MT40A1G8WE-083E [MICRON]

Automotive DDR4 SDRAM;
MT40A1G8WE-083E
型号: MT40A1G8WE-083E
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

Automotive DDR4 SDRAM

动态存储器 双倍数据速率
文件: 总358页 (文件大小:11412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Automotive DDR4 SDRAM  
MT40A1G8  
MT40A512M16  
Options1  
Marking  
Features  
• VDD = VDDQ = 1.2V ±±60V  
• VPP = 2.5V –1250V/+2560V  
• On-die, internal, adjustable VREFDQ generation  
• 1.2V pseudo open-drain I/O  
• Refresh ti0e of 8192-cycle at TC te0perature range:  
– ±40s at –46°C to 85°C  
• Configuration  
– 1 Gig x 8  
– 512 Meg x 1±  
1G8  
512M1±  
• 78-ball FBGA package (Pb-free) – x8  
– 800 x 1200 – Rev. B  
• 9±-ball FBGA package (Pb-free) – x1±  
– 800 x 1400 – Rev. B  
• Ti0ing – cycle ti0e  
– 6.756ns @ CL = 18 (DDR4-2±±±)  
– 6.833ns @ CL = 1± (DDR4-2466)  
• Product certification  
– Auto0otive  
• Operating te0perature  
– Industrial (–46° ” TC ” 95°C)  
– Auto0otive (–46° ” TC ” 165°C)  
– Ultra-high (–46° ” TC ” 125°C)3  
– Revision  
WE  
JY  
– 320s at 85°C to 95°C  
– 1±0s at 95°C to 165°C  
– 80s at 165°C to 125°C  
-675E  
-683E  
• 1± internal banks (x4, x8): 4 groups of 4 banks each  
• 8 internal banks (x1±): 2 groups of 4 banks each  
• 8n-bit prefetch architecture  
• Progra00able data strobe prea0bles  
• Data strobe prea0ble training  
• Co00and/Address latency (CAL)  
• Multipurpose register read and write capability  
• Write and read leveling  
A
IT  
AT  
UT  
:B  
• Self refresh 0ode  
1. Not all options listed can be combined to  
define an offered product. Use the part  
catalog search on http://www.micron.com  
for available offerings.  
Notes:  
• Low-power auto self refresh (LPASR)  
Te0perature controlled refresh (TCR)  
• Fine granularity refresh  
• Self refresh abort  
• Maxi0u0 power saving  
• Output driver calibration  
2. The data sheet does not support ×4 mode  
even though ×4 mode description exists in  
the following sections.  
3. The UT option use based on automotive us-  
age model. Please contact Micron sales rep-  
resentative if you have questions.  
• No0inal, park, and dyna0ic on-die ter0ination  
(ODT)  
• Data bus inversion (DBI) for data bus  
• Co00and/Address (CA) parity  
• Databus write cyclic redundancy check (CRC)  
• Per-DRAM addressability  
• Connectivity test (x1±)  
• JEDEC JESD-79-4 co0pliant  
• sPPR and hPPR capability  
• AEC-Q166  
• PPAP sub0ission  
• 8D response ti0e  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
1
Products and specifications discussed herein are subject to change by Micron without notice.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Table 1: Key Timing Parameters  
Speed Grade  
-075E1  
Data Rate (MT/s)  
Target tRCD-tRP-CL  
18-18-18  
tRCD (ns)  
13.5  
tRP (ns)  
13.5  
CL (ns)  
13.5  
2666  
2400  
-083E  
16-16-16  
13.32  
13.32  
13.32  
1. Backward compatible to 2400, CL = 16.  
Note:  
Table 2: Addressing  
Parameter  
1024 Meg x 8  
512 Meg x 16  
Number of bank groups  
Bank group address  
Bank count per group  
Bank address in bank group  
Row addressing  
4
BG[1:0]  
4
2
BG0  
4
BA[1:0]  
64K (A[15:0])  
1K (A[9:0])  
1KB  
BA[1:0]  
64K (A[15:0])  
1K (A[9:0])  
2KB  
Column addressing  
Page size1  
1. Page size is per bank, calculated as follows:  
Note:  
Page size = 2COLBITS × ORG/8, where COLBIT = the number of column address bits and ORG = the number of  
DQ bits.  
Figure 1: Order Part Number Example  
Example Part Number: MT40A1G8WE-083EAAT:B  
-
:
Configuration  
Package  
Speed  
Revision  
MT40A  
Revision  
:B  
Configuration  
1 Gig x 8  
512 Meg x 16  
Mark  
1G8  
512M16  
Case Temperature  
Commercial  
Mark  
Package  
Mark  
WE  
JY  
None  
IT  
78-ball 8.0mm x 12.0mm FBGA  
96-ball 8.0mm x 14.0mm FBGA  
Industrial temperature  
Automotive  
AT  
Ultra-high  
UT  
Mark Speed Grade  
Product certification  
Automotive  
Mark  
A
t
-083E CK = 0.833ns, CL = 16  
t
-075E CK = 0.750ns, CL = 18  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
2
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Contents  
General Notes and Description ....................................................................................................................... 18  
Description ................................................................................................................................................ 18  
Industrial Te0perature ............................................................................................................................... 18  
Auto0otive Te0perature ............................................................................................................................ 18  
Ultra-high Te0perature .............................................................................................................................. 18  
General Notes ............................................................................................................................................ 18  
Definitions of the Device-Pin Signal Level ................................................................................................... 19  
Definitions of the Bus Signal Level ............................................................................................................... 19  
Functional Block Diagra0s ............................................................................................................................. 26  
Ball Assign0ents ............................................................................................................................................ 21  
Ball Descriptions ............................................................................................................................................ 23  
Package Di0ensions ....................................................................................................................................... 2±  
State Diagra0 ................................................................................................................................................ 28  
Functional Description ................................................................................................................................... 36  
RESET and Initialization Procedure ................................................................................................................. 31  
Power-Up and Initialization Sequence ......................................................................................................... 31  
RESET Initialization with Stable Power Sequence ......................................................................................... 34  
Uncontrolled Power-Down Sequence .......................................................................................................... 35  
Progra00ing Mode Registers ......................................................................................................................... 3±  
Mode Register 6 .............................................................................................................................................. 39  
Burst Length, Type, and Order ..................................................................................................................... 41  
CAS Latency ............................................................................................................................................... 42  
Test Mode .................................................................................................................................................. 42  
Write Recovery(WR)/READ-to-PRECHARGE ............................................................................................... 42  
DLL RESET ................................................................................................................................................. 42  
Mode Register 1 .............................................................................................................................................. 43  
DLL Enable/DLL Disable ............................................................................................................................ 44  
Output Driver I0pedance Control ............................................................................................................... 45  
ODT RTT(NOM) Values .................................................................................................................................. 45  
Additive Latency ......................................................................................................................................... 45  
Write Leveling ............................................................................................................................................ 45  
Output Disable ........................................................................................................................................... 4±  
Ter0ination Data Strobe ............................................................................................................................. 4±  
Mode Register 2 .............................................................................................................................................. 47  
CAS WRITE Latency .................................................................................................................................... 49  
Low-Power Auto Self Refresh ....................................................................................................................... 49  
Dyna0ic ODT ............................................................................................................................................ 49  
Write Cyclic Redundancy Check Data Bus .................................................................................................... 49  
Mode Register 3 .............................................................................................................................................. 56  
Multipurpose Register ................................................................................................................................ 51  
WRITE Co00and Latency When CRC/DM is Enabled ................................................................................. 52  
Fine Granularity Refresh Mode .................................................................................................................... 52  
Te0perature Sensor Status ......................................................................................................................... 52  
Per-DRAM Addressability ........................................................................................................................... 52  
Gear-Down Mode ....................................................................................................................................... 52  
Mode Register 4 .............................................................................................................................................. 53  
Hard Post Package Repair Mode .................................................................................................................. 54  
Soft Post Package Repair Mode .................................................................................................................... 55  
WRITE Prea0ble ........................................................................................................................................ 55  
READ Prea0ble .......................................................................................................................................... 55  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
3
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
READ Prea0ble Training ............................................................................................................................ 55  
Te0perature-Controlled Refresh ................................................................................................................. 55  
Co00and Address Latency ........................................................................................................................ 55  
Internal VREF Monitor ................................................................................................................................. 55  
Maxi0u0 Power Savings Mode ................................................................................................................... 5±  
Mode Register 5 .............................................................................................................................................. 57  
Data Bus Inversion ..................................................................................................................................... 58  
Data Mask .................................................................................................................................................. 59  
CA Parity Persistent Error Mode .................................................................................................................. 59  
ODT Input Buffer for Power-Down .............................................................................................................. 59  
CA Parity Error Status ................................................................................................................................. 59  
CRC Error Status ......................................................................................................................................... 59  
CA Parity Latency Mode .............................................................................................................................. 59  
Mode Register ± .............................................................................................................................................. ±6  
tCCD_L Progra00ing ................................................................................................................................. ±1  
VREFDQ Calibration Enable .......................................................................................................................... ±1  
VREFDQ Calibration Range ........................................................................................................................... ±1  
VREFDQ Calibration Value ............................................................................................................................ ±1  
Truth Tables ................................................................................................................................................... ±2  
NOP Co00and .............................................................................................................................................. ±5  
DESELECT Co00and .................................................................................................................................... ±5  
DLL-Off Mode ................................................................................................................................................ ±5  
DLL-On/Off Switching Procedures .................................................................................................................. ±7  
DLL Switch Sequence fro0 DLL-On to DLL-Off ........................................................................................... ±7  
DLL-Off to DLL-On Procedure .................................................................................................................... ±8  
Input Clock Frequency Change ....................................................................................................................... ±9  
Write Leveling ................................................................................................................................................ 76  
DRAM Setting for Write Leveling and DRAM TERMINATION Function in that Mode ..................................... 72  
Procedure Description ................................................................................................................................ 73  
Write Leveling Mode Exit ............................................................................................................................ 74  
Co00and Address Latency ............................................................................................................................ 75  
Low-Power Auto Self Refresh Mode ................................................................................................................. 86  
Manual Self Refresh Mode .......................................................................................................................... 86  
Multipurpose Register .................................................................................................................................... 82  
MPR Reads ................................................................................................................................................. 83  
MPR Readout For0at ................................................................................................................................. 85  
MPR Readout Serial For0at ........................................................................................................................ 85  
MPR Readout Parallel For0at ..................................................................................................................... 8±  
MPR Readout Staggered For0at .................................................................................................................. 87  
MPR READ Wavefor0s ............................................................................................................................... 88  
MPR Writes ................................................................................................................................................ 96  
MPR WRITE Wavefor0s .............................................................................................................................. 91  
MPR REFRESH Wavefor0s ......................................................................................................................... 92  
Gear-Down Mode ........................................................................................................................................... 95  
Maxi0u0 Power-Saving Mode ........................................................................................................................ 98  
Maxi0u0 Power-Saving Mode Entry ........................................................................................................... 98  
Maxi0u0 Power-Saving Mode Entry in PDA ............................................................................................... 99  
CKE Transition During Maxi0u0 Power-Saving Mode ................................................................................. 99  
Maxi0u0 Power-Saving Mode Exit ............................................................................................................. 99  
Co00and/Address Parity .............................................................................................................................. 161  
Per-DRAM Addressability .............................................................................................................................. 169  
V
REFDQ Calibration ........................................................................................................................................ 112  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
4
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
VREFDQ Range and Levels ........................................................................................................................... 113  
VREFDQ Step Size ........................................................................................................................................ 113  
VREFDQ Incre0ent and Decre0ent Ti0ing .................................................................................................. 114  
V
REFDQ Target Settings ............................................................................................................................... 118  
Connectivity Test Mode ................................................................................................................................. 126  
Pin Mapping ............................................................................................................................................. 126  
Mini0u0 Ter0s Definition for Logic Equations ......................................................................................... 121  
Logic Equations for a ×4 Device, When Supported ...................................................................................... 121  
Logic Equations for a ×8 Device, When Supported ...................................................................................... 122  
Logic Equations for a ×1± Device ................................................................................................................ 122  
CT Input Ti0ing Require0ents .................................................................................................................. 122  
Excessive Row Activation ............................................................................................................................... 124  
Post Package Repair ....................................................................................................................................... 125  
Post Package Repair ................................................................................................................................... 125  
Hard Post Package Repair .............................................................................................................................. 12±  
hPPR Row Repair - Entry ............................................................................................................................ 12±  
hPPR Row Repair – WRA Initiated (REF Co00ands Allowed) ...................................................................... 12±  
hPPR Row Repair – WR Initiated (REF Co00ands NOT Allowed) ................................................................. 128  
sPPR Row Repair ........................................................................................................................................... 136  
hPPR/sPPR Support Identifier ........................................................................................................................ 133  
ACTIVATE Co00and .................................................................................................................................... 133  
PRECHARGE Co00and ................................................................................................................................ 134  
REFRESH Co00and ..................................................................................................................................... 135  
Te0perature-Controlled Refresh Mode .......................................................................................................... 137  
TCR Mode – Nor0al Te0perature Range .................................................................................................... 137  
TCR Mode – Extended Te0perature Range ................................................................................................. 137  
Fine Granularity Refresh Mode ....................................................................................................................... 139  
Mode Register and Co00and Truth Table .................................................................................................. 139  
tREFI and tRFC Para0eters ........................................................................................................................ 139  
Changing Refresh Rate ............................................................................................................................... 142  
Usage with TCR Mode ................................................................................................................................ 142  
Self Refresh Entry and Exit ......................................................................................................................... 142  
SELF REFRESH Operation .............................................................................................................................. 144  
Self Refresh Abort ...................................................................................................................................... 14±  
Self Refresh Exit with NOP Co00and ......................................................................................................... 147  
Power-Down Mode ........................................................................................................................................ 149  
Power-Down Clarifications – Case 1 ........................................................................................................... 154  
Power-Down Entry, Exit Ti0ing with CAL ................................................................................................... 155  
ODT Input Buffer Disable Mode for Power-Down ............................................................................................ 157  
CRC Write Data Feature ................................................................................................................................. 159  
CRC Write Data ......................................................................................................................................... 159  
WRITE CRC DATA Operation ...................................................................................................................... 159  
DBI_n and CRC Both Enabled .................................................................................................................... 1±6  
DM_n and CRC Both Enabled .................................................................................................................... 1±6  
DM_n and DBI_n Conflict During Writes with CRC Enabled ........................................................................ 1±6  
CRC and Write Prea0ble Restrictions ......................................................................................................... 1±6  
CRC Si0ultaneous Operation Restrictions .................................................................................................. 1±6  
CRC Polyno0ial ........................................................................................................................................ 1±6  
CRC Co0binatorial Logic Equations .......................................................................................................... 1±1  
Burst Ordering for BL8 ............................................................................................................................... 1±2  
CRC Data Bit Mapping ............................................................................................................................... 1±2  
CRC Enabled With BC4 .............................................................................................................................. 1±3  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
5
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
CRC with BC4 Data Bit Mapping ................................................................................................................ 1±3  
CRC Equations for x8 Device in BC4 Mode with A2 = 6 and A2 = 1 ................................................................ 1±±  
CRC Error Handling ................................................................................................................................... 1±8  
CRC Write Data Flow Diagra0 ................................................................................................................... 1±9  
Data Bus Inversion ........................................................................................................................................ 176  
DBI During a WRITE Operation .................................................................................................................. 176  
DBI During a READ Operation ................................................................................................................... 171  
Data Mask ..................................................................................................................................................... 172  
Progra00able Prea0ble Modes and DQS Posta0bles .................................................................................... 174  
WRITE Prea0ble Mode .............................................................................................................................. 174  
READ Prea0ble Mode ............................................................................................................................... 177  
READ Prea0ble Training ........................................................................................................................... 177  
WRITE Posta0ble ...................................................................................................................................... 178  
READ Posta0ble ....................................................................................................................................... 178  
Bank Access Operation .................................................................................................................................. 186  
READ Operation ............................................................................................................................................ 184  
Read Ti0ing Definitions ............................................................................................................................ 184  
Read Ti0ing – Clock-to-Data Strobe Relationship ....................................................................................... 185  
Read Ti0ing – Data Strobe-to-Data Relationship ........................................................................................ 187  
tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) Calculations ............................................................................ 188  
tRPRE Calculation ..................................................................................................................................... 189  
tRPST Calculation ...................................................................................................................................... 196  
READ Burst Operation ............................................................................................................................... 191  
READ Operation Followed by Another READ Operation .............................................................................. 193  
READ Operation Followed by WRITE Operation .......................................................................................... 198  
READ Operation Followed by PRECHARGE Operation ................................................................................ 264  
READ Operation with Read Data Bus Inversion (DBI) .................................................................................. 267  
READ Operation with Co00and/Address Parity (CA Parity) ........................................................................ 268  
READ Followed by WRITE with CRC Enabled .............................................................................................. 216  
READ Operation with Co00and/Address Latency (CAL) Enabled ............................................................... 211  
WRITE Operation .......................................................................................................................................... 213  
Write Ti0ing Definitions ........................................................................................................................... 213  
Write Ti0ing – Clock-to-Data Strobe Relationship ...................................................................................... 213  
tWPRE Calculation .................................................................................................................................... 215  
tWPST Calculation ..................................................................................................................................... 21±  
Write Ti0ing – Data Strobe-to-Data Relationship ........................................................................................ 21±  
WRITE Burst Operation ............................................................................................................................. 226  
WRITE Operation Followed by Another WRITE Operation ........................................................................... 222  
WRITE Operation Followed by READ Operation .......................................................................................... 228  
WRITE Operation Followed by PRECHARGE Operation ............................................................................... 232  
WRITE Operation with WRITE DBI Enabled ................................................................................................ 235  
WRITE Operation with CA Parity Enabled ................................................................................................... 237  
WRITE Operation with Write CRC Enabled ................................................................................................. 238  
Write Ti0ing Violations ................................................................................................................................. 243  
Motivation ................................................................................................................................................ 243  
Data Setup and Hold Violations ................................................................................................................. 243  
Strobe-to-Strobe and Strobe-to-Clock Violations ........................................................................................ 243  
ZQ CALIBRATION Co00ands ....................................................................................................................... 244  
On-Die Ter0ination ...................................................................................................................................... 24±  
ODT Mode Register and ODT State Table ........................................................................................................ 24±  
ODT Read Disable State Table .................................................................................................................... 247  
Synchronous ODT Mode ................................................................................................................................ 248  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
6
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
ODT Latency and Posted ODT .................................................................................................................... 248  
Ti0ing Para0eters .................................................................................................................................... 248  
ODT During Reads .................................................................................................................................... 256  
Dyna0ic ODT ............................................................................................................................................... 251  
Functional Description .............................................................................................................................. 251  
Asynchronous ODT Mode .............................................................................................................................. 254  
Electrical Specifications ................................................................................................................................. 255  
Absolute Ratings ........................................................................................................................................ 255  
DRAM Co0ponent Operating Te0perature Range ...................................................................................... 255  
Electrical Characteristics – AC and DC Operating Conditions .......................................................................... 25±  
Supply Operating Conditions ..................................................................................................................... 25±  
Leakages ................................................................................................................................................... 257  
V
REFCA Supply ............................................................................................................................................ 257  
VREFDQ Supply and Calibration Ranges ....................................................................................................... 258  
VREFDQ Ranges ........................................................................................................................................... 259  
Electrical Characteristics – AC and DC Single-Ended Input Measure0ent Levels .............................................. 2±6  
RESET_n Input Levels ................................................................................................................................ 2±6  
Co00and/Address Input Levels ................................................................................................................ 2±6  
Co00and, Control, and Address Setup, Hold, and Derating ........................................................................ 2±2  
Data Receiver Input Require0ents ............................................................................................................. 2±4  
Connectivity Test (CT) Mode Input Levels .................................................................................................. 2±8  
Electrical Characteristics – AC and DC Differential Input Measure0ent Levels ................................................. 272  
Differential Inputs ..................................................................................................................................... 272  
Single-Ended Require0ents for CK Differential Signals ............................................................................... 273  
Slew Rate Definitions for CK Differential Input Signals ................................................................................ 274  
CK Differential Input Cross Point Voltage .................................................................................................... 275  
DQS Differential Input Signal Definition and Swing Require0ents .............................................................. 277  
DQS Differential Input Cross Point Voltage ................................................................................................. 279  
Slew Rate Definitions for DQS Differential Input Signals .............................................................................. 286  
Electrical Characteristics – Overshoot and Undershoot Specifications ............................................................. 282  
Address, Co00and, and Control Overshoot and Undershoot Specifications ................................................ 282  
Clock Overshoot and Undershoot Specifications ......................................................................................... 282  
Data, Strobe, and Mask Overshoot and Undershoot Specifications .............................................................. 283  
Electrical Characteristics – AC and DC Output Measure0ent Levels ................................................................ 284  
Single-Ended Outputs ............................................................................................................................... 284  
Differential Outputs .................................................................................................................................. 285  
Reference Load for AC Ti0ing and Output Slew Rate ................................................................................... 287  
Connectivity Test Mode Output Levels ........................................................................................................ 287  
Electrical Characteristics – AC and DC Output Driver Characteristics ............................................................... 289  
Output Driver Electrical Characteristics ..................................................................................................... 289  
Output Driver Te0perature and Voltage Sensitivity ..................................................................................... 292  
Alert Driver ............................................................................................................................................... 292  
Electrical Characteristics – On-Die Ter0ination Characteristics ...................................................................... 294  
ODT Levels and I-V Characteristics ............................................................................................................ 294  
ODT Te0perature and Voltage Sensitivity ................................................................................................... 295  
ODT Ti0ing Definitions ............................................................................................................................ 29±  
DRAM Package Electrical Specifications ......................................................................................................... 299  
Ther0al Characteristics ................................................................................................................................. 363  
Current Specifications – Measure0ent Conditions .......................................................................................... 364  
I
I
DD, IPP, and IDDQ Measure0ent Conditions ................................................................................................ 364  
DD Definitions .......................................................................................................................................... 365  
Current Specifications – Patterns and Test Conditions ..................................................................................... 369  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
7
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Current Test Definitions and Patterns ......................................................................................................... 369  
IDD Specifications ...................................................................................................................................... 318  
Current Specifications – Li0its ....................................................................................................................... 319  
Speed Bin Tables ........................................................................................................................................... 325  
Refresh Para0eters By Device Density ............................................................................................................ 333  
Electrical Characteristics and AC Ti0ing Para0eters – DDR4-1±66 through DDR4-2466 ................................... 334  
Electrical Characteristics and AC Ti0ing Para0eters – DDR4-2±±± through DDR4-3266 ................................... 34±  
Revision History ............................................................................................................................................ 358  
Rev. C – 3/17 .............................................................................................................................................. 358  
Rev. B – 9/1± .............................................................................................................................................. 358  
Rev. A – ±/1± .............................................................................................................................................. 358  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
8
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
List of Figures  
Figure 1: Order Part Nu0ber Exa0ple .............................................................................................................. 2  
Figure 2: 1 Gig × 8 Functional Block Diagra0 .................................................................................................. 26  
Figure 3: 512 Meg × 1± Functional Block Diagra0 ........................................................................................... 26  
Figure 4: 78-Ball x4, x8 Ball Assign0ents ........................................................................................................ 21  
Figure 5: 9±-Ball x1± Ball Assign0ents ............................................................................................................ 22  
Figure ±: 78-Ball FBGA – x4, x8 (WE) ............................................................................................................... 2±  
Figure 7: 9±-Ball FBGA – x1± (JY) .................................................................................................................... 27  
Figure 8: Si0plified State Diagra0 ................................................................................................................. 28  
Figure 9: RESET and Initialization Sequence at Power-On Ra0ping ................................................................. 34  
Figure 16: RESET Procedure at Power Stable Condition ................................................................................... 35  
Figure 11: tMRD Ti0ing ................................................................................................................................ 37  
Figure 12: tMOD Ti0ing ................................................................................................................................ 37  
Figure 13: DLL-Off Mode Read Ti0ing Operation ........................................................................................... ±±  
Figure 14: DLL Switch Sequence fro0 DLL-On to DLL-Off .............................................................................. ±8  
Figure 15: DLL Switch Sequence fro0 DLL-Off to DLL-On .............................................................................. ±9  
Figure 1±: Write Leveling Concept, Exa0ple 1 ................................................................................................ 71  
Figure 17: Write Leveling Concept, Exa0ple 2 ................................................................................................ 72  
Figure 18: Write Leveling Sequence (DQS Capturing CK LOW at T1 and CK HIGH at T2) .................................. 73  
Figure 19: Write Leveling Exit ......................................................................................................................... 74  
Figure 26: CAL Ti0ing Definition ................................................................................................................... 75  
Figure 21: CAL Ti0ing Exa0ple (Consecutive CS_n = LOW) ............................................................................ 75  
Figure 22: CAL Enable Ti0ing – tMOD_CAL ................................................................................................... 7±  
Figure 23: tMOD_CAL, MRS to Valid Co00and Ti0ing with CAL Enabled ....................................................... 7±  
Figure 24: CAL Enabling MRS to Next MRS Co00and, tMRD_CAL .................................................................. 77  
Figure 25: tMRD_CAL, Mode Register Cycle Ti0e With CAL Enabled ............................................................... 77  
Figure 2±: Consecutive READ BL8, CAL3, 1tCK Prea0ble, Different Bank Group ............................................... 78  
Figure 27: Consecutive READ BL8, CAL4, 1tCK Prea0ble, Different Bank Group ............................................... 78  
Figure 28: Auto Self Refresh Ranges ................................................................................................................ 81  
Figure 29: MPR Block Diagra0 ....................................................................................................................... 82  
Figure 36: MPR READ Ti0ing ........................................................................................................................ 89  
Figure 31: MPR Back-to-Back READ Ti0ing ................................................................................................... 89  
Figure 32: MPR READ-to-WRITE Ti0ing ........................................................................................................ 96  
Figure 33: MPR WRITE and WRITE-to-READ Ti0ing ...................................................................................... 91  
Figure 34: MPR Back-to-Back WRITE Ti0ing .................................................................................................. 92  
Figure 35: REFRESH Ti0ing ........................................................................................................................... 92  
Figure 3±: READ-to-REFRESH Ti0ing ............................................................................................................ 93  
Figure 37: WRITE-to-REFRESH Ti0ing .......................................................................................................... 93  
Figure 38: Clock Mode Change fro0 1/2 Rate to 1/4 Rate (Initialization) .......................................................... 9±  
Figure 39: Clock Mode Change After Exiting Self Refresh ................................................................................. 9±  
Figure 46: Co0parison Between Gear-Down Disable and Gear-Down Enable .................................................. 97  
Figure 41: Maxi0u0 Power-Saving Mode Entry .............................................................................................. 98  
Figure 42: Maxi0u0 Power-Saving Mode Entry with PDA ............................................................................... 99  
Figure 43: Maintaining Maxi0u0 Power-Saving Mode with CKE Transition .................................................... 99  
Figure 44: Maxi0u0 Power-Saving Mode Exit ............................................................................................... 166  
Figure 45: Co00and/Address Parity Operation ............................................................................................. 161  
Figure 4±: Co00and/Address Parity During Nor0al Operation ..................................................................... 163  
Figure 47: Persistent CA Parity Error Checking Operation ............................................................................... 164  
Figure 48: CA Parity Error Checking – SRE Atte0pt ........................................................................................ 164  
Figure 49: CA Parity Error Checking – SRX Atte0pt ........................................................................................ 165  
Figure 56: CA Parity Error Checking – PDE/PDX ............................................................................................ 165  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
9
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Figure 51: Parity Entry Ti0ing Exa0ple – tMRD_PAR ..................................................................................... 16±  
Figure 52: Parity Entry Ti0ing Exa0ple – tMOD_PAR ..................................................................................... 16±  
Figure 53: Parity Exit Ti0ing Exa0ple – tMRD_PAR ....................................................................................... 167  
Figure 54: Parity Exit Ti0ing Exa0ple – tMOD_PAR ....................................................................................... 167  
Figure 55: CA Parity Flow Diagra0 ................................................................................................................ 168  
Figure 5±: PDA Operation Enabled, BL8 ........................................................................................................ 116  
Figure 57: PDA Operation Enabled, BC4 ........................................................................................................ 116  
Figure 58: MRS PDA Exit ............................................................................................................................... 111  
Figure 59: VREFDQ Voltage Range ................................................................................................................... 112  
Figure ±6: Exa0ple of VREF Set Tolerance and Step Size .................................................................................. 114  
Figure ±1: VREFDQ Ti0ing Diagra0 for VREF,ti0e Para0eter .............................................................................. 115  
Figure ±2: VREFDQ Training Mode Entry and Exit Ti0ing Diagra0 ................................................................... 11±  
Figure ±3: VREF Step: Single Step Size Incre0ent Case .................................................................................... 117  
Figure ±4: VREF Step: Single Step Size Decre0ent Case ................................................................................... 117  
Figure ±5: VREF Full Step: Fro0 VREF,0in to VREF,0axCase .................................................................................. 118  
Figure ±±: VREF Full Step: Fro0 VREF,0ax to VREF,0inCase .................................................................................. 118  
Figure ±7: VREFDQ Equivalent Circuit ............................................................................................................. 119  
Figure ±8: Connectivity Test Mode Entry ....................................................................................................... 123  
Figure ±9: hPPR WRA – Entry ........................................................................................................................ 128  
Figure 76: hPPR WRA – Repair and Exit ......................................................................................................... 128  
Figure 71: hPPR WR – Entry .......................................................................................................................... 129  
Figure 72: hPPR WR – Repair and Exit ............................................................................................................ 136  
Figure 73: sPPR – Entry ................................................................................................................................. 132  
Figure 74: sPPR – Repair, and Exit ................................................................................................................. 133  
Figure 75: tRRD Ti0ing ................................................................................................................................ 134  
Figure 7±: tFAW Ti0ing ................................................................................................................................. 134  
Figure 77: REFRESH Co00and Ti0ing ......................................................................................................... 13±  
Figure 78: Postponing REFRESH Co00ands (Exa0ple) ................................................................................. 13±  
Figure 79: Pulling In REFRESH Co00ands (Exa0ple) ................................................................................... 13±  
Figure 86: TCR Mode Exa0ple1 ..................................................................................................................... 138  
Figure 81: 4Gb with Fine Granularity Refresh Mode Exa0ple ......................................................................... 141  
Figure 82: OTF REFRESH Co00and Ti0ing ................................................................................................. 142  
Figure 83: Self Refresh Entry/Exit Ti0ing ...................................................................................................... 145  
Figure 84: Self Refresh Entry/Exit Ti0ing with CAL Mode ............................................................................... 14±  
Figure 85: Self Refresh Abort ......................................................................................................................... 147  
Figure 8±: Self Refresh Exit with NOP Co00and ............................................................................................ 148  
Figure 87: Active Power-Down Entry and Exit ................................................................................................ 156  
Figure 88: Power-Down Entry After Read and Read with Auto Precharge ......................................................... 151  
Figure 89: Power-Down Entry After Write and Write with Auto Precharge ........................................................ 151  
Figure 96: Power-Down Entry After Write ...................................................................................................... 152  
Figure 91: Precharge Power-Down Entry and Exit .......................................................................................... 152  
Figure 92: REFRESH Co00and to Power-Down Entry ................................................................................... 153  
Figure 93: Active Co00and to Power-Down Entry ......................................................................................... 153  
Figure 94: PRECHARGE/PRECHARGE ALL Co00and to Power-Down Entry .................................................. 154  
Figure 95: MRS Co00and to Power-Down Entry ........................................................................................... 154  
Figure 9±: Power-Down Entry/Exit Clarifications – Case 1 .............................................................................. 155  
Figure 97: Active Power-Down Entry and Exit Ti0ing with CAL ...................................................................... 155  
Figure 98: REFRESH Co00and to Power-Down Entry with CAL ..................................................................... 15±  
Figure 99: ODT Power-Down Entry with ODT Buffer Disable Mode ................................................................ 157  
Figure 166: ODT Power-Down Exit with ODT Buffer Disable Mode ................................................................. 158  
Figure 161: CRC Write Data Operation .......................................................................................................... 159  
Figure 162: CRC Error Reporting ................................................................................................................... 1±8  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
10  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Figure 163: CA Parity Flow Diagra0 .............................................................................................................. 1±9  
Figure 164: 1tCK vs. 2tCK WRITE Prea0ble Mode ........................................................................................... 174  
t
Figure 165: 1tCK vs. 2tCK WRITE Prea0ble Mode, CCD = 4 ............................................................................ 175  
t
Figure 16±: 1tCK vs. 2tCK WRITE Prea0ble Mode, CCD = 5 ............................................................................ 17±  
t
Figure 167: 1tCK vs. 2 tCK WRITE Prea0ble Mode, CCD = ± ........................................................................... 17±  
Figure 168: 1tCK vs. 2tCK READ Prea0ble Mode ............................................................................................ 177  
Figure 169: READ Prea0ble Training ............................................................................................................. 178  
Figure 116: WRITE Posta0ble ....................................................................................................................... 178  
Figure 111: READ Posta0ble ........................................................................................................................ 179  
Figure 112: Bank Group x4/x8 Block Diagra0 ................................................................................................ 186  
Figure 113: READ Burst tCCD_S and tCCD_L Exa0ples .................................................................................. 181  
t
Figure 114: Write Burst CCD_S and tCCD_L Exa0ples ................................................................................... 181  
Figure 115: tRRD Ti0ing ............................................................................................................................... 182  
Figure 11±: tWTR_S Ti0ing (WRITE-to-READ, Different Bank Group, CRC and DM Disabled) ......................... 182  
Figure 117: tWTR_L Ti0ing (WRITE-to-READ, Sa0e Bank Group, CRC and DM Disabled) .............................. 183  
Figure 118: Read Ti0ing Definition ............................................................................................................... 185  
Figure 119: Clock-to-Data Strobe Relationship .............................................................................................. 18±  
Figure 126: Data Strobe-to-Data Relationship ................................................................................................ 187  
Figure 121: tLZ and tHZ Method for Calculating Transitions and Endpoints .................................................... 188  
Figure 122: tRPRE Method for Calculating Transitions and Endpoints ............................................................. 189  
Figure 123: tRPST Method for Calculating Transitions and Endpoints ............................................................. 196  
Figure 124: READ Burst Operation, RL = 11 (AL = 6, CL = 11, BL8) ................................................................... 191  
Figure 125: READ Burst Operation, RL = 21 (AL = 16, CL = 11, BL8) ................................................................. 192  
Figure 12±: Consecutive READ (BL8) with 1tCK Prea0ble in Different Bank Group .......................................... 193  
Figure 127: Consecutive READ (BL8) with 2tCK Prea0ble in Different Bank Group .......................................... 193  
Figure 128: Nonconsecutive READ (BL8) with 1tCK Prea0ble in Sa0e or Different Bank Group ....................... 194  
Figure 129: Nonconsecutive READ (BL8) with 2tCK Prea0ble in Sa0e or Different Bank Group ....................... 194  
Figure 136: READ (BC4) to READ (BC4) with 1tCK Prea0ble in Different Bank Group ...................................... 195  
Figure 131: READ (BC4) to READ (BC4) with 2tCK Prea0ble in Different Bank Group ...................................... 195  
Figure 132: READ (BL8) to READ (BC4) OTF with 1tCK Prea0ble in Different Bank Group ............................... 19±  
Figure 133: READ (BL8) to READ (BC4) OTF with 2tCK Prea0ble in Different Bank Group ............................... 19±  
Figure 134: READ (BC4) to READ (BL8) OTF with 1tCK Prea0ble in Different Bank Group ............................... 197  
Figure 135: READ (BC4) to READ (BL8) OTF with 2tCK Prea0ble in Different Bank Group ............................... 197  
Figure 13±: READ (BL8) to WRITE (BL8) with 1tCK Prea0ble in Sa0e or Different Bank Group ........................ 198  
Figure 137: READ (BL8) to WRITE (BL8) with 2tCK Prea0ble in Sa0e or Different Bank Group ........................ 198  
Figure 138: READ (BC4) OTF to WRITE (BC4) OTF with 1tCK Prea0ble in Sa0e or Different Bank Group ......... 199  
Figure 139: READ (BC4) OTF to WRITE (BC4) OTF with 2tCK Prea0ble in Sa0e or Different Bank Group ......... 266  
Figure 146: READ (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Prea0ble in Sa0e or Different Bank Group ..... 266  
Figure 141: READ (BC4) Fixed to WRITE (BC4) Fixed with 2tCK Prea0ble in Sa0e or Different Bank Group ..... 261  
Figure 142: READ (BC4) to WRITE (BL8) OTF with 1tCK Prea0ble in Sa0e or Different Bank Group ................ 262  
Figure 143: READ (BC4) to WRITE (BL8) OTF with 2tCK Prea0ble in Sa0e or Different Bank Group ................ 262  
Figure 144: READ (BL8) to WRITE (BC4) OTF with 1tCK Prea0ble in Sa0e or Different Bank Group ................ 263  
Figure 145: READ (BL8) to WRITE (BC4) OTF with 2tCK Prea0ble in Sa0e or Different Bank Group ................ 263  
Figure 14±: READ to PRECHARGE with 1tCK Prea0ble .................................................................................. 264  
Figure 147: READ to PRECHARGE with 2tCK Prea0ble .................................................................................. 265  
Figure 148: READ to PRECHARGE with Additive Latency and 1tCK Prea0ble .................................................. 265  
Figure 149: READ with Auto Precharge and 1tCK Prea0ble ............................................................................ 26±  
Figure 156: READ with Auto Precharge, Additive Latency, and 1tCK Prea0ble ................................................. 267  
Figure 151: Consecutive READ (BL8) with 1tCK Prea0ble and DBI in Different Bank Group ............................ 267  
Figure 152: Consecutive READ (BL8) with 1tCK Prea0ble and CA Parity in Different Bank Group .................... 268  
Figure 153: READ (BL8) to WRITE (BL8) with 1tCK Prea0ble and CA Parity in Sa0e or Different Bank Group ... 269  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
11  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Figure 154: READ (BL8) to WRITE (BL8 or BC4: OTF) with 1tCK Prea0ble and Write CRC in Sa0e or Different  
Bank Group ............................................................................................................................................... 216  
Figure 155: READ (BC4: Fixed) to WRITE (BC4: Fixed) with 1tCK Prea0ble and Write CRC in Sa0e or Different  
Bank Group ............................................................................................................................................... 211  
Figure 15±: Consecutive READ (BL8) with CAL (3tCK) and 1tCK Prea0ble in Different Bank Group .................. 211  
Figure 157: Consecutive READ (BL8) with CAL (4tCK) and 1tCK Prea0ble in Different Bank Group .................. 212  
Figure 158: Write Ti0ing Definition .............................................................................................................. 214  
Figure 159: tWPRE Method for Calculating Transitions and Endpoints ............................................................ 215  
Figure 1±6: tWPST Method for Calculating Transitions and Endpoints ............................................................ 21±  
Figure 1±1: Rx Co0pliance Mask .................................................................................................................. 217  
Figure 1±2: VCENT_DQ VREFDQ Voltage Variation .............................................................................................. 217  
Figure 1±3: Rx Mask DQ-to-DQS Ti0ings ...................................................................................................... 218  
Figure 1±4: Rx Mask DQ-to-DQS DRAM-Based Ti0ings ................................................................................. 219  
Figure 1±5: Exa0ple of Data Input Require0ents Without Training ................................................................ 226  
Figure 1±±: WRITE Burst Operation, WL = 9 (AL = 6, CWL = 9, BL8) ................................................................. 221  
Figure 1±7: WRITE Burst Operation, WL = 19 (AL = 16, CWL = 9, BL8) ............................................................. 222  
Figure 1±8: Consecutive WRITE (BL8) with 1tCK Prea0ble in Different Bank Group ........................................ 222  
Figure 1±9: Consecutive WRITE (BL8) with 2tCK Prea0ble in Different Bank Group ........................................ 223  
Figure 176: Nonconsecutive WRITE (BL8) with 1tCK Prea0ble in Sa0e or Different Bank Group ..................... 224  
Figure 171: Nonconsecutive WRITE (BL8) with 2tCK Prea0ble in Sa0e or Different Bank Group ..................... 224  
Figure 172: WRITE (BC4) OTF to WRITE (BC4) OTF with 1tCK Prea0ble in Different Bank Group .................... 225  
Figure 173: WRITE (BC4) OTF to WRITE (BC4) OTF with 2tCK Prea0ble in Different Bank Group .................... 22±  
Figure 174: WRITE (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Prea0ble in Different Bank Group ................. 22±  
Figure 175: WRITE (BL8) to WRITE (BC4) OTF with 1tCK Prea0ble in Different Bank Group ............................ 227  
Figure 17±: WRITE (BC4) OTF to WRITE (BL8) with 1tCK Prea0ble in Different Bank Group ............................ 228  
Figure 177: WRITE (BL8) to READ (BL8) with 1tCK Prea0ble in Different Bank Group ..................................... 228  
Figure 178: WRITE (BL8) to READ (BL8) with 1tCK Prea0ble in Sa0e Bank Group .......................................... 229  
Figure 179: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Prea0ble in Different Bank Group ...................... 236  
Figure 186: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Prea0ble in Sa0e Bank Group ........................... 236  
t
Figure 181: WRITE (BC4) Fixed to READ (BC4) Fixed with 1 CK Prea0ble in Different Bank Group ................. 231  
Figure 182: WRITE (BC4) Fixed to READ (BC4) Fixed with 1tCK Prea0ble in Sa0e Bank Group ....................... 231  
Figure 183: WRITE (BL8/BC4-OTF) to PRECHARGE with 1tCK Prea0ble ........................................................ 232  
Figure 184: WRITE (BC4-Fixed) to PRECHARGE with 1tCK Prea0ble .............................................................. 233  
Figure 185: WRITE (BL8/BC4-OTF) to Auto PRECHARGE with 1tCK Prea0ble ................................................ 233  
Figure 18±: WRITE (BC4-Fixed) to Auto PRECHARGE with 1tCK Prea0ble ...................................................... 234  
Figure 187: WRITE (BL8/BC4-OTF) with 1tCK Prea0ble and DBI ................................................................... 235  
Figure 188: WRITE (BC4-Fixed) with 1tCK Prea0ble and DBI ......................................................................... 23±  
Figure 189: Consecutive Write (BL8) with 1tCK Prea0ble and CA Parity in Different Bank Group ..................... 237  
Figure 196: Consecutive WRITE (BL8/BC4-OTF) with 1tCK Prea0ble and Write CRC in Sa0e or Different Bank  
Group ....................................................................................................................................................... 238  
Figure 191: Consecutive WRITE (BC4-Fixed) with 1tCK Prea0ble and Write CRC in Sa0e or Different Bank  
Group ....................................................................................................................................................... 239  
Figure 192: Nonconsecutive WRITE (BL8/BC4-OTF) with 1tCK Prea0ble and Write CRC in Sa0e or Different  
Bank Group ............................................................................................................................................... 246  
Figure 193: Nonconsecutive WRITE (BL8/BC4-OTF) with 2tCK Prea0ble and Write CRC in Sa0e or Different  
Bank Group ............................................................................................................................................... 241  
Figure 194: WRITE (BL8/BC4-OTF/Fixed) with 1tCK Prea0ble and Write CRC in Sa0e or Different Bank Group .2..42  
Figure 195: ZQ Calibration Ti0ing ................................................................................................................ 245  
Figure 19±: Functional Representation of ODT .............................................................................................. 24±  
Figure 197: Synchronous ODT Ti0ing with BL8 ............................................................................................. 249  
Figure 198: Synchronous ODT with BC4 ........................................................................................................ 249  
Figure 199: ODT During Reads ...................................................................................................................... 256  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
12  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Figure 266: Dyna0ic ODT (1t CK Prea0ble; CL = 14, CWL = 11, BL = 8, AL = 6, CRC Disabled) .......................... 252  
Figure 261: Dyna0ic ODT Overlapped with RTT(NOM) (CL = 14, CWL = 11, BL = 8, AL = 6, CRC Disabled) .......... 253  
Figure 262: Asynchronous ODT Ti0ings with DLL Off ................................................................................... 254  
Figure 263: VREFDQ Voltage Range .................................................................................................................. 257  
Figure 264: RESET_n Input Slew Rate Definition ............................................................................................ 2±6  
Figure 265: Single-Ended Input Slew Rate Definition ..................................................................................... 2±2  
Figure 26±: DQ Slew Rate Definitions ............................................................................................................ 2±5  
Figure 267: Rx Mask Relative to tDS/tDH ....................................................................................................... 2±7  
Figure 268: Rx Mask Without Write Training .................................................................................................. 2±8  
Figure 269: TEN Input Slew Rate Definition ................................................................................................... 2±9  
Figure 216: CT Type-A Input Slew Rate Definition .......................................................................................... 276  
Figure 211: CT Type-B Input Slew Rate Definition .......................................................................................... 276  
Figure 212: CT Type-C Input Slew Rate Definition .......................................................................................... 271  
Figure 213: CT Type-D Input Slew Rate Definition ......................................................................................... 272  
Figure 214: Differential AC Swing and “Ti0e Exceeding AC-Level” tDVAC ....................................................... 272  
Figure 215: Single-Ended Require0ents for CK .............................................................................................. 274  
Figure 21±: Differential Input Slew Rate Definition for CK_t, CK_c .................................................................. 275  
Figure 217: VIX(CK) Definition ........................................................................................................................ 27±  
Figure 218: Differential Input Signal Definition for DQS_t, DQS_c .................................................................. 277  
Figure 219: DQS_t, DQS_c Input Peak Voltage Calculation and Range of Exe0pt non-Monotonic Signaling ..... 278  
Figure 226: VIXDQS Definition ........................................................................................................................ 279  
Figure 221: Differential Input Slew Rate and Input Level Definition for DQS_t, DQS_c ..................................... 286  
Figure 222: ADDR, CMD, CNTL Overshoot and Undershoot Definition ........................................................... 282  
Figure 223: CK Overshoot and Undershoot Definition .................................................................................... 283  
Figure 224: Data, Strobe, and Mask Overshoot and Undershoot Definition ..................................................... 284  
Figure 225: Single-ended Output Slew Rate Definition ................................................................................... 285  
Figure 22±: Differential Output Slew Rate Definition ...................................................................................... 28±  
Figure 227: Reference Load For AC Ti0ing and Output Slew Rate ................................................................... 287  
Figure 228: Connectivity Test Mode Reference Test Load ................................................................................ 288  
Figure 229: Connectivity Test Mode Output Slew Rate Definition .................................................................... 288  
Figure 236: Output Driver: Definition of Voltages and Currents ...................................................................... 289  
Figure 231: Alert Driver ................................................................................................................................ 293  
Figure 232: ODT Definition of Voltages and Currents ..................................................................................... 294  
Figure 233: ODT Ti0ing Reference Load ....................................................................................................... 29±  
Figure 234: tADC Definition with Direct ODT Control .................................................................................... 297  
Figure 235: tADC Definition with Dyna0ic ODT Control ................................................................................ 298  
Figure 23±: tAOFAS and tAONAS Definitions .................................................................................................. 298  
Figure 237: Ther0al Measure0ent Point ....................................................................................................... 363  
Figure 238: Measure0ent Setup and Test Load for IDDx, IDDPx, and IDDQx ........................................................ 365  
Figure 239: Correlation: Si0ulated Channel I/O Power to Actual Channel I/O Power ....................................... 365  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
13  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
List of Tables  
Table 1: Key Ti0ing Para0eters ....................................................................................................................... 2  
Table 2: Addressing ......................................................................................................................................... 2  
Table 3: Ball Descriptions .............................................................................................................................. 23  
Table 4: State Diagra0 Co00and Definitions ................................................................................................ 29  
Table 5: Supply Power-up Slew Rate ............................................................................................................... 31  
Table ±: Address Pin Mapping ........................................................................................................................ 39  
Table 7: MR6 Register Definition .................................................................................................................... 39  
Table 8: Burst Type and Burst Order ............................................................................................................... 41  
Table 9: Address Pin Mapping ........................................................................................................................ 43  
Table 16: MR1 Register Definition .................................................................................................................. 43  
Table 11: Additive Latency (AL) Settings ......................................................................................................... 45  
Table 12: TDQS Function Matrix .................................................................................................................... 4±  
Table 13: Address Pin Mapping ...................................................................................................................... 47  
Table 14: MR2 Register Definition .................................................................................................................. 47  
Table 15: Address Pin Mapping ...................................................................................................................... 56  
Table 1±: MR3 Register Definition .................................................................................................................. 56  
Table 17: Address Pin Mapping ...................................................................................................................... 53  
Table 18: MR4 Register Definition .................................................................................................................. 53  
Table 19: Address Pin Mapping ...................................................................................................................... 57  
Table 26: MR5 Register Definition .................................................................................................................. 57  
Table 21: Address Pin Mapping ...................................................................................................................... ±6  
Table 22: MR± Register Definition .................................................................................................................. ±6  
Table 23: Truth Table – Co00and .................................................................................................................. ±2  
Table 24: Truth Table – CKE ........................................................................................................................... ±4  
Table 25: MR Settings for Leveling Procedures ................................................................................................ 72  
Table 2±: DRAM TERMINATION Function in Leveling Mode ........................................................................... 72  
Table 27: Auto Self Refresh Mode ................................................................................................................... 86  
Table 28: MR3 Setting for the MPR Access Mode ............................................................................................. 82  
Table 29: DRAM Address to MPR UI Translation ............................................................................................. 82  
Table 36: MPR Page and MPRx Definitions ..................................................................................................... 83  
Table 31: MPR Readout Serial For0at ............................................................................................................. 85  
Table 32: MPR Readout – Parallel For0at ....................................................................................................... 8±  
Table 33: MPR Readout Staggered For0at, x4 ................................................................................................. 87  
Table 34: MPR Readout Staggered For0at, x4 – Consecutive READs ................................................................ 88  
Table 35: MPR Readout Staggered For0at, x8 and x1± ..................................................................................... 88  
Table 3±: Mode Register Setting for CA Parity ................................................................................................. 163  
Table 37: VREFDQ Range and Levels ................................................................................................................ 113  
Table 38: VREFDQ Settings (VDDQ = 1.2V) ......................................................................................................... 119  
Table 39: Connectivity Mode Pin Description and Switching Levels ................................................................ 121  
Table 46: MAC Encoding of MPR Page 3 MPR3 ............................................................................................... 124  
Table 41: PPR MR6 Guard Key Settings .......................................................................................................... 12±  
Table 42: DDR4 hPPR Ti0ing Para0eters DDR4-1±66 through DDR4-3266 ..................................................... 136  
Table 43: sPPR Associated Rows .................................................................................................................... 131  
Table 44: PPR MR6 Guard Key Settings .......................................................................................................... 131  
Table 45: DDR4 sPPR Ti0ing Para0eters DDR4-1±66 through DDR4-3266 ..................................................... 133  
Table 4±: DDR4 Repair Mode Support Identifier ............................................................................................ 133  
Table 47: Nor0al tREFI Refresh (TCR Disabled) ............................................................................................. 137  
Table 48: Nor0al tREFI Refresh (TCR Enabled) .............................................................................................. 138  
Table 49: MRS Definition .............................................................................................................................. 139  
Table 56: REFRESH Co00and Truth Table .................................................................................................... 139  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
14  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Table 51: tREFI and tRFC Para0eters ............................................................................................................. 146  
Table 52: Power-Down Entry Definitions ....................................................................................................... 149  
Table 53: CRC Error Detection Coverage ........................................................................................................ 1±6  
Table 54: CRC Data Mapping for x4 Devices, BL8 ........................................................................................... 1±2  
Table 55: CRC Data Mapping for x8 Devices, BL8 ........................................................................................... 1±2  
Table 5±: CRC Data Mapping for x1± Devices, BL8 ......................................................................................... 1±3  
Table 57: CRC Data Mapping for x4 Devices, BC4 ........................................................................................... 1±3  
Table 58: CRC Data Mapping for x8 Devices, BC4 ........................................................................................... 1±4  
Table 59: CRC Data Mapping for x1± Devices, BC4 ......................................................................................... 1±5  
Table ±6: DBI vs. DM vs. TDQS Function Matrix ............................................................................................. 176  
Table ±1: DBI Write, DQ Fra0e For0at (x8) ................................................................................................... 176  
Table ±2: DBI Write, DQ Fra0e For0at (x1±) ................................................................................................. 176  
Table ±3: DBI Read, DQ Fra0e For0at (x8) .................................................................................................... 171  
Table ±4: DBI Read, DQ Fra0e For0at (x1±) .................................................................................................. 171  
Table ±5: DM vs. TDQS vs. DBI Function Matrix ............................................................................................. 172  
Table ±±: Data Mask, DQ Fra0e For0at (x8) .................................................................................................. 172  
Table ±7: Data Mask, DQ Fra0e For0at (x1±) ................................................................................................ 172  
Table ±8: CWL Selection ............................................................................................................................... 175  
Table ±9: DDR4 Bank Group Ti0ing Exa0ples .............................................................................................. 186  
Table 76: Read-to-Write and Write-to-Read Co00and Intervals .................................................................... 185  
Table 71: Ter0ination State Table ................................................................................................................. 247  
Table 72: Read Ter0ination Disable Window ................................................................................................. 247  
Table 73: ODT Latency at DDR4-1±66/-18±±/-2133/-2466/-2±±±/-3266 .......................................................... 248  
Table 74: Dyna0ic ODT Latencies and Ti0ing (1tCK Prea0ble Mode and CRC Disabled) ................................ 251  
Table 75: Dyna0ic ODT Latencies and Ti0ing with Prea0ble Mode and CRC Mode Matrix ............................ 252  
Table 7±: Absolute Maxi0u0 Ratings ............................................................................................................ 255  
Table 77: Te0perature Range ........................................................................................................................ 255  
Table 78: Reco00ended Supply Operating Conditions .................................................................................. 25±  
Table 79: VDD Slew Rate ................................................................................................................................ 25±  
Table 86: Leakages ....................................................................................................................................... 257  
Table 81: VREFDQ Specification ...................................................................................................................... 258  
Table 82: VREFDQ Range and Levels ................................................................................................................ 259  
Table 83: RESET_n Input Levels (CMOS) ....................................................................................................... 2±6  
Table 84: Co00and and Address Input Levels: DDR4-1±66 Through DDR4-2466 ........................................... 2±6  
Table 85: Co00and and Address Input Levels: DDR4-2±±± ............................................................................ 2±1  
Table 8±: Co00and and Address Input Levels: DDR4-2933 and DDR4-3266 ................................................... 2±1  
Table 87: Single-Ended Input Slew Rates ....................................................................................................... 2±2  
Table 88: Co00and and Address Setup and Hold Values Referenced – AC/DC-Based ..................................... 2±3  
t
Table 89: Derating Values for IS/tIH – AC166DC75-Based .............................................................................. 2±3  
t
Table 96: Derating Values for IS/tIH – AC96/DC±5-Based .............................................................................. 2±4  
Table 91: DQ Input Receiver Specifications .................................................................................................... 2±5  
Table 92: Rx Mask and tDS/tDH without Write Training .................................................................................. 2±8  
Table 93: TEN Input Levels (CMOS) .............................................................................................................. 2±8  
Table 94: CT Type-A Input Levels .................................................................................................................. 2±9  
Table 95: CT Type-B Input Levels .................................................................................................................. 276  
Table 9±: CT Type-C Input Levels (CMOS) ..................................................................................................... 276  
Table 97: CT Type-D Input Levels .................................................................................................................. 271  
Table 98: Differential Input Swing Require0ents for CK_t, CK_c ..................................................................... 273  
t
Table 99: Mini0u0 Ti0e AC Ti0e DVAC for CK ........................................................................................... 273  
Table 166: Single-Ended Require0ents for CK ............................................................................................... 274  
Table 161: CK Differential Input Slew Rate Definition ..................................................................................... 274  
Table 162: Cross Point Voltage For CK Differential Input Signals at DDR4-1±66 through DDR4-2466 ................ 27±  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
15  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Table 163: Cross Point Voltage For CK Differential Input Signals at DDR4-2±±± through DDR4-3266 ................ 27±  
Table 164: DDR4-1±66 through DDR4-2466 Differential Input Swing Require0ents for DQS_t, DQS_c ............. 277  
Table 165: DDR4-2±33 through DDR4-3266 Differential Input Swing Require0ents for DQS_t, DQS_c ............. 277  
Table 16±: Cross Point Voltage For Differential Input Signals DQS ................................................................... 279  
Table 167: DQS Differential Input Slew Rate Definition .................................................................................. 286  
Table 168: DDR4-1±66 through DDR4-2466 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c ... 286  
Table 169: DDR4-2±±± through DDR4-3266 Differential Input Slew Rate and Input Levels for DQS_t, DQS_c ... 281  
Table 116: ADDR, CMD, CNTL Overshoot and Undershoot/Specifications ...................................................... 282  
Table 111: CK Overshoot and Undershoot/ Specifications .............................................................................. 282  
Table 112: Data, Strobe, and Mask Overshoot and Undershoot/ Specifications ................................................ 283  
Table 113: Single-Ended Output Levels ......................................................................................................... 284  
Table 114: Single-Ended Output Slew Rate Definition .................................................................................... 284  
Table 115: Single-Ended Output Slew Rate .................................................................................................... 285  
Table 11±: Differential Output Levels ............................................................................................................. 285  
Table 117: Differential Output Slew Rate Definition ....................................................................................... 28±  
Table 118: Differential Output Slew Rate ....................................................................................................... 287  
Table 119: Connectivity Test Mode Output Levels .......................................................................................... 287  
Table 126: Connectivity Test Mode Output Slew Rate ..................................................................................... 289  
Table 121: Strong Mode (34ȍ) Output Driver Electrical Characteristics ........................................................... 296  
Table 122: Weak Mode (48ȍ) Output Driver Electrical Characteristics ............................................................. 291  
Table 123: Output Driver Sensitivity Definitions ............................................................................................ 292  
Table 124: Output Driver Voltage and Te0perature Sensitivity ....................................................................... 292  
Table 125: Alert Driver Voltage ...................................................................................................................... 293  
Table 12±: ODT DC Characteristics ............................................................................................................... 294  
Table 127: ODT Sensitivity Definitions .......................................................................................................... 295  
Table 128: ODT Voltage and Te0perature Sensitivity ..................................................................................... 29±  
Table 129: ODT Ti0ing Definitions ............................................................................................................... 29±  
Table 136: Reference Settings for ODT Ti0ing Measure0ents ........................................................................ 297  
Table 131: DRAM Package Electrical Specifications for x4 and x8 Devices ....................................................... 299  
Table 132: DRAM Package Electrical Specifications for x1± Devices ................................................................ 366  
Table 133: Pad Input/Output Capacitance ..................................................................................................... 362  
Table 134: Ther0al Characteristics ............................................................................................................... 363  
Table 135: Basic IDD, IPP, and IDDQ Measure0ent Conditions .......................................................................... 365  
Table 13±: IDD6 and IPP6 Measure0ent-Loop Pattern1 .................................................................................... 369  
Table 137: IDD1 Measure0ent – Loop Pattern1 ............................................................................................... 316  
Table 138: IDD2N, IDD3N, and IPP3P Measure0ent – Loop Pattern1 .................................................................... 311  
Table 139: IDD2NT and IDDQ2NT Measure0ent – Loop Pattern1 ......................................................................... 312  
Table 146: IDD4R Measure0ent – Loop Pattern1 .............................................................................................. 313  
Table 141: IDD4W Measure0ent – Loop Pattern1 ............................................................................................. 314  
Table 142: IDD4Wc Measure0ent – Loop Pattern1 ............................................................................................ 315  
Table 143: IDD5R Measure0ent – Loop Pattern1 .............................................................................................. 31±  
Table 144: IDD7 Measure0ent – Loop Pattern1 ............................................................................................... 317  
Table 145: Ti0ings used for IDD, IPP, and IDDQ Measure0ent – Loop Patterns .................................................. 318  
Table 14±: IDD, IPP, and IDDQ Current Li0its; Die Rev. B (–46° ” TC ” +95°C) ..................................................... 319  
Table 147: IDD, IPP, and IDDQ Current Li0its; Die Rev. B (–46° ” TC ” +165°C) .................................................... 321  
Table 148: IDD, IPP, and IDDQ Current Li0its; Die Rev. B (–46° ” TC ” +125°C) .................................................... 323  
Table 149: DDR4-1±66 Speed Bins and Operating Conditions ......................................................................... 325  
Table 156: DDR4-18±± Speed Bins and Operating Conditions ......................................................................... 32±  
Table 151: DDR4-2133 Speed Bins and Operating Conditions ......................................................................... 327  
Table 152: DDR4-2466 Speed Bins and Operating Conditions ......................................................................... 328  
Table 153: DDR4-2±±± Speed Bins and Operating Conditions ......................................................................... 329  
Table 154: DDR4-2933 Speed Bins and Operating Conditions ......................................................................... 336  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
16  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Features  
Table 155: DDR4-3266 Speed Bins and Operating Conditions ......................................................................... 332  
Table 15±: Refresh Para0eters by Device Density ........................................................................................... 333  
Table 157: Electrical Characteristics and AC Ti0ing Para0eters ..................................................................... 334  
Table 158: Electrical Characteristics and AC Ti0ing Para0eters ..................................................................... 34±  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
17  
8Gb: x8, x16 Automotive DDR4 SDRAM  
General Notes and Description  
General Notes and Description  
Description  
The DDR4 SDRAM is a high-speed dyna0ic rando0-access 0e0ory internally config-  
ured as an eight-bank DRAM for the x1± configuration and as a 1±-bank DRAM for the  
x8 configurations. The DDR4 SDRAM uses an 8n-prefetch architecture to achieve high-  
speed operation. The 8n-prefetch architecture is co0bined with an interface designed  
to transfer two data words per clock cycle at the I/O pins.  
