous page mode read (default)  
14:11 Latency count  
(LC[3:0])  
0000 = Code 0 (reserved)  
0001 = Code 1 (reserved)  
0010 = Code 2 (reserved)  
0011 = Code 3  
0110 = Code 6  
0111 = Code 7  
1000 = Code 8  
1001 = Code 9  
1010 = Code 10  
1011 = Code11  
1100 = Code 12  
1101 = Code 13  
1110 = Code 14  
0100 = Code 4  
1111 = Code 15 (default)  
0101 = Code 5  
10 WAIT polarity (WP)  
0 = WAIT signal is active LOW (default)  
1 = WAIT signal is active HIGH  
9
8
Reserved (R)  
Default 0, Nonchangeable  
WAIT delay (WD)  
0 = WAIT de-asserted with valid data  
1 = WAIT de-asserted one data cycle before valid data (default)  
7
6
Burst sequence (BS)  
Clock edge (CE)  
Default 0, Nonchangeable  
0 = Falling edge  
1 = Rising edge (default)  
5:4 Reserved (R)  
Burst wrap (BW)  
Default 0, Nonchangeable  
3
0 = Wrap; Burst accesses wrap within burst length set by BL[2:0]  
1 = No Wrap; Burst accesses do not wrap within burst length (default)  
2:0 Burst length (BL[2:0]) 001 = 4-word burst  
010 = 8-word burst  
011 = 16-word burst  
111 = Continuous burst (default)  
(Other bit settings are reserved)  
Read Mode  
The read mode (RM) bit selects synchronous burst mode or asynchronous page mode  
operation for the device. When the RM bit is set, asynchronous page mode is selected  
(default). When RM is cleared, synchronous burst mode is selected.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
39  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Configuration Register  
Latency Count  
The latency count (LC) bits tell the device how many clock cycles must elapse from the  
rising edge of ADV# (or from the first valid clock edge after ADV# is asserted) until the  
first valid data word is driven to DQ[15:0]. The input clock frequency is used to deter-  
mine this value. The First Access Latency Count figure shows the data output latency for  
different LC settings.  
Figure 10: First Access Latency Count  
CLK [C]  
Valid  
Address [A]  
Address  
ADV# [V]  
Code 0 (Reserved  
)
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
DQ[15:0] [D/Q]  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Code  
1
(Reserved)  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
DQ[15:0] [D/Q]  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Code  
2
(Reserved)  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Output  
Output  
Output  
Output  
Output  
Output  
Code  
Code  
Code  
Code  
Code  
3
4
5
6
7
Valid  
Valid  
Valid  
Valid  
Valid  
Output  
Output  
Output  
Output  
Output  
Valid  
Valid  
Valid  
Valid  
Output  
Output  
Output  
Output  
Valid  
Valid  
Valid  
Output  
Output  
Output  
Valid  
Valid  
Output  
Output  
Valid  
Output  
1. First Access Latency Count Calculation:  
Note:  
• 1 / CLK frequency = CLK period (ns)  
• n x (CLK period) tAVQV (ns) – tCHQV (ns)  
• Latency Count = n  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
40  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Configuration Register  
Figure 11: Example Latency Count Setting Using Code 3  
t
Data  
0
1
2
3
4
CLK  
CE#  
ADV#  
Address  
A[MAX:1]  
Code 3  
High-Z  
D[15:0]  
Data  
R103  
End of Wordline Considerations  
End of wordline (EOWL) wait states can result when the starting address of the burst op-  
eration is not aligned to a 16-word boundary; that is, A[4:1] of the start address does not  
equal 0x0. The figure below illustrates the end of wordline wait state(s) that occur after  
the first 16-word boundary is reached. The number of data words and wait states is  
summarized in the table below.  
Figure 12: End of Wordline Timing Diagram  
Latency Count  
CLK  
Address  
A[MAX:1]  
DQ[15:0]  
ADV#  
Data  
Data  
Data  
OE#  
EOWL  
WAIT#  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
41  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Configuration Register  
Table 14: End of Wordline Data and WAIT State Comparison  
130nm  
65nm  
Latency Count  
Data Words  
WAIT States  
Not Supported  
0 to 1  
Data Words  
WAIT States  
Not Supported  
Not Supported  
Not Supported  
Not Supported  
0 to 4  
1
2
Not Supported  
Not Supported  
4
Not Supported  
3
4
0 to 2  
Not Supported  
4
4
0 to 3  
Not Supported  
5
4
0 to 4  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
6
4
0 to 5  
0 to 5  
7
4
0 to 6  
0 to 6  
8
Not Supported  
Not Supported  
0 to 7  
9
0 to 8  
10  
11  
12  
13  
14  
15  
0 to 9  
0 to 10  
0 to 11  
0 to 12  
0 to 13  
0 to 14  
WAIT Signal Polarity and Functionality  
The WAIT polarity (WP) bit, RCR10 determines the asserted level (VOH or VOL) of WAIT.  
When WP is set, WAIT is asserted HIGH (default). When WP is cleared, WAIT is asserted  
LOW. The WAIT signal changes state on valid clock edges during active bus cycles (CE#  
asserted, OE# asserted, RST# de-asserted).  
The WAIT signal indicates data valid when the device is operating in synchronous mode  
(RCR15 = 0). The WAIT signal is only de-asserted when data is valid on the bus. When  
the device is operating in synchronous nonarray read mode, such as read status, read  
ID, or read CFI, the WAIT signal is also de-asserted when data is valid on the bus. WAIT  
behavior during synchronous nonarray reads at the end of wordline works correctly on-  
ly on the first data access. When the device is operating in asynchronous page mode,  
asynchronous single word read mode, and all write operations, WAIT is set to a de-as-  
serted state as determined by RCR10.  
Table 15: WAIT Functionality Table  
Condition  
WAIT  
High-Z  
Notes  
CE# = 1, OE# = X or CE# = 0, OE# = 1  
CE# = 0, OE# = 0  
1
1
1
1
1
Active  
Synchronous Array Reads  
Synchronous Nonarray Reads  
All Asynchronous Reads  
Active  
Active  
De-asserted  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
42  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Configuration Register  
Table 15: WAIT Functionality Table (Continued)  
Condition  
WAIT  
Notes  
All Writes  
High-Z  
1, 2  
1. Active means that WAIT is asserted until data becomes valid, then deasserts.  
2. When OE# = VIH during writes, WAIT = High-Z.  
Notes:  
WAIT Delay  
The WAIT delay (WD) bit controls the WAIT assertion delay behavior during synchro-  
nous burst reads. WAIT can be asserted either during or one data cycle before valid data  
is output on DQ[15:0]. When WD is set, WAIT is de-asserted one data cycle before valid  
data (default). When WD is cleared, WAIT is de-asserted during valid data.  
Burst Sequence  
The burst sequence (BS) bit selects linear burst sequence (default). Only linear burst se-  
quence is supported. The synchronous burst sequence for all burst lengths, as well as  
the effect of the burst wrap (BW) setting are shown below.  
Table 16: Burst Sequence Word Ordering  
Burst Addressing Sequence (DEC)  
Start  
Address  
(DEC)  
Burst  
Wrap  
(RCR3)  
4-Word Burst  
(BL[2:0] =  
0b001)  
8-Word Burst  
16-Word Burst  
(BL[2:0] = 0b011)  
Continuous Burst  
(BL[2:0] = 0b111)  
(BL[2:0] = 0b010)  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3-4…14-15  
1-2-3-4-5…15-0  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
2-3-4-5-6…15-0-1  
3-4-5-6-7…15-0-1-2  
4-5-6-7-8…15-0-1-2-3  
5-6-7-8-9…15-0-1-2-3-4  
6-7-8-9-10…15-0-1-2-3-4-5  
7-8-9-10…15-0-1-2-3-4-5-6  
14  
15  
0
0
14-15-0-1-2…12-13  
15-0-1-2-3…13-14  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
0
1
2
3
1
1
1
1
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
3-4-5-6-7-8-9-10  
0-1-2-3-4…14-15  
1-2-3-4-5…15-16  
2-3-4-5-6…16-17  
3-4-5-6-7…17-18  
0-1-2-3-4-5-6-…  
1-2-3-4-5-6-7-…  
2-3-4-5-6-7-8-…  
3-4-5-6-7-8-9-…  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
43  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Configuration Register  
Table 16: Burst Sequence Word Ordering (Continued)  
Burst Addressing Sequence (DEC)  
Start  
Address  
(DEC)  
Burst  
Wrap  
(RCR3)  
4-Word Burst  
(BL[2:0] =  
0b001)  
8-Word Burst  
(BL[2:0] = 0b010)  
16-Word Burst  
(BL[2:0] = 0b011)  
Continuous Burst  
(BL[2:0] = 0b111)  
4
5
1
1
1
1
4-5-6-7-8-9-10-11  
5-6-7-8-9-10-11-12  
6-7-8-9-10-11-12-13  
7-8-9-10-11-12-13-14  
4-5-6-7-8…18-19  
5-6-7-8-9…19-20  
6-7-8-9-10…20-21  
7-8-9-10-11…21-22  
4-5-6-7-8-9-10…  
5-6-7-8-9-10-11…  
6-7-8-9-10-11-12-…  
7-8-9-10-11-12-13…  
6
7
14  
15  
1
1
14-15-16-17-18…28-29  
15-16-17-18-19…29-30  
14-15-16-17-18-19-20-…  
15-16-17-18-19-20-21-…  
Clock Edge  
Burst Wrap  
The clock edge (CE) bit selects either a rising (default) or falling clock edge for CLK. This  
clock edge is used at the start of a burst cycle to output synchronous data and to  
assert/de-assert WAIT.  
The burst wrap (BW) bit determines whether 4-word, 8-word, or 16-word burst length  
accesses wrap within the selected word length boundaries or cross word length boun-  
daries. When BW is set, burst wrapping does not occur (default). When BW is cleared,  
burst wrapping occurs.  
When performing synchronous burst reads with BW set (no wrap), an output delay may  
occur when the burst sequence crosses its first device row (16-word) boundary. If the  
