MT250QL01GABA1ESF0AITES [MICRON]

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase;
MT250QL01GABA1ESF0AITES
型号: MT250QL01GABA1ESF0AITES
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase

文件: 总97页 (文件大小:1038K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256Mb, 3V Multiple I/O Serial Flash Memory  
Features  
Micron Serial NOR Flash Memory  
3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase  
MT25QL256ABA  
Options  
Marking  
Features  
• SPI-compatible serial bus interface  
• Single and double transfer rate (STR/DTR)  
• Clock frequency  
– 133 MHz (MAX) for all protocols in STR  
– 90 MHz (MAX) for all protocols in DTR  
• Dual/quad I/O commands for increased through-  
put up to 90 MB/s  
• Supported protocols: Extended, Dual and Quad I/O  
both STR and DTR  
• Voltage  
– 2.7–3.6V  
• Density  
– 256Mb  
• Device stacking  
– Monolithic  
• Device generation  
• Die revision  
• Pin configuration  
– RESET# and HOLD#  
• Sector size  
L
256  
A
B
A
8
• Execute-in-place (XIP)  
• PROGRAM/ERASE SUSPEND operations  
• Volatile and nonvolatile configuration settings  
• Software reset  
• Additional reset pin for selected part numbers  
• 3-byte and 4-byte address modes – enable memory  
access beyond 128Mb  
• Dedicated 64-byte OTP area outside main memory  
– Readable and user-lockable  
– Permanent lock with PROGRAM OTP command  
• Erase capability  
– 64KB  
E
• Packages – JEDEC-standard, RoHS-  
compliant  
– 24-ball T-PBGA 05/6mm × 8mm  
(5 × 5 array)  
– 24-ball T-PBGA 05/6mm × 8mm  
(4 × 6 array)  
– 16-pin SOP2, 300 mils  
(SO16W, SO16-Wide, SOIC-16)  
– W-PDFN-8 6mm × 5mm  
(MLP8 6mm × 5mm)  
– W-PDFN-8 8mm × 6mm  
(MLP8 8mm × 6mm)  
• Security features  
– Standard security  
• Special options  
12  
14  
SF  
W7  
W9  
– Bulk erase  
– Sector erase 64KB uniform granularity  
– Subsector erase 4KB, 32KB granularity  
• Erase performance: 400KB/sec (64KB sector)  
• Erase performance: 80KB/sec (4KB sub-sector)  
• Program performance: 2MB/sec  
• Security and write protection  
– Volatile and nonvolatile locking and software  
write protection for each 64KB sector  
– Nonvolatile configuration locking  
– Password protection  
– Hardware write protection: nonvolatile bits  
(BP[3:0] and TB) define protected area size  
– Program/erase protection during power-up  
– CRC detects accidental changes to raw data  
• Electronic signature  
0
– Standard  
– Automotive  
• Operating temperature range  
– From –40°C to +85°C  
– From –40°C to +105°C  
– From –40°C to +125°C  
S
A
IT  
AT  
UT  
– JEDEC-standard 3-byte signature (BA19h)  
– Extended device ID: two additional bytes identify  
device factory options  
• JESD47H-compliant  
– Minimum 100,000 ERASE cycles per sector  
– Data retention: 20 years (TYP)  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
1
Products and specifications discussed herein are subject to change by Micron without notice.  
256Mb, 3V Multiple I/O Serial Flash Memory  
Features  
Part Number Ordering  
Micron Serial NOR Flash devices are available in different configurations and densities. Verify valid part numbers  
by using Micron’s part catalog search at www.micron.com. To compare features and specifications by device type,  
visit www.micron.com/products. Contact the factory for devices not found.  
Figure 1: Part Number Ordering Information  
MT 25Q  
L
xxx  
A
BA  
1
E
SF - 0  
S
IT ES  
Micron Technology  
Production Status  
Blank = Production  
Part Family  
25Q = SPI NOR  
ES = Engineering samples  
QS = Qualification samples  
Voltage  
L = 2.7–3.6V  
U = 1.7–2.0V  
Operating Temperature  
IT = –40°C to +85°C  
AT = –40°C to +105°C  
UT = –40°C to +125°C  
Density  
064 = 64Mb (8MB)  
128 = 128Mb (16MB)  
256 = 256Mb (32MB)  
512 = 512Mb (64MB)  
01G = 1Gb (128MB)  
02G = 2Gb (256MB)  
Special Options  
S = Standard  
A = Automotive grade AEC-Q100  
Security Features  
0 = Standard default security  
Stack  
Package Codes  
A = 1 die/1 S#  
B = 2 die/1 S#  
C = 4 die/1 S#  
12 = 24-ball T-PBGA, 05/6 x 8mm (5 x 5 array)  
14 = 24-ball T-PBGA, 05/6 x 8mm (4 x 6 array)  
SC = 8-pin SOP2, 150 mils  
SE = 8-pin SOP2, 208 mils  
SF = 16-pin SOP2, 300 mils  
W7 = 8-pin W-PDFN, 6 x 5mm  
W9 = 8-pin W-PDFN, 8 x 6mm  
5x = WLCSP package1  
Device Generation  
B = 2nd generation  
Die Revision  
A = Rev. A  
B = Rev. B  
Sector size  
E = 64KB sectors, 4KB and 32KB subsectors  
Pin Configuration Option  
1 = HOLD# pin  
3 = RESET# pin  
8 = RESET# and HOLD# pin  
1. WLCSP package codes, package size, and availability are density-specific. Contact the factory for availability.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
2
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Features  
Contents  
Important Notes and Warnings ......................................................................................................................... 8  
Device Description ........................................................................................................................................... 9  
Device Logic Diagram ................................................................................................................................. 10  
Advanced Security Protection ..................................................................................................................... 10  
Signal Assignments – Package Code: 12 ........................................................................................................... 11  
Signal Assignments – Package Code: 14 ........................................................................................................... 12  
Signal Assignments – Package Code: SF ........................................................................................................... 13  
Signal Assignments – Package Code: W7, W9 .................................................................................................... 14  
Signal Descriptions ......................................................................................................................................... 15  
Package Dimensions – Package Code: 12 ......................................................................................................... 17  
Package Dimensions – Package Code: 14 ......................................................................................................... 18  
Package Dimensions – Package Code: SF ......................................................................................................... 19  
Package Dimensions – Package Code: W7 ........................................................................................................ 20  
Package Dimensions – Package Code: W9 ........................................................................................................ 21  
Memory Map – 256Mb Density ....................................................................................................................... 22  
Status Register ................................................................................................................................................ 23  
Block Protection Settings ............................................................................................................................ 24  
Flag Status Register ......................................................................................................................................... 25  
Extended Address Register .............................................................................................................................. 26  
Internal Configuration Register ....................................................................................................................... 27  
Nonvolatile Configuration Register .................................................................................................................. 28  
Volatile Configuration Register ........................................................................................................................ 30  
Supported Clock Frequencies ..................................................................................................................... 31  
Enhanced Volatile Configuration Register ........................................................................................................ 33  
Security Registers ........................................................................................................................................... 34  
Sector Protection Security Register .................................................................................................................. 35  
Nonvolatile and Volatile Sector Lock Bits Security ............................................................................................ 36  
Volatile Lock Bit Security Register .................................................................................................................... 36  
Device ID Data ............................................................................................................................................... 37  
Serial Flash Discovery Parameter Data ............................................................................................................. 38  
Command Definitions .................................................................................................................................... 39  
Software RESET Operations ............................................................................................................................ 45  
RESET ENABLE and RESET MEMORY Commands ....................................................................................... 45  
READ ID Operations ....................................................................................................................................... 46  
READ ID and MULTIPLE I/O READ ID Commands ...................................................................................... 46  
READ SERIAL FLASH DISCOVERY PARAMETER Operation .............................................................................. 47  
READ SERIAL FLASH DISCOVERY PARAMETER Command ......................................................................... 47  
READ MEMORY Operations ............................................................................................................................ 48  
4-BYTE READ MEMORY Operations ................................................................................................................ 49  
READ MEMORY Operations Timings ............................................................................................................... 50  
WRITE ENABLE/DISABLE Operations ............................................................................................................. 57  
READ REGISTER Operations ........................................................................................................................... 58  
WRITE REGISTER Operations ......................................................................................................................... 59  
CLEAR FLAG STATUS REGISTER Operation ..................................................................................................... 61  
PROGRAM Operations .................................................................................................................................... 62  
4-BYTE PROGRAM Operations ........................................................................................................................ 63  
PROGRAM Operations Timings ....................................................................................................................... 63  
ERASE Operations .......................................................................................................................................... 66  
SUSPEND/RESUME Operations ..................................................................................................................... 68  
PROGRAM/ERASE SUSPEND Operations .................................................................................................... 68  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
3
256Mb, 3V Multiple I/O Serial Flash Memory  
Features  
PROGRAM/ERASE RESUME Operations ...................................................................................................... 68  
ONE-TIME PROGRAMMABLE Operations ....................................................................................................... 70  
READ OTP ARRAY Command ...................................................................................................................... 70  
PROGRAM OTP ARRAY Command .............................................................................................................. 70  
ADDRESS MODE Operations .......................................................................................................................... 72  
ENTER and EXIT 4-BYTE ADDRESS MODE Command ................................................................................ 72  
DEEP POWER-DOWN Operations ................................................................................................................... 72  
ENTER DEEP POWER-DOWN Command .................................................................................................... 72  
RELEASE FROM DEEP POWER-DOWN Command ....................................................................................... 72  
DEEP POWER-DOWN Timings .................................................................................................................... 73  
QUAD PROTOCOL Operations ........................................................................................................................ 75  
ENTER or RESET QUAD INPUT/OUTPUT MODE Command ....................................................................... 75  
CYCLIC REDUNDANCY CHECK Operations .................................................................................................... 76  
State Table ..................................................................................................................................................... 78  
XIP Mode ....................................................................................................................................................... 79  
Activate and Terminate XIP Using Volatile Configuration Register ................................................................. 79  
Activate and Terminate XIP Using Nonvolatile Configuration Register .......................................................... 79  
Confirmation Bit Settings Required to Activate or Terminate XIP .................................................................. 80  
Terminating XIP After a Controller and Memory Reset ................................................................................. 80  
Power-Up and Power-Down ............................................................................................................................ 81  
Power-Up and Power-Down Requirements .................................................................................................. 81  
Active, Standby, and Deep Power-Down Modes ................................................................................................ 83  
Power Loss and Interface Rescue ..................................................................................................................... 83  
Recovery .................................................................................................................................................... 83  
Power Loss Recovery ................................................................................................................................... 84  
Interface Rescue ......................................................................................................................................... 84  
Initial Delivery Status ..................................................................................................................................... 84  
Absolute Ratings and Operating Conditions ..................................................................................................... 85  
DC Characteristics and Operating Conditions .................................................................................................. 87  
AC Characteristics and Operating Conditions .................................................................................................. 89  
AC Reset Specifications ................................................................................................................................... 91  
Program/Erase Specifications ......................................................................................................................... 95  
Revision History ............................................................................................................................................. 96  
Rev. K – 07/18 ............................................................................................................................................. 96  
Rev. J – 03/18 .............................................................................................................................................. 96  
Rev. I – 07/17 .............................................................................................................................................. 96  
Rev. H – 10/16 ............................................................................................................................................. 96  
Rev. G – 07/16 ............................................................................................................................................. 96  
Rev. F – 06/16 ............................................................................................................................................. 96  
Rev. E – 01/16 ............................................................................................................................................. 96  
Rev. D – 10/15 ............................................................................................................................................. 96  
Rev. C – 9/15 ............................................................................................................................................... 97  
Rev. B – 6/15 ............................................................................................................................................... 97  
Rev. A – 06/14 ............................................................................................................................................. 97  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
4
256Mb, 3V Multiple I/O Serial Flash Memory  
Features  
List of Figures  
Figure 1: Part Number Ordering Information .................................................................................................... 2  
Figure 2: Block Diagram .................................................................................................................................. 9  
Figure 3: Logic Diagram ................................................................................................................................. 10  
Figure 4: 24-Ball T-BGA, 5 x 5 (Balls Down) ..................................................................................................... 11  
Figure 5: 24-Ball TBGA, 4 x 6 (Balls Down) ...................................................................................................... 12  
Figure 6: 16-Pin, Plastic Small Outline – SO16 (Top View) ................................................................................ 13  
Figure 7: 8-Pin, SOP2 or W-PDFN (Top View) ................................................................................................. 14  
Figure 8: 24-Ball T-PBGA (5 x 5 ball grid array) – 6mm x 8mm .......................................................................... 17  
Figure 9: 24-Ball T-PBGA (24b05) – 6mm x 8mm ............................................................................................. 18  
Figure 10: 16-Pin SOP2 – 300 Mils Body Width ................................................................................................ 19  
Figure 11: W-PDFN-8 (MLP8) – 6mm x 5mm .................................................................................................. 20  
Figure 12: W-PDFN-8 (MLP8) – 8mm x 6mm .................................................................................................. 21  
Figure 13: Memory Array Segments ................................................................................................................ 26  
Figure 14: Internal Configuration Register ...................................................................................................... 27  
Figure 15: Sector and Password Protection ..................................................................................................... 34  
Figure 16: RESET ENABLE and RESET MEMORY Command ........................................................................... 45  
Figure 17: READ ID and MULTIPLE I/O READ ID Commands ......................................................................... 46  
Figure 18: READ SERIAL FLASH DISCOVERY PARAMETER Command – 5Ah ................................................... 47  
Figure 19: READ – 03h/13h3 ........................................................................................................................... 50  
Figure 20: FAST READ – 0Bh/0Ch3 ................................................................................................................. 50  
Figure 21: DUAL OUTPUT FAST READ – 3Bh/3Ch3 ......................................................................................... 51  
Figure 22: DUAL INPUT/OUTPUT FAST READ – BBh/BCh3 ............................................................................ 51  
Figure 23: QUAD OUTPUT FAST READ – 6Bh/6Ch3 ........................................................................................ 52  
Figure 24: QUAD INPUT/OUTPUT FAST READ – EBh/ECh3 ............................................................................ 52  
Figure 25: QUAD INPUT/OUTPUT WORD READ – E7h3 ................................................................................. 53  
Figure 26: DTR FAST READ – 0Dh/0Eh3 .......................................................................................................... 54  
Figure 27: DTR DUAL OUTPUT FAST READ – 3Dh3 ........................................................................................ 54  
Figure 28: DTR DUAL INPUT/OUTPUT FAST READ – BDh3 ............................................................................ 55  
Figure 29: DTR QUAD OUTPUT FAST READ – 6Dh3 ........................................................................................ 56  
Figure 30: DTR QUAD INPUT/OUTPUT FAST READ – EDh3 ............................................................................ 56  
Figure 31: WRITE ENABLE and WRITE DISABLE Timing ................................................................................. 57  
Figure 32: READ REGISTER Timing ................................................................................................................ 58  
Figure 33: WRITE REGISTER Timing .............................................................................................................. 60  
Figure 34: CLEAR FLAG STATUS REGISTER Timing ........................................................................................ 61  
Figure 35: PAGE PROGRAM Command .......................................................................................................... 63  
Figure 36: DUAL INPUT FAST PROGRAM Command ...................................................................................... 64  
Figure 37: EXTENDED DUAL INPUT FAST PROGRAM Command ................................................................... 64  
Figure 38: QUAD INPUT FAST PROGRAM Command ..................................................................................... 65  
Figure 39: EXTENDED QUAD INPUT FAST PROGRAM Command ................................................................... 65  
Figure 40: SUBSECTOR and SECTOR ERASE Timing ....................................................................................... 67  
Figure 41: BULK ERASE Timing ...................................................................................................................... 67  
Figure 42: PROGRAM/ERASE SUSPEND and RESUME Timing ........................................................................ 69  
Figure 43: READ OTP ARRAY Command Timing ............................................................................................. 70  
Figure 44: PROGRAM OTP Command Timing ................................................................................................. 71  
Figure 45: ENTER DEEP POWER-DOWN Timing ............................................................................................. 73  
Figure 46: RELEASE FROM DEEP POWER-DOWN Timing ............................................................................... 74  
Figure 47: XIP Mode Directly After Power-On .................................................................................................. 79  
Figure 48: Power-Up Timing .......................................................................................................................... 82  
Figure 49: AC Timing Input/Output Reference Levels ...................................................................................... 86  
Figure 50: Reset AC Timing During PROGRAM and ERASE Cycle ..................................................................... 92  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
5
256Mb, 3V Multiple I/O Serial Flash Memory  
Features  
Figure 51: Reset Enable and Reset Memory Timing ......................................................................................... 92  
Figure 52: Serial Input Timing STR ................................................................................................................. 92  
Figure 53: Serial Input Timing DTR ................................................................................................................ 93  
Figure 54: Write Protect Setup and Hold During WRITE STATUS REGISTER Operation (SRWD = 1) ................... 93  
Figure 55: Hold Timing .................................................................................................................................. 93  
Figure 56: Output Timing for STR ................................................................................................................... 94  
Figure 57: Output Timing for DTR .................................................................................................................. 94  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
6
256Mb, 3V Multiple I/O Serial Flash Memory  
Features  
List of Tables  
Table 1: Signal Descriptions ........................................................................................................................... 15  
Table 2: Memory Map .................................................................................................................................... 22  
Table 3: Status Register .................................................................................................................................. 23  
Table 4: Protected Area .................................................................................................................................. 24  
Table 5: Flag Status Register ........................................................................................................................... 25  
Table 6: Extended Address Register ................................................................................................................ 26  
Table 7: Nonvolatile Configuration Register .................................................................................................... 28  
Table 8: Volatile Configuration Register .......................................................................................................... 30  
Table 9: Sequence of Bytes During Wrap ......................................................................................................... 30  
Table 10: Clock Frequencies – STR (in MHz) ................................................................................................... 31  
Table 11: Clock Frequencies – DTR (in MHz) .................................................................................................. 32  
Table 12: Enhanced Volatile Configuration Register ........................................................................................ 33  
Table 13: Sector Protection Register ............................................................................................................... 35  
Table 14: Global Freeze Bit ............................................................................................................................. 35  
Table 15: Nonvolatile and Volatile Lock Bits .................................................................................................... 36  
Table 16: Volatile Lock Bit Register ................................................................................................................. 36  
Table 17: Device ID Data ............................................................................................................................... 37  
Table 18: Extended Device ID Data, First Byte ................................................................................................. 37  
Table 19: Command Set ................................................................................................................................. 39  
Table 20: RESET ENABLE and RESET MEMORY Operations ............................................................................ 45  
Table 21: READ ID and MULTIPLE I/O READ ID Operations ........................................................................... 46  
Table 22: READ MEMORY Operations ............................................................................................................ 48  
Table 23: 4-BYTE READ MEMORY Operations ................................................................................................ 49  
Table 24: WRITE ENABLE/DISABLE Operations ............................................................................................. 57  
Table 25: READ REGISTER Operations ........................................................................................................... 58  
Table 26: WRITE REGISTER Operations .......................................................................................................... 59  
Table 27: CLEAR FLAG STATUS REGISTER Operation ..................................................................................... 61  
Table 28: PROGRAM Operations .................................................................................................................... 62  
Table 29: 4-BYTE PROGRAM Operations ........................................................................................................ 63  
Table 30: ERASE Operations ........................................................................................................................... 66  
Table 31: SUSPEND/RESUME Operations ...................................................................................................... 68  
Table 32: OTP Control Byte (Byte 64) .............................................................................................................. 71  
Table 33: ENTER and EXIT 4-BYTE ADDRESS MODE Operations .................................................................... 72  
Table 34: DEEP POWER-DOWN Operations .................................................................................................... 72  
Table 35: ENTER and RESET QUAD PROTOCOL Operations ............................................................................ 75  
Table 36: CRC Command Sequence on Entire Device ...................................................................................... 76  
Table 37: CRC Command Sequence on a Range .............................................................................................. 77  
Table 38: Operations Allowed/Disallowed During Device States ...................................................................... 78  
Table 39: XIP Confirmation Bit ....................................................................................................................... 80  
Table 40: Effects of Running XIP in Different Protocols .................................................................................... 80  