A single READ or WRITE operation for the DDR4 SDRAM consists of a single 8n-bit  
wide, four-clock data transfer at the internal DRAM core and two corresponding n-bit  
wide, one-half-clock-cycle data transfers at the I/O pins.  
Industrial Temperature  
An industrial te0perature (IT) device option requires that the case te0perature not ex-  
ceed below –46°C or above 95°C. JEDEC specifications require the refresh rate to double  
when TC exceeds 85°C; this also requires use of the high-te0perature self refresh option.  
Additionally, ODT resistance and the input/output i0pedance 0ust be derated when  
operating outside of the co00ercial te0perature range (6°C ~ +85°C).  
Automotive Temperature  
The auto0otive te0perature (AT) device option requires that the case te0perature not  
exceed below –46°C or above 165°C. The specifications require the refresh rate to 2X  
when TC exceeds 85°C; 4X when TC exceeds 95°C. Additionally, ODT resistance and the  
input/output i0pedance 0ust be derated when operating outside of the co00ercial  
te0perature range ( 6°C ~ +85°C).  
Ultra-high Temperature  
The ultra-high te0perature (UT) device option requires that the case te0perature not  
exceed below –46°C or above 125°C. The specifications require the refresh rate to 2X  
when TC exceeds 85°C; 4X when TC exceeds 95°C, 8X when TC exceeds 165°C. Addition-  
ally, ODT resistance and the input/output i0pedance 0ust be derated when operating  
outside of the co00ercial te0perature range (6°C ~ +85°C).  
General Notes  
• The functionality and the ti0ing specifications discussed in this data sheet are for the  
DLL enable 0ode of operation (nor0al operation), unless specifically stated other-  
wise.  
• Throughout the data sheet, the various figures and text refer to DQs as "DQ." The DQ  
ter0 is to be interpreted as any and all DQ collectively, unless specifically stated oth-  
erwise.  
• The ter0s "_t" and "_c" are used to represent the true and co0ple0ent of a differen-  
tial signal pair. These ter0s replace the previously used notation of "#" and/or over-  
bar characters. For exa0ple, differential data strobe pair DQS, DQS# is now referred  
to as DQS_t, DQS_c.  
• The ter0 "_n" is used to represent a signal that is active LOW and replaces the previ-  
ously used "#" and/or overbar characters. For exa0ple: CS# is now referred to as  
CS_n.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
18  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
General Notes and Description  
• The ter0s "DQS" and "CK" found throughout the data sheet are to be interpreted as  
DQS_t and DQS_c, and CK_t and CK_c respectively, unless specifically stated other-  
wise.  
• Co0plete functionality 0ay be described throughout the entire docu0ent; any page  
or diagra0 0ay have been si0plified to convey a topic and 0ay not be inclusive of all  
require0ents.  
• Any specific require0ent takes precedence over a general state0ent.  
• Any functionality not specifically stated here within is considered undefined, illegal,  
and not supported, and can result in unknown operation.  
• Addressing is denoted as BG[n] for bank group, BA[n] for bank address, and A[n] for  
row/col address.  
• The NOP co00and is not allowed, except when exiting 0axi0u0 power savings  
0ode or when entering gear-down 0ode, and only a DES co00and should be used.  
• Not all features described within this docu0ent 0ay be available on the rev. A (first)  
version.  
• Not all specifications listed are finalized industry standards; best conservative esti-  
0ates have been provided when an industry standard has not been finalized.  
• Although it is i0plied throughout the specification, the DRAM 0ust be used after VDD  
has reached the stable power-on level, which is achieved by toggling CKE at least once  
every 8192 × tREFI. However, in the event CKE is fixed HIGH, toggling CS_n at least  
once every 8192 × tREFI is an acceptable alternative. Placing the DRAM into self re-  
fresh 0ode also alleviates the need to toggle CKE.  
• Not all features designated in the data sheet 0ay be supported by earlier die revisions  
due to late definition by JEDEC.  
Definitions of the Device-Pin Signal Level  
• HIGH: A device pin is driving the logic 1 state.  
• LOW: A device pin is driving the logic 6 state.  
• High-Z: A device pin is tri-state.  
• ODT: A device pin ter0inates with the ODT setting, which could be ter0inating or tri-  
state depending on the 0ode register setting.  
Definitions of the Bus Signal Level  
• HIGH: One device on the bus is HIGH, and all other devices on the bus are either ODT  
or High-Z. The voltage level on the bus is no0inally VDDQ  
.
• LOW: One device on the bus is LOW, and all other devices on the bus are either ODT  
or High-Z. The voltage level on the bus is no0inally VOL(DC) if ODT was enabled, or  
VSSQ if High-Z.  
• High-Z: All devices on the bus are High-Z. The voltage level on the bus is undefined as  
the bus is floating.  
• ODT: At least one device on the bus is ODT, and all others are High-Z. The voltage lev-  
el on the bus is no0inally VDDQ  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
19  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Functional Block Diagrams  
Functional Block Diagrams  
DDR4 SDRAM is a high-speed, CMOS dyna0ic rando0 access 0e0ory. It is internally  
configured as an 1±-bank (4-banks per Bank Group) DRAM.  
Figure 2: 1 Gig × 8 Functional Block Diagram  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢅ  
%DQNꢀ*URXSꢀꢋ  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢅ  
ꢀꢀ%*ꢋ  
&5&ꢀDQG  
SDULW\ꢀFRQWURO  
$/(57  
2'7  
7Rꢀ2'7ꢄRXWSXWꢀGULYHUV  
7Rꢀ=4ꢀ&RQWURO  
9
''4  
=4ꢀ&$/  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢅ  
ꢀꢀ%*ꢈ  
5(6(7BQ  
&.(  
9UHI'4  
%&ꢃꢀ  
=4  
FRQWURO  
&RQWURO  
ORJLF  
%DQNꢀꢅ  
27)  
%DQNꢀ*URXSꢀꢈ  
&.BWꢆꢀ&.BF  
3$5  
&5&ꢀ  
3DULW\  
2'7  
FRQWURO  
=4  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢅ  
ꢀꢀ%*ꢇ  
HUV  
7(1  
ꢈꢀꢌ$ꢇꢈꢆ$ꢇꢅꢎ  
%DQNꢀꢅ  
%DQNꢀ*URXSꢀꢇ  
9
''4  
&.BWꢆ&.BF  
&6BQ  
&RPPDQGꢀGHFRGH  
5$6BQꢆꢀ&$6BQꢆꢀ:(BQ  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢅ  
%DQNꢀ*URXSꢀꢅ  
5
77Z  
5
5
77Q  
ꢋꢀꢌ$ꢇꢂꢆ$ꢇꢐꢆ$ꢇꢃꢎ  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢅ  
77S  
HUV  
$&7BQ  
'//  
0RGHꢀUHJLVWHUV  
ꢈꢇ  
ꢀ%*ꢅ  
5RZꢏ  
ꢌꢅꢀꢍꢀꢍꢀꢍꢀꢉꢎ  
ꢇꢂ  
0HPRU\  
DUUD\  
DGGUHVVꢀ  
ODWFK  
DQGꢀ  
'4>ꢉꢊꢅ@  
ꢂꢐꢆꢐꢋꢂ  
ꢀ&ROXPQVꢀ  
ꢅꢆꢀꢇꢆꢀDQGꢀꢈ  
HUV  
ꢇꢂ  
5RZꢏ  
DGGUHVVꢀ  
08;  
5HDGꢀ  
GULYHUV  
ꢌꢂꢐꢆꢐꢋꢂꢀꢀ[ꢀꢇꢈꢁꢀ[ꢀꢂꢃꢎ  
'4>ꢉꢊꢅ@  
'46BWꢀꢄꢀ'46BF  
GHFRGHU  
5HIUHVKꢀ  
FRXQWHU  
ꢇꢂ  
5($'  
),)2  
DQG  
GDWD  
08;  
9
6HQVHꢀDPSOLILHUV  
ꢁꢇꢑꢈ  
ꢂꢃ  
''4  
5
5
5
77Q  
ꢂꢃ  
%&ꢃ  
77Z  
'%,  
77S  
%*ꢀ  
DQGꢀ  
%$  
FRQWURO  
ORJLF  
%&ꢃ  
27)  
&5&  
*OREDO  
,ꢄ2ꢀJDWLQJ  
,ꢄ2ꢀJDWLQJ  
:ULWH  
GULYHUV  
DQG  
'0ꢀPDVNꢀORJLF  
$>ꢇꢂꢊꢅ@  
%$>ꢇꢊꢅ@  
%*>ꢇꢊꢅ@  
$GGUHVV  
UHJLVWHU  
&.BWꢆ&.BF  
'46BWꢀꢄꢀ  
'46BF  
ꢈꢇ  
LQSXW  
ORJLFꢀ  
ꢇꢈꢁ  
[ꢂꢃ  
9
ꢇꢂ  
''4  
ꢂꢃ  
5
5
5
77Q  
77Z  
77S  
'DWD  
&ROXPQ  
GHFRGHU  
&ROXPQ  
DGGUHVVꢀ  
FRXQWHUꢄ  
ODWFK  
LQWHUIDFH  
&ROXPQꢀꢈꢀ  
ꢌ%&ꢃꢀQLEEOHꢎ  
ꢇꢅ  
9UHI'4  
7'46BF  
&ROXPQVꢀꢅꢆꢀꢇꢆꢀDQGꢀꢈ  
'%,BQꢀꢄꢀ  
'0BQꢀꢄꢀ  
7'46BW  
Figure 3: 512 Meg × 16 Functional Block Diagram  
&5&ꢀDQG  
SDULW\ꢀFRQWURO  
$/(57  
2'7  
7Rꢀ2'7ꢄRXWSXWꢀGULYHUV  
7Rꢀ=4ꢀ&RQWURO  
9
''4  
=4ꢀ&$/  
5(6(7BQ  
&.(  
9UHI'4  
%&ꢃꢀ  
=4  
FRQWURO  
&RQWURO  
ORJLF  
27)  
&.BWꢆꢀ&.BF  
3$5  
&5&ꢀ  
3DULW\  
2'7  
FRQWURO  
=4  
%DQNꢀꢋ  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢅ  
ꢀꢀ%*ꢇ  
%DQNꢀꢈ  
%DQNꢀꢇ  
7(1  
ꢈꢀꢌ$ꢇꢈꢆ$ꢇꢅꢎ  
%DQNꢀꢅ  
%DQNꢀ*URXSꢀꢇ  
9
''4  
&.BWꢆ&.BF  
&6BQ  
&RPPDQGꢀGHFRGH  
5$6BQꢆꢀ&$6BQꢆꢀ:(BQ  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
5
77Z  
5
5
77Q  
ꢋꢀꢌ$ꢇꢂꢆ$ꢇꢐꢆ$ꢇꢃꢎ  
%DQNꢀꢋ  
%DQNꢀꢈ  
%DQNꢀꢇ  
%DQNꢀꢅ  
ꢀ%*ꢅ  
5RZꢏ  
DGGUHVVꢀ  
ODWFK  
DQGꢀ  
77S  
$&7BQ  
'//  
%DQNꢀꢅ  
0RGHꢀUHJLVWHUV  
ꢈꢅ  
%DQNꢀ*URXSꢀꢅ  
ꢌꢅꢀꢍꢀꢍꢀꢍꢀꢇꢐꢎ  
ꢇꢂ  
0HPRU\  
DUUD\  
'4>ꢉꢊꢅ@  
'4>ꢇꢐꢊꢅ@  
ꢂꢐꢆꢐꢋꢂ  
ꢀ&ROXPQVꢀ  
ꢅꢆꢀꢇꢆꢀDQGꢀꢈ  
HUV  
ꢇꢂ  
5RZꢏ  
DGGUHVVꢀ  
08;  
5HDGꢀ  
GULYHUV  
ꢌꢂꢐꢆꢐꢋꢂꢀꢀ[ꢀꢇꢈꢁꢀ[ꢀꢇꢈꢁꢎ  
ꢇꢂ  
/'46BWꢀꢄꢀ/'46BFꢒꢀ8'46BWꢀꢄꢀ8'46BF  
'4>ꢇꢐꢊꢁ@  
GHFRGHU  
5HIUHVKꢀ  
FRXQWHU  
ꢇꢂ  
9
6HQVHꢀDPSOLILHUV  
ꢇꢂꢋꢁꢃ  
ꢇꢈꢁ  
''4  
5($'  
),)2  
DQG  
5
5
5
77Q  
ꢇꢈꢁ  
%&ꢃ  
77Z  
'%,  
77S  
GDWD  
08;  
%*ꢀ  
DQGꢀ  
%$  
FRQWURO  
ORJLF  
%&ꢃ  
27)  
&5&  
/'46BWꢀꢄꢀ  
/'46BF  
*OREDO  
,ꢄ2ꢀJDWLQJ  
,ꢄ2ꢀJDWLQJ  
:ULWH  
GULYHUV  
DQG  
'0ꢀPDVNꢀORJLF  
$>ꢇꢂꢊꢅ@  
%$>ꢇꢊꢅ@  
%*>ꢅ@  
$GGUHVV  
UHJLVWHU  
&.BWꢆ&.BF  
8'46BWꢀꢄꢀ  
8'46BF  
ꢈꢅ  
LQSXW  
ORJLFꢀ  
ꢇꢂ  
ꢇꢈꢁ  
[ꢇꢈꢁ  
9
ꢇꢂ  
''4  
ꢇꢈꢁ  
5
5
5
77Q  
77Z  
77S  
'DWD  
&ROXPQ  
GHFRGHU  
&ROXPQ  
DGGUHVVꢀ  
FRXQWHUꢄ  
ODWFK  
LQWHUIDFH  
&ROXPQꢀꢈꢀ  
ꢌ%&ꢃꢀQLEEOHꢎ  
ꢇꢅ  
/'%,BQꢀꢄꢀ  
/'0BQꢀꢀ  
9UHI'4  
&ROXPQVꢀꢅꢆꢀꢇꢆꢀDQGꢀꢈ  
8'%,BQꢀꢄꢀ  
8'0BQꢀꢀ  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
20  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Ball Assignments  
Ball Assignments  
Figure 4: 78-Ball x4, x8 Ball Assignments  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
A
B
C
D
E
NF, NF/  
NF, NF/DM_n/  
DBI_n/TDQS_t  
VDD  
VPP  
V
V
V
SS  
SSQ  
SSQ  
TDQS_c  
VDDQ  
DQS_c  
DQS_t  
DQ1  
VDD  
VDDQ  
ZQ  
VDDQ  
DQ0  
V
VDDQ  
SS  
VSSQ DQ4/NC DQ2  
DQ3 DQ5/NC  
DQ7/NC VDDQ  
V
SSQ  
VSS  
VDDQ DQ6/NC  
V
SS  
F
F
VDD C2/ODT1 ODT  
CK_t  
CK_c  
VDD  
G
H
J
G
H
J
VSS  
C0/CKE1 CKE  
CS_n C1/CS1_n RFU/TEN  
CAS_n/  
VDD WE_n/A14ACT_n  
RAS_n/A16 V  
SS  
A15  
VREFCA  
BG0 A10/AP  
A12/BC_n BG1  
VDD  
K
L
K
L
VSS  
BA0  
A4  
A0  
A3  
A1  
A9  
BA1  
V
SS  
RESET_n A6  
A5 ALERT_n  
M
N
M
N
VDD  
VSS  
A8  
A2  
A7  
V
PP  
A11  
PAR  
A17/NF A13  
VDD  
1. See Ball Descriptions.  
Notes:  
2. A comma “,” separates the configuration; a slash “/” defines a selectable function. For  
example: Ball A7 = NF, NF/DM_n/DBI_n/TDQS_t where NF applies to the x4 configuration  
only. NF/DM_n/DBI_n/TDQS_t applies to the x8 configuration only and is selectable be-  
tween NF, DM_n, DBI_n, or TDQS_t via MRS.  
3. Address bits (including bank groups) are density- and configuration-dependent (see Ad-  
dressing).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
21  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Ball Assignments  
Figure 5: 96-Ball x16 Ball Assignments  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
A
B
C
D
E
VDDQ  
VSSQ  
DQ8  
VDD  
UDQS_c VSSQ  
UDQS_t DQ9  
DQ11 DQ13  
VDDQ  
VDD  
VSSQ  
VDDQ  
VSS  
VPP  
VSS  
VDDQ DQ12 DQ10  
VDD  
VSSQ  
DQ14  
VSSQ  
DQ15  
VSSQ  
VSSQ  
VDDQ  
VSS  
NF/LDM_n/  
LDBI_n  
NF/UDM_n/  
UDBI_n  
VSS  
F
F
VSSQ  
VDDQ  
VSSQ  
VDD  
VSS  
VDDQ LDQS_c  
DQ0 LDQS_t  
DQ1  
VDD  
ZQ  
G
H
J
G
H
J
VDDQ  
VSSQ  
VDD  
VSS  
DQ4  
VDDQ  
CKE  
DQ2  
DQ6  
ODT  
DQ3  
DQ7  
CK_t  
DQ5  
VDDQ  
CK_c  
K
L
K
L
VDD WE_n/A14 ACT_n  
CS_n RAS_n/A16 VDD  
M
N
P
M
N
P
VREFCA  
BG0  
BA0  
A10/AP  
A4  
A12/BC_n CAS-n/A15 VSS  
VSS  
A3  
A1  
A9  
NC  
BA1  
A5  
TEN  
ALERT_n  
RESET_n A6  
A0  
R
T
R
T
VDD  
A8  
A2  
A7  
VPP  
VSS  
A11  
PAR  
A13  
VDD  
1. See Ball Descriptions.  
Notes:  
2. A slash “/” defines a selectable function. For example: Ball E7 = NF/LDM_n. If data mask  
is enabled via the MRS, ball E7 = LDM_n. If data mask is disabled in the MRS, E7 = NF (no  
function).  
3. Address bits (including bank groups) are density- and configuration-dependent (see Ad-  
dressing).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
22  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Ball Descriptions  
Ball Descriptions  
The pin description table below is a co0prehensive list of all possible pins for DDR4 de-  
vices. All pins listed 0ay not be supported on the device defined in this data sheet. See  
the Ball Assign0ents section to review all pins used on this device.  
Table 3: Ball Descriptions  
Symbol  
Type  
Description  
A[17:0]  
Input  
Address inputs: Provide the row address for ACTIVATE commands and the column  
address for READ/WRITE commands to select one location out of the memory array in  
the respective bank. (A10/AP, A12/BC_n, WE_n/A14, CAS_n/A15, RAS_n/A16 have addi-  
tional functions, see individual entries in this table.) The address inputs also provide  
the op-code during the MODE REGISTER SET command. A16 is used on some 8Gb and  
16Gb parts, and A17 is only used on some 16Gb parts.  
A10/AP  
Input  
Auto precharge: A10 is sampled during READ and WRITE commands to determine  
whether auto precharge should be performed to the accessed bank after a READ or  
WRITE operation. (HIGH = auto precharge; LOW = no auto precharge.) A10 is sam-  
pled during a PRECHARGE command to determine whether the PRECHARGE applies  
to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged,  
the bank is selected by the bank group and bank addresses.  
A12/BC_n  
ACT_n  
Input  
Input  
Burst chop: A12/BC_n is sampled during READ and WRITE commands to determine if  
burst chop (on-the-fly) will be performed. (HIGH = no burst chop; LOW = burst chop-  
ped). See the Command Truth Table.  
Command input: ACT_n indicates an ACTIVATE command. When ACT_n (along with  
CS_n) is LOW, the input pins RAS_n/A16, CAS_n/A15, and WE_n/A14 are treated as  
row address inputs for the ACTIVATE command. When ACT_n is HIGH (along with  
CS_n LOW), the input pins RAS_n/ A16, CAS_n/A15, and WE_n/A14 are treated as nor-  
mal commands that use the RAS_n, CAS_n, and WE_n signals. See the Command  
Truth Table.  
BA[1:0]  
BG[1:0]  
Input  
Input  
Bank address inputs: Define the bank (within a bank group) to which an ACTIVATE,  
READ, WRITE, or PRECHARGE command is being applied. Also determines which  
mode register is to be accessed during a MODE REGISTER SET command.  
Bank group address inputs: Define the bank group to which a REFRESH, ACTIVATE,  
READ, WRITE, or PRECHARGE command is being applied. Also determines which  
mode register is to be accessed during a MODE REGISTER SET command. BG[1:0] are  
used in the x4 and x8 configurations. BG1 is not used in the x16 configuration.  
C0/CKE1,  
C1/CS1_n,  
C2/ODT1  
Input  
Stack address inputs: These inputs are used only when devices are stacked; that is,  
they are used in 2H, 4H, and 8H stacks for x4 and x8 configurations (these pins are  
not used in the x16 configuration). DDR4 will support a traditional DDP package,  
which uses these three signals for control of the second die (CS1_n, CKE1, ODT1).  
DDR4 is not expected to support a traditional QDP package. For all other stack con-  
figurations, such as a 4H or 8H, it is assumed to be a single-load (master/slave) type of  
configuration where C0, C1, and C2 are used as chip ID selects in conjunction with a  
single CS_n, CKE, and ODT signal.  
CK_t,  
CK_c  
Input  
Clock: Differential clock inputs. All address, command, and control input signals are  
sampled on the crossing of the positive edge of CK_t and the negative edge of CK_c.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
23  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Ball Descriptions  
Table 3: Ball Descriptions (Continued)  
Symbol  
Type  
Description  
CKE  
Input  
Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock sig-  
nals, device input buffers, and output drivers. Taking CKE LOW provides PRECHARGE  
POWER-DOWN and SELF REFRESH operations (all banks idle), or active power-down  
(row active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has  
become stable during the power-on and initialization sequence, it must be main-  
tained during all operations (including SELF REFRESH). CKE must be maintained HIGH  
throughout read and write accesses. Input buffers (excluding CK_t, CK_c, ODT, RE-  
SET_n, and CKE) are disabled during power-down. Input buffers (excluding CKE and  
RESET_n) are disabled during self refresh.  
CS_n  
Input  
Input  
Chip select: All commands are masked when CS_n is registered HIGH. CS_n provides  
for external rank selection on systems with multiple ranks. CS_n is considered part of  
the command code.  
DM_n,  
UDM_n  
LDM_n  
Input data mask: DM_n is an input mask signal for write data. Input data is masked  
when DM is sampled LOW coincident with that input data during a write access. DM  
is sampled on both edges of DQS. DM is not supported on x4 configurations. The  
UDM_n and LDM_n pins are used in the x16 configuration: UDM_n is associated with  
DQ[15:8]; LDM_n is associated with DQ[7:0]. The DM, DBI, and TDQS functions are en-  
abled by mode register settings. See the Data Mask section.  
ODT  
PAR  
Input  
Input  
On-die termination: ODT (registered HIGH) enables termination resistance internal  
to the DDR4 SDRAM. When enabled, ODT (RTT) is applied only to each DQ, DQS_t,  
DQS_c, DM_n/DBI_n/TDQS_t, and TDQS_c signal for the x4 and x8 configurations  
(when the TDQS function is enabled via mode register). For the x16 configuration, RTT  
is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c, UDM_n, and LDM_n signal.  
The ODT pin will be ignored if the mode registers are programmed to disable RTT.  
Parity for command and address: This function can be enabled or disabled via the  
mode register. When enabled, the parity signal covers all command and address in-  
puts, including ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, A[17:0], A10/AP, A12/BC_n,  
BA[1:0], and BG[1:0] with C0, C1, and C2 on 3DS only devices. Control pins NOT cov-  
ered by the parity signal are CS_n, CKE, and ODT. Unused address pins that are densi-  
ty- and configuration-specific should be treated internally as 0s by the DRAM parity  
logic. Command and address inputs will have parity check performed when com-  
mands are latched via the rising edge of CK_t and when CS_n is LOW.  
RAS_n/A16,  
CAS_n/A15,  
WE_n/A14  
Input  
Input  
Command inputs: RAS_n/A16, CAS_n/A15, and WE_n/A14 (along with CS_n and  
ACT_n) define the command and/or address being entered. See the ACT_n descrip-  
tion in this table.  
RESET_n  
Active LOW asynchronous reset: Reset is active when RESET_n is LOW, and inac-  
tive when RESET_n is HIGH. RESET_n must be HIGH during normal operation. RESET_n  
is a CMOS rail-to-rail signal with DC HIGH and LOW at 80% and 20% of VDD (960 mV  
for DC HIGH and 240 mV for DC LOW).  
TEN  
Input  
Connectivity test mode: TEN is active when HIGH and inactive when LOW. TEN  
must be LOW during normal operation. TEN is a CMOS rail-to-rail signal with DC  
HIGH and LOW at 80% and 20% of VDD (960mV for DC HIGH and 240mV for DC  
LOW).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
24  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Ball Descriptions  
Table 3: Ball Descriptions (Continued)  
Symbol  
Type  
Description  
DQ  
I/O  
Data input/output: Bidirectional data bus. DQ represents DQ[3:0], DQ[7:0], and  
DQ[15:0] for the x4, x8, and x16 configurations, respectively. If write CRC is enabled  
via mode register, the write CRC code is added at the end of data burst. Any one or  
all of DQ0, DQ1, DQ2, and DQ3 may be used to monitor the internal VREF level during  
test via mode register setting MR[4] A[4] = HIGH, training times change when ena-  
bled. During this mode, the RTT value should be set to High-Z. This measurement is  
for verification purposes and is NOT an external voltage supply pin.  
DBI_n,  
UDBI_n,  
LDBI_n  
I/O  
I/O  
DBI input/output: Data bus inversion. DBI_n is an input/output signal used for data  
bus inversion in the x8 configuration. UDBI_n and LDBI_n are used in the x16 configu-  
ration; UDBI_n is associated with DQ[15:8], and LDBI_n is associated with DQ[7:0]. The  
DBI feature is not supported on the x4 configuration. DBI can be configured for both  
READ (output) and WRITE (input) operations depending on the mode register set-  
tings. The DM, DBI, and TDQS functions are enabled by mode register settings. See  
the Data Bus Inversion section.  
DQS_t,  
DQS_c,  
DQSU_t,  
DQSU_c,  
DQSL_t,  
DQSL_c  
Data strobe: Output with READ data, input with WRITE data. Edge-aligned with  
READ data, centered-aligned with WRITE data. For the x16, DQSL corresponds to the  
data on DQ[7:0]; DQSU corresponds to the data on DQ[15:8]. For the x4 and x8 con-  
figurations, DQS corresponds to the data on DQ[3:0] and DQ[7:0], respectively. DDR4  
SDRAM supports a differential data strobe only and does not support a single-ended  
data strobe.  
ALERT_n  
Output  
Output  
Alert output: This signal allows the DRAM to indicate to the system's memory con-  
troller that a specific alert or event has occurred. Alerts will include the command/  
address parity error and the CRC data error when either of these functions is enabled  
in the mode register.  
TDQS_t,  
TDQS_c  
Termination data strobe: TDQS_t and TDQS_c are used by x8 DRAMs only. When  
enabled via the mode register, the DRAM will enable the same RTT termination resist-  
ance on TDQS_t and TDQS_c that is applied to DQS_t and DQS_c. When the TDQS  
function is disabled via the mode register, the DM/TDQS_t pin will provide the DATA  
MASK (DM) function, and the TDQS_c pin is not used. The TDQS function must be dis-  
abled in the mode register for both the x4 and x16 configurations. The DM function  
is supported only in x8 and x16 configurations.  
VDD  
VDDQ  
VPP  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Power supply: 1.2V 0.060V.  
DQ power supply: 1.2V 0.060V.  
DRAM activating power supply: 2.5V –0.125V/+0.250V.  
Reference voltage for control, command, and address pins.  
Ground.  
VREFCA  
VSS  
VSSQ  
ZQ  
DQ ground.  
Reference Reference ball for ZQ calibration: This ball is tied to an external 240Ω resistor  
(RZQ), which is tied to VSSQ  
.
RFU  
NC  
NF  
Reserved for future use.  
No connect: No internal electrical connection is present.  
No function: May have internal connection present but has no function.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
25  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Package Dimensions  
Package Dimensions  
Figure 6: 78-Ball FBGA – x4, x8 (WE)  
0.155  
Seating plane  
0.12 A  
A
1.8 CTR  
nonconductive  
overmold  
78X Ø0.47  
Dimensions apply  
to solder balls post-  
reflow on Ø0.42 SMD  
ball pads.  
Ball A1 ID  
(covered by SR)  
Ball A1 ID  
9
8
7
3 2 1  
A
B
C
D
E
12 0.1  
F
G
H
J
9.6 CTR  
K
L
M
N
0.8 TYP  
0.8 TYP  
6.4 CTR  
1.1 0.1  
0.34 0.05  
8
0.1  
1. All dimensions are in millimeters.  
Notes:  
2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
26  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Package Dimensions  
Figure 7: 96-Ball FBGA – x16 (JY)  
0.155  
Seating plane  
0.12 A  
A
1.8 CTR  
Nonconductive  
overmold  
96X Ø0.47  
Dimensions apply  
to solder balls post-  
reflow on Ø0.42 SMD  
ball pads.  
Ball A1 ID  
(covered by SR)  
Ball A1 ID  
9
8
7
3
2 1  
A
B
C
D
E
F
G
H
J
14 0.1  
12 CTR  
K
L
M
N
P
R
T
0.8 TYP  
1.1 0.1  
0.8 TYP  
6.4 CTR  
8 0.1  
0.34 0.05  
1. All dimensions are in millimeters.  
2. Solder ball material: SAC302 (96.8% Sn, 3% Ag, 0.2% Cu).  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
27  
8Gb: x8, x16 Automotive DDR4 SDRAM  
State Diagram  
State Diagram  
This si0plified state diagra0 provides an overview of the possible state transitions and  
the co00ands to control the0. Situations involving 0ore than one bank, the enabling  
or disabling of on-die ter0ination, and so0e other events are not captured in full de-  
tail.  
Figure 8: Simplified State Diagram  
IV  
,
REFDQ  
RTT, and  
so on  
MPSM  
RESET  
SRX* = SRX with NOP  
From any state  
SRX*  
CKE_L  
MRS  
SRX*  
Power  
applied  
MRS, MPR,  
write leveling,  
Reset  
procedure  
Self  
refresh  
PDA  
mode  
V
training  
Power-On  
RESET  
Initialization  
REFDQ  
TEN = 1  
TEN = 1  
MRS  
MRS  
SRX  
ZQCL  
SRE  
MRS  
Connectivity  
test  
ZQ  
calibration  
ZQCL,ZQCS  
REF  
Idle  
ACT  
Refreshing  
TEN = 0  
RESET  
PDE  
CKE_L  
CKE_L  
PDX  
Active  
power-  
down  
Precharge  
power-  
down  
Activating  
PDX  
PDE  
Bank  
active  
WRITE  
READ  
READ  
WRITE  
WRITE A  
WRITE  
READ A  
READ  
Reading  
READ A  
Writing  
WRITE A  
WRITE A  
READ A  
PRE, PREA  
PRE, PREA  
Writing  
Reading  
PRE, PREA  
Precharging  
Automatic  
sequence  
Command  
sequence  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
28  
8Gb: x8, x16 Automotive DDR4 SDRAM  
State Diagram  
Table 4: State Diagram Command Definitions  
Command  
ACT  
Description  
Active  
MPR  
Multipurpose register  
Mode register set  
Enter power-down  
Exit power-down  
MRS  
PDE  
PDX  
PRE  
Precharge  
PREA  
READ  
READ A  
REF  
Precharge all  
RD, RDS4, RDS8  
RDA, RDAS4, RDAS8  
Refresh, fine granularity refresh  
Start reset procedure  
Self refresh entry  
RESET  
SRE  
SRX  
Self refresh exit  
TEN  
Boundary scan mode enable  
WR, WRS4, WRS8 with/without CRC  
WRITE  
WRITE A  
ZQCL  
ZQCS  
WRA, WRAS4, WRAS8 with/without CRC  
ZQ calibration long  
ZQ calibration short  
1. See the Command Truth Table for more details.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
29  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Functional Description  
Functional Description  
The DDR4 SDRAM is a high-speed dyna0ic rando0-access 0e0ory internally config-  
ured as sixteen banks (4 bank groups with 4 banks for each bank group) for x4/x8 devi-  
ces, and as eight banks for each bank group (2 bank groups with 4 banks each) for x1±  
devices. The device uses double data rate (DDR) architecture to achieve high-speed op-  
eration. DDR4 architecture is essentially an 8n-prefetch architecture with an interface  
designed to transfer two data words per clock cycle at the I/O pins. A single read or  
write access for a device 0odule effectively consists of a single 8n-bit-wide, four-clock-  
cycle-data transfer at the internal DRAM core and eight corresponding n-bit-wide, one-  
half-clock-cycle data transfers at the I/O pins.  
Read and write accesses to the device are burst-oriented. Accesses start at a selected lo-  
cation and continue for a burst length of eight or a chopped burst of four in a progra0-  
0ed sequence. Operation begins with the registration of an ACTIVE co00and, which is  
then followed by a READ or WRITE co00and. The address bits registered coincident  
with the ACTIVE co00and are used to select the bank and row to be accessed (BG[1:6]  
select the bank group for x4/x8, and BG6 selects the bank group for x1±; BA[1:6] select  
the bank, and A[17:6] select the row. See the Addressing section for 0ore details). The  
address bits registered coincident with the READ or WRITE co00and are used to select  
the starting colu0n location for the burst operation, deter0ine if the auto PRECHARGE  
co00and is to be issued (via A16), and select BC4 or BL8 0ode on-the-fly (OTF) (via  
A12) if enabled in the 0ode register.  
Prior to nor0al operation, the device 0ust be powered up and initialized in a prede-  
fined 0anner. The following sections provide detailed infor0ation covering device reset  
and initialization, register definition, co00and descriptions, and device operation.  
NOTE: The use of the NOP co00and is allowed only when exiting 0axi0u0 power  
saving 0ode or when entering gear-down 0ode.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
30  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
RESET and Initialization Procedure  
RESET and Initialization Procedure  
To ensure proper device function, the power-up and reset initialization default values  
for the following 0ode register (MR) settings are defined as:  
• Gear-down 0ode (MR3 A[3]): 6 = 1/2 rate  
• Per-DRAM addressability (MR3 A[4]): 6 = disable  
• Maxi0u0 power-saving 0ode (MR4 A[1]): 6 = disable  
• CS to co00and/address latency (MR4 A[8:±]): 666 = disable  
• CA parity latency 0ode (MR5 A[2:6]): 666 = disable  
• Hard post package repair 0ode (MR4 A[13]): 6 = disable  
• Soft post package repair 0ode (MR4 A[5]): 6 = disable  
Power-Up and Initialization Sequence  
The following sequence is required for power-up and initialization:  
1. Apply power (RESET_n and TEN should be 0aintained below 6.2 × VDD while sup-  
plies ra0p up; all other inputs 0ay be undefined). When supplies have ra0ped to  
a valid stable level, RESET_n 0ust be 0aintained below 6.2 × VDD for a 0ini0u0  
of tPW_RESET_L and TEN 0ust be 0aintained below 6.2 × VDD for a 0ini0u0 of  
766μs. CKE is pulled LOW anyti0e before RESET_n is de-asserted (0ini0u0 ti0e  
of 16ns). The power voltage ra0p ti0e between 3660V to VDD,0in 0ust be no  
greater than 2660s, and during the ra0p, VDD 0ust be greater than or equal to  
VDDQ and (VDD - VDDQ) < 6.3V. VPP 0ust ra0p at the sa0e ti0e or before VDD, and  
VPP 0ust be equal to or higher than VDD at all ti0es. After VDD has ra0ped and  
reached the stable level and after RESET_n goes high, the initialization sequence  
0ust be started within 3 seconds. For debug purposes, the 3 second delay li0it  
0ay be extended to ±6 0inutes provided the DRAM is operated in this debug  
0ode for no 0ore than 3±6 cu0ulative hours.  