burst sequence’s start address is 4-word aligned, then no delay occurs. If the start ad-  
dress is at the end of a 4-word boundary, the worst-case output delay is one clock cycle  
less than the first access latency count. This delay can take place only once and doesn’t  
occur if the burst sequence does not cross a device row boundary. WAIT informs the  
system of this delay when it occurs.  
Burst Length  
The burst length bits (BL[2:0]) select the linear burst length for all synchronous burst  
reads of the flash memory array. The burst lengths are 4-word, 8-word, 16-word, or con-  
tinuous.  
Continuous burst accesses are linear only and do not wrap within any word length  
boundaries. When a burst cycle begins, the device outputs synchronous burst data until  
it reaches the end of the “burstable” address space.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
44  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
One-Time Programmable Registers  
One-Time Programmable Registers  
Read OTP Registers  
The device contains 17 OTP registers that can be used to implement system security  
measures and/or device identification. Each OTP register can be individually locked.  
The first 128-bit OTP register is comprised of two 64-bit (8-word) segments. The lower  
64-bit segment is preprogrammed at the Micron factory with a unique 64-bit number.  
The upper 64-bit segment, as well as the other sixteen 128-bit OTP registers, are blank.  
Users can program them as needed. Once programmed, users can also lock the OTP  
register(s) to prevent additional bit programming (see the OTP Register Map figure be-  
low).  
The OTP registers contain OTP bits; when programmed, PR bits cannot be erased. Each  
OTP register can be accessed multiple times to program individual bits, as long as the  
register remains unlocked.  
Each OTP register has an associated lock register bit. When a lock register bit is pro-  
grammed, the associated OTP register can only be read; it can no longer be program-  
med. Additionally, because the lock register bits themselves are OTP, when program-  
med, they cannot be erased. Therefore, when an OTP register is locked, it cannot be un-  
locked.  
The OTP registers can be read from an OTP-RA address. To read the OTP register, a  
READ DEVICE IDENTIFIER command is issued at an OTP-RA address to place the de-  
vice in the read device identifier state. Next, a READ operation is performed using the  
address offset corresponding to the register to be read. The Device Identifier Informa-  
tion table shows the address offsets of the OTP registers and lock registers. PR data is  
read 16 bits at a time.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
45  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
One-Time Programmable Registers  
Figure 13: OTP Register Map  
0x109  
128-bit OTP  
Register 16  
User Programmable  
0x102  
0x91  
128-bit OTP  
Register 1  
User Programmable  
Lock Register 1  
0x8A  
0x89  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x88  
64-bit Segment  
User Programmable  
128-bit OTP  
Register 0  
0x85  
0x84  
64-bit Segment  
Factory Programed  
0x81  
0x80  
Lock Register 0  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Program OTP Registers  
To program an OTP register, a PROGRAM OTP REGISTER command is issued at the pa-  
rameter’s base address plus the offset of the desired OTP register location. Next, the de-  
sired OTP register data is written to the same OTP register address.  
The device programs the 64-bit and 128-bit user-programmable OTP register data 16  
bits at a time. Issuing the PROGRAM OTP REGISTER command outside of the OTP reg-  
ister’s address space causes a program error (SR4 set). Attempting to program a locked  
OTP register causes a program error (SR4 set) and a lock error (SR1 set).  
Lock OTP Registers  
Each OTP register can be locked by programming its respective lock bit in the lock regis-  
ter. The corresponding bit in the lock register is programmed by issuing the PROGRAM  
LOCK REGISTER command, followed by the desired lock register data. The physical ad-  
dresses of the lock registers are 0x80 for register 0 and 0x89 for register 1; these address-  
es are used when programming the lock registers.  
Bit 0 of lock register 0 is programmed during the manufacturing process, locking the  
lower-half segment of the first 128-bit OTP register. Bit 1 of lock register 0, which corre-  
sponds to the upper-half segment of the first 128-bit OTP register, can be programmed  
by the user . When programming bit 1 of lock register 0, all other bits need to be left as 1  
such that the data programmed is 0xFFFD.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
46  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
One-Time Programmable Registers  
Lock register 1 controls the the upper sixteen 128-bit OTP registers. Each bit of lock reg-  
ister 1 corresponds to a specific 128-bit OTP register. Programming a bit in lock register  
1 locks the corresponding 128-bit OTP register; e.g., programming LR1.0 locks the corre-  
sponding OTP register 1.  
Note: Once locked, the OTP registers cannot be unlocked.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
47  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Common Flash Interface  
The CFI is part of an overall specification for multiple command-set and control-inter-  
face descriptions. System software can parse the CFI database structure to obtain infor-  
mation about the device, such as block size, density, bus width, and electrical specifica-  
tions. The system software determines which command set to use to properly perform a  
WRITE command, a BLOCK ERASE or READ command, and to otherwise control the  
device. Information in the CFI database can be viewed by issuing the READ CFI com-  
mand.  
READ CFI Structure Output  
The READ CFI command obtains CFI database structure information and always out-  
puts it on the lower byte, DQ[7:0], for a word-wide (x16) device. This CFI-compliant de-  
vice always outputs 00h data on the upper byte (DQ[15:8]).  
The numerical offset value is the address relative to the maximum bus width the device  
supports. For this device family, the starting address is a 10h, which is a word address  
for x16 devices. For example, at this starting address of 10h, a READ CFI command out-  
puts an ASCII Q in the lower byte and 00h in the higher byte as shown here.  
In all the CFI tables shown here, address and data are represented in hexadecimal nota-  
tion. In addition, because the upper byte of word-wide devices is always 00h, as shown  
in the example here, the leading 00 has been dropped and only the lower byte value is  
shown. Following is a table showing the CFI output for a x16 device, beginning at ad-  
dress 10h and a table showing an overview of the CFI database sections with their ad-  
dresses.  
Table 17: Example of CFI Output (x16 device) as a Function of Device and Mode  
Hex  
Offset  
Hex  
Code  
ASCII Value  
(DQ[15:8])  
ASCII Value  
(DQ[7:0])  
Device  
Address  
00010:  
00011:  
00012:  
00013:  
00014:  
00015:  
00016:  
00017:  
00018:  
51  
52  
00  
00  
00  
00  
00  
00  
00  
00  
00  
Q
R
59  
Y
P_IDLO  
P_IDHI  
PLO  
Primary vendor ID  
Primary vendor table address  
Alternate vendor ID  
PHI  
A_IDLO  
A_IDHI  
:
:
:
:
:
:
:
:
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
48  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 18: CFI Database: Addresses and Sections  
Address  
00001:Fh  
00010h  
Section Name  
Description  
Reserved  
Reserved for vendor-specific information  
CFI ID string  
Flash device command set ID (identification) and vendor da-  
ta offset  
0001Bh  
00027h  
P
System interface information  
Device geometry definition  
Flash device timing and voltage  
Flash device layout  
Primary Micron-specific extended query Vendor-defined informaton specific to the primary vendor  
algorithm (offset 15 defines P which points to the primary  
Micron-specific extended query table.)  
Table 19: CFI ID String  
Hex  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
Offset  
Length  
Description  
Address  
10:  
10h  
3
Query unique ASCII string “QRY”  
- -51  
- -52  
- -59  
- -01  
- -00  
Q
11:  
R
12:  
Y
13h  
2
Primary vendor command set and control  
interface ID code. 16-bit ID code for ven-  
dor-specified algorithms.  
13:  
Primary vendor ID number  
14:  
15h  
17h  
2
2
Extended query table primary algorithm  
address.  
15:  
16:  
17:  
18:  
- -0A  
- -01  
- -00  
- -00  
Primary vendor table ad-  
dress, primary algorithm  
Alternate vendor command set and control  
interface ID code. 0000h means no second  
vendor-specified algorithm exists.  
Alternate vendor ID number  
19h  
2
Secondary algorithm extended query table  
address. 0000h means none exists.  
19:  
- -00  
- -00  
Primary vendor table ad-  
dress, secondary algorithm  
1A:  
1. The CFI ID string provides verification that the device supports the CFI specification. It  