Table 41: Power-Up Timing and VWI Threshold ............................................................................................... 82  
Table 42: Absolute Ratings ............................................................................................................................. 85  
Table 43: Operating Conditions ...................................................................................................................... 85  
Table 44: Input/Output Capacitance .............................................................................................................. 85  
Table 45: AC Timing Input/Output Conditions ............................................................................................... 86  
Table 46: DC Current Characteristics and Operating Conditions ...................................................................... 87  
Table 47: DC Voltage Characteristics and Operating Conditions ...................................................................... 88  
Table 48: AC Characteristics and Operating Conditions ................................................................................... 89  
Table 49: AC RESET Conditions ...................................................................................................................... 91  
Table 50: Program/Erase Specifications .......................................................................................................... 95  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
7
256Mb, 3V Multiple I/O Serial Flash Memory  
Important Notes and Warnings  
Important Notes and Warnings  
Micron Technology, Inc. ("Micron") reserves the right to make changes to information published in this document,  
including without limitation specifications and product descriptions. This document supersedes and replaces all  
information supplied prior to the publication hereof. You may not rely on any information set forth in this docu-  
ment if you obtain the product described herein from any unauthorized distributor or other source not authorized  
by Micron.  
Automotive Applications. Products are not designed or intended for use in automotive applications unless specifi-  
cally designated by Micron as automotive-grade by their respective data sheets. Distributor and customer/distrib-  
utor shall assume the sole risk and liability for and shall indemnify and hold Micron harmless against all claims,  
costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of  
product liability, personal injury, death, or property damage resulting directly or indirectly from any use of non-  
automotive-grade products in automotive applications. Customer/distributor shall ensure that the terms and con-  
ditions of sale between customer/distributor and any customer of distributor/customer (1) state that Micron  
products are not designed or intended for use in automotive applications unless specifically designated by Micron  
as automotive-grade by their respective data sheets and (2) require such customer of distributor/customer to in-  
demnify and hold Micron harmless against all claims, costs, damages, and expenses and reasonable attorneys'  
fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage  
resulting from any use of non-automotive-grade products in automotive applications.  
Critical Applications. Products are not authorized for use in applications in which failure of the Micron compo-  
nent could result, directly or indirectly in death, personal injury, or severe property or environmental damage  
("Critical Applications"). Customer must protect against death, personal injury, and severe property and environ-  
mental damage by incorporating safety design measures into customer's applications to ensure that failure of the  
Micron component will not result in such harms. Should customer or distributor purchase, use, or sell any Micron  
component for any critical application, customer and distributor shall indemnify and hold harmless Micron and  
its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims,  
costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of  
product liability, personal injury, or death arising in any way out of such critical application, whether or not Mi-  
cron or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the  
Micron product.  
Customer Responsibility. Customers are responsible for the design, manufacture, and operation of their systems,  
applications, and products using Micron products. ALL SEMICONDUCTOR PRODUCTS HAVE INHERENT FAIL-  
URE RATES AND LIMITED USEFUL LIVES. IT IS THE CUSTOMER'S SOLE RESPONSIBILITY TO DETERMINE  
WHETHER THE MICRON PRODUCT IS SUITABLE AND FIT FOR THE CUSTOMER'S SYSTEM, APPLICATION, OR  
PRODUCT. Customers must ensure that adequate design, manufacturing, and operating safeguards are included  
in customer's applications and products to eliminate the risk that personal injury, death, or severe property or en-  
vironmental damages will result from failure of any semiconductor component.  
Limited Warranty. In no event shall Micron be liable for any indirect, incidental, punitive, special or consequential  
damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal  
or replacement of any products or rework charges) whether or not such damages are based on tort, warranty,  
breach of contract or other legal theory, unless explicitly stated in a written agreement executed by Micron's duly  
authorized representative.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
8
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Device Description  
Device Description  
The MT25Q is a high-performance multiple input/output serial Flash memory device. It  
features a high-speed SPI-compatible bus interface, execute-in-place (XIP) functionali-  
ty, advanced write protection mechanisms, and extended address access. Innovative,  
high-performance, dual and quad input/output commands enable double or quadru-  
ple the transfer bandwidth for READ and PROGRAM operations.  
Figure 2: Block Diagram  
RESET#  
HOLD#  
High voltage  
Control logic  
generator  
W#  
S#  
C
64 OTP bytes  
DQ0  
DQ1  
DQ2  
DQ3  
I/O shift register  
Address register  
and counter  
256 byte  
data buffer  
Status  
register  
Memory  
256 bytes (page size)  
X decoder  
1. Each page of memory can be individually programmed, but the device is not page-eras-  
able.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
9
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Device Description  
Device Logic Diagram  
Figure 3: Logic Diagram  
V
CC  
C
DQ[3:0]  
S#  
W#  
RESET#  
HOLD#  
V
SS  
1. Depending on the selected device (see Part Numbering Ordering Information), DQ3 =  
DQ3/RESET# or DQ3/HOLD#.  
Notes:  
2. A separate RESET pin is available on dedicated part numbers (see Part Numbering Order-  
ing Information).  
Advanced Security Protection  
The device offers an advanced security protection scheme where each sector can be in-  
dependently locked, by either volatile or nonvolatile locking features. The nonvolatile  
locking configuration can also be locked, as well password-protected. See Block Protec-  
tion Settings and Sector and Password Protection for more details.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
10  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Signal Assignments – Package Code: 12  
Signal Assignments – Package Code: 12  
Figure 4: 24-Ball T-BGA, 5 x 5 (Balls Down)  
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
A
B
A
B
A
B
NC  
C
RFU  
RESET#  
RFU  
RFU  
RFU  
RFU  
RFU  
NC  
C
RFU  
DNU  
RFU  
RFU  
RFU  
RFU  
RFU  
NC  
C
RFU  
DNU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
V
V
RFU  
RFU  
RFU  
RFU  
V
V
RFU  
RFU  
RFU  
RFU  
V
V
SS  
CC  
SS  
CC  
SS  
CC  
C
C
C
S#  
RFU  
DQ0  
RFU  
W#/DQ2  
DQ3/HOLD#  
RFU  
S#  
RFU  
DQ0  
RFU  
W#/DQ2  
DQ3/HOLD#  
RFU  
S#  
RFU  
DQ0  
RFU  
W#/DQ2  
DQ3/RESET#  
RFU  
D
E
D
E
D
E
DQ1  
RFU  
DQ1  
RFU  
DQ1  
RFU  
MT25QXXXXXXX8E12-XXXX  
MT25QXXXXXXX1E12-XXXX  
MT25QXXXXXXX3E12-XXXX  
1. RESET# or HOLD# signals can share ball D4 with DQ3, depending on the selected device  
(see Part Numbering Ordering Information). When using single and dual I/O commands  
on these parts, DQ3 must be driven HIGH by the host, or an external pull-up resistor  
must be placed on the PCB, in order to avoid allowing the HOLD# or RESET# input to  
float.  
Notes:  
2. Ball A4 = RESET# or DNU, depending on the part number. This signal has an internal  
pull-up resistor and may be left unconnected if not used.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
11  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Signal Assignments – Package Code: 14  
Signal Assignments – Package Code: 14  
Figure 5: 24-Ball TBGA, 4 x 6 (Balls Down)  
1
2
3
4
1
2
3
4
1
2
3
4
A
B
C
D
E
A
B
C
D
E
A
B
C
D
E
NC  
C
NC  
RESET#  
NC  
C
NC  
DNU  
NC  
C
NC  
DNU  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
V
V
V
V
V
SS  
CC  
SS  
CC  
SS  
CC  
S#  
NC  
DQ0  
NC  
W#/DQ2  
DQ3/HOLD#  
NC  
S#  
NC  
DQ0  
NC  
W#/DQ2  
DQ3/HOLD#  
NC  
S#  
NC  
DQ0  
NC  
W#/DQ2  
DQ3/RESET#  
NC  
DQ1  
NC  
NC  
DQ1  
NC  
NC  
DQ1  
NC  
NC  
F
F
F
NC  
NC  
NC  
NC  
NC  
NC  
MT25QXXXXXXX8E14-XXXX  
MT25QXXXXXXX1E14-XXXX  
MT25QXXXXXXX3E14-XXXX  
1. RESET# or HOLD# signals can share ball D4 with DQ3, depending on the selected device  
(see Part Numbering Ordering Information). When using single and dual I/O commands  
on these parts, DQ3 must be driven HIGH by the host, or an external pull-up resistor  
must be placed on the PCB, in order to avoid allowing the HOLD# or RESET# input to  
float.  
Notes:  
2. Ball A4 = RESET# or DNU, depending on the part number. This signal has an internal  
pull-up resistor and may be left unconnected if not used.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
12  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Signal Assignments – Package Code: SF  
Signal Assignments – Package Code: SF  
Figure 6: 16-Pin, Plastic Small Outline – SO16 (Top View)  
DQ3/RESET# DQ3/HOLD# DQ3/HOLD#  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
C
C
C
V
V
V
CC  
DQ0  
DNU  
DNU  
DNU  
DNU  
DQ0  
DNU  
DNU  
DNU  
DNU  
DQ0  
DNU  
DNU  
DNU  
DNU  
CC  
CC  
DNU  
DNU  
DNU  
DNU  
S#  
DNU  
DNU  
DNU  
DNU  
S#  
RESET#  
DNU  
DNU  
DNU  
S#  
V
V
V
SS  
SS  
SS  
DQ1  
DQ1  
DQ1  
W#/DQ2 W#/DQ2 W#/DQ2  
MT25QXXXXXXX8EXX-XXXX  
MT25QXXXXXXX1EXX-XXXX  
MT25QXXXXXXX3EXX-XXXX  
1. RESET# or HOLD# signals can share pin 1 with DQ3, depending on the selected device  
(see Part Numbering Ordering Information). When using single and dual I/O commands  
on these parts, DQ3 must be driven HIGH by the host, or an external pull-up resistor  
must be placed on the PCB, in order to avoid allowing the HOLD# or RESET# input to  
float.  
Notes:  
2. Pin 3 = RESET# or DNU, depending on the part number. This signal has an internal pull-  
up resistor and may be left unconnected if not used.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
13  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Signal Assignments – Package Code: W7, W9  
Signal Assignments – Package Code: W7, W9  
Figure 7: 8-Pin, SOP2 or W-PDFN (Top View)  
S#  
DQ1  
S#  
DQ1  
1
2
3
4
8
7
6
5
VCC  
VCC  
DQ3/HOLD# DQ3/RESET#  
W#/DQ2  
VSS  
W#/DQ2  
VSS  
C
C
DQ0  
DQ0  
MT25QXXXXXXX1EXX-XXXX  
MT25QXXXXXXX3EXX-XXXX  
1. RESET# or HOLD# signals can share Pin 7 with DQ3, depending on the selected device  
(see Part Numbering Ordering Information). When using single and dual I/O commands  
on these parts, DQ3 must be driven high by the host, or an external pull-up resistor must  
be placed on the PCB, in order to avoid allowing the HOLD# or RESET# input to float.  
Notes:  
2. On the underside of the W-PDFN package, there is an exposed central pad that is pulled  
internally to VSS. It can be left floating or can be connected to VSS. It must not be con-  
nected to any other voltage or signal line on the PCB.  
3. MT25QXXXXXXX8EXX-XXXX is not available on 8 pin package.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
14  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Signal Descriptions  
Signal Descriptions  
The signal description table below is a comprehensive list of signals for the MT25Q fam-  
ily devices. All signals listed may not be supported on this device. See Signal Assign-  
ments for information specific to this device.  
Table 1: Signal Descriptions  
Symbol  
Type  
Description  
S#  
Input  
Chip select: When S# is driven HIGH, the device will enter standby mode, unless an internal  
PROGRAM, ERASE, or WRITE STATUS REGISTER cycle is in progress. All other input pins are ig-  
nored and the output pins are tri-stated. On parts with the pin configuration offering a dedica-  
ted RESET# pin, however, the RESET# input pin remains active even when S# is HIGH.  
Driving S# LOW enables the device, placing it in the active mode.  
After power-up, a falling edge on S# is required prior to the start of any command.  
C
Input  
Input  
Clock: Provides the timing of the serial interface. Command inputs are latched on the rising  
edge of the clock. In STR commands or protocol, address and data inputs are latched on the  
rising edge of the clock, while data is output on the falling edge of the clock. In DTR com-  
mands or protocol, address and data inputs are latched on both edges of the clock, and data is  
output on both edges of the clock.  
RESET#  
RESET#: When RESET# is driven LOW, the device is reset and the outputs are tri-stated. If RE-  
SET# is driven LOW while an internal WRITE, PROGRAM, or ERASE operation is in progress, da-  
ta may be lost. The RESET# functionality can be disabled using bit 4 of the nonvolatile configu-  
ration register or bit 4 of the enhanced volatile configuration register.  
For pin configurations that share the DQ3 pin with RESET#, the RESET# functionality is disabled  
in QIO-SPI mode.  
HOLD#  
Input  
Input  
HOLD: Pauses serial communications with the device without deselecting or resetting the de-  
vice. Outputs are tri-stated and inputs are ignored. The HOLD# functionality can be disabled  
using bit 4 of the nonvolatile configuration register or bit 4 of the enhanced volatile configura-  
tion register.  
For pin configurations that share the DQ3 pin with HOLD#, the HOLD# functionality is disabled  
in QIO-SPI mode or when DTR operation is enabled.  
W#  
Write protect: Freezes the status register in conjunction with the enable/disable bit of the sta-  
tus register. When the enable/disable bit of the status register is set to 1 and the W# signal is  
driven LOW, the status register nonvolatile bits become read-only and the WRITE STATUS REG-  
ISTER operation will not execute. During the extended-SPI protocol with QOFR and QIOFR in-  
structions, and with QIO-SPI protocol, this pin function is an input/output as DQ2 functionality.  
This signal does not have internal pull-ups, it cannot be left floating and must be driven, even  
if none of W#/DQ2 function is used.  
DQ[3:0]  
I/O  
Serial I/O: The bidirectional DQ signals transfer address, data, and command information.  
When using legacy (x1) SPI commands in extended I/O protocol (XIO-SPI), DQ0 is an input and  
DQ1 is an output. DQ[3:2] are not used.  
When using dual commands in XIO-SPI or when using DIO-SPI, DQ[1:0] are I/O. DQ[3:2] are not  
used.  
When using quad commands in XIO-SPI or when using QIO-SPI, DQ[3:0] are I/O.  
Core and I/O power supply.  
VCC  
Supply  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
15  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Signal Descriptions  
Table 1: Signal Descriptions (Continued)  
Symbol  
VSS  
Type  
Description  
Supply  
Core and I/O ground connection.  
DNU  
RFU  
Do not use: Do not connect to any other signal, or power supply; must be left floating.  
Reserved for future use: Reserved by Micron for future device functionality and enhance-  
ment. Recommend that these be left floating. May be connected internally, but external con-  
nections will not affect operation.  
NC  
No connect: No internal connection; can be driven or floated.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
16  
© 2014 Micron Technology, Inc. All rights reserved.  
256Mb, 3V Multiple I/O Serial Flash Memory  
Package Dimensions – Package Code: 12  
Package Dimensions – Package Code: 12  
Figure 8: 24-Ball T-PBGA (5 x 5 ball grid array) – 6mm x 8mm  
Seating plane  
0.1 A  
A
24X Ø0.4  
Dimensions  
apply to solder  
balls post-reflow  
on Ø0.40 SMD  
ball pads.  
Ball A1 ID  
Ball A1 ID  
5
4
3
2
1
A
B
C
D
E
4 CTR  
8 ±0.1  
1 TYP  
1.1 ±0.1  
1 TYP  
4 CTR  
6 ±0.1  
1. All dimensions are in millimeters.  
0.3 ±0.05  
Notes:  
2. See Part Number Ordering Information for complete package names and details.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
17  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Package Dimensions – Package Code: 14  
Package Dimensions – Package Code: 14  
Figure 9: 24-Ball T-PBGA (24b05) – 6mm x 8mm  
Seating plane  
0.1 A  
A
24X Ø0.4  
Dimensions apply  
to solder balls post-  
reflow on Ø0.4 SMD  
ball pads.  
Ball A1 ID  
Ball A1 ID  
4
3
2
1
A
B
C
D
E
5 CTR  
8 ±0.1  
1 TYP  
F
1 TYP  
1.08 ±0.12  
0.2 MIN  
3 CTR  
6 ±0.1  
1. All dimensions are in millimeters.  
Notes:  
2. See Part Number Ordering Information for complete package names and details.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
18  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Package Dimensions – Package Code: SF  
Package Dimensions – Package Code: SF  
Figure 10: 16-Pin SOP2 – 300 Mils Body Width  
10.30 ±0.20  
h x 45°  
16  
9
0.23 MIN/  
0.32 MAX  
10.00 MIN/  
10.65 MAX  
7.50 ±0.10  
1
8
0° MIN/8° MAX  
2.5 ±0.15  
0.20 ±0.1  
0.1  
Z
0.33 MIN/  
0.51 MAX  
0.40 MIN/  
1.27 MAX  
1.27 TYP  
Z
1. All dimensions are in millimeters.  
Notes:  
2. See Part Number Ordering Information for complete package names and details.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
19  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Package Dimensions – Package Code: W7  
Package Dimensions – Package Code: W7  
Figure 11: W-PDFN-8 (MLP8) – 6mm x 5mm  
Seating plane  
0.08 A  
A
6 ±0.1  
3 ±0.1  
CTR  
8X 0.6 ±0.05  
Pin A1 ID  
Pin A1 ID  
1.27  
TYP  
8X 0.4 ±0.05  
CTR  
5 ±0.1  
3 ±0.1  
CTR  
3.81  
CTR  
0.75 ±0.05  
0 MIN  
Exposed die  
attach pad.  
1. All dimensions are in millimeters.  
Notes:  
2. See Part Number Ordering Information for complete package names and details.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
20  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Package Dimensions – Package Code: W9  
Package Dimensions – Package Code: W9  
Figure 12: W-PDFN-8 (MLP8) – 8mm x 6mm  
Seating plane  
0.08 A  
A
8 ±0.1  
3.4 ±0.1  
8X 0.5 ±0.05  
CTR  
Pin A1 ID  
Pin A1 ID  
8
7
6
5
1
2
3
4
1.27  
TYP  
8X 0.4 ±0.05  
CTR  
6 ±0.1  
3.81  
CTR  
4.3 ±0.1  
CTR  
Micron logo  
to be lazed.  
0.75 ±0.05  
0 MIN  
Exposed die  
attach pad.  
1. All dimensions are in millimeters.  
Notes:  
2. See Part Number Ordering Information for complete package names and details.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
21  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Memory Map – 256Mb Density  
Memory Map – 256Mb Density  
Table 2: Memory Map  
Address Range  
Sector  
Subsector (32KB)  
Subsector (4KB)  
Start  
End  
511  
1023  
8191  
01FF F000h  
01FF FFFFh  
8184  
01FF 8000h  
01FF 8FFFh  
1022  
8183  
01FF 7000h  
01FF 7FFFh  
8176  
01FF 0000h  
01FF 0FFFh  
255  
511  
4095  
00FF F000h  
00FF FFFFh  
4088  
00FF 8000h  
00FF 8FFFh  
510  
4087  
00FF 7000h  
00FF 7FFFh  
4080  
00FF 0000h  
00FF 0FFFh  
127  
255  
2047  
007F F000h  
007F FFFFh  
2040  
007F 8000h  
007F 8FFFh  
254  
2039  
007F 7000h  
007F 7FFFh  
2032  
007F 0000h  
007F 0FFFh  
15  
0
1
0000 F000h  
0000 FFFFh  
8
7
0000 8000h  
0000 7000h  
0000 8FFFh  
0000 7FFFh  
0
0
0000 0000h  
0000 0FFFh  
1. See Part Number Ordering Information, Sector Size – Part Numbers table for options.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
22  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Status Register  
Status Register  
Status register bits can be read from or written to using READ STATUS REGISTER or  
WRITE STATUS REGISTER commands, respectively. When the status register enable/  
disable bit (bit 7) is set to 1 and W# is driven LOW, the status register nonvolatile bits  
become read-only and the WRITE STATUS REGISTER operation will not execute. The  
only way to exit this hardware-protected mode is to drive W# HIGH.  
Table 3: Status Register  
Bit  
Name  
Settings  
Description  
Notes  
7
Status register  
write enable/disa-  
ble  
0 = Enabled (Default)  
1 = Disabled  
Nonvolatile control bit: Used with W# to enable or  
disable writing to the status register.  
5
Top/bottom  
0 = Top (Default)  
1 = Bottom  
Nonvolatile control bit: Determines whether the pro-  
tected memory area defined by the block protect bits  
starts from the top or bottom of the memory array.  
6, 4:2 BP[3:0]  
See Protected Area ta-  
bles  
Nonvolatile control bit: Defines memory to be soft-  
ware protected against PROGRAM or ERASE operations.  
When one or more block protect bits is set to 1, a desig-  
nated memory area is protected from PROGRAM and  
ERASE operations.  
1
1
0
Write enable latch 0 = Clear (Default)  
1 = Set  
Volatile control bit: The device always powers up with  
this bit cleared to prevent inadvertent WRITE, PRO-  
GRAM, or ERASE operations. To enable these operations,  
the WRITE ENABLE operation must be executed first to  
set this bit.  
Write in progress  
0 = Ready (Default)  
1 = Busy  
Volatile status bit: Indicates if one of the following  
command cycles is in progress:  
WRITE STATUS REGISTER  
2
WRITE NONVOLATILE CONFIGURATION REGISTER  
PROGRAM  
ERASE  
1. The BULK ERASE command is executed only if all bits = 0.  
2. Status register bit 0 is the inverse of flag status register bit 7.  
Notes:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
23  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Status Register  
Block Protection Settings  
Table 4: Protected Area  
Status Register Content  
Protected Area  
Top/Bottom  
BP3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
BP2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BP1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
BP0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
64KB Sectors  
None  
511:511  
511:510  
511:508  
511:504  
511:496  
511:480  
511:448  
511:384  
511:256  
511:0  
511:0  
511:0  
511:0  
511:0  
511:0  
None  
0:0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1:0  
3:0  
7:0  
15:0  
31:0  
63:0  
127:0  
255:0  
511:0  
511:0  
511:0  
511:0  
511:0  
511:0  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
24  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Flag Status Register  
Flag Status Register  
Flag status register bits are read by using READ FLAG STATUS REGISTER command. All  
bits are volatile and are reset to zero on power-up.  
Status bits are set and reset automatically by the internal controller. Error bits must be  
cleared through the CLEAR STATUS REGISTER command.  
Table 5: Flag Status Register  
Bit  
Name  
Settings  
Description  
7
Program or  
erase  
controller  
0 = Busy  
1 = Ready  
Status bit: Indicates whether one of the following  
command cycles is in progress: WRITE STATUS  
REGISTER, WRITE NONVOLATILE CONFIGURATION  
REGISTER, PROGRAM, or ERASE.  
6
5
4
Erase suspend  
Erase  
0 = Clear  
1 = Suspend  
Status bit: Indicates whether an ERASE operation has been  
or is going to be suspended.  
0 = Clear  
1 = Failure or protection error  
Error bit: Indicates whether an ERASE operation has suc-  
ceeded or failed.  
Program  
0 = Clear  
1 = Failure or protection error  
Error bit: Indicates whether a PROGRAM operation has suc-  
ceeded or failed. It indicates, also, whether a CRC check has  
succeeded or failed.  
3
2
Reserved  
0
Reserved  
Program sus-  
pend  
0 = Clear  
1 = Suspend  
Status bit: Indicates whether a PROGRAM operation has  
been or is going to be suspended.  
1
Protection  
0 = Clear  
1 = Failure or protection error  
Error bit: Indicates whether an ERASE or PROGRAM opera-  
tion has attempted to modify the protected array sector, or  
whether a PROGRAM operation has attempted to access the  
locked OTP space.  
0
Addressing  
0 = 3-byte addressing  
1 = 4-byte addressing  
Status bit: Indicates whether 3-byte or 4-byte address  
mode is enabled.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
25  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Extended Address Register  
Extended Address Register  
The 3-byte address mode can only access 128Mb of memory. To access the full device in  
3-byte address mode, the device includes an extended address register that indirectly  
provides a fourth address byte A[31:25]. The extended address register bit A0 operates as  
memory address bit A24 to select one of the two 128Mb segments of the memory array.  
If 4-byte addressing is enabled, the extended address register settings are ignored.  
Table 6: Extended Address Register  
Bit  
7:1  
0
Name  
A[31:25]  
A24  
Settings  
Description  
0000000  
Reserved  
1 = Highest 128Mb segment  
0 = Lowest 128Mb segment (default)  
Enables specified 128Mb memory segment. The de-  
fault (lowest) setting can be changed to the high-  
est 128Mb segment using bit 1 of the nonvolatile  
configuration register.  
Figure 13: Memory Array Segments  
01FFFFFFh  
A24 = 1  
00FFFFFFh  
01000000h  
A24 = 0  
00000000h  
The PROGRAM and ERASE operations act upon the 128Mb segment selected in the ex-  
tended address register. The BULK ERASE operation erases the entire device.  
The READ operation begins reading in the selected 128Mb segment, but is not bound  
by it.  
In a continuous READ, when the last byte of the segment is read, the next byte output is  
the first byte of the next segment. The operation wraps to 0000000h; therefore, a down-  
load of the whole array is possible with one READ operation.  
The value of the extended address register does not change when a READ operation  
crosses the selected 128Mb boundary.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
26  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Internal Configuration Register  
Internal Configuration Register  
The memory configuration is set by an internal configuration register that is not directly  
accessible to users.  
The user can change the default configuration at power up by using the WRITE NON-  
VOLATILE CONFIGURATION REGISTER. Information from the nonvolatile configura-  
tion register overwrites the internal configuration register during power-on or after a re-  
set.  
The user can change the configuration during operation by using the WRITE VOLATILE  
CONFIGURATION REGISTER or the WRITE ENHANCED VOLATILE CONFIGURATION  
REGISTER commands. Information from the volatile configuration registers overwrite  
the internal configuration register immediately after the WRITE command completes.  
Figure 14: Internal Configuration Register  
Nonvolatile configuration register  
Volatile configuration register and  
enhanced volatile configuration register  
Register download is executed only during  
the power-on phase or after a reset,  
overwriting configuration register settings  
on the internal configuration register.  
Register download is executed after a  
WRITE VOLATILE OR ENHANCED VOLATILE  
CONFIGURATION REGISTER command,  
overwriting configuration register  
Internal configuration  
register  
settings on the internal configuration register.  
Device behavior  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
27  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Nonvolatile Configuration Register  
Nonvolatile Configuration Register  
This register is read from and written to using the READ NONVOLATILE CONFIGURA-  
TION REGISTER and the WRITE NONVOLATILE CONFIGURATION REGISTER com-  
mands, respectively. A register download is executed during power-on or after reset,  
overwriting the internal configuration register settings that determine device behavior.  
Table 7: Nonvolatile Configuration Register  
Bit Name  
Settings  
Description  
Notes  
15:12 Number of  
0000 = Identical to 1111  
Sets the number of dummy clock cycles subse-  
quent to all FAST READ commands.  
(See the Command Set Table for default setting  
values.)  
1
dummy clock cy- 0001 = 1  
cles  
0010 = 2  
1101 = 13  
1110 = 14  
1111 = Default  
11:9 XIP mode at  
power-on reset  
000 = XIP: Fast read  
Enables the device to operate in the selected XIP  
mode immediately after power-on reset.  
001 = XIP: Dual output fast read  
010 = XIP: Dual I/O fast read  
011 = XIP: Quad output fast read  
100 = XIP: Quad I/O fast read  
101 = Reserved  
110 = Reserved  
111 = Disabled (Default)  
8:6 Output driver  
strength  
000 = Reserved  
001 = 90 Ohms  
010 = Reserved  
011 = 45 Ohms  
100 = Reserved  
101 = 20 Ohms  
110 = Reserved  
111 = 30 Ohms (Default)  
Optimizes the impedance at VCC/2 output volt-  
age.  
5
4
3
2
1
Double transfer  
rate protocol  
0 = Enabled  
1 = Disabled (Default)  
Set DTR protocol as current one. Once enabled,  
all commands will work in DTR.  
Reset/hold  
0 = Disabled  
1 = Enabled (Default)  
Enables or disables HOLD# or RESET# on DQ3.  
Quad I/O  
protocol  
0 = Enabled  
1 = Disabled (Default)  
Enables or disables quad I/O command input  
(4-4-4 mode).  
2
2
Dual I/O  
protocol  
0 = Enabled  
1 = Disabled (Default)  
Enables or disables dual I/O command input  
(2-2-2 mode).  
128Mb  
segment select  
0 = Highest 128Mb segment  
1 = Lowest 128Mb segment (De-  
fault)  
Selects the power-on default 128Mb segment for  
3-byte address operations. See also the extended  
address register.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
28  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Nonvolatile Configuration Register  
Table 7: Nonvolatile Configuration Register (Continued)  
Bit Name  
Settings  
Description  
Notes  
0
Number of  
address bytes  
0 = Enable 4-byte address mode  
1 = Enable 3-byte address mode  
Defines the number of address bytes for a com-  
mand.  
during command (Default)  
entry  
1. The number of cycles must be set to accord with the clock frequency, which varies by the  
type of FAST READ command (See Supported Clock Frequencies table). Insufficient dum-  
my clock cycles for the operating frequency causes the memory to read incorrect data.  
Notes:  
2. When bits 2 and 3 are both set to 0, the device operates in quad I/O protocol.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
29  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Volatile Configuration Register  
Volatile Configuration Register  
This register is read from and written to by the READ VOLATILE CONFIGURATION  
REGISTER and the WRITE VOLATILE CONFIGURATION REGISTER commands, respec-  
tively. A register download is executed after these commands, overwriting the internal  
configuration register settings that determine device memory behavior.  
Table 8: Volatile Configuration Register  
Bit  
Name  
Settings  
Description  
Notes  
7:4  
Number of  
dummy clock 0001 = 1  
0000 = Identical to 1111  
Sets the number of dummy clock cycles subsequent to all  
FAST READ commands.  
1
cycles  
0010 = 2  
(See the Command Set Table for default setting values.)  
1101 = 13  
1110 = 14  
1111 = Default  
3
XIP  
0 = Enable  
1 = Disable (Default)  
Enables or disables XIP.  
0b = Fixed value.  
2
Reserved  
Wrap  
0
1:0  
00 = 16-byte boundary  
aligned  
16-byte wrap: Output data wraps within an aligned 16-byte  
boundary starting from the 3-byte address issued after the  
command code.  
2
01 = 32-byte boundary  
aligned  
32-byte wrap: Output data wraps within an aligned 32-byte  
boundary starting from the 3-byte address issued after the  
command code.  
10 = 64-byte boundary  
aligned  
64-byte wrap: Output data wraps within an aligned 64-byte  
boundary starting from the 3-byte address issued after the  
command code.  
11 = Continuous (Default) Continuously sequences addresses through the entire array.  
1. The number of cycles must be set according to and sufficient for the clock frequency,  
which varies by the type of FAST READ command, as shown in the Supported Clock Fre-  
quencies table. An insufficient number of dummy clock cycles for the operating frequen-  
cy causes the memory to read incorrect data.  
Notes:  
2. See the Sequence of Bytes During Wrap table.  
Table 9: Sequence of Bytes During Wrap  
Starting Address  
16-Byte Wrap  
32-Byte Wrap  
64-Byte Wrap  
0-1-2- . . . -63-0-1- . .  
1-2- . . . -63-0-1-2- . .  
....  
0
0-1-2- . . . -15-0-1- . .  
0-1-2- . . . -31-0-1- . .  
1
1-2- . . . -15-0-1-2- . .  
1-2- . . . -31-0-1-2- . .  
....  
15  
....  
31  
....  
63  
....  
....  
15-0-1-2-3- . . . -15-0-1- . .  
15-16-17- . . . -31-0-1- . .  
15-16-17- . . . -63-0-1- . .  
....  
....  
....  
31-0-1-2-3- . . . -31-0-1- . .  
31-32-33- . . . -63-0-1- . .  
....  
....  
....  
63-0-1- . . . -63-0-1- . .  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
30  
 