During power-up, the supply slew rate is governed by the li0its stated in the table  
below and either condition A or condition B listed below 0ust be 0et.  
Table 5: Supply Power-up Slew Rate  
Symbol  
Min  
Max Unit Comment  
VDD_SL, VDDQ_SL,  
VPP_SL  
0.004  
600  
200  
200  
V/ms Measured between 300mV and 80% of  
supply minimum  
VDD_ona  
N/A  
N/A  
ms VDD maximum ramp time from 300mV to  
VDD minimum  
VDDQ_ona  
ms VDDQ maximum ramp time from 300mV  
to VDDQ minimum  
1. 20 MHz band-limited measurement.  
Note:  
• Condition A:  
– Apply VPP without any slope reversal before or at the sa0e ti0e as VDD and  
VDDQ  
.
– VDD and VDDQ are driven fro0 a single-power converter output and apply  
VDD/VDDQ without any slope reversal before or at the sa0e ti0e as VTT and  
VREFCA  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
31  
8Gb: x8, x16 Automotive DDR4 SDRAM  
RESET and Initialization Procedure  
– The voltage levels on all balls other than VDD, VDDQ, VSS, and VSSQ 0ust be less  
than or equal to VDDQ and VDD on one side and 0ust be greater than or equal  
to VSSQ and VSS on the other side.  
– VTT is li0ited to 6.7±V MAX when the power ra0p is co0plete.  
– VREFCA tracks VDD/2.  
• Condition B:  
– Apply VPP without any slope reversal before or at the sa0e ti0e as VDD  
– Apply VDD without any slope reversal before or at the sa0e ti0e as VDDQ  
– Apply VDDQ without any slope reversal before or at the sa0e ti0e as VTT and  
VREFCA  
.
.
.
– The voltage levels on all pins other than VPP, VDD, VDDQ, VSS, and VSSQ 0ust be  
less than or equal to VDDQ and VDD on one side and 0ust be larger than or  
equal to VSSQ and VSS on the other side.  
2. After RESET_n is de-asserted, wait for another 566μs but no longer then 3 seconds  
until CKE beco0es active. During this ti0e, the device will start internal state ini-  
tialization; this will be done independently of external clocks. A reasonable at-  
te0pt was 0ade in the design to power up with the following default MR settings:  
gear-down 0ode (MR3 A[3]): 6 = 1/2 rate; per-DRAM addressability (MR3 A[4]): 6  
= disable; 0axi0u0 power-down (MR4 A[1]): 6 = disable; CS to co00and/  
address latency (MR4 A[8:±]): 666 = disable; CA parity latency 0ode (MR5 A[2:6]):  
666 = disable. However, it should be assu0ed that at power up the MR settings are  
undefined and should be progra00ed as shown below.  
3. Clocks (CK_t, CK_c) need to be started and stabilized for at least 16ns or 5 tCK  
(whichever is larger) before CKE goes active. Because CKE is a synchronous signal,  
the corresponding setup ti0e to clock (tIS) 0ust be 0et. Also, a DESELECT co0-  
0and 0ust be registered (with tIS setup ti0e to clock) at clock edge Td. After the  
CKE is registered HIGH after RESET, CKE needs to be continuously registered  
HIGH until the initialization sequence is finished, including expiration of tDLLK  
and tZQinit.  
4. The device keeps its ODT in High-Z state as long as RESET_n is asserted. Further,  
the SDRAM keeps its ODT in High-Z state after RESET_n de-assertion until CKE is  
registered HIGH. The ODT input signal 0ay be in an undefined state until tIS be-  
fore CKE is registered HIGH. When CKE is registered HIGH, the ODT input signal  
0ay be statically held either LOW or HIGH. If RTT(NOM) is to be enabled in MR1,  
the ODT input signal 0ust be statically held LOW. In all cases, the ODT input sig-  
nal re0ains static until the power-up initialization sequence is finished, including  
the expiration of tDLLK and tZQinit.  
5. After CKE is registered HIGH, wait a 0ini0u0 of RESET CKE EXIT ti0e, tXPR, be-  
fore issuing the first MRS co00and to load 0ode register (tXPR = MAX (tXS, 5 ×  
tCK).  
±. Issue MRS co00and to load MR3 with all application settings, wait tMRD.  
7. Issue MRS co00and to load MR± with all application settings, wait tMRD.  
8. Issue MRS co00and to load MR5 with all application settings, wait tMRD.  
9. Issue MRS co00and to load MR4 with all application settings, wait tMRD.  
16. Issue MRS co00and to load MR2 with all application settings, wait tMRD.  
11. Issue MRS co00and to load MR1 with all application settings, wait tMRD.  
12. Issue MRS co00and to load MR6 with all application settings, wait tMOD.  
13. Issue a ZQCL co00and to start ZQ calibration.  
14. Wait for tDLLK and tZQinit to co0plete.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
32  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
RESET and Initialization Procedure  
15. The device will be ready for nor0al operation. Once the DRAM has been initial-  
ized, if the DRAM is in an idle state longer than 9±60s, then either (a) REF co0-  
0ands 0ust be issued within tREFI constraints (specification for posting allowed)  
or (b) CKE or CS_n 0ust toggle once within every 9±60s interval of idle ti0e. For  
debug purposes, the 9±60s delay li0it 0aybe extended to ±6 0inutes provided  
the DRAM is operated in this debug 0ode for no 0ore than 3±6 cu0ulative hours.  
A stable valid VDD level is a set DC level (6Hz to 256 KHz) and 0ust be no less than  
VDD,0in and no greater than VDD,0ax. If the set DC level is altered anyti0e after initializa-  
tion, the DLL reset and calibrations 0ust be perfor0ed again after the new set DC level  
is stable. AC noise of ±±60V (greater than 256 KHz) is allowed on VDD provided the  
noise doesn't alter VDD to less than VDD,0in or greater than VDD,0ax  
.
A stable valid VDDQ level is a set DC level (6Hz to 256 KHz) and 0ust be no less than  
VDDQ,0in and no greater than VDDQ,0ax. If the set DC level is altered anyti0e after initial-  
ization, the DLL reset and calibrations 0ust be perfor0ed again after the new set DC  
level is stable. AC noise of ±±60V (greater than 256 KHz) is allowed on VDDQ provided  
the noise doesn't alter VDDQ to less than VDDQ,0in or greater than VDDQ,0ax  
.
A stable valid VPP level is a set DC level (6Hz to 256 KHz) and 0ust be no less than  
VPP,0in and no greater than VPP,0ax. If the set DC level is altered anyti0e after initializa-  
tion, the DLL reset and calibrations 0ust be perfor0ed again after the new set DC level  
is stable. AC noise of ±1260V (greater than 256KHz) is allowed on VPP provided the  
noise doesn't alter VPP to less than VPP,0in or greater than VPP,0ax  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
33  
8Gb: x8, x16 Automotive DDR4 SDRAM  
RESET and Initialization Procedure  
Figure 9: RESET and Initialization Sequence at Power-On Ramping  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK_t, CK_c  
tCKSRX  
VPP  
VDD, VDDQ  
tPW_RESET_L  
T = 500μs  
RESET_n  
CKE  
tIS  
T (MIN) = 10ns  
Valid  
tDLLK  
ZQCL  
tZQinit  
Note 1  
tXPR  
tMRD  
tMOD  
tMRD  
tMRD  
tIS  
Note 1  
Command  
BG, BA  
MRS  
MRx  
MRS  
MRx  
MRS  
MRx  
MRS  
MRx  
Valid  
Valid  
tIS  
tIS  
Static LOW in case RTT(NOM) is enabled at time Tg, otherwise static HIGH or LOW  
Valid  
ODT  
RTT  
Time Break  
Don’t Care  
1. From time point Td until Tk, a DES command must be applied between MRS and ZQCL  
commands.  
Notes:  
2. MRS commands must be issued to all mode registers that have defined settings.  
3. In general, there is no specific sequence for setting the MRS locations (except for de-  
pendent or co-related features, such as ENABLE DLL in MR1 prior to RESET DLL in MR0,  
for example).  
4. TEN is not shown; however, it is assumed to be held LOW.  
RESET Initialization with Stable Power Sequence  
The following sequence is required for RESET at no power interruption initialization:  
1. Assert RESET_n below 6.2 × VDD any ti0e reset is needed (all other inputs 0ay be  
undefined). RESET 0ust be 0aintained for a 0ini0u0 of 166ns. CKE is pulled  
LOW before RESET_n is de-asserted (0ini0u0 ti0e 16ns).  
2. Follow Steps 2 to 16 in the Reset and Initialization Sequence at Power-on Ra0ping  
procedure.  
When the reset sequence is co0plete, all counters except the refresh counters have  
been reset and the device is ready for nor0al operation.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
34  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
RESET and Initialization Procedure  
Figure 10: RESET Procedure at Power Stable Condition  
Ta  
Tb  
Tc  
Td  
Te  
Tf  
Tg  
Th  
Ti  
Tj  
Tk  
CK_t, CK_c  
tCKSRX  
VPP  
VDD, VDDQ  
tPW_RESET_S  
T = 500μs  
RESET_n  
CKE  
tIS  
T (MIN) = 10ns  
Valid  
tDLLK  
ZQCL  
tXPR  
tMRD  
tMRD  
tMRD  
tMOD  
tZQinit  
Note 1  
tIS  
Note 1  
Command  
BG, BA  
MRS  
MRx  
MRS  
MRx  
MRS  
MRx  
MRS  
MRx  
Valid  
Valid  
tIS  
tIS  
Valid  
Static LOW in case RTT(NOM) is enabled at time Tg, otherwise static HIGH or LOW  
ODT  
RTT  
Time Break  
Don’t Care  
1. From time point Td until Tk, a DES command must be applied between MRS and ZQCL  
commands.  
Notes:  
2. MRS commands must be issued to all mode registers that have defined settings.  
3. In general, there is no specific sequence for setting the MRS locations (except for de-  
pendent or co-related features, such as ENABLE DLL in MR1 prior to RESET DLL in MR0,  
for example).  
4. TEN is not shown; however, it is assumed to be held LOW.  
Uncontrolled Power-Down Sequence  
In the event of an uncontrolled ra0ping down of VPP supply, VPP is allowed to be less  
than VDD provided the following conditions are 0et:  
• Condition A: VPP and VDD/VDDQ are ra0ping down (as part of turning off) fro0 nor-  
0al operating levels.  
• Condition B: The a0ount that VPP 0ay be less than VDD/VDDQ is less than or equal to  
5660V.  
• Condition C: The ti0e VPP 0ay be less than VDD is ”160s per occurrence with a total  
accu0ulated ti0e in this state ”1660s.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
35  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programming Mode Registers  
• Condition D: The ti0e VPP 0ay be less than 2.6V and above VSS while turning off is  
”150s per occurrence with a total accu0ulated ti0e in this state ”1560s.  
Programming Mode Registers  
For application flexibility, various functions, features, and 0odes are progra00able in  
seven 0ode registers (MRn) provided by the device as user defined variables that 0ust  
be progra00ed via a MODE REGISTER SET (MRS) co00and. Because the default val-  
ues of the 0ode registers are not defined, contents of 0ode registers 0ust be fully ini-  
tialized and/or re-initialized; that is, they 0ust be written after power-up and/or reset  
for proper operation. The contents of the 0ode registers can be altered by re-executing  
the MRS co00and during nor0al operation. When progra00ing the 0ode registers,  
even if the user chooses to 0odify only a sub-set of the MRS fields, all address fields  
within the accessed 0ode register 0ust be redefined when the MRS co00and is is-  
sued. MRS and DLL RESET co00ands do not affect array contents, which 0eans these  
co00ands can be executed any ti0e after power-up without affecting the array con-  
tents.  
The MRS co00and cycle ti0e, tMRD, is required to co0plete the WRITE operation to  
the 0ode register and is the 0ini0u0 ti0e required between the two MRS co00ands  
shown in the tMRD Ti0ing figure.  
So0e of the 0ode register settings affect address/co00and/control input functionali-  
ty. In these cases, the next MRS co00and can be allowed when the function being up-  
dated by the current MRS co00and is co0pleted. These MRS co00ands don’t apply  
tMRD ti0ing to the next MRS co00and; however, the input cases have unique MR set-  
ting procedures, so refer to individual function descriptions:  
• Gear-down 0ode  
• Per-DRAM addressability  
• Maxi0u0 power saving 0ode  
• CS to co00and/address latency  
• CA parity latency 0ode  
• VREFDQ training value  
• VREFDQ training 0ode  
• VREFDQ training range  
So0e 0ode register settings 0ay not be supported because they are not required by  
certain speed bins.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
36  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programming Mode Registers  
Figure 11: tMRD Timing  
T0  
T1  
T2  
Ta0  
Ta1  
Tb0  
Tb1  
Tb2  
Tc0  
Tc1  
Tc2  
CK_c  
CK_t  
MRS2  
Valid  
DES  
DES  
DES  
DES  
DES  
Valid  
Valid  
MRS2  
Valid  
Command  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Address  
CKE  
tMRD  
Old settings  
Updating settings  
Settings  
Don’t Care  
Time Break  
1. This timing diagram depicts CA parity mode “disabled” case.  
2. tMRD applies to all MRS commands with the following exceptions:  
Notes:  
Gear-down mode  
CA parity mode  
CAL mode  
Per-DRAM addressability mode  
V
REFDQ training value, VREFDQ training mode, and VREFDQ training range  
The MRS co00and to nonMRS co00and delay, tMOD, is required for the DRAM to  
update features, except for those noted in note 2 in figure below where the individual  
function descriptions 0ay specify a different require0ent. tMOD is the 0ini0u0 ti0e  
required fro0 an MRS co00and to a nonMRS co00and, excluding DES, as shown in  
the tMOD Ti0ing figure.  
Figure 12: tMOD Timing  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Tb0  
Tb1  
Tb2  
CK_c  
CK_t  
Command  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
MRS2  
Valid  
DES  
DES  
DES  
DES  
DES  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Address  
CKE  
tMOD  
Old settings  
Updating settings  
New settings  
Settings  
Don’t Care  
Time Break  
1. This timing diagram depicts CA parity mode “disabled” case.  
2. tMOD applies to all MRS commands with the following exceptions:  
DLL enable, DLL RESET, Gear-down mode  
Notes:  
V
REFDQ training value, internal VREF training monitor, VREFDQ training mode, and VREFDQ  
training range  
Maximum power savings mode , Per-DRAM addressability mode, and CA parity mode  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
37  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programming Mode Registers  
The 0ode register contents can be changed using the sa0e co00and and ti0ing re-  
quire0ents during nor0al operation as long as the device is in idle state; that is, all  
banks are in the precharged state with tRP satisfied, all data bursts are co0pleted, and  
CKE is HIGH prior to writing into the 0ode register. If the RTT(NOM) feature is enabled in  
the 0ode register prior to and/or after an MRS co00and, the ODT signal 0ust contin-  
uously be registered LOW, ensuring RTT is in an off state prior to the MRS co00and.  
The ODT signal 0ay be registered HIGH after tMOD has expired. If the RTT(NOM) feature  
is disabled in the 0ode register prior to and after an MRS co00and, the ODT signal  
can be registered either LOW or HIGH before, during, and after the MRS co00and. The  
0ode registers are divided into various fields depending on functionality and 0odes.  
In so0e 0ode register setting cases, function updating takes longer than tMOD. This  
type of MRS does not apply tMOD ti0ing to the next valid co00and, excluding DES.  
These MRS co00and input cases have unique MR setting procedures, so refer to indi-  
vidual function descriptions.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
38  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 0  
Mode Register 0  
Mode register 6 (MR6) controls various device operating 0odes as shown in the follow-  
ing register definition table. Not all settings listed 0ay be available on a die; only set-  
tings required for speed bin support are available. MR6 is written by issuing the MRS  
co00and while controlling the states of the BGx, BAx, and Ax address pins. The 0ap-  
ping of address pins during the MRS co00and is shown in the following MR6 Register  
Definition table.  
Table 6: Address Pin Mapping  
Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
bus  
_n _n _n  
Mode  
21 20 19 18 17  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
register  
1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command.  
Note:  
Table 7: MR0 Register Definition  
Mode  
Register Description  
21  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
20:18  
MR select  
000 = MR0  
001 = MR1  
010 = MR2  
011 = MR3  
100 = MR4  
101 = MR5  
110 = MR6  
111 = DNU  
17  
N/A on 4Gb and 8Gb, RFU  
0 = Must be programmed to 0  
1 = Reserved  
13,11:9  
WR (WRITE recovery)/RTP (READ-to-PRECHARGE)  
0000 = 10 / 5 clocks1  
0001 = 12 / 6 clocks  
0010 = 14 / 7 clocks1  
0011 = 16 / 8 / clocks  
0100 = 18 / 9 clocks1  
0101 = 20 /10 clocks  
0110 = 24 / 12 clocks  
0111 = 22 / 11 clocks1  
1000 = 26 / 13 clocks1  
1001 = 28 / 14 clocks2  
1010 through 1111 = Reserved  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
39  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 0  
Table 7: MR0 Register Definition (Continued)  
Mode  
Register Description  
8
DLL reset  
0 = No  
1 = Yes  
7
Test mode (TM) – Manufacturer use only  
0 = Normal operating mode, must be programmed to 0  
12, 6:4, 2 CAS latency (CL) – Delay in clock cycles from the internal READ command to first data-out  
00000 = 9 clocks1  
00001 = 10 clocks  
00010 = 11 clocks1  
00011 = 12 clocks  
00100 = 13 clocks1  
00101 = 14 clocks  
00110 = 15 clocks1  
00111 = 16 clocks  
01000 = 18 clocks  
01001 = 20 clocks  
01010 = 22 clocks  
01011 = 24 clocks  
01100 = 23 clocks1  
01101 = 17 clocks1  
01110 = 19 clocks1  
01111 = 21 clocks 1  
10000 = 25 clocks (3DS use only)  
10001 = 26 clocks  
10010 = 27 clocks (3DS use only)  
10011 = 28 clocks  
10100 = 29 clocks1  
10101 = 30 clocks  
10110 = 31 clocks1  
10111 = 32 clocks  
3
Burst type (BT) – Data burst ordering within a READ or WRITE burst access  
0 = Nibble sequential  
1 = Interleave  
1:0  
Burst length (BL) – Data burst size associated with each read or write access  
00 = BL8 (fixed)  
01 = BC4 or BL8 (on-the-fly)  
10 = BC4 (fixed)  
11 = Reserved  
1. Not allowed when 1/4 rate gear-down mode is enabled.  
Notes:  
2. If WR requirement exceeds 28 clocks or RTP exceeds 14 clocks, WR should be set to 28  
clocks and RTP should be set to 14 clocks.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
40  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 0  
Burst Length, Type, and Order  
Accesses within a given burst 0ay be progra00ed to sequential or interleaved order.  
The ordering of accesses within a burst is deter0ined by the burst length, burst type,  
and the starting colu0n address as shown in the following table. Burst length options  
include fixed BC4, fixed BL8, and on-the-fly (OTF), which allows BC4 or BL8 to be selec-  
ted coincidentally with the registration of a READ or WRITE co00and via A12/BC_n.  
Table 8: Burst Type and Burst Order  
Note 1 applies to the entire table  
Starting  
Column Address Burst Type = Sequential  
Burst  
READ/  
WRITE  
Burst Type = Interleaved  
(Decimal)  
Length  
(A[2, 1, 0])  
(Decimal)  
Notes  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
BC4  
READ  
0 0 0  
0, 1, 2, 3, T, T, T, T  
1, 2, 3, 0, T, T, T, T  
2, 3, 0, 1, T, T, T, T  
3, 0, 1, 2, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
5, 6, 7, 4, T, T, T, T  
6, 7, 4, 5, T, T, T, T  
7, 4, 5, 6, T, T, T, T  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
0, 1, 2, 3, T, T, T, T  
1, 0, 3, 2, T, T, T, T  
2, 3, 0, 1, T, T, T, T  
3, 2, 1, 0, T, T, T, T  
4, 5, 6, 7, T, T, T, T  
5, 4, 7, 6, T, T, T, T  
6, 7, 4, 5, T, T, T, T  
7, 6, 5, 4, T, T, T, T  
0, 1, 2, 3, X, X, X, X  
4, 5, 6, 7, X, X, X, X  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
WRITE  
READ  
0, V, V  
1, V, V  
0 0 0  
BL8  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
WRITE  
V, V, V  
3
1. 0...7 bit number is the value of CA[2:0] that causes this bit to be the first read during a  
burst.  
Notes:  
2. When setting burst length to BC4 (fixed) in MR0, the internal WRITE operation starts  
two clock cycles earlier than for the BL8 mode, meaning the starting point for tWR and  
tWTR will be pulled in by two clocks. When setting burst length to OTF in MR0, the in-  
ternal WRITE operation starts at the same time as a BL8 (even if BC4 was selected during  
column time using A12/BC4_n) meaning that if the OTF MR0 setting is used, the starting  
point for tWR and tWTR will not be pulled in by two clocks as described in the BC4  
(fixed) case.  
3. T = Output driver for data and strobes are in High-Z.  
V = Valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
X = “Don’t Care.”  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
41  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 0  
CAS Latency  
Test Mode  
The CAS latency (CL) setting is defined in the MR6 Register Definition table. CAS laten-  
cy is the delay, in clock cycles, between the internal READ co00and and the availability  
of the first bit of output data. The device does not support half-clock latencies. The  
overall read latency (RL) is defined as additive latency (AL) + CAS latency (CL): RL = AL +  
CL.  
The nor0al operating 0ode is selected by MR6[7] and all other bits set to the desired  
values shown in the MR6 Register Definition table. Progra00ing MR6[7] to a value of 1  
places the device into a DRAM 0anufacturer-defined test 0ode to be used only by the  
0anufacturer, not by the end user. No operations or functionality is specified if MR6[7]  
= 1.  
Write Recovery(WR)/READ-to-PRECHARGE  
The progra00ed write recovery (WR) value is used for the auto precharge feature along  
with tRP to deter0ine tDAL. WR for auto precharge (MIN) in clock cycles is calculated  
by dividing tWR (in ns) by tCK (in ns) and rounding up to the next integer: WR (MIN)  
cycles = roundup (tWR[ns]/tCK[ns]). The WR value 0ust be progra00ed to be equal to  
or larger than tWR (MIN). When both DM and write CRC are enabled in the 0ode regis-  
ter, the device calculates CRC before sending the write data into the array; tWR values  
will change when enabled. If there is a CRC error, the device blocks the WRITE opera-  
tion and discards the data.  
Internal READ-to-PRECHARGE (RTP) co00and delay for auto precharge (MIN) in  
clock cycles is calculated by dividing tRTP (in ns) by tCK (in ns) and rounding up to the  
next integer: RTP (MIN) cycles = roundup (tRTP[ns]/tCK[ns]). The RTP value in the  
0ode register 0ust be progra00ed to be equal to or larger than RTP (MIN). The pro-  
gra00ed RTP value is used with tRP to deter0ine the ACT ti0ing to the sa0e bank.  
DLL RESET  
The DLL reset bit is self-clearing, 0eaning that it returns to the value of 6 after the DLL  
RESET function has been issued. After the DLL is enabled, a subsequent DLL RESET  
should be applied. Any ti0e the DLL RESET function is used, tDLLK 0ust be 0et before  
functions requiring the DLL can be used, such as READ co00ands or synchronous  
ODT operations, for exa0ple,).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
42  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 1  
Mode Register 1  
Mode register 1 (MR1) controls various device operating 0odes as shown in the follow-  
ing register definition table. Not all settings listed 0ay be available on a die; only set-  
tings required for speed bin support are available. MR1 is written by issuing the MRS  
co00and while controlling the states of the BGx, BAx, and Ax address pins. The 0ap-  
ping of address pins during the MRS co00and is shown in the following MR1 Register  
Definition table.  
Table 9: Address Pin Mapping  
Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
bus  
_n _n _n  
Mode  
21 20 19 18 17  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
register  
1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command.  
Note:  
Table 10: MR1 Register Definition  
Mode  
Register Description  
21  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
20:18  
MR select  
000 = MR0  
001 = MR1  
010 = MR2  
011 = MR3  
100 = MR4  
101 = MR5  
110 = MR6  
111 = DNU  
17  
13  
12  
11  
N/A on 4Gb and 8Gb, RFU  
0 = Must be programmed to 0  
1 = Reserved  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
Data output disable (Qoff) – Output buffer disable  
0 = Enabled (normal operation)  
1 = Disabled (both ODI and RTT)  
Termination data strobe (TDQS) – Additional termination pins (x8 configuration only)  
0 = TDQS disabled  
1 = TDQS enabled  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
43  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 1  
Table 10: MR1 Register Definition (Continued)  
Mode  
Register Description  
10, 9, 8  
Nominal ODT (RTT(NOM) – Data bus termination setting  
000 = RTT(NOM) disabled  
001 = RZQ/4 (60 ohm)  
010 = RZQ/2 (120 ohm)  
011 = RZQ/6 (40 ohm)  
100 = RZQ/1 (240 ohm)  
101 = RZQ/5 (48 ohm)  
110 = RZQ/3 (80 ohm)  
111 = RZQ/7 (34 ohm)  
7
Write leveling (WL) – Write leveling mode  
0 = Disabled (normal operation)  
1 = Enabled (enter WL mode)  
6, 5  
4, 3  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
Additive latency (AL) – Command additive latency setting  
00 = 0 (AL disabled)  
01 = CL - 11  
10 = CL - 2  
11 = Reserved  
2, 1  
Output driver impedance (ODI) – Output driver impedance setting  
00 = RZQ/7 (34 ohm)  
01 = RZQ/5 (48 ohm)  
10 = Reserved (Although not JEDEC-defined and not tested, this setting will provide RZQ/6 or 40 ohm)  
11 = Reserved  
0
DLL enable – DLL enable feature  
0 = DLL disabled  
1 = DLL enabled (normal operation)  
1. Not allowed when 1/4 rate gear-down mode is enabled.  
Note:  
DLL Enable/DLL Disable  
The DLL 0ust be enabled for nor0al operation and is required during power-up initial-  
ization and upon returning to nor0al operation after having the DLL disabled. During  
nor0al operation (DLL enabled with MR1[6]) the DLL is auto0atically disabled when  
entering the SELF REFRESH operation and is auto0atically re-enabled upon exit of the  
SELF REFRESH operation. Any ti0e the DLL is enabled and subsequently reset, tDLLK  
clock cycles 0ust occur before a READ or SYNCHRONOUS ODT co00and can be is-  
sued to allow ti0e for the internal clock to be synchronized with the external clock. Fail-  
ing to wait for synchronization to occur 0ay result in a violation of the tDQSCK, tAON,  
or tAOF para0eters.  
During tDLLK, CKE 0ust continuously be registered HIGH. The device does not require  
DLL for any WRITE operation, except when RTT(WR) is enabled and the DLL is required  
for proper ODT operation.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
44  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 1  
The direct ODT feature is not supported during DLL off 0ode. The ODT resistors 0ust  
be disabled by continuously registering the ODT pin LOW and/or by progra00ing the  
RTT(NOM) bits MR1[9,±,2] = 666 via an MRS co00and during DLL off 0ode.  
The dyna0ic ODT feature is not supported in DLL off 0ode; to disable dyna0ic ODT  
externally, use the MRS co00and to set RTT(WR), MR2[16:9] = 66.  
Output Driver Impedance Control  
The output driver i0pedance of the device is selected by MR1[2,1], as shown in the MR1  
Register Definition table.  
ODT RTT(NOM) Values  
The device is capable of providing three different ter0ination values: RTT(Park), RTT(NOM)  
and RTT(WR). The no0inal ter0ination value, RTT(NOM), is progra00ed in MR1. A sepa-  
rate value, RTT(WR), 0ay be progra00ed in MR2 to enable a unique RTT value when  
ODT is enabled during WRITE operations. The RTT(WR) value can be applied during  
WRITE co00ands even when RTT(NOM) is disabled. A third RTT value, RTT(Park), is pro-  
gra0ed in MR5. RTT(Park) provides a ter0ination value when the ODT signal is LOW.  
,
Additive Latency  
The ADDITIVE LATENCY (AL) operation is supported to 0ake co00and and data  
buses efficient for sustainable bandwidths in the device. In this operation, the device al-  
lows a READ or WRITE co00and (either with or without auto precharge) to be issued  
i00ediately after the ACTIVATE co00and. The co00and is held for the ti0e of AL be-  
fore it is issued inside the device. READ latency (RL) is controlled by the su0 of the AL  
and CAS latency (CL) register settings. WRITE latency (WL) is controlled by the su0 of  
the AL and CAS WRITE latency (CWL) register settings.  
Table 11: Additive Latency (AL) Settings  
A4  
0
A3  
0
AL  
0 (AL disabled)  
CL - 1  
0
1
1
0
CL - 2  
1
1
Reserved  
1. AL has a value of CL - 1 or CL - 2 based on the CL values programmed in the MR0 regis-  
ter.  
Note:  
Write Leveling  
For better signal integrity, the device uses fly-by topology for the co00ands, addresses,  
control signals, and clocks. Fly-by topology benefits fro0 a reduced nu0ber of stubs  
and their lengths, but it causes flight-ti0e skew between clock and strobe at every  
DRAM on the DIMM. This 0akes it difficult for the controller to 0aintain tDQSS, tDSS,  
and tDSH specifications. Therefore, the device supports a write leveling feature that al-  
lows the controller to co0pensate for skew.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
45  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 1  
Output Disable  
The device outputs 0ay be enabled/disabled by MR1[12] as shown in the MR1 Register  
Definition table. When MR1[12] is enabled (MR1[12] = 1) all output pins (such as DQ  
and DQS) are disconnected fro0 the device, which re0oves any loading of the output  
drivers. For exa0ple, this feature 0ay be useful when 0easuring 0odule power. For  
nor0al operation, set MR1[12] to 6.  
Termination Data Strobe  
Ter0ination data strobe (TDQS) is a feature of the x8 device and provides additional  
ter0ination resistance outputs that 0ay be useful in so0e syste0 configurations. Be-  
cause this function is available only in a x8 configuration, it 0ust be disabled for x4 and  
x1± configurations.  
While TDQS is not supported in x4 or x1± configurations, the sa0e ter0ination resist-  
ance function that is applied to the TDQS pins is applied to the DQS pins when enabled  
via the 0ode register.  
The TDQS, DBI, and DATA MASK (DM) functions share the sa0e pin. When the TDQS  
function is enabled via the 0ode register, the DM and DBI functions are not supported.  
When the TDQS function is disabled, the DM and DBI functions can be enabled sepa-  
rately.  
Table 12: TDQS Function Matrix  
TDQS  
Data Mask (DM)  
Enabled  
WRITE DBI  
Disabled  
Enabled  
Disabled  
Disabled  
READ DBI  
Disabled  
Enabled or disabled  
Enabled or disabled  
Enabled or disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Disabled  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
46  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 2  
Mode Register 2  
Mode register 2 (MR2) controls various device operating 0odes as shown in the follow-  
ing register definition table. Not all settings listed 0ay be available on a die; only set-  
tings required for speed bin support are available. MR2 is written by issuing the MRS  
co00and while controlling the states of the BGx, BAx, and Ax address pins. The 0ap-  
ping of address pins during the MRS co00and is shown in the following MR2 Register  
Definition table.  
Table 13: Address Pin Mapping  
Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
bus  
_n _n _n  
Mode  
21 20 19 18 17  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
register  
1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command.  
Note:  
Table 14: MR2 Register Definition  
Mode  
Register Description  
21  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
20:18  
MR select  
000 = MR0  
001 = MR1  
010 = MR2  
011 = MR3  
100 = MR4  
101 = MR5  
110 = MR6  
111 = DNU  
17  
13  
12  
N/A on 4Gb and 8Gb, RFU  
0 = Must be programmed to 0  
1 = Reserved  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
WRITE data bus CRC  
0 = Disabled  
1 = Enabled  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
47  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 2  
Table 14: MR2 Register Definition (Continued)  
Mode  
Register Description  
11:9  
Dynamic ODT (RTT(WR)) – Data bus termination setting during WRITEs  
000 = RTT(WR) disabled (WRITE does not affect RTT value)  
001 = RZQ/2 (120 ohm)  
010 = RZQ/1 (240 ohm)  
011 = High-Z  
100 = RZQ/3 (80 ohm)  
101 = Reserved  
110 = Reserved  
111 = Reserved  
7:6  
5:3  
Low-power auto self refresh (LPASR) – Mode summary  
00 = Manual mode - Normal operating temperature range (TC: –40°C–85°C)  
01 = Manual mode - Reduced operating temperature range (TC: –40°C–45°C)  
10 = Manual mode - Extended operating temperature range (TC: –40°C–125°C)  
11 = ASR mode - Automatically switching among all modes  
CAS WRITE latency (CWL) – Delay in clock cycles from the internal WRITE command to first data-in  
1tCK WRITE preamble  
000 = 9 (DDR4-1600)1  
001 = 10 (DDR4-1866)  
010 = 11 (DDR4-2133/1600)1  
011 = 12 (DDR4-2400/1866)  
100 = 14 (DDR4-2666/2133)  
101 = 16 (DDR4-2933,3200/2400)  
110 = 18 (DDR4-2666)  
111 = 20 (DDR4-2933, 3200)  
CAS WRITE latency (CWL) – Delay in clock cycles from the internal WRITE command to first data-in  
2tCK WRITE preamble  
000 = N/A  
001 = N/A  
010 = N/A  
011 = N/A  
100 = 14 (DDR4-2400)  
101 = 16 (DDR4-2666/2400)  
110 = 18 (DDR4-2933, 3200/2666)  
111 = 20 (DDR4-2933, 3200)  
8, 2  
1:0  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
1. Not allowed when 1/4 rate gear-down mode is enabled.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
48  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 2  
CAS WRITE Latency  
CAS WRITE latency (CWL) is defined by MR2[5:3] as shown in the MR2 Register Defini-  
tion table. CWL is the delay, in clock cycles, between the internal WRITE co00and and  
the availability of the first bit of input data. The device does not support any half-clock  
latencies. The overall WRITE latency (WL) is defined as additive latency (AL) + parity la-  
tency (PL) + CAS WRITE latency (CWL): WL = AL +PL + CWL.  
Low-Power Auto Self Refresh  
Low-power auto self refresh (LPASR) is supported in the device. Applications requiring  
SELF REFRESH operation over different te0perature ranges can use this feature to opti-  
0ize the IDD± current for a given te0perature range as specified in the MR2 Register  
Definition table.  
Dynamic ODT  
In certain applications and to further enhance signal integrity on the data bus, it is de-  
sirable to change the ter0ination strength of the device without issuing an MRS co0-  
0and. This 0ay be done by configuring the dyna0ic ODT (RTT(WR)) settings in  
MR2[11:9]. In write leveling 0ode, only RTT(NOM) is available.  
Write Cyclic Redundancy Check Data Bus  
The write cyclic redundancy check (CRC) data bus feature during writes has been added  
to the device. When enabled via the 0ode register, the data transfer size goes fro0 the  
nor0al 8-bit (BL8) fra0e to a larger 16-bit UI fra0e, and the extra two UIs are used for  
the CRC infor0ation.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
49  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 3  
Mode Register 3  
Mode register 3 (MR3) controls various device operating 0odes as shown in the follow-  
ing register definition table. Not all settings listed 0ay be available on a die; only set-  
tings required for speed bin support are available. MR3 is written by issuing the MRS  
co00and while controlling the states of the BGx, BAx, and Ax address pins. The 0ap-  
ping of address pins during the MRS co00and is shown in the following MR3 Register  
Definition table.  
Table 15: Address Pin Mapping  
Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
bus  
_n _n _n  
Mode  
21 20 19 18 17  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
register  
1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command.  
Note:  
Table 16: MR3 Register Definition  
Mode  
Register Description  
21  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
20:18  
MR select  
000 = MR0  
001 = MR1  
010 = MR2  
011 = MR3  
100 = MR4  
101 = MR5  
110 = MR6  
111 = DNU  
17  
13  
N/A on 4Gb and 8Gb, RFU  
0 = Must be programmed to 0  
1 = Reserved  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
12:11  
Multipurpose register (MPR) – Read format  
00 = Serial  
01 = Parallel  
10 = Staggered  
11 = Reserved  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
50  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 3  
Table 16: MR3 Register Definition (Continued)  
Mode  
Register Description  
10:9  
WRITE CMD latency when CRC/DM enabled  
00 = 4CK (DDR4-1600)  
01 = 5CK (DDR4-1866/2133/2400/2666)  
10 = 6CK (DDR4-2933/3200)  
11 = Reserved  
8:6  
Fine granularity refresh mode  
000 = Normal mode (fixed 1x)  
001 = Fixed 2x  
010 = Fixed 4x  
011 = Reserved  
100 = Reserved  
101 = On-the-fly 1x/2x  
110 = On-the-fly 1x/4x  
111 = Reserved  
5
4
Temperature sensor status  
0 = Disabled  
1 = Enabled  
Per-DRAM addressability  
0 = Normal operation (disabled)  
1 = Enable  
3
Gear-down mode – Ratio of internal clock to external data rate  
0 = [1:1]; (1/2 rate data)  
1 = [2:1]; (1/4 rate data)  
2
Multipurpose register (MPR) access  
0 = Normal operation  
1 = Data flow from MPR  
1:0  
MPR page select  
00 = Page 0  
01 = Page 1  
10 = Page 2  
11 = Page 3 (restricted for DRAM manufacturer use only)  
Multipurpose Register  
The 0ultipurpose register (MPR) is used for several features:  
• Readout of the contents of the MRn registers  
• WRITE and READ syste0 patterns used for data bus calibration  
• Readout of the error fra0e when the co00and address parity feature is enabled  
To enable MPR, issue an MRS co00and to MR3[2] = 1. MR3[12:11] define the for0at of  
read data fro0 the MPR. Prior to issuing the MRS co00and, all banks 0ust be in the  
idle state (all banks precharged and tRP 0et). After MPR is enabled, any subsequent RD  
or RDA co00ands will be redirected to a specific 0ode register.  
The 0ode register location is specified with the READ co00and using address bits. The  
MR is split into upper and lower halves to align with a burst length li0itation of 8. Pow-  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
51  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 3  
er-down 0ode, SELF REFRESH, and any other nonRD/RDA or nonWR/WRA co0-  
0ands are not allowed during MPR 0ode. The RESET function is supported during  
MPR 0ode, which requires device re-initialization.  
WRITE Command Latency When CRC/DM is Enabled  
The WRITE co00and latency (WCL) 0ust be set when both write CRC and DM are en-  
abled for write CRC persistent 0ode. This provides the extra ti0e required when co0-  
pleting a WRITE burst when write CRC and DM are enabled. This 0eans at data rates  
less than or equal to 1±66 MT/s then 4nCK is used, 5nCK or ±nCK are not allowed; at  
data rates greater than 1±66 MT/s and less than or equal to 2±±± MT/s then 5nCK is  
used, 4nCK or ±nCK are not allowed; and at data rates greater than 2±±± MT/s and less  
than or equal to 3266 MT/s then ±nCK is used; 4nCK or 5nCK are not allowed.  
Fine Granularity Refresh Mode  
This 0ode had been added to DDR4 to help co0bat the perfor0ance penalty due to  
refresh lockout at high densities. Shortening tRFC and increasing cycle ti0e allows 0ore  
accesses to the chip and can produce higher bandwidth.  
Temperature Sensor Status  
This 0ode directs the DRAM to update the te0perature sensor status at MPR Page 2,  
MPR6 [4,3]. The te0perature sensor setting should be updated within 320s; when an  
MPR read of the te0perature sensor status bits occurs, the te0perature sensor status  
should be no older than 320s.  
Per-DRAM Addressability  
This 0ode allows co00ands to be 0asked on a per device basis providing any device  
in a rank (devices sharing the sa0e co00and and address signals) to be progra00ed  
individually. As an exa0ple, this feature can be used to progra0 different ODT or VREF  
values on DRAM devices within a given rank.  
Gear-Down Mode  
The device defaults in 1/2 rate (1N) clock 0ode and uses a low frequency MRS co0-  
0and followed by a sync pulse to align the proper clock edge for operating the control  
lines CS_n, CKE, and ODT when in 1/4 rate (2N) 0ode. For operation in 1/2 rate 0ode,  
no MRS co00and or sync pulse is required.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
52  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 4  
Mode Register 4  
Mode register 4 (MR4) controls various device operating 0odes as shown in the follow-  
ing register definition table. Not all settings listed 0ay be available on a die; only set-  
tings required for speed bin support are available. MR4 is written by issuing the MRS  
co00and while controlling the states of the BGx, BAx, and Ax address pins. The 0ap-  
ping of address pins during the MRS co00and is shown in the following MR4 Register  
Definition table.  
Table 17: Address Pin Mapping  
Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
bus  
_n _n _n  
Mode  
21 20 19 18 17  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
register  
1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET (MRS) command.  
Note:  
Table 18: MR4 Register Definition  
Mode  
Register Description  
21  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
20:18  
MR select  
000 = MR0  
001 = MR1  
010 = MR2  
011 = MR3  
100 = MR4  
101 = MR5  
110 = MR6  
111 = DNU  
17  
13  
12  
11  
N/A on 4Gb and 8Gb, RFU  
0 = Must be programmed to 0  
1 = Reserved  
Hard Post Package Repair (hPPR mode)  
0 = Disabled  
1 = Enabled  
WRITE preamble setting  
0 = 1tCK toggle1  
1 = 2tCK toggle  
READ preamble setting  
0 = 1tCK toggle1  
1 = 2tCK toggle (When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value at  
least 1 clock greater than the lowest CWL setting supported in the applicable tCK range.)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
53  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 4  
Table 18: MR4 Register Definition (Continued)  
Mode  
Register Description  
10  
READ preamble training  
0 = Disabled  
1 = Enabled  
9
Self refresh abort mode  
0 = Disabled  
1 = Enabled  
8:6  
CMD (CAL) address latency  
000 = 0 clocks (disabled)  
001 =3 clocks1  
010 = 4 clocks  
011 = 5 clocks1  
100 = 6 clocks  
101 = 8 clocks  
110 = Reserved  
111 = Reserved  
5
4
3
2
1
0
soft Post Package Repair (sPPR mode)  
0 = Disabled  
1 = Enabled  
Internal VREF monitor  
0 = Disabled  
1 = Enabled  
Temperature controlled refresh mode  
0 = Disabled  
1 = Enabled  
Temperature controlled refresh range  
0 = Normal temperature mode  
1 = Extended temperature mode  
Maximum power savings mode  
0 = Normal operation  
1 = Enabled  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
1. Not allowed when 1/4 rate gear-down mode is enabled.  
Note:  
Hard Post Package Repair Mode  
The hard post package repair (hPPR) 0ode feature is JEDEC optional for 4Gb DDR4  
0e0ories. Perfor0ing an MPR read to page 2 MPR6 [7] indicates whether hPPR 0ode is  
available (A7 = 1) or not available (A7 = 6). hPPR 0ode provides a si0ple and easy repair  
0ethod of the device after placed in the syste0. One row per bank can be repaired. The  
repair process is irrevocable so great care should be exercised when using.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
54  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 4  
Soft Post Package Repair Mode  
The soft post package repair (sPPR) 0ode feature is JEDEC optional for 4Gb and 8Gb  
DDR4 0e0ories. Perfor0ing an MPR read to page 2 MPR6 [±] indicates whether sPPR  
0ode is available (A± = 1) or not available (A± = 6). sPPR 0ode provides a si0ple and  
easy repair 0ethod of the device after placed in the syste0. One row per bank can be  
repaired. The repair process is revocable by either doing a reset or power-down or by  
rewriting a new address in the sa0e bank.  
WRITE Preamble  
t
Progra00able WRITE prea0ble, WPRE, can be set to 1tCK or 2tCK via the MR4 register.  
The 1tCK setting is si0ilar to DDR3. However, when operating in 2tCK WRITE prea0ble  
0ode, CWL 0ust be progra00ed to a value at least 1 clock greater than the lowest CWL  
setting supported in the applicable tCK range.  
When operating in 2tCK WRITE prea0ble 0ode, CWL 0ust be progra00ed to a value  
at least 1 clock greater than the lowest CWL setting supported in the applicable tCK  
range. So0e even settings will require addition of 2 clocks. If the alternate longer CWL  
was used, the additional clocks will not be required.  
READ Preamble  
Progra00able READ prea0ble tRPRE can be set to 1tCK or 2tCK via the MR4 register.  
Both the 1tCK and 2tCK DDR4 prea0ble settings are different fro0 that defined for the  
DDR3 SDRAM. Both DDR4 READ prea0ble settings 0ay require the 0e0ory controller  
to train (or read level) its data strobe receivers using the READ prea0ble training.  
READ Preamble Training  
Progra00able READ prea0ble training can be set to 1tCK or 2tCK. This 0ode can be  
used by the 0e0ory controller to train or READ level its data strobe receivers.  
Temperature-Controlled Refresh  
When te0perature-controlled refresh 0ode is enabled, the device 0ay adjust the inter-  
nal refresh period to be longer than tREFI of the nor0al te0perature range by skipping  
external REFRESH co00ands with the proper gear ratio. For exa0ple, the DRAM te0-  
perature sensor detected less than 45°C. Nor0al te0perature 0ode covers the range of  
–46°C to 85°C, while the extended te0perature range covers –46°C to 125°C.  
Command Address Latency  
COMMAND ADDRESS LATENCY (CAL) is a power savings feature and can be enabled  
or disabled via the MRS setting. CAL is defined as the delay in clock cycles (tCAL) be-  
tween a CS_n registered LOW and its corresponding registered co00and and address.  
The value of CAL (in clocks) 0ust be progra00ed into the 0ode register and is based  
on the roundup (in clocks) of [tCK(ns)/tCAL(ns)].  
Internal VREF Monitor  
The device generates its own internal VREFDQ. This 0ode 0ay be enabled during VREFDQ  
training, and when enabled, VREF,ti0e-short and VREF,ti0e-long need to be increased by 16ns  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
55  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 4  
if DQ6, DQ1, DQ2, or DQ3 have 6pF loading. An additional 15ns per pF of loading is also  
needed.  
Maximum Power Savings Mode  
This 0ode provides the lowest power 0ode where data retention is not required. When  
the device is in the 0axi0u0 power saving 0ode, it does not need to guarantee data  
retention or respond to any external co00and (except the MAXIMUM POWER SAVING  
MODE EXIT co00and and during the assertion of RESET_n signal LOW).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
56  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 5  
Mode Register 5  
Mode register 5 (MR5) controls various device operating 0odes as shown in the follow-  
ing register definition table. Not all settings listed 0ay be available on a die; only set-  
tings required for speed bin support are available. MR5 is written by issuing the MRS  
co00and while controlling the states of the BGx, BAx, and Ax address pins. The 0ap-  
ping of address pins during the MRS co00and is shown in the following MR5 Register  
Definition table.  
Table 19: Address Pin Mapping  
Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
bus  
_n _n _n  
Mode  
21 20 19 18 17  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
register  
1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command.  