also indicates the specification version and supported vendor-specific command sets.  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
49  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 20: System Interface Information  
Hex  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
Offset  
Length  
Description  
Address  
1Bh  
1
VCC logic supply minimum program/erase voltage.  
bits 0 - 3 BCD 100 mV  
1Bh  
- -23  
2.3V  
bits 4 - 7 BCD volts  
1Ch  
1Dh  
1Eh  
1
1
1
VCC logic supply maximum program/erase volt-  
age.  
bits 0 - 3 BCD 100 mV  
bits 4 - 7 BCD volts  
1Ch  
1Dh  
1Eh  
- -36  
3.6V  
VPP [programming] supply minimum program/  
erase voltage.  
bits 0 - 3 BCD 100 mV  
- -85  
- -95  
8.5V  
9.5V  
bits 4 - 7 hex volts  
VPP [programming] supply maximum program/  
erase voltage.  
bits 0 - 3 BCD 100 mV  
bits 4 - 7 hex volts  
1Fh  
20h  
1
1
“n” such that typical single word program time-  
1Fh  
20h  
- -09  
- -0A  
512µs  
out = 2n μs.  
“n” such that typical full buffer write timeout =  
2n μs.  
1024µs  
21h  
22h  
1
1
“n” such that typical block erase timeout = 2n ms.  
“n” such that typical full chip erase timeout = 2n  
ms.  
21h  
22h  
- -0A  
- -00  
1s  
NA  
23h  
24h  
25h  
26h  
1
1
1
1
“n” such that maximum word program timeout =  
2n times typical.  
23h  
24h  
25h  
26h  
- -01  
- -02  
- -02  
- -00  
1024µs  
4096µs  
4s  
“n” such that maximum buffer write timeout =  
2n times typical.  
“n” such that maximum block erase timeout = 2n  
times typical.  
“n” such that maximum chip erase timeout = 2n  
times typical.  
NA  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
50  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 21: Device Geometry  
Hex  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
Offset Length  
Description  
n such that device size in bytes = 2n.  
Address  
27:  
27h  
28h  
1
2
See Note 1  
x16  
Flash device interface code assignment: n such that n + 1  
specifies the bit field that represents the flash device width  
capabilities as described here:  
bit 0: x8  
28:  
- -01  
- -00  
29:  
bit 1: x16  
bit 2: x32  
bit 3: x64  
bits 4 - 7: –  
bits 8 - 15: –  
2Ah  
2Ch  
2
1
n such that maximum number of bytes in write buffer = 2n.  
2Ah  
2Bh  
2Ch  
- -0A  
- -00  
1024  
Number of erase block regions (x) within the device:  
1) x = 0 means no erase blocking; the device erases in bulk.  
2) x specifies the number of device regions with one or more  
contiguous, same-size erase blocks.  
See Note 1  
3) Symmetrically blocked partitions have one blocking region.  
2Dh  
31h  
35h  
4
4
4
Erase block region 1 information:  
bits 0 - 15 = y, y + 1 = number of identical-size erase blocks.  
bits 16 - 31 = z, region erase block(s) size are z x 256 bytes.  
2D:  
2E:  
2F:  
30:  
See Note 1  
See Note 1  
See Note 1  
Erase block region 2 information:  
bits 0 - 15 = y, y + 1 = number of identical-size erase blocks.  
bits 16 - 31 = z, region erase block(s) size are z x 256 bytes.  
31:  
32:  
33:  
34:  
Reserved for future erase block region information.  
35:  
36:  
37:  
38:  
1. See Block Region Map Information table.  
Note:  
Table 22: Block Region Map Information  
512Mb  
1Gb  
Bottom  
2Gb  
Symmetrical  
--1B  
Address  
27:  
Top  
--1A  
--01  
--00  
--0A  
--00  
--02  
--FE  
Bottom  
--1A  
--01  
Symmetrical  
--1A  
Top  
--1B  
--01  
--00  
--0A  
--00  
--02  
--FE  
Symmetrical  
--1B  
--01  
--00  
--0A  
--00  
--02  
--03  
--1B  
--01  
--00  
--0A  
--00  
--01  
--FF  
28:  
--01  
--01  
29:  
--00  
--00  
--00  
2A:  
--0A  
--00  
--0A  
--0A  
2B:  
--00  
--00  
2C:  
--02  
--01  
--01  
2D:  
--03  
--FF  
--FF  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
51  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 22: Block Region Map Information (Continued)  
512Mb  
1Gb  
Bottom  
2Gb  
Symmetrical  
--03  
Address  
2E:  
Top  
--01  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
Bottom  
--00  
Symmetrical  
--01  
Top  
--03  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
Symmetrical  
--00  
--80  
--00  
--FE  
--03  
--00  
--02  
--00  
--03  
--00  
--02  
--00  
--00  
2F:  
--80  
--00  
--00  
30:  
--00  
--02  
--02  
31:  
--FE  
--00  
--00  
32:  
--01  
--00  
--00  
33:  
--00  
--00  
--00  
34:  
--02  
--00  
--00  
35:~38:  
--00  
--00  
--00  
Table 23: Primary Vendor-Specific Extended Query  
Hex Offset  
ASCII Value  
(DQ[7:0])  
P = 10Ah  
Length  
Description  
Address Hex Code  
(P+0)h  
(P+1)h  
(P+2)h  
3
Primary extended query table, unique ASCII  
string: PRI  
10A:  
10B:  
10C:  
10D:  
10E:  
- -50  
- -52  
- -49  
- -31  
- -35  
P
R
I
(P+3)h  
(P+4)h  
1
1
Major version number, ASCII  
Minor version number, ASCII  
1
5
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
52  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 23: Primary Vendor-Specific Extended Query (Continued)  
Hex Offset  
ASCII Value  
P = 10Ah  
Length  
Description  
Address Hex Code  
(DQ[7:0])  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
4
Optional feature and command support (1 = yes;  
0 = no)  
Bits 11 - 29 are reserved; undefined bits are 0  
If bit 31 = 1, then another 31-bit field of optional  
features follows at the end of the bit 30 field.  
10F:  
110:  
111:  
112:  
- -E6  
- -01  
- -00  
See Note 1  
Bit 0: Chip erase supported.  
bit 0 = 0  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
Bit 1: Suspend erase supported.  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 1  
bit 8 = 1  
bit 9 = 0  
Bit 2: Suspend program supported.  
Bit 3: Legacy lock/unlock supported.  
Bit 4: Queued erase supported.  
Bit 5: Instant individual block locking supported.  
Bit 6: OTP bits supported.  
Bit 7: Page mode read supported.  
Bit 8: Synchronous read supported.  
Bit 9: Simultaneous operations supported.  
Bit 10: Extended Flash array block supported.  
bit 10 = 0  
bit 11 = 0  
Bit 11: Permanent block locking of up to full  
main array supported.  
Bit 12: Permanent block locking of up to partial  
main array supported.  
bit 12 = 0  
No  
Bit 30: CFI links to follow:  
bit 30  
bit 31  
See Note 1  
Bit 31: Another optional features field to follow.  
(P+9)h  
1
2
Supported functions after SUSPEND: READ AR-  
RAY, STATUS, QUERY. Other supported options in-  
clude:  
113:  
- -01  
Bits 1 - 7: Reserved; undefined bits are 0.  
Bit 0: Program supported after ERASE SUSPEND.  
bit 0 = 1  
Yes  
(P+A)h  
(P+B)h  
Block Status Register mask:  
Bits 2 - 15 are reserved; undefined bits are 0.  
114:  
115:  
- -03  
- -00  
Bit 0: Block lock-bit status register active.  
Bit 1: Block lock-down bit status active.  
Bit 4: EFA block lock-bit status register active.  
Bit 5: EFA block lock-bit status active.  
bit 0 = 1  
bit 1 = 1  
bit 4 = 0  
bit 5 = 0  
Yes  
Yes  
No  
No  
3.0V  
(P+C)h  
1
VCC logic supply highest performance program/  
erase voltage.  
116:  
- -30  
bits 0 - 3 BCD 100 mV  
bits 4 - 7 hex value in volts  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
53  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 23: Primary Vendor-Specific Extended Query (Continued)  
Hex Offset  
ASCII Value  
P = 10Ah  
Length  
Description  
Address Hex Code  
(DQ[7:0])  
(P+D)h  
1
VPP optimum program/erase voltage.  
bits 0 - 3 BCD 100mV  
117:  
- -90  
9.0V  
bits 4 - 7 hex value in volts  
1. See Optional Features Fields table.  
Note:  
Table 24: Optional Features Field  
Discrete  
2Gb  
Address  
Bottom  
Top  
Bottom  
Top  
die 1 (B)  
40:  
die 2 (T)  
--00  
die 1 (T)  
--40  
die 2 (B)  
--00  
112:  
--00  
--00  
Table 25: One Time Programmable (OTP) Space Information  
Hex Offset  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
P = 10Ah  
Length  
Description  
Address  
(P+E)h  
1
Number of OTP block fields in JEDEC ID space.  
00h indicates that 256 OTP fields are available.  
118:  
- -02  
2
OTP Field 1: OTP Description:  
119:  
11A:  
1B:  
- -80  
- -00  
- -03  
- -03  
80h  
00h  
This field describes user-available OTP bytes.  
Some are preprogrammed with device-unique se-  
rial numbers. Others are user-programmable.  
Bits 0-15 point to the OTP Lock byte (the first  
byte).  
8 byte  
8 byte  
11C:  
(P+F)h  
(P+10)h  
(P+11)h  
(P+12)h  
The following bytes are factory preprogrammed  
and user-programmable:  
Bits 0 - 7 = Lock/bytes JEDEC plane physical low  
address.  
4
Bits 8 - 15 = Lock/bytes JEDEC plane physical high  
address.  
Bits 16 - 23 = n where 2n equals factory preprog-  
rammed bytes.  
Bits 24 - 31 = n where 2n equals user-programma-  
ble bytes.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
54  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 25: One Time Programmable (OTP) Space Information (Continued)  
Hex Offset  
P = 10Ah  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
Length  
Description  
Address  
11D:  
(P+13)h  
(P+14)h  
(P+15)h  
(P+16)h  
10  
Protection field 2: protection description  
Bits 0 - 31 point to the protection register physi-  
cal lock word address in the JEDEC plane.  
The bytes that follow are factory or user-progam-  