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Volatile Configuration Register  
Supported Clock Frequencies  
Table 10: Clock Frequencies – STR (in MHz)  
Notes apply to entire table  
Number of  
Dummy  
Clock Cycles  
DUAL OUTPUT  
FAST READ  
DUAL I/O FAST  
READ  
QUAD OUTPUT  
FAST READ  
QUAD I/O FAST  
READ  
FAST READ  
94  
1
79  
60  
77  
44  
61  
39  
48  
2
112  
97  
3
129  
106  
86  
78  
58  
4
133  
115  
97  
97  
69  
5
133  
125  
106  
115  
125  
133  
133  
133  
133  
106  
115  
125  
133  
133  
133  
133  
78  
6
133  
133  
86  
7
133  
133  
97  
8
9
133  
133  
106  
115  
125  
133  
133  
133  
10  
133  
133  
11 : 14  
133  
133  
1. Values are guaranteed by characterization and not 100% tested in production.  
Notes:  
2. A tuning data pattern (TDP) capability provides applications with data patterns for ad-  
justing the data latching point at the host end when the clock frequency is set higher  
than 133 MHz in STR mode and higher than 66 MHz in double transfer rate (DTR) mode.  
For additional details, refer to TN-25-07: Tuning Data Pattern for MT25Q and MT25T De-  
vices.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
31  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Volatile Configuration Register  
Table 11: Clock Frequencies – DTR (in MHz)  
Notes apply to entire table  
Number of  
Dummy  
Clock Cycles  
DUAL OUTPUT  
FAST READ  
DUAL I/O FAST  
READ  
QUAD OUTPUT  
FAST READ  
QUAD I/O FAST  
READ  
FAST READ  
1
59  
73  
82  
90  
90  
90  
90  
90  
90  
90  
45  
59  
68  
76  
83  
90  
90  
90  
90  
90  
40  
49  
59  
65  
75  
83  
90  
90  
90  
90  
26  
40  
59  
65  
75  
83  
90  
90  
90  
90  
20  
30  
39  
49  
58  
68  
78  
85  
90  
90  
2
3
4
5
6
7
8
9
10 : 14  
1. Values are guaranteed by characterization and not 100% tested in production.  
Notes:  
2. A tuning data pattern (TDP) capability provides applications with data patterns for ad-  
justing the data latching point at the host end when the clock frequency is set higher  
than 133 MHz in STR mode and higher than 66 MHz in double transfer rate (DTR) mode.  
For additional details, refer to TN-25-07: Tuning Data Pattern for MT25Q and MT25T De-  
vices.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
32  
© 2014 Micron Technology, Inc. All rights reserved.  
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Enhanced Volatile Configuration Register  
Enhanced Volatile Configuration Register  
This register is read from and written to using the READ ENHANCED VOLATILE CON-  
FIGURATION REGISTER and the WRITE ENHANCED VOLATILE CONFIGURATION  
REGISTER commands, respectively. A register download is executed after these com-  
mands, overwriting the internal configuration register settings that determine device  
memory behavior.  
Table 12: Enhanced Volatile Configuration Register  
Bit  
Name  
Settings  
Description  
Notes  
7
Quad I/O protocol  
0 = Enabled  
Enables or disables quad I/O command input  
1
1 = Disabled (Default) (4-4-4 mode).  
6
5
Dual I/O protocol  
0 = Enabled  
1 = Disabled (Default) (2-2-2 mode).  
Enables or disables dual I/O command input  
1
Double transfer rate  
protocol  
0 = Enabled  
Set DTR protocol as current one. Once enabled,  
1 = Disabled (Default, all commands will work in DTR.  
single transfer rate)  
4
Reset/hold  
0 = Disabled  
Enables or disables HOLD# or RESET# on DQ3.  
1 = Enabled (Default)  
(Available only on specified part numbers.)  
3
Reserved  
1
2:0  
Output driver strength 000 = Reserved  
001 = 90 ohms  
Optimizes the impedance at VCC/2 output volt-  
age.  
010 = Reserved  
011 = 45 ohms  
100 = Reserved  
101 = 20 ohms  
110 = Reserved  
111 = 30 ohms (De-  
fault)  
1. When bits 6 and 7 are both set to 0, the device operates in quad I/O protocol. When ei-  
ther bit 6 or 7 is set to 0, the device operates in dual I/O or quad I/O respectively. When a  
bit is set, the device enters the selected protocol immediately after the WRITE EN-  
HANCED VOLATILE CONFIGURATION REGISTER command. The device returns to the de-  
fault protocol after the next power-on or reset. Also, the rescue sequence or another  
WRITE ENHANCED VOLATILE CONFIGURATION REGISTER command will return the de-  
vice to the default protocol.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
33  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Security Registers  
Security Registers  
Security registers enable sector and password protection on multiple levels using non-  
volatile and volatile register and bit settings (shown below). The applicable register ta-  
bles follow.  
Figure 15: Sector and Password Protection  
(See Note 1)  
Sector Protection Register  
15 14 13  
Memory Sectors  
Last sector  
2
n
1
n
0
1
0
1
0
0
1
locked  
locked  
.
.
.
.
.
.
.
.
.
locked  
1
3rd sector  
2nd sector  
1st sector  
1
1
0
0
0
(See Note 2)  
Global Freeze Bit  
locked  
(See Note 3)  
(See Note 4)  
n
Nonvolatile  
Lock Bits  
Volatile  
Lock Bits  
1. Sector protection register. This 16-bit nonvolatile register includes two active bits[2:1]  
Notes:  
to enable sector and password protection.  
2. Global freeze bit. This volatile bit protects the settings in all nonvolatile lock bits.  
3. Nonvolatile lock bits. Each nonvolatile bit corresponds to and provides nonvolatile  
protection for an individual memory sector, which remains locked (protection enabled)  
until its corresponding bit is cleared to 1.  
4. Volatile lock bits. Each volatile bit corresponds to and provides volatile protection for  
an individual memory sector, which is locked temporarily (protection is cleared when the  
device is reset or powered down).  
5. The first and last sectors will have volatile protections at the 4KB subsector level. Each  
4KB subsector in these sectors can be individually locked by volatile lock bits setting;  
nonvolatile protections granularity remain at the sector level.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
34  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Sector Protection Security Register  
Sector Protection Security Register  
Table 13: Sector Protection Register  
Bits Name  
Settings  
Description  
Notes  
15:3 Reserved  
1 = Default  
2
Password  
protection  
lock  
1 = Disabled (Default)  
0 = Enabled  
Nonvolatile bit: When set to 1, password protection is dis-  
abled. When set to 0, password protection is enabled per-  
manently; the 64-bit password cannot be retrieved or reset.  
1, 2  
1
Sector  
protection  
lock  
1 = Enabled, with password  
protection (Default)  
0 = Enabled, without pass-  
word protection  
Nonvolatile bit: When set to 1, nonvolatile lock bits can  
be set to lock/unlock their corresponding memory sectors;  
bit 2 can be set to 0, enabling password protection perma-  
nently.  
1, 3, 4  
When set to 0, nonvolatile lock bits can be set to lock/  
unlock their corresponding memory sectors; bit 2 must re-  
main set to 1, disabling password protection permanently.  
0
Reserved  
1 = Default  
1. Bits 2 and 1 are user-configurable, one-time-programmable, and mutually exclusive in  
that only one of them can be set to 0. It is recommended that one of the bits be set to 0  
when first programming the device.  
Notes:  
2. The 64-bit password must be programmed and verified before this bit is set to 0 because  
after it is set, password changes are not allowed, thus providing protection from mali-  
cious software. When this bit is set to 0, a 64-bit password is required to reset the global  
freeze bit from 0 to 1. In addition, if the password is incorrect or lost, the global freeze  
bit can no longer be set and nonvolatile lock bits cannot be changed. (See the Sector  
and Password Protection figure and the Global Freeze Bit Definition table).  
3. Whether this bit is set to 1 or 0, it enables programming or erasing nonvolatile lock bits  
(which provide memory sector protection). The password protection bit must be set be-  
forehand because setting this bit will either enable password protection permanently  
(bit 2 = 0) or disable password protection permanently (bit 1 = 0).  
4. By default, all sectors are unlocked when the device is shipped from the factory. Sectors  
are locked, unlocked, read, or locked down as explained in the Nonvolatile and Volatile  
Lock Bits table and the Volatile Lock Bit Register Bit Definitions table.  
Table 14: Global Freeze Bit  
Bits Name  
Settings  
Description  
7:1  
0
Reserved  
0
Bit values are 0  
Global  
freeze bit  
1 = Disabled  
(Default)  
0 = Enabled  
Volatile bit: When set to 1, all nonvolatile lock bits can be set to enable or  
disable locking their corresponding memory sectors.  
When set to 0, nonvolatile lock bits are protected from PROGRAM or ERASE  
commands. This bit should not be set to 0 until the nonvolatile lock bits are  
set.  
1. The READ GLOBAL FREEZE BIT command enables reading this bit. When password pro-  
tection is enabled, this bit is locked upon device power-up or reset. It cannot be  
changed without the password. After the password is entered, the UNLOCK PASSWORD  
command resets this bit to 1, enabling programing or erasing the nonvolatile lock bits.  
After the bits are changed, the WRITE GLOBAL FREEZE BIT command sets this bit to 0,  
protecting the nonvolatile lock bits from PROGRAM or ERASE operations.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
35  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Nonvolatile and Volatile Sector Lock Bits Security  
Nonvolatile and Volatile Sector Lock Bits Security  
Table 15: Nonvolatile and Volatile Lock Bits  
Bit  
Details  
Nonvolatile Lock Bit  
Volatile Lock Bit  
Description Each sector of memory has one corresponding non-  
volatile lock bit  
Each sector of memory has one corresponding vola-  
tile lock bit; this bit is the sector write lock bit descri-  
bed in the Volatile Lock Bit Register table.  
Function  
When set to 0, locks and protects its corresponding  
When set to 1, locks and protects its corresponding  
memory sector from PROGRAM or ERASE operations. memory sector from PROGRAM or ERASE operations.  
Because this bit is nonvolatile, the sector remains Because this bit is volatile, protection is temporary.  
locked, protection enabled, until the bit is cleared to The sector is unlocked, protection disabled, upon de-  
1.  
vice reset or power-down.  
Settings  
1 = Lock disabled  
0 = Lock enabled  
0 = Lock disabled  
1 = Lock enabled  
Enabling  
The bit is set to 0 by the WRITE NONVOLATILE LOCK The bit is set to 1 by the WRITE VOLATILE LOCK BITS  
protection BITS command, enabling protection for designated  
locked sectors. Programming a sector lock bit re-  
quires the typical byte programming time.  
command, enabling protection for designated locked  
sectors.  
Disabling  
All bits are cleared to 1 by the ERASE NONVOLATILE All bits are set to 0 upon reset or power-down, un-  
protection LOCK BITS command, unlocking and disabling pro-  
tection for all sectors simultaneously. Erasing all sec-  
tor lock bits requires typical sector erase time.  
locking and disabling protection for all sectors.  
Reading  
the bit  
Bits are read by the READ NONVOLATILE LOCK BITS Bits are read by the READ VOLATILE LOCK BITS com-  
command. mand.  
Volatile Lock Bit Security Register  
One volatile lock bit register is associated with each sector of memory. It enables the  
sector to be locked, unlocked, or locked-down with the WRITE VOLATILE LOCK BITS  
command, which executes only when sector lock down (bit 1) is set to 0. Each register  
can be read with the READ VOLATILE LOCK BITS command. This register is compatible  
with and provides the same locking capability as the lock register in the Micron N25Q  
SPI NOR family.  
Table 16: Volatile Lock Bit Register  
Bit Name  
Settings  
Description  
7:2 Reserved  
0
Bit values are 0.  
1
0
Sector  
0 = Lock-down disabled (Default) Volatile bit: Device always powers up with this bit set to 0 so that  
lock down 1 = Lock-down enabled  
sector lock down and sector write lock bits can be set to 1. When  
this bit set to 1, neither of the two volatile lock bits can be written  
to until the next power cycle, hardware, or software reset.  
Sector  
0 = Write lock disabled (Default) Volatile bit: Device always powers up with this bit set to 0 so that  
write lock 1 = Write lock enabled  
PROGRAM and ERASE operations in this sector can be executed  
and sector content modified. When this bit is set to 1, PROGRAM  
and ERASE operations in this sector are not executed.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
36  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Device ID Data  
Device ID Data  
The device ID data shown in the tables here is read by the READ ID and MULTIPLE I/O  
READ ID operations.  
Table 17: Device ID Data  
Byte#  
Manufacturer ID (1 byte total)  
Manufacturer ID (1 byte)  
Device ID (2 bytes total)  
Name  
Content Value  
Assigned By  
JEDEC  
1
20h  
2
Memory type (1 byte)  
BAh = 3V  
Manufacturer  
BBh = 1.8V  
22h = 2Gb  
3
Memory capacity (1 byte)  
21h = 1Gb  
20h = 512Mb  
19h = 256Mb  
18h = 128Mb  
17h = 64Mb  
Unique ID (17 bytes total)  
4
Indicates the number of remaining ID bytes  
10h  
Factory  
(1 byte)  
5
6
Extended device ID (1 byte)  
Device configuration information (1 byte)  
Customized factory data (14 bytes)  
See Extended Device ID table  
00h = Standard  
7:20  
Unique ID code (UID)  
Table 18: Extended Device ID Data, First Byte  
Bit 7  
Bit 6  
Bit 51  
Bit 4  
Reserved  
Bit 3  
Bit 22  
Bit 1  
Bit 0  
Reserved  
Device  
Generation  
1 = 2nd  
1 = Alternate BP  
scheme  
0 = Standard BP  
scheme  
HOLD#/RESET#:  
0 = HOLD  
Additional HW  
RESET#:  
1 = Available  
0 = Not available  
Sector size:  
00 = Uniform  
64KB  
1 = RESET  
generation  
1. For alternate BP scheme information, contact the factory.  
Notes:  
2. Available for specific part numbers. See Part Number Ordering Information for details.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
37  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Serial Flash Discovery Parameter Data  
Serial Flash Discovery Parameter Data  
The serial Flash discovery parameter (SFDP) provides a standard, consistent method to  
describe serial Flash device functions and features using internal parameter tables. The  
parameter tables can be interrogated by host system software, enabling adjustments to  
accommodate divergent features from multiple vendors. The SFDP standard defines a  
common parameter table that describes important device characteristics and serial ac-  
cess methods used to read the parameter table data.  
Micron's SFDP table information aligns with JEDEC-standard JESD216 for serial Flash  
discoverable parameters. The latest JEDEC standard includes revision 1.6. Beginning  
week 42 (2014), Micron's MT25Q production parts will include SFDP data that aligns  
with revision 1.6.  
Refer to JEDEC-standard JESD216B for a complete overview of the SFDP table defini-  
tion.  
Data in the SFDP tables is read by the READ SERIAL FLASH DISCOVERY PARAMETER  
operation.  
See Micron TN-25-06: Serial Flash Discovery Parameters for MT25Q Family for serial  
Flash discovery parameter data.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
38  
© 2014 Micron Technology, Inc. All rights reserved.  
 