Note:  
Table 20: MR5 Register Definition  
Mode  
Register Description  
21  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
20:18  
MR select  
000 = MR0  
001 = MR1  
010 = MR2  
011 = MR3  
100 = MR4  
101 = MR5  
110 = MR6  
111 = DNU  
17  
13  
12  
11  
10  
N/A on 4Gb and 8Gb, RFU  
0 = Must be programmed to 0  
1 = Reserved  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
Data bus inversion (DBI) – READ DBI enable  
0 = Disabled  
1 = Enabled  
Data bus inversion (DBI) – WRITE DBI enable  
0 = Disabled  
1 = Enabled  
Data mask (DM)  
0 = Disabled  
1 = Enabled  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
57  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 5  
Table 20: MR5 Register Definition (Continued)  
Mode  
Register Description  
9
CA parity persistent error mode  
0 = Disabled  
1 = Enabled  
8:6  
Parked ODT value (RTT(Park)  
000 = RTT(Park) disabled  
001 = RZQ/4 (60 ohm)  
010 = RZQ/2 (120 ohm)  
011 = RZQ/6 (40 ohm)  
100 = RZQ/1 (240 ohm)  
101 = RZQ/5 (48 ohm)  
110 = RZQ/3 (80 ohm)  
111 = RZQ/7 (34 ohm)  
)
5
4
ODT input buffer for power-down  
0 = Buffer enabled  
1 = Buffer disabled  
CA parity error status  
0 = Clear  
1 = Error  
3
CRC error status  
0 = Clear  
1 = Error  
2:0  
CA parity latency mode  
000 = Disable  
001 = 4 clocks (DDR4-1600/1866/2133)  
010 = 5 clocks (DDR4-2400/2666)1  
011 = 6 clocks (DDR4-2933/3200)  
100 = 8 clocks (DDR4-2933/3200)  
101 = Reserved  
110 = Reserved  
111 = Reserved  
1. Not allowed when 1/4 rate gear-down mode is enabled.  
Note:  
Data Bus Inversion  
The DATA BUS INVERSION (DBI) function has been added to the device and is suppor-  
ted only for x8 and x1± configurations (x4 is not supported). The DBI function shares a  
co00on pin with the DM and TDQS functions. The DBI function applies to both READ  
and WRITE operations; Write DBI cannot be enabled at the sa0e ti0e the DM function  
is enabled. Refer to the TDQS Function Matrix table for valid configurations for all three  
functions (TDQS/DM/DBI). DBI is not allowed during MPR READ operation; during an  
MPR read, the DRAM ignores the read DBI enable setting in MR5 bit A12. DBI is not al-  
lowed during MPR READ operations.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
58  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 5  
Data Mask  
The DATA MASK (DM) function, also described as a partial write, has been added to the  
device and is supported only for x8 and x1± configurations (x4 is not supported). The  
DM function shares a co00on pin with the DBI and TDQS functions. The DM function  
applies only to WRITE operations and cannot be enabled at the sa0e ti0e the write DBI  
function is enabled. Refer to the TDQS Function Matrix table for valid configurations for  
all three functions (TDQS/DM/DBI).  
CA Parity Persistent Error Mode  
Nor0al CA parity 0ode (CA parity persistent 0ode disabled) no longer perfor0s CA  
parity checking while the parity error status bit re0ains set at 1. However, with CA pari-  
ty persistent 0ode enabled, CA parity checking continues to be perfor0ed when the  
parity error status bit is set to a 1.  
ODT Input Buffer for Power-Down  
This feature deter0ines whether the ODT input buffer is on or off during power-down.  
If the input buffer is configured to be on (enabled during power-down), the ODT input  
signal 0ust be at a valid logic level. If the input buffer is configured to be off (disabled  
during power-down), the ODT input signal 0ay be floating and the device does not pro-  
vide RTT(NOM) ter0ination. However, the device 0ay provide RTT(Park) ter0ination de-  
pending on the MR settings. This is pri0arily for additional power savings.  
CA Parity Error Status  
The device will set the error status bit to 1 upon detecting a parity error. The parity error  
status bit re0ains set at 1 until the device controller clears it explicitly using an MRS  
co00and.  
CRC Error Status  
The device will set the error status bit to 1 upon detecting a CRC error. The CRC error  
status bit re0ains set at 1 until the device controller clears it explicitly using an MRS  
co00and.  
CA Parity Latency Mode  
CA parity is enabled when a latency value, dependent on tCK, is progra00ed; this ac-  
counts for parity calculation delay internal to the device. The nor0al state of CA parity  
is to be disabled. If CA parity is enabled, the device 0ust ensure there are no parity er-  
rors before executing the co00and. CA parity signal (PAR) covers ACT_n, RAS_n/A1± ,  
CAS_n/A15, WE_n/A14, and the address bus including bank address and bank group  
bits. The control signals CKE, ODT, and CS_n are not included in the parity calculation.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
59  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 6  
Mode Register 6  
Mode register ± (MR±) controls various device operating 0odes as shown in the follow-  
ing register definition table. Not all settings listed 0ay be available on a die; only set-  
tings required for speed bin support are available. MR± is written by issuing the MRS  
co00and while controlling the states of the BGx, BAx, and Ax address pins. The 0ap-  
ping of address pins during the MRS co00and is shown in the following MR± Register  
Definition table.  
Table 21: Address Pin Mapping  
Address BG1 BG0 BA1 BA0 A17 RAS CAS WE A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
bus  
_n _n _n  
Mode  
21 20 19 18 17  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
register  
1. RAS_n, CAS_n, and WE_n must be LOW during MODE REGISTER SET command.  
Note:  
Table 22: MR6 Register Definition  
Mode  
Register Description  
21  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
20:18  
MR select  
000 = MR0  
001 = MR1  
010 = MR2  
011 = MR3  
100 = MR4  
101 = MR5  
110 = MR6  
111 = DNU  
17  
13  
NA on 4Gb and 8Gb, RFU  
0 = Must be programmed to 0  
1 = Reserved  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
12:10  
tCCD_L  
000 = 4 clocks (1333 Mb/s)  
001 = 5 clocks (>1333 Mb/s and 1866 Mb/s)  
010 = 6 clocks (>1866 Mb/s and 2400 Mb/s)  
011 = 7 clocks (>2400 Mb/s and 2666 Mb/s)  
100 = 8 clocks (>2666 Mb/s and 3200 Mb/s)  
101 = Reserved  
110 = Reserved  
111 = Reserved  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
60  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Mode Register 6  
Table 22: MR6 Register Definition (Continued)  
Mode  
Register Description  
9, 8  
RFU  
0 = Must be programmed to 0  
1 = Reserved  
7
VREF Calibration Enable  
0 = Disable  
1 = Enable  
6
VREF Calibration Range  
0 = Range 1  
1 = Range 2  
5:0  
VREF Calibration Value  
See the VREFDQ Range and Levels table in the VREFDQ Calibration section  
tCCD_L Programming  
The device controller 0ust progra0 the correct tCCD_L value. tCCD_L will be progra0-  
0ed according to the value defined per operating frequency in the AC para0eter table.  
Although JEDEC specifies the larger of 5nCK or Xns, Micron's DRAM supports the larger  
of 4nCK or Xns. The -683C, -675C, and -6±8C operate with one additional clock for  
tCCD_l.  
VREFDQ Calibration Enable  
VREFDQ calibration is where the device internally generates its own VREFDQ to be used by  
the DQ input receivers. The VREFDQ value will be output on any DQ of DQ[3:6] for evalu-  
ation only. The device controller is responsible for setting and calibrating the internal  
VREFDQ level using an MRS protocol (adjust up, adjust down, and so on). It is assu0ed  
that the controller will use a series of writes and reads in conduction with VREFDQ ad-  
just0ents to opti0ize and verify the data eye. Enabling VREFDQ calibration 0ust be used  
whenever values are being written to the MR±[±:6] register.  
VREFDQ Calibration Range  
The device defines two VREFDQ calibration ranges: Range 1 and Range 2. Range 1 sup-  
ports VREFDQ between ±6% and 92% of VDDQ while Range 2 supports VREFDQ between  
45% and 77% of VDDQ, as seen in VREFDQ Specification table. Although not a restriction,  
Range 1 was targeted for 0odule-based designs and Range 2 was added to target point-  
to-point designs.  
VREFDQ Calibration Value  
Fifty settings provide approxi0ately 6.±5% of granularity steps sizes for both Range 1  
and Range 2 of VREFDQ, as seen in VREFDQ Range and Levels table in the VREFDQ Calibra-  
tion section.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
61  
© 2016 Micron Technology, Inc. All rights reserved.  
Truth Tables  
Table 23: Truth Table – Command  
Notes 1–5 apply to the entire table; Note 6 applies to all READ/WRITE commands  
Prev. Pres.  
Function  
CKE CKE  
Notes  
MODE REGISTER SET  
REFRESH  
MRS  
REF  
SRE  
SRX  
H
H
H
L
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
L
L
H
H
H
X
H
H
H
H
L
L
L
L
L
L
H
H
X
H
L
BG  
V
BA  
V
V
V
V
X
V
V
V
OP code  
7
V
V
V
V
X
V
V
V
V
V
X
V
L
V
V
X
V
V
V
Self refresh entry  
Self refresh exit  
L
L
V
V
8, 9, 10  
H
X
H
L
X
H
H
H
H
X
X
X
8, 9, 10,  
11  
V
V
V
Single-bank PRECHARGE  
PRECHARGE all banks  
Reserved for future use  
Bank ACTIVATE  
PRE  
PREA  
RFU  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BG  
V
BA  
V
V
L
L
V
H
L
H
RFU  
ACT  
Row address (RA)  
BG  
BG  
BG  
BG  
BG  
BG  
BG  
BG  
BG  
BG  
BG  
BG  
BG  
V
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
BA  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
X
X
X
X
X
Row address (RA)  
WRITE  
BL8 fixed, BC4 fixed  
WR  
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
H
H
L
L
L
L
V
L
V
V
V
V
V
V
V
V
V
V
V
V
V
X
X
X
X
X
L
L
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
CA  
V
BC4OTF  
WRS4  
WRS8  
WRA  
WRAS4  
WRAS8  
RD  
BL8OTF  
L
L
H
V
L
L
WRITE  
with auto  
precharge  
BL8 fixed, BC4 fixed  
BC4OTF  
L
L
H
H
H
L
L
L
BL8OTF  
L
L
H
V
L
READ  
BL8 fixed, BC4 fixed  
BC4OTF  
L
H
H
H
H
H
H
H
X
X
X
L
RDS4  
RDS8  
RDA  
L
L
BL8OTF  
L
H
V
L
L
READ  
with auto  
precharge  
BL8 fixed, BC4 fixed  
BC4OTF  
L
H
H
H
V
X
X
X
H
L
RDAS4  
RDAS8  
NOP  
L
BL8OTF  
L
H
V
X
X
X
X
X
NO OPERATION  
H
X
X
X
H
H
12  
Device DESELECTED  
Power-down entry  
Power-down exit  
DES  
X
X
X
13  
PDE  
X
X
X
10, 14  
10, 14  
PDX  
H
H
H
X
X
X
ZQ CALIBRATION LONG  
ZQ CALIBRATION SHORT  
ZQCL  
ZQCS  
H
H
X
X
X
L
X
X
X
8Gb: x8, x16 Automotive DDR4 SDRAM  
Truth Tables  
1. • BG = Bank group address  
• BA = Bank address  
• RA = Row address  
• CA = Column address  
• BC_n = Burst chop  
• X = “Don’t Care”  
• V = Valid  
Notes:  
2. All DDR4 SDRAM commands are defined by states of CS_n, ACT_n, RAS_n/A16, CAS_n/  
A15, WE_n/A14, and CKE at the rising edge of the clock. The MSB of BG, BA, RA, and CA  
are device density- and configuration-dependent. When ACT_n = H, pins RAS_n/A16,  
CAS_n/A15, and WE_n/A14 are used as command pins RAS_n, CAS_n, and WE_n, respec-  
tively. When ACT_n = L, pins RAS_n/A16, CAS_n/A15, and WE_n/A14 are used as address  
pins A16, A15, and A14, respectively.  
3. RESET_n is enabled LOW and is used only for asynchronous reset and must be main-  
tained HIGH during any function.  
4. Bank group addresses (BG) and bank addresses (BA) determine which bank within a  
bank group is being operated upon. For MRS commands, the BG and BA selects the spe-  
cific mode register location.  
5. V means HIGH or LOW (but a defined logic level), and X means either defined or unde-  
fined (such as floating) logic level.  
6. READ or WRITE bursts cannot be terminated or interrupted, and fixed/on-the-fly (OTF)  
BL will be defined by MRS.  
7. During an MRS command, A17 is RFU and is device density- and configuration-depend-  
ent.  
8. The state of ODT does not affect the states described in this table. The ODT function is  
not available during self refresh.  
9. VPP and VREF (VREFCA) must be maintained during SELF REFRESH operation.  
10. Refer to the Truth Table – CKE table for more details about CKE transition.  
11. Controller guarantees self refresh exit to be synchronous. DRAM implementation has  
the choice of either synchronous or asynchronous.  
12. The NO OPERATION (NOP) command may be used only when exiting maximum power  
saving mode or when entering gear-down mode.  
13. The NOP command may not be used in place of the DESELECT command.  
14. The power-down mode does not perform any REFRESH operation.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
63  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Truth Tables  
Table 24: Truth Table – CKE  
Notes 1–7, 9, and 20 apply to the entire table  
CKE  
Previous Cycle Present Cycle  
Current State  
(n - 1)  
(n)  
Command (n)  
Action (n)  
Maintain power-down  
Power-down exit  
Notes  
8, 10, 11  
Power-down  
L
L
L
X
DES  
X
H
L
8, 10, 12  
Self refresh  
L
Maintain self refresh  
Self refresh exit  
11, 13  
L
H
L
DES  
DES  
DES  
DES  
DES  
DES  
DES  
REFRESH  
8, 13, 14, 15  
8, 10, 12, 16  
8, 10, 12, 16, 17  
8, 10, 12, 16, 17  
8, 10, 12, 16, 17  
8, 12  
Bank(s) active  
Reading  
H
H
H
H
H
H
H
Active power-down entry  
Power-down entry  
L
Writing  
L
Power-down entry  
Precharging  
Refreshing  
All banks idle  
L
Power-down entry  
L
Precharge power-down entry  
L
Precharge power-down entry 8, 10, 12, 16, 18  
Self refresh 16, 18, 19  
L
1. Current state is defined as the state of the DDR4 SDRAM immediately prior to clock  
edge n.  
Notes:  
2. CKE (n) is the logic state of CKE at clock edge n; CKE (n-1) was the state of CKE at the  
previous clock edge.  
3. COMMAND (n) is the command registered at clock edge n, and ACTION (n) is a result of  
COMMAND (n); ODT is not included here.  
4. All states and sequences not shown are illegal or reserved unless explicitly described  
elsewhere in this document.  
5. The state of ODT does not affect the states described in this table. The ODT function is  
not available during self refresh.  
6. During any CKE transition (registration of CKE H->L or CKE H->L), the CKE level must be  
maintained until 1 nCK prior to tCKE (MIN) being satisfied (at which time CKE may tran-  
sition again).  
7. DESELECT and NOP are defined in the Truth Table – Command table.  
8. For power-down entry and exit parameters, see the Power-Down Modes section.  
9. CKE LOW is allowed only if tMRD and tMOD are satisfied.  
10. The power-down mode does not perform any REFRESH operations.  
11. X = "Don’t Care" (including floating around VREF) in self refresh and power-down. X al-  
so applies to address pins.  
12. The DESELECT command is the only valid command for power-down entry and exit.  
13. VPP and VREFCA must be maintained during SELF REFRESH operation.  
14. On self refresh exit, the DESELECT command must be issued on every clock edge occur-  
ring during the tXS period. READ or ODT commands may be issued only after tXSDLL is  
satisfied.  
15. The DESELECT command is the only valid command for self refresh exit.  
16. Self refresh cannot be entered during READ or WRITE operations. For a detailed list of  
restrictions see the SELF REFRESH Operation and Power-Down Modes sections.  
17. If all banks are closed at the conclusion of the READ, WRITE, or PRECHARGE command,  
then precharge power-down is entered; otherwise, active power-down is entered.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
64  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
NOP Command  
18. Idle state is defined as all banks are closed (tRP, tDAL, and so on, satisfied), no data  
bursts are in progress, CKE is HIGH, and all timings from previous operations are satis-  
fied (tMRD, tMOD, tRFC, tZQinit, tZQoper, tZQCS, and so on), as well as all self refresh ex-  
it and power-down exit parameters are satisfied (tXS, tXP, tXSDLL, and so on).  
19. Self refresh mode can be entered only from the all banks idle state.  
20. For more details about all signals, see the Truth Table – Command table; must be a legal  
command as defined in the table.  
NOP Command  
The NO OPERATION (NOP) co00and was originally used to instruct the selected  
DDR4 SDRAM to perfor0 a NOP (CS_n = LOW and ACT_n, RAS_n/A1±, CAS_n/A15, and  
WE_n/A14 = HIGH). This prevented unwanted co00ands fro0 being registered during  
idle or wait states. NOP co00and general support has been re0oved and the co0-  
0and should not be used unless specifically allowed, which is when exiting 0axi0u0  
power-saving 0ode or when entering gear-down 0ode.  
DESELECT Command  
The deselect function (CS_n HIGH) prevents new co00ands fro0 being executed;  
therefore, with this co00and, the device is effectively deselected. Operations already in  
progress are not affected.  
DLL-Off Mode  
DLL-off 0ode is entered by setting MR1 bit A6 to 6, which will disable the DLL for sub-  
sequent operations until the A6 bit is set back to 1. The MR1 A6 bit for DLL control can  
be switched either during initialization or during self refresh 0ode. Refer to the Input  
Clock Frequency Change section for 0ore details.  
The 0axi0u0 clock frequency for DLL-off 0ode is specified by the para0eter  
tCKDLL_OFF. There is no 0ini0u0 frequency li0it besides the need to satisfy the re-  
fresh interval, tREFI.  
Due to latency counter and ti0ing restrictions, only one CL value and CWL value (in  
MR6 and MR2 respectively) are supported. The DLL-off 0ode is only required to sup-  
port setting both CL = 16 and CWL = 9.  
DLL-off 0ode will affect the read data clock-to-data strobe relationship (tDQSCK), but  
not the data strobe-to-data relationship (tDQSQ, tQH). Special attention is needed to  
line up read data to the controller ti0e do0ain.  
Co0pared with DLL-on 0ode, where tDQSCK starts fro0 the rising clock edge (AL +  
CL) cycles after the READ co00and, the DLL-off 0ode tDQSCK starts (AL + CL - 1) cy-  
cles after the READ co00and. Another difference is that tDQSCK 0ay not be s0all  
co0pared to tCK (it 0ight even be larger than tCK), and the difference between tDQSCK  
(MIN) and tDQSCK (MAX) is significantly larger than in DLL-on 0ode. The tDQSCK  
(DLL-off) values are vendor-specific.  
The ti0ing relations on DLL-off 0ode READ operation are shown in the following dia-  
gra0, where CL = 16, AL = 6, and BL = 8.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
65  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
DLL-Off Mode  
Figure 13: DLL-Off Mode Read Timing Operation  
T0  
T1  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
( (  
) )  
( (  
) )  
( (  
) )  
CK_c  
CK_t  
( (  
) )  
( (  
) )  
( (  
) )  
RD  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Command  
Address  
( (  
) )  
( (  
) )  
( (  
) )  
ARD  
RL (DLL-on) = AL + CL = 10  
CL = 10, AL = 0  
( (  
) )  
DQS_t, DQS_c  
(DLL-on)  
t
t
DQSCK (MIN)  
DQSCK (MAX)  
( (  
) )  
DIN  
b
DIN  
b+1  
DIN  
b+2  
DIN  
b+3  
DIN  
b+4  
DIN  
b+5  
DIN  
b+6  
DIN  
b+7  
DQS_c  
(DLL-on)  
RL (DLL-off) = AL + (CL - 1) = 9  
CL = 10, AL = 0  
t
DQSCK (DLL-off) MIN  
( (  
) )  
DQS_t, DQS_c  
(DLL-off)  
( (  
) )  
DQS_c  
(DLL-off)  
DIN  
b
DIN  
b+1  
DIN  
b+2  
DIN  
b+3  
DIN  
b+4  
DIN  
b+5  
DIN  
b+6  
DIN  
b+7  
t
DQSCK (DLL-off) MAX  
( (  
) )  
DQS_t, DQS_c  
(DLL-off)  
( (  
) )  
DQS_c  
(DLL-off)  
DIN  
b
DIN  
b+1  
DIN  
b+2  
DIN  
b+3  
DIN  
b+4  
DIN  
b+5  
DIN  
b+6  
DIN  
b+7  
Transitioning data  
Don’t Care  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
66  
8Gb: x8, x16 Automotive DDR4 SDRAM  
DLL-On/Off Switching Procedures  
DLL-On/Off Switching Procedures  
The DLL-off 0ode is entered by setting MR1 bit A6 to 6; this will disable the DLL for  
subsequent operations until the A6 bit is set back to 1.  
DLL Switch Sequence from DLL-On to DLL-Off  
To switch fro0 DLL-on to DLL-off requires the frequency to be changed during self re-  
fresh, as outlined in the following procedure:  
1. Starting fro0 the idle state (all banks pre-charged, all ti0ings fulfilled, and, to dis-  
able the DLL, the DRAM on-die ter0ination resistors, RTT(NOM), 0ust be in High-Z  
before MRS to MR1.)  
2. Set MR1 bit A6 to 1 to disable the DLL.  
3. Wait tMOD.  
4. Enter self refresh 0ode; wait until tCKSRE/tCKSRE_PAR is satisfied.  
5. Change frequency, following the guidelines in the Input Clock Frequency Change  
section.  
±. Wait until a stable clock is available for at least tCKSRX at device inputs.  
7. Starting with the SELF REFRESH EXIT co00and, CKE 0ust continuously be reg-  
istered HIGH until all tMOD ti0ings fro0 any MRS co00and are satisfied. In ad-  
dition, if any ODT features were enabled in the 0ode registers when self refresh  
0ode was entered, the ODT signal 0ust continuously be registered LOW until all  
tMOD ti0ings fro0 any MRS co00and are satisfied. If RTT(NOM) was disabled in  
the 0ode registers when self refresh 0ode was entered, the ODT signal is "Don't  
Care."  
8. Wait tXS_FAST, tXS_ABORT, or tXS, and then set 0ode registers with appropriate  
values (an update of CL, CWL, and WR 0ay be necessary; a ZQCL co00and can  
also be issued after tXS_FAST).  
t
• XS_FAST: ZQCL, ZQCS, and MRS co00ands. For MRS co00ands, only CL and  
WR/RTP registers in MR6, the CWL register in MR2, and gear-down 0ode in  
MR3 0ay be accessed provided the device is not in per-DRAM addressability  
0ode. Access to other device 0ode registers 0ust satisfy tXS ti0ing.  
t
• XS_ABORT: If MR4 [9] is enabled, then the device aborts any ongoing refresh  
and does not incre0ent the refresh counter. The controller can issue a valid  
co00and after a delay of tXS_ABORT. Upon exiting fro0 self refresh, the device  
requires a 0ini0u0 of one extra REFRESH co00and before it is put back into  
self refresh 0ode. This require0ent re0ains the sa0e regardless of the MRS bit  
setting for self refresh abort.  
t
• XS: ACT, PRE, PREA, REF, SRE, PDE, WR, WRS4, WRS8, WRA, WRAS4, WRAS8,  
RD, RDS4, RDS8, RDA, RDAS4, and RDAS8.  
9. Wait tMOD to co0plete.  
The device is ready for the next co00and.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
67  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
DLL-On/Off Switching Procedures  
Figure 14: DLL Switch Sequence from DLL-On to DLL-Off  
Ta  
Tb0  
Tb1  
Tc  
Td  
Te0  
Te1  
Tf  
Tg  
Th  
CK_c  
CK_t  
t
t
t
5
CKSRE/ CKSRE_PAR  
Note 4  
CKSRX  
t
IS  
t
CPDED  
Valid  
Valid  
Valid  
CKE  
t
XS_FAST  
3
6
9
7
8
2
SRE  
DES  
SRX  
Valid  
Valid  
Valid  
MRS  
Command  
Address  
Valid  
Valid  
Valid  
t
t
RP  
XS_ABORT  
t
t
IS  
t
t
XS  
CKESR/ CKESR_PAR  
ODT  
Valid  
Enter self refresh  
Exit self refresh  
Time Break  
Don’t Care  
1. Starting in the idle state. RTT in stable state.  
2. Disable DLL by setting MR1 bit A0 to 0.  
3. Enter SR.  
Notes:  
4. Change frequency.  
5. Clock must be stable tCKSRX.  
6. Exit SR.  
7. Update mode registers allowed with DLL-off settings met.  
DLL-Off to DLL-On Procedure  
To switch fro0 DLL-off to DLL-on (with required frequency change) during self refresh:  
1. Starting fro0 the idle state (all banks pre-charged, all ti0ings fulfilled, and DRAM  
ODT resistors (RTT(NOM)) 0ust be in High-Z before self refresh 0ode is entered.)  
2. Enter self refresh 0ode; wait until tCKSRE/tCKSRE_PAR are satisfied.  
3. Change frequency (following the guidelines in the Input Clock Frequency Change  
section).  
4. Wait until a stable clock is available for at least tCKSRX at device inputs.  
5. Starting with the SELF REFRESH EXIT co00and, CKE 0ust continuously be reg-  
istered HIGH until tDLLK ti0ing fro0 the subsequent DLL RESET co00and is  
satisfied. In addition, if any ODT features were enabled in the 0ode registers  
when self refresh 0ode was entered, the ODT signal 0ust continuously be regis-  
tered LOW or HIGH until tDLLK ti0ing fro0 the subsequent DLL RESET co0-  
0and is satisfied. If RTT(NOM) disabled in the 0ode registers when self refresh  
0ode was entered, the ODT signal is "Don't Care."  
±. Wait tXS or tXS_ABORT, depending on bit 9 in MR4, then set MR1 bit A6 to 6 to  
enable the DLL.  
7. Wait tMRD, then set MR6 bit A8 to 1 to start DLL reset.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
68  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Input Clock Frequency Change  
8. Wait tMRD, then set 0ode registers with appropriate values; an update of CL,  
t
CWL, and WR 0ay be necessary. After MOD is satisfied fro0 any proceeding MRS  
co00and, a ZQCL co00and can also be issued during or after tDLLK.  
9. Wait for tMOD to co0plete. Re0e0ber to wait tDLLK after DLL RESET before ap-  
plying any co00and requiring a locked DLL. In addition, wait for tZQoper in case  
a ZQCL co00and was issued.  
The device is ready for the next co00and.  
Figure 15: DLL Switch Sequence from DLL-Off to DLL-On  
Ta  
Tb0  
Tb1  
Tc  
Td  
Te0  
Te1  
Tf  
Tg  
Th  
CK_c  
CK_t  
t
t
t
5
Note 1  
CKSRE/ CKSRE_PAR  
Note 4  
CKSRX  
t
IS  
t
CPDED  
Valid  
Valid  
Valid  
CKE  
t
XS_ABORT  
3
6
7
7
7
2
SRE  
DES  
SRX  
Valid  
Valid  
Valid  
MRS  
Command  
Address  
Valid  
Valid  
Valid  
t
t
t
RP  
XS  
MRD  
t
IS  
t
t
CKESR/ CKESR_PAR  
ODT  
Valid  
Enter self refresh  
Exit self refresh  
Time Break  
Don’t Care  
1. Starting in the idle state.  
2. Enter SR.  
Notes:  
3. Change frequency.  
4. Clock must be stable tCKSRX.  
5. Exit SR.  
6. Set DLL to on by setting MR1 to A0 = 0.  
7. Update mode registers.  
8. Issue any valid command.  
Input Clock Frequency Change  
After the device is initialized, it requires the clock to be stable during al0ost all states of  
nor0al operation. This 0eans that after the clock frequency has been set and is in the  
stable state, the clock period is not allowed to deviate except for what is allowed by the  
clock jitter and spread spectru0 clocking (SSC) specifications. The input clock frequen-  
cy can be changed fro0 one stable clock rate to another stable clock rate only when in  
self refresh 0ode. Outside of self refresh 0ode, it is illegal to change the clock frequen-  
cy.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
69  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Write Leveling  
After the device has been successfully placed in self refresh 0ode and tCKSRE/  
tCKSRE_PAR have been satisfied, the state of the clock beco0es a "Don’t Care." Follow-  
ing a "Don’t Care," changing the clock frequency is per0issible, provided the new clock  
frequency is stable prior to tCKSRX. When entering and exiting self refresh 0ode for the  
sole purpose of changing the clock frequency, the self refresh entry and exit specifica-  
tions 0ust still be 0et as outlined in SELF REFRESH Operation.  
For the new clock frequency, additional MRS co00ands to MR6, MR2, MR3, MR4, MR5,  
and MR± 0ay need to be issued to progra0 appropriate CL, CWL, gear-down 0ode,  
t
READ and WRITE prea0ble, Co00and Address Latency, and CCD_L/tDLLK values.  
When the clock rate is being increased (faster), the MR settings that require additional  
clocks should be updated prior to the clock rate being increased. In particular, the PL  
latency 0ust be disabled when the clock rate changes, for exa0ple, while in self refresh  
0ode. For exa0ple, if changing the clock rate fro0 DDR4-2133 to DDR4-2933 with CA  
parity 0ode enabled, MR5[2:6] 0ust first change fro0 PL = 4 to PL = disable prior to PL  
= ±. The correct procedure would be to (1) change PL = 4 to disable via MR5 [2:6], (2)  
enter self refresh 0ode, (3) change clock rate fro0 DDR4-2133 to DDR4-2933, (4) exit  
self refresh 0ode, (5) Enable CA parity 0ode setting PL = ± vis MR5 [2:6].  
If the MR settings that require different clocks are updated after the clock rate has been  
changed, for exa0ple. after exiting self refresh 0ode, the required MR settings 0ust be  
updated prior to re0oving the DRAM fro0 the IDLE state, unless the DRAM is RESET. If  
the DRAM leaves the IDLE state to enter self refresh 0ode or ZQ calibration, the updat-  
ing of the required MR settings 0ay be deferred to the next ti0e the DRAM enters the  
IDLE state.  
If MR± is issued prior to self refresh entry for new the tDLLK value, DLL will relock auto-  
0atically at self refresh exit. However, if MR± is issued after self refresh entry, MR6 0ust  
be issued to reset the DLL.  
The device input clock frequency can change only within the 0ini0u0 and 0axi0u0  
operating frequency specified for the particular speed grade. Any frequency change be-  
low the 0ini0u0 operating frequency would require the use of DLL-on 0ode to DLL-  
off 0ode transition sequence (see DLL-On/Off Switching Procedures).  
Write Leveling  
For better signal integrity, DDR4 0e0ory 0odules use fly-by topology for the co0-  
0ands, addresses, control signals, and clocks. Fly-by topology has benefits fro0 the re-  
duced nu0ber of stubs and their length, but it also causes flight-ti0e skew between  
clock and strobe at every DRAM on the DIMM. This 0akes it difficult for the controller  
to 0aintain tDQSS, tDSS, and tDSH specifications. Therefore, the device supports a  
write leveling feature to allow the controller to co0pensate for skew. This feature 0ay  
not be required under so0e syste0 conditions, provided the host can 0aintain the  
tDQSS, tDSS, and tDSH specifications.  
The 0e0ory controller can use the write leveling feature and feedback fro0 the device  
to adjust the DQS (DQS_t, DQS_c) to CK (CK_t, CK_c) relationship. The 0e0ory con-  
troller involved in the leveling 0ust have an adjustable delay setting on DQS to align the  
rising edge of DQS with that of the clock at the DRAM pin. The DRAM asynchronously  
feeds back CK, sa0pled with the rising edge of DQS, through the DQ bus. The controller  
repeatedly delays DQS until a transition fro0 6 to 1 is detected. The DQS delay estab-  
lished though this exercise would ensure the tDQSS specification. Besides tDQSS, tDSS  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
70  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Write Leveling  
and tDSH specifications also need to be fulfilled. One way to achieve this is to co0bine  
the actual tDQSS in the application with an appropriate duty cycle and jitter on the DQS  
signals. Depending on the actual tDQSS in the application, the actual values for tDQSL  
and tDQSH 0ay have to be better than the absolute li0its provided in the AC Ti0ing  
Para0eters section in order to satisfy tDSS and tDSH specifications. A conceptual ti0-  
ing of this sche0e is shown below.  
Figure 16: Write Leveling Concept, Example 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK_c  
CK_t  
Source  
diff_DQS  
Tn  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CK_c  
Destination  
CK_t  
diff_DQS  
DQ  
0 or 1  
0
0
0
Push DQS to capture  
the 0-1 transition  
diff_DQS  
DQ  
0 or 1  
1
1
1
DQS driven by the controller during leveling 0ode 0ust be ter0inated by the DRAM  
based on the ranks populated. Si0ilarly, the DQ bus driven by the DRAM 0ust also be  
ter0inated at the controller.  
All data bits carry the leveling feedback to the controller across the DRAM configura-  
tions: x4, x8, and x1±. On a x1± device, both byte lanes should be leveled independently.  
Therefore, a separate feedback 0echanis0 should be available for each byte lane. The  
upper data bits should provide the feedback of the upper diff_DQS(diff_UDQS)-to-  
clock relationship; the lower data bits would indicate the lower diff_DQS(diff_LDQS)-  
to-clock relationship.  
The figure below is another representative way to view the write leveling procedure. Al-  
though it shows the clock varying to a static strobe, this is for illustrative purpose only;  
the clock does not actually change phase, the strobe is what actually varies. By issuing  
0ultiple WL bursts, the DQS strobe can be varied to capture with fair accuracy the ti0e  
at which the clock edge arrives at the DRAM clock input buffer.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
71  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Write Leveling  
Figure 17: Write Leveling Concept, Example 2  
tWLS  
CK_c  
1 1 1 111 1 1 11 1 1 1 1 1 1 1 1  
tWLH  
CK_t  
CK_c  
0 0 0 0 0 0 0 0 0 0 0 0 0  
tWLS  
CK_t  
tWLH  
CK_c  
CK_t  
11 1 1 1 1 1 1 1 1  
0 0 0 0 0 0 0  
X XX X X X  
DQS_t/  
DQS_c  
tWLO  
DQ (CK 0 to 1)  
DQ (CK 1 to 0)  
DRAM Setting for Write Leveling and DRAM TERMINATION Function in that Mode  
The DRAM enters into write leveling 0ode if A7 in MR1 is HIGH. When leveling is fin-  
ished, the DRAM exits write leveling 0ode if A7 in MR1 is LOW (see the MR Leveling  
Procedures table). Note that in write leveling 0ode, only DQS ter0inations are activa-  
ted and deactivated via the ODT pin, unlike nor0al operation (see DRAM DRAM TER-  
MINATION Function in Leveling Mode table).  
Table 25: MR Settings for Leveling Procedures  
Function  
MR1  
A7  
Enable  
Disable  
Write leveling enable  
Output buffer mode (Q off)  
1
0
0
1
A12  
Table 26: DRAM TERMINATION Function in Leveling Mode  
ODT Pin at DRAM  
DQS_t/DQS_c Termination  
DQ Termination  
RTT(NOM) with ODT HIGH  
RTT(Park) with ODT LOW  
On  
On  
Off  
Off  
1. In write leveling mode, with the mode's output buffer either disabled (MR1[bit7] = 1  
and MR1[bit12] = 1) or with its output buffer enabled (MR1[bit7] = 1 and MR1[bit12] =  
0), all RTT(NOM) and RTT(Park) settings are supported.  
Notes:  
2. RTT(WR) is not allowed in write leveling mode and must be set to disable prior to enter-  
ing write leveling mode.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
72  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Write Leveling  
Procedure Description  
The 0e0ory controller initiates the leveling 0ode of all DRAM by setting bit 7 of MR1  
to 1. When entering write leveling 0ode, the DQ pins are in undefined driving 0ode.  
During write leveling 0ode, only the DESELECT co00and is supported, other than  
MRS co00ands to change the Qoff bit (MR1[A12]) and to exit write leveling (MR1[A7]).  
Upon exiting write leveling 0ode, the MRS co00and perfor0ing the exit (MR1[A7] = 6)  
0ay also change the other MR1 bits. Because the controller levels one rank at a ti0e,  
the output of other ranks 0ust be disabled by setting MR1 bit A12 to 1. The controller  
0ay assert ODT after tMOD, at which ti0e the DRAM is ready to accept the ODT signal,  
unless DODTLon or DODTLoff have been altered (the ODT internal pipe delay is in-  
creased when increasing WRITE latency [WL] or READ latency [RL] by the previous MR  
co00and), then ODT assertion should be delayed by DODTLon after tMOD is satisfied,  
which 0eans the delay is now tMOD + DODTLon.  
The controller 0ay drive DQS_t LOW and DQS_c HIGH after a delay of tWLDQSEN, at  
which ti0e the DRAM has applied ODT to these signals. After tDQSL and tWLMRD, the  
controller provides a single DQS_t, DQS_c edge, which is used by the DRAM to sa0ple  
CK driven fro0 the controller. tWLMRD (MAX) ti0ing is controller dependent.  
The DRAM sa0ples CK status with the rising edge of DQS and provides feedback on all  
the DQ bits asynchronously after tWLO ti0ing. There is a DQ output uncertainty of  
tWLOE defined to allow 0is0atch on DQ bits. The tWLOE period is defined fro0 the  
transition of the earliest DQ bit to the corresponding transition of the latest DQ bit.  
There are no read strobes (DQS_t, DQS_c) needed for these DQs. The controller sa0-  
ples inco0ing DQ and either incre0ents or decre0ents DQS delay setting and launch-  
es the next DQS pulse after so0e ti0e, which is controller dependent. After a 6-to-1  
transition is detected, the controller locks the DQS delay setting, and write leveling is  
achieved for the device. The following figure shows the ti0ing diagra0 and para0eters  
for the overall write leveling procedure.  
Figure 18: Write Leveling Sequence (DQS Capturing CK LOW at T1 and CK HIGH at T2)  
T1  
T2  
tWLH  
tWLH  
tWLS  
tWLS  
CK_c5  
CK_t  
DES3  
DES  
OP  
DES  
DES  
MRS2  
DES  
DES  
DES  
DES  
DES  
Command  
DES  
DES  
tMOD  
ODT  
tDQSH6  
tDQSL6  
tDQSL6  
tDQSH6  
tWLDQSEN  
diff_DQS4  
tWLMRD  
tWLO  
tWLO  
Late Prime DQ1  
Early Prime DQ1  
tWLOE  
tWLO  
tWLO  
tWLOE  
Time Break  
Undefined Driving Mode  
Don’t Care  
1. The device drives leveling feedback on all DQs.  
2. MRS: Load MR1 to enter write leveling mode.  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
73  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Write Leveling  
3. diff_DQS is the differential data strobe. Timing reference points are the zero crossings.  
DQS_t is shown with a solid line; DQS_c is shown with a dotted line.  
4. CK_t is shown with a solid dark line; CK_c is shown with a dotted line.  
5. DQS needs to fulfill minimum pulse width requirements, tDQSH (MIN) and tDQSL (MIN),  
as defined for regular WRITEs; the maximum pulse width is system dependent.  
6. tWLDQSEN must be satisfied following equation when using ODT:  
• DLL = Enable, then tWLDQSEN > tMOD (MIN) + DODTLon + tADC  
• DLL = Disable, then tWLDQSEN > tMOD (MIN) + tAONAS  
Write Leveling Mode Exit  
Write leveling 0ode should be exited as follows:  
1. After the last rising strobe edge (see ~T6), stop driving the strobe signals (see  
~Tc6). Note that fro0 this point on, DQ pins are in undefined driving 0ode and  
will re0ain undefined, until tMOD after the respective MR co00and (Te1).  
2. Drive ODT pin LOW (tIS 0ust be satisfied) and continue registering LOW (see  
Tb6).  
3. After RTT is switched off, disable write leveling 0ode via the MRS co00and (see  
Tc2).  
4. After tMOD is satisfied (Te1), any valid co00and can be registered. (MR co0-  
0ands can be issued after tMRD [Td1]).  
Figure 19: Write Leveling Exit  
T0  
T1  
T2  
Ta0  
Tb0  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
Te0  
Te1  
CK_c  
CK_t  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tMRD  
Valid  
Valid  
Valid  
Valid  
DES  
DES  
Command  
Address  
ODT  
DES  
MR1  
tIS  
t
MOD  
t
ODTL (OFF)  
ADC (MIN)  
R
TT(DQS_t)  
RTT(NON)  
RTT(Park)  
R
TT(DQS_c)  
t
ADC (MAX)  
DQS_t,  
DQS_c  
R
TT(DQ)  
t
WLO  
1
DQ  
result = 1  
Time Break  
Transitioning  
Don’t Care  
Undefined Driving Mode  
1. The DQ result = 1 between Ta0 and Tc0 is a result of the DQS signals capturing CK_t  
HIGH just after the T0 state.  
2. See previous figure for specific tWLO timing.  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
74  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command Address Latency  
Command Address Latency  
DDR4 supports the co00and address latency (CAL) function as a power savings fea-  
ture. This feature can be enabled or disabled via the MRS setting. CAL ti0ing is defined  
as the delay in clock cycles (tCAL) between a CS_n registered LOW and its correspond-  
ing registered co00and and address. The value of CAL in clocks 0ust be progra00ed  
into the 0ode register (see MR1 Register Definition table) and is based on the equation  
tCK(ns)/tCAL(ns), rounded up in clocks.  
Figure 20: CAL Timing Definition  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CLK  
CS_n  
CMD/ADDR  
t
CAL  
CAL gives the DRAM ti0e to enable the co00and and address receivers before a co0-  
0and is issued. After the co00and and the address are latched, the receivers can be  
disabled if CS_n returns to HIGH. For consecutive co00ands, the DRAM will keep the  
co00and and address input receivers enabled for the duration of the co00and se-  
quence.  
Figure 21: CAL Timing Example (Consecutive CS_n = LOW)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK  
CS_n  
CMD/ADDR  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
75  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command Address Latency  
When the CAL 0ode is enabled, additional ti0e is required for the MRS co00and to  
co0plete. The earliest the next valid co00and can be issued is tMOD_CAL, which  
should be equal to tMOD + tCAL. The two following figures are exa0ples.  
Figure 22: CAL Enable Timing – tMOD_CAL  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Tb0  
Tb1  
Tb2  
Tb3  
CK_c  
CK_t  
Command  
Address  
Valid  
Valid  
MRS  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
CS_n  
t
CAL  
t
MOD_CAL  
Settings  
Old settings  
Updating settings  
New settings  
Time Break  
Don’t Care  
1. CAL mode is enabled at T1.  
Note:  
Figure 23: tMOD_CAL, MRS to Valid Command Timing with CAL Enabled  
T0  
T1  
Ta0  
Ta1  
Ta2  
Tb0  
Tb1  
Tb2  
Tc0  
Tc1  
Tc2  
CK_c  
CK_t  
Command  
Valid  
Valid  
DES  
DES  
MRS  
DES  
DES  
DES  
DES  
DES  
Valid  
Valid  
Valid  
Valid  
t
t
CAL  
CAL  
Address  
CS_n  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
t
MOD_CAL  
Settings  
Old settings  
Updating settings  
New settings  
Time Break  
Don’t Care  
1. MRS at Ta1 may or may not modify CAL, tMOD_CAL is computed based on new tCAL set-  
ting if modified.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
76  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command Address Latency  
When the CAL 0ode is enabled or being enabled, the earliest the next MRS co00and  
can be issued is tMRD_CAL is equal to tMOD + tCAL. The two following figures are ex-  
a0ples.  
Figure 24: CAL Enabling MRS to Next MRS Command, tMRD_CAL  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Tb0  
Tb1  
Tb2  
Tb3  
CK_c  
CK_t  
Command  
Valid  
Valid  
MRS  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
MRS  
DES  
tCAL  
Address  
CS_n  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
tMRD_CAL  
Settings  
Old settings  
Updating settings  
Updating settings  
Time Break  
Don’t Care  
1. Command address latency mode is enabled at T1.  
Note:  
Figure 25: tMRD_CAL, Mode Register Cycle Time With CAL Enabled  
7ꢅ  
7ꢇ  
7D  
7D  
7D  
7Eꢅ  
7Eꢇ  
7Eꢈ  
7F  
7F  
7F  
CK_c  
CK_t  
Command  
9DOLG  
9DOLG  
'(6  
9DOLG  
'(6  
9DOLG  
056  
9DOLG  
'(6  
9DOLG  
'(6  
9DOLG  
'(6  
9DOLG  
'(6  
9DOLG  
'(6  
9DOLG  
056  
9DOLG  
'(6  
9DOLG  
W
W
&$/  
&$/  
Address  
CS_n  
W
05'B&$/  
Settings  
2OGꢀVHWWLQJV  
8SGDWLQJꢀVHWWLQJV  
1HZꢀVHWWLQJV  
7LPHꢀ%UHDN  
'RQ¶Wꢀ&DUH  
1. MRS at Ta1 may or may not modify CAL, tMRD_CAL is computed based on new tCAL set-  
ting if modified.  
Note:  
CAL Exa0ples: Consecutive READ BL8 with two different CALs and 1tCK prea0ble in  
different bank group shown in the following figures.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
77  
© 2016 Micron Technology, Inc. All rights reserved.  
Figure 26: Consecutive READ BL8, CAL3, 1tCK Preamble, Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
CK_c  
CK_t  
CS_n  
tCAL = 3  
tCAL = 3  
DES  
DES  
DES  
DES  
READ  
BG b  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Command  
READ  
BG a  
tCCD_S = 4  
Bank Group  
Address  
Bank,  
Col n  
Bank,  
Col b  
Address  
tRPST  
tRPRE (1nCK)  
DQS_t, DQS_c  
DQ  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
OUT  
b + 7  
OUT  
n
OUT  
n + 1  
OUT  
n + 2  
OUT  
n + 3  
OUT  
n + 4  
OUT  
n + 5  
OUT  
n + 6  
OUT  
n + 7  
OUT  
b
OUT  
b + 7  
OUT  
b + 2  
OUT  
b + 3  
OUT  
b + 4  
OUT  
b + 5  
OUT  
b + 6  
RL = 11  
RL = 11  
Transitioning Data  
Don’t Care  
1. BL = 8, AL = 0, CL = 11, CAL = 3, Preamble = 1tCK.  
2. DOUT n = data-out from column n; DOUT b = data-out from column b.  
3. DES commands are shown for ease of illustration, other commands may be valid at these times.  
Notes:  
4. BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during READ command at T3 and  
T7.  
5. CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable.  
6. Enabling CAL mode does not impact ODT control timings. ODT control timings should be maintained with the  
same timing relationship relative to the command/address bus as when CAL is disabled.  
Figure 27: Consecutive READ BL8, CAL4, 1tCK Preamble, Different Bank Group  
7ꢅ  
7ꢇ  
7ꢈ  
7ꢋ  
7ꢃ  
7ꢐ  
7ꢂ  
7ꢉ  
7ꢁ  
7ꢇꢃ  
7ꢇꢐ  
7ꢇꢂ  
7ꢇꢉ  
7ꢇꢁ  
7ꢇꢑ  
7ꢈꢅ  
7ꢈꢇ  
7ꢈꢈ  
7ꢈꢋ  
&.BF  
&.BW  
&6BQ  
W&$/ꢀ ꢀꢃ  
W&$/ꢀ ꢀꢃ  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
5($'  
%*ꢀE  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
&RPPDQG  
5($'  
%*ꢀD  
W&&'B6ꢀ ꢀꢃ  
%DQNꢀ*URXS  
$GGUHVV  
%DQNꢆ  
&ROꢀQ  
%DQNꢆ  
&ROꢀE  
$GGUHVV  
W5367  
W535(ꢀꢌꢇQ&.ꢎ  
'46BWꢆꢀꢀ'46BF  
'4  
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
287  
ꢀEꢀꢓꢀꢉ  
287  
ꢀQ  
287  
ꢀQꢀꢓꢀꢇ  
287  
ꢀQꢀꢓꢀꢈ  
287  
ꢀQꢀꢓꢀꢋ  
287  
ꢀQꢀꢓꢀꢃ  
287  
ꢀQꢀꢓꢀꢐ  
287  
ꢀQꢀꢓꢀꢂ  
287  
Qꢀꢓꢀꢉ  
287  
ꢀE  
287  
ꢀEꢀꢓꢀꢉ  
287  
ꢀEꢀꢓꢀꢈ  
287  
ꢀEꢀꢓꢀꢋ  
287  
ꢀEꢀꢓꢀꢃ  
287  
ꢀEꢀꢓꢀꢐ  
287  
ꢀEꢀꢓꢀꢂ  
5/ꢀ ꢀꢇꢇ  
5/ꢀ ꢀꢇꢇ  
7UDQVLWLRQLQJꢀ'DWD  
'RQ¶Wꢀ&DUH  
1. BL = 8, AL = 0, CL = 11, CAL = 4, Preamble = 1tCK.  
2. DOUT n = data-out from column n; DOUT b = data-out from column b.  
3. DES commands are shown for ease of illustration, other commands may be valid at these times.  
Notes:  
4. BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during READ command at T4 and  
T8.  
5. CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable.  
6. Enabling CAL mode does not impact ODT control timings. ODT control timings should be maintained with the  
same timing relationship relative to the command/address bus as when CAL is disabled.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Low-Power Auto Self Refresh Mode  
Low-Power Auto Self Refresh Mode  
An auto self refresh 0ode is provided for application ease. Auto self refresh 0ode is en-  
abled by setting MR2[±] = 1 and MR2[7] = 1. The device will 0anage self refresh entry  
over the supported te0perature range of the DRAM. In this 0ode, the device will  
change its self refresh rate as the DRAM operating te0perature changes, going lower at  
low te0peratures and higher at high te0peratures.  