mable.  
- -89  
- -00  
- -00  
- -00  
89h  
00h  
00h  
00h  
11E:  
11F:  
120:  
(P+17)h  
(P+18)h  
(P+19)h  
Bits 32 - 39 = n where n equals factory program-  
med groups (low byte).  
Bits 40 - 47 = n where n equals factory program-  
med groups (high byte).  
121:  
122:  
123:  
- -00  
- -00  
- -00  
0
0
0
Bits 48 - 55 = n where 2n equals factory program-  
med bytes/groups.  
(P+1A)h  
(P+1B)h  
(P+1C)h  
Bits 56 - 63 = n where n equals user programmed  
groups (low byte).  
Bits 64 - 71 = n where n equals user programmed  
groups (high byte).  
Bits 72 - 79 = n where 2n equals user programma-  
ble bytes/groups.  
124:  
125:  
126:  
- -10  
- -00  
- -04  
16  
0
16  
Table 26: Burst Read Information  
Hex Offset  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
P = 10Ah  
Length  
Description  
Address  
1
Page Mode Read capability:  
127:  
- -05  
32 byte  
Bits 7 - 0 = n where 2n hex value represents the  
number of read-page bytes. See offset 28h for  
device word width to determine page-mode data  
output width. 00h indicates no read page buffer.  
(P+1D)h  
1
Number of synchronous mode read configuration  
128:  
- -04  
(P+1E)h  
fields that follow. 00h indicates no burst capabili-  
ty.  
4
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
55  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 26: Burst Read Information (Continued)  
Hex Offset  
Hex  
Code  
ASCII Value  
(DQ[7:0])  
P = 10Ah  
Length  
Description  
Address  
1
Synchronous mode read capability configuration  
1:  
129:  
- -01  
Bits 3 - 7 = Reserved.  
Bits 0 - 2 = n where 2n+1 hex value represents the  
maximum number of continuous synchronous  
reads when the device is configured for its maxi-  
mum word width.  
A value of 07h indicates that the device is capa-  
ble of continuous linear bursts that will output  
data until the internal burst counter reaches the  
end of the device’s burstable address space.  
This fields’s 3-bit value can be written directly to  
the Read Configuration Register bits 0 - 2 if the  
device is configured for its maximum word width.  
See offset 28h for word width to determine the  
burst data output width.  
(P+1F)h  
4
1
1
1
Synchronous mode read capability configuration  
2.  
12A:  
12B:  
12C:  
- -02  
- -03  
- -07  
8
16  
(P+20)h  
(P+21)h  
(P+22)  
Synchronous mode read capability configuration  
3.  
Synchronous mode read capability configuration  
4.  
Continued  
Table 27: Partition and Block Erase Region Information  
Hex Offset  
P = 10Ah  
Address  
Bottom  
12D:  
Description  
Optional Flash features and commands  
Bottom  
Top  
Length  
Top  
(P+23)h  
(P+23)h  
Number of device hardware-partition regions  
within the device:  
1
12D:  
x = 0: a single hardware partition device (no  
fields follow).  
x specifies the number of device partition regions  
containing one or more contiguous erase block  
regions  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
56  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 28: Partition Region 1 Information: Top and Bottom Offset/Address  
Hex Offset  
P = 10Ah  
Address  
Bottom  
Description  
Optional Flash features and commands  
Bottom  
Top  
Length  
Top  
12E:  
12F:  
(P+24)h  
(P+25)h  
(P+24)h  
(P+25)h  
Data size of this Partition Region information field  
(number of addressable locations, including this  
field.  
2
12E:  
12F:  
(P+26)h  
(P+27)h  
(P+26)h  
(P+27)h  
Number of identical partitions within the partition  
region.  
2
1
130:  
131:  
132:  
130:  
131:  
132:  
(P+28)h  
(P+29)h  
(P+28)h  
(P+29)h  
Number of program or erase operations allowed in a  
partition:  
Bits 0 - 3 = Number of simultaneous program opera-  
tions.  
Bits 4 - 7 = Number of simultaneous erase operations.  
Simultaneous program or erase operations allowed  
in other partitions while a partition in this region is  
in program mode:  
Bits 0 - 3 = Number of simultaneous program opera-  
tions.  
1
1
1
133:  
134:  
135:  
133:  
134:  
135:  
Bits 4 - 7 = Number of simultaneous erase operations.  
(P+2A)h  
(P+2B)h  
(P+2A)h  
(P+2B)h  
Simultaneous program or erase operations allowed  
in other partitions while a partition in this region is  
in erase mode:  
Bits 0 - 3 = Number of simultaneous program opera-  
tions.  
Bits 4 - 7 = Number of simultaneous erase operations.  
Types of erase block regions in this partition region:  
x=0: No erase blocking; the partition region erases in  
bulk.  
x = Number of erase block regions with contiguous,  
same-size erase blocks.  
Symmetrically blocked partitions have one blocking  
region.  
Partition size = (Type 1 blocks) x (Type 1 block sizes) +  
(Type 2 blocks) x (Type 2 block sizes) +...+ (Type n  
blocks) x (Type n block sizes).  
Table 29: Partition Region 1 Information  
Hex Offset  
P = 10Ah  
Description  
Address  
Bottom/Top  
Optional Flash features and commands  
Length  
Bottom/Top  
(P+2C)h  
(P+2D)h  
(P+2E)h  
(P+2F)h  
Partition region 1 erase block type 1 information:  
Bits 0-15 = y, y+1 = Number of identical-sized erase blocks in a  
partition.  
4
136:  
137:  
138:  
139:  
Bits 16-31 = z, where region erase block(s) size is z x 256 bytes.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
57  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 29: Partition Region 1 Information (Continued)  
Hex Offset  
P = 10Ah  
Description  
Address  
Bottom/Top  
Optional Flash features and commands  
Length  
Bottom/Top  
(P+30)h  
(P+31)h  
Partition 1 (erase block type 1):  
Minimum block erase cycles x 1000  
2
13A:  
13B:  
(P+32)h  
(P+33)h  
Partition 1 (erase block type 1) bits per cell; internal ECC:  
Bits 0 - 3 = bits per cell in erase region  
Bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
Bit 5 - 7 = reserved for future use  
1
1
13C:  
Partition 1 (erase block type 1) page mode and synchronous  
mode capabilities:  
13D:  
Bits 0 = page-mode host reads permitted (1=yes, 0=no)  
Bit 1 = synchronous host reads permitted (1=yes, 0=no)  
Bit 2 = synchronous host writes permitted (1=yes, 0=no)  
Bit 3 - 7 = reserved for future use  
(P+34)h  
(P+35)h  
(P+36)h  
(P+37)h  
(P+38)h  
(P+39)h  
Partition 1 (erase block type 1) programming region information:  
Bits 0 - 7 = x, 2x: programming region aligned size (bytes)  
Bit 8-14 = reserved for future use  
Bit 15 = legacy flash operation; ignore 0:7  
Bit 16 - 23 = y: control mode valid size (bytes)  
Bit 24 - 31 = reserved for future use  
6
13E:  
13F:  
140:  
141:  
142:  
143:  
Bit 32 - 39 = z: control mode invalid size (bytes)  
Bit 40 - 46 = reserved for future use  
Bit 47 = legacy flash operation (ignore 23:16 and 39:32)  
(P+3A)h  
(P+3B)h  
(P+3C)h  
(P+3D)h  
Partition 1 erase block type 2 information:  
Bits 0-15 = y, y+1 = Number of identical-size erase blocks in a par-  
tition.  
Bits 16 - 31 = z, where region erase block(s) size is z x 256 bytes.  
(bottom parameter device only)  
4
144:  
145:  
146:  
147:  
(P+3E)h  
(P+3F)h  
Partition 1 (erase block type 2)  
Minimum block erase cycles x 1000  
2
1
148:  
149:  
14A:  
(P+40)h  
Partition 1 (erase block type 2) bits per cell, internal EDAC:  
Bits 0 - 3 = bits per cell in erase region  
Bit 4 = reserved for “internal ECC used” (1=yes, 0=no)  
Bits 5 - 7 = reserved for future use  
(P+41)h  
Partition 1 (erase block type 2) page mode and synchronous  
mode capabilities:  
1
14B:  
Bit 0 = page-mode host reads permitted (1=yes, 0=no)  
Bit 1 = synchronous host reads permitted (1=yes, 0=no)  
Bit 2 = synchronous host writes permitted (1=yes, 0=no)  
Bits 3-7 = reserved for future use  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
58  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 29: Partition Region 1 Information (Continued)  
Hex Offset  
P = 10Ah  
Description  
Address  
Bottom/Top  
Optional Flash features and commands  
Length  
Bottom/Top  
(P+42)h  
(P+43)h  
(P+44)h  
(P+45)h  
(P+46)h  
(P+47)h  
Partition 1 (erase block type 2) programming region information:  
Bits 0-7 = x, 2nx = Programming region aligned size (bytes)  
Bits 8-14 = reserved for future use  
Bit 15 = legacy flash operation (ignore 0:7)  
Bits 16 - 23 = y = Control mode valid size in bytes Bits 24 - 31 =  
reserved  
6
14C:  
14D:  
14E:  
14F:  
150:  
Bits 32 - 39 = z = Control mode invalid size in bytes  
Bits 40 - 46 = reserved  
151:  
Bit 47 = legacy flash operation (ignore 23:16 and 39:32)  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
59  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 30: Partition Region 1: Partition and Erase Block Map Information  
Add.  
512Mb  
1Gb  
2Gb  
Symm.  
Symm.  
Top  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--FE  
--01  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
Bottom  
Symm.  
--01  
--14  
--00  
--01  
--00  
--11  
--00  
--00  
--01  
--FF  
--01  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
Top  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--FE  
--03  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
Bottom  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--FE  