Command Definitions  
Table 19: Command Set  
Notes 1 and 2 apply to the entire table  
Command-Address-Data  
Dummy Clock Cycles  
Extended  
SPI  
Dual  
SPI  
Quad  
SPI  
Address Extended  
Dual  
SPI  
Quad  
SPI  
Data  
Bytes  
Command  
Code  
Bytes  
SPI  
Notes  
Software RESET Operations  
RESET ENABLE  
66h  
99h  
1-0-0  
1-0-0  
2-0-0  
2-0-0  
4-0-0  
4-0-0  
0
0
0
0
0
0
0
0
0
0
RESET MEMORY  
READ ID Operations  
READ ID  
9E/9Fh  
AFh  
1-0-1  
1-0-1  
1-1-1  
0
0
3
0
0
8
1 to 20  
1 to 20  
1 to  
3
MULTIPLE I/O READ ID  
2-0-2  
2-2-2  
4-0-4  
4-4-4  
0
8
0
8
READ SERIAL FLASH DISCOVERY  
PARAMETER  
5Ah  
READ MEMORY Operations  
READ  
03h  
0Bh  
3Bh  
BBh  
6Bh  
EBh  
0Dh  
3Dh  
BDh  
1-1-1  
1-1-1  
1-1-2  
1-2-2  
1-1-4  
1-4-4  
1-1-1  
1-1-2  
1-2-2  
3(4)  
3(4)  
3(4)  
3(4)  
3(4)  
3(4)  
3(4)  
3(4)  
3(4)  
0
8
0
8
8
8
0
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
4
FAST READ  
2-2-2  
2-2-2  
2-2-2  
4-4-4  
10  
4, 5  
4, 5  
4, 5  
4, 5  
4, 5  
4, 5  
4, 5  
4, 5  
DUAL OUTPUT FAST READ  
DUAL INPUT/OUTPUT FAST READ  
QUAD OUTPUT FAST READ  
QUAD INPUT/OUTPUT FAST READ  
DTR FAST READ  
8
8
4-4-4  
4-4-4  
4-4-4  
8
10  
10  
8
10  
6
2-2-2  
2-2-2  
2-2-2  
6
6
6
DTR DUAL OUTPUT FAST READ  
6
DTR DUAL INPUT/OUTPUT FAST  
READ  
6
DTR QUAD OUTPUT FAST READ  
6Dh  
EDh  
1-1-4  
1-4-4  
4-4-4  
4-4-4  
3(4)  
3(4)  
6
8
8
8
1 to ∞  
1 to ∞  
4, 5  
4, 5  
DTR QUAD INPUT/OUTPUT FAST  
READ  
QUAD INPUT/OUTPUT WORD  
READ  
E7h  
1-4-4  
4-4-4  
3(4)  
4
4
1 to ∞  
4
READ MEMORY Operations with 4-Byte Address  
4-BYTE READ  
13h  
0Ch  
3Ch  
1-1-1  
1-1-1  
1-1-2  
4
4
4
0
8
8
0
8
8
0
1 to ∞  
1 to ∞  
1 to ∞  
5
5
5
4-BYTE FAST READ  
2-2-2  
2-2-2  
4-4-4  
10  
4-BYTE DUAL OUTPUT FAST READ  
 