Manual Self Refresh Mode  
If auto self refresh 0ode is not enabled, the low-power auto self refresh 0ode register  
0ust be 0anually progra00ed to one of the three self refresh operating 0odes. This  
0ode provides the flexibility to select a fixed self refresh operating 0ode at the entry of  
the self refresh, according to the syste0 0e0ory te0perature conditions. The user is  
responsible for 0aintaining the required 0e0ory te0perature condition for the 0ode  
selected during the SELF REFRESH operation. The user 0ay change the selected 0ode  
after exiting self refresh and before entering the next self refresh. If the te0perature  
condition is exceeded for the 0ode selected, there is a risk to data retention resulting in  
loss of data.  
Table 27: Auto Self Refresh Mode  
Low-Power  
Auto Self Refresh  
Mode  
Operating Temperature  
Range for Self Refresh Mode  
MR2[7] MR2[6]  
SELF REFRESH Operation  
(DRAM TCASE)  
0
0
Normal  
Fixed normal self refresh rate maintains data  
retention at the normal operating tempera-  
ture. User is required to ensure that 85°C  
DRAM TCASE (MAX) is not exceeded to avoid  
any risk of data loss.  
–40°C to 85°C  
1
0
0
1
Extended  
temperature  
Fixed high self refresh rate optimizes data re-  
tention to support the extended tempera-  
ture range.  
–40°C to 125°C  
–40°C to 45°C  
Reduced  
temperature  
Variable or fixed self refresh rate or any oth-  
er DRAM power consumption reduction con-  
trol for the reduced temperature range. User  
is required to ensure 45°C DRAM TCASE  
(MAX) is not exceeded to avoid any risk of  
data loss.  
1
1
Auto self refresh  
Auto self refresh mode enabled. Self refresh  
power consumption and data retention are  
optimized for any given operating tempera-  
ture condition.  
All of the above  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
80  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Low-Power Auto Self Refresh Mode  
Figure 28: Auto Self Refresh Ranges  
IDD6  
2x refresh rate  
1x refresh rate  
Extended  
temperature  
range  
1/2x refresh rate  
Reduced  
temperature  
range  
Normal  
temperature  
range  
Tc  
25°C  
45°C  
85°C  
125°C  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
81  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
Multipurpose Register  
The MULTIPURPOSE REGISTER (MPR) function, MPR access 0ode, is used to write/  
read specialized data to/fro0 the DRAM. The MPR consists of four logical pages, MPR  
Page 6 through MPR Page 3, with each page having four 8-bit registers, MPR6 through  
MPR3. Page 6 can be read by any of three readout 0odes (serial, parallel, or staggered)  
while Pages 1, 2, and 3 can be read by only the serial readout 0ode. Page 3 is for DRAM  
vendor use only. MPR 0ode enable and page selection is done with MRS co00ands.  
Data bus inversion (DBI) is not allowed during MPR READ operation.  
Once the MPR access 0ode is enabled (MR3[2] = 1), only the following co00ands are  
allowed: MRS, RD, RDA WR, WRA, DES, REF, and RESET; RDA/WRA have the sa0e func-  
tionality as RD/WR which 0eans the auto precharge part of RDA/WRA is ignored. Pow-  
er-down 0ode and SELF REFRESH co00and are not allowed during MPR enable  
0ode. No other co00and can be issued within tRFC after a REF co00and has been  
issued; 1x refresh (only) is to be used during MPR access 0ode. While in MPR access  
0ode, MPR read or write sequences 0ust be co0pleted prior to a REFRESH co00and.  
Figure 29: MPR Block Diagram  
Memory core  
(all banks precharged)  
Four multipurpose registers (pages),  
each with four 8-bit registers:  
MR3 [2] = 1  
Data patterns (RD/WR)  
Error log (RD)  
Mode registers (RD)  
DRAM manufacture only (RD)  
DQ,s DM_n/DBI_n, DQS_t, DQS_c  
Table 28: MR3 Setting for the MPR Access Mode  
Address  
Operation Mode  
Description  
A[12:11]  
MPR data read format  
00 = Serial ........... 01 = Parallel  
10 = Staggered .... 11 = Reserved  
A2  
MPR access  
0 = Standard operation (MPR not enabled)  
1 = MPR data flow enabled  
A[1:0]  
MPR page selection  
00 = Page 0 .... 01 = Page 1  
10 = Page 2 .... 11 = Page 3  
Table 29: DRAM Address to MPR UI Translation  
MPR Location  
DRAM address – Ax  
MPR UI – UIx  
[7]  
A7  
[6]  
A6  
[5]  
A5  
[4]  
A4  
[3]  
A3  
[2]  
A2  
[1]  
A1  
[0]  
A0  
UI0  
UI1  
UI2  
UI3  
UI4  
UI5  
UI6  
UI7  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
82  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
Table 30: MPR Page and MPRx Definitions  
Address MPR Location  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Note  
MPR Page 0 – Read or Write (Data Patterns)  
BA[1:0]  
00 = MPR0  
01 = MPR1  
10 = MPR2  
11 = MPR3  
0
0
0
0
1
0
0
0
0
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
0
1
1
0
1
1
1
0
Read/  
Write  
(default  
value lis-  
ted)  
MPR Page 1 – Read-only (Error Log)  
BA[1:0]  
00 = MPR0  
01 = MPR1  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A9  
A0  
A8  
Read-on-  
ly  
CAS_n/A WE_n/A1  
A13  
A12  
A11  
A10  
15  
4
10 = MPR2  
11 = MPR3  
PAR  
ACT_n  
BG1  
BG0  
BA1  
BA0  
C2  
A17  
C1  
RAS_n/A  
16  
CRC er- CA pari-  
ror sta- ty error  
tus  
CA parity latency: [5] =  
MR5[2], [4] = MR5[1], [3] =  
MR5[0]  
C0  
status  
MPR Page 2 – Read-only (MRS Readout)  
BA[1:0]  
00 = MPR0  
01 = MPR1  
hPPR  
sPPR  
RTT(WR)  
Temperature sen- CRC write  
R
TT(WR) MR2[10:9] Read-on-  
ly  
support support MR2[11]  
sor status2  
enable  
MR2[12]  
VREFDQ  
traing-  
ing  
range  
MR6[6]  
V
REFDQ training value: [6:1] = MR6[5:0]  
Gear-  
down  
enable  
MR3[3]  
10 = MPR2  
11 = MPR3  
CAS latency: [7:3] = MR0[6:4,2,12]  
CAS write latency [2:0] =  
MR2[5:3]  
R
TT(NOM): [7:5] = MR1[10:8]  
RTT(Park): [4:2] = MR5[8:6]  
RON: [1:0] =  
MR2[2:1]  
MPR Page 3 – Read-only (Restricted, except for MPR3 [3:0])  
BA[1:0]  
00 = MPR0  
01 = MPR1  
10 = MPR2  
11 = MPR3  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
DC  
Read-on-  
ly  
DC  
DC  
DC  
DC  
DC  
MAC  
MAC  
MAC  
MAC  
1. DC = "Don't Care"  
Notes:  
2. MPR[4:3] 00 = Sub 1X refresh; MPR[4:3] 01 = 1X refresh; MPR[4:3] 10 = 2X refresh;  
MPR[4:3] 11 = Reserved  
MPR Reads  
MPR reads are supported using BL8 and BC4 0odes. Burst length on-the-fly is not sup-  
ported for MPR reads. Data bus inversion (DBI) is not allowed during MPR READ opera-  
tion; the device will ignore the Read DBI enable setting in MR5 [12] when in MPR 0ode.  
READ co00ands for BC4 are supported with a starting colu0n address of A[2:6] = 666  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
83  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
or 166. After power-up, the content of MPR Page 6 has the default values, which are de-  
fined in Table 36. MPR page 6 can be rewritten via an MPR WRITE co00and. The de-  
vice 0aintains the default values unless it is rewritten by the DRAM controller. If the  
DRAM controller does overwrite the default values (Page 6 only), the device will 0ain-  
tain the new values unless re-initialized or there is power loss.  
Ti0ing in MPR 0ode:  
• Reads (back-to-back) fro0 Page 6 0ay use tCCD_S or tCCD_L ti0ing between READ  
co00ands  
• Reads (back-to-back) fro0 Pages 1, 2, or 3 0ay not use tCCD_S ti0ing between READ  
co00ands; tCCD_L 0ust be used for ti0ing between READ co00ands  
The following steps are required to use the MPR to read out the contents of a 0ode reg-  
ister (MPR Page x, MPRy).  
1. The DLL 0ust be locked if enabled.  
2. Precharge all; wait until tRP is satisfied.  
3. MRS co00and to MR3[2] = 1 (Enable MPR data flow), MR3[12:11] = MPR read for-  
0at, and MR3[1:6] MPR page.  
a. MR3[12:11] MPR read for0at:  
1. 66 = Serial read for0at  
2. 61 = Parallel read for0at  
3. 16 = staggered read for0at  
4. 11 = RFU  
b. MR3[1:6] MPR page:  
1. 66 = MPR Page 6  
2. 61 = MPR Page 1  
3. 16 = MPR Page 2  
4. 11 = MPR Page 3  
4. tMRD and tMOD 0ust be satisfied.  
5. Redirect all subsequent READ co00ands to specific MPRx location.  
±. Issue RD or RDA co00and.  
a. BA1 and BA6 indicate MPRx location:  
1. 66 = MPR6  
2. 61 = MPR1  
3. 16 = MPR2  
4. 11 = MPR3  
b. A12/BC = 6 or 1; BL8 or BC4 fixed-only, BC4 OTF not supported.  
1. If BL = 8 and MR6 A[1:6] = 61, A12/BC 0ust be set to 1 during MPR  
READ co00ands.  
c. A2 = burst-type dependant:  
1. BL8: A2 = 6 with burst order fixed at 6, 1, 2, 3, 4, 5, ±, 7  
2. BL8: A2 = 1 not allowed  
3. BC4: A2 = 6 with burst order fixed at 6, 1, 2, 3, T, T, T, T  
4. BC4: A2 = 1 with burst order fixed at 4, 5, ±, 7, T, T, T, T  
d. A[1:6] = 66, data burst is fixed nibble start at 66.  
e. Re0aining address inputs, including A16, and BG1 and BG6 are "Don’t  
Care."  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
84  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
7. After RL = AL + CL, DRAM bursts data fro0 MPRx location; MPR readout for0at  
deter0ined by MR3[A12,11,1,6].  
8. Steps 5 through 7 0ay be repeated to read additional MPRx locations.  
9. After the last MPRx READ burst, tMPRR 0ust be satisfied prior to exiting.  
16. Issue MRS co00and to exit MPR 0ode; MR3[2] = 6.  
11. After the tMOD sequence is co0pleted, the DRAM is ready for nor0al operation  
fro0 the core (such as ACT).  
MPR Readout Format  
The MPR read data for0at can be set to three different settings: serial, parallel, and  
staggered.  
MPR Readout Serial Format  
The serial for0at is required when enabling the MPR function to read out the contents  
of an MRx, te0perature sensor status, and the co00and address parity error fra0e.  
However, data bus calibration locations (four 8-bit registers) can be progra00ed to  
read out any of the three for0ats. The DRAM is required to drive associated strobes  
with the read data si0ilar to nor0al operation (such as using MRS prea0ble settings).  
Serial for0at i0plies that the sa0e pattern is returned on all DQ lanes, as shown the  
table below, which uses values progra00ed into the MPR via [7:6] as 6111 1111.  
Table 31: MPR Readout Serial Format  
Serial  
x4 Device  
DQ0  
UI0  
UI1  
UI2  
UI3  
UI4  
UI5  
UI6  
UI7  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DQ1  
DQ2  
DQ3  
x8 Device  
DQ0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
x16 Device  
DQ0  
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DQ1  
DQ2  
DQ3  
DQ4  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
85  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
Table 31: MPR Readout Serial Format (Continued)  
Serial  
DQ5  
UI0  
0
UI1  
1
UI2  
1
UI3  
1
UI4  
1
UI5  
1
UI6  
1
UI7  
1
DQ6  
0
1
1
1
1
1
1
1
DQ7  
0
1
1
1
1
1
1
1
DQ8  
0
1
1
1
1
1
1
1
DQ9  
0
1
1
1
1
1
1
1
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
MPR Readout Parallel Format  
Parallel for0at i0plies that the MPR data is returned in the first data UI and then repea-  
ted in the re0aining UIs of the burst, as shown in the table below. Data pattern location  
6 is the only location used for the parallel for0at. RD/RDA fro0 data pattern locations  
1, 2, and 3 are not allowed with parallel data return 0ode. In this exa0ple, the pattern  
progra00ed in the data pattern location 6 is 6111 1111. The x4 configuration only out-  
puts the first four bits (6111 in this exa0ple). For the x1± configuration, the sa0e pat-  
tern is repeated on both the upper and lower bytes.  
Table 32: MPR Readout – Parallel Format  
Parallel  
x4 Device  
DQ0  
UI0  
UI1  
UI2  
UI3  
UI4  
UI5  
UI6  
UI7  
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1
DQ1  
DQ2  
DQ3  
x8 Device  
DQ0  
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
x16 Device  
DQ0  
0
0
0
0
0
0
0
0
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
86  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
Table 32: MPR Readout – Parallel Format (Continued)  
Parallel  
DQ1  
UI0  
1
UI1  
1
UI2  
1
UI3  
1
UI4  
1
UI5  
1
UI6  
1
UI7  
1
DQ2  
1
1
1
1
1
1
1
1
DQ3  
1
1
1
1
1
1
1
1
DQ4  
1
1
1
1
1
1
1
1
DQ5  
1
1
1
1
1
1
1
1
DQ6  
1
1
1
1
1
1
1
1
DQ7  
1
1
1
1
1
1
1
1
DQ8  
0
0
0
0
0
0
0
0
DQ9  
1
1
1
1
1
1
1
1
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
MPR Readout Staggered Format  
Staggered for0at of data return is defined as the staggering of the MPR data across the  
lanes. In this 0ode, an RD/RDA co00and is issued to a specific data pattern location  
and then the data is returned on the DQ fro0 each of the different data pattern loca-  
tions. For the x4 configuration, an RD/RDA to data pattern location 6 will result in data  
fro0 location 6 being driven on DQ6, data fro0 location 1 being driven on DQ1, data  
fro0 location 2 being driven on DQ2, and so on, as shown below. Si0ilarly, an RD/RDA  
co00and to data pattern location 1 will result in data fro0 location 1 being driven on  
DQ6, data fro0 location 2 being driven on DQ1, data fro0 location 3 being driven on  
DQ2, and so on. Exa0ples of different starting locations are also shown.  
Table 33: MPR Readout Staggered Format, x4  
x4 READ MPR0 Command x4 READ MPR1 Command x4 READ MPR2 Command x4 READ MPR3 Command  
Stagger  
DQ0  
UI[7:0]  
MPR0  
MPR1  
MPR2  
MPR3  
Stagger  
DQ0  
UI[7:0]  
MPR1  
MPR2  
MPR3  
MPR0  
Stagger  
DQ0  
UI[7:0]  
MPR2  
MPR3  
MPR0  
MPR1  
Stagger  
DQ0  
UI[7:0]  
MPR3  
MPR0  
MPR1  
MPR2  
DQ1  
DQ1  
DQ1  
DQ1  
DQ2  
DQ2  
DQ2  
DQ2  
DQ3  
DQ3  
DQ3  
DQ3  
It is expected that the DRAM can respond to back-to-back RD/RDA co00ands to the  
MPR for all DDR4 frequencies so that a sequence (such as the one that follows) can be  
created on the data bus with no bubbles or clocks between read data. In this case, the  
syste0 0e0ory controller issues a sequence of RD(MPR6), RD(MPR1), RD(MPR2),  
RD(MPR3), RD(MPR6), RD(MPR1), RD(MPR2), and RD(MPR3).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
87  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
Table 34: MPR Readout Staggered Format, x4 – Consecutive READs  
Stagger  
DQ0  
UI[7:0]  
MPR0  
MPR1  
MPR2  
MPR3  
UI[15:8]  
MPR1  
MPR2  
MPR3  
MPR0  
UI[23:16]  
MPR2  
UI[31:24]  
MPR3  
UI[39:32]  
MPR0  
UI[47:40]  
MPR1  
UI[55:48]  
MPR2  
UI[63:56]  
MPR3  
DQ1  
MPR3  
MPR0  
MPR1  
MPR2  
MPR3  
MPR0  
DQ2  
MPR0  
MPR1  
MPR2  
MPR3  
MPR0  
MPR1  
DQ3  
MPR1  
MPR2  
MPR3  
MPR0  
MPR1  
MPR2  
For the x8 configuration, the sa0e pattern is repeated on the lower nibble as on the up-  
per nibble. READs to other MPR data pattern locations follow the sa0e for0at as the x4  
case. A read exa0ple to MPR6 for x8 and x1± configurations is shown below.  
Table 35: MPR Readout Staggered Format, x8 and x16  
x8 READ MPR0 Command  
x16 READ MPR0 Command  
x16 READ MPR0 Command  
Stagger  
DQ0  
UI[7:0]  
MPR0  
MPR1  
MPR2  
MPR3  
MPR0  
MPR1  
MPR2  
MPR3  
Stagger  
DQ0  
UI[7:0]  
MPR0  
MPR1  
MPR2  
MPR3  
MPR0  
MPR1  
MPR2  
MPR3  
Stagger  
DQ8  
UI[7:0]  
MPR0  
MPR1  
MPR2  
MPR3  
MPR0  
MPR1  
MPR2  
MPR3  
DQ1  
DQ1  
DQ9  
DQ2  
DQ2  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQ3  
DQ3  
DQ4  
DQ4  
DQ5  
DQ5  
DQ6  
DQ6  
DQ7  
DQ7  
MPR READ Waveforms  
The following wavefor0s show MPR read accesses.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
88  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
Figure 30: MPR READ Timing  
T0  
Ta0  
Ta1  
Tb0  
Tc0  
Tc1  
Tc2  
Tc3  
Td0  
Td1  
Te0  
Tf0  
Tf1  
CK_c  
CK_t  
MPE Enable  
MPE Disable  
1
3
4
Command  
Address  
CKE  
PREA  
Valid  
MRS  
DES  
READ  
DES  
DES  
DES  
DES  
DES  
DES  
MRS  
Valid  
DES  
t
t
t
t
MPRR  
MOD  
RP  
MOD  
Valid  
2
Valid  
Add  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
5
PL + AL + CL  
DQS_t,  
DQS_c  
DQ  
UI0 UI1 UI2 UI5 UI6 UI7  
Time Break  
Don’t Care  
1. tCCD_S = 4tCK, Read Preamble = 1tCK.  
2. Address setting:  
Notes:  
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)  
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7)  
BA1 and BA0 indicate the MPR location  
A10 and other address pins are "Don’t Care," including BG1 and BG0. A12 is "Don’t  
Care" when MR0 A[1:0] = 00 or 10 and must be 1b when MR0 A[1:0] = 01  
3. Multipurpose registers read/write disable (MR3 A2 = 0).  
4. Continue with regular DRAM command.  
5. Parity latency (PL) is added to data output delay when CA parity latency mode is ena-  
bled.  
Figure 31: MPR Back-to-Back READ Timing  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Ta9  
Ta10  
CK_c  
CK_t  
Command  
DES  
READ  
DES  
DES  
DES  
READ  
Valid  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
1
CCD_S  
2
2
Address  
CKE  
Valid  
Add  
Valid  
Add  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
3
PL + AL + CL  
DQS_t,  
DQS_c  
DQ  
UI0 UI1 UI2 UI3 UI4 UI5 UI6 UI7 UI0 UI1 UI2 UI3 UI4 UI5 UI6 UI7  
DQS_t,  
DQS_c  
DQ  
UI0 UI1 UI2 UI3  
UI0 UI1 UI2 UI3  
Time Break  
Don’t Care  
1. tCCD_S = 4tCK, Read Preamble = 1tCK.  
2. Address setting:  
Notes:  
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
89  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7; for BC = 4, burst order is  
fixed at 0, 1, 2, 3, T, T, T, T)  
BA1 and BA0 indicate the MPR location  
A10 and other address pins are "Don’t Care," including BG1 and BG0. A12 is "Don’t  
Care" when MR0 A[1:0] = 00 or 10 and must be 1b when MR0 A[1:0] = 01  
3. Parity latency (PL) is added to data output delay when CA parity latency mode is ena-  
bled.  
Figure 32: MPR READ-to-WRITE Timing  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Tb0  
Tb1  
Tb2  
CK_c  
CK_t  
Command  
Address  
CKE  
READ  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
WRITE  
DES  
DES  
t
MPRR  
1
2
Add  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Add  
Valid  
Valid  
3
PL + AL + CL  
DQS_t,  
DQS_c  
DQ  
UI0 UI1 UI2 UI3 UI4 UI5 UI6 UI7  
Time Break  
Don’t Care  
1. Address setting:  
Notes:  
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)  
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7)  
BA1 and BA0 indicate the MPR location  
A10 and other address pins are "Don’t Care," including BG1 and BG0. A12 is "Don’t  
Care" when MR0 A[1:0] = 00 and must be 1b when MR0 A[1:0] = 01  
2. Address setting:  
BA1 and BA0 indicate the MPR location  
A[7:0] = data for MPR  
BA1 and BA0 indicate the MPR location  
A10 and other address pins are "Don’t Care"  
3. Parity latency (PL) is added to data output delay when CA parity latency mode is ena-  
bled.  
MPR Writes  
MPR access 0ode allows 8-bit writes to the MPR Page 6 using the address bus A[7:6].  
Data bus inversion (DBI) is not allowed during MPR WRITE operation. The DRAM will  
0aintain the new written values unless re-initialized or there is power loss.  
The following steps are required to use the MPR to write to 0ode register MPR Page 6.  
1. The DLL 0ust be locked if enabled.  
2. Precharge all; wait until tRP is satisfied.  
3. MRS co00and to MR3[2] = 1 (enable MPR data flow) and MR3[1:6] = 66 (MPR  
Page 6); writes to 61, 16, and 11 are not allowed.  
4. tMRD and tMOD 0ust be satisfied.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
90  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
5. Redirect all subsequent WRITE co00ands to specific MPRx location.  
±. Issue WR or WRA co00and:  
a. BA1 and BA6 indicate MPRx location  
1. 66 = MPR6  
2. 61 = MPR1  
3. 16 = MPR2  
4. 11 = MPR3  
b. A[7:6] = data for MPR Page 6, 0apped A[7:6] to UI[7:6].  
c. Re0aining address inputs, including A16, and BG1 and BG6 are "Don’t  
Care."  
7. tWR_MPR 0ust be satisfied to co0plete MPR WRITE.  
8. Steps 5 through 7 0ay be repeated to write additional MPRx locations.  
9. After the last MPRx WRITE, tMPRR 0ust be satisfied prior to exiting.  
16. Issue MRS co00and to exit MPR 0ode; MR3[2] = 6.  
11. When the tMOD sequence is co0pleted, the DRAM is ready for nor0al operation  
fro0 the core (such as ACT).  
MPR WRITE Waveforms  
The following wavefor0s show MPR write accesses.  
Figure 33: MPR WRITE and WRITE-to-READ Timing  
T0  
Ta0  
Ta1  
Tb0  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
Td2  
Td3  
DES  
Td4  
Td5  
CK_c  
CK_t  
MPR Enable  
1
Command  
Address  
CKE  
PREA  
Valid  
MRS  
DES  
WRITE  
DES  
t
DES  
READ  
Add  
DES  
DES  
DES  
DES  
DES  
t
t
RP  
MOD  
WR_MPR  
2
2
Valid  
Valid  
Add  
Valid  
Valid  
Valid  
Valid  
Valid  
Add  
Valid  
Valid  
3
PL + AL + CL  
DQS_t,  
DQS_c  
DQ  
UI0 UI1 UI2 UI3 UI4 UI5 UI6 UI7  
Time Break  
Don’t Care  
1. Multipurpose registers read/write enable (MR3 A2 = 1).  
Notes:  
2. Address setting:  
BA1 and BA0 indicate the MPR location  
A10 and other address pins are "Don’t Care"  
3. Parity latency (PL) is added to data output delay when CA parity latency mode is ena-  
bled.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
91  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
Figure 34: MPR Back-to-Back WRITE Timing  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Ta9  
Ta10  
CK_c  
CK_t  
Command  
Address  
CKE  
WRITE  
Add1  
DES  
DES  
DES  
WRITE  
Valid  
DES  
DES  
Add  
DES  
DES  
DES  
DES  
DES  
DES  
tWR_MPR  
Valid  
Valid  
Add1  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
DQS_t,  
DQS_c  
DQ  
Time Break  
Don’t Care  
1. Address setting:  
Note:  
BA1 and BA0 indicate the MPR location  
A[7:0] = data for MPR  
A10 and other address pins are "Don’t Care"  
MPR REFRESH Waveforms  
The following wavefor0s show MPR accesses interaction with refreshes.  
Figure 35: REFRESH Timing  
T0  
Ta0  
Ta1  
Tb0  
Tb1  
Tb2  
Tb3  
Tb4  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
CK_c  
CK_t  
MPR Enable  
1
2
Command  
Address  
PREA  
Valid  
MRS  
DES  
REF  
DES  
DES  
DES  
DES  
DES  
DES  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
t
t
t
RP  
MOD  
RFC  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Time Break  
Don’t Care  
1. Multipurpose registers read/write enable (MR3 A2 = 1). Redirect all subsequent read and  
writes to MPR locations.  
Notes:  
2. 1x refresh is only allowed when MPR mode is enabled.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
92  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
Figure 36: READ-to-REFRESH Timing  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Ta9  
CK_c  
CK_t  
Command  
Address  
CKE  
READ  
Add1  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
REF2  
DES  
DES  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
PL + AL + CL  
(4 + 1) + Clocks  
tRFC  
BL = 8  
DQS_t, DQS_c  
DQ  
UI0 UI1 UI2 UI3 UI4 UI5 UI6 UI7  
BC = 4  
DQS_t, DQS_c  
DQ  
UI0 UI1 UI2 UI3  
Time Break  
Don’t Care  
1. Address setting:  
Notes:  
A[1:0] = 00b (data burst order is fixed starting at nibble, always 00b here)  
A2 = 0b (for BL = 8, burst order is fixed at 0, 1, 2, 3, 4, 5, 6, 7)  
BA1 and BA0 indicate the MPR location  
A10 and other address pins are "Don’t Care," including BG1 and BG0. A12 is "Don’t  
Care" when MR0 A[1:0] = 00 or 10, and must be 1b when MR0 A[1:0] = 01  
2. 1x refresh is only allowed when MPR mode is enabled.  
Figure 37: WRITE-to-REFRESH Timing  
T0  
T1  
Ta0  
Ta1  
Ta2  
REF  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Ta9  
Ta10  
CK_c  
CK_t  
2
Command  
Address  
CKE  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
t
WR_MPR  
RFC  
1
Add  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
DQS_t,  
DQS_c  
DQ  
Time Break  
Don’t Care  
1. Address setting:  
BA1 and BA0 indicate the MPR location  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
93  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Multipurpose Register  
A[7:0] = data for MPR  
A10 and other address pins are "Don’t Care"  
2. 1x refresh is only allowed when MPR mode is enabled.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
94  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Gear-Down Mode  
Gear-Down Mode  
The DDR4 SDRAM defaults in 1/2 rate (1N) clock 0ode and uses a low-frequency MRS  
co00and (the MRS co00and has relaxed setup and hold) followed by a sync pulse  
(first CS pulse after MRS setting) to align the proper clock edge for operating the control  
lines CS_n, CKE, and ODT when in 1/4 rate (2N) 0ode. Gear-down 0ode is only sup-  
ported at DDR4-2±±± and faster. For operation in 1/2 rate 0ode, neither an MRS co0-  
0and or a sync pulse is required. Gear-down 0ode 0ay only be entered during initiali-  
zation or self refresh exit and 0ay only be exited during self refresh exit. CAL 0ode and  
CA parity 0ode 0ust be disabled prior to gear-down 0ode entry. The two 0odes 0ay  
be enabled after tSYNC_GEAR and tCMD_GEAR periods have been satisfied. The gener-  
al sequence for operation in 1/4 rate during initialization is as follows:  
1. The device defaults to a 1N 0ode internal clock at power-up/reset.  
2. Assertion of reset.  
3. Assertion of CKE enables the DRAM.  
4. MRS is accessed with a low-frequency N × tCK gear-down MRS co00and. (NtCK  
static MRS co00and is qualified by 1N CS_n. )  
5. The 0e0ory controller will send a 1N sync pulse with a low-frequency N × tCK  
NOP co00and. tSYNC_GEAR is an even nu0ber of clocks. The sync pulse is on  
an even edge clock boundary fro0 the MRS co00and.  
±. Initialization sequence, including the expiration of tDLLK and tZQinit, starts in 2N  
0ode after tCMD_GEAR fro0 1N sync pulse.  
The device resets to 1N gear-down 0ode after entering self refresh. The general se-  
quence for operation in gear-down after self refresh exit is as follows:  
1. MRS is set to 1, via MR3[3], with a low-frequency N × tCK gear-down MRS co0-  
0and.  
a. The NtCK static MRS co00and is qualified by 1N CS_n, which 0eets tXS or  
tXS_ABORT.  
b. Only a REFRESH co00and 0ay be issued to the DRAM before the NtCK  
static MRS co00and.  
2. The DRAM controller sends a 1N sync pulse with a low-frequency N × tCK NOP  
co00and.  
a. tSYNC_GEAR is an even nu0ber of clocks.  
b. The sync pulse is on even edge clock boundary fro0 the MRS co00and.  
3. A valid co00and not requiring locked DLL is available in 2N 0ode after  
tCMD_GEAR fro0 the 1N sync pulse.  
a. A valid co00and requiring locked DLL is available in 2N 0ode after tXSDLL  
or tDLLK fro0 the 1N sync pulse.  
4. If operation is in 1N 0ode after self refresh exit, N × tCK MRS co00and or sync  
pulse is not required during self refresh exit. The 0ini0u0 exit delay to the first  
valid co00and is tXS, or tXS_ABORT.  
The DRAM 0ay be changed fro0 2N to 1N by entering self refresh 0ode, which will re-  
set to 1N 0ode. Changing fro0 2N to by any other 0eans can result in loss of data and  
0ake operation of the DRAM uncertain.  
When operating in 2N gear-down 0ode, the following MR settings apply:  
• CAS latency (MR6[±:4,2]): Even nu0ber of clocks  
• Write recovery and read to precharge (MR6[11:9]): Even nu0ber of clocks  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
95  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Gear-Down Mode  
• Additive latency (MR1[4:3]): CL - 2  
• CAS WRITE latency (MR2 A[5:3]): Even nu0ber of clocks  
• CS to co00and/address latency 0ode (MR4[8:±]): Even nu0ber of clocks  
• CA parity latency 0ode (MR5[2:6]): Even nu0ber of clocks  
Figure 38: Clock Mode Change from 1/2 Rate to 1/4 Rate (Initialization)  
TdkN  
TdkN + N  
even  
CK_c  
CK_t  
t
DSRX  
DRAM  
internal CLK  
RESET_n  
CKE  
t
t
t
SYNC_GEAR  
CMD_GEAR  
XPR_GEAR  
1N sync pulse  
2N mode  
CS_n  
t
t
t
t
N CK  
N CK  
N CK  
N CK  
hold  
setup  
MRS  
hold  
setup  
NOP  
Valid  
Command  
Configure DRAM  
to 1/4 rate  
Time Break  
Don’t Care  
Figure 39: Clock Mode Change After Exiting Self Refresh  
TdkN  
TdkN + Neven  
CK_c  
CK_t  
DRAM  
internal CLK  
CKE  
t
t
t
CMD_GEAR  
SYNC_GEAR  
XPR_GEAR  
1N sync pulse  
2N mode  
CS_n  
NtCK  
NtCK  
NtCK  
NtCK  
hold  
setup  
hold  
setup  
MRS  
NOP  
Valid  
Command  
Configure DRAM  
to 1/4 rate  
Time Break  
Don’t Care  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
96  
Figure 40: Comparison Between Gear-Down Disable and Gear-Down Enable  
T0  
T1  
T2  
T3  
T15  
T16  
T17  
T18  
T19  
T30  
T31  
T32  
DES  
T33  
DES  
T34  
DES  
T35  
DES  
T36  
DES  
T37  
DES  
T38  
DES  
CK_c  
CK_t  
AL = 0 (geardown = disable)  
Command  
DQ  
ACT  
DES  
DES  
DES  
DES  
READ  
DES  
DES  
DES  
DES  
DES  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
n
n+ 1 n+ 2 n + 3 n+ 4 n+ 5 n+ 6 n+ 7  
tRCD = 16  
RL =CL= 16 (AL = 0)  
AL = CL - 1 (geardown = disable)  
READ  
DES  
Command  
ACT  
READ  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n+ 1 n+ 2 n+ 3 n+ 4 n+ 5 n+ 6 n+ 7  
RL = AL + CL = 31 (AL = CL - 1 = 15)  
READ  
Command  
DQ  
ACT  
READ  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
n
n+ 1 n+ 2 n+ 3 n+ 4 n+ 5 n+ 6 n+ 7  
AL + CL = RL = 30 (AL = CL - 2 = 14)  
Time Break  
Transitioning Data  
Don’t Care  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Maximum Power-Saving Mode  
Maximum Power-Saving Mode  
Maxi0u0 power-saving 0ode provides the lowest power 0ode where data retention is  
not required. When the device is in the 0axi0u0 power-saving 0ode, it does not  
0aintain data retention or respond to any external co00and, except the MAXIMUM  
POWER SAVING MODE EXIT co00and and during the assertion of RESET_n signal  
LOW. This 0ode is 0ore like a “hibernate 0ode” than a typical power-saving 0ode.  
The intent is to be able to park the DRAM at a very low-power state; the device can be  
switched to an active state via the per-DRAM addressability (PDA) 0ode.  
Maximum Power-Saving Mode Entry  
Maxi0u0 power-saving 0ode is entered through an MRS co00and. For devices with  
shared control/address signals, a single DRAM device can be entered into the 0axi-  
0u0 power-saving 0ode using the per-DRAM addressability MRS co00and. Large  
CS_n hold ti0e to CKE upon the 0ode exit could cause DRAM 0alfunction; as a result,  
CA parity, CAL, and gear-down 0odes 0ust be disabled prior to the 0axi0u0 power-  
saving 0ode entry MRS co00and.  
The MRS co00and 0ay use both address and DQ infor0ation, as defined in the Per-  
DRAM Addressability section. As illustrated in the figure below, after tMPED fro0 the  
0ode entry MRS co00and, the DRAM is not responsive to any input signals except  
CKE, CS_n, and RESET_n. All other inputs are disabled (external input signals 0ay be-  
co0e High-Z). The syste0 will provide a valid clock until tCKMPE expires, at which ti0e  
clock inputs (CK) should be disabled (external clock signals 0ay beco0e High-Z).  
Figure 41: Maximum Power-Saving Mode Entry  
Ta0  
Ta1  
Ta2  
Tb0  
Tb1  
Tb3  
Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Tc5  
Tc6  
Tc7  
Tc8  
Tc9  
Tc10  
Tc11  
CK_c  
CK_t  
t
CKMPE  
DES  
MR4[A1=1]  
MPSM Enable)  
Command  
DES  
MRS  
DES  
DES  
t
MPED  
Address  
CS_n  
Valid  
CKE  
CKE LOW makes CS_n a care; CKE LOW followed by CS_n LOW followed by CKE HIGH exits mode  
RESET_n  
Time Break  
Don’t Care  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
98  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Maximum Power-Saving Mode  
Maximum Power-Saving Mode Entry in PDA  
The sequence and ti0ing required for the 0axi0u0 power-saving 0ode with the per-  
DRAM addressability enabled is illustrated in the figure below.  
Figure 42: Maximum Power-Saving Mode Entry with PDA  
Ta0  
Ta1  
Ta2  
Tb0  
DES  
Tb1  
DES  
Tb3  
DES  
Tb4  
DES  
Tb5  
DES  
Tb6  
DES  
Tb7  
Tb8  
DES  
Tb9  
DES  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
Td2  
CK_c  
CK_t  
MR4[A1 = 1]  
MPSM Enable)  
Command  
DES  
MRS  
DES  
DES  
DES  
DES  
t
CKMPE  
CS_n  
CKE  
t
AL + CWL  
MPED  
DQS_t  
DQS_c  
t
t
PDA_S  
PDA_H  
DQ  
RESET_n  
Time Break  
Don’t Care  
CKE Transition During Maximum Power-Saving Mode  
The following figure shows how to 0aintain 0axi0u0 power-saving 0ode even though  
the CKE input 0ay toggle. To prevent the device fro0 exiting the 0ode, CS_n should be  
HIGH at the CKE LOW-to-HIGH edge, with appropriate setup (tMPX_S) and hold  
(tMPX_H) ti0ings.  
Figure 43: Maintaining Maximum Power-Saving Mode with CKE Transition  
CLK  
CMD  
CS_n  
tMPX_S  
tMPX_HH  
CKE  
RESET_n  
Don’t Care  
Maximum Power-Saving Mode Exit  
To exit the 0axi0u0 power-saving 0ode, CS_n should be LOW at the CKE LOW-to-  
HIGH transition, with appropriate setup (tMPX_S) and hold (tMPX_LH) ti0ings, as  
shown in the figure below. Because the clock receivers (CK_t, CK_c) are disabled during  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
99  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Maximum Power-Saving Mode  
this 0ode, CS_n = LOW is captured by the rising edge of the CKE signal. If the CS_n sig-  
nal level is detected LOW, the DRAM clears the 0axi0u0 power-saving 0ode MRS bit  
and begins the exit procedure fro0 this 0ode. The external clock 0ust be restarted and  
be stable by tCKMPX before the device can exit the 0axi0u0 power-saving 0ode. Dur-  
ing the exit ti0e (tXMP), only NOP and DES co00ands are allowed: NOP during  
tMPX_LH and DES the re0ainder of tXMP. After tXMP expires, valid co00ands not re-  
quiring a locked DLL are allowed; after tXMP_DLL expires, valid co00ands requiring a  
locked DLL are allowed.  
Figure 44: Maximum Power-Saving Mode Exit  
Ta0  
Ta1  
Ta2  
Ta3  
Tb0  
Tb1  
Tb2  
Tb3  
Tc0  
Tc1  
Tc2  
Tc4  
Td0  
DES  
Td1  
DES  
Td2  
DES  
Td3  
Te0  
Te1  
CK_c  
CK_t  
tCKMPX  
Command  
CS_n  
NOP  
NOP  
NOP  
NOP  
NOP  
DES  
Valid  
DES  
DES  
tMPX_LH  
tMPX_S  
CKE  
tXMP  
tXMP_DLL  
RESET_n  
Time Break  
Don’t Care  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
100  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command/Address Parity  
Command/Address Parity  
Co00and/address (CA) parity takes the CA parity signal (PAR) input carrying the parity  
bit for the generated address and co00ands signals and 0atches it to the internally  
generated parity fro0 the captured address and co00ands signals. CA parity is suppor-  
ted in the DLL enabled state only; if the DLL is disabled, CA parity is not supported.  
Figure 45: Command/Address Parity Operation  
DRAM Controller  
DRAM  
CMD/ADDR  
CMD/ADDR  
Even parity  
GEN  
Even parity  
GEN  
CMD/ADDR  
Even parity bit  
Even parity bit  
Compare  
parity  
bit  
CA parity is disabled or enabled via an MRS co00and. If CA parity is enabled by pro-  
gra00ing a non-zero value to CA parity latency in the MR, the DRAM will ensure that  
there is no parity error before executing co00ands. There is an additional delay re-  
quired for executing the co00ands versus when parity is disabled. The delay is pro-  
gra00ed in the MR when CA parity is enabled (parity latency) and applied to all co0-  
0ands which are registered by CS_n (rising edge of CK_t and falling CS_n). The co0-  
0and is held for the ti0e of the parity latency (PL) before it is executed inside the de-  
vice. The co00and captured by the input clock has an internal delay before executing  
and is deter0ined with PL. When CA parity is enabled, only DES are allowed between  
valid co00ands. PAR will go active when the DRAM detects a CA parity error.  
CA parity covers ACT_n, RAS_n/A1±, CAS_n/A15, WE_n/A14, the address bus including  
bank address and bank group bits, and C[2:6] on 3DS devices; the control signals CKE,  
ODT, and CS_n are not covered. For exa0ple, for a 4Gb x4 0onolithic device, parity is  
co0puted across BG[1:6], BA[1:6], A1±/RAS_n, A15/CAS_n, A14/ WE_n, A[13:6], and  
ACT_n. The DRAM treats any unused address pins internally as zeros; for exa0ple, if a  
co00on die has stacked pins but the device is used in a 0onolithic application, then  
the address pins used for stacking and not connected are treated internally as zeros.  
The convention for parity is even parity; for exa0ple, valid parity is defined as an even  
nu0ber of ones across the inputs used for parity co0putation co0bined with the pari-  
ty signal. In other words, the parity bit is chosen so that the total nu0ber of ones in the  
trans0itted signal, including the parity bit, is even.  
If a DRAM device detects a CA parity error in any co00and qualified by CS_n, it will  
perfor0 the following steps:  
1. Ignore the erroneous co00and. Co00ands in the MAX NnCK window  
(tPAR_UNKNOWN) prior to the erroneous co00and are not guaranteed to be  
executed. When a READ co00and in this NnCK window is not executed, the de-  
vice does not activate DQS outputs. If WRITE CRC is enabled and a WRITE CRC  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
101  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command/Address Parity  
occurs during the tPAR_UNKNOWN window, the WRITE CRC Error Status Bit lo-  
cated at MR5[3] 0ay or 0ay not get set. When CA Parity and WRITE CRC are both  
enabled and a CA Parity occurs, the WRITE CRC Error Status Bit should be reset.  
2. Log the error by storing the erroneous co00and and address bits in the MPR er-  
ror log.  
3. Set the parity error status bit in the 0ode register to 1. The parity error status bit  
0ust be set before the ALERT_n signal is released by the DRAM (that is,  
tPAR_ALERT_ON + tPAR_ALERT_PW (MIN)).  
4. Assert the ALERT_n signal to the host (ALERT_n is active LOW) within  
tPAR_ALERT_ON ti0e.  
5. Wait for all in-progress co00ands to co0plete. These co00ands were received  
tPAR_UNKOWN before the erroneous co00and.  
±. Wait for tRAS (MIN) before closing all the open pages. The DRAM is not executing  
any co00ands during the window defined by (tPAR_ALERT_ON +  
tPAR_ALERT_PW).  
7. After tPAR_ALERT_PW (MIN) has been satisfied, the device 0ay de-assert  
ALERT_n.  
a. When the device is returned to a known precharged state, ALERT_n is al-  
lowed to be de-asserted.  
8. After (tPAR_ALERT_PW (MAX)) the DRAM is ready to accept co00ands for nor-  
0al operation. Parity latency will be in effect; however, parity checking will not re-  
su0e until the 0e0ory controller has cleared the parity error status bit by writing  
a zero. The DRAM will execute any erroneous co00ands until the bit is cleared;  
unless persistent 0ode is enabled.  
• The DRAM should have only DES co00ands issued around ALERT_n going HIGH  
such that at least 3 clocks prior and 1 clock plus 3ns after the release of ALERT_n.  
• It is possible that the device 0ight have ignored a REFRESH co00and during  
tPAR_ALERT_PW or the REFRESH co00and is the first erroneous fra0e, so it is rec-  
o00ended that extra REFRESH cycles be issued, as needed.  
• The parity error status bit 0ay be read anyti0e after tPAR_ALERT_ON +  
tPAR_ALERT_PW to deter0ine which DRAM had the error. The device 0aintains the  
error log for the first erroneous co00and until the parity error status bit is reset to a  
zero or a second CA parity occurs prior to resetting.  
The 0ode register for the CA parity error is defined as follows: CA parity latency bits are  
write only, the parity error status bit is read/write, and error logs are read-only bits. The  
DRAM controller can only progra0 the parity error status bit to zero. If the DRAM con-  
troller illegally atte0pts to write a 1 to the parity error status bit, the DRAM can not be  
certain that parity will be checked; the DRAM 0ay opt to block the DRAM controller  
fro0 writing a 1 to the parity error status bit.  
The device supports persistent parity error 0ode. This 0ode is enabled by setting  
MR5[9] = 1; when enabled, CA parity resu0es checking after the ALERT_n is de-asser-  
ted, even if the parity error status bit re0ains a 1. If 0ultiple errors occur before the er-  
ror status bit is cleared the error log in MPR Page 1 should be treated as "Don’t Care." In  
persistent parity error 0ode the ALERT_n pulse will be asserted and de-asserted by the  
DRAM as defined with the MIN and MAX value tPAR_ALERT_PW. The DRAM controller  
0ust issue DESELECT co00ands once it detects the ALERT_n signal, this response  
ti0e is defined as tPAR_ALERT_RSP. The following figures capture the flow of events on  
the CA bus and the ALERT_n signal.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
102  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command/Address Parity  
Table 36: Mode Register Setting for CA Parity  
CA Parity Latency  
Erroneous CA  
MR5[2:0]1  
000 = Disabled  
001 = 4 clocks  
010 = 5 clocks  
011 = 6 clocks  
100 = 8 clocks  
101 = Reserved  
110 = Reserved  
111 = Reserved  
Applicable Speed Bin  
Parity Error Status Parity Persistent Mode  
Frame  
N/A  
1600, 1866, 2133  
2400, 2666  
2933, 3200  
RFU  
C[2:0], ACT_n, BG1,  
BG0, BA[1:0], PAR,  
A17, A16/RAS_n, A15/  
CAS_n, A14/WE_n,  
A[13:0]  
MR5 [4] 0 = Clear  
MR5 [4] 1 = Error  
MR5 [9] 0 = DisabledMR5  
[9] 1 = Enabled  
RFU  
RFU  
RFU  
1. Parity latency is applied to all commands.  
Notes:  
2. Parity latency can be changed only from a CA parity disabled state; for example, a direct  
change from PL = 3 to PL = 4 is not allowed. The correct sequence is PL = 3 to disabled to  
PL = 4.  
3. Parity latency is applied to WRITE and READ latency. WRITE latency = AL + CWL + PL.  
READ latency = AL + CL + PL.  
Figure 46: Command/Address Parity During Normal Operation  
T1  
Ta0  
Ta1  
Ta2  
Tb0  
Tc0  
Tc1  
Td0  
Te0  
Te1  
T0  
CK_c  
CK_t  
Command/  
Address  
Valid2  
Valid2  
Valid2  
Error  
DES2  
DES2  
Valid3  
Valid3  
Valid  
Valid  
Valid  
t > 2nCK  
t > 1nCK + 3ns  
t
2
t
t
1
PAR_UNKNOWN  
PAR_ALERT_ON  
PAR_ALERT_PW  
ALERT_n  
Valid2  
DES2  
Valid  
Command execution unknown  
Command not executed  
Error  
Don’t Care  
Time Break  
Valid3  
Command executed  
1. DRAM is emptying queues. Precharge all and parity checking are off until parity error  
status bit is cleared.  
Notes:  
2. Command execution is unknown; the corresponding DRAM internal state change may  
or may not occur. The DRAM controller should consider both cases and make sure that  
the command sequence meets the specifications. If WRITE CRC is enabled and a WRITE  
CRC occurs during the tPAR_UNKNOWN window, the WRITE CRC Error Status Bit located  
at MR5[3] may or may not get set.  
3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity  
checking is off until parity error status bit is cleared.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
103  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command/Address Parity  
Figure 47: Persistent CA Parity Error Checking Operation  
T1  
Ta0  
Ta1  
Ta2  
Tb0  
Tc0  
Tc1  
Td0  
Te0  
Te1  
T0  
CK_c  
CK_t  
Command/  
Address  
Valid2  
Valid2  
Valid2  
Error  
DES  
1
DES  
DES  
Valid3  
Valid  
Valid  
Valid  
t
PAR_ALERT_RSP  
t
t > 2nCK  
t > 1nCK + 3ns  
t
2
t
PAR_UNKNOWN  
PAR_ALERT_ON  
PAR_ALERT_PW  
ALERT_n  
Valid2  
Error  
DES  
Command execution unknown  
Command not executed  
Valid  
Valid3  
Don’t Care  
Time Break  
Command executed  
1. DRAM is emptying queues. Precharge all and parity check re-enable finished by  
tPAR_ALERT_PW.  