--03  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
Symm.  
--01  
--14  
--00  
--01  
--00  
--11  
--00  
--00  
--01  
--FF  
--03  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
Upper Die  
Lower Die  
12D:  
12E:  
12F:  
130:  
131:  
132:  
133:  
134:  
135:  
136:  
137:  
138:  
139:  
13A:  
13B:  
13C:  
13D*:  
13E:  
13F:  
140:  
141:  
142:  
143:  
144:  
145:  
146:  
147:  
148:  
149:  
14A:  
14B:  
14C:  
14D:  
14E:  
14F:  
150:  
--01  
--24  
--00  
--01  
--00  
--11  
--00  
--00  
--02  
--03  
--00  
--80  
--00  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--FE  
--01  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--01  
--14  
--00  
--01  
--00  
--11  
--00  
--00  
--01  
--FF  
--03  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--01  
--14  
--00  
--01  
--00  
--11  
--00  
--00  
--01  
--FF  
--03  
--00  
--02  
--64  
--00  
--02  
--03  
--00  
--80  
--00  
--00  
--00  
--80  
--10  
--C8  
--00  
--00  
--10  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
--FF  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
60  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Common Flash Interface  
Table 30: Partition Region 1: Partition and Erase Block Map Information (Continued)  
Add.  
512Mb  
1Gb  
2Gb  
Symm.  
Symm.  
Top  
Bottom  
--80  
Symm.  
Top  
Bottom  
Symm.  
Upper Die  
Lower Die  
151:  
--80  
--FF  
--80  
--80  
--FF  
--FF  
--FF  
Table 31: CFI Link Information – 2Gb  
ASCII Value  
(DQ[7:0])  
Length  
Description  
Address  
4
CFI Link field bit definitions:  
144:  
145:  
146:  
147  
See Note 1  
Bits 0 - 9 = Address offset (within 32Mb segment of referenced CFI table)  
Bits 10 - 27 = nth 32Mb segment of referenced CFI table  
Bits 28 - 30 = Memory Type  
Bit 31 = Another CFI link field immediately follows  
1
CFI Link field quantity subfield definitions:  
Bits 0 - 3 = Quantity field (n such that n+1 equals quantity)  
Bit 4 = Table and die relative location  
Bit 5 = Link field and table relative location  
Bits 6 - 7 = Reserved  
148:  
1. See "Partition Region 1: Partition and Erase Block Map Information" table.  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2013 Micron Technology, Inc. All rights reserved.  
61  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Flowcharts  
Figure 14: Word Program Procedure  
Start  
Command Cycle  
- Issue PROGRAM command  
- Address = location to program  
- Data = 0x40  
Data Cycle  
- Address = location to program  
- Data = data to program  
Check Ready Status  
- READ STATUS REGISTER command not required  
- Perform READ operation  
- Read ready status on signal D7  
No  
No  
Program suspend  
(See Suspend/Resume  
Flowchart  
No  
Yes  
D7 = 1?  
Suspend?  
Errors?  
Yes  
Yes  
Read Status Register  
- Toggle CE# or OE# to update status register  
- See Status Register Flowchart  
Error-handler  
user-defined routine  
Progam  
complete  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
62  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Figure 15: Buffer Program Procedure  
Start  
X = X + 1  
Write buffer data,  
start address  
Write buffer data,  
(at block address)  
within buffer range  
Device  
supports buffer  
writes?  
No  
Use single word  
programming  
X = 0  
No  
Yes  
Abort  
bufferred program  
?
No  
X = N  
Yes  
Set timeout or  
loop counter  
Yes  
Get next  
target address  
Write confirm D0h  
(at block address)  
Write to another  
block address  
Buffered program  
aborted  
Read status register  
(at block address)  
CE# and OE# LOW  
Issue WRITE-to-BUFFER  
command E8h  
(at block address)  
updates status register  
No  
Yes  
SR7?  
1 = Ready  
0 = Busy  
0
Suspend  
program loop  
Suspend  
program  
Read status register  
SR7 = Valid  
(at block address )  
1
No  
Full status  
check (if desired)  
Device  
ready? SR7 = 0/1  
Timeout  
or count expired?  
0 = No  
Yes  
Another  
buffered  
programming  
?
Yes  
1 = Yes  
Write word count (N-1)  
N = 0 corresponds to  
count = 1  
No  
(at block address)  
Program  
complete  
1. Word count values on DQ0:DQ15 are loaded into the count register. Count ranges for  
this device are N = 0000h to 01FFh.  
Notes:  
2. Device outputs the status register when read.  
3. Write buffer contents will be programmed at the device start or destination address.  
4. Align the start address on a write buffer boundary for maximum programming perform-  
ance; that is, A[9:1] of the start address = 0).  
5. Device aborts the BUFFERED PROGRAM command if the current address is outside the  
original block address.  
6. Status register indicates an improper command sequence if the BUFFERED PROGRAM  
command is aborted. Follow this with a CLEAR STATUS REGISTER command.  
7. Device defaults to SR output data after BUFFERED PROGRAMMING SETUP command  
(E8h) is issued . CE# or OE# must be toggled to update the status register . Don’t issue  
the READ SR command (70h); it is interpreted by the device as buffer word count.  
8. Full status check can be done after erase and write sequences complete. Write FFh after  
the last operation to reset the device to read array mode.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
63  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Figure 16: Buffered Enhanced Factory Programming (BEFP) Procedure  
Setup Phase  
Program and Verify Phase  
Exit Phase  
Read status  
register  
Read status  
register  
Start  
Issue BEFP SETUP  
Data = 0x80  
Buffer ready?  
BEFP exited?  
No (SR0 = 1)  
No (SR7 = 0)  
Yes (SR7 = 1)  
Yes (SR0 = 0)  
Issue BEFP CONFIRM  
Data = 00D0h  
Full status  
register check  
for errors  
Write data  
word to buffer  
BEFP setup  
delay  
No  
Buffer full?  
Yes  
Finish  
Read status  
register  
Read status  
register  
Yes (SR7 = 0)  
BEFP setup  
done?  
No (SR0 = 1)  
Program  
done?  
No (SR7 = 1)  
SR error-handler  
user-defined  
Yes (SR0 = 0)  
Yes  
Program  
more data  
Exit  
?
No  
Write 0xFFFF  
outside block  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
64  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Figure 17: Block Erase Procedure  
Start  
Command Cycle  
- Issue ERASE command  
- Address = block to be erased  
- Data = 0x20  
Confirm Cycle  
- Issue CONFIRM command  
- Address = block to be erased  
- Data = erase confirm (0xD0)  
Check Ready Status  
- READ STATUS REGISTER  
command not required  
- Perform READ operation  
- Read ready status on SR7  
No  
No  
Erase Suspend  
See Suspend/  
Resume Flowchart  
Yes  
No  
SR7 = 1?  
Suspend?  
Errors?  
Yes  
Yes  
Read Status Register  
- Toggle CE# or OE#  
to update status register  
- See Status Register Flowchart  
Error Handler  
user-defined  
routine  
End  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
65  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Figure 18: Program Suspend/Resume Procedure  
Start  
=
SR2  
0
Program  
Completed  
1 = Suspended  
0 = Completed  
Read Status  
Write 70h  
1
Any Address  
Read Array  
Program Suspend  
Write FFh  
Any Address  
Write B0h  
Any Address  
Read Array Data  
from a block other than  
from the one being  
programmed  
Read Status Register  
Initiate Read cycle to  
update the status register  
(Address = Block to suspend)  
Done  
No  
Reading  
=
SR7  
0
Yes  
1 = Ready  
0 = Busy  
Read Array  
Write FFh  
Program Resume  
1
Write D0h  
Any Address  
Program  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Any Address  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
66  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Figure 19: Erase Suspend/Resume Procedure  
=
SR6  
Start  
0
Erase  
Completed  
1 = Suspended  
0 = Completed  
Read Status  
1
Write 70h  
Any Address  
Read  
Program  
Erase Suspend  
Read/Program?  
(FFh/40h)  
Write B0h  
Any Address  
Read Array Data from  
a block other than the  
one being erased  
Program Loop: to a  
block other than the  
one being erased  
No  
Done?  
Address = X  
Read Status Register  
Toggle CE#/OE# to  
update the  
status register  
Yes  
Erase Resume  
=
SR7  
0
1 = Ready  
0 = Busy  
Read Array  
Write D0h  
Any Address  
1
Write FFh  
1
Erase  
Resumed  
Read Array  
Data  
Read Status  
Write 70h  
Any Address  
1. The tERS/SUSP timing between the initial BLOCK ERASE or ERASE RESUME command and  
a subsequent ERASE SUSPEND command should be followed.  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
67  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Figure 20: Block Lock Operations Procedure  
Start  
Lock Setup  
Write 60h  
Block Address  
Lock Confirm  
Write 01h, D0h, 2Fh  
Block Address  
Read ID Plane  
Write 90h  
Read Block  
Lock Status  
Optional  
No  
Locking  
Change?  
Yes  
Read Array  
Write FFh  
Any Address  
Lock Change  
Complete  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
68  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Figure 21: OTP Register Programming Procedure  
Start  
OTP Program Setup  
- Write 0xC0  
- OTP Address  
Confirm Data  