 
Table 19: Command Set (Continued)  
Notes 1 and 2 apply to the entire table  
Command-Address-Data  
Dummy Clock Cycles  
Extended  
SPI  
Dual  
SPI  
Quad  
SPI  
Address Extended  
Dual  
SPI  
Quad  
SPI  
Data  
Bytes  
Command  
Code  
Bytes  
SPI  
Notes  
4-BYTE DUAL INPUT/OUTPUT  
FAST READ  
BCh  
1-2-2  
1-1-4  
1-4-4  
2-2-2  
4
8
8
1 to ∞  
1 to ∞  
1 to ∞  
5
4-BYTE QUAD OUTPUT FAST  
READ  
6Ch  
ECh  
4-4-4  
4-4-4  
4-4-4  
4
4
8
10  
10  
8
5
5
4-BYTE QUAD INPUT/OUTPUT  
FAST READ  
10  
4-BYTE DTR FAST READ  
0Eh  
BEh  
1-1-1  
1-2-2  
2-2-2  
2-2-2  
4
4
6
6
6
6
1 to ∞  
1 to ∞  
5
5
4-BYTE DTR DUAL INPUT/OUTPUT  
FAST READ  
4-BYTE DTR QUAD INPUT/  
OUTPUT FAST READ  
EEh  
1-4-4  
4-4-4  
4
8
8
1 to ∞  
5
WRITE Operations  
WRITE ENABLE  
06h  
04h  
1-0-0  
1-0-0  
2-0-0  
2-0-0  
4-0-0  
4-0-0  
0
0
0
0
0
0
0
0
0
0
WRITE DISABLE  
READ REGISTER Operations  
READ STATUS REGISTER  
READ FLAG STATUS REGISTER  
05h  
70h  
B5h  
1-0-1  
1-0-1  
1-0-1  
2-0-2  
2-0-2  
2-0-2  
4-0-4  
4-0-4  
4-0-4  
0
0
0
0
0
0
0
0
0
0
0
0
1 to ∞  
1 to ∞  
2 to ∞  
READ NONVOLATILE CONFIGU-  
RATION REGISTER  
READ VOLATILE CONFIGURATION  
REGISTER  
85h  
65h  
C8h  
96h  
1-0-1  
1-0-1  
1-0-1  
1-0-1  
2-0-2  
2-0-2  
2-0-2  
2-0-2  
4-0-4  
4-0-4  
4-0-4  
4-0-4  
0
0
0
0
0
0
0
8
0
0
0
8
0
0
0
8
1 to ∞  
1 to ∞  
1 to ∞  
1 to ∞  
READ ENHANCED VOLATILE CON-  
FIGURATION REGISTER  
READ EXTENDED ADDRESS REG-  
ISTER  
READ GENERAL PURPOSE READ  
REGISTER  
6, 7  
WRITE REGISTER Operations  
WRITE STATUS REGISTER  
01h  
B1h  
1-0-1  
1-0-1  
2-0-2  
2-0-2  
4-0-4  
4-0-4  
0
0
0
0
0
0
0
0
1
2
8
8
WRITE NONVOLATILE CONFIGU-  
RATION REGISTER  
Table 19: Command Set (Continued)  
Notes 1 and 2 apply to the entire table  
Command-Address-Data  
Dummy Clock Cycles  
Extended  
SPI  
Dual  
SPI  
Quad  
SPI  
Address Extended  
Dual  
SPI  
Quad  
SPI  
Data  
Bytes  
Command  
Code  
Bytes  
SPI  
Notes  
WRITE VOLATILE CONFIGURA-  
TION REGISTER  
81h  
1-0-1  
1-0-1  
1-0-1  
2-0-2  
2-0-2  
2-0-2  
4-0-4  
4-0-4  
4-0-4  
0
0
0
0
0
0
1
1
1
8
WRITE ENHANCED VOLATILE  
CONFIGURATION REGISTER  
61h  
C5h  
0
0
0
0
0
0
8
8
WRITE EXTENDED ADDRESS REG-  
ISTER  
CLEAR FLAG STATUS REGISTER Operation  
CLEAR FLAG STATUS REGISTER  
PROGRAM Operations  
PAGE PROGRAM  
50h  
1-0-0  
2-0-0  
4-0-0  
4-4-4  
0
0
0
0
0
0
02h  
A2h  
D2h  
1-1-1  
1-1-2  
1-2-2  
2-2-2  
2-2-2  
2-2-2  
3(4)  
3(4)  
3(4)  
0
0
0
0
0
0
1 to 256  
1 to 256  
1 to 256  
8
DUAL INPUT FAST PROGRAM  
4, 8  
4, 8  
EXTENDED DUAL INPUT FAST  
PROGRAM  
QUAD INPUT FAST PROGRAM  
32h  
38h  
1-1-4  
1-4-4  
4-4-4  
4-4-4  
3(4)  
3(4)  
0
0
0
0
1 to 256  
1 to 256  
4, 8  
4, 8  
EXTENDED QUAD INPUT FAST  
PROGRAM  
PROGRAM Operations with 4-Byte Address  
4-BYTE PAGE PROGRAM  
12h  
34h  
1-1-1  
1-1-4  
2-2-2  
4-4-4  
4-4-4  
4
4
0
0
0
0
0
1 to 256  
1 to 256  
8
8
4-BYTE QUAD INPUT FAST PRO-  
GRAM  
4-BYTE QUAD INPUT EXTENDED  
FAST PROGRAM  
3Eh  
1-4-4  
4-4-4  
4
0
0
1 to 256  
8
ERASE Operations  
32KB SUBSECTOR ERASE  
4KB SUBSECTOR ERASE  
SECTOR ERASE  
52h  
20h  
1-1-0  
1-1-0  
1-1-0  
1-0-0  
2-2-0  
2-2-0  
2-2-0  
2-0-0  
4-4-0  
4-4-0  
4-4-0  
4-0-0  
3(4)  
3(4)  
3(4)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4, 8  
4, 8  
4, 8  
8
D8h  
BULK ERASE  
C7h/60h  
ERASE Operations with 4-Byte Address  
4-BYTE SECTOR ERASE  
DCh  
21h  
1-1-0  
1-1-0  
2-2-0  
2-2-0  
4-4-0  
4-4-0  
4
4
0
0
0
0
0
0
0
0
8
8
4-BYTE 4KB SUBSECTOR ERASE  
SUSPEND/RESUME Operations  
Table 19: Command Set (Continued)  
Notes 1 and 2 apply to the entire table  
Command-Address-Data  
Dummy Clock Cycles  
Extended  
SPI  
Dual  
SPI  
Quad  
SPI  
Address Extended  
Dual  
SPI  
Quad  
SPI  
Data  
Bytes  
Command  
Code  
75h  
Bytes  
SPI  
Notes  
PROGRAM/ERASE SUSPEND  
PROGRAM/ERASE RESUME  
1-0-0  
1-0-0  
2-0-0  
2-0-0  
4-0-0  
4-0-0  
0
0
0
0
0
0
0
0
7Ah  
0
0
ONE-TIME PROGRAMMABLE (OTP) Operations  
READ OTP ARRAY  
4Bh  
42h  
1-1-1  
1-1-1  
2-2-2  
2-2-2  
4-4-4  
4-4-4  
3(4)  
3(4)  
8
0
8
0
10  
0
1 to 64  
1 to 64  
4, 5  
4, 8  
PROGRAM OTP ARRAY  
4-BYTE ADDRESS MODE Operations  
ENTER 4-BYTE ADDRESS MODE  
EXIT 4-BYTE ADDRESS MODE  
QUAD PROTOCOL Operations  
B7h  
1-0-0  
1-0-0  
2-0-0  
2-0-0  
4-0-0  
4-0-0  
0
0
0
0
0
0
0
0
0
0
E9h  
ENTER QUAD INPUT/OUTPUT  
MODE  
35h  
F5h  
1-0-0  
1-0-0  
2-0-0  
2-0-0  
4-0-0  
4-0-0  
0
0
0
0
0
0
0
0
0
0
RESET QUAD INPUT/OUTPUT  
MODE  
Deep Power-Down Operations  
ENTER DEEP POWER DOWN  
B9h  
ABh  
1-0-0  
1-0-0  
2-0-0  
2-0-0  
4-0-0  
4-0-0  
0
0
0
0
0
0
0
0
0
0
RELEASE FROM DEEP POWER-  
DOWN  
ADVANCED SECTOR PROTECTION Operations  
READ SECTOR PROTECTION  
PROGRAM SECTOR PROTECTION  
READ VOLATILE LOCK BITS  
WRITE VOLATILE LOCK BITS  
READ NONVOLATILE LOCK BITS  
WRITE NONVOLATILE LOCK BITS  
ERASE NONVOLATILE LOCK BITS  
READ GLOBAL FREEZE BIT  
WRITE GLOBAL FREEZE BIT  
READ PASSWORD  
2Dh  
2Ch  
E8h  
E5h  
E2h  
E3h  
E4h  
A7h  
A6h  
27h  
28h  
29h  
1-0-1  
1-0-1  
1-1-1  
1-1-1  
1-1-1  
1-1-0  
1-0-0  
1-0-1  
1-0-0  
1-0-1  
1-0-1  
1-0-1  
2-0-2  
2-0-2  
2-2-2  
2-2-2  
2-2-2  
2-2-0  
2-0-0  
4-0-4  
4-0-4  
4-4-4  
4-4-4  
4-4-4  
4-4-0  
4-0-0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1 to ∞  
2
8
3(4)  
3(4)  
4
1 to ∞  
4, 9  
1
4, 8, 10  
1 to ∞  
8
8
8
8
4
0
0
0
0
1 to ∞  
2-0-0  
4-0-0  
0
0
1 to ∞  
8
0
WRITE PASSWORD  
2-0-2  
2-0-2  
4-0-4  
4-0-4  
0
UNLOCK PASSWORD  
0
8
Table 19: Command Set (Continued)  
Notes 1 and 2 apply to the entire table  
Command-Address-Data  
Dummy Clock Cycles  
Extended  
SPI  
Dual  
SPI  
Quad  
SPI  
Address Extended  
Dual  
SPI  
Quad  
SPI  
Data  
Bytes  
Command  
Code  
Bytes  
SPI  
Notes  
ADVANCED SECTOR PROTECTION Operations with 4-Byte Address  
4-BYTE READ VOLATILE LOCK  
BITS  
E0h  
1-1-1  
2-2-2  
4-4-4  
4-4-4  
4
4
0
0
0
0
0
0
1 to ∞  
4-BYTE WRITE VOLATILE LOCK  
BITS  
E1h  
1-1-1  
2-2-2  
1
8
ADVANCED FUNCTION INTERFACE Operations  
INTERFACE ACTIVATION  
9Bh  
1-0-0  
1-0-1  
2-0-0  
2-0-2  
4-0-0  
4-0-4  
0
0
0
0
0
0
0
0
0
CYCLIC REDUNDANCY CHECK  
9Bh/27h  
10 or 18  
256Mb, 3V Multiple I/O Serial Flash Memory  
Command Definitions  
1. Micron extended SPI protocol is the standard SPI protocol with additional commands  
that extend functionality and enable address or data transmission on multiple DQn  
lines.  
Notes:  
2. The command code is always transmitted on DQn = 1, 2, or 4 lines according to the  
standard, dual, or quad protocol respectively. However, a command may be able to  
transmit address and data on multiple DQn lines regardless of protocol. The protocol  
columns show the number of DQn lines a command uses to transmit command, address,  
and data information as shown in these examples: command-address-data = 1-1-1, or  
1-2-2, or 2-4-4, and so on.  
3. The READ SERIAL FLASH DISCOVERY PARAMETER operation accepts only 3-byte address  
even if the device is configured to 4-byte address mode.  
4. Requires 4 bytes of address if the device is configured to 4-byte address mode.  
5. The number of dummy clock cycles required when shipped from Micron factories. The  
user can modify the dummy clock cycle number via the nonvolatile configuration regis-  
ter and the volatile configuration register.  
6. The number of dummy cycles for the READ GENERAL PURPOSE READ REGISTER com-  
mand is fixed (8 dummy cycles) and is not affected by dummy cycle settings in the non-  
volatile configuration register and volatile configuration register.  
7. The general purpose read register is 64 bytes. After the first 64 bytes, the device outputs  
00h and does not wrap.  
8. The WRITE ENABLE command must be issued first before this operation can be execu-  
ted.  
9. Formerly referred to as the READ LOCK REGISTER operation.  
10. Formerly referred to as the WRITE LOCK REGISTER operation.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
44  
© 2014 Micron Technology, Inc. All rights reserved.  
256Mb, 3V Multiple I/O Serial Flash Memory  
Software RESET Operations  
Software RESET Operations  
RESET ENABLE and RESET MEMORY Commands  
To initiate these commands, S# is driven LOW and the command code is input on DQn.  
A minimum de-selection time of tSHSL2 must come between RESET ENABLE and RE-  
SET MEMORY or reset is not guaranteed. Then, S# must be driven HIGH for the device  
to enter power-on reset. A time of tSHSL3 is required before the device can be re-selec-  
ted by driving S# LOW.  
Table 20: RESET ENABLE and RESET MEMORY Operations  
Operation Name  
RESET ENABLE (66h)  
RESET MEMORY (99h)  
Description/Conditions  
To reset the device, the RESET ENABLE command must be followed by the RESET MEMORY  
command. When the two commands are executed, the device enters a power-on reset con-  
dition. It is recommended to exit XIP mode before executing these two commands.  
All volatile lock bits, the volatile configuration register, the enhanced volatile configura-  
tion register, and the extended address register are reset to the power-on reset default  
condition according to nonvolatile configuration register settings.  
If a reset is initiated while a WRITE, PROGRAM, or ERASE operation is in progress or sus-  
pended, the operation is aborted and data may be corrupted.  
Reset is effective after the flag status register bit 7 outputs 1 with at least one byte output.  
A RESET ENABLE command is not accepted during WRITE STATUS REGISTER and WRITE  
NONVOLATILE CONFIGURATION REGISTER operations.  
Figure 16: RESET ENABLE and RESET MEMORY Command  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
C
S#  
Reset enable  
Reset memory  
DQ0  
1. Above timing diagram is showed for Extended-SPI Protocol case, however these com-  
mands are available in all protocols. In DIO-SPI protocol, the instruction bits are trans-  
mitted on both DQ0 and DQ1 pins. In QIO-SPI protocol the instruction bits are transmit-  
ted on all four data pins. In Extended-DTR-SPI protocol, the instruction bits are transmit-  
ted on DQ0 pin in double transfer rate mode. In DIO-DTR-SPI protocol, the instruction  
bits are transmitted on both DQ0 and DQ1 pins in double transfer rate mode. In QIO-  
DTR-SPI protocol, the instruction bits are transmitted on all four data pins in double  
transfer rate mode.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
45  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ ID Operations  
READ ID Operations  
READ ID and MULTIPLE I/O READ ID Commands  
To initiate these commands, S# is driven LOW and the command code is input on DQn.  
When S# is driven HIGH, the device goes to standby. The operation is terminated by  
driving S# HIGH at any time during data output.  
Table 21: READ ID and MULTIPLE I/O READ ID Operations  
Operation Name  
Description/Conditions  
READ ID (9Eh/9Fh)  
Outputs information shown in the Device ID Data tables. If an ERASE or PROGRAM cycle is  
in progress when the command is initiated, the command is not decoded and the com-  
mand cycle in progress is not affected.  
MULTIPLE I/O READ ID (AFh)  
Figure 17: READ ID and MULTIPLE I/O READ ID Commands  
Extended (READ ID)  
0
7
8
15  
16  
31  
32  
C
LSB  
DQ0  
Command  
MSB  
LSB  
DOUT  
LSB  
DOUT  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
MSB  
DOUT  
MSB  
DQ1  
High-Z  
Manufacturer  
identification  
Device  
identification  
UID  
Dual (MULTIPLE I/O READ ID )  
0
3
4
7
8
15  
C
LSB  
LSB  
DOUT  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
MSB  
DQ[1:0]  
Command  
MSB  
Manufacturer  
identification  
Device  
identification  
Quad (MULTIPLE I/O READ ID )  
0
1
2
3
4
7
C
LSB  
LSB  
LSB  
DOUT  
MSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
MSB  
Manufacturer  
identification  
Device  
identification  
Don’t Care  
1. S# not shown.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
46  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ SERIAL FLASH DISCOVERY PARAMETER Operation  
READ SERIAL FLASH DISCOVERY PARAMETER Operation  
READ SERIAL FLASH DISCOVERY PARAMETER Command  
To execute READ SERIAL FLASH DISCOVERY PARAMETER command, S# is driven  
LOW. The command code is input on DQ0, followed by three address bytes and eight  
dummy clock cycles (address is always 3 bytes, even if the device is configured to work  
in 4-byte address mode). The device outputs the information starting from the specified  
address. When the 2048-byte boundary is reached, the data output wraps to address 0 of  
the serial Flash discovery parameter table. The operation is terminated by driving S#  
HIGH at any time during data output.  
Note: The operation always executes in continuous mode so the read burst wrap setting  
in the volatile configuration register does not apply.  
Figure 18: READ SERIAL FLASH DISCOVERY PARAMETER Command – 5Ah  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
DQ0  
DQ1  
Command  
MSB  
A[MAX]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
High-Z  
Dummy cycles  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DQ[1:0]  
Command  
MSB  
A[MAX]  
Dummy cycles  
Quad  
0
1
2
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
MSB  
A[MAX]  
Don’t Care  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1); For dual protocol, Cx = 3 + (A[MAX] + 1)/2;  
For quad protocol, Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
47  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ MEMORY Operations  
READ MEMORY Operations  
To initiate a command, S# is driven LOW and the command code is input on DQn, fol-  
lowed by input of the address bytes on DQn. The operation is terminated by driving S#  
HIGH at any time during data output.  
Table 22: READ MEMORY Operations  
Operation Name  
Description/Conditions  
READ (03h)  
The device supports 3-byte addressing (default), with A[23:0] input during  
address cycle. After any READ command is executed, the device will out-  
put data from the selected address. After the boundary is reached, the  
device will start reading again from the beginning.  
FAST READ (0Bh)  
DUAL OUTPUT FAST READ (3Bh)  
DUAL INPUT/OUTPUT FAST READ (BBh)  
QUAD OUTPUT FAST READ (6Bh)  
QUAD INPUT/OUTPUT FAST READ (EBh)  
DTR FAST READ (0Dh)  
Each address bit is latched in during the rising edge of the clock. The ad-  
dressed byte can be at any location, and the address automatically incre-  
ments to the next address after each byte of data is shifted out; there-  
fore, a die can be read with a single command.  
FAST READ can operate at a higher frequency (fC).  
DTR DUAL OUTPUT FAST READ (3Dh)  
DTR DUAL INPUT/OUTPUT FAST READ (BDh)  
DTR QUAD OUTPUT FAST READ (6Dh)  
DTR QUAD INPUT/OUTPUT FAST READ (EDh)  
QUAD INPUT/OUTPUT WORD READ (E7h)  
DTR commands function in DTR protocol regardless of settings in the  
nonvolatile configuration register or enhanced volatile configuration reg-  
ister; other commands function in DTR protocol only after DTR protocol is  
enabled by the register settings.  
E7h is similar to the QUAD I/O FAST READ command except that the low-  
est address bit (A0) must equal 0 and only four dummy clocks are re-  
quired prior to the data output. This command is supported in extended-  
SPI and quad-SPI protocols, but not in the DTR protocol; it is ignored it in  
dual-SPI protocol.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
48  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
4-BYTE READ MEMORY Operations  
4-BYTE READ MEMORY Operations  
Table 23: 4-BYTE READ MEMORY Operations  
Operation Name  
Description/Conditions  
4-BYTE READ (13h)  
READ MEMORY operations can be extended to a 4-byte address range,  
with [A31:0] input during address cycle.  
4-BYTE FAST READ (0Ch)  
Selection of the 3-byte or 4-byte address range can be enabled in two  
ways: through the nonvolatile configuration register or through the ENA-  
BLE 4-BYTE ADDRESS MODE/EXIT 4-BYTE ADDRESS MODE commands.  
Each address bit is latched in during the rising edge of the clock. The ad-  
dressed byte can be at any location, and the address automatically incre-  
ments to the next address after each byte of data is shifted out; there-  
fore, a die can be read with a single command.  
4-BYTE DUAL OUTPUT FAST READ (3Ch)  
4-BYTE DUAL INPUT/OUTPUT FAST READ (BCh)  
4-BYTE QUAD OUTPUT FAST READ (6Ch)  
4-BYTE QUAD INPUT/OUTPUT FAST READ  
(ECh)  
DTR 4-BYTE FAST READ (0Eh)  
FAST READ can operate at a higher frequency (fC).  
DTR 4-BYTE DUAL INPUT/OUTPUT FAST READ  
(BEh)  
4-BYTE commands and DTR 4-BYTE commands function in 4-BYTE and  
DTR 4-BYTE protocols regardless of settings in the nonvolatile configura-  
DTR 4-BYTE QUAD INPUT/OUTPUT FAST READ tion register or enhanced volatile configuration register; other commands  
(EEh)  
function in 4-BYTE and DTR protocols only after the specific protocol is  
enabled by the register settings.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
49  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ MEMORY Operations Timings  
READ MEMORY Operations Timings  
Figure 19: READ – 03h/13h3  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
DQ[0]  
DQ1  
Command  
High-Z  
MSB  
A[MAX]  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
Don’t Care  
1. For extended protocol, Cx = 7 + (A[MAX] + 1); For dual protocol, Cx = 3 + (A[MAX] + 1)/2;  
For quad protocol, Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
3. READ and 4-BYTE READ commands.  
Figure 20: FAST READ – 0Bh/0Ch3  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
DQ0  
Command  
MSB  
A[MAX]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DQ1  
High-Z  
Dummy cycles  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DQ[1:0]  
Command  
MSB  
A[MAX]  
Dummy cycles  
Quad  
0
1
2
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
MSB  
A[MAX]  
Don’t Care  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1); For dual protocol, Cx = 3 + (A[MAX] + 1)/2;  
For quad protocol, Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
3. FAST READ and 4-BYTE FAST READ commands.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
50  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ MEMORY Operations Timings  
Figure 21: DUAL OUTPUT FAST READ – 3Bh/3Ch3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
D
DQ0  
Command  
High-Z  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
DQ1  
OUT  
OUT  
OUT  
MSB  
Dummy cycles  
Dual  
0
3
4
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
OUT  
DQ[1:0]  
Command  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1); For dual protocol, Cx = 3 + (A[MAX] + 1)/2.  
2. S# not shown.  
Notes:  
3. DUAL OUTPUT FAST READ and 4-BYTE DUAL OUTPUT FAST READ commands.  
Figure 22: DUAL INPUT/OUTPUT FAST READ – BBh/BCh3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
D
DQ0  
Command  
High-Z  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
DQ1  
OUT  
OUT  
OUT  
OUT  
A[MAX]  
MSB  
Dummy cycles  
Dual  
0
3
4
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
OUT  
DQ[1:0]  
Command  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/2; For dual protocol,  
Cx = 3 + (A[MAX] + 1)/2.  
Notes:  
2. S# not shown.  
3. DUAL INPUT/OUTPUT FAST READ and 4-BYTE DUAL INPUT/OUTPUT FAST READ com-  
mands.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
51  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ MEMORY Operations Timings  
Figure 23: QUAD OUTPUT FAST READ – 6Bh/6Ch3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
DQ0  
Command  
High-Z  
‘1’  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
DQ[2:1]  
DQ3  
OUT  
OUT  
MSB  
Dummy cycles  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
OUT  
DQ[3:0]  
Command  
OUT  
OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1); For quad protocol,  
Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
3. QUAD OUTPUT FAST READ and 4-BYTE QUAD OUTPUT FAST READ commands.  
Figure 24: QUAD INPUT/OUTPUT FAST READ – EBh/ECh3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
DQ0  
Command  
High-Z  
‘1’  
OUT  
OUT  
OUT  
MSB  
D
D
D
D
D
D
DQ[2:1]  
DQ3  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
A[MAX]  
MSB  
Dummy cycles  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
OUT  
DQ[3:0]  
Command  
OUT  
OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/4; For quad protocol,  
Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
52  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ MEMORY Operations Timings  
3. QUAD INPUT/OUTPUT FAST READ and 4-BYTE QUAD INPUT/OUTPUT FAST READ com-  
mands.  
Figure 25: QUAD INPUT/OUTPUT WORD READ – E7h3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
DQ0  
Command  
High-Z  
OUT  
OUT  
OUT  
OUT  
MSB  
DQ[3:1]  
OUT  
OUT  
A[MAX]  
MSB  
Four dummy cycles  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
OUT  
DQ[3:0]  
Command  
OUT  
OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/4; For quad protocol,  
Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
3. QUAD INPUT/OUTPUT WORD READ and 4-BYTE QUAD INPUT/OUTPUT WORD READ  
commands.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
53  
© 2014 Micron Technology, Inc. All rights reserved.  
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ MEMORY Operations Timings  
Figure 26: DTR FAST READ – 0Dh/0Eh3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
DQ0  
Command  
MSB  
A[MAX]  
LSB  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DQ1  
High-Z  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT OUT  
MSB  
Dummy cycles  
Dual  
0
3
4
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
DQ[1:0]  
Command  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
2
MSB  
Dummy cycles  
Quad  
0
1
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
DQ[3:0]  
Command  
OUT  
OUT  
OUT OUT  
MSB  
A[MAX]  
MSB  
Don’t Care  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/2; For dual protocol,  
Cx = 3 + (A[MAX] + 1)/4; For quad protocol, Cx = 1 + (A[MAX] + 1)/8.  
Notes:  
2. S# not shown.  
3. DTR FAST READ and 4-BYTE DTR FAST READ commands.  
Figure 27: DTR DUAL OUTPUT FAST READ – 3Dh3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DQ0  
Command  
High-Z  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
D
DQ1  
OUT  
OUT  
OUT  
OUT  
MSB  
Dummy cycles  
Dual  
0
3
4
C
x
C
LSB  
A[MIN]  
LSB  
DOUT  
MSB  
DOUT DOUT DOUT DOUT DOUT DOUT DOUT  
DQ[1:0]  
Command  
MSB  
A[MAX]  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/2; For dual protocol,  
Cx = 3 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
3. DTR DUAL OUTPUT FAST READ and 4-BYTE DTR DUAL OUTPUT FAST READ commands.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
54  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ MEMORY Operations Timings  
Figure 28: DTR DUAL INPUT/OUTPUT FAST READ – BDh3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DQ0  
DQ1  
Command  
High-Z  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
D
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
A[MAX]  
4
MSB  
Dummy cycles  
Dual  
0
3
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
DQ[1:0]  
Command  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/4; For dual protocol,  
Cx = 3 + (A[MAX] + 1)/8.  
Notes:  
2. S# not shown.  
3. DTR DUAL INPUT/OUTPUT FAST READ and 4-BYTE DTR DUAL INPUT/OUTPUT FAST READ  
commands.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
55  
© 2014 Micron Technology, Inc. All rights reserved.  
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ MEMORY Operations Timings  
Figure 29: DTR QUAD OUTPUT FAST READ – 6Dh3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
D
DQ0  
Command  
High-Z  
‘1’  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
A[MAX]  
D
D
DQ[2:1]  
DQ3  
OUT  
OUT  
MSB  
Dummy cycles  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
DQ[3:0]  
Command  
OUT  
OUT  
OUT OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/2; For quad protocol,  
Cx = 1 + (A[MAX] + 1)/8.  
Notes:  
2. S# not shown.  
3. DTR QUAD OUTPUT FAST READ and 4-BYTE DTR QUAD OUTPUT FAST READ commands.  
Figure 30: DTR QUAD INPUT/OUTPUT FAST READ – EDh3  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
D
DQ0  
Command  
High-Z  
‘1’  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MSB  
D
D
DQ[2:1]  
DQ3  
OUT  
OUT  
A[MAX]  
2
MSB  
Dummy cycles  
Quad  
0
1
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
DQ[3:0]  
Command  
OUT  
OUT  
OUT OUT  
MSB  
A[MAX]  
MSB  
Dummy cycles  
1. For extended protocol, Cx = 7 + (A[MAX] + 1)/8; For quad protocol,  
Cx = 1 + (A[MAX] + 1)/8.  
Notes:  
2. S# not shown.  
3. DTR QUAD INPUT/OUTPUT FAST READ and 4-BYTE DTR QUAD INPUT/OUTPUT FAST  
READ commands.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
56  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
WRITE ENABLE/DISABLE Operations  
WRITE ENABLE/DISABLE Operations  
To initiate a command, S# is driven LOW and held LOW until the eighth bit of the com-  
mand code has been latched in, after which it must be driven HIGH. For extended-, du-  
al-, and quad-SPI protocols respectively, the command code is input on DQ0, DQ[1:0],  
and DQ[3:0]. If S# is not driven HIGH after the command code has been latched in, the  
command is not executed, flag status register error bits are not set, and the write enable  
latch remains cleared to its default setting of 0, providing protection against errant data  
modification.  
Table 24: WRITE ENABLE/DISABLE Operations  
Operation Name  
WRITE ENABLE (06h)  
WRITE DISABLE (04h)  
Description/Conditions  
Sets the write enable latch bit before each PROGRAM, ERASE, and WRITE command.  
Clears the write enable latch bit. In case of a protection error, WRITE DISABLE will not clear the  
bit. Instead, a CLEAR FLAG STATUS REGISTER command must be issued to clear both flags.  
Figure 31: WRITE ENABLE and WRITE DISABLE Timing  
Extended  
0
1
2
3
4
5
6
7
C
S#  
Command Bits  
LSB  
DQ0  
DQ1  
0
0
0
0
0
1
1
0
MSB  
High-Z  
Dual  
0
1
2
3
C
S#  
Command Bits  
LSB  
DQ0  
DQ1  
0
0
0
1
0
0
0
1
MSB  
Quad  
0
1
C
S#  
Command Bits  
LSB  
DQ0  
DQ1  
0
0
0
1
DQ2  
DQ3  
0
0
1
0
Don’t Care  
MSB  
1. WRITE ENABLE command sequence and code, shown here, is 06h (0000 0110 binary);  
WRITE DISABLE is identical, but its command code is 04h (0000 0100 binary).  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
57  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
READ REGISTER Operations  
READ REGISTER Operations  
To initiate a command, S# is driven LOW. For extended SPI protocol, input is on DQ0,  
output on DQ1. For dual SPI protocol, input/output is on DQ[1:0] and for quad SPI pro-  
tocol, input/output is on DQ[3:0]. The operation is terminated by driving S# HIGH at  
any time during data output.  
Table 25: READ REGISTER Operations  
Operation Name  
Description/Conditions  
Note  
READ STATUS REGISTER (05h)  
READ FLAG STATUS REGISTER (70h)  
Can be read continuously and at any time, including during a PRO-  
GRAM, ERASE, or WRITE operation. If one of these operations is in  
progress, checking the write in progress bit or P/E controller bit is  
recommended before executing the command.  
READ NONVOLATILE CONFIGURATION  
REGISTER (B5h)  
Can be read continuously. After all 16 bits of the register have been  
read, a 0 is output. All reserved fields output a value of 1.  
1
READ VOLATILE CONFIGURATION REGIS-  
TER (85h)  
When the register is read continuously, the same byte is output re-  
peatedly.  
READ ENHANCED VOLATILE CONFIGURA-  
TION REGISTER (65h)  
READ EXTENDED ADDRESS REGISTER (C8h)  
1. The operation will have output data starting from the least significant byte.  
Note:  
Figure 32: READ REGISTER Timing  
Extended  
0
7
8
9
10  
11  
12  
13  
14  
15  
C
DQ0  
DQ1  
LSB  
Command  
High-Z  
MSB  
LSB  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
Dual  
0
3
4
5
6
7
C
LSB  
LSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
MSB  
DQ[1:0]  
Command  
MSB  
Quad  
0
1
2
3
C
LSB  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
Don’t Care  
MSB  
1. Supports all READ REGISTER commands except DYNAMIC PROTECTION BITS READ.  
Notes:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
58  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
WRITE REGISTER Operations  
2. A READ NONVOLATILE CONFIGURATION REGISTER operation will output data starting  
from the least significant byte.  
3. S# not shown.  
WRITE REGISTER Operations  
Before a WRITE REGISTER command is initiated, the WRITE ENABLE command must  
be executed to set the write enable latch bit to 1. To initiate a command, S# is driven  
LOW and held LOW until the eighth bit of the last data byte has been latched in, after  
which it must be driven HIGH; for the WRITE NONVOLATILE CONFIGURATION REG-  
ISTER command, S# is held LOW until the 16th bit of the last data byte has been latched  
in. For the extended, dual, and quad SPI protocols respectively, input is on DQ0,  
DQ[1:0], and DQ[3:0], followed by the data bytes. If S# is not driven HIGH, the com-  
mand is not executed, flag status register error bits are not set, and the write enable  
latch remains set to 1. The operation is self-timed and its duration is tW for WRITE STA-  
TUS REGISTER and tNVCR for WRITE NONVOLATILE CONFIGURATION REGISTER.  
Table 26: WRITE REGISTER Operations  
Operation Name  
Description/Conditions  
Note  
WRITE STATUS REGISTER (01h)  
The WRITE STATUS REGISTER command writes new values to status  
register bits 7:2, enabling software data protection. The status reg-  
ister can also be combined with the W# signal to provide hardware  
data protection. This command has no effect on status register bits  
1:0.  
1
For the WRITE STATUS REGISTER and WRITE NONVOLATILE CONFIG-  
URATION REGISTER commands, when the operation is in progress,  
the write in progress bit is set to 1. The write enable latch bit is  
cleared to 0, whether the operation is successful or not. The status  
register and flag status register can be polled for the operation sta-  
tus. When the operation completes, the write in progress bit is  
cleared to 0, whether the operation is successful or not.  
WRITE NONVOLATILE CONFIGURATION  
REGISTER (B1h)  
WRITE VOLATILE CONFIGURATION REGIS- Because register bits are volatile, change to the bits is immediate.  
TER (81h)  
Reserved bits are not affected by this command.  
WRITE ENHANCED VOLATILE CONFIGURA-  
TION REGISTER (61h)  
WRITE EXTENDED ADDRESS REGISTER  
(C5h)  
1. The WRITE NONVOLATILE CONFIGURATION REGISTER operation must have input data  
starting from the least significant byte.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
59  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
WRITE REGISTER Operations  
Figure 33: WRITE REGISTER Timing  
Extended  
0
7
8
9
10  
11  
12  
13  
14  
15  
C
LSB  
LSB  
D
D
D
D
D
D
D
D
D
IN  
DQ0  
Command  
0
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
MSB  
MSB  
Dual  
3
4
2
5
6
7
C
LSB  
LSB  
D
D
D
D
D
D
IN  
DQ[1:0]  
Command  
0
IN  
IN  
IN  
IN  
MSB  
MSB  
MSB  
Quad  
1
3
C
LSB  
LSB  
D
D
IN  
DQ[3:0]  
Command  
IN  
IN  
MSB  
1. Supports all WRITE REGISTER commands except WRITE LOCK REGISTER.  
Notes:  
2. Data is two bytes for a WRITE NONVOLATILE CONFIGURATION REGISTER operation, in-  
put starting from the least significant byte.  
3. S# not shown.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
60  
© 2014 Micron Technology, Inc. All rights reserved.  
 