Notes:  
2. Command execution is unknown; the corresponding DRAM internal state change may  
or may not occur. The DRAM controller should consider both cases and make sure that  
the command sequence meets the specifications. If WRITE CRC is enabled and a WRITE  
CRC occurs during the tPAR_UNKNOWN window, the WRITE CRC Error Status Bit located  
at MR5[3] may or may not get set  
3. Normal operation with parity latency and parity checking (CA parity persistent error  
mode enabled).  
Figure 48: CA Parity Error Checking – SRE Attempt  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
Tc1  
Td0  
Td1  
Td2  
Td3  
Te0  
Te1  
CK_c  
CK_t  
tCPDED + PL  
tXP + PL  
DES6  
Command/  
Address  
DES1  
DES1, 5  
Error2  
DES6  
DES5  
Valid3  
tIS  
tIS  
CKE  
t > 2nCK  
t > 1nCK + 3ns  
tIH  
Note 4  
tPAR_ALERT_ON  
tPAR_ALERT_PW1  
ALERT_n  
DES1, 5  
DES6  
DES1  
DES5  
Command execution unknown  
Error2  
Valid3  
Command not executed  
Don’t Care  
Time Break  
Command executed  
1. Only DESELECT command is allowed.  
Notes:  
2. SELF REFRESH command error. The DRAM masks the intended SRE command and enters  
precharge power-down.  
3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity  
checking is off until the parity error status bit cleared.  
4. The controller cannot disable the clock until it has been capable of detecting a possible  
CA parity error.  
5. Command execution is unknown; the corresponding DRAM internal state change may  
or may not occur. The DRAM controller should consider both cases and make sure that  
the command sequence meets the specifications.  
6. Only a DESELECT command is allowed; CKE may go HIGH prior to Tc2 as long as DES  
commands are issued.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
104  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command/Address Parity  
Figure 49: CA Parity Error Checking – SRX Attempt  
T0  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
Tc1  
Tc2  
Td0  
Td1  
Te0  
Tf0  
CK_c  
CK_t  
Command/  
Address  
2
2
2
Valid  
1
2
2, 3  
DES  
2, 3  
DES  
2, 4, 5  
2, 4, 6  
2, 4, 7  
Valid  
Valid  
Valid  
SRX  
DES  
DES  
Error  
Valid  
Valid  
t > 2nCK  
t > 1nCK + 3ns  
tIS  
CKE  
tPAR_UNKNOWN  
tPAR_ALERT_ON  
tPAR_ALERT_PW  
ALERT_n  
tXS_FAST8  
tXS  
tXSDLL  
1
3, 5  
Valid  
SRX  
DES  
Command execution unknown  
Command not executed  
Command executed  
Error  
Valid  
Don’t Care  
Time Break  
4,5,6,7  
Valid  
1. Self refresh abort = disable: MR4 [9] = 0.  
2. Input commands are bounded by tXSDLL, tXS, tXS_ABORT, and tXS_FAST timing.  
Notes:  
3. Command execution is unknown; the corresponding DRAM internal state change may  
or may not occur. The DRAM controller should consider both cases and make sure that  
the command sequence meets the specifications.  
4. Normal operation with parity latency (CA parity persistent error mode disabled). Parity  
checking off until parity error status bit cleared.  
5. Only an MRS (limited to those described in the SELF REFRESH Operation section), ZQCS,  
or ZQCL command is allowed.  
6. Valid commands not requiring a locked DLL.  
7. Valid commands requiring a locked DLL.  
8. This figure shows the case from which the error occurred after tXS_FAST. An error may  
also occur after tXS_ABORT and tXS.  
Figure 50: CA Parity Error Checking – PDE/PDX  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tb1  
Tc0  
Tc1  
Td0  
Td1  
Td2  
Td3  
Te0  
Te1  
CK_c  
CK_t  
tCPDED + PL  
DES1  
tXP + PL  
DES5  
Command/  
Address  
DES1  
Error2  
DES5  
DES4  
Valid3  
tIS  
tIS  
CKE  
t > 2nCK  
t > 1nCK + 3ns  
tIH  
tPAR_ALERT_ON  
tPAR_ALERT_PW1  
ALERT_n  
DES4  
Error2  
Valid3  
DES5  
DES1  
Command execution unknown  
Command not executed  
Don’t Care  
Time Break  
Command executed  
1. Only DESELECT command is allowed.  
2. Error could be precharge or activate.  
Notes:  
3. Normal operation with parity latency (CA parity persistent error mode disabled). Parity  
checking is off until parity error status bit cleared.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
105  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command/Address Parity  
4. Command execution is unknown; the corresponding DRAM internal state change may  
or may not occur. The DRAM controller should consider both cases and make sure that  
the command sequence meets the specifications.  
5. Only a DESELECT command is allowed; CKE may go HIGH prior to Td2 as long as DES  
commands are issued.  
Figure 51: Parity Entry Timing Example – tMRD_PAR  
Ta0  
Ta1  
Ta2  
Tb0  
DES  
Tb1  
Tb2  
DES  
CK_c  
CK_t  
Command  
DES  
MRS  
DES  
MRS  
Parity latency  
PL = 0  
Updating setting  
tMRD_PAR  
PL = N  
Enable  
parity  
Time Break  
Don’t Care  
1. tMRD_PAR = tMOD + N; where N is the programmed parity latency.  
Note:  
Figure 52: Parity Entry Timing Example – tMOD_PAR  
Ta0  
Ta1  
Ta2  
Tb0  
DES  
Tb1  
Tb2  
DES  
CK_c  
CK_t  
Command  
DES  
MRS  
DES  
Valid  
Parity latency  
PL = 0  
Updating setting  
tMOD_PAR  
PL = N  
Enable  
parity  
Time Break  
Don’t Care  
1. tMOD_PAR = tMOD + N; where N is the programmed parity latency.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
106  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Command/Address Parity  
Figure 53: Parity Exit Timing Example – tMRD_PAR  
Ta0  
Ta1  
Ta2  
Tb0  
DES  
Tb1  
Tb2  
DES  
CK_c  
CK_t  
Command  
DES  
MRS  
DES  
MRS  
Parity latency  
PL = N  
Updating setting  
tMRD_PAR  
Disable  
parity  
Time Break  
Don’t Care  
1. tMRD_PAR = tMOD + N; where N is the programmed parity latency.  
Note:  
Figure 54: Parity Exit Timing Example – tMOD_PAR  
Ta0  
Ta1  
Ta2  
Tb0  
DES  
Tb1  
Tb2  
DES  
CK_c  
CK_t  
Command  
DES  
MRS  
DES  
Valid  
Parity latency  
PL = N  
Updating setting  
tMOD_PAR  
Disable  
parity  
Time Break  
Don’t Care  
1. tMOD_PAR = tMOD + N; where N is the programmed parity latency.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
107  
Figure 55: CA Parity Flow Diagram  
CA  
MR5[2:0] set parity latency (PL)  
MR5[4] set parity error status to 0  
process start  
MR5[9] enable/disable persistent mode  
CA  
latched in  
Persistent  
mode  
enabled  
Yes  
Yes  
Yes  
Yes  
CA parity  
enabled  
CA parity  
error  
No  
No  
No  
Command  
execution  
unknown  
Good CA  
processed  
Ignore  
bad CMD  
MR5[4] = 0  
@ ADDR/CMD  
latched  
Yes  
CA parity  
error  
No  
No  
MR5[4] = 0 Yes  
@ ADDR/CMD  
latched  
ALERT_n LOW  
44 to 144 CKs  
Log error/  
set parity status  
Command  
execution  
unknown  
Good CA  
processed  
Ignore  
bad CMD  
Yes  
No  
CA error  
No  
ALERT_n LOW  
44 to 144 CKs  
Log error/  
set parity status  
Internal  
precharge all  
Good CA  
processed  
Bad CA  
processed  
Internal  
precharge all  
ALERT_n HIGH  
Normal  
operation ready  
Operation ready?  
Command  
execution  
unknown  
ALERT_n HIGH  
Normal operation ready  
MR5[4] reset to 0 if desired  
Command  
execution  
unknown  
Normal operation ready  
MR5[4] reset to 0 if desired  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Per-DRAM Addressability  
Per-DRAM Addressability  
DDR4 allows progra00ability of a single, specific DRAM on a rank. As an exa0ple, this  
feature can be used to progra0 different ODT or VREF values on each DRAM on a given  
rank. Because per-DRAM addressability (PDA) 0ode 0ay be used to progra0 opti0al  
VREF for the DRAM, the data set up for first DQ6 transfer or the hold ti0e for the last  
DQ6 transfer cannot be guaranteed. The DRAM 0ay sa0ple DQ6 on either the first fall-  
ing or second rising DQS transfer edge. This supports a co00on i0ple0entation be-  
tween BC4 and BL8 0odes on the DRAM. The DRAM controller is required to drive DQ6  
to a stable LOW or HIGH state during the length of the data transfer for BC4 and BL8  
cases.  
1. Before entering PDA 0ode, write leveling is required.  
• BL8 or BC4 0ay be used.  
2. Before entering PDA 0ode, the following MR settings are possible:  
• RTT(Park) MR5 A[8:±] = Enable  
• RTT(NOM) MR1 A[16:8] = Enable  
3. Enable PDA 0ode using MR3 [4] = 1. (The default progra0ed value of MR3[4] = 6.)  
4. In PDA 0ode, all MRS co00ands are qualified with DQ6. The device captures  
DQ6 by using DQS signals. If the value on DQ6 is LOW, the DRAM executes the  
MRS co00and. If the value on DQ6 is HIGH, the DRAM ignores the MRS co0-  
0and. The controller can choose to drive all the DQ bits.  
5. Progra0 the desired DRAM and 0ode registers using the MRS co00and and  
DQ6.  
±. In PDA 0ode, only MRS co00ands are allowed.  
7. The MODE REGISTER SET co00and cycle ti0e in PDA 0ode, AL + CWL + BL/2 -  
6.5tCK + tMRD_PDA + PL, is required to co0plete the WRITE operation to the  
0ode register and is the 0ini0u0 ti0e required between two MRS co00ands.  
8. Re0ove the device fro0 PDA 0ode by setting MR3[4] = 6. (This co00and re-  
quires DQ6 = 6.)  
Note: Re0oving the device fro0 PDA 0ode will require progra00ing the entire MR3  
when the MRS co00and is issued. This 0ay i0pact so0e PDA values progra00ed  
within a rank as the EXIT co00and is sent to the rank. To avoid such a case, the PDA  
enable/disable control bit is located in a 0ode register that does not have any PDA  
0ode controls.  
In PDA 0ode, the device captures DQ6 using DQS signals the sa0e as in a nor0al  
WRITE operation; however, dyna0ic ODT is not supported. Extra care is required for  
the ODT setting. If RTT(NOM) MR1 [16:8] = enable, device data ter0ination needs to be  
controlled by the ODT pin, and applies the sa0e ti0ing para0eters (defined below).  
Symbol  
DODTLon  
DODTLoff  
tADC  
Parameter  
Direct ODT turnon latency  
Direct ODT turn off latency  
RTT change timing skew  
tAONAS  
tAOFAS  
Asynchronous RTT(NOM) turn-on delay  
Asynchronous RTT(NOM) turn-off delay  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
109  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Per-DRAM Addressability  
Figure 56: PDA Operation Enabled, BL8  
&.BF  
&.BW  
05ꢋꢀ$ꢃꢀ ꢀꢇ  
ꢌ3'$ꢀHQDEOHꢎ  
056  
056  
056  
W02'  
&:/ꢓ$/ꢓ3/  
W05'B3'$  
'46BW  
'46BF  
'4ꢅ  
W3'$B6  
'2'7/RIIꢀ ꢀ:/ꢏꢋ  
W3'$B+  
2'7  
'2'7/RQꢀ ꢀ:/ꢏꢋ  
5
5
5
5
77ꢌ3DUNꢎ  
77  
77ꢌ3DUNꢎ  
77ꢌ120ꢎ  
1. RTT(Park) = Enable; RTT(NOM) = Enable; WRITE preamble set = 2tCK; and DLL = On.  
Note:  
Figure 57: PDA Operation Enabled, BC4  
CK_c  
CK_t  
MR3 A4 = 1  
(PDA enable)  
MRS  
MRS  
MRS  
tMOD  
CWL+AL+PL  
tMRD_PDA  
DQS_t  
DQS_c  
DQ0  
tPDA_S  
DODTLoff = WL-3  
tPDA_H  
ODT  
RTT  
DODTLon = WL-3  
RTT(Park)  
RTT(NOM)  
RTT(Park)  
1. RTT(Park) = Enable; RTT(NOM) = Enable; WRITE preamble set = 2tCK; and DLL = On.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
110  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Per-DRAM Addressability  
Figure 58: MRS PDA Exit  
&.BF  
&.BW  
05ꢋꢀ$ꢃꢀ ꢀꢅ  
ꢌ3'$ꢀGLVDEOHꢎ  
056  
9DOLG  
W02'B3'$  
&:/ꢓ$/ꢓ3/  
'46BW  
'46BF  
'4ꢅ  
W3'$B6  
'2'7/RIIꢀ ꢀ:/ꢀꢏꢀꢋ  
W3'$B+  
2'7  
'2'7/RQꢀ ꢀ:/ꢀꢏꢀꢋ  
5
5
5
5
77ꢌ3DUNꢎ  
77  
77ꢌ3DUNꢎ  
77ꢌ120ꢎ  
1. RTT(Park) = Enable; RTT(NOM) = Enable; WRITE preamble set = 2tCK; and DLL = On.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
111  
8Gb: x8, x16 Automotive DDR4 SDRAM  
REFDQ Calibration  
V
VREFDQ Calibration  
The VREFDQ level, which is used by the DRAM DQ input receivers, is internally gener-  
ated. The DRAM VREFDQ does not have a default value upon power-up and 0ust be set  
to the desired value, usually via VREFDQ calibration 0ode. If PDA or PPR 0odes (hPPR or  
sPPR) are used prior to VREFDQ calibration, VREFDQ should initially be set at the 0idpoint  
between the VDD,0ax, and the LOW as deter0ined by the driver and ODT ter0ination  
selected with wide voltage swing on the input levels and setup and hold ti0es of ap-  
proxi0ately 6.75UI. The 0e0ory controller is responsible for VREFDQ calibration to de-  
ter0ine the best internal VREFDQ level. The VREFDQ calibration is enabled/disabled via  
MR±[7], MR±[±] selects Range 1 (±6% to 92.5% of VDDQ) or Range 2 (45% to 77.5% of  
VDDQ), and an MRS protocol using MR±[5:6] to adjust the VREFDQ level up and down.  
MR±[±:6] bits can be altered using the MRS co00and if MR±[7] is disabled. The DRAM  
controller will likely use a series of writes and reads in conjunction with VREFDQ adjust-  
0ents to obtain the best VREFDQ, which in turn opti0izes the data eye.  
The internal VREFDQ specification para0eters are voltage range, step size, VREF step  
ti0e, VREF full step ti0e, and VREF valid level. The voltage operating range specifies the  
0ini0u0 required VREF setting range for DDR4 SDRAM devices. The 0ini0u0 range is  
defined by VREFDQ,0in and VREFDQ,0ax. As noted, a calibration sequence, deter0ined by  
the DRAM controller, should be perfor0ed to adjust VREFDQ and opti0ize the ti0ing  
and voltage 0argin of the DRAM data input receivers. The internal VREFDQ voltage value  
0ay not be exactly within the voltage range setting coupled with the VREF set tolerance;  
the device 0ust be calibrated to the correct internal VREFDQ voltage.  
Figure 59: VREFDQ Voltage Range  
VDDQ  
VREF,max  
VREF  
range  
VREF,min  
V
V
SWING small  
SWING large  
System variance  
Total range  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
112  
8Gb: x8, x16 Automotive DDR4 SDRAM  
V
REFDQ Calibration  
VREFDQ Range and Levels  
Table 37: VREFDQ Range and Levels  
MR6[5:0]  
00 0000  
00 0001  
00 0010  
00 0011  
00 0100  
00 0101  
00 0110  
00 0111  
00 1000  
00 1001  
00 1010  
00 1011  
00 1100  
00 1101  
00 1110  
00 1111  
01 0000  
01 0001  
01 0010  
01 0011  
01 0100  
01 0101  
01 0110  
01 0111  
01 1000  
01 1001  
Range 1 MR6[6] 0  
60.00%  
60.65%  
61.30%  
61.95%  
62.60%  
63.25%  
63.90%  
64.55%  
65.20%  
65.85%  
66.50%  
67.15%  
67.80%  
68.45%  
69.10%  
69.75%  
70.40%  
71.05%  
71.70%  
72.35%  
73.00%  
73.65%  
74.30%  
74.95%  
75.60%  
76.25%  
Range 2 MR6[6] 1  
45.00%  
45.65%  
46.30%  
46.95%  
47.60%  
48.25%  
48.90%  
49.55%  
50.20%  
50.85%  
51.50%  
52.15%  
52.80%  
53.45%  
54.10%  
54.75%  
55.40%  
56.05%  
56.70%  
57.35%  
58.00%  
58.65%  
59.30%  
59.95%  
60.60%  
61.25%  
MR6[5:0]  
01 1010  
01 1011  
01 1100  
01 1101  
01 1110  
01 1111  
10 0000  
10 0001  
10 0010  
10 0011  
10 0100  
10 0101  
10 0110  
10 0111  
10 1000  
10 1001  
10 1010  
10 1011  
10 1100  
10 1101  
10 1110  
10 1111  
11 0000  
11 0001  
11 0010  
Range 1 MR6[6] 0  
76.90%  
77.55%  
78.20%  
78.85%  
79.50%  
80.15%  
80.80%  
81.45%  
82.10%  
82.75%  
83.40%  
84.05%  
84.70%  
85.35%  
86.00%  
86.65%  
87.30%  
87.95%  
88.60%  
89.25%  
89.90%  
90.55%  
91.20%  
91.85%  
92.50%  
Range 2 MR6[6] 1  
61.90%  
62.55%  
63.20%  
63.85%  
64.50%  
65.15%  
65.80%  
66.45%  
67.10%  
67.75%  
68.40%  
69.05%  
69.70%  
70.35%  
71.00%  
71.65%  
72.30%  
72.95%  
73.60%  
74.25%  
74.90%  
75.55%  
76.20%  
76.85%  
77.50%  
11 0011 to 11 1111 = Reserved  
VREFDQ Step Size  
The VREF step size is defined as the step size between adjacent steps. VREF step size rang-  
es fro0 6.5% VDDQ to 6.8% VDDQ. However, for a given design, the device has one value  
for VREF step size that falls within the range.  
The VREF set tolerance is the variation in the VREF voltage fro0 the ideal setting. This ac-  
counts for accu0ulated error over 0ultiple steps. There are two ranges for VREF set tol-  
erance uncertainty. The range of VREF set tolerance uncertainty is a function of nu0ber  
of steps n.  
The VREF set tolerance is 0easured with respect to the ideal line, which is based on the  
MIN and MAX VREF value endpoints for a specified range. The internal VREFDQ voltage  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
113  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
REFDQ Calibration  
V
value 0ay not be exactly within the voltage range setting coupled with the VREF set tol-  
erance; the device 0ust be calibrated to the correct internal VREFDQ voltage.  
Figure 60: Example of VREF Set Tolerance and Step Size  
Actual VREF  
output  
Straight line  
(endpoint fit)  
VREF  
V
REF set  
tolerance  
VREF set  
tolerance  
VREF  
step size  
Digital Code  
1. Maximum case shown.  
Note:  
VREFDQ Increment and Decrement Timing  
The VREF incre0ent/decre0ent step ti0es are defined by VREF,ti0e. VREF,ti0e is defined  
fro0 t6 to t1, where t1 is referenced to the VREF voltage at the final DC level within the  
VREF valid tolerance (VREF,val_tol). The VREF valid level is defined by VREF,val tolerance to  
qualify the step ti0e t1. This para0eter is used to insure an adequate RC ti0e constant  
behavior of the voltage level change after any VREF incre0ent/decre0ent adjust0ent.  
Note:  
t6 is referenced to the MRS co00and clock  
t1 is referenced to VREF,tol  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
114  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
V
REFDQ Calibration  
Figure 61: VREFDQ Timing Diagram for VREF,time Parameter  
CK_c  
CK_t  
MRS  
Command  
DQ VREF  
V
REF setting  
adjustment  
Old VREF setting  
Updating VREF setting  
VREF_time  
New VREF setting  
t0  
t1  
Don’t Care  
VREFDQ calibration 0ode is entered via an MRS co00and, setting MR±[7] to 1 (6 disa-  
bles VREFDQ calibration 0ode) and setting MR±[±] to either 6 or 1 to select the desired  
range (MR±[5:6] are "Don't Care"). After VREFDQ calibration 0ode has been entered,  
VREFDQ calibration 0ode legal co00ands 0ay be issued once tVREFDQE has been sat-  
isfied. Legal co00ands for VREFDQ calibration 0ode are ACT, WR, WRA, RD, RDA, PRE,  
DES, and MRS to set VREFDQ values, and MRS to exit VREFDQ calibration 0ode. Also, after  
VREFDQ calibration 0ode has been entered, “du00y” WRITE co00ands are allowed  
prior to adjusting the VREFDQ value the first ti0e VREFDQ calibration is perfor0ed after  
initialization.  
Setting VREFDQ values requires MR±[7] be set to 1 and MR±[±] be unchanged fro0 the  
initial range selection; MR±[5:6] 0ay be set to the desired VREFDQ values. If MR±[7] is set  
to 6, MR±[±:6] are not written. VREF,ti0e-short or VREF,ti0e-long 0ust be satisfied after each  
MR± co00and to set VREFDQ value before the internal VREFDQ value is valid.  
If PDA 0ode is used in conjunction with VREFDQ calibration, the PDA 0ode require-  
0ent that only MRS co00ands are allowed while PDA 0ode is enabled is not waived.  
That is, the only VREFDQ calibration 0ode legal co00ands noted above that 0ay be  
used are the MRS co00ands: MRS to set VREFDQ values and MRS to exit VREFDQ calibra-  
tion 0ode.  
The last MR±[±:6] setting written to MR± prior to exiting VREFDQ calibration 0ode is the  
range and value used for the internal VREFDQ setting. VREFDQ calibration 0ode 0ay be  
exited when the DRAM is in idle state. After the MRS co00and to exit VREFDQ calibra-  
tion 0ode has been issued, DES 0ust be issued until tVREFDQX has been satisfied  
where any legal co00and 0ay then be issued. VREFDQ setting should be updated if the  
die te0perature changes too 0uch fro0 the calibration te0perature.  
The following are typical script when applying the above rules for VREFDQ calibration  
routine when perfor0ing VREFDQ calibration in Range 1:  
• MR±[7:±]16 [5:6]XXXXXXX.  
– Subsequent legal co00ands while in VREFDQ calibration 0ode: ACT, WR, WRA, RD,  
RDA, PRE, DES, and MRS (to set VREFDQ values and exit VREFDQ calibration 0ode).  
• All subsequent VREFDQ calibration MR setting co00ands are MR±[7:±]16  
[5:6]VVVVVV.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
115  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
REFDQ Calibration  
V
– "VVVVVV" are desired settings for VREFDQ  
.
• Issue ACT/WR/RD looking for pass/fail to deter0ine VCENT (0idpoint) as needed.  
To exit VREFDQ calibration, the last two VREFDQ calibration MR co00ands are:  
– MR±[7:±]16 [5:6]VVVVVV* where VVVVVV* = desired value for VREFDQ  
– MR±[7]6 [±:6]XXXXXXX to exit VREFDQ calibration 0ode.  
.
The following are typical script when applying the above rules for VREFDQ calibration  
routine when perfor0ing VREFDQ calibration in Range 2:  
• MR±[7:±]11 [5:6]XXXXXXX.  
– Subsequent legal co00ands while in VREFDQ calibration 0ode: ACT, WR, WRA, RD,  
RDA, PRE, DES, and MRS (to set VREFDQ values and exit VREFDQ calibration 0ode).  
• All subsequent VREFDQ calibration MR setting co00ands are MR±[7:±]11  
[5:6]VVVVVV.  
– "VVVVVV" are desired settings for VREFDQ  
.
• Issue ACT/WR/RD looking for pass/fail to deter0ine VCENT (0idpoint) as needed.  
To exit VREFDQ calibration, the last two VREFDQ calibration MR co00ands are:  
– MR±[7:±]11 [5:6]VVVVVV* where VVVVVV* = desired value for VREFDQ  
– MR±[7]6 [±:6]XXXXXXX to exit VREFDQ calibration 0ode.  
.
Note:  
Range 0ay only be set or changed when entering VREFDQ calibration 0ode;  
changing range while in or exiting VREFDQ calibration 0ode is illegal.  
Figure 62: VREFDQ Training Mode Entry and Exit Timing Diagram  
T0  
T1  
Ta0  
Ta1  
Tb0  
DES  
Tb1  
Tc0  
DES  
Tc1  
Td0  
Td1  
WR  
Td2  
DES  
CK_c  
CK_t  
MRS1,2  
DES  
Command  
DES  
MRS  
DES  
CMD  
CMD  
tVREFDQE  
tVREFDQX  
VREFDQ training on  
New VREFDQ  
value or write  
New VREFDQ  
value or write  
VREFDQ training off  
Don’t Care  
1. New VREFDQ values are not allowed with an MRS command during calibration mode en-  
try.  
Notes:  
2. Depending on the step size of the latest programmed VREF value, VREF must be satisfied  
before disabling VREFDQ training mode.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
116  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
REFDQ Calibration  
V
Figure 63: VREF Step: Single Step Size Increment Case  
VREF  
Voltage  
VREF  
(VDDQ(DC)  
)
VREF,val_tol  
Step size  
t1  
Time  
Figure 64: VREF Step: Single Step Size Decrement Case  
VREF  
Voltage  
t1  
Step size  
VREF,val_tol  
VREF  
(VDDQ(DC)  
)
Time  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
117  
8Gb: x8, x16 Automotive DDR4 SDRAM  
REFDQ Calibration  
V
Figure 65: VREF Full Step: From VREF,min to VREF,maxCase  
VREF  
Voltage  
VREF  
(VDDQ(DC))  
VREF,max  
VREF,val_tol  
Full range  
step  
t1  
VREF,min  
Time  
Figure 66: VREF Full Step: From VREF,max to VREF,minCase  
VREF,max  
VREF  
Voltage  
Full range  
step  
t1  
VREF,val_tol  
VREF,min  
VREF  
(VDDQ(DC)  
)
Time  
VREFDQ Target Settings  
The VREFDQ initial settings are largely dependant on the ODT ter0ination settings. The  
table below shows all of the possible initial settings available for VREFDQ training; it is  
unlikely the lower ODT settings would be used in 0ost cases.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
118  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
REFDQ Calibration  
V
Table 38: VREFDQ Settings (VDDQ = 1.2V)  
RON  
ODT  
Vx – VIN LOW (mV)  
VREFDQ (mv)  
900  
VREFDQ (%VDDQ  
)
34 ohm  
40 ohm  
48 ohm  
60 ohm  
80 ohm  
120 ohm  
240 ohm  
34 ohm  
40 ohm  
48 ohm  
60 ohm  
80 ohm  
120 ohm  
240 ohm  
600  
550  
500  
435  
360  
265  
150  
700  
655  
600  
535  
450  
345  
200  
75%  
875  
73%  
850  
71%  
34 ohm  
815  
68%  
780  
65%  
732  
61%  
675  
56%  
950  
79%  
925  
77%  
900  
75%  
48 ohm  
865  
72%  
825  
69%  
770  
64%  
700  
58%  
Figure 67: VREFDQ Equivalent Circuit  
V
V
DDQ  
DDQ  
ODT  
RXer  
Vx  
V
R
REFDQ  
ON  
(internal)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
119  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Connectivity Test Mode  
Connectivity Test Mode  
Connectivity test (CT) 0ode is si0ilar to boundary scan testing but is designed to sig-  
nificantly speed up the testing of electrical continuity of pin interconnections between  
the device and the 0e0ory controller on the PC boards. Designed to work sea0lessly  
with any boundary scan device, CT 0ode is supported in all ×4, ×8, and ×1± devices (JE-  
DEC states CT 0ode for ×4 and ×8 is not required on 4Gb and is an optional feature on  
8Gb and above).  
Contrary to other conventional shift-register-based test 0odes, where test patterns are  
shifted in and out of the 0e0ory devices serially during each clock, the CT 0ode allows  
test patterns to be entered on the test input pins in parallel and the test results to be  
extracted fro0 the test output pins of the device in parallel. These two functions are al-  
so perfor0ed at the sa0e ti0e, significantly increasing the speed of the connectivity  
check. When placed in CT 0ode, the device appears as an asynchronous device to the  
external controlling agent. After the input test pattern is applied, the connectivity test  
results are available for extraction in parallel at the test output pins after a fixed propa-  
gation delay ti0e.  
Note: A reset of the device is required after exiting CT 0ode (see RESET and Initializa-  
tion Procedure).  
Pin Mapping  
Only digital pins can be tested using the CT 0ode. For the purposes of a connectivity  
check, all the pins used for digital logic in the device are classified as one of the follow-  
ing types:  
Test enable (TEN): When asserted HIGH, this pin causes the device to enter CT 0ode.  
In CT 0ode, the nor0al 0e0ory function inside the device is bypassed and the I/O  
pins appear as a set of test input and output pins to the external controlling agent.  
Additionally, the device will set the internal VREFDQ to VDDQ × 6.5 during CT 0ode  
(this is the only ti0e the DRAM takes direct control over setting the internal VREFDQ).  
The TEN pin is dedicated to the connectivity check function and will not be used dur-  
ing nor0al device operation.  
Chip select (CS_n): When asserted LOW, this pin enables the test output pins in the  
device. When de-asserted, these output pins will be High-Z. The CS_n pin in the de-  
vice serves as the CS_n pin in CT 0ode.  
Test input: A group of pins used during nor0al device operation designated as test  
input pins. These pins are used to enter the test pattern in CT 0ode.  
Test output: A group of pins used during nor0al device operation designated as test  
output pins. These pins are used for extraction of the connectivity test results in CT  
0ode.  
RESET_n: This pin 0ust be fixed high level during CT 0ode, as in nor0al function.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
120  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Connectivity Test Mode  
Table 39: Connectivity Mode Pin Description and Switching Levels  
CT Mode  
Pins  
Pin Name During Normal Memory Operation  
Switching Level  
CMOS (20%/80% VDD  
VREFCA 200mV  
Notes  
Test enable  
Chip select  
TEN  
)
1, 2  
3
CS_n  
BA[1:0], BG[1:0], A[9:0], A10/AP, A11, A12/BC_n, A13, WE_n/A14,  
CAS_n/A15, RAS_n/A16, CKE, ACT_n, ODT, CLK_t, CLK_c, PAR  
VREFCA 200mV  
3
A
Test  
input  
B LDM_n/LDBI_n, UDM_n/UDBI_n; DM_n/DBI_n  
VREFDQ 200mV  
4
2, 5  
2
C ALERT_n  
CMOS (20%/80% VDD  
CMOS (20%/80% VDD  
VTT 100mV  
)
)
D RESET_n  
Test  
DQ[15:0], UDQS_t, UDQS_c, LDQS_t, LDQS_c; DQS_t, DQS_c  
6
output  
1. TEN: Connectivity test mode is active when TEN is HIGH and inactive when TEN is LOW.  
TEN must be LOW during normal operation.  
Notes:  
2. CMOS is a rail-to-rail signal with DC HIGH at 80% and DC LOW at 20% of VDD (960mV  
for DC HIGH and 240mV for DC LOW.)  
3. VREFCA should be VDD/2.  
4. VREFDQ should be VDDQ/2.  
5. ALERT_n switching level is not a final setting.  
6. VTT should be set to VDD/2.  
Minimum Terms Definition for Logic Equations  
The test input and output pins are related by the following equations, where INV de-  
notes a logical inversion operation and XOR a logical exclusive OR operation:  
MT6 = XOR (A1, A±, PAR)  
MT1 = XOR (A8, ALERT_n, A9)  
MT2 = XOR (A2, A5, A13)  
MT3 = XOR (A6, A7, A11)  
MT4 = XOR (CK_c, ODT, CAS_n/A15)  
MT5 = XOR (CKE, RAS_n/A1±, A16/AP)  
MT± = XOR (ACT_n, A4, BA1)  
MT7 = ×1±: XOR (DMU_n/DBIU_n , DML_n/DBIL_n, CK_t)  
= ×8: XOR (BG1, DML_n/DBIL_n, CK_t)  
= ×4: XOR (BG1, CK_t)  
MT8 = XOR (WE_n/A14, A12 / BC, BA6)  
MT9 = XOR (BG6, A3, RESET_n and TEN)  
Logic Equations for a ×4 Device, When Supported  
DQ6 = XOR (MT6, MT1)  
DQ1 = XOR (MT2, MT3)  
DQ2 = XOR (MT4, MT5)  
DQ3 = XOR (MT±, MT7)  
DQS_t = MT8  
DQS_c = MT9  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
121  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Connectivity Test Mode  
Logic Equations for a ×8 Device, When Supported  
DQ6 = MT6  
DQ1 = MT1  
DQ2 = MT2  
DQ3 = MT3  
DQ4 = MT4  
DQ5 = MT5  
DQ± = MT±  
DQ7 = MT7  
DQS_t = MT8  
DQS_c = MT9  
Logic Equations for a ×16 Device  
DQ6 = MT6  
DQ1 = MT1  
DQ2 = MT2  
DQ3 = MT3  
DQ4 = MT4  
DQ5 = MT5  
DQ± = MT±  
DQ7 = MT7  
DQ16 = INV DQ2  
DQ11 = INV DQ3  
DQ12 = INV DQ4  
DQ13 = INV DQ5  
DQ14 = INV DQ±  
DQ15 = INV DQ7  
LDQS_t = MT8  
LDQS_c = MT9  
DQ8 = INV DQ6 UDQS_t = INV LDQS_t  
DQ9 = INV DQ1 UDQS_c = INV LDQS_c  
CT Input Timing Requirements  
Prior to the assertion of the TEN pin, all voltage supplies, including VREFCA, 0ust be val-  
id and stable and RESET_n registered high prior to entering CT 0ode. Upon the asser-  
tion of the TEN pin HIGH with RESET_n, CKE, and CS_n held HIGH; CLK_t, CLK_c, and  
CKE signals beco0e test inputs within tCTECT_Valid. The re0aining CT inputs beco0e  
valid tCT_Enable after TEN goes HIGH when CS_n allows input to begin sa0pling, pro-  
vided inputs were valid for at least tCT_Valid. While in CT 0ode, refresh activities in the  
0e0ory arrays are not allowed; they are initiated either externally (auto refresh) or in-  
ternally (self refresh).  
The TEN pin 0ay be asserted after the DRAM has co0pleted power-on. After the DRAM  
is initialized and VREFDQ is calibrated, CT 0ode 0ay no longer be used. The TEN pin  
0ay be de-asserted at any ti0e in CT 0ode. Upon exiting CT 0ode, the states and the  
integrity of the original content of the 0e0ory array are unknown. A full reset of the  
0e0ory device is required.  
After CT 0ode has been entered, the output signals will be stable within tCT_Valid after  
the test inputs have been applied as long as TEN is 0aintained HIGH and CS_n is 0ain-  
tained LOW.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
122  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Connectivity Test Mode  
Figure 68: Connectivity Test Mode Entry  
Ta  
Tc  
Td  
Tb  
CK_t  
CK_c  
Valid input  
Valid input  
tCKSRX  
tIS  
tCT_IS  
tCT_IS  
T = 10ns  
CKE  
Valid input  
Valid input  
tCTCKE_Valid  
T = 200μs  
T = 500μs  
RESET_n  
TEN  
tCT_IS  
tCTCKE_Valid>10ns  
tCT_IS>0ns  
tCT_Enable  
CS_n  
tCT_IS  
CT Inputs  
Valid input  
tCT_Valid  
Valid input  
tCT_Valid  
tCT_Valid  
CT Outputs  
Valid  
Valid  
Don’t Care  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
123  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Excessive Row Activation  
Excessive Row Activation  
Rows can be accessed a li0ited nu0ber of ti0es within a certain ti0e period before ad-  
jacent rows require refresh. The 0axi0u0 activate count (MAC) is the 0axi0u0 nu0-  
ber of activates that a single row can sustain within a ti0e interval of equal to or less  
than the 0axi0u0 activate window (tMAW) before the adjacent rows need to be re-  
freshed, regardless of how the activates are distributed over tMAW.  
Micron's DDR4 devices auto0atically perfor0 a type of TRR 0ode in the background  
and provide an MPR Page 3 MPR3[3:6] of 1666, indicating there is no restriction to the  
nu0ber of ACTIVATE co00ands to a given row in a refresh period provided DRAM ti0-  
ing specifications are not violated.  
Table 40: MAC Encoding of MPR Page 3 MPR3  
[7] [6] [5] [4] [3] [2] [1] [0]  
MAC  
Comments  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Untested  
The device has not been tested for MAC.  
tMAC = 700K  
tMAC = 600K  
tMAC = 500K  
tMAC = 400K  
tMAC = 300K  
Reserved  
tMAC = 200K  
Unlimited  
There is no restriction to the number of AC-  
TIVATE commands to a given row in a re-  
fresh period provided DRAM timing specifi-  
cations are not violated.  
x
x
x
x
x
x
x
x
x
x
x
x
1
:
0
:
0
:
1
:
Reserved  
Reserved  
Reserved  
1
1
1
1
1. MAC encoding in MPR Page 3 MPR3.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
124  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Post Package Repair  
Post Package Repair  
Post Package Repair  
JEDEC defines two 0odes of Post Package Repair (PPR): soft Post Package Repair (sPPR)  
and hard Post Package Repair (hPPR). sPPR is non-persistent so the repair row 0aybe  
altered; that is, sPPR is NOT a per0anent repair and even though it will repair a row, the  
repair can be reversed, reassigned via another sPPR, or 0ade per0anent via hPPR.  
Hard Post Package Repair is persistent so once the repair row is assigned for a hPPR ad-  
dress, further PPR co00ands to a previous hPPR section should not be perfor0ed, that  
is, hPPR is a per0anent repair; once repaired, it cannot be reversed. The controller pro-  
vides the failing row address in the hPPR/sPPR sequence to the device to perfor0 the  
row repair. hPPR Mode and sPPR Mode 0ay not be enabled at the sa0e ti0e.  
JEDEC states hPPR is optional for 4Gb and sPPR is optional for 4Gb and 8Gb parts how-  
ever Micron 4Gb and 8Gb DDR4 DRAMs should have both sPPR and hPPR support. The  
hPPR support is identified via an MPR read fro0 MPR Page 2, MPR6[7] and sPPR sup-  
port is identified via an MPR read fro0 MPR Page 2, MPR6[±].  
The JEDEC 0ini0u0 support require0ent for DDR4 PPR (hPPR or sPPR) is to provide  
one row of repair per bank group (BG), x4/x8 have 4 BG and x1± has 2 BG; this is a total  
of 4 repair rows available on x4/x8 and 2 repair rows available on x1±. Micron PPR sup-  
port exceeds the JEDEC 0ini0u0 require0ents; Micron DDR4 DRAMs have at least  
one row of repair for each bank which is essentially 4 row repairs per BG for a total of 1±  
repair rows for x4 and x8 and 8 repair rows for x1±; a 4x increase in repair rows.  
JEDEC requires the user to have all sPPR row repair addresses reset and cleared prior to  
enabling hPPR Mode. Micron DDR4 PPR does not have this restriction, the existing  
sPPR row repair addresses are not required to be cleared prior to entering hPPR 0ode.  
Each bank in a BG is PPR independent: sPPR or hPPR issued to a bank will not alter a  
sPPR row repair existing in a different bank.  
sPPR followed by sPPR to same bank  
When PPR is issued to a bank for the first ti0e and is a sPPR co00and, the repair row  
will be a sPPR. When a subsequent sPPR is issued to the sa0e bank, the previous sPPR  
repair row will be cleared and used for the subsequent sPPR address as the sPPR opera-  
tion is non-persistent.  
sPPR followed by hPPR to same bank  
When a PPR is issued to a bank for the first ti0e and is a sPPR co00and, the repair row  
will be a sPPR. When a subsequent hPPR is issued to the sa0e bank, the initial sPPR  
repair row will be cleared and used for the hPPR address. If a further subsequent PPR  
(hPPR or sPPR) is issued to the sa0e bank, the further subsequent PPR ( hPPR or sPPR)  
repair row will not clear or overwrite the previous hPPR address as the hPPR operation  
is persistent.  
hPPR followed by hPPR or sPPR to same bank  
When a PPR is issued to a bank for the first ti0e and is a hPPR co00and, the repair row  
will be a hPPR. When a subsequent PPR (hPPR or sPPR) is issued to the sa0e bank, the  
subsequent PPR ( hPPR or sPPR) repair row will not clear or overwrite the initial hPPR  
address as the initial hPPR is persistent.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
125  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Hard Post Package Repair  
Hard Post Package Repair  
All banks 0ust be precharged and idle. DBI and CRC 0odes 0ust be disabled. Both  
sPPR and hPPR 0ust be disabled. sPPR is disabled with MR4[5] = 6. hPPR is disabled  
with MR4[13] = 6, which is the nor0al state, and hPPR is enabled with MR4 [13]= 1,  
which is the hPPR enabled state. There are two for0s of hPPR 0ode. Both for0s of  
hPPR have the sa0e entry require0ent as defined in the sections below. The first co0-  
0and sequence uses a WRA co00and and supports data retention with a REFRESH  
operation except for the bank containing the row that is being repaired; JEDEC has re-  
laxed this require0ent and allows BA[6] to be a don't care regarding the banks which  
are not required to 0aintain data a REFRESH operation during hPPR. The second co0-  
0and sequence uses a WR co00and (a REFRESH operation can't be perfor0ed in this  
co00and sequence). The second co00and sequence doesn't support data retention  
for the target DRAM.  
hPPR Row Repair - Entry  
As stated above, all banks 0ust be precharged and idle. DBI and CRC 0odes 0ust be  
disabled, and all ti0ings 0ust be followed as shown in the ti0ing diagra0 that follows.  
All other co00ands except those listed in the following sequences are illegal.  
1. Issue MR4[13] 1 to enter hPPR 0ode enable.  
a. All DQ are driven HIGH.  
2. Issue four consecutive guard key co00ands (shown in the table below) to MR6  
with each co00and separated by tMOD. The PPR guard key settings are the sa0e  
whether perfor0ing sPPR or hPPR 0ode.  
a. Any interruption of the key sequence by other co00ands, such as ACT, WR,  
RD, PRE, REF, ZQ, and NOP, are not allowed.  
b. If the guard key bits are not entered in the required order or interrupted with  
other MR co00ands, hPPR will not be enabled, and the progra00ing cycle  
will result in a NOP.  
c. When the hPPR entry sequence is interrupted and followed by ACT and WR  
co00ands, these co00ands will be conducted as nor0al DRAM co0-  
0ands.  
d. JEDEC allows A±:6 to be "Don't Care" on 4Gb and 8Gb devices fro0 a sup-  
plier perspective and the user should rely on vendor datasheet.  
Table 41: PPR MR0 Guard Key Settings  
MR0  
BG1:0  
BA1:0  
A17:12  
xxxxxx  
xxxxxx  
xxxxxx  
xxxxxx  
A11  
A10  
A9  
0
A8  
0
A7  
1
A6:0  
First guard key  
Second guard key  
Third Guard key  
Fourth guard key  
0
0
0
0
0
0
0
0
1
0
1
0
1
1
0
0
1111111  
1111111  
1111111  
1111111  
1
1
1
1
1
1
1
1
1
hPPR Row Repair – WRA Initiated (REF Commands Allowed)  
1. Issue an ACT co00and with failing BG and BA with the row address to be re-  
paired.  
2. Issue a WRA co00and with BG and BA of failing row address.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
126  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Hard Post Package Repair  
a. The address 0ust be at valid levels, but the address is "Don't Care."  
3. All DQ of the target DRAM should be driven LOW for 4nCK (bit 6 through bit 7)  
after WL (WL = CWL + AL + PL) in order for hPPR to initiate repair.  
a. Repair will be initiated to the target DRAM only if all DQ during bit 6  
through bit 7 are LOW. The bank under repair does not get the REFRESH  
co00and applied to it.  
b. Repair will not be initiated to the target DRAM if any DQ during bit 6  
through bit 7 is HIGH.  
1. JEDEC states: All DQs of target DRAM should be LOW for 4tCK. If  
HIGH is driven to all DQs of a DRAM consecutively for equal to or lon-  
ger than 2tCK, then DRAM does not conduct hPPR and retains data if  
REF co00and is properly issued; if all DQs are neither LOW for 4tCK  
nor HIGH for equal to or longer than 2tCK, then hPPR 0ode execution  
is unknown.  
c. DQS should function nor0ally.  
4. REF co00and 0ay be issued anyti0e after the WRA co00and followed by WL +  
4nCK + tWR + tRP.  
a. Multiple REF co00ands are issued at a rate of tREFI or tREFI/2, however  
back-to-back REF co00ands 0ust be separated by at least tREFI/4 when  
the DRAM is in hPPR 0ode.  
b. All banks except the bank under repair will perfor0 refresh.  
5. Issue PRE after tPGM ti0e so that the device can repair the target row during  
tPGM ti0e.  
a. Wait tPGM_Exit after PRE to allow the device to recognize the repaired target  
row address.  
±. Issue MR4[13] 6 co00and to hPPR 0ode disable.  
a. Wait tPGMPST for hPPR 0ode exit to co0plete.  
b. After tPGMPST has expired, any valid co00and 0ay be issued.  
The entire sequence fro0 hPPR 0ode enable through hPPR 0ode disable 0ay be re-  
peated if 0ore than one repair is to be done.  
After co0pleting hPPR 0ode, MR6 0ust be re-progra00ed to a prehPPR 0ode state if  
the device is to be accessed.  
After hPPR 0ode has been exited, the DRAM controller can confir0 if the target row  
was repaired correctly by writing data into the target row and reading it back.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
127  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Hard Post Package Repair  
Figure 69: hPPR WRA – Entry  
7ꢅ  
7ꢇ  
7D  
7D  
7Eꢅ  
7Eꢇ  
7F  
7F  
7Gꢅ  
7Gꢇ  
7H  
7Iꢅ  
7Jꢅ  
&.BF  
&.BW  
&0'  
056ꢃ  
9DOLG  
9DOLG  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
$&7  
%*I  
%$I  
:5$  
'(6  
1ꢄ$  
1ꢄ$  
%*  
%*I  
%$I  
ꢀ%$  
ꢅꢅ  
ꢅꢅ  
ꢅꢅ  
ꢅꢅ  
9DOLGꢀ  
VW  
QG  
UG  
WK  
1ꢄ$  
1ꢄ$  
1ꢄ$  
1ꢄ$  
1ꢄ$  
9DOLG  
1ꢄ$  
ꢀ.H\  
ꢀ.H\  
ꢀ.H\  
ꢀ.H\  
9DOLGꢀ  
$''5  
&.(  
ꢌ$ꢇꢋ ꢇꢎ  
'46BW  
'46BF  
'4V  
W
W
W
W
W
W
5&'  
02'  
02'  
02'  
02'  
02'  
$OOꢀ%DQNVꢀ  
3UHFKDUJHG  
DQGꢀLGOHꢀVWDWH  
1RUPDO  
0RGH  
VW  
QGꢀ  
UG  
WK  
 ꢀ*XDUGꢀ.H\ꢀ9LGDWH  
K335ꢀ(QWU\  
ꢀ*XDUGꢀ.H\ꢀ9DOLGDW
*XDUGꢀ.H\ꢀ9DOLGDH  
ꢀ*XDUGꢀ.H\ꢀ9DOLGD
K335ꢀ5HSDLU  
'RQ¶Wꢀ&DUH  
Figure 70: hPPR WRA – Repair and Exit  
Te0  
Tf0  
Tg0  
Tg1  
Th0  
Th1  
Tj0  
Tj1  
Tj2  
Tk0  
PRE  
Tk1  
Tm0  
Tm1  
DES  
Tn0  
CK_c  
CK_t  
CMD  
ACT  
BGf  
BAf  
WRA  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
REF/DES  
N/A  
REF/DES  
N/A  
REF/DES  
MRSx  
Valid  
Valid  
Valid  
N/A  
N/A  
Valid  
Valid  
N/A  
N/A  
Valid  
Valid  
BG  
BA  
BGf  
BAf  
N/A  
N/A  
Valid  
Valid  
N/A  
N/A  
N/A  
N/A  
Valid  
Valid  
N/A  
N/A  
N/A  
N/A  
N/A  
Valid  
ADDR  
CKE  
(A13 = 0)  
t t  
WR + RP + 1nCK  
WL = CWL+AL+PL  
4nCK  
DQS_t  
DQS_c  
1
DQs  
bit 6  
bit 0  
bit 1  
bit 7  
t
t
t
t
PGMPST  
RCD  
PGM  
PGM_Exit  
All Banks  
Precharged  
and idle state  
Normal  
mode  
hPPR Recognitio
hPPR Exit  
hPPR Repair  
hPPR Repair  
hPPR Repair  
Don’t Care  
hPPR Row Repair – WR Initiated (REF Commands NOT Allowed)  
1. Issue an ACT co00and with failing BG and BA with the row address to be re-  
paired.  