- Write OTP Address and Data  
Check Ready Status  
- READ STATUS REGISTER  
command not required  
- Perform READ operation  
- Read ready status on SR7  
No  
SR7 = 1?  
Yes  
Read Status Register  
- Toggle CE# or OE#  
to update status register  
- See Status Register Flowchart  
End  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
69  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Flowcharts  
Figure 22: Status Register Procedure  
Start  
Command Cycle  
- Issue STATUS REGISTER command  
- Address = any device address  
- Data = 0x70  
Data Cycle  
- Read Status Register SR[7:0]  
No  
SR7 = 1  
Yes  
Erase Suspend  
See Suspend/  
Yes  
SR6 = 1  
Resume Flowchart  
No  
Program Suspend  
See Suspend/  
Resume Flowchart  
Yes  
Yes  
SR2 = 1  
No  
Error  
Command  
sequence  
No  
SR5 = 1  
SR4 = 1  
Yes  
Error  
Erase failure  
No  
Yes  
Yes  
Yes  
Error  
Program failure  
SR4 = 1  
No  
Error  
V
V
/V  
<
SR3 = 1  
PEN PP  
/V  
PENLK PPLK  
No  
Error  
Block locked  
SR1 = 1  
No  
End  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
70  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Power and Reset Specifications  
Power and Reset Specifications  
VCC should attain VCCmin from VSS simultaneously with or before applying VCCQ, VPP  
during power up. VCC should attain VSS during power down. Device inputs should not  
be driven before supply voltage = VCCmin  
.
Power supply transitions should only occur when RST# is LOW. This protects the device  
from accidental programming or erasure during power transitions.  
Asserting RST# during a system reset is important with automated program/erase devi-  
ces because systems typically expect to read from the device when coming out of reset.  
If a CPU reset occurs without a device reset, proper CPU initialization may not occur.  
This is because the device may be providing status information, instead of array data as  
expected. Connect RST# to the same active LOW reset signal used for CPU initialization.  
Because the device is disabled when RST# is asserted, it ignores its control inputs dur-  
ing power-up/down. Invalid bus conditions are masked, providing a level of memory  
protection.  
Table 32: Power and Reset  
Parameter  
Symbol  
tPLPH  
tPLPH  
Min  
100  
Max  
Unit  
ns  
Notes  
RST# pulse width LOW  
1, 2, 3, 4  
1, 3, 4, 7  
1, 3, 4, 7  
1, 4, 5, 6  
RST# LOW to device reset during erase  
RST# LOW to device reset during program  
VCC Power valid to RST# de-assertion (HIGH)  
25  
25  
us  
tVCCPH  
300  
1. These specifications are valid for all device versions (packages and speeds).  
2. The device may reset if tPLPH is < tPLPH MIN, but this is not guaranteed.  
Notes:  
3. Not applicable if RST# is tied to VCC  
4. Sampled, but not 100% tested.  
.
5. When RST# is tied to the VCC supply, device will not be ready until tVCCPH after VCC  
VCCMIN  
6. When RST# is tied to the VCCQ supply, device will not be ready until tVCCPH after VCC  
VCCMIN  
.
.
7. Reset completes within tPLPH if RST# is asserted while no ERASE or PROGRAM operation  
is executing.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
71  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Power and Reset Specifications  
Figure 23: Reset Operation Waveforms  
tPLPH  
tPLRH  
tPHQV  
VIH  
VIL  
(A) Reset during  
RST#  
read mode  
Abort  
tPHQV  
complete  
VIH  
VIL  
(B) Reset during  
RST#  
RST#  
program or block erase  
P1 P2  
tPLRH  
tPHQV  
Abort  
complete  
VIH  
VIL  
(C) Reset during  
program or block erase  
P1 P2  
tVCCPH  
(D) V power-up to  
VCC  
0V  
CC  
V
CC  
RST# HIGH  
Power Supply Decoupling  
The device requires careful power supply de-coupling. Three basic power supply cur-  
rent considerations are 1) standby current levels, 2) active current levels, and 3) transi-  
ent peaks produced when CE# and OE# are asserted and de-asserted.  
When the device is accessed, internal conditions change. Circuits within the device ena-  
ble charge pumps, and internal logic states change at high speed. These internal activi-  
ties produce transient signals. Transient current magnitudes depend on the device out-  
puts’ capacitive and inductive loading. Two-line control and correct de-coupling capac-  
itor selection suppress transient voltage peaks.  
Because the devices draw their power from VCC, VPP, and VCCQ, each power connection  
should have a 0.1µF and a 0.01µF ceramic capacitor to ground. High-frequency, inher-  
ently low-inductance capacitors should be placed as close as possible to package leads.  
Additionally, for every eight devices used in the system, a 4.7µF electrolytic capacitor  
should be placed between power and ground close to the devices. The bulk capacitor is  
meant to overcome voltage droop caused by PCB trace inductance.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
72  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Maximum Ratings and Operating Conditions  
Maximum Ratings and Operating Conditions  
Stresses greater than those listed can cause permanent damage to the device. This is  
stress rating only, and functional operation of the device at these or any other condi-  
tions above those indicated is not guaranteed.  
Table 33: Maximum Ratings  
Parameter  
Maximum Rating  
–40°C to + 85 °C  
–65°C to + 125 °C  
–2V to +5.6V  
–2V to +11.5V  
–2V to +5.6V  
–2V to +5.6V  
100mA  
Notes  
Temperature under bias  
Storage temperature  
Voltage on any signal (except VCC, VPP, and VCCQ  
VPP voltage  
)
1
1, 2  
1
VCC voltage  
VCCQ voltage  
1
Output short circuit current  
3
1. Voltages shown are specified with respect to VSS. During infrequent nonperiodic transi-  
Notes:  
tions, the level may undershoot to –2V for periods less than 20ns or overshoot to VCC  
2V or VCCQ + 2V or VPP + 2V for periods less than 20ns.  
+
2. Program/erase voltage is typically 2.3–3.6V. 9.0V can be applied for 80 hours maximum  
total, to any blocks for 1000 cycles maximum. 9.0V program/erase voltage may reduce  
block cycling capability.  
3. Output is shorted for no more than one second, and more than one output is not shor-  
ted at one time.  
Table 34: Operating Conditions  
Symbol  
TA  
Parameter  
Min  
–40  
2.3  
Max  
+85  
3.6  
3.6  
3.6  
3.6  
9.5  
80  
Unit Notes  
Operating temperature  
VCC supply voltage  
I/O supply voltage  
°C  
V
1
VCC  
VCCQ  
CMOS inputs  
TTL inputs  
2.3  
2.4  
VPPL  
VPPH  
tPPH  
VPP voltage supply (logic level)  
1.5  
2
Buffered enhanced factory programming VPP  
Maximum VPP hours  
8.5  
VPP = VPPH  
VPP = VPPL  
VPP = VPPH  
Hours  
Cycles  
BLOCK  
ERASE cycles  
Array blocks  
100,000  
1000  
1. TA = ambient temperature.  
Notes:  
2. In typical operation, VPP program voltage is VPPL  
.
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
73  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
DC Electrical Specifications  
DC Electrical Specifications  
Table 35: DC Current Characteristics  
CMOS Inputs  
(VCCQ = 2.3–  
3.6V)  
TTL Inputs  
(VCCQ = 2.4–  
3.6V)  
Parameter  
Symbol Typ  
Max  
Typ  
Max Unit Test Conditions  
Notes  
Input load current 512Mb  
1Gb  
ILI  
±1  
±2  
µA VCC = VCC (MAX)  
VCCQ = VCCQ (MAX)  
VIN = VCCQ or VSS  
1, 6  
2Gb  
±2  
±1  
±4  
Output leakage  
current  
512Mb  
1Gb  
ILO  
±10  
µA VCC = VCC (MAX)  
VCCQ = VCCQ (MAX)  
VIN = VCCQ or VSS  
DQ[15:0], WAIT  
2Gb  
±2  
±20  
225  
240  
480  
VCC standby,  
power-down  
512Mb  
1Gb  
ICCS  
ICCD  
,
70  
225  
240  
480  
70  
µA VCC = VCC (MAX)  
VCCQ = VCCQ (MAX)  
CE# = VCCQ  
1. 2  
75  
75  
2Gb  
150  
150  
RST# = VCCQ (for ICCS  
)
RST# = VSS (for ICCD  
WP# = VIH  
)
Average Asynchronous  
VCC read single-word  
current f = 5 MHz (1 CLK)  
ICCR  
26  
12  
19  
16  
31  
16  
22  
18  
26  
12  
19  
16  
31  
16  
22  
18  
mA 16-word read VCC = VCC (MAX)  
1
CE# = VIL  
OE# = VIH  
mA 8-word read  
Inputs:  
mA 16-word read  
Page mode read  
f = 13 MHz (17 CLK)  
mA 16-word read  
VIL or VIH  
Synchronous burst  
f = 52 MHz, LC = 4  
21  
35  
35  
24  
50  
50  
21  
35  
35  
24  
50  
50  
mA Continuous  
read  
VCC program current,  
VCC erase current  
ICCW,  
ICCE  
mA VPP = VPPL  
program/erase in progress  
VPP = VPPH  
program/erase in progress  
µA CE# = VCCQ, suspend in progress 1, 3, 4  
,
1, 3, 5  
,
1, 3, 5  
VCC program sus-  
pend current,  
VCC erase suspend  
current  
512Mb  
ICCWS,  
ICCES  
70  
75  
225  
240  
70  
75  
225  
240  
1Gb  
2Gb  
VPP standby current 512Mb  
IPPS  
0.2  
0.2  
0.4  
0.2  
5
5
0.2  
0.2  
0.4  
0.2  
5
5
µA VPP = VPPL  
,
1, 3, 7  
1, 3, 7  
in standby mode  
1Gb  
2Gb  
10  
5
10  
5
VPP program suspend current,  
VPP erase suspend current  
µA VPP = VPPL  
,
IPPWS,  
IPPES  
suspend in progress  
VPP read  
IPPR  
2
15  
0.1  
0.1  
2
15  
0.1  
0.1  
µA VPP = VPPL  
1, 3  
3
VPP program current  
IPPW  
0.05  
0.05  
0.05  
0.05  
mA VPP = VPPL, program in progress  
VPP = VPPH, program in progress  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
74  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
DC Electrical Specifications  