256Mb, 3V Multiple I/O Serial Flash Memory  
CLEAR FLAG STATUS REGISTER Operation  
CLEAR FLAG STATUS REGISTER Operation  
To initiate a command, S# is driven LOW. For the extended-, dual-, and quad-SPI proto-  
cols respectively, input is on DQ0, DQ[1:0], and DQ[3:0]. The operation is terminated by  
driving S# HIGH at any time.  
Table 27: CLEAR FLAG STATUS REGISTER Operation  
Operation Name  
Description/Conditions  
CLEAR FLAG STATUS  
REGISTER (50h)  
Resets the error bits (erase, program, and protection)  
Figure 34: CLEAR FLAG STATUS REGISTER Timing  
Extended  
0
7
C
LSB  
DQ0  
Command  
0
MSB  
Dual  
3
C
LSB  
DQ[1:0]  
Command  
0
MSB  
MSB  
Quad  
1
C
LSB  
DQ[3:0]  
Command  
1. S# not shown.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
61  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
PROGRAM Operations  
PROGRAM Operations  
Before a PROGRAM command is initiated, the WRITE ENABLE command must be exe-  
cuted to set the write enable latch bit to 1. To initiate a command, S# is driven LOW and  
held LOW until the eighth bit of the last data byte has been latched in, after which it  
must be driven HIGH. If S# is not driven HIGH, the command is not executed, flag sta-  
tus register error bits are not set, and the write enable latch remains set to 1. Each ad-  
dress bit is latched in during the rising edge of the clock. When a command is applied to  
a protected sector, the command is not executed, the write enable latch bit remains set  
to 1, and flag status register bits 1 and 4 are set. If the operation times out, the write ena-  
ble latch bit is reset and the program fail bit is set to 1.  
Note: The manner of latching data shown and explained in the timing diagrams ensures  
that the number of clock pulses is a multiple of one byte before command execution,  
helping reduce the effects of noisy or undesirable signals and enhancing device data  
protection.  
Table 28: PROGRAM Operations  
Operation Name  
Description/Conditions  
PAGE PROGRAM (02h)  
A PROGRAM operation changes a bit from 1 to 0.  
When the operation is in progress, the write in progress bit is set to 1.  
The write enable latch bit is cleared to 0, whether the operation is suc-  
cessful or not. The status register and flag status register can be polled  
for the operation status. When the operation completes, the write in  
DUAL INPUT FAST PROGRAM (A2h)  
EXTENDED DUAL INPUT FAST PROGRAM (D2h)  
QUAD INPUT FAST PROGRAM (32h)  
EXTENDED QUAD INPUT FAST PROGRAM (38h) progress bit is cleared to 0. An operation can be paused or resumed by  
the PROGRAM/ERASE SUSPEND or PROGRAM/ERASE RESUME command,  
respectively.  
If the bits of the least significant address, which is the starting address,  
are not all zero, all data transmitted beyond the end of the current  
page is programmed from the starting address of the same page. If the  
number of bytes sent to the device exceed the maximum page size, pre-  
viously latched data is discarded and only the last maximum page-size  
number of data bytes are guaranteed to be programmed correctly with-  
in the same page. If the number of bytes sent to the device is less than  
the maximum page size, they are correctly programmed at the specified  
addresses without any effect on the other bytes of the same page.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
62  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
4-BYTE PROGRAM Operations  
4-BYTE PROGRAM Operations  
Table 29: 4-BYTE PROGRAM Operations  
Operation Name  
Description/Conditions  
4-BYTE PAGE PROGRAM (12h)  
4-BYTE QUAD INPUT FAST PROGRAM (34h)  
PROGRAM operations can be extended to a 4-byte address range, with  
[A31:0] input during address cycle.  
Selection of the 3-byte or 4-byte address range can be enabled in two  
ways: through the nonvolatile configuration register or through the EN-  
ABLE 4-BYTE ADDRESS MODE/EXIT 4-BYTE ADDRESS MODE commands.  
4-BYTE commands and DTR 4-BYTE commands function in 4-BYTE and  
DTR 4-BYTE protocol regardless of settings in the nonvolatile configura-  
tion register or enhanced volatile configuration register; other com-  
mands function in 4-BYTE and DTR protocols only after the specific pro-  
tocol is enabled by the register settings.  
4-BYTE EXTENDED QUAD INPUT FAST PRO-  
GRAM (3Eh)  
PROGRAM Operations Timings  
Figure 35: PAGE PROGRAM Command  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
IN  
DQ0  
Command  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
Dual  
0
3
4
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
IN  
DQ[1:0]  
Command  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
IN  
DQ[3:0]  
Command  
IN  
IN  
MSB  
A[MAX]  
MSB  
1. For extended-SPI protocol, Cx = 7 + (A[MAX] + 1); For dual-SPI protocol,  
Cx = 3 + (A[MAX] + 1)/2; For quad-SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
2. S# not shown. The operation is self-timed, and its duration is tPP.  
Notes:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
63  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
PROGRAM Operations Timings  
Figure 36: DUAL INPUT FAST PROGRAM Command  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
D
DQ0  
Command  
IN  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
High-Z  
DQ1  
IN  
IN  
IN  
IN  
IN  
MSB  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ[1:0]  
Command  
MSB  
A[MAX]  
MSB  
1. For extended-SPI protocol, Cx = 7 + (A[MAX] + 1); For dual-SPI protocol,  
Cx = 3 + (A[MAX] + 1)/2.  
Notes:  
2. S# not shown.  
Figure 37: EXTENDED DUAL INPUT FAST PROGRAM Command  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ0  
Command  
MSB  
DIN  
DIN  
DIN  
DIN  
DIN  
High-Z  
0
DQ1  
A[MAX]  
MSB  
Dual  
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DQ[1:0]  
Command  
MSB  
A[MAX]  
MSB  
1. For extended-SPI protocol, Cx = 7 + (A[MAX] + 1)/2; For dual-SPI protocol,  
Cx = 3 + (A[MAX] + 1)/2.  
Notes:  
2. S# not shown.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
64  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
PROGRAM Operations Timings  
Figure 38: QUAD INPUT FAST PROGRAM Command  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
DQ0  
Command  
IN  
IN  
IN  
MSB  
A[MAX]  
High-Z  
0
DQ[3:1]  
IN  
IN  
IN  
MSB  
Quad  
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
DQ[3:0]  
Command  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
1. For extended-SPI protocol, Cx = 7 + (A[MAX] + 1); For quad-SPI protocol,  
Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
Figure 39: EXTENDED QUAD INPUT FAST PROGRAM Command  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
DQ0  
Command  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
MSB  
High-Z  
DQ[2:1]  
DQ3  
‘1’  
0
A[MAX]  
MSB  
Quad  
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
DQ[3:0]  
Command  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
1. For extended-SPI protocol, Cx = 7 + (A[MAX] + 1)/4; For quad-SPI protocol,  
Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
65  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
ERASE Operations  
ERASE Operations  
An ERASE operation changes a bit from 0 to 1. Before any ERASE command is initiated,  
the WRITE ENABLE command must be executed to set the write enable latch bit to 1; if  
not, the device ignores the command and no error bits are set to indicate operation fail-  
ure. S# is driven LOW and held LOW until the eighth bit of the last data byte has been  
latched in, after which it must be driven HIGH. The operations are self-timed, and dura-  
tion is tSSE, tSE, or tBE according to command.  
If S# is not driven HIGH, the command is not executed, flag status register error bits are  
not set, and the write enable latch remains set to 1. A command applied to a protected  
subsector is not executed. Instead, the write enable latch bit remains set to 1, and flag  
status register bits 1 and 5 are set.  
When the operation is in progress, the program or erase controller bit of the flag status  
register is set to 0. In addition, the write in progress bit is set to 1. When the operation  
completes, the write in progress bit is cleared to 0. The write enable latch bit is cleared  
to 0, whether the operation is successful or not. If the operation times out, the write en-  
able latch bit is reset and the erase error bit is set to 1.  
The status register and flag status register can be polled for the operation status. When  
the operation completes, these register bits are cleared to 1.  
Note: For all ERASE operations, noisy or undesirable signal effects can be reduced and  
device data protection enhanced by holding S# LOW until the eighth bit of the last data  
byte has been latched in; this ensures that the number of clock pulses is a multiple of  
one byte before command execution.  
Table 30: ERASE Operations  
Operation Name  
Description/Conditions  
SUBSECTOR ERASE (52h/20h)  
SECTOR ERASE (D8h)  
Sets the selected subsector or sector bits to FFh. Any address within the subsector is valid  
for entry. Each address bit is latched in during the rising edge of the clock. The operation  
can be suspended and resumed by the PROGRAM/ERASE SUSPEND and PROGRAM/ERASE  
RESUME commands, respectively.  
BULK ERASE (C7h/60h)  
Sets the device bits to FFh.  
The command is not executed if any sector is locked. Instead, the write enable latch bit  
remains set to 1, and flag status register bits 1 and 5 are set.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
66  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
ERASE Operations  
Figure 40: SUBSECTOR and SECTOR ERASE Timing  
Extended  
0
7
8
4
C
x
C
LSB  
A[MIN]  
DQ0  
Command  
MSB  
A[MAX]  
A[MAX]  
Dual  
0
3
C
x
C
LSB  
A[MIN]  
DQ0[1:0]  
Command  
MSB  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
DQ0[3:0]  
Command  
MSB  
A[MAX]  
1. For extended-SPI protocol, Cx = 7 + (A[MAX] + 1); For dual-SPI protocol, Cx = 3 + (A[MAX]  
+ 1)/2; For quad-SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Notes:  
2. S# not shown.  
Figure 41: BULK ERASE Timing  
Extended  
0
7
C
LSB  
DQ0  
Command  
0
MSB  
MSB  
Dual  
3
C
LSB  
DQ[1:0]  
Command  
0
Quad  
1
C
LSB  
DQ[3:0]  
Command  
MSB  
1. S# not shown.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
67  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
SUSPEND/RESUME Operations  
SUSPEND/RESUME Operations  
PROGRAM/ERASE SUSPEND Operations  
A PROGRAM/ERASE SUSPEND command enables the memory controller to interrupt  
and suspend an array PROGRAM or ERASE operation within the program/erase latency.  
To initiate the command, S# is driven LOW, and the command code is input on DQn.  
The operation is terminated by the PROGRAM/ERASE RESUME command.  
For a PROGRAM SUSPEND, the flag status register bit 2 is set to 1. For an ERASE SUS-  
PEND, the flag status register bit 6 is set to 1.  
After an erase/program latency time, the flag status register bit 7 is also set to 1, but the  
device is considered in suspended state once bit 7 of the flag status register outputs 1  
with at least one byte output. In the suspended state, the device is waiting for any oper-  
ation.  
If the time remaining to complete the operation is less than the suspend latency, the de-  
vice completes the operation and clears the flag status register bits 2 or 6, as applicable.  
Because the suspend state is volatile, if there is a power cycle, the suspend state infor-  
mation is lost and the flag status register powers up as 80h.  
It is possible to nest a PROGRAM/ERASE SUSPEND operation inside a PROGRAM/  
ERASE SUSPEND operation just once. Issue an ERASE command and suspend it. Then  
issue a PROGRAM command and suspend it also. With the two operations suspended,  
the next PROGRAM/ERASE RESUME command resumes the latter operation, and a sec-  
ond PROGRAM/ERASE RESUME command resumes the former (or first) operation.  
PROGRAM/ERASE RESUME Operations  
A PROGRAM/ERASE RESUME operation terminates the PROGRAM/ERASE RESUME  
command. To initiate the command, S# is driven LOW, and the command code is input  
on DQn. The operation is terminated by driving S# HIGH.  
Table 31: SUSPEND/RESUME Operations  
Operation Name  
Description/Conditions  
PROGRAM SUSPEND (75h)  
A READ operation is possible in any page except the one in a suspended state. Reading  
from a sector that is in a suspended state will output indeterminate data.  
ERASE SUSPEND (75h)  
A PROGRAM or READ operation is possible in any sector except the one in a suspended  
state. Reading from a sector that is in a suspended state will output indeterminate data.  
During a SUSPEND SUBSECTOR ERASE operation, reading an address in the sector that  
contains the suspended subsector could output indeterminate data.  
The device ignores a PROGRAM command to a sector that is in an erase suspend state; it  
also sets the flag status register bit 4 to 1 (program failure/protection error) and leaves  
the write enable latch bit unchanged.  
When the ERASE resumes, it does not check the new lock status of the WRITE VOLATILE  
LOCK BITS command.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
68  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
SUSPEND/RESUME Operations  
Table 31: SUSPEND/RESUME Operations (Continued)  
Operation Name  
Description/Conditions  
PROGRAM RESUME (7Ah)  
ERASE RESUME (7Ah)  
The status register write in progress bit is set to 1 and the flag status register program  
erase controller bit is set to 0. The command is ignored if the device is not in a suspen-  
ded state.  
When the operation is in progress, the program or erase controller bit of the flag status  
register is set to 0. The flag status register can be polled for the operation status. When  
the operation completes, that bit is cleared to 1.  
1. See the Operations Allowed/Disallowed During Device States table.  
Note:  
Figure 42: PROGRAM/ERASE SUSPEND and RESUME Timing  
Extended  
0
7
C
LSB  
DQ0  
Command  
0
MSB  
MSB  
Dual  
3
C
LSB  
DQ[1:0]  
Command  
0
Quad  
1
C
LSB  
DQ[3:0]  
Command  
MSB  
1. S# not shown.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
69  
 
256Mb, 3V Multiple I/O Serial Flash Memory  
ONE-TIME PROGRAMMABLE Operations  
ONE-TIME PROGRAMMABLE Operations  
READ OTP ARRAY Command  
To initiate a READ OTP ARRAY command, S# is driven LOW. The command code is in-  
put on DQ0, followed by address bytes and dummy clock cycles. Each address bit is  
latched in during the rising edge of C. Data is shifted out on DQ1, beginning from the  
specified address and at a maximum frequency of fC (MAX) on the falling edge of the  
clock. The address increments automatically to the next address after each byte of data  
is shifted out. There is no rollover mechanism; therefore, if read continuously, after lo-  
cation 0x40, the device continues to output data at location 0x40. The operation is ter-  
minated by driving S# HIGH at any time during data output.  
Figure 43: READ OTP ARRAY Command Timing  
Extended  
0
7
8
Cx  
C
LSB  
A[MIN]  
DQ0  
DQ1  
Command  
MSB  
A[MAX]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
High-Z  
Dummy cycles  
Dual  
0
3
4
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT DOUT  
DOUT  
MSB  
DOUT  
DOUT  
DQ[1:0]  
Command  
MSB  
A[MAX]  
Dummy cycles  
Quad  
0
1
2
Cx  
C
LSB  
A[MIN]  
LSB  
DOUT  
DOUT  
MSB  
DOUT  
DQ[3:0]  
Command  
MSB  
A[MAX]  
Don’t Care  
Dummy cycles  
1. For extended-SPI protocol, Cx = 7 + (A[MAX] + 1); For dual-SPI protocol, Cx = 3 + (A[MAX]  
+ 1)/2; For quad-SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
PROGRAM OTP ARRAY Command  
To initiate the PROGRAM OTP ARRAY command, the WRITE ENABLE command must  
be issued to set the write enable latch bit to 1; otherwise, the PROGRAM OTP ARRAY  
command is ignored and flag status register bits are not set. S# is driven LOW and held  
LOW until the eighth bit of the last data byte has been latched in, after which it must be  
driven HIGH. The command code is input on DQ0, followed by address bytes and at  
least one data byte. Each address bit is latched in during the rising edge of the clock.  
When S# is driven HIGH, the operation, which is self-timed, is initiated; its duration is  
tPOTP. There is no rollover mechanism; therefore, after a maximum of 65 bytes are  
latched in the subsequent bytes are discarded.  
PROGRAM OTP ARRAY programs, at most, 64 bytes to the OTP memory area and one  
OTP control byte. When the operation is in progress, the write in progress bit is set to 1.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
70  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
ONE-TIME PROGRAMMABLE Operations  
The write enable latch bit is cleared to 0, whether the operation is successful or not, and  
the status register and flag status register can be polled for the operation status. When  
the operation completes, the write in progress bit is cleared to 0.  
If the operation times out, the write enable latch bit is reset and the program fail bit is  
set to 1. If S# is not driven HIGH, the command is not executed, flag status register error  
bits are not set, and the write enable latch remains set to 1. The operation is considered  
complete once bit 7 of the flag status register outputs 1 with at least one byte output.  
The OTP control byte (byte 64) is used to permanently lock the OTP memory array.  
Table 32: OTP Control Byte (Byte 64)  
Bit Name  
OTP control byte  
Settings  
Description  
0
0 = Locked  
1 = Unlocked (default)  
Used to permanently lock the 64-byte OTP array. When bit 0 = 1,  
the 64-byte OTP array can be programmed. When bit 0 = 0, the  
64-byte OTP array is read only.  
Once bit 0 has been programmed to 0, it can no longer be  
changed to 1. Program OTP array is ignored, the write enable  
latch bit remains set, and flag status register bits 1 and 4 are set.  
Figure 44: PROGRAM OTP Command Timing  
Extended  
0
7
8
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
D
D
D
D
IN  
DQ0  
Command  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
Dual  
0
3
4
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
D
D
IN  
DQ[1:0]  
Command  
IN  
IN  
IN  
IN  
MSB  
A[MAX]  
MSB  
Quad  
0
1
2
C
x
C
LSB  
A[MIN]  
LSB  
D
D
D
IN  
DQ[3:0]  
Command  
IN  
IN  
MSB  
A[MAX]  
MSB  
1. For extended-SPI protocol, Cx = 7 + (A[MAX] + 1); For dual-SPI protocol, Cx = 3 + (A[MAX]  
+ 1)/2; For quad-SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
71  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
ADDRESS MODE Operations  
ADDRESS MODE Operations  
ENTER and EXIT 4-BYTE ADDRESS MODE Command  
To initiate these commands, S# is driven LOW, and the command is input on DQn.  
Table 33: ENTER and EXIT 4-BYTE ADDRESS MODE Operations  
Operation Name  
Description/Conditions  
ENTER 4-BYTE ADDRESS MODE (B7h) The effect of the command is immediate. The default address mode is three bytes,  
and the device returns to the default upon exiting the 4-byte address mode.  
EXIT 4-BYTE ADDRESS MODE (E9h)  
DEEP POWER-DOWN Operations  
ENTER DEEP POWER-DOWN Command  
To execute ENTER DEEP POWER-DOWN, S# must be driven HIGH after the eighth bit  
of the command code is latched in, after which, tDP time must elapse before the supply  
current is reduced to ICC2.. Any attempt to execute ENTER DEEP POWER-DOWN during  
a WRITE operation is rejected without affecting the operation.  
In deep power-down mode, no device error bits are set, the WEL state is unchanged,  
and the device ignores all commands except RELEASE FROM DEEP POWER-DOWN,  
RESET ENABLE, RESET, hardware reset, and power-loss rescue sequence commands.  
RELEASE FROM DEEP POWER-DOWN Command  
To execute the RELEASE FROM DEEP POWER-DOWN command, S# is driven LOW, fol-  
lowed by the command code. Sending additional clock cycles on C while S# is driven  
LOW voids the command.  
RELEASE FROM DEEP POWER-DOWN is terminated by driving S# HIGH. The device  
enters standby mode after S# is driven HIGH followed by a delay of tRDP. S# must re-  
main HIGH during this time.  
Table 34: DEEP POWER-DOWN Operations  
Operation Name  
Description/Conditions  
ENTER DEEP  
POWER-DOWN (B9h)  
The command is used to place the device in deep power-down mode for the lowest device  
power consumption, with device current reduced to ICC2. This command can also be used as  
a software protection mechanism while the device is not in active use.  
RELEASE FROM  
DEEP POWER-DOWN (ABh)  
The command is used to exit from deep power-down mode. The device also exits deep  
power-down mode upon:  
A power-down, entering standby mode with the next power-up.  
A hardware or software reset operation, entering standby mode with a recovery time as  
specified in the AC Reset Specifications.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
72  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
DEEP POWER-DOWN Operations  
DEEP POWER-DOWN Timings  
Figure 45: ENTER DEEP POWER-DOWN Timing  
Extended  
S#  
tDP  
0
7
C
LSB  
DQ0  
Command  
MSB  
Standby  
Mode  
Deep  
Power-Down  
Mode  
Dual  
S#  
tDP  
0
3
C
LSB  
DQ0[1:0]  
Command  
MSB  
Standby  
Mode  
Deep  
Power-Down  
Mode  
Quad  
S#  
tDP  
0
1
C
LSB  
DQ0[3:0]  
Command  
MSB  
Standby  
Mode  
Deep  
Power-Down  
Mode  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
73  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
DEEP POWER-DOWN Operations  
Figure 46: RELEASE FROM DEEP POWER-DOWN Timing  
Extended  
S#  
C
tRDP  
0
7
LSB  
DQ0  
Command  
Deep  
MSB  
Standby  
Mode  
Power-Down  
Mode  
Dual  
S#  
tRDP  
0
3
C
LSB  
DQ[1:0]  
Command  
MSB  
Deep  
Power-Down  
Mode  
Standby  
Mode  
Quad  
S#  
C
tRDP  
0
1
LSB  
DQ[3:0]  
Command  
MSB  
Deep  
Power-Down  
Mode  
Standby  
Mode  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
74  
 