2. Issue a WR co00and with BG and BA of failing row address.  
a. The address 0ust be at valid levels, but the address is "Don't Care."  
3. All DQ of the target DRAM should be driven LOW for 4nCK (bit 6 through bit 7)  
after WL (WL = CWL + AL + PL) in order for hPPR to initiate repair.  
a. Repair will be initiated to the target DRAM only if all DQ during bit 6  
through bit 7 are LOW.  
b. Repair will not be initiated to the target DRAM if any DQ during bit 6  
through bit 7 is HIGH.  
1. JEDEC states: All DQs of target DRAM should be LOW for 4tCK. If  
HIGH is driven to all DQs of a DRAM consecutively for equal to or lon-  
ger than 2tCK, then DRAM does not conduct hPPR and retains data if  
REF co00and is properly issued; if all DQs are neither LOW for 4tCK  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
128  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Hard Post Package Repair  
nor HIGH for equal to or longer than 2tCK, then hPPR 0ode execution  
is unknown.  
c. DQS should function nor0ally.  
4. REF co00ands 0ay NOT be issued at anyti0e while in PPT 0ode.  
5. Issue PRE after tPGM ti0e so that the device can repair the target row during  
tPGM ti0e.  
a. Wait tPGM_Exit after PRE to allow the device to recognize the repaired target  
row address.  
±. Issue MR4[13] 6 co00and to hPPR 0ode disable.  
a. Wait tPGMPST for hPPR 0ode exit to co0plete.  
b. After tPGMPST has expired, any valid co00and 0ay be issued.  
The entire sequence fro0 hPPR 0ode enable through hPPR 0ode disable 0ay be re-  
peated if 0ore than one repair is to be done.  
After co0pleting hPPR 0ode, MR6 0ust be re-progra00ed to a prehPPR 0ode state if  
the device is to be accessed.  
After hPPR 0ode has been exited, the DRAM controller can confir0 if the target row  
was repaired correctly by writing data into the target row and reading it back.  
Figure 71: hPPR WR – Entry  
7ꢅ  
7ꢇ  
7D  
7D  
7Eꢅ  
7Eꢇ  
7F  
7F  
7Gꢅ  
7Gꢇ  
7H  
7Iꢅ  
:5  
7Jꢅ  
&.BF  
&.BW  
&0'  
056ꢃ  
9DOLG  
9DOLG  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
$&7  
%*I  
%$I  
'(6  
1ꢄ$  
1ꢄ$  
%*  
%*I  
%$I  
ꢀ%$  
ꢅꢅ  
ꢅꢅ  
ꢅꢅ  
ꢅꢅ  
9DOLGꢀ  
VW  
QG  
UG  
WK  
1ꢄ$  
1ꢄ$  
1ꢄ$  
1ꢄ$  
1ꢄ$  
9DOLG  
1ꢄ$  
ꢀ.H\  
ꢀ.H\  
ꢀ.H\  
ꢀ.H\  
9DOLGꢀ  
$''5  
&.(  
ꢌ$ꢇꢋꢀ ꢀꢇꢎ  
:/ꢀ ꢀ&:/ꢀꢓꢀ  
'46BW  
'46BF  
'4V  
W
W
W
W
W
W
5&'  
02'  
02'  
02'  
02'  
02'  
$OOꢀ%DQNVꢀ  
3UHFKDUJHG  
DQGꢀLGOHꢀVWDWH  
1RUPDO  
VW  
QGꢀ  
UG  
WK  
 ꢀ*XDUGꢀ.H\ꢀ9LGDWH  
K335ꢀ(QWU\  
ꢀ*XDUGꢀ.H\ꢀ9DOLGDW
*XDUGꢀ.H\ꢀ9DOLGDH  
ꢀ*XDUGꢀ.H\ꢀ9DOLGD
K335ꢀ5HSDLU  
0RGH  
'RQ¶Wꢀ&DUH  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
129  
8Gb: x8, x16 Automotive DDR4 SDRAM  
sPPR Row Repair  
Figure 72: hPPR WR – Repair and Exit  
Te0  
Tf0  
Tg0  
Tg1  
Th0  
Th1  
Tj0  
Tj1  
Tj2  
Tk0  
PRE  
Tk1  
Tm0  
Tm1  
DES  
Tn0  
CK_c  
CK_t  
CMD  
ACT  
BGf  
BAf  
WR  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
MRSx  
Valid  
Valid  
Valid  
N/A  
N/A  
Valid  
Valid  
N/A  
N/A  
Valid  
Valid  
BG  
BA  
BGf  
BAf  
Valid  
Valid  
N/A  
N/A  
N/A  
N/A  
Valid  
Valid  
N/A  
N/A  
N/A  
N/A  
N/A  
Valid  
ADDR  
CKE  
(A13 = 0)  
WL = CWL + AL + PL  
4nCK  
DQS_t  
DQS_c  
1
DQs  
bit 6  
bit 0  
bit 1  
bit 7  
t
t
t
t
PGMPST  
RCD  
PGM  
PGM_Exit  
All Banks  
Precharged  
and idle state  
Normal  
hPPR Recognition  
hPPR Exit  
hPPR Repair  
hPPR Repair  
hPPR Repair  
mode  
Don’t Care  
Table 42: DDR4 hPPR Timing Parameters DDR4-1600 through DDR4-3200  
Parameter  
Symbol  
tPGM  
Min  
1000  
2000  
15  
Max  
Unit  
hPPR programming time  
×4, ×8  
×16  
ms  
ms  
ns  
hPPR precharge exit time  
hPPR exit time  
tPGM_Exit  
tPGMPST  
50  
μs  
sPPR Row Repair  
Soft post package repair (sPPR) is a way to quickly, but te0porarily, repair a row ele-  
0ent in a bank on a DRAM device, where hPPR takes longer but per0anently repairs a  
row ele0ent. sPPR 0ode is entered in a si0ilar fashion as hPPR, sPPR uses MR4[5]  
while hPPR uses MR4[13]. sPPR is disabled with MR4[5] = 6, which is the nor0al state,  
and sPPR is enabled with MR4[5] = 1, which is the sPPR enabled state.  
sPPR requires the sa0e guard key sequence as hPPR to qualify the MR4 PPR entry. After  
sPPR entry, an ACT co00and will capture the target bank and target row, herein seed  
row, where the row repair will be 0ade. After tRCD ti0e, a WR co00and is used to se-  
lect the individual DRAM, through the DQ bits, to transfer the repair address into an in-  
ternal register in the DRAM. After a write recovery ti0e and PRE co00and, the sPPR  
0ode can be exited and nor0al operation can resu0e.  
The DRAM will retain the soft repair infor0ation as long as VDD re0ains within the op-  
erating region unless rewritten by a subsequent sPPR entry to the sa0e bank. If DRAM  
power is re0oved or the DRAM is reset, the soft repair will revert to the unrepaired  
state. hPPR and sPPR should not be enabled at the sa0e ti0e; Micron sPPR does not  
have to be disabled and cleared prior to entering hPPR 0ode.  
With sPPR, Micron DDR4 can repair one row per bank. When a subsequent sPPR re-  
quest is 0ade to the sa0e bank, the subsequently issued sPPR address will replace the  
previous sPPR address. When the hPPR resource for a bank is used up, the bank should  
be assu0ed to not have available resources for sPPR. If a repair sequence is issued to a  
bank with no repair resource available, the DRAM will ignore the progra00ing se-  
quence.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
130  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
sPPR Row Repair  
The bank receiving sPPR change is expected to retain 0e0ory array data in all rows ex-  
cept for the seed row and its associated row addresses. If the data in the 0e0ory array  
in the bank under sPPR repair is not required to be retained, then the handling of the  
seed row’s associated row addresses is not of interest and can be ignored. If the data in  
the 0e0ory array is required to be retained in the bank under sPPR 0ode, then prior to  
executing the sPPR 0ode, the seed row and its associated row addresses should be  
backed up and subsequently restored after sPPR has been co0pleted. sPPR associated  
seed row addresses are specified in the Table below; BA6 is not required by Micron  
DRAMs however it is JEDEC reserved.  
Table 43: sPPR Associated Rows  
sPPR Associated Row Address  
BA0*  
A17  
A16  
A15  
A14  
A13  
A1  
A0  
All banks 0ust be precharged and idle. DBI and CRC 0odes 0ust be disabled, and all  
sPPR ti0ings 0ust be followed as shown in the ti0ing diagra0 that follows.  
All other co00ands except those listed in the following sequences are illegal.  
1. Issue MR4[5] 1 to enter sPPR 0ode enable.  
a. All DQ are driven HIGH.  
2. Issue four consecutive guard key co00ands (shown in the table below) to MR6  
with each co00and separated by tMOD. Please note that JEDEC recently added  
the four guard key entry used for hPPR to sPPR entry; early DRAMs 0ay not re-  
quire four guard key entry code. A prudent controller design should acco00o-  
date either option in case an earlier DRAM is used.  
a. Any interruption of the key sequence by other co00ands, such as ACT, WR,  
RD, PRE, REF, ZQ, and NOP, are not allowed.  
b. If the guard key bits are not entered in the required order or interrupted with  
other MR co00ands, sPPR will not be enabled, and the progra00ing cycle  
will result in a NOP.  
c. When the sPPR entry sequence is interrupted and followed by ACT and WR  
co00ands, these co00ands will be conducted as nor0al DRAM co0-  
0ands.  
d. JEDEC allows A±:6 to be "Don't Care" on 4Gb and 8Gb devices fro0 a sup-  
plier perspective and the user should rely on vendor datasheet.  
Table 44: PPR MR0 Guard Key Settings  
MR0  
BG1:0  
BA1:0  
A17:12  
xxxxxx  
xxxxxx  
xxxxxx  
xxxxxx  
A11  
A10  
A9  
0
A8  
0
A7  
1
A6:0  
First guard key  
Second guard key  
Third guard key  
Fourth guard key  
0
0
0
0
0
0
0
0
1
0
1
0
1
1
0
0
1111111  
1111111  
1111111  
1111111  
1
1
1
1
1
1
1
1
1
3. After tMOD, issue an ACT co00and with failing BG and BA with the row address  
to be repaired.  
4. After tRCD, issue a WR co00and with BG and BA of failing row address.  
a. The address 0ust be at valid levels, but the address is a "Don't Care."  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
131  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
sPPR Row Repair  
5. All DQ of the target DRAM should be driven LOW for 4nCK (bit 6 through bit 7)  
after WL (WL = CWL + AL + PL) in order for sPPR to initiate repair.  
a. Repair will be initiated to the target DRAM only if all DQ during bit 6  
through bit 7 are LOW.  
b. Repair will not be initiated to the target DRAM if any DQ during bit 6  
through bit 7 is HIGH.  
1. JEDEC states: All DQs of target DRAM should be LOW for 4tCK. If  
HIGH is driven to all DQs of a DRAM consecutively for equal to or lon-  
ger than the first 2tCK, then DRAM does not conduct hPPR and retains  
data if REF co00and is properly issued; if all DQs are neither LOW for  
4tCK nor HIGH for equal to or longer than the first 2tCK, then hPPR  
0ode execution is unknown.  
c. DQS should function nor0ally.  
±. REF co00and 0ay NOT be issued at anyti0e while in sPPR 0ode.  
7. Issue PRE after tWR ti0e so that the device can repair the target row during tWR  
ti0e.  
a. Wait tPGM_Exit_s after PRE to allow the device to recognize the repaired tar-  
get row address.  
8. Issue MR4[5] 6 co00and to sPPR 0ode disable.  
a. Wait tPGMPST_s for sPPR 0ode exit to co0plete.  
b. After tPGMPST_s has expired, any valid co00and 0ay be issued.  
The entire sequence fro0 sPPR 0ode enable through sPPR 0ode disable 0ay be repea-  
ted if 0ore than one repair is to be done.  
After sPPR 0ode has been exited, the DRAM controller can confir0 if the target row  
was repaired correctly by writing data into the target row and reading it back.  
Figure 73: sPPR – Entry  
7ꢅ  
7ꢇ  
7D  
7D  
7Eꢅ  
7Eꢇ  
7F  
7F  
7Gꢅ  
7Gꢇ  
7H  
7Iꢅ  
:5  
7Jꢅ  
&.BF  
&.BW  
&0'  
056ꢃ  
9DOLG  
9DOLG  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
056ꢅ  
ꢅꢅ  
'(6  
1ꢄ$  
1ꢄ$  
$&7  
%*I  
%$I  
'(6  
1ꢄ$  
1ꢄ$  
%*  
%*I  
ꢀ%$  
ꢅꢅ  
ꢅꢅ  
ꢅꢅ  
ꢅꢅ  
%$I  
9DOLGꢀ  
VW  
QG  
UG  
WK  
1ꢄ$  
1ꢄ$  
1ꢄ$  
1ꢄ$  
1ꢄ$  
9DOLG  
1ꢄ$  
ꢀ.H\  
ꢀ.H\  
ꢀ.H\  
ꢀ.H\  
9DOLGꢀ  
$''5  
&.(  
ꢌ$ꢐ ꢇꢎ  
'46BW  
'46BF  
'4V  
W
W
W
W
W
W
5&'  
02'  
02'  
02'  
02'  
02'  
$OOꢀ%DQNVꢀ  
3UHFKDUJHG  
DQGꢀLGOHꢀVWDWH  
1RUPDO  
VW  
QGꢀ  
UG  
WK  
 ꢀ*XDUGꢀ.H\ꢀ9LGDWH  
V335ꢀ(QWU\  
ꢀ*XDUGꢀ.H\ꢀ9DOLGD
*XDUGꢀ.H\ꢀ9DOLGDH  
ꢀ*XDUGꢀ.H\ꢀ9DOLGD
V335ꢀ5HSDLU  
0RGH  
'RQ¶Wꢀ&DUH  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
132  
8Gb: x8, x16 Automotive DDR4 SDRAM  
hPPR/sPPR Support Identifier  
Figure 74: sPPR – Repair, and Exit  
Te0  
Tf0  
Tg0  
Tg1  
Th0  
Th1  
Tj0  
Tj1  
Tj2  
Tk0  
PRE  
Tk1  
DES  
Tm0  
Tm1  
DES  
Tn0  
CK_c  
CK_t  
CMD  
ACT  
BGf  
BAf  
WR  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
DES  
N/A  
N/A  
MRS4  
Valid  
Valid  
Valid  
N/A  
N/A  
Valid  
Valid  
N/A  
N/A  
Valid  
Valid  
BG  
BA  
BGf  
BAf  
Valid  
Valid  
N/A  
N/A  
N/A  
N/A  
Valid  
Valid  
N/A  
N/A  
N/A  
N/A  
N/A  
Valid  
ADDR  
CKE  
(A5=0)  
t
WR  
WL = CWL + AL + PL  
4nCK  
DQS_t  
DQS_c  
1
DQs  
bit 0  
bit 1  
bit 6  
bit 7  
t
t
PGM_s  
t
t
RCD  
PGM_Exit_s  
PGMPST_s  
All Banks  
Precharged  
and idle state  
Normal  
Mode  
sPPR Recognitio
sPPR Exit  
sPPR Repair  
sPPR Repair  
sPPR Repair  
sPPR Repair  
Don’t Care  
Table 45: DDR4 sPPR Timing Parameters DDR4-1600 through DDR4-3200  
Parameter  
Symbol  
Min  
Max  
Unit  
sPPR programming time  
tPGM_s  
t RCD(MIN)+ WL + 4nCK  
+ tWR(MIN)  
ns  
sPPR precharge exit time  
sPPR exit time  
tPGM_Exit_s  
tPGMPST_s  
20  
tMOD  
ns  
ns  
hPPR/sPPR Support Identifier  
Table 46: DDR4 Repair Mode Support Identifier  
MPR Page 2  
A7  
UI0  
A6  
UI1  
A5  
UI2  
A4  
A3  
A2  
A1  
UI6  
A0  
UI7  
UI3  
UI4  
UI5  
MPR0  
hPPR1  
sPPR2  
RTT_WR  
Temp sensor  
CRC  
RTT_WR  
1. 0 = hPPR mode is not available, 1 = hPPR mode is available.  
2. 0 = sPPR mode is not available, 1 = sPPR mode is available.  
3. Gray shaded areas are for reference only.  
Notes:  
ACTIVATE Command  
The ACTIVATE co00and is used to open (activate) a row in a particular bank for subse-  
quent access. The values on the BG[1:6] inputs select the bank group, the BA[1:6] inputs  
select the bank within the bank group, and the address provided on inputs A[17:6] se-  
lects the row within the bank. This row re0ains active (open) for accesses until a PRE-  
CHARGE co00and is issued to that bank. A PRECHARGE co00and 0ust be issued be-  
fore opening a different row in the sa0e bank. Bank-to-bank co00and ti0ing for AC-  
TIVATE co00ands uses two different ti0ing para0eters, depending on whether the  
banks are in the sa0e or different bank group. tRRD_S (short) is used for ti0ing be-  
tween banks located in different bank groups. tRRD_L (long) is used for ti0ing between  
banks located in the sa0e bank group. Another ti0ing restriction for consecutive ACTI-  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
133  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
PRECHARGE Command  
VATE co00ands [issued at tRRD (MIN)] is tFAW (fifth activate window). Because there  
is a 0axi0u0 of four banks in a bank group, the tFAW para0eter applies across differ-  
ent bank groups (five ACTIVATE co00ands issued at tRRD_L (MIN) to the sa0e bank  
group would be li0ited by tRC).  
Figure 75: tRRD Timing  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
ACT  
T11  
DES  
CK_c  
CK_t  
ACT  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
ACT  
Command  
tRRD_S  
tRRD_L  
Bank  
Group  
(BG)  
BG b  
Bank d  
Row n  
BG a  
Bank c  
Row n  
BG b  
Bank c  
Row n  
Bank  
Address  
Don’t Care  
1. tRRD_S; ACTIVATE-to-ACTIVATE command period (short); applies to consecutive ACTI-  
VATE commands to different bank groups (that is, T0 and T4).  
Notes:  
2. tRRD_L; ACTIVATE-to-ACTIVATE command period (long); applies to consecutive ACTI-  
VATE commands to the different banks in the same bank group (that is, T4 and T10).  
Figure 76: tFAW Timing  
T0  
Ta0  
ACT  
Tb0  
ACT  
Tc0  
ACT  
Tc1  
Tc2  
Td0  
ACT  
Td1  
NOP  
CK_c  
CK_t  
ACT  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Command  
tRRD  
tRRD  
tRRD  
tFAW  
Bank  
Group  
(BG)  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Bank  
Valid  
Valid  
Valid  
Valid  
Valid  
Address  
Don’t Care  
Time Break  
1. tFAW; four activate windows.  
Note:  
PRECHARGE Command  
The PRECHARGE co00and is used to deactivate the open row in a particular bank or  
the open row in all banks. The bank(s) will be available for a subsequent row activation  
for a specified ti0e (tRP) after the PRECHARGE co00and is issued. An exception to  
this is the case of concurrent auto precharge, where a READ or WRITE co00and to a  
different bank is allowed as long as it does not interrupt the data transfer in the current  
bank and does not violate any other ti0ing para0eters.  
After a bank is precharged, it is in the idle state and 0ust be activated prior to any READ  
or WRITE co00ands being issued to that bank. A PRECHARGE co00and is allowed if  
there is no open row in that bank (idle state) or if the previously open row is already in  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
134  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
REFRESH Command  
the process of precharging. However, the precharge period will be deter0ined by the  
last PRECHARGE co00and issued to the bank.  
The auto precharge feature is engaged when a READ or WRITE co00and is issued with  
A16 HIGH. The auto precharge feature uses the RAS lockout circuit to internally delay  
the PRECHARGE operation until the ARRAY RESTORE operation has co0pleted. The  
RAS lockout circuit feature allows the PRECHARGE operation to be partially or co0-  
pletely hidden during burst READ cycles when the auto precharge feature is engaged.  
The PRECHARGE operation will not begin until after the last data of the burst write se-  
quence is properly stored in the 0e0ory array.  
REFRESH Command  
The REFRESH co00and (REF) is used during nor0al operation of the device. This  
co00and is nonpersistent, so it 0ust be issued each ti0e a refresh is required. The de-  
vice requires REFRESH cycles at an average periodic interval of tREFI. When CS_n,  
RAS_n/A1±, and CAS_n/A15 are held LOW and WE_n/A14 HIGH at the rising edge of  
the clock, the device enters a REFRESH cycle. All banks of the SDRAM 0ust be pre-  
charged and idle for a 0ini0u0 of the precharge ti0e, tRP (MIN), before the REFRESH  
co00and can be applied. The refresh addressing is generated by the internal DRAM re-  
fresh controller. This 0akes the address bits “Don’t Care” during a REFRESH co00and.  
An internal address counter supplies the addresses during the REFRESH cycle. No con-  
trol of the external address bus is required once this cycle has started. When the RE-  
FRESH cycle has co0pleted, all banks of the SDRAM will be in the precharged (idle)  
state. A delay between the REFRESH co00and and the next valid co00and, except  
DES, 0ust be greater than or equal to the 0ini0u0 REFRESH cycle ti0e tRFC (MIN),  
as shown in Figure 77 (page 13±).  
Note: The tRFC ti0ing para0eter depends on 0e0ory density.  
In general, a REFRESH co00and needs to be issued to the device regularly every tREFI  
interval. To allow for i0proved efficiency in scheduling and switching between tasks,  
so0e flexibility in the absolute refresh interval is provided for postponing and pulling-  
in the REFRESH co00and. A li0ited nu0ber REFRESH co00ands can be postponed  
depending on refresh 0ode: a 0axi0u0 of 8 REFRESH co00ands can be postponed  
when the device is in 1X refresh 0ode; a 0axi0u0 of 1± REFRESH co00ands can be  
postponed when the device is in 2X refresh 0ode; and a 0axi0u0 of 32 REFRESH  
co00ands can be postponed when the device is in 4X refresh 0ode.  
When 8 consecutive REFRESH co00ands are postponed, the resulting 0axi0u0 inter-  
val between the surrounding REFRESH co00ands is li0ited to 9 × tREFI (see Figure 78  
(page 13±)). For both the 2X and 4X refresh 0odes, the 0axi0u0 consecutive RE-  
FRESH co00ands allowed is li0ited to 17 × tREFI2 and 3± × tREFI4, respectively.  
A li0ited nu0ber REFRESH co00ands can be pulled-in as well. A 0axi0u0 of 8 addi-  
tional REFRESH co00ands can be issued in advance or “pulled-in” in 1X refresh 0ode,  
a 0axi0u0 of 1± additional REFRESH co00ands can be issued when in advance in 2X  
refresh 0ode, and a 0axi0u0 of 32 additional REFRESH co00ands can be issued in  
advance when in 4X refresh 0ode. Each of these REFRESH co00ands reduces the  
nu0ber of regular REFRESH co00ands required later by one. Note that pulling in  
0ore than the 0axi0u0 allowed REFRESH co00ands in advance does not further re-  
duce the nu0ber of regular REFRESH co00ands required later, so that the resulting  
0axi0u0 interval between two surrounding REFRESH co00ands is li0ited to 9 × tRE-  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
135  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
REFRESH Command  
FI (Figure 79 (page 13±)), 18 × tRFEI2, or 3± × tREFI4. At any given ti0e, a 0axi0u0 of  
1± REF co00ands can be issued within 2 × tREFI, 32 REF2 co00ands can be issued  
within 4 × tREFI2, and ±4 REF4 co00ands can be issued within 8 × tREFI4.  
Figure 77: REFRESH Command Timing  
T0  
T1  
Ta0  
Ta1  
Tb0  
Tb1  
Tb2  
Tb3  
Tc0  
Tc1  
Tc2  
Tc3  
CK_c  
CK_t  
REF  
DES  
REF  
DES  
Valid  
Valid  
Valid  
Valid  
Vaid  
REF  
Valid  
Valid  
Valid  
Command  
DE
DE
tRFC  
tRFC (MIN)  
tREFI (MAX 9 × tREFI)  
DRAM must be idle  
DRAM must be idle  
Time Break  
Don’t Care  
1. Only DES commands are allowed after a REFRESH command is registered until tRFC  
(MIN) expires.  
Notes:  
2. Time interval between two REFRESH commands may be extended to a maximum of 9 ×  
tREFI.  
Figure 78: Postponing REFRESH Commands (Example)  
tREFI  
9 × tREFI  
W
tRFC  
8 REF-Commands postponed  
Figure 79: Pulling In REFRESH Commands (Example)  
tREFI  
9 × tREFI  
W
tRFC  
8 REF-Commands pulled-in  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
136  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Temperature-Controlled Refresh Mode  
Temperature-Controlled Refresh Mode  
During nor0al operation, te0perature-controlled refresh (TCR) 0ode disabled, the de-  
vice 0ust have a REFRESH co00and issued once every tREFI, except for what is al-  
lowed by posting (see REFRESH Co00and section). This 0eans a REFRESH co00and  
0ust be issued once every 6.4875μs if TC is greater than or equal to 122°C, once every  
6.975μs if TC is greater than or equal to 165°C, once every 1.95μs if TC is greater than or  
equal to 95°C, once every 3.9μs if TC is greater than or equal to 85°C, and once every  
7.8μs if TC is less than 85°C.  
Table 47: Normal tREFI Refresh (TCR Disabled)  
Normal Temperature  
Extended Temperature  
External Refresh  
Period  
Internal Refresh  
Period  
External Refresh  
Internal Refresh  
Period  
Temperature  
TC < 45°C  
Period  
3.9μs1  
7.8μs  
7.8μs  
3.9μs1  
45°C TC < 85°C  
85°C TC < 95°C  
95°C TC < 105°C  
105°C TC 122°C  
TC >= 122°C  
N/A  
N/A  
N/A  
N/A  
3.9μs  
1.95μs  
3.9μs  
N/A  
N/A  
N/A  
0.975μs  
0.4875μs  
1. If TC is less than 85°C, the external refresh period can be 7.8μs instead of 3.9μs.  
Notes:  
2. If TC is higher than 85°C, the TCR must disable, the device must have a REFRESH com-  
mand issued once every tREFI.  
When TCR 0ode is enabled, the device will register the externally supplied REFRESH  
co00and and adjust the internal refresh period to be longer than tREFI of the nor0al  
te0perature range, when allowed, by skipping REFRESH co00ands with the proper  
gear ratio. TCR 0ode has two ranges to select between the nor0al te0perature range  
and the extended te0perature range; the correct range 0ust be selected so the internal  
control operates correctly. The DRAM 0ust have the correct refresh rate applied exter-  
nally; the internal refresh rate is deter0ined by the DRAM based upon the te0perature.  
TCR Mode – Normal Temperature Range  
REFRESH co00ands should be issued to the device with the refresh period equal to or  
shorter than tREFI of nor0al te0perature range (–46°C to 85°C). In this 0ode, the sys-  
te0 0ust guarantee that TC does not exceed 85°C. The device 0ay adjust the internal  
refresh period to be longer than tREFI of the nor0al te0perature range by skipping ex-  
ternal REFRESH co00ands with the proper gear ratio when TC is below 45°C. The in-  
ternal refresh period is auto0atically adjusted inside the DRAM, and the DRAM con-  
troller does not need to provide any additional control.  
TCR Mode – Extended Temperature Range  
REFRESH co00ands should be issued to the device with the refresh period equal to or  
shorter than tREFI of extended te0perature range (85°C to 125°C). In this 0ode, the sys-  
te0 0ust guarantee that the TC does not exceed 125°C. Even though the external re-  
fresh supports the extended te0perature range, the device will adjust its internal re-  
fresh period to tREFI of the nor0al te0perature range by skipping external REFRESH  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
137  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Temperature-Controlled Refresh Mode  
co00ands with proper gear ratio when operating in the nor0al te0perature range (–  
46°C to 85°C). The device 0ay adjust the internal refresh period to be longer than tREFI  
of the nor0al te0perature range by skipping external REFRESH co00ands with the  
proper gear ratio when TC is below 45°C. The internal refresh period is auto0atically  
adjusted inside the DRAM, and the DRAM controller does not need to provide any addi-  
tional control.  
Table 48: Normal tREFI Refresh (TCR Enabled)  
Normal Temperature Range  
Extended Temperature Range  
External Refresh Internal Refresh  
Period Period  
External Refresh  
Period  
Internal Refresh  
Period  
Temperature  
TC < 45°C  
7.8μs  
7.8μs  
>> 7.8μs  
>=7.8μs  
3.9μs1  
>> 3.9μs  
>3.9μs  
3.9μs  
N/A  
45°C TC < 85°C  
85°C TC < 95°C  
95°C TC < 105°C  
105°C TC 122°C  
TC > 122°C  
N/A  
N/A  
N/A  
N/A  
3.9μs  
1.95μs  
0.975μs  
0.4875μs  
N/A  
N/A  
1. If the external refresh period is 7.8μs, the device will refresh internally at half the listed  
refresh rate and will violate refresh specifications.  
Note:  
Figure 80: TCR Mode Example1  
Controller  
95°C to 85°C  
REFRESH  
Below 45°C  
REFRESH  
85°C to 45°C  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
External  
tREFI  
<3.9μs  
Internal  
tREFI  
3.9μs  
Internal  
tREFI  
>3.9μs  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
Internal  
tREFI  
>>3.9μs  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
REFRESH  
External REFRESH  
commands are not  
ignored  
Every other  
external REFRESH  
ignored  
At low temperature,  
more REFRESH commands  
can be ignored  
Controller issues REFRESH  
commands at extended  
temperature rate  
1. TCR enabled with extended temperature range selected.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
138  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Fine Granularity Refresh Mode  
Fine Granularity Refresh Mode  
Mode Register and Command Truth Table  
The REFRESH cycle ti0e (tRFC) and the average refresh interval (tREFI) can be pro-  
gra00ed by the MRS co00and. The appropriate setting in the 0ode register will set a  
single set of REFRESH cycle ti0es and average refresh interval for the device (fixed  
0ode), or allow the dyna0ic selection of one of two sets of REFRESH cycle ti0es and  
average refresh interval for the device (on-the-fly 0ode [OTF]). OTF 0ode 0ust be ena-  
bled by MRS before any OTF REFRESH co00and can be issued.  
Table 49: MRS Definition  
MR3[8]  
MR3[7]  
MR3[6]  
Refresh Rate Mode  
Normal mode (fixed 1x)  
Fixed 2x  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Fixed 4x  
Reserved  
Reserved  
On-the-fly 1x/2x  
On-the-fly 1x/4x  
Reserved  
There are two types of OTF 0odes (1x/2x and 1x/4x 0odes) that are selectable by pro-  
gra00ing the appropriate values into the 0ode register. When either of the two OTF  
0odes is selected, the device evaluates the BG6 bit when a REFRESH co00and is is-  
sued, and depending on the status of BG6, it dyna0ically switches its internal refresh  
configuration between 1x and 2x (or 1x and 4x) 0odes, and then executes the corre-  
sponding REFRESH operation.  
Table 50: REFRESH Command Truth Table  
A[9:0],  
RAS_n/A CAS_n/A WE_n/  
A10/  
AP  
A[12:11], MR3[8:6  
Refresh  
Fixed rate  
OTF: 1x  
OTF: 2x  
OTF: 4x  
CS_n  
ACT_n  
15  
14  
A13  
BG1  
V
BG0  
V
A[20:16]  
]
L
L
L
L
H
H
H
H
L
L
H
V
V
V
V
V
V
V
V
0vv  
1vv  
101  
110  
L
L
H
V
L
L
L
H
V
H
L
L
H
V
H
tREFI and tRFC Parameters  
The default refresh rate 0ode is fixed 1x 0ode where REFRESH co00ands should be  
issued with the nor0al rate; that is, tREFI1 = tREFI(base) (for TC ” 85°C), and the dura-  
tion of each REFRESH co00and is the nor0al REFRESH cycle ti0e (tRFC1). In 2x  
0ode (either fixed 2x or OTF 2x 0ode), REFRESH co00ands should be issued to the  
device at the double frequency (tREFI2 = tREFI(base)/2) of the nor0al refresh rate. In 4x  
0ode, the REFRESH co00and rate should be quadrupled (tREFI4 = tREFI(base)/4). Per  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
139  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Fine Granularity Refresh Mode  
each 0ode and co00and type, the tRFC para0eter has different values as defined in  
the following table.  
For discussion purposes, the REFRESH co00and that should be issued at the nor0al  
refresh rate and has the nor0al REFRESH cycle duration 0ay be referred to as an REF1x  
co00and. The REFRESH co00and that should be issued at the double frequency  
(tREFI2 = tREFI(base)/2) 0ay be referred to as a REF2x co00and. Finally, the REFRESH  
co00and that should be issued at the quadruple rate (tREFI4 = tREFI(base)/4) 0ay be  
referred to as a REF4x co00and.  
In the fixed 1x refresh rate 0ode, only REF1x co00ands are per0itted. In the fixed 2x  
refresh rate 0ode, only REF2x co00ands are per0itted. In the fixed 4x refresh rate  
0ode, only REF4x co00ands are per0itted. When the on-the-fly 1x/2x refresh rate  
0ode is enabled, both REF1x and REF2x co00ands are per0itted. When the OTF  
1x/4x refresh rate 0ode is enabled, both REF1x and REF4x co00ands are per0itted.  
Table 51: tREFI and tRFC Parameters  
Refresh Mode Parameter  
2Gb  
4Gb  
8Gb  
Units  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
μs  
μs  
ns  
tREFI (base)  
7.8  
7.8  
7.8  
1x mode  
2x mode  
4x mode  
tREFI1  
-40°C TC 85°C  
85°C TC 95°C  
95°C TC 105°C  
105°C TC 125°C  
tREFI(base)  
tREFI(base)/2  
tREFI(base)/4  
tREFI(base)/8  
160  
tREFI(base)/2  
tREFI(base)/4  
tREFI(base)/8  
tREFI(base)/16  
110  
tREFI(base)/4  
tREFI(base)/8  
tREFI(base)/16  
tREFI(base)/32  
90  
tREFI(base)  
tREFI(base)/2  
tREFI(base)/4  
tREFI(base)/8  
260  
tREFI(base)/2  
tREFI(base)/4  
tREFI(base)/8  
tREFI(base)/16  
160  
tREFI(base)/4  
tREFI(base)/8  
tREFI(base)/16  
tREFI(base)/32  
110  
tREFI(base)  
tREFI(base)/2  
tREFI(base)/4  
tREFI(base)/8  
350  
tREFI(base)/2  
tREFI(base)/4  
tREFI(base)/8  
tREFI(base)/16  
260  
tREFI(base)/4  
tREFI(base)/8  
tREFI(base)/16  
tREFI(base)/32  
160  
tRFC1  
tREFI2  
-40°C TC 85°C  
85°C TC 95°C  
95°C TC 105°C  
105°C TC 125°C  
tRFC2  
tREFI4  
-40°C TC 85°C  
85°C TC 95°C  
95°C TC 105°C  
105°C TC 125°C  
tRFC4  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
140  
Figure 81: 4Gb with Fine Granularity Refresh Mode Example  
Normal Temperature Operation – –40°C to 85°C  
Extended Temperature Operation – –40°C to 125°C  
1x Mode  
2x Mode  
4x Mode  
1x Mode  
2x Mode  
4x Mode  
(–40°C to 85°C)  
(–40°C to 85°C)  
(–40°C to 85°C)  
(–40°C to 125°C)  
(–40°C to 125°C)  
(–40°C to 125°C)  
REF@260ns  
REF@260ns  
REF@260ns  
REF@160ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@260ns  
REF@260ns  
REF@260ns  
REF@260ns  
REF@260ns  
REF@160ns  
REF@160ns  
REF@160ns  
REF@160ns  
REF@160ns  
REF@160ns  
REF@160ns  
REF@160ns  
REF@160ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@160ns  
REF@110ns  
REF@110ns  
REF@110ns  
REF@160ns  
REF@160ns  
REF@160ns  
REF@110ns  
REF@110ns  
REF@110ns  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Fine Granularity Refresh Mode  
1. tREFI value is dependent on operating temperature range. See Table 51.  
Note:  
Changing Refresh Rate  
If the refresh rate is changed by either MRS or OTF. New tREFI and tRFC para0eters will  
be applied fro0 the 0o0ent of the rate change. When the REF1x co00and is issued to  
the DRAM, tREF1 and tRFC1 are applied fro0 the ti0e that the co00and was issued;  
when the REF2x co00and is issued, tREF2 and tRFC2 should be satisfied.  
Figure 82: OTF REFRESH Command Timing  
CK_c  
CK_t  
Command  
DES  
REF1  
DS  
DES  
DES  
Valid  
Vaid  
REF2  
DES  
DS  
RFC2 (MIN)  
Valid  
DS  
REF2  
DES  
t
t
RFC1 (MIN)  
t
t
REFI1  
REFI2  
Don’t Care  
The following conditions 0ust be satisfied before the refresh rate can be changed. Oth-  
erwise, data retention cannot be guaranteed.  
• In the fixed 2x refresh rate 0ode or the OTF 1x/2x refresh 0ode, an even nu0ber of  
REF2x co00ands 0ust be issued because the last change of the refresh rate 0ode  
with an MRS co00and before the refresh rate can be changed by another MRS co0-  
0and.  
• In the OTF1x/2x refresh rate 0ode, an even nu0ber of REF2x co00ands 0ust be is-  
sued between any two REF1x co00ands.  
• In the fixed 4x refresh rate 0ode or the OTF 1x/4x refresh 0ode, a 0ultiple-of-four  
nu0ber of REF4x co00ands 0ust be issued because the last change of the refresh  
rate with an MRS co00and before the refresh rate can be changed by another MRS  
co00and.  
• In the OTF1x/4x refresh rate 0ode, a 0ultiple-of-four nu0ber of REF4x co00ands  
0ust be issued between any two REF1x co00ands.  
There are no special restrictions for the fixed 1x refresh rate 0ode. Switching between  
fixed and OTF 0odes keeping the sa0e rate is not regarded as a refresh rate change.  
Usage with TCR Mode  
If the te0perature controlled refresh 0ode is enabled, only the nor0al 0ode (fixed 1x  
0ode, MR3[8:±] = 666) is allowed. If any other refresh 0ode than the nor0al 0ode is  
selected, the te0perature controlled refresh 0ode 0ust be disabled.  
Self Refresh Entry and Exit  
The device can enter self refresh 0ode anyti0e in 1x, 2x, and 4x 0ode without any re-  
striction on the nu0ber of REFRESH co00ands that have been issued during the  
0ode before the self refresh entry. However, upon self refresh exit, extra REFRESH co0-  
0and(s) 0ay be required, depending on the condition of the self refresh entry.  
The conditions and require0ents for the extra REFRESH co00and(s) are defined as  
follows:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
142  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Fine Granularity Refresh Mode  
• In the fixed 2x refresh rate 0ode or the enable-OTF 1x/2x refresh rate 0ode, it is rec-  
o00ended there be an even nu0ber of REF2x co00ands before entry into self re-  
fresh after the last self refresh exit, REF1x co00and, or MRS co00and that set the  
refresh 0ode. If this condition is 0et, no additional REFRESH co00ands are re-  
quired upon self refresh exit. In the case that this condition is not 0et, either one ex-  
tra REF1x co00and or two extra REF2x co00ands 0ust be issued upon self refresh  
exit. These extra REFRESH co00ands are not counted toward the co0putation of the  
average refresh interval (tREFI).  
• In the fixed 4x refresh rate 0ode or the enable-OTF 1x/4x refresh rate 0ode, it is rec-  
o00ended there be a 0ultiple-of-four nu0ber of REF4x co00ands before entry in-  
to self refresh after the last self refresh exit, REF1x co00and, or MRS co00and that  
set the refresh 0ode. If this condition is 0et, no additional refresh co00ands are re-  
quired upon self refresh exit. When this condition is not 0et, either one extra REF1x  
co00and or four extra REF4x co00ands 0ust be issued upon self refresh exit. These  
extra REFRESH co00ands are not counted toward the co0putation of the average  
refresh interval (tREFI).  
There are no special restrictions on the fixed 1x refresh rate 0ode.  
This section does not change the require0ent regarding postponed REFRESH co0-  
0ands. The require0ent for the additional REFRESH co00and(s) described above is  
independent of the require0ent for the postponed REFRESH co00ands.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
143  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
SELF REFRESH Operation  
SELF REFRESH Operation  
The SELF REFRESH co00and can be used to retain data in the device, even if the rest  
of the syste0 is powered down. When in self refresh 0ode, the device retains data with-  
out external clocking. The device has a built-in ti0er to acco00odate SELF REFRESH  
operation. The SELF REFRESH co00and is defined by having CS_n, RAS_n, CAS_n,  
and CKE held LOW with WE_n and ACT_n HIGH at the rising edge of the clock.  
Before issuing the SELF REFRESH ENTRY co00and, the device 0ust be idle with all  
banks in the precharge state and tRP satisfied. Idle state is defined as: All banks are  
closed (tRP, tDAL, and so on, satisfied), no data bursts are in progress, CKE is HIGH, and  
all ti0ings fro0 previous operations are satisfied (tMRD, tMOD, tRFC, tZQinit, tZQoper,  
tZQCS, and so on). After the SELF REFRESH ENTRY co00and is registered, CKE 0ust  
be held LOW to keep the device in self refresh 0ode. The DRAM auto0atically disables  
ODT ter0ination, regardless of the ODT pin, when it enters self refresh 0ode and auto-  
0atically enables ODT upon exiting self refresh. During nor0al operation (DLL_on),  
the DLL is auto0atically disabled upon entering self refresh and is auto0atically ena-  
bled (including a DLL reset) upon exiting self refresh.  
When the device has entered self refresh 0ode, all of the external control signals, except  
CKE and RESET_n, are “Don’t Care.” For proper SELF REFRESH operation, all power  
supply and reference pins (VDD, VDDQ, VSS, VSSQ, VPP, and VREFCA) 0ust be at valid levels.  
The DRAM internal VREFDQ generator circuitry 0ay re0ain on or be turned off. If the  
internal VREFDQ circuit is on in self refresh, the first WRITE operation or first write-level-  
ing activity 0ay occur after tXS ti0e after self refresh exit. If the DRAM internal VREFDQ  
circuitry is turned off in self refresh, it ensures that the VREFDQ generator circuitry is  
powered up and stable within the tXSDLL period when the DRAM exits the self refresh  
state. The first WRITE operation or first write-leveling activity 0ay not occur earlier  
than tXSDLL after exiting self refresh. The device initiates a 0ini0u0 of one REFRESH  
co00and internally within the tCKE period once it enters self refresh 0ode.  
The clock is internally disabled during a SELF REFRESH operation to save power. The  
0ini0u0 ti0e that the device 0ust re0ain in self refresh 0ode is tCKESR/  
tCKESR_PAR. The user 0ay change the external clock frequency or halt the external  
clock tCKSRE/tCKSRE_PAR after self refresh entry is registered; however, the clock 0ust  
be restarted and tCKSRX 0ust be stable before the device can exit SELF REFRESH oper-  
ation.  
The procedure for exiting self refresh requires a sequence of events. First, the clock 0ust  
be stable prior to CKE going back HIGH. Once a SELF REFRESH EXIT co00and (SRX,  
co0bination of CKE going HIGH and DESELECT on the co00and bus) is registered,  
the following ti0ing delay 0ust be satisfied:  
Co00ands that do not require locked DLL:  
t
• XS = ACT, PRE, PREA, REF, SRE, and PDE.  
t
• XS_FAST = ZQCL, ZQCS, and MRS co00ands. For an MRS co00and, only DRAM  
CL, WR/RTP register, and DLL reset in MR6; RTT(NOM) register in MR1; the CWL and  
RTT(WR) registers in MR2; and gear-down 0ode register in MR3; WRITE and READ pre-  
a0ble registers in MR4; RTT(PARK) register in MR5; tCCD_L/tDLLK and VREFDQ calibra-  
tion value registers in MR± 0ay be accessed provided the DRAM is not in per-DRAM  
0ode. Access to other DRAM 0ode registers 0ust satisfy tXS ti0ing. WRITE co0-  
0ands (WR, WRS4, WRS8, WRA, WRAS4, and WRAS8) that require synchronous ODT  
and dyna0ic ODT controlled by the WRITE co00and require a locked DLL.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
144  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
SELF REFRESH Operation  
Co00ands that require locked DLL in the nor0al operating range:  
t
• XSDLL – RD, RDS4, RDS8, RDA, RDAS4, and RDAS8 (unlike DDR3, WR, WRS4, WRS8,  
WRA, WRAS4, and WRAS8 because synchronous ODT is required).  
Depending on the syste0 environ0ent and the a0ount of ti0e spent in self refresh, ZQ  
CALIBRATION co00ands 0ay be required to co0pensate for the voltage and te0pera-  
ture drift described in the ZQ CALIBRATION Co00ands section. To issue ZQ CALIBRA-  
TION co00ands, applicable ti0ing require0ents 0ust be satisfied (see the ZQ Calibra-  
tion Ti0ing figure).  
CKE 0ust re0ain HIGH for the entire self refresh exit period tXSDLL for proper opera-  
tion except for self refresh re-entry. Upon exit fro0 self refresh, the device can be put  
back into self refresh 0ode or power-down 0ode after waiting at least tXS period and  
issuing one REFRESH co00and (refresh period of tRFC). The DESELECT co00and  
0ust be registered on each positive clock edge during the self refresh exit interval tXS.  
ODT 0ust be turned off during tXSDLL.  
The use of self refresh 0ode introduces the possibility that an internally ti0ed refresh  
event can be 0issed when CKE is raised for exit fro0 self refresh 0ode. Upon exit fro0  
self refresh, the device requires a 0ini0u0 of one extra REFRESH co00and before it is  
put back into self refresh 0ode.  
Figure 83: Self Refresh Entry/Exit Timing  
T0  
T1  
Ta0  
Tb0  
Tc0  
Td0  
Td1  
Te0  
Tf0  
Tg0  
CK_c  
CK_t  
tCKSRX  
tCKSRE/tCKSRE_PAR  
tCPDED  
tIS  
CKE  
Valid  
Valid  
Valid  
Valid  
t
t
AR  
CKESR/ CKESR_P  
ODT  
tXS_FAST  
Valid1  
Valid  
Valid2  
Valid  
Command  
ADDR  
Valid3  
Valid  
DES  
SRE  
DES  
SRX  
tXS  
tRP  
tXSDLL  
Enter Self Refresh  
Exit Self Refresh  
Don’t Care  
Time Break  
1. Only MRS (limited to those described in the SELF REFRESH Operation section), ZQCS, or  
ZQCL commands are allowed.  
Notes:  
2. Valid commands not requiring a locked DLL.  
3. Valid commands requiring a locked DLL.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
145  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
SELF REFRESH Operation  
Figure 84: Self Refresh Entry/Exit Timing with CAL Mode  
T0  
T1  
T3  
T4  
T7  
T8  
T11  
Ta0  
Ta7  
Ta8  
Ta9  
Ta10 Tb0  
Tb1 Tb3  
CK_c  
CK_t  
tCKSRX  
tCKSRE  
CS_n  
Note 2  
Note 3  
Command  
w/o CS_n  
DES  
DES  
SRE  
DES  
DES  
SRX  
DES  
DES  
DES  
DES  
Valid  
ADDR  
CKE  
Valid  
Valid  
tCAL  
tCPDED  
tXS_FAST  
tCAL  
Don’t Care  
1. tCAL = 3nCK, tCPDED = 4nCK, tCKSRE = 8nCK, tCKSRX = 8nCK, tXS_FAST = tRFC4(min) +  
Notes:  
10ns  
2. CS_n = HIGH, ACT_n, RAS_n/A16, CAS_n/A15, and WE_n/A14 = "Don't Care."  
3. Only MRS (limited to those described in the SELF REFRESH Operations section), ZQCS, or  
ZQCL commands are allowed.  