Table 35: DC Current Characteristics (Continued)  
CMOS Inputs  
(VCCQ = 2.3–  
3.6V)  
TTL Inputs  
(VCCQ = 2.4–  
3.6V)  
Parameter  
Symbol Typ  
Max  
0.1  
Typ  
Max Unit Test Conditions  
Notes  
VPP erase current  
IPPE  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.1  
mA VPP = VPPL, erase in progress  
VPP = VPPH, erase in progress  
mA VPP = VPPL  
3
0.1  
VPP blank check  
IPPBC  
0.1  
3
0.1  
VPP = VPPH  
1. All currents are RMS unless noted. Typical values at TYP VCC, TC = +25°C.  
Notes:  
2. ICCS is the average current measured over any 5ms time interval 5µs after CE# is de-asser-  
ted.  
3. Sampled, not 100% tested.  
4. ICCES is specified with the device deselected. If device is read while in erase suspend, cur-  
rent is ICCES plus ICCR  
.
5. ICCW, ICCE measured over TYP or MAX times specified in (page 0 ).  
6. if VIN > VCC, the input load current increases to 10µA MAX.  
7. the IPPS, PPWS, PPES  
I
I
will increase to 200µA when VPP/WP# is at VPPH  
.
Table 36: DC Voltage Characteristics  
CMOS Inputs  
TTL Inputs1  
(VCCQ = 2.3–3.6V)  
(VCCQ = 2.4–3.6V)  
Parameter  
Symbol  
VIL  
Min  
Max  
Min  
–0.5  
2
Max  
0.6  
Unit Test Conditions  
Notes  
Input low voltage  
Input high voltage  
Output low voltage  
–0.5  
0.4  
V
V
2
VIH  
VCCQ - 0.4 VCCQ + 0.5  
VCCQ + 0.5  
0.2  
VOL  
VCCQ - 0.2  
0.2  
V
V
V
VCC = VCC (MIN)  
VCCQ = VCCQ (MIN)  
IOL = 100µA  
Output high voltage  
VPP lock out voltage  
VOH  
VCCQ – 0.2  
VCC = VCC (MIN)  
VCCQ = VCCQ (MIN)  
IOH = –100µA  
VPPLK  
0.4  
0.4  
3
1. Synchronous read mode is not supported with TTL inputs.  
Notes:  
2. VIL can undershoot to –1.0V for durations of 2ns or less and VIH can overshoot to VCCQ  
1.0V for durations of 2ns or less.  
+
3. VPP VPPLK inhibits ERASE and PROGRAM operations. Do not use VPPL and VPPH outside  
their valid ranges.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
75  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Test Conditions and Capacitance  
AC Test Conditions and Capacitance  
Figure 24: AC Input/Output Reference Timing  
VCCQ  
Input V  
/2  
Test points  
V
/2 output  
CCQ  
CCQ  
0V  
1. AC test inputs are driven at VCCQ for logic 1 and at 0V for logic 0. Input/output timing  
begins/ends at VCCQ/2. Input rise and fall times (10% to 90%) <5ns. Worst-case speed oc-  
curs at VCC = VCC (MIN).  
Note:  
Figure 25: Transient Equivalent Load Circuit  
Device under  
test  
Out  
C
L
1. See the Test Configuration for Worst-Case Speed Conditions table for component values.  
2. CL includes jig capacitance.  
Notes:  
Table 37: Test Configuration: Worst-Case Speed Condition  
Test Configuration  
CL (pF)  
VCCQ(MIN) standard test  
30  
Figure 26: Clock Input AC Waveform  
tCLK  
VIH  
CLK  
VIL  
tCH/CL  
tFCLK/RCLK  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
76  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Test Conditions and Capacitance  
Table 38: Capacitance  
Sym-  
Parameter  
bol  
Signal  
Density  
512Mb  
1Gb  
Min  
Typ  
7
Max Unit  
Condition  
Notes  
Input  
Capacitance  
CIN  
Address, Data,  
CE#, WE#, OE#,  
RST#, CLK,  
3
4
6
8
9
pF  
TYP temp = 25°C; MAX  
temp = 85°C  
VCC = 0–2.0V, VCCQ = 0–  
3.6V  
1
8
2Gb  
16  
18  
ADV#, WP#  
Discrete silicon die  
Output  
Capacitance  
COUT  
Data, WAIT  
512Mb  
1Gb  
3
3
6
5
5
7
6
2Gb  
10  
12  
1. Sampled, but not 100% tested.  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
77  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Read Specifications  
AC Read Specifications  
Table 39: AC Read Specifications  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Asynchronous Specifications  
READ cycle time  
tAVAV  
tAVQV  
tELQV  
Easy BGA  
512Mb/1Gb  
2Gb  
95  
100  
105  
ns  
TSOP  
512Mb/1Gb  
512Mb/1Gb  
2Gb  
Address to output valid  
CE# LOW to output valid  
Easy BGA  
95  
100  
105  
95  
100  
105  
25  
150  
ns  
ns  
TSOP  
512Mb/1Gb  
512Mb/1Gb  
2Gb  
Easy BGA  
TSOP  
512Mb/1Gb  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1, 2  
1
OE# LOW to output valid  
tGLQV  
tPHQV  
tELQX  
tGLQX  
tEHQZ  
tGHQZ  
tOH  
-
RST# HIGH to output valid  
CE# LOW to output in Low-Z  
OE# LOW to output in Low-Z  
CE# HIGH to output in High-Z  
OE# HIGH to output in High-Z  
-
0
1, 3  
1, 2, 3  
1, 3  
0
20  
15  
Output hold from first occur-  
ring address, CE#, or OE#  
change  
0
CE# pulse width HIGH  
tEHEL  
tELTV  
tEHTZ  
tGLTV  
tGLTX  
tGHTZ  
17  
ns  
ns  
ns  
ns  
ns  
ns  
1
CE# LOW to WAIT valid  
CE# HIGH to WAIT High-Z  
OE# LOW to WAIT valid  
OE# LOW to WAIT in Low-Z  
OE# HIGH to WAIT in High-Z  
17  
20  
17  
1, 3  
1
0
1, 3  
20  
Latching Specifications (Easy BGA)  
Address setup to ADV# HIGH  
CE# LOW to ADV# HIGH  
tAVVH  
tELVH  
tVLQV  
10  
10  
ns  
ns  
ns  
1
ADV# LOW to output valid  
Easy BGA  
TSOP  
512Mb/1Gb  
2Gb  
95  
100  
105  
512Mb/1Gb  
ns  
ns  
ns  
ns  
ns  
ns  
ADV# pulse width LOW  
tVLVH  
tVHVL  
tVHAX  
tAPA  
10  
10  
9
ADV# pulse width HIGH  
Address hold from ADV# HIGH  
Page address access  
1, 4  
1
25  
-
RST# HIGH to ADV# HIGH  
Clock Specifications (Easy BGA)  
tPHVH  
30  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
78  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Read Specifications  
Table 39: AC Read Specifications (Continued)  
Parameter  
Symbol  
tCLK  
tCLK  
tCH/CL  
tFCLK/RCLK  
Min  
Max  
Unit  
MHz  
ns  
Notes  
CLK frequency  
CLK period  
52  
1, 3, 5, 6  
19.2  
5
CLK HIGH/LOW time  
CLK fall/rise time  
ns  
0.3  
3
ns  
Synchronous Specifications (Easy BGA)5  
Address setup to CLK  
ADV# LOW setup to CLK  
CE# LOW setup to CLK  
CLK to output valid  
tAVCH/L  
tVLCH/L  
tELCH/L  
tCHQV /  
tCLQV  
9
9
9
ns  
ns  
ns  
ns  
1, 6  
17  
Output hold from CLK  
Address hold from CLK  
CLK to WAIT valid  
tCHQX  
tCHAX  
tCHTV  
tCHVL  
tCHTX  
3
10  
-
-
ns  
ns  
ns  
ns  
ns  
1, 6  
1, 4, 6  
1, 6  
1
17  
CLK valid to ADV# setup  
WAIT hold from CLK  
3
3
1, 6  
1. See AC Test Conditions for timing measurements and maximum allowable input slew  
rate.  
Notes:  
2. OE# may be delayed by up to tELQV – tGLQV after CE#’s falling edge without impact to  
tELQV.  
3. Sampled, not 100% tested.  
4. Address hold in synchronous burst mode is tCHAX or tVHAX, whichever timing specifica-  
tion is satisfied first.  
5. Synchronous read mode is not supported with TTL level inputs.  
6. Applies only to subsequent synchronous reads.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
79  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Read Specifications  
Figure 27: Asynchronous Single-Word Read (ADV# LOW)  
tAVAV  
tAVQV  
A
ADV#  
tELQV  
CE#  
tEHQZ  
tGHQZ  
tGLQV  
OE#  
tGLTV  
tGHTZ  
WAIT  
tGLQX  
tELQX  
DQ  
tPHQV  
RST#  
1. WAIT shown deasserted during asynchronous read mode (RCR10 = 0, WAIT asserted  
LOW).  
Note:  
Figure 28: Asynchronous Single-Word Read (ADV# Latch)  
tAVAV  
tAVQV  
A[MAX:5]  
A[4:1]  
tAVVH  
tVHAX  
tVHVL  
ADV#  
CE#  
tELQV  
tEHQZ  
tGLQV  
tGHQZ  
OE#  
tGHTZ  
tGLTV  
WAIT  
tGLQX  
tOH  
tELQX  
DQ  
1. WAIT shown deasserted during asynchronous read mode (RCR10 = 0, WAIT asserted  
LOW).  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
80  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Read Specifications  
Figure 29: Asynchronous Page Mode Read  
tAVQV  
Valid address  
A[MAX:5]  
tOH  
tOH  
tOH  
tOH  
A[4:1]  
ADV#  
0
1
2
F
tAVVH  
tVHVL  
tVHAX  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
CE#  
OE#  
WAIT  
DQ  
tELQX  
tAPA  
tAPA  
tAPA  
tEHTZ  
Q16  
Q1  
Q2  
Q3  
1. WAIT shown deasserted during asynchronous read mode (RCR10 = 0, WAIT asserted  
LOW).  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
81  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Read Specifications  
Figure 30: Synchronous Single-Word Array or Nonarray Read  
tAVCH  
tCHAX  
tAVQV  
CLK  
A
tAVVH  
tVHVL  
tELCH  
tVHAX  
tVLVH  
ADV#  
tELVH  
tEHQZ  
tGHQZ  
tELQV  
CE#  
OE#  
tGLQX  
tGLTX  
tCHTV  
tCHQV  
tGHTZ  
tCHTX  
WAIT  
tGLQV  
tCHQX  
DQ  
1. WAIT is driven per OE# assertion during synchronous array or nonarray read and can be  
configured to assert either during or one data cycle before valid data.  
Notes:  
2. In this example, an n-word burst is initiated to the flash memory array and is terminated  
by CE# deassertion after the first word in the burst.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
82  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Read Specifications  
Figure 31: Continuous Burst Read with Output Delay  
tAVCH  
tVLCH tCHAX  
CLK  
tCHQV  
tCHQV  
tCHQV  
tAVQV  
tAVVH  
A
tVHAX  
tVHVL  
ADV#  
tELCH  
tELVH  
tELQV  
CE#  
OE#  
tGLTX  
tCHTV  
tCHQV  
tCHTX  
tCHQX  
WAIT  
DQ  
tGLQV  
tGLQX  
tCHQX  
tCHQX  
tCHQX  
1. WAIT is driven per OE# assertion during synchronous array or nonarray read and can be  
configured to assert either during or one data cycle before valid data.  
Notes:  
2. At the end of a wordline; the delay incurred when a burst access crosses a 16-word  