256Mb, 3V Multiple I/O Serial Flash Memory  
QUAD PROTOCOL Operations  
QUAD PROTOCOL Operations  
ENTER or RESET QUAD INPUT/OUTPUT MODE Command  
To initiate these commands, the WRITE ENABLE command must not be executed. S#  
must be driven LOW, and the command must be input on DQn.  
Table 35: ENTER and RESET QUAD PROTOCOL Operations  
Operation Name  
Description/Conditions  
ENTER QUAD INPUT/OUTPUT MODE (35h)  
RESET QUAD INPUT/OUTPUT MODE (F5h)  
The effect of the command is immediate.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
75  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
CYCLIC REDUNDANCY CHECK Operations  
CYCLIC REDUNDANCY CHECK Operations  
A CYCLIC REDUNDANCY CHECK (CRC) operation is a hash function designed to de-  
tect accidental changes to raw data and is used commonly in digital networks and stor-  
age devices such as hard disk drives. A CRC-enabled device calculates a short, fixed-  
length binary sequence, known as the CRC code or just CRC, for each block of data. CRC  
can be a higher performance alternative to reading data directly in order to verify re-  
cently programmed data. Or, it can be used to check periodically the data integrity of a  
large block of data against a stored CRC reference over the life of the product. CRC helps  
improve test efficiency for programmer or burn-in stress tests. No system hardware  
changes are required to enable CRC.  
The CRC-64 operation follows the ECMA standard. The generating polynomial is:  
G(x) = x64 + x62 + x57 + x55 + x54 + x53 + x52 + x47 + x46 + x45 + x40 + x39 + x38 + x37 + x35 + x33  
+ x32 + x31 + x29 + x27 + x24 + x23 + x22 + x21 + x19 + x17 + x13 + x12 + x10 + x9 + x7 + x4 + x + 1  
Note: The data stream sequence is from LSB to MSB and the default initial CRC value is  
all zero.  
The device CRC operation generates the CRC result of the entire device or of an address  
range specified by the operation. Then the CRC result is compared with the expected  
CRC data provided in the sequence. Finally the device indicates a pass or fail through  
the bit #4 of FLAG STATUS REGISTER. If the CRC fails, it is possible to take corrective  
action such as verifying with a normal read mode or by rewriting the array data.  
CRC operation supports CRC data read back when CRC check fails; the CRC data gener-  
ated from the target address range or entire device will be stored in a dedicated register:  
general purpose read register (GPRR) only when CRC check fails, and it can be read out  
through the GPRR read sequence with command 96h, least significant byte first. GPRR  
is reset to default all 0 at the beginning of the CRC operation, and so customer will read  
all 0 if CRC operation pass.  
Note that the GPRR is a volatile register. It is cleared to all 0s on power-up and hard-  
ware/software reset. Read GPRR starts from the first location, when clocked continu-  
ously, will output 00h after location 64.  
The CYCLIC REDUNDANCY CHECK operation command sequences are shown in the  
tables below, for an entire die or for a selected range.  
Table 36: CRC Command Sequence on Entire Device  
Command Sequence  
Byte#  
Data  
9Bh  
Description  
1
2
Command code for interface activation  
Sub-command code for CRC operation  
CRC operation option selection (CRC operation on entire device)  
1st byte of expected CRC value  
27h  
3
FFh  
4
CRC[7:0]  
CRC[55:8]  
CRC[63:56]  
5–10  
11  
2nd to 7th byte of expected CRC value  
8th byte of expected CRC value  
Drive S# HIGH  
Operation sequence confirmed; CRC operation starts  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
76  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
CYCLIC REDUNDANCY CHECK Operations  
Table 37: CRC Command Sequence on a Range  
Command Sequence  
Byte#  
1
Data  
9Bh  
Description  
Command code for interface activation  
Sub-command code for CRC operation  
CRC operation option selection (CRC operation on a range)  
1st byte of expected CRC value  
2
27h  
3
FEh  
4
CRC[7:0]  
5–10  
11  
CRC[55:8]  
2nd to 7th byte of expected CRC value  
8th byte of expected CRC value  
CRC[63:56]  
12  
Start Address [7:0]  
Start Address [23:8]  
Start Address [31:24]  
Stop Address [7:0]  
Stop Address [23:8]  
Stop Address [31:24]  
Specifies the starting byte address for CRC operation  
13–14  
15  
16  
Specifies the ending byte address for CRC operation  
Operation sequence confirmed; CRC operation starts  
17–18  
19  
Drive S# HIGH  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
77  
 
256Mb, 3V Multiple I/O Serial Flash Memory  
State Table  
State Table  
The device can be in only one state at a time. Depending on the state of the device,  
some operations as shown in the table below are allowed (Yes) and others are not (No).  
For example, when the device is in the standby state, all operations except SUSPEND  
are allowed in any sector. For all device states except the erase suspend state, if an oper-  
ation is allowed or disallowed in one sector, it is allowed or disallowed in all other sec-  
tors. In the erase suspend state, a PROGRAM operation is allowed in any sector except  
the one in which an ERASE operation has been suspended.  
Table 38: Operations Allowed/Disallowed During Device States  
Standby  
State  
Program or  
Erase State  
Subsector Erase Suspend or  
Program Suspend State  
Erase Suspend  
State  
Operation  
Notes  
READ (memory)  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
1
6
READ  
Yes  
(status/flag status  
registers)  
PROGRAM  
Yes  
Yes  
No  
No  
No  
No  
Yes/No  
No  
2
3
ERASE  
(sector/subsector)  
WRITE  
Yes  
Yes  
No  
No  
No  
Yes  
No  
Yes  
No  
No  
Yes  
No  
4
5
7
WRITE  
SUSPEND  
1. All READ operations except READ STATUS REGISTER and READ FLAG REGISTER. When is-  
sued to a sector or subsector that is simultaneously in an erase suspend state, the READ  
operation is accepted, but the data output is not guaranteed until the erase has comple-  
ted.  
Notes:  
2. All PROGRAM operations except PROGRAM OTP. In the erase suspend state, a PROGRAM  
operation is allowed in any sector (Yes) except the sector (No) in which an ERASE opera-  
tion has been suspended.  
3. Applies to the SECTOR ERASE or SUBSECTOR ERASE operation.  
4. Applies to the following operations: WRITE STATUS REGISTER, WRITE NONVOLATILE  
CONFIGURATION REGISTER, PROGRAM OTP, and BULK ERASE.  
5. Applies to the WRITE VOLATILE CONFIGURATION REGISTER, WRITE ENHANCED VOLA-  
TILE CONFIGURATION REGISTER, WRITE ENABLE, WRITE DISABLE, CLEAR FLAG STATUS  
REGISTER, WRITE EXTENDED ADDRESS REGISTER, or WRITE LOCK REGISTER operation.  
6. Applies to the READ STATUS REGISTER or READ FLAG STATUS REGISTER operation.  
7. Applies to the PROGRAM SUSPEND or ERASE SUSPEND operation.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
78  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
XIP Mode  
XIP Mode  
Execute-in-place (XIP) mode allows the memory to be read by sending an address to the  
device and then receiving the data on one, two, or four pins in parallel, depending on  
the customer requirements. XIP mode offers maximum flexibility to the application,  
saves instruction overhead, and reduces random access time.  
Activate and Terminate XIP Using Volatile Configuration Register  
Applications that boot in SPI and must switch to XIP use the volatile configuration reg-  
ister. XIP provides faster memory READ operations by requiring only an address to exe-  
cute, rather than a command code and an address.  
To activate XIP requires two steps. First, enable XIP by setting volatile configuration reg-  
ister bit 3 to 0. Next, drive the XIP confirmation bit to 0 during the next FAST READ op-  
eration. XIP is then active. Once in XIP, any command that occurs after S# is toggled re-  
quires only address bits to execute; a command code is not necessary, and device oper-  
ations use the SPI protocol that is enabled. XIP is terminated by driving the XIP confir-  
mation bit to 1. The device automatically resets volatile configuration register bit 3 to 1.  
Activate and Terminate XIP Using Nonvolatile Configuration Register  
Applications that must boot directly in XIP use the nonvolatile configuration register. To  
enable a device to power-up in XIP using this register, set nonvolatile configuration reg-  
ister bits [11:9]. Settings vary according to protocol, as explained in the Nonvolatile  
Configuration Register section. Because the device boots directly in XIP, after the power  
cycle, no command code is necessary. XIP is terminated by driving the XIP confirmation  
bit to 1.  
Figure 47: XIP Mode Directly After Power-On  
Mode 3  
Mode 0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
C
tVSI (<100µ)  
VCC  
S#  
NVCR check:  
XIP enabled  
A[MIN]  
LSB  
DOUT DOUT DOUT DOUT DOUT  
Xb  
DQ0  
DOUT DOUT DOUT DOUT DOUT  
MSB  
DQ[3:1]  
A[MAX]  
Dummy cycles  
1. Xb is the XIP confirmation bit and should be set as follows: 0 to keep XIP state; 1 to exit  
XIP mode and return to standard read mode.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
79  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
XIP Mode  
Confirmation Bit Settings Required to Activate or Terminate XIP  
The XIP confirmation bit setting activates or terminates XIP after it has been enabled or  
disabled. This bit is the value on DQ0 during the first dummy clock cycle in the FAST  
READ operation. In dual I/O XIP mode, the value of DQ1 during the first dummy clock  
cycle after the addresses is always "Don't Care." In quad I/O XIP mode, the values of  
DQ3, DQ2, and DQ1 during the first dummy clock cycle after the addresses are always  
"Don't Care."  
Table 39: XIP Confirmation Bit  
Bit Value  
Description  
0
1
Activates XIP: While this bit is 0, XIP remains activated.  
Terminates XIP: When this bit is set to 1, XIP is terminated and the device returns to SPI.  
Table 40: Effects of Running XIP in Different Protocols  
Protocol  
Effect  
Extended I/O  
and Dual I/O  
In a device with a dedicated part number where RESET# is enabled, a LOW pulse on that pin re-  
sets XIP and the device to the state it was in previous to the last power-up, as defined by the  
nonvolatile configuration register.  
Dual I/O  
Values of DQ1 during the first dummy clock cycle are "Don't Care."  
Quad I/O1  
Values of DQ[3:1] during the first dummy clock cycle are "Don't Care." In a device with a dedica-  
ted part number, it is only possible to reset memory when the device is deselected.  
1. In a device with a dedicated part number where RESET# is enabled, a LOW pulse on that  
pin resets XIP and the device to the state it was in previous to the last power-up, as de-  
fined by the nonvolatile configuration register only when the device is deselected.  
Note:  
Terminating XIP After a Controller and Memory Reset  
The system controller and the device can become out of synchronization if, during the  
life of the application, the system controller is reset without the device being reset. In  
such a case, the controller can reset the memory to power-on reset if the memory has  
reset functionality. (Reset is available in devices with a dedicated part number.)  
• 7 clock cycles within S# LOW (S# becomes HIGH before 8th clock cycle)  
• + 9 clock cycles within S# LOW (S# becomes HIGH before 10th clock cycle)  
• + 13 clock cycles within S# LOW (S# becomes HIGH before 14th clock cycle)  
• + 17 clock cycles within S# LOW (S# becomes HIGH before 18th clock cycle)  
• + 25 clock cycles within S# LOW (S# becomes HIGH before 26th clock cycle)  
• + 33 clock cycles within S# LOW (S# becomes HIGH before 34th clock cycle)  
These sequences cause the controller to set the XIP confirmation bit to 1, thereby termi-  
nating XIP. However, it does not reset the device or interrupt PROGRAM/ERASE opera-  
tions that may be in progress. After terminating XIP, the controller must execute RESET  
ENABLE and RESET MEMORY to implement a software reset and reset the device.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
80  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Power-Up and Power-Down  
Power-Up and Power-Down  
Power-Up and Power-Down Requirements  
At power-up and power-down, the device must not be selected; that is, S# must follow  
the voltage applied on VCC until VCC reaches the correct values: VCC,min at power-up and  
VSS at power-down.  
To provide device protection and prevent data corruption and inadvertent WRITE oper-  
ations during power-up, a power-on reset circuit is included. The logic inside the device  
is held to RESET while VCC is less than the power-on reset threshold voltage shown here;  
all operations are disabled, and the device does not respond to any instruction. During  
a standard power-up phase, the device ignores all commands except READ STATUS  
REGISTER and READ FLAG STATUS REGISTER. These operations can be used to check  
the memory internal state. After power-up, the device is in standby power mode; the  
write enable latch bit is reset; the write in progress bit is reset; and the dynamic protec-  
tion register is configured as: (write lock bit, lock down bit) = (0,0).  
Normal precautions must be taken for supply line decoupling to stabilize the VCC sup-  
ply. Each device in a system should have the VCC line decoupled by a suitable capacitor  
(typically 100nF) close to the package pins. At power-down, when VCC drops from the  
operating voltage to below the power-on-reset threshold voltage shown here, all opera-  
tions are disabled and the device does not respond to any command.  
When the operation is in progress, the program or erase controller bit of the status reg-  
ister is set to 0. To obtain the operation status, the flag status register must be polled.  
When the operation completes, the program or erase controller bit is cleared to 1. The  
cycle is complete after the flag status register outputs the program or erase controller bit  
to 1.  
Note: If power-down occurs while a WRITE, PROGRAM, or ERASE cycle is in progress,  
data corruption may result.  
Note: In extended-SPI protocol, 1Gb and 2Gb device must wait 100µs after VCC reaches  
VCC,min before polling the status register or flag status register.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
81  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Power-Up and Power-Down  
Figure 48: Power-Up Timing  
VCC  
VCC,max  
Chip selection not allowed  
VCC,min  
tVSL  
Chip  
reset  
Device fully accessible  
Polling allowed  
VWI  
Extended-SPI protocol  
Status register bit 0 = 1  
Flag status register bit 7 = 0  
Time  
1. tVSL polling has to be in extended-SPI protocol and STR mode.  
2. During tVSL period, HOLD# is enabled, RESET# disabled, and output strength is in de-  
fault setting.  
Notes:  
3. In a system that uses a fast VCC ramp rate, current design requires a minimum 100µs af-  
ter VCC reaches tVWI, and before the polling is allowed, even though VCC,min is achieved.  
4. In extended-SPI protocol, 1Gb and 2Gb device must wait 100µs after VCC reaches VCC,min  
before polling the status register or flag status register.  
Table 41: Power-Up Timing and VWI Threshold  
Note 1 applies to entire table  
Symbol  
tVSL  
Parameter  
Min  
Max  
300  
2.5  
Unit  
µs  
Notes  
2, 3  
2
VCC,min to device fully accessible  
Write inhibit voltage  
VWI  
1.5  
V
1. When VCC reaches VCC,min, to determine whether power-up initialization is complete,  
the host can poll status register bit 0 or flag status register bit 7 only in extended-SPI  
protocol because the device will accept commands only on DQ0 and output data only  
on DQ1. When the device is ready, the host has full access using the protocol configured  
in the nonvolatile configuration register. If the host cannot poll the status register in x1  
SPI mode, it is recommended to wait tVSL before accessing the device.  
Notes:  
2. Parameters listed are characterized only.  
3. On the first power-up after an event causing a subsector erase operation interrupt (for  
example, due to power-loss), the maximum time for tVSL will be up to 4.5ms in case of  
4KB subsector erase interrupt and up to 36ms in case of 32KB subsector erase interrupt;  
this accounts for erase recovery embedded operation.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
82  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Active, Standby, and Deep Power-Down Modes  
Active, Standby, and Deep Power-Down Modes  
When S# is LOW, the device is selected and in active power mode. When S# is HIGH, the  
device is deselected but could remain in active power mode until ongoing internal op-  
erations are completed. Then the device goes into standby power mode and device cur-  
rent consumption drops to ICC1.  
Deep power-down mode enbles users to place the device in the lowest power consump-  
tion mode, ICC2. The ENTER DEEP POWER-DOWN command is used to put the device  
in deep power-down mode, and the RELEASE FROM DEEP POWER-DOWN command  
is used to bring the device out of deep power-down mode. Command details are in the  
Command Set table and the DEEP POWER-DOWN Operations section of this data  
sheet.  
Power Loss and Interface Rescue  
If a power loss occurs during a WRITE NONVOLATILE CONFIGURATION REGISTER  
command, after the next power-on, the device might begin in an undetermined state  
(XIP mode or an unnecessary protocol). If this occurs, a power loss recovery sequence  
must reset the device to a fixed state (extended-SPI protocol without XIP) until the next  
power-up.  
If the controller and memory device get out of synchronization, the controller can fol-  
low an interface rescue sequence to reset the memory device interface to power-up to  
the last reset state (as defined by latest nonvolatile configuration register). This resets  
only the interface, not the entire memory device, and any ongoing operations are not  
interrupted.  
After each sequence, the issue should be resolved definitively by running the WRITE  
NONVOLATILE CONFIGURATION REGISTER command again.  
Note: The two steps in each sequence must be in the correct order, and tSHSL2 must be  
at least 50ns for the duration of each sequence.  
The first step for both the power loss recovery and interface rescue sequences is descri-  
bed under "Recovery." The second step in the power loss recovery sequence is under  
"Power Loss Recovery" and the second step in the interface rescue sequence is under  
"Interface Rescue."  
Recovery  
Step one of both the power loss recovery and interface rescue sequences is DQ0 (PAD  
DATA) and DQ3 (PAD HOLD) equal to 1 for the situations listed here:  
• 7 clock cycles within S# LOW (S# becomes HIGH before 8th clock cycle)  
• + 9 clock cycles within S# LOW (S# becomes HIGH before 10th clock cycle)  
• + 13 clock cycles within S# LOW (S# becomes HIGH before 14th clock cycle)  
• + 17 clock cycles within S# LOW (S# becomes HIGH before 18th clock cycle)  
• + 25 clock cycles within S# LOW (S# becomes HIGH before 26th clock cycle)  
• + 33 clock cycles within S# LOW (S# becomes HIGH before 34th clock cycle)  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
83  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Initial Delivery Status  
Power Loss Recovery  
For power loss recovery, the second part of the sequence is exiting from dual- or quad-  
SPI protocol by using the following FFh sequence: DQ0 and DQ3 equal to 1 for 8 clock  
cycles within S# LOW; S# becomes HIGH before 9th clock cycle. After this two-part se-  
quence the extended-SPI protocol is active.  
Interface Rescue  
For interface rescue, the second part of the sequence is for exiting from dual or quad-  
SPI protocol by using the following FFh sequence: DQ0 and DQ3 equal to 1 for 16 clock  
cycles within S# LOW; S# becomes HIGH before 17th clock cycle. For DTR protocol, 1  
should be driven on both edges of clock for 16 cycles with S# LOW. After this two-part  
sequence, the extended-SPI protocol is active.  
Initial Delivery Status  
The device is delivered as follows:  
• Memory array erased: all bits are set to 1 (each byte contains FFh)  
• Status register contains 00h (all status register bits are 0)  
• Nonvolatile configuration register (NVCR) bits all erased (FFFFh)  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
84  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Absolute Ratings and Operating Conditions  
Absolute Ratings and Operating Conditions  
Stresses greater than those listed may cause permanent damage to the device. This is a  
stress rating only. Exposure to absolute maximum rating for extended periods may ad-  
versely affect reliability. Stressing the device beyond the absolute maximum ratings may  
cause permanent damage.  
Table 42: Absolute Ratings  
Symbol  
TSTG  
Parameter  
Min  
–65  
Max  
150  
Units  
°C  
Notes  
Storage temperature  
TLEAD  
VCC  
Lead temperature during soldering  
Supply voltage  
See note 1  
4.0  
°C  
–0.6  
–0.6  
–2000  
V
2
2
VIO  
Input/output voltage with respect to ground  
VCC + 0.6  
2000  
V
VESD  
Electrostatic discharge voltage  
(human body model)  
V
2, 3  
1. Compliant with JEDEC Standard J-STD-020C (for small-body, Sn-Pb or Pb assembly),  
RoHS, and the European directive on Restrictions on Hazardous Substances (RoHS)  
2002/95/EU.  
Notes:  
2. All specified voltages are with respect to VSS. During infrequent, nonperiodic transitions,  
the voltage potential between VSS and the VCC may undershoot to –2.0V for periods less  
than 20ns, or overshoot to VCC,max + 2.0V for periods less than 20ns.  
3. JEDEC Standard JESD22-A114A (C1 = 100pF, R1 = 1500Ω, R2 = 500Ω).  
Table 43: Operating Conditions  
Symbol  
VCC  
Parameter  
Min  
2.7  
Max  
3.6  
Units  
V
Supply voltage  
TA  
Ambient operating temperature (IT range)  
Ambient operating temperature (AT range)  
Ambient operating temperature (UT range)  
–40  
–40  
–40  
85  
°C  
TA  
105  
125  
°C  
TA  
°C  
Table 44: Input/Output Capacitance  
Note 1 applies to entire table  
Symbol  
Description  
Min  
Max  
Units  
CIN/OUT  
Input/output capacitance  
(DQ0/DQ1/DQ2/DQ3)  
10  
pF  
CIN  
Input capacitance (other pins)  
Input/Chip select  
6
pF  
pF  
CIN/S#  
10  
1. Verified in device characterization; not 100% tested. These parameters are not subject  
to a production test. They are verified by design and characterization. The capacitance is  
measured according to JEP147 ("PROCEDURE FOR MEASURING INPUT CAPACITANCE US-  
ING A VECTOR NETWORK ANALYZER (VNA)") with VCC and VSS applied and all other  
pins floating (except the pin under test), VBIAS = VCC/2, TA = 25°C, Frequency = 54 MHz.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
85  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Absolute Ratings and Operating Conditions  
Table 45: AC Timing Input/Output Conditions  
Symbol  
Description  
Min  
Max  
30  
Units  
pF  
ns  
Notes  
CL  
Load capacitance  
1
Input rise and fall times  
Input pulse voltages  
1.5  
0.2VCC to 0.8VCC  
0.3VCC to 0.7VCC  
VCC/2  
V
2
Input timing reference voltages  
Output timing reference voltages  
V
V
1. Output buffers are configurable by user.  
2. For quad/dual operations: 0V to VCC  
Notes:  
.
Figure 49: AC Timing Input/Output Reference Levels  
Input levels1  
I/O timing  
reference levels  
0.8VCC  
0.7VCC  
0.5VCC  
0.3VCC  
0.2VCC  
1. 0.8VCC = VCC for dual/quad operations; 0.2VCC = 0V for dual/quad operations.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
86  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
DC Characteristics and Operating Conditions  
DC Characteristics and Operating Conditions  
Table 46: DC Current Characteristics and Operating Conditions  
Notes 1–5 apply to entire table  
Parameter  
Symbol  
ILI  
Test Conditions  
Typ  
Max  
±2  
Unit  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
Input leakage current  
Output leakage current  
ILO  
±2  
Standby current (IT range)  
Standby current (AT range)  
Standby current (UT range)  
Deep power-down current (IT range)  
Deep power-down current (AT range)  
Deep power-down current (UT range)  
ICC1  
ICC1  
ICC1  
ICC2  
ICC2  
ICC2  
ICC3  
S# = VCC, VIN = VSS or VCC  
S# = VCC, VIN = VSS or VCC  
S# = VCC, VIN = VSS or VCC  
S# = VCC, VIN = VSS or VCC  
S# = VCC, VIN = VSS or VCC  
S# = VCC, VIN = VSS or VCC  
30  
30  
30  
5
75  
120  
180  
35  
5
80  
5
120  
16  
Operating current  
(fast-read extended I/O)  
C = 0.1VCC/0.9VCC at 133 MHz, DQ1  
= open  
C = 0.1VCC/0.9VCC at 54 MHz, DQ1  
= open  
10  
20  
22  
28  
31  
35  
35  
35  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Operating current (fast-read dual I/O)  
Operating current (fast-read quad I/O)  
C = 0.1VCC/0.9VCC at 133 MHz DQ =  
open  
C = 0.1VCC/0.9VCC at 133 MHz DQ =  
open  
C = 0.1VCC / 0.9VCC at 80 MHz DTR  
DQ = open  
C = 0.1VCC / 0.9VCC at 90 MHz DTR  
DQ = open  
Operating current  
(PROGRAM operations)  
ICC4  
ICC5  
ICC6  
S# = VCC  
S# = VCC  
S# = VCC  
Operating current  
(WRITE operations)  
Operating current (ERASE operations)  
1. All currents are RMS unless noted. Typical values at typical VCC (3.0/1.8V); VIO = 0V/VCC  
;
Notes:  
TC = +25°C.  
2. Standby current is the average current measured over any time interval 5µs after S de-  
assertion (and any internal operations are complete).  
3. Deep power-down current is the average current measured 5ms over any 5ms time in-  
terval, 100µs after the ENTER DEEP POWER-DOWN operation (and any internal opera-  
tions are complete).  
4. All read currents are the average current measured over any 1KB continuous read. No  
load, checker-board pattern.  
5. All program currents are the average current measured over any 256-byte typical data  
program.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
87  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
DC Characteristics and Operating Conditions  
Table 47: DC Voltage Characteristics and Operating Conditions  
Notes 1 applies to entire table  
Parameter  
Symbol  
VIL  
Conditions  
Min  
–0.5  
Max  
0.3VCC  
VCC + 0.4  
0.4  
Unit  
V
Input low voltage  
Input high voltage  
Output low voltage  
Output high voltage  
VIH  
0.7VCC  
V
VOL  
IOL = 1.6mA  
V
VOH  
IOH = –100µA  
VCC - 0.2  
V
1. VIL can undershoot to –1.0V for periods <2ns and VIH may overshoot to VCC,max + 1.0V  
for periods less than 2ns.  
Note:  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
88  
© 2014 Micron Technology, Inc. All rights reserved.  
 
256Mb, 3V Multiple I/O Serial Flash Memory  
AC Characteristics and Operating Conditions  
AC Characteristics and Operating Conditions  
Table 48: AC Characteristics and Operating Conditions  
Data  
Transfer  
Parameter  
Symbol  
Rate  
Min  
DC  
Typ  
Max  
133  
90  
Unit Notes  
Clock frequency for all commands other  
than READ (Extended-SPI, DIO-SPI, and  
QIO-SPI protocol)  
fC  
STR  
MHz  
DTR  
DC  
Clock frequency for READ command (03h)  
fR  
STR  
DTR  
DC  
DC  
54  
27  
MHz  
Clock HIGH time  
tCH  
tCL  
STR  
3.375  
5.0  
ns  
ns  
2
2
DTR  
Clock LOW time  
STR  
3.375  
5.0  
DTR  
Clock rise time (peak-to-peak)  
Clock fall time (peak-to-peak)  
S# active setup time (relative to clock)  
S# not active hold time (relative to clock)  
Data in setup time  
tCLCH  
tCHCL  
tSLCH  
tCHSL  
tDVCH  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR  
0.1  
V/ns  
V/ns  
ns  
3, 4  
3, 4  
0.1  
3.375  
3.375  
1.75  
1.5  
ns  
ns  
DTR  
ns  
tDVCL  
tCHDX  
tCLDX  
tCHSH  
DTR only  
STR/DTR  
DTR only  
STR  
1.5  
ns  
Data in hold time  
2.3  
ns  
2.3  
ns  
S# active hold time (relative to clock)  
3.375  
5.0  
ns  
DTR  
S# active hold time (relative to clock LOW)  
Only for writes in DTR  
tCLSH  
tSHCH  
DTR only  
3.375  
ns  
S# not active setup time (relative to clock)  
STR  
3.375  
5.0  
20  
ns  
ns  
ns  
ns  
DTR  
S# deselect time after a READ command  
tSHSL1  
tSHSL2  
STR/DTR  
STR/DTR  
S# deselect time after a nonREAD com-  
mand  
50  
5
3
Output disable time  
tSHQZ  
tCLQV  
STR/DTR  
STR/DTR  
STR/DTR  
DTR only  
DTR only  
STR/DTR  
DTR only  
STR/DTR  
STR/DTR  
7
6
5
6
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock LOW to output valid under 30pF  
Clock LOW to output valid under 10pF  
Clock HIGH to output valid under 30pF  
Clock HIGH to output valid under 10pF  
Output hold time  
tCHQV  
tCLQX  
tCHQX  
tHLCH  
tCHHH  
1.5  
1.5  
3.375  
3.375  
Output hold time  
HOLD setup time (relative to clock)  
HOLD hold time (relative to clock)  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
89  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
AC Characteristics and Operating Conditions  
Table 48: AC Characteristics and Operating Conditions (Continued)  
Data  
Transfer  
Rate  
Parameter  
Symbol  
tHHCH  
tCHHL  
tHHQX  
tHLQZ  
tCRC  
Min  
Typ  
Max  
Unit Notes  
HOLD setup time (relative to clock)  
HOLD hold time (relative to clock)  
HOLD to output Low-Z  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
3.375  
8
8
-
ns  
ns  
3.375  
ns  
ns  
ms  
s
3
3
HOLD to output High-Z  
CRC check time: main block  
CRC check time: full chip (256Mb)  
Write protect setup time  
1.3  
1
tCRC  
-
tWHSL  
tSHWL  
tDP  
tRDP  
tW  
20  
100  
3
8
1
ns  
ns  
us  
us  
ms  
s
6
6
Write protect hold time  
S# HIGH to deep power-down  
S# HIGH to standby mode (DPD exit time)  
WRITE STATUS REGISTER cycle time  
30  
1.3  
0.2  
WRITE NONVOLATILE CONFIGURATION  
REGISTER cycle time  
tWNVCR  
Nonvolatile sector lock time  
Program ASP register  
tPPBP  
tASPP  
tPASSP  
tPPBE  
tPP  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
0.1  
0.1  
0.2  
0.2  
120  
2.8  
0.5  
ms  
ms  
ms  
s
Program password  
0.8  
Erase nonvolatile sector lock array  
Page program time (256 bytes)  
Page program time (n bytes)  
1
1800  
1800  
us  
us  
7
8
18 + 2.5 x  
int(n/6)  
PROGRAM OTP cycle time (64 bytes)  
Sector erase time  
tPOTP  
tSE  
tSSE  
tSSE  
tBE  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
STR/DTR  
0.12  
0.15  
0.05  
0.1  
0.8  
1
ms  
s
4KB subsector erase time  
32KB subsector erase time  
256Mb bulk erase time  
0.4  
1
s
s
77  
231  
s
1. Typical values given for TA = 25 °C.  
2. tCH + tCL must add up to 1/fC.  
Notes:  
3. Value guaranteed by characterization; not 100% tested.  
4. Expressed as a slew-rate.  
5. nonREAD commands are WRITE, PROGRAM, and ERASE.  
6. Only applicable as a constraint for a WRITE STATUS REGISTER command when STATUS  
REGISTER WRITE is set to 1.  
7. Typical value is applied for pattern: 50% "0" and 50% "1".  
8. int(n) correspond to the integer part of n, For example int (12/8) = 1, int (32/8) = 4,  
int(15.3) = 15.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
90  
© 2014 Micron Technology, Inc. All rights reserved.  
256Mb, 3V Multiple I/O Serial Flash Memory  
AC Reset Specifications  
AC Reset Specifications  
Table 49: AC RESET Conditions  
Note 1 applies to entire table  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Reset pulse  
width  
tRLRH2  
50  
ns  
Reset recovery  
time  
tRHSL Device deselected (S# HIGH) and is in XIP mode  
Device deselected (S# HIGH) and is in standby mode  
40  
40  
40  
ns  
ns  
ns  
Commands are being decoded, any READ operations are  
in progress or any WRITE operation to volatile registers  
are in progress  
Any device array PROGRAM/ERASE/SUSPEND/RESUME,  
PROGRAM OTP, NONVOLATILE SECTOR LOCK, and ERASE  
NONVOLATILE SECTOR LOCK ARRAY operations are in  
progress  
30  
µs  
While a WRITE STATUS REGISTER operation is in progress  
tW  
tWNVCR  
ms  
ms  
While a WRITE NONVOLATILE CONFIGURATION REGIS-  
TER operation is in progress  
On completion or suspension of a SUBSECTOR ERASE op-  
eration  
tSSE  
s
Device in deep power-down mode  
tRDP  
tASPP  
ms  
ms  
While ADVANCED SECTOR PROTECTION PROGRAM oper-  
ation is in progress  
While PASSWORD PROTECTION PROGRAM operation is  
in progress  
tPASSP  
ms  
Software reset tSHSL3 Device deselected (S# HIGH) and is in standby mode  
40  
30  
ns  
µs  
recovery time  
Any Flash array PROGRAM/ERASE/SUSPEND/RESUME,  
PROGRAM OTP, NONVOLATILE SECTOR LOCK, and ERASE  
NONVOLATILE SECTOR LOCK ARRAY operations are in  
progress  
While WRITE STATUS REGISTER operation is in progress  
tW  
tWNVCR  
ms  
ms  
While a WRITE NONVOLATILE CONFIGURATION REGIS-  
TER operation is in progress  
On completion or suspension of a SUBSECTOR ERASE op-  
eration  
tSSE  
s
Device in deep power-down mode  
tRDP  
tASPP  
ms  
ms  
While ADVANCED SECTOR PROTECTION PROGRAM oper-  
ation is in progress  
While PASSWORD PROTECTION PROGRAM operation is  
in progress  
tPASSP  
ms  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
91  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
AC Reset Specifications  
Table 49: AC RESET Conditions (Continued)  
Note 1 applies to entire table  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Chip select  
high to reset  
high  
tSHRH  
Chip must be deselected before reset is de-asserted  
10  
ns  
1. Values are guaranteed by characterization; not 100% tested.  
2. The device reset is possible but not guaranteed if tRLRH < 50ns.  
Notes:  
Figure 50: Reset AC Timing During PROGRAM and ERASE Cycle  
S#  
t
t
SHRH  
RHSL  
t
RLRH  
RESET#  
Don’t Care  
Figure 51: Reset Enable and Reset Memory Timing  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
C
S#  
Reset enable  
Reset memory  
DQ0  
Figure 52: Serial Input Timing STR  
tSHSL  
S#  
tCHSL  
tSLCH  
tCHSH  
tSHCH  
C
DQ0  
DQ1  
tCHCL  
tDVCH t  
CHDX  
tCLCH  
LSB in  
MSB in  
High-Z  
High-Z  
Don’t Care  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
92  
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
AC Reset Specifications  
Figure 53: Serial Input Timing DTR  
tSHSL  
S#  
tSHCH  
tCLSH  
tCHSL tSLCH  
C
tDVCL tCLCH  
tCLDX  
tDVCH  
MSB  
tCHCL  
LSB  
DQ0  
DQ1  
tCHDX  
High-Z  
High-Z  
Figure 54: Write Protect Setup and Hold During WRITE STATUS REGISTER Operation (SRWD = 1)  
W#  
tWHSL  
tSHWL  
S#  
C
DQ0  
DQ1  
High-Z  
High-Z  
Don’t Care  
Figure 55: Hold Timing  
S#  
C
tCHHL tHLCH  
tHHCH  
tCHHH  
tHLQZ  
tHHQX  
DQ0  
DQ1  
HOLD#  
Don’t Care  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
93  
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
AC Reset Specifications  
Figure 56: Output Timing for STR  
S#  
tCLQV  
tCLQX  
tCLQV  
tCL  
tCH  
C
tCLQX  
tSHQZ  
DQ1  
LSB out  
Figure 57: Output Timing for DTR  
S#  
tCLQV  
tCHQV  
tCL  
tCH  
C
tSHQZ  
tCLQX  
DQ1  
MSB  
LSB  
tCHQX  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
94  
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Program/Erase Specifications  
Program/Erase Specifications  
Table 50: Program/Erase Specifications  
Parameter  
Condition  
Typ  
150  
5
Max  
Units Notes  
Erase to suspend  
Program to suspend  
Sector erase or erase resume to erase suspend  
Program resume to program suspend  
µs  
µs  
µs  
1
1
1
Subsector erase to sus-  
pend  
Subsector erase or subsector erase resume to erase sus-  
pend  
50  
Suspend latency  
Suspend latency  
Suspend latency  
Program  
7
25  
30  
30  
µs  
µs  
µs  
2
2
3
Subsector erase  
Erase  
15  
15  
1. Timing is not internally controlled.  
2. Any READ command accepted.  
Notes:  
3. Any command except the following are accepted: SECTOR, SUBSECTOR, or BULK ERASE;  
WRITE STATUS REGISTER; WRITE NONVOLATILE CONFIGURATION REGISTER; and PRO-  
GRAM OTP.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
95  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Revision History  
Revision History  
Rev. K – 07/18  
• Added Icc1 and Icc2 for UT in DC Characteristics and Operating Conditions  
• Added tSHRH in AC RESET Conditions table  
Rev. J – 03/18  
• Added Important Notes and Warnings section for further clarification aligning to in-  
dustry standards  
• Added DEEP POWER-DOWN Operations  
• Added Active Power, Standby Power, and Deep Power-Down modes  
• Added figure for Serial Input Timing DTR  
• Added tCRC in AC Characteristics and Operating Conditions  
Rev. I – 07/17  
• Added UT device (operating temperature range: from –40°C to +125°C)  
• Updated page program time in AC Characteristics and Operating Conditions table  
• Added Output Timing for DTR figure in AC Reset Specifications  
Rev. H – 10/16  
Rev. G – 07/16  
• Update Part Number Ordering Information figure  
• Changed W# description  
• Updated DTR (MAX) frequency to 90 MHz  
• Changed Status Register table  
• Changed Nonvolatile Configuration Register and Volatile Configuration Register ta-  
bles  
• Added Initial Delivery Status  
Rev. F – 06/16  
Rev. E – 01/16  
• Added general purpose read register notes to Command Definitions table  
• Added code 60h for BULK ERASE Command in ERASE Operations in Command Set  
table in Command Definitions section  
• Added note for READ and WRITE REGISTER Operations tables  
• Updated ICC2,max to 35µA in DC Current Characteristics and Operating Conditions  
table  
Rev. D – 10/15  
• Typo correction in Output Timing figure in AC Reset Specifications section  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
96  
© 2014 Micron Technology, Inc. All rights reserved.  
 
 
 
 
 
 
 
 
 
256Mb, 3V Multiple I/O Serial Flash Memory  
Revision History  
Rev. C – 9/15  
Rev. B – 6/15  
• Revised wrap table  
• Revised supported clock frequencies DTR  
• Change bit 3 setting of Enhanced Volatile Configuration Register from 0 to 1  
• Revised AC table  
• Added reference to serial flash discovery parameter data, which is now contained in a  
technical note  
• Change DTR frequency at 80Mhz  
• Revised cover page part number to: MT25QL256ABA.  
• Revised signal assignments  
• Revised supported clock frequencies with a note to reference TN-25-07: Tuning Data  
Pattern for MT25Q and MT25T Devices  
• Revised serial flash discovery parameter with a note to reference TN-25-06: SFDP for  
MT25Q Family  
• Increase ICC4 ,ICC5 and ICC6 at 35mA  
• Added 80MHz information for ICC3 in DC specifications  
Rev. A – 06/14  
• Initial release  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000  
www.micron.com/products/support Sales inquiries: 800-932-4992  
Micron and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.  
Although considered final, these specifications are subject to change, as further product development and data characterization some-  
times occur.  
CCMTD-1725822587-3368  
mt25q-qljs-L256-ABA-xxT.pdf - Rev. K 07/18 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2014 Micron Technology, Inc. All rights reserved.  
97  
 
 
 

相关型号:

MT250QL01GABA1ESF0SATES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA1ESF0SITES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA1EW70AITES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA1EW70SATES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA1EW70SITES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA1EW90AITES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA1EW90SATES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA1EW90SITES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA3E120AATES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA3E120AITES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA3E120SATES

3V, Multiple I/O, 4KB, 32KB, 64KB, Sector Erase
MICRON

MT250QL01GABA3E120SITES

Micron Serial NOR Flash Memory
MICRON