boundary and the starting address is not 4-word boundary aligned.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
83  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Read Specifications  
Figure 32: Synchronous Burst Mode 4-Word Read  
tAVCH  
Latency count  
tVLCH tCHAX  
CLK  
tAVQV  
tAVVH  
A
A
tVHAX  
tVHVL  
tELVH  
ADV#  
tELCH  
tEHQZ  
tGHQZ  
tELQV  
CE#  
OE#  
tGLTV  
tCHTV  
tCHQV  
tGHTZ  
WAIT  
DQ  
tCHQV  
tCHQX  
tGLQV  
tGLQX  
tOH  
Q0  
Q1  
Q2  
Q3  
1. WAIT is driven per OE# assertion during synchronous array or nonarray read. WAIT as-  
serted during initial latency and deasserted during valid data (RCR10 = 0, WAIT asserted  
LOW).  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
84  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Write Specifications  
AC Write Specifications  
Table 40: AC Write Specifications  
Parameter  
Symbol  
tPHWL  
tELWL  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
1, 2, 3  
1, 2, 3  
1, 2, 4  
1, 2, 12  
1, 2  
RST# HIGH recovery to WE# LOW  
CE# setup to WE# LOW  
150  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
WE# write pulse width LOW  
Data setup to WE# HIGH  
tWLWH  
tDVWH  
tAVWH  
tWHEH  
tWHDX  
tWHAX  
tWHWL  
tVPWH  
tQVVL  
50  
50  
Address setup to WE# HIGH  
CE# hold from WE# HIGH  
Data hold from WE# HIGH  
Address hold from WE# HIGH  
WE# pulse width HIGH  
50  
0
0
0
20  
1, 2, 5  
VPP setup to WE# HIGH  
200  
1, 2, 3, 7  
VPP hold from status read  
WP# hold from status read  
WP# setup to WE# HIGH  
0
tQVBL  
0
200  
1, 2, 3, 7  
tBHWH  
tWHGL  
tWHQV  
WE# HIGH to OE# LOW  
0
1, 2, 9  
WE# HIGH to read valid  
tAVQV + 35  
1, 2, 3, 6, 10  
Write to Asynchronous Read Specifications  
WE# HIGH to address valid  
Write to Synchronous Read Specifications  
WE# HIGH to clock valid  
tWHAV  
0
-
ns  
1, 2, 3, 6, 8  
tWHCH/L  
tWHVH  
tWHVL  
19  
19  
7
-
-
-
ns  
ns  
ns  
1, 2, 3, 6, 10  
WE# HIGH to ADV# HIGH  
WE# HIGH to ADV# LOW  
Write Specification with Clock Active  
ADV# HIGH to WE# LOW  
Clock HIGH to WE# LOW  
tVHWL  
tCHWL  
-
-
20  
20  
ns  
ns  
1, 2, 3, 11  
1. Write timing characteristics during erase suspend are the same as WRITE-only opera-  
tions.  
Notes:  
2. A WRITE operation can be terminated with either CE# or WE#.  
3. Sampled, not 100% tested.  
4. Write pulse width LOW (tWLWH or tELEH) is defined from CE# or WE# LOW (whichever  
occurs last) to CE# or WE# HIGH (whichever occurs first). Thus, tWLWH = tELEH = tWLEH  
= tELWH.  
5. Write pulse width HIGH tWHWL or tEHEL) is defined from CE# or WE# HIGH whichever  
occurs first) to CE# or WE# LOW whichever occurs last). Thus, tWHWL = tEHEL = tWHEL  
tEHWL).  
=
6. tWHVH or tWHCH/L must be met when transitioning from a WRITE cycle to a synchro-  
nous BURST read.  
7. VPP and WP# should be at a valid level until erase or program success is determined.  
8. This specification is only applicable when transitioning from a WRITE cycle to an asyn-  
chronous read. See spec tWHCH/L and tWHVH for synchronous read.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
85  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Write Specifications  
9. When doing a READ STATUS operation following any command that alters the status  
register, tWHGL is 20ns.  
10. Add 10ns if the WRITE operation results in an RCR or block lock status change, for the  
subsequent READ operation to reflect this change.  
11. These specs are required only when the device is in a synchronous mode and the clock is  
active during an address setup phase.  
12. This specification must be complied with customer’s writing timing. The result would be  
unpredictable if there is any violation to this timing specification.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
86  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Write Specifications  
Figure 33: Write to Write Timing  
Figure 34: Asynchronous Read to Write Timing  
tAVAV  
tAVQV  
tAVWH  
tWHAX  
A
tEHQZ  
tELQV  
CE#  
tGLQV  
tGHQZ  
OE#  
tELWL  
tWLWH  
tWHEH  
WE#  
tGLTV  
tGHTZ  
tOH  
WAIT  
tGLQX  
tELQX  
tWHDX  
tDVWH  
DQ  
Q
D
tPHQV  
RST#  
1. WAIT de-asserted during asynchronous read and during write. WAIT High-Z during write  
per OE# deasserted.  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
87  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Write Specifications  
Figure 35: Write to Asynchronous Read Timing  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
88  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Write Specifications  
Figure 36: Synchronous Read to Write Timing  
tAVCH  
Latency count  
tVLCH tCHAX  
CLK  
tAVQV  
tAVVH  
tWHAV  
tAVWH  
A
tVHVL  
tVHAX  
tELVH  
tVLVH  
tEHEL  
ADV#  
tELCH  
tELQV  
tEHTZ  
tWHEH  
CE#  
tGHQZ  
tGLQV  
OE#  
tVHWL  
tCHWL  
tVLWH  
tVHWL  
tWHAX  
tWLWH  
tCHWL  
tELWL  
tWHWL  
WE#  
tGLTX  
tCHTV  
WAIT  
tCHTX  
tCHQX  
tCHQV  
tWHDX  
tGLQX  
DQ  
Q
D
D
1. WAIT shown de-asserted and High-Z per OE# de-assertion during WRITE operation  
(RCR10 = 0, WAIT asserted LOW). Clock is ignored during WRITE operation.  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
89  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
AC Write Specifications  
Figure 37: Write to Synchronous Read Timing  
Latency count  
tVLCH  
tAVCH  
tAVQV  
CLK  
tAVWH  
tWHAX  
tCHAX  
tVHAX  
A
tVLVH  
ADV#  
tELWL  
tWHEH  
tEHEL tELCH  
CE#  
tWHAV  
tWHCH/L  
tWHVH  
tWLWH  
WE#  
OE#  
tGLQV  
tGLTX  
tELQV  
tCHTV  
WAIT  
tCHQV  
tCHQX  
tCHQV  
tDVWH  
tWHDX  
DQ  
D
Q
Q
tPHWL  
RST#  
1. WAIT shown de-asserted and High-Z per OE# de-assertion during WRITE operation  
(RCR10 = 0, WAIT asserted LOW).  
Note:  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
90  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Program and Erase Characteristics  
Program and Erase Characteristics  
Table 41: Program and Erase Specifications  
VPPL  
Typ  
VPPH  
Parameter  
Symbol  
Min  
Max  
Min  
Typ  
Max Unit Notes  
Conventional Word Programming  
Program  
time  
Single word  
tPROG/W  
270  
456  
270  
456  
µs  
µs  
1
1
Buffered Programming  
Program  
time  
Aligned, BP time (32  
words)  
tPROG  
310  
310  
375  
505  
900  
716  
900  
310  
310  
375  
505  
900  
716  
900  
Aligned, BP time (64  
words)  
Aligned, BP time (128  
words)  
1140  
1690  
3016  
1140  
1690  
3016  
Aligned, BP time (256  
words)  
One full buffer, BP time  
(512 words)  
Buffered Enhanced Factory Programming  
Program  
Single byte  
BEFP Setup  
tBEFP/B  
tBEFP/SETUP  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0.5  
µs  
1, 2  
1
20  
Erase and Suspend  
Erase time 32KB parameter  
128KB main  
tERS/PB  
tERS/MB  
tSUSP/P  
tSUSP/E  
tERS/SUSP  
0.8  
0.8  
25  
4.0  
4.0  
30  
30  
0.8  
0.8  
25  
4.0  
4.0  
30  
30  
s
1
Suspend la- Program suspend  
µs  
tency  
Erase suspend  
25  
25  
Erase-to-suspend  
500  
500  
1, 3  
Blank Check  
Blank check Main array block  
tBC/MB  
3.2  
3.2  
ms  
1. Typical values measured at TC = +25°C and nominal voltages. Performance numbers are  
valid for all speed versions. Excludes system overhead. Sampled, but not 100% tested.  
Notes:  
2. Averaged over entire device.  
3. tERS/SUSP is the typical time between an initial BLOCK ERASE or ERASE RESUME com-  
mand and the a subsequent ERASE SUSPEND command. Violating the specification re-  
peatedly during any particular block erase may cause erase failures.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
91  
© 2013 Micron Technology, Inc. All rights reserved.  
512Mb, 1Gb, 2Gb: P33-65nm  
Revision History  
Revision History  
Rev. C – 12/13  
• On cover page, corrected erase suspend (TYP) from 30μs to 25μs.  
• Revised timings  
Rev. B – 11/13  
Rev. A – 8/13  
• Added the following part number disclaimer: "Not all part numbers listed here are  
available for ordering."  
• Initial Micron brand release  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
www.micron.com/productsupport Customer Comment Line: 800-932-4992  
Micron and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.  
Although considered final, these specifications are subject to change, as further product development and data characterization some-  
times occur.  
PDF: 09005aef845667b8  
p33_65nm_MLC_512Mb-1gb_2gb.pdf - Rev. C 12/13 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
92  
© 2013 Micron Technology, Inc. All rights reserved.  

相关型号:

JS28F00AP33EFA

Micron Parallel NOR Flash Embedded Memory (P33-65nm)
MICRON

JS28F00AP33TFA

Micron Parallel NOR Flash Embedded Memory (P33-65nm)
MICRON

JS28F064M29EWXX

Parallel NOR Flash Embedded Memory
MICRON

JS28F128J3A-110

Intel StrataFlash Memory (J3)
INTEL

JS28F128J3A-115

Intel StrataFlash Memory (J3)
INTEL

JS28F128J3A-120

Intel StrataFlash Memory (J3)
INTEL

JS28F128J3A-125

Intel StrataFlash Memory (J3)
INTEL

JS28F128J3A-150

Intel StrataFlash Memory (J3)
INTEL

JS28F128J3C-110

Intel StrataFlash Memory (J3)
INTEL

JS28F128J3C-115

Intel StrataFlash Memory (J3)
INTEL

JS28F128J3C-120

Intel StrataFlash Memory (J3)
INTEL

JS28F128J3C-125

Intel StrataFlash Memory (J3)
INTEL