Self Refresh Abort  
The exit ti0ing fro0 self refresh exit to the first valid co00and not requiring a locked  
DLL is tXS. The value of tXS is (tRFC + 16ns). This delay allows any refreshes started by  
the device ti0e to co0plete. tRFC continues to grow with higher density devices, so tXS  
will grow as well. An MRS bit enables the self refresh abort 0ode. If the bit is disabled,  
the controller uses tXS ti0ings (location MR4, bit 9). If the bit is enabled, the device  
aborts any ongoing refresh and does not incre0ent the refresh counter. The controller  
can issue a valid co00and not requiring a locked DLL after a delay of tXS_ABORT.  
Upon exit fro0 self refresh, the device requires a 0ini0u0 of one extra REFRESH co0-  
0and before it is put back into self refresh 0ode. This require0ent re0ains the sa0e  
irrespective of the setting of the MRS bit for self refresh abort.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
146  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
SELF REFRESH Operation  
Figure 85: Self Refresh Abort  
T0  
T1  
Ta0  
Tb0  
Tc0  
Td0  
Td1  
Te0  
Tf0  
Tg0  
CK_c  
CK_t  
tCKSRX  
tCKSRE/tCKSRE_PAR  
tCPDED  
tIS  
CKE  
Valid  
Valid  
Valid  
Valid  
t
t
AR  
CKESR/ CKESR_P  
ODT  
tXS_FAST  
Valid1  
Valid  
Valid2  
Valid  
Command  
ADDR  
Valid3  
Valid  
DES  
SRE  
DES  
SRX  
tXS_ABORT  
tXSDLL  
tRP  
Enter Self Refresh  
Exit Self Refresh  
Don’t Care  
Time Break  
1. Only MRS (limited to those described in the SELF REFRESH Operation section), ZQCS, or  
ZQCL commands are allowed.  
Notes:  
2. Valid commands not requiring a locked DLL with self refresh abort mode enabled in the  
mode register.  
3. Valid commands requiring a locked DLL.  
Self Refresh Exit with NOP Command  
Exiting self refresh 0ode using the NO OPERATION co00and (NOP) is allowed under a  
specific syste0 application. This special use of NOP allows for a co00on co00and/  
address bus between active DRAM devices and DRAM(s) in 0axi0u0 power saving  
0ode. Self refresh 0ode 0ay exit with NOP co00ands provided:  
• The device entered self refresh 0ode with CA parity and CAL disabled.  
t
• MPX_S and tMPX_LH are satisfied.  
• NOP co00ands are only issued during tMPX_LH window.  
No other co00and is allowed during the tMPX_LH window after an SELF REFRESH EX-  
IT (SRX) co00and is issued.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
147  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
SELF REFRESH Operation  
Figure 86: Self Refresh Exit with NOP Command  
Ta0  
Ta1  
Ta2  
Ta3 Tb0  
Tb1 Tb2  
Tb3 Tc0  
Tc1  
Tc2  
Tc3  
Tc4  
Td0 Td1 Td2 Td3  
Te0  
Te1  
CK_c  
CK_t  
tCKSRX  
CKE  
ODT  
Valid  
tMPX_S  
tMPX_LH  
CS_n  
Note 1, 2  
Note 3  
Valid  
Command  
ADDR  
DES  
DES  
SRX  
NOP  
NOP  
NOP  
NOP  
DES  
DES  
DES  
Valid  
Valid  
DES  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
tXS  
tXS + tXSDLL  
Don’t Care  
1. CS_n = LOW, ACT_n = HIGH, RAS_n/A16 = HIGH, CAS_n/A15 = HIGH, WE_n/A14 = HIGH  
at Tb2 (NO OPERATION command).  
Notes:  
2. SRX at Tb2 is only allowed when DRAM shared command/address bus is under exiting  
max power saving mode.  
3. Valid commands not requiring a locked DLL.  
4. Valid commands requiring locked DLL.  
5. tXS_FAST and tXS_ABORT are not allowed this case.  
6. Duration of CS_n LOW around CKE rising edge must satisfy tMPX_S and tMPX_LH as de-  
fined max power saving mode AC parameters.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
148  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Power-Down Mode  
Power-Down Mode  
Power-down is synchronously entered when CKE is registered LOW (along with a DESE-  
LECT co00and). CKE is not allowed to go LOW when the following operations are in  
progress: MRS co00and, MPR operations, ZQCAL operations, DLL locking, or READ/  
WRITE operations. CKE is allowed to go LOW while any other operations, such as ROW  
ACTIVATION, PRECHARGE or auto precharge, or REFRESH, are in progress, but the  
power-down IDD specification will not be applied until those operations are co0plete.  
The ti0ing diagra0s that follow illustrate power-down entry and exit.  
For the fastest power-down exit ti0ing, the DLL should be in a locked state when pow-  
er-down is entered. If the DLL is not locked during power-down entry, the DLL 0ust be  
reset after exiting power-down 0ode for proper READ operation and synchronous ODT  
operation. DRAM design provides all AC and DC ti0ing and voltage specification as  
well as proper DLL operation with any CKE intensive operations as long as the control-  
ler co0plies with DRAM specifications.  
During power-down, if all banks are closed after any in-progress co00ands are co0-  
pleted, the device will be in precharge power-down 0ode; if any bank is open after in-  
progress co00ands are co0pleted, the device will be in active power-down 0ode.  
Entering power-down deactivates the input and output buffers, excluding CK, CKE, and  
RESET_n. In power-down 0ode, DRAM ODT input buffer deactivation is based on MRx  
bit Y. If it is configured to 6b, the ODT input buffer re0ains on and the ODT input signal  
0ust be at valid logic level. If it is configured to 1b, the ODT input buffer is deactivated  
and the DRAM ODT input signal 0ay be floating and the device does not provide  
RTT(NOM) ter0ination. Note that the device continues to provide RTT(Park) ter0ination if  
it is enabled in the 0ode register MRa bit B. To protect internal delay on the CKE line to  
block the input signals, 0ultiple DES co00ands are needed during the CKE switch off  
and on cycle(s); this ti0ing period is defined as tCPDED. CKE LOW will result in deacti-  
vation of co00and and address receivers after tCPDED has expired.  
Table 52: Power-Down Entry Definitions  
Power-  
DRAM Status  
DLL  
Down Exit Relevant Parameters  
Active  
(a bank or more open)  
On  
Fast  
Fast  
tXP to any valid command.  
Precharged  
On  
tXP to any valid command.  
(all banks precharged)  
The DLL is kept enabled during precharge power-down or active power-down. In pow-  
er-down 0ode, CKE is LOW, RESET_n is HIGH, and a stable clock signal 0ust be 0ain-  
tained at the inputs of the device. ODT should be in a valid state, but all other input sig-  
nals are "Don't Care." (If RESET_n goes LOW during power-down, the device will be out  
of power-down 0ode and in the reset state.) CKE LOW 0ust be 0aintained until tCKE  
has been satisfied. Power-down duration is li0ited by 9 × tREFI.  
The power-down state is synchronously exited when CKE is registered HIGH (along  
with DES co00and). CKE HIGH 0ust be 0aintained until tCKE has been satisfied. The  
ODT input signal 0ust be at a valid level when the device exits fro0 power-down 0ode,  
independent of MRx bit Y if RTT(NOM) is enabled in the 0ode register. If RTT(NOM) is disa-  
bled, the ODT input signal 0ay re0ain floating. A valid, executable co00and can be  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
149  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Power-Down Mode  
applied with power-down exit latency, tXP, and/or tXPDLL after CKE goes HIGH. Power-  
down exit latency is defined in the AC Specifications table.  
Figure 87: Active Power-Down Entry and Exit  
T0  
T1  
T2  
Ta0  
Ta1  
DES  
Tb0  
DES  
Tb1  
Tc0  
CK_c  
CK_t  
Command  
CKE  
Valid  
DES  
DES  
DES  
Valid  
Valid  
tPD  
tIS  
tIH  
Valid  
tCKE  
tIH  
tIS  
ODT (ODT buffer enabled - MR5 [5] = 0)2  
tIS  
ODT (ODT buffer disbled - MR5 [5] = 1)3  
Address  
Valid  
Valid  
tCPDED  
tXP  
Enter  
Exit  
power-down  
mode  
power-down  
mode  
Don’t Care  
Time Break  
1. Valid commands at T0 are ACT, DES, or PRE with one bank remaining open after comple-  
tion of the PRECHARGE command.  
Notes:  
2. ODT pin driven to a valid state; MR5[5] = 0 (normal setting).  
3. ODT pin driven to a valid state; MR5[5] = 1.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
150  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Power-Down Mode  
Figure 88: Power-Down Entry After Read and Read with Auto Precharge  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Tb0  
DES  
Tb1  
CK_c  
CK_t  
RD or  
RDA  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Valid  
Command  
DES  
tIS  
tCPDED  
Valid  
Valid  
CKE  
Valid  
Address  
tPD  
RL = AL + CL  
DQS_t, DQS_c  
DQ BL8  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b+1 b+2  
b+3  
b+4 b+5  
b+6 b+7  
DI  
n
DI  
DI  
DI  
DQ BC4  
n+1 n+2  
n+3  
tRDPDEN  
Power-Down  
entry  
Transitioning Data  
Don’t Care  
Time Break  
1. DI n (or b) = data-in from column n (or b).  
Note:  
Figure 89: Power-Down Entry After Write and Write with Auto Precharge  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
DES  
Tb2  
DES  
Tc0  
Tc1  
CK_c  
CK_t  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Valid  
Command  
DES  
tIS  
tCPDED  
Valid  
Valid  
CKE  
Address  
A10  
Bank,  
Col n  
tPD  
WL = AL + CWL  
WR  
DQS_t, DQS_c  
DQ BL8  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b + 1  
b + 2  
b + 3  
b + 4  
b + 5  
b + 6  
b + 7  
Start internal  
precharge  
DI  
n
DI  
DI  
DI  
DQ BC4  
n + 1  
n + 2  
n + 3  
tWRAPDEN  
Power-Down  
entry  
Transitioning Data  
7LPHꢀ%UHDN  
'RQ¶Wꢀ&DUH  
1. DI n (or b) = data-in from column n (or b).  
Notes:  
2. Valid commands at T0 are ACT, DES, or PRE with one bank remaining open after comple-  
tion of the PRECHARGE command.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
151  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Power-Down Mode  
Figure 90: Power-Down Entry After Write  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
DES  
Tb1  
DES  
Tb2  
DES  
Tc0  
Tc1  
CK_c  
CK_t  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Valid  
Command  
tIS  
tCPDED  
Valid  
Valid  
CKE  
Address  
A10  
Bank,  
Col n  
tPD  
WL = AL + CWL  
tWR  
DQS_t, DQS_c  
DQ BL8  
DI  
b
DI  
b + 1  
DI  
b + 2  
DI  
b + 3  
DI  
b + 4  
DI  
b + 5  
DI  
b + 6  
DI  
b + 7  
DI  
n
DI  
n + 1  
DI  
n + 2  
DI  
n + 3  
DQ BC4  
tWRPDEN  
Power-Down  
entry  
Transitioning Data  
Time Break  
Don’t Care  
1. DI n (or b) = data-in from column n (or b).  
Note:  
Figure 91: Precharge Power-Down Entry and Exit  
T0  
T1  
T2  
Ta0  
Ta1  
DES  
Tb0  
Tb1  
DES  
Tc0  
CK_c  
CK_t  
Command  
DES  
DES  
DES  
DES  
Valid  
Valid  
t
t
CPDED  
CKE  
t
t
IS  
IH  
CKE  
Valid  
t
t
IS  
t
PD  
XP  
Enter  
Exit  
power-down  
mode  
power-down  
mode  
Don’t Care  
Time Break  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
152  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Power-Down Mode  
Figure 92: REFRESH Command to Power-Down Entry  
T0  
T1  
T2  
Ta0  
DES  
Tb0  
DES  
Tb1  
DES  
CK_c  
CK_t  
Command  
Address  
REF  
DES  
Valid  
tCPDED  
tIS  
tPD  
tCKE  
Valid  
CKE  
tREFPDEN  
Don’t Care  
Time Break  
Figure 93: Active Command to Power-Down Entry  
T0  
T1  
T2  
Ta0  
DES  
Tb0  
Tb1  
CK_c  
CK_t  
Command  
Address  
ACT  
DES  
DES  
DES  
Valid  
t
CPDED  
t
t
t
IS  
PD  
CKE  
Valid  
CKE  
t
ACTPDEN  
Don’t Care  
Time Break  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
153  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Power-Down Mode  
Figure 94: PRECHARGE/PRECHARGE ALL Command to Power-Down Entry  
T0  
T1  
T2  
Ta0  
Tb0  
Tb1  
CK_c  
CK_t  
PRE or  
PREA  
Command  
Address  
DES  
DES  
DES  
Valid  
Valid  
tCPDED  
tIS  
tPD  
tCKE  
CKE  
tPREPDEN  
Don’t Care  
Time Break  
Figure 95: MRS Command to Power-Down Entry  
T0  
T1  
Ta0  
Ta1  
DES  
Tb0  
Tb1  
CK_c  
CK_t  
Command  
Address  
MRS  
DES  
DES  
DES  
Valid  
t
CPDED  
t
t
t
IS  
PD  
CKE  
Valid  
CKE  
t
MRSPDEN  
Don’t Care  
Time Break  
Power-Down Clarifications – Case 1  
When CKE is registered LOW for power-down entry, tPD (MIN) 0ust be satisfied before  
CKE can be registered HIGH for power-down exit. The 0ini0u0 value of para0eter  
tPD (MIN) is equal to the 0ini0u0 value of para0eter tCKE (MIN) as shown in the  
Ti0ing Para0eters by Speed Bin table. A detailed exa0ple of Case 1 follows.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
154  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Power-Down Mode  
Figure 96: Power-Down Entry/Exit Clarifications – Case 1  
T0  
T1  
T2  
Ta0  
Ta1  
DES  
Tb0  
DES  
Tb1  
DES  
Tb2  
DES  
CK_c  
CK_t  
Command  
Valid  
DES  
DES  
tPD  
tPD  
tIH  
tIS  
tIS  
CKE  
tIS  
tCKE  
tIH  
Address  
Valid  
tCPDED  
tCPDED  
Enter  
Exit  
Enter  
power-down  
mode  
power-down  
mode  
power-down  
mode  
Don’t Care  
Time Break  
Power-Down Entry, Exit Timing with CAL  
Co00and/Address latency is used and additional ti0ing restrictions are required when  
entering power-down, as noted in the following figures.  
Figure 97: Active Power-Down Entry and Exit Timing with CAL  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T14  
T15  
T16  
T17  
T18  
CK_c  
CK_t  
CS_n  
Command  
w/o CS_n  
DES  
DES  
DES  
Valid  
Valid  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Valid  
ADDR  
CKE  
Valid  
tCAL  
tCPDED  
tPD  
tCAL  
tXP  
Don’t Care  
1. tCAL = 3nCK, tCPDED = 4nCK, tPD = 6nCK, tXP = 5nCK  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
155  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Power-Down Mode  
Figure 98: REFRESH Command to Power-Down Entry with CAL  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T14  
T15  
T16  
T17  
T18  
CK_c  
CK_t  
CS_n  
Command  
w/o CS_n  
DES  
DES  
DES  
REF  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Valid  
ADDR  
CKE  
Valid  
Valid  
tCAL  
tREFPDEN  
tCPDED  
tPD  
tCAL  
tXP  
Don’t Care  
1. tCAL = 3nCK, tREFPDEN = 1nCK, tCPDED = 4nCK, tPD = 6nCK, tXP = 5nCK  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
156  
8Gb: x8, x16 Automotive DDR4 SDRAM  
ODT Input Buffer Disable Mode for Power-Down  
ODT Input Buffer Disable Mode for Power-Down  
ODT input buffer disable 0ode, when enabled via MR5[5], will prevent the device fro0  
providing RTT(NOM) ter0ination during power-down for additional power savings.  
The internal delay on the CKE path to disable the ODT buffer and block the sa0pled  
output 0ust be accounted for; therefore, ODT 0ust be continuously driven to a valid  
level, either LOW or HIGH, when entering power-down. However, after tCPDED (MIN)  
has been satisfied, the ODT signal 0ay float.  
When ODT input buffer disable 0ode is enabled, RTT(NOM) ter0ination corresponding  
to sa0pled ODT after CKE is first registered LOW (and tANPD before that) 0ay not be  
provided. tANPD is equal to (WL - 1) and is counted backward fro0 PDE, with CKE reg-  
istered LOW.  
Figure 99: ODT Power-Down Entry with ODT Buffer Disable Mode  
diff_CK  
CKE  
tDODTLoff +1  
tCPDED (MIN)  
Floating  
tADC (MIN)  
ODT  
DRAM_RTT_sync  
(DLL enabled)  
CA parity disabled  
RTT(NOM)  
RTT(Park)  
tCPDED (MIN) + tADC (MAX)  
DODTLoff  
tADC (MIN)  
DRAM_RTT_sync  
(DLL enabled)  
CA parity enabled  
RTT(NOM)  
RTT(Park)  
tCPDED (MIN) + tADC (MAX) + PL  
DODTLoff  
DRAM_RTT_async  
(DLL disabled)  
RTT(NOM)  
RTT(Park)  
tAONAS (MIN)  
tCPDED (MIN) + tAOFAS (MAX)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
157  
8Gb: x8, x16 Automotive DDR4 SDRAM  
ODT Input Buffer Disable Mode for Power-Down  
Figure 100: ODT Power-Down Exit with ODT Buffer Disable Mode  
diff_CK  
CKE  
ODT_A  
(DLL enabled)  
Floating  
tADC (MAX)  
tXP  
RTT(Park)  
RTT(NOM)  
DRAM_RTT_A  
DODTLon  
tADC (MIN)  
ODT_B  
(DLL disabled)  
Floating  
tXP  
RTT(Park)  
RTT(NOM)  
DRAM_RTT_B  
tAONAS (MIN)  
tAOFAS (MAX)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
158  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
CRC Write Data Feature  
CRC Write Data  
The CRC write data feature takes the CRC generated data fro0 the DRAM controller and  
co0pares it to the internally CRC generated data and deter0ines whether the two  
0atch (no CRC error) or do not 0atch (CRC error).  
Figure 101: CRC Write Data Operation  
DRAM  
Data  
DRAM Controller  
Data  
CRC  
engine  
CRC  
engine  
CRC  
Code  
Data  
CRC Code  
CRC Code  
Compare  
CRC  
WRITE CRC DATA Operation  
A DRAM controller generates a CRC checksu0 using a 72-bit CRC tree and for0s the  
write data fra0es, as shown in the following CRC data 0apping tables for the x4, x8, and  
x1± configurations. A x4 device has a CRC tree with 32 input data bits used, and the re-  
0aining upper 46 bits D[71:32] being 1s. A x8 device has a CRC tree with ±4 input data  
bits used, and the re0aining upper 8 bits dependant upon whether DM_n/DBI_n is  
used (1s are sent when not used). A x1± device has two identical CRC trees each, one for  
the lower byte and one for the upper byte, with ±4 input data bits used by each, and the  
re0aining upper 8 bits on each byte dependant upon whether DM_n/DBI_n is used (1s  
are sent when not used). For a x8 and x1± DRAMs, the DRAM 0e0ory controller 0ust  
send 1s in transfer 9 location whether or not DM_n/DBI_n is used.  
The DRAM checks for an error in a received code word D[71:6] by co0paring the re-  
ceived checksu0 against the co0puted checksu0 and reports errors using the  
ALERT_n signal if there is a 0is0atch. The DRAM can write data to the DRAM core  
without waiting for the CRC check for full writes when DM is disabled. If bad data is  
written to the DRAM core, the DRAM 0e0ory controller will try to overwrite the bad  
data with good data; this 0eans the DRAM controller is responsible for data coherency  
when DM is disabled. However, in the case where both CRC and DM are enabled via  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
159  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
MRS (that is, persistent 0ode), the DRAM will not write bad data to the core when a  
CRC error is detected.  
DBI_n and CRC Both Enabled  
The DRAM co0putes the CRC for received written data D[71:6]. Data is not inverted  
back based on DBI before it is used for co0puting CRC. The data is inverted back based  
on DBI before it is written to the DRAM core.  
DM_n and CRC Both Enabled  
When both DM and write CRC are enabled in the DRAM 0ode register, the DRAM cal-  
culates CRC before sending the write data into the array. If there is a CRC error, the  
DRAM blocks the WRITE operation and discards the data. The Nonconsecutive WRITE  
(BL8/BC4-OTF) with 2tCK Preamble and Write CRC in Same or Different Bank Group and  
the WRITE (BL8/BC4-OTF/Fixed) with 1tCK Preamble and Write CRC in Same or Different  
BankGroup figures in the WRITE Operation section show ti0ing differences when DM  
is enabled.  
DM_n and DBI_n Conflict During Writes with CRC Enabled  
Both write DBI_n and DM_n can not be enabled at the sa0e ti0e; read DBI_n and  
DM_n can be enabled at the sa0e ti0e.  
CRC and Write Preamble Restrictions  
When write CRC is enabled:  
t
• And 1tCK WRITE prea0ble 0ode is enabled, a CCD_S or tCCD_L of 4 clocks is not  
allowed.  
• And 2tCK WRITE prea0ble 0ode is enabled, a CCD_S or tCCD_L of ± clocks is not  
t
allowed.  
CRC Simultaneous Operation Restrictions  
When write CRC is enabled, neither MPR writes nor per-DRAM 0ode is allowed.  
CRC Polynomial  
The CRC polyno0ial used by DDR4 is the ATM-8 HEC, X8 + X2 + X1 + 1.  
A co0binatorial logic block i0ple0entation of this 8-bit CRC for 72 bits of data in-  
cludes 272 two-input XOR gates contained in eight ±-XOR-gate-deep trees.  
The CRC polyno0ial and co0binatorial logic used by DDR4 is the sa0e as used on  
GDDR5.  
The error coverage fro0 the DDR4 polyno0ial used is shown in the following table.  
Table 53: CRC Error Detection Coverage  
Error Type  
Detection Capability  
Random single-bit errors  
Random double-bit errors  
100%  
100%  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
160  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
Table 53: CRC Error Detection Coverage (Continued)  
Error Type  
Detection Capability  
Random odd count errors  
100%  
100%  
Random multibit UI vertical column error  
detection excluding DBI bits  
CRC Combinatorial Logic Equations  
0odule CRC8_D72;  
// polyno0ial: (6 1 2 8)  
// data width: 72  
// convention: the first serial data bit is D[71]  
//initial condition all 6 i0plied  
// "^" = XOR  
function [7:6]  
nextCRC8_D72;  
input [71:6] Data;  
input [71:6] D;  
reg [7:6] CRC;  
begin  
D = Data;  
CRC[0] =  
D[±9]^D[±8]^D[±7]^D[±±]^D[±4]^D[±3]^D[±6]^D[5±]^D[54]^D[53]^D[52]^D[56]^D[49  
]^D[48]^D[45]^D[43]^D[46]^D[39]^D[35]^D[34]^D[31]^D[36]^D[28]^D[23]^D[21]^D[1  
9]^D[18]^D[1±]^D[14]^D[12]^D[8]^D[7]^D[±]^D[6] ;  
CRC[1] =  
D[76]^D[±±]^D[±5]^D[±3]^D[±1]^D[±6]^D[57]^D[5±]^D[55]^D[52]^D[51]^D[48]^D[4±  
]^D[45]^D[44]^D[43]^D[41]^D[39]^D[3±]^D[34]^D[32]^D[36]^D[29]^D[28]^D[24]^D[2  
3]^D[22]^D[21]^D[26]^D[18]^D[17]^D[1±]^D[15]^D[14]^D[13]^D[12]^D[9]^D[±]^D[1  
]^D[6];  
CRC[2] =  
D[71]^D[±9]^D[±8]^D[±3]^D[±2]^D[±1]^D[±6]^D[58]^D[57]^D[54]^D[56]^D[48]^D[47  
]^D[4±]^D[44]^D[43]^D[42]^D[39]^D[37]^D[34]^D[33]^D[29]^D[28]^D[25]^D[24]^D[2  
2]^D[17]^D[15]^D[13]^D[12]^D[16]^D[8]^D[±]^D[2]^D[1]^D[6];  
CRC[3] =  
D[76]^D[±9]^D[±4]^D[±3]^D[±2]^D[±1]^D[59]^D[58]^D[55]^D[51]^D[49]^D[48]^D[47  
]^D[45]^D[44]^D[43]^D[46]^D[38]^D[35]^D[34]^D[36]^D[29]^D[2±]^D[25]^D[23]^D[1  
8]^D[1±]^D[14]^D[13]^D[11]^D[9]^D[7]^D[3]^D[2]^D[1];  
CRC[4] =  
D[71]^D[76]^D[±5]^D[±4]^D[±3]^D[±2]^D[±6]^D[59]^D[5±]^D[52]^D[56]^D[49]^D[48  
]^D[4±]^D[45]^D[44]^D[41]^D[39]^D[3±]^D[35]^D[31]^D[36]^D[27]^D[2±]^D[24]^D[1  
9]^D[17]^D[15]^D[14]^D[12]^D[16]^D[8]^D[4]^D[3]^D[2];  
CRC[5] =  
D[71]^D[±±]^D[±5]^D[±4]^D[±3]^D[±1]^D[±6]^D[57]^D[53]^D[51]^D[56]^D[49]^D[47  
]^D[4±]^D[45]^D[42]^D[46]^D[37]^D[3±]^D[32]^D[31]^D[28]^D[27]^D[25]^D[26]^D[1  
8]^D[1±]^D[15]^D[13]^D[11]^D[9]^D[5]^D[4]^D[3];  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
161  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
CRC[6] =  
D[±7]^D[±±]^D[±5]^D[±4]^D[±2]^D[±1]^D[58]^D[54]^D[52]^D[51]^D[56]^D[48]^D[47  
]^D[4±]^D[43]^D[41]^D[38]^D[37]^D[33]^D[32]^D[29]^D[28]^D[2±]^D[21]^D[19]^D[1  
7]^D[1±]^D[14]^D[12]^D[16]^D[±]^D[5]^D[4];  
CRC[7] =  
D[±8]^D[±7]^D[±±]^D[±5]^D[±3]^D[±2]^D[59]^D[55]^D[53]^D[52]^D[51]^D[49]^D[48  
]^D[47]^D[44]^D[42]^D[39]^D[38]^D[34]^D[33]^D[36]^D[29]^D[27]^D[22]^D[26]^D[1  
8]^D[17]^D[15]^D[13]^D[11]^D[7]^D[±]^D[5];  
nextCRC8_D72 = CRC;  
Burst Ordering for BL8  
DDR4 supports fixed WRITE burst ordering [A2:A1:A6 = 6:6:6] when write CRC is ena-  
bled in BL8 (fixed).  
CRC Data Bit Mapping  
Table 54: CRC Data Mapping for x4 Devices, BL8  
Transfer  
Func-  
tion  
DQ0  
DQ1  
DQ2  
DQ3  
0
1
2
3
4
5
6
7
8
9
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
CRC0  
CRC1  
CRC2  
CRC3  
CRC4  
CRC5  
CRC6  
CRC7  
D8  
D9  
D10  
D18  
D26  
D11  
D19  
D27  
D12  
D20  
D28  
D13  
D21  
D29  
D14  
D22  
D30  
D15  
D23  
D31  
D16  
D24  
D17  
D25  
Table 55: CRC Data Mapping for x8 Devices, BL8  
Transfer  
Func-  
tion  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
0
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
CRC0  
CRC1  
CRC2  
CRC3  
CRC4  
CRC5  
CRC6  
CRC7  
1
D8  
D9  
D10  
D18  
D26  
D34  
D42  
D50  
D58  
D66  
D11  
D19  
D27  
D35  
D43  
D51  
D59  
D67  
D12  
D20  
D28  
D36  
D44  
D52  
D60  
D68  
D13  
D21  
D29  
D37  
D45  
D53  
D61  
D69  
D14  
D22  
D30  
D38  
D46  
D54  
D62  
D70  
D15  
D23  
D31  
D39  
D47  
D55  
D63  
D71  
D16  
D24  
D32  
D40  
D48  
D56  
D64  
D17  
D25  
D33  
D41  
D49  
D57  
D65  
DM_n/  
DBI_n  
A x1± device is treated as two x8 devices; a x1± device will have two identical CRC trees  
i0ple0ented. CRC[7:6] covers data bits D[71:6], and CRC[15:8] covers data bits  
D[143:72].  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
162  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
Table 56: CRC Data Mapping for x16 Devices, BL8  
Transfer  
Func-  
tion  
0
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
CRC0  
CRC1  
CRC2  
CRC3  
CRC4  
CRC5  
CRC6  
CRC7  
1
D8  
D9  
D10  
D18  
D26  
D34  
D42  
D50  
D58  
D66  
D11  
D19  
D27  
D35  
D43  
D51  
D59  
D67  
D12  
D20  
D28  
D36  
D44  
D52  
D60  
D68  
D13  
D21  
D29  
D37  
D45  
D53  
D61  
D69  
D14  
D22  
D30  
D38  
D46  
D54  
D62  
D70  
D15  
D23  
D31  
D39  
D47  
D55  
D63  
D71  
D16  
D24  
D32  
D40  
D48  
D56  
D17  
D25  
D33  
D41  
D49  
D57  
D65  
LDM_n/ D64  
LDBI_n  
DQ8  
DQ9  
D72  
D80  
D73  
D81  
D74  
D82  
D75  
D83  
D76  
D84  
D77  
D85  
D78  
D86  
D79  
D87  
D95  
CRC8  
CRC9  
1
1
1
1
1
1
1
1
1
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
D88  
D89  
D90  
D91  
D92  
D93  
D94  
CRC10  
D96  
D97  
D98  
D99  
D100  
D108  
D116  
D124  
D132  
D140  
D101  
D109  
D117  
D125  
D133  
D141  
D102  
D110  
D118  
D126  
D134  
D142  
D103 CRC11  
D111 CRC12  
D119 CRC13  
D127 CRC14  
D135 CRC15  
D104  
D112  
D120  
D128  
D105  
D113  
D121  
D129  
D137  
D106  
D114  
D122  
D130  
D138  
D107  
D115  
D123  
D131  
D139  
UDM_n/ D136  
UDBI_n  
D143  
1
CRC Enabled With BC4  
If CRC and BC4 are both enabled, then address bit A2 is used to transfer critical data  
first for BC4 writes.  
CRC with BC4 Data Bit Mapping  
For a x4 device, the CRC tree inputs are 1± data bits, and the inputs for the re0aining  
bits are 1.  
When A2 = 1, data bits D[7:4] are used as inputs for D[3:6], D[15:12] are used as inputs to  
D[11:8], and so forth, for the CRC tree.  
Table 57: CRC Data Mapping for x4 Devices, BC4  
Transfer  
Function  
0
1
2
3
4
5
6
7
8
9
A2 = 0  
DQ0  
DQ1  
DQ2  
D0  
D8  
D1  
D9  
D2  
D3  
1
1
1
1
1
1
1
1
1
1
1
1
CRC0  
CRC1  
CRC2  
CRC4  
CRC5  
CRC6  
D10  
D18  
D11  
D19  
D16  
D17  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
163  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
Table 57: CRC Data Mapping for x4 Devices, BC4 (Continued)  
Transfer  
Function  
0
1
2
3
4
5
6
7
8
9
DQ3  
D24  
D25  
D26  
D27  
1
1
1
1
CRC3  
CRC7  
A2 = 1  
DQ0  
DQ1  
DQ2  
DQ3  
D4  
D5  
D6  
D7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CRC0  
CRC1  
CRC2  
CRC3  
CRC4  
CRC5  
CRC6  
CRC7  
D12  
D20  
D28  
D13  
D21  
D29  
D14  
D22  
D30  
D15  
D23  
D31  
For a x8 device, the CRC tree inputs are 3± data bits.  
When A2 = 6, the input bits D[±7:±4]) are used if DBI_n or DM_n functions are enabled;  
if DBI_n and DM_n are disabled, then D[±7:±4]) are 1.  
When A2 = 1, data bits D[7:4] are used as inputs for D[3:6], D[15:12] are used as inputs to  
D[11:8], and so forth, for the CRC tree. The input bits D[71:±8]) are used if DBI_n or  
DM_n functions are enabled; if DBI_n and DM_n are disabled, then D[71:±8]) are 1.  
Table 58: CRC Data Mapping for x8 Devices, BC4  
Transfer  
Function  
0
1
2
3
4
5
6
7
8
9
A2 = 0  
DQ0  
DQ1  
D0  
D1  
D2  
D3  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CRC0  
CRC1  
CRC2  
CRC3  
CRC4  
CRC5  
CRC6  
CRC7  
1
1
1
1
1
1
1
1
1
1
D8  
D9  
D10  
D18  
D26  
D34  
D42  
D50  
D58  
D66  
D11  
D19  
D27  
D35  
D43  
D51  
D59  
D67  
DQ2  
D16  
D24  
D32  
D40  
D48  
D56  
D64  
D17  
D25  
D33  
D41  
D49  
D57  
D65  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DM_n/DBI_n  
A2 = 1  
DQ0  
DQ1  
D4  
D5  
D6  
D7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CRC0  
CRC1  
CRC2  
CRC3  
CRC4  
CRC5  
CRC6  
CRC7  
1
1
1
1
1
1
1
1
1
1
D12  
D20  
D28  
D36  
D44  
D52  
D60  
D68  
D13  
D21  
D29  
D37  
D45  
D53  
D61  
D69  
D14  
D22  
D30  
D38  
D46  
D54  
D62  
D70  
D15  
D23  
D31  
D39  
D47  
D55  
D63  
D71  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DM_n/DBI_n  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
164  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
There are two identical CRC trees for x1± devices, each have CRC tree inputs of 3± bits.  
When A2 = 6, input bits D[±7:±4] are used if DBI_n or DM_n functions are enabled; if  
DBI_n and DM_n are disabled, then D[±7:±4] are 1s. The input bits D[139:13±] are used  
if DBI_n or DM_n functions are enabled; if DBI_n and DM_n are disabled, then  
D[139:13±] are 1s.  
When A2 = 1, data bits D[7:4] are used as inputs for D[3:6], D[15:12] are used as inputs  
for D[11:8], and so forth, for the CRC tree. Input bits D[71:±8] are used if DBI_n or DM_n  
functions are enabled; if DBI_n and DM_n are disabled, then D[71:±8] are 1s. The input  
bits D[143:146] are used if DBI_n or DM_n functions are enabled; if DBI_n and DM_n  
are disabled, then D[143:146] are 1s.  
Table 59: CRC Data Mapping for x16 Devices, BC4  
Transfer  
Function  
0
1
2
3
4
5
6
7
8
9
A2 = 0  
DQ0  
DQ1  
D0  
D8  
D1  
D9  
D2  
D10  
D18  
D26  
D34  
D42  
D50  
D58  
D66  
D74  
D82  
D90  
D98  
D106  
D114  
D122  
D130  
D138  
D3  
D11  
D19  
D27  
D35  
D43  
D51  
D59  
D67  
D75  
D83  
D91  
D99  
D107  
D115  
D123  
D131  
D139  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CRC0  
CRC1  
CRC2  
CRC3  
CRC4  
CRC5  
CRC6  
CRC7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
DQ2  
D16  
D24  
D32  
D40  
D48  
D56  
D64  
D72  
D80  
D88  
D96  
D104  
D112  
D120  
D128  
D136  
D17  
D25  
D33  
D41  
D49  
D57  
D65  
D73  
D81  
D89  
D97  
D105  
D113  
D121  
D129  
D137  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
LDM_n/LDBI_n  
DQ8  
CRC8  
CRC9  
CRC10  
CRC11  
CRC12  
CRC13  
CRC14  
CRC15  
1
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
UDM_n/UDBI_n  
A2 = 1  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
D4  
D5  
D6  
D7  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CRC0  
CRC1  
CRC2  
CRC3  
CRC4  
CRC5  
CRC6  
CRC7  
1
1
1
1
1
1
1
1
D12  
D20  
D28  
D36  
D44  
D52  
D60  
D13  
D21  
D29  
D37  
D45  
D53  
D61  
D14  
D22  
D30  
D38  
D46  
D54  
D62  
D15  
D23  
D31  
D39  
D47  
D55  
D63  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
165  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
Table 59: CRC Data Mapping for x16 Devices, BC4 (Continued)  
Transfer  
Function  
LDM_n/LDBI_n  
DQ8  
0
1
2
3
4
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
1
1
1
1
1
1
6
1
1
1
1
1
1
1
1
1
1
7
1
1
1
1
1
1
1
1
1
1
8
9
1
1
1
1
1
1
1
1
1
1
D68  
D69  
D70  
D71  
1
D76  
D77  
D78  
D79  
CRC8  
CRC9  
CRC10  
CRC11  
CRC12  
CRC13  
CRC14  
CRC15  
1
DQ9  
D84  
D85  
D86  
D87  
DQ10  
D92  
D93  
D94  
D95  
DQ11  
D100  
D108  
D116  
D124  
D132  
D140  
D101  
D109  
D117  
D125  
D133  
D141  
D102  
D110  
D118  
D126  
D134  
D142  
D103  
D111  
D119  
D127  
D135  
D143  
DQ12  
DQ13  
DQ14  
DQ15  
UDM_n/UDBI_n  
CRC Equations for x8 Device in BC4 Mode with A2 = 0 and A2 = 1  
The following exa0ple is of a CRC tree when x8 is used in BC4 0ode (x4 and x1± CRC  
trees have si0ilar differences).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
166  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
CRC[0], A2=0 =  
1^1^D[±7]^D[±±]^D[±4]^1^1^D[5±]^1^1^1^D[56]^D[49]^D[48]^1^D[43]^D[46]^1^D[3  
5]^D[34]^1^1^1^1^1^D[19]^D[18]^D[1±]^1^1^D[8] ^1^1^ D[6] ;  
CRC[0], A2=1 =  
1^1^D[71]^D[76]^D[±8]^1^1^D[±6]^1^1^1^D[54]^D[53]^D[52]^1^D[47]^D[44]^1^D[3  
9]^D[38]^1^1^1^1^1^D[23]^D[22]^D[26]^1^1^D[12]^1^1^D[4] ;  
CRC[1], A2=0 =  
1^D[±±]^D[±5]^1^1^1^D[57]^D[5±]^1^1^D[51]^D[48]^1^1^1^D[43]^D[41]^1^1^D[34  
]^D[32]^1^1^1^D[24]^1^1^1^1^D[18]^D[17]^D[1±]^1^1^1^1^D[9] ^1^ D[1]^D[6];  
CRC[1], A2=1 =  
1^D[76]^D[±9]^1^1^1^D[±1]^D[±6]^1^1^D[55]^D[52]^1^1^1^D[47]^D[45]^1^1^D[38  
]^D[3±]^1^1^1^D[28]^1^1^1^1^D[22]^D[21]^D[26]^1^1^1^1^D[13]^1^D[5]^D[4];  
CRC[2], A2=0 =  
1^1^1^1^1^1^1^D[58]^D[57]^1^D[56]^D[48]^1^1^1^D[43]^D[42]^1^1^D[34]^D[33]^1  
^1^D[25]^D[24]^1^D[17]^1^1^1^D[16]^D[8] ^1^D[2]^D[1]^D[6];  
CRC[2], A2=1 =  
1^1^1^1^1^1^1^D[±2]^D[±1]^1^D[54]^D[52]^1^1^1^D[47]^D[4±]^1^1^D[38]^D[37]^1  
^1^D[29]^D[28]^1^D[21]^1^1^1^D[14]^D12]^1^D[±]^D[5]^D[4];  
CRC[3], A2=0 =  
1^1^D[±4]^1^1^1^D[59]^D[58]^1^D[51]^D[49]^D[48]^1^1^1^D[43]^D[46]^1^D[35]^  
D[34]^1^1^D[2±]^D[25]^1^D[18]^D[1±]^1^1^D[11]^D[9] ^1^D[3]^D[2]^D[1];  
CRC[3], A2=1 =  
1^1^D[±8]^1^1^1^D[±3]^D[±2]^1^D[55]^D[53]^D[52]^1^1^1^D[47]^D[44]^1^D[39]^  
D[38]^1^1^D[36]^D[29]^1^D[22]^D[26]^1^1^D[15]^D[13]^1^D[7]^D[±]^D[5];  
CRC[4], A2=0 =  
1^1^D[±5]^D[±4]^1^1^1^D[59]^D[5±]^1^D[56]^D[49]^D[48]^1^1^1^D[41]^1^1^D[35  
]^1^1^D[27]^D[2±]^D[24]^D[19]^D[17]^1^1^1^D[16]^D[8] ^1^D[3]^D[2];  
CRC[4], A2=1 =  
1^1^D[±9]^D[±8]^1^1^1^D[±3]^D[±6]^1^D[54]^D[53]^D[52]^1^1^1^D[45]^1^1^D[39  
]^1^1^D[31]^D[36]^D[28]^D[23]^D[21]^1^1^1^D[14]^D[12]^1^D[7]^D[±];  
CRC[5], A2=0 =  
1^D[±±]^D[±5]^D[±4]^1^1^1^D[57]^1^D[51]^D[56]^D[49]^1^1^1^D[42]^D[46]^1^1^  
D[32]^1^1^D[27]^D[25]^1^D[18]^D[1±]^1^1^D[11]^D[9] ^1^1^D[3];  
CRC[5], A2=1 =  
1^D[76]^D[±9]^D[±8]^1^1^1^D[±1]^1^D[55]^D[54]^D[53]^1^1^1^D[4±]^D[44]^1^1^  
D[3±]^1^1^D[31]^D[29]^1^D[22]^D[26]^1^1^D[15]^D[13]^1^1^D[7];  
CRC[6], A2=0 =  
D[±7]^D[±±]^D[±5]^D[±4]^1^1^D[58]^1^1^D[51]^D[56]^D[48]^1^1^D[43]^D[41]^1^1  
^D[33]^D[32]^1^1^D[2±]^1^D[19]^D[17]^D[1±]^1^1^D[16]^1^1^1;  
CRC[6], A2=1 =  
D[71]^D[76]^D[±9]^D[±8]^1^1^D[±2]^1^1^D[55]^D[54]^D[52]^1^1^D[47]^D[45]^1^1  
^D[37]^D[3±]^1^1^D[36]^1^D[23]^D[21]^D[26]^1^1^D[14]^1^1^1;  
CRC[7], A2=0 =  
1^D[±7]^D[±±]^D[±5]^1^1^D[59]^1^1^1^D[51]^D[49]^D[48]^1^1^D[42]^1^1^D[34]^  
D[33]^1^1^D[27]^1^1^D[18]^D[17]^1^1^D[11]^1^1^1;  
CRC[7], A2=1 =  
1^D[71]^D[76]^D[±9]^1^1^D[±3]^1^1^1^D[55]^D[53]^D[52]^1^1^D[4±]^1^1^D[38]^  
D[37]^1^1^D[31]^1^1^D[22]^D[21]^1^1^D[15]^1^1^1;  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
167  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
CRC Write Data Feature  
CRC Error Handling  
The CRC error 0echanis0 shares the sa0e ALERT_n signal as CA parity for reporting  
write errors to the DRAM. The controller has two ways to distinguish between CRC er-  
rors and CA parity errors: 1) Read DRAM 0ode/MPR registers, and 2) Measure ti0e  
ALERT_n is LOW. To speed up recovery for CRC errors, CRC errors are only sent back as  
a "short" pulse; the 0axi0u0 pulse width is roughly ten clocks (unlike CA parity where  
ALERT_n is LOW longer than 45 clocks). The ALERT_n LOW could be longer than the  
0axi0u0 li0it at the controller if there are 0ultiple CRC errors as the ALERT_n signals  
are connected by a daisy chain bus. The latency to ALERT_n signal is defined as  
tCRC_ALERT in the following figure.  
The DRAM will set the error status bit located at MR5[3] to a 1 upon detecting a CRC  
error, which will subsequently set the CRC error status flag in the MPR error log HIGH  
(MPR Page1, MPR3[7]). The CRC error status bit (and CRC error status flag) re0ains set  
at 1 until the DRAM controller clears the CRC error status bit using an MRS co00and  
to set MR5[3] to a 6. The DRAM controller, upon seeing an error as a pulse width, will  
retry the write transactions. The controller should consider the worst-case delay for  
ALERT_n (during initialization) and backup the transactions accordingly. The DRAM  
controller 0ay also be 0ade 0ore intelligent and correlate the write CRC error to a spe-  
cific rank or a transaction.  
Figure 102: CRC Error Reporting  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Ta0  
Ta1  
Ta2  
Ta3  
Tb0  
Tb1  
CK_c  
CK_t  
DQ  
IN  
Dx  
Dx+1 Dx+2 Dx+3 Dx+4 Dx+5 Dx+6 Dx+7 CRCy  
1
CRC ALERT_PW (MAX)  
CRC ALERT_PW (MIN)  
t
CRC_ALERT  
ALERT_n  
Transition Data  
Don’t Care  
1. D[71:1] CRC computed by DRAM did not match CRC[7:0] at T5 and started error generat-  
ing process at T6.  
Notes:  
2. CRC ALERT_PW is specified from the point where the DRAM starts to drive the signal  
LOW to the point where the DRAM driver releases and the controller starts to pull the  
signal up.  
3. Timing diagram applies to x4, x8, and x16 devices.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
168  
© 2016 Micron Technology, Inc. All rights reserved.  
CRC Write Data Flow Diagram  
Figure 103: CA Parity Flow Diagram  
DRAM write  
process start  
MR2 12 enable CRC  
MR5 3 set CRC error clear to 0  
MR5 10 enable/disable DM  
MR3[10:9] WCL if DM enabled  
Capture data  
DRAM  
CRC same as  
controller  
CRC  
Persistent  
mode  
enabled  
Yes  
Yes  
No  
CRC  
enabled  
Yes  
No  
No  
Transfer data  
internally  
Transfer data  
internally  
Transfer Data  
Internally  
DRAM  
CRC same as  
controller  
CRC  
Yes  
Yes  
Yes  
No  
MR5[3] = 0  
at WRITE  
MR5[3] = 0  
at WRITE  
CA error  
No  
ALERT_n LOW  
6 to 10 CKs  
Set error flag  
MR5[A3]  ꢀ1  
ALERT_n LOW  
6 to 10 CKs  
Set error flag  
MR5[A3]  ꢀ1  
Yes  
No  
No  
MR5[A3] and  
PAGE1 MPR3[7]  
remain set to 1  
MR5[A3] and  
PAGE1 MPR3[7]  
remain set to 1  
Set error status  
PAGE1 MPR3[7]  ꢀ1  
Set error status  
PAGE1 MPR3[7]  ꢀ1  
ALERT_n HIGH  
ALERT_n HIGH  
WRITE burst  
completed  
WRITE burst  
completed  
WRITE burst  
completed  
WRITE burst  
completed  
WRITE burst  
completed  
WRITE burst  
rejected  
Bad data written  
MR5 3 reset to 0 if desired  
Bad data not written  
MR5 3 reset to 0 if desired  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Data Bus Inversion  
Data Bus Inversion  
The DATA BUS INVERSION (DBI) function is supported only for x8 and x1± configura-  
tions (it is not supported on x4 devices). DBI opportunistically inverts data bits, and in  
conjunction with the DBI_n I/O, less than half of the DQs will switch LOW for a given  
DQS strobe edge. The DBI function shares a co00on pin with the DATA MASK (DM)  
and TDQS functions. The DBI function applies to either or both READ and WRITE oper-  
ations: Write DBI cannot be enabled at the sa0e ti0e the DM function is enabled, and  
DBI is not allowed during MPR READ operation. Valid configurations for TDQS, DM,  
and DBI functions are shown below.  
Table 60: DBI vs. DM vs. TDQS Function Matrix  
Read DBI  
Write DBI  
Data Mask (DM)  
TDQS (x8 only)  
Enabled (or Disabled)  
MR5[12]=1 (or  
MR5[12] = 0)  
Disabled  
MR5[11] = 0  
Disabled  
MR5[10] = 0  
Disabled  
MR1[11] = 0  
Enabled  
Disabled  
Disabled  
MR5[11] = 1  
MR5[10] = 0  
MR1[11] = 0  
Disabled  
Enabled  
Disabled  
MR5[11] = 0  
MR5[10] = 1  
MR1[11] = 0  
Disabled  
Disabled  
Disabled  
Enabled  
MR5[12] = 0  
MR5[11] = 0  
MR5[10] = 0  
MR1[11] = 1  
DBI During a WRITE Operation  
If DBI_n is sa0pled LOW on a given byte lane during a WRITE operation, the DRAM in-  
verts write data received on the DQ inputs prior to writing the internal 0e0ory array. If  
DBI_n is sa0pled HIGH on a given byte lane, the DRAM leaves the data received on the  
DQ inputs noninverted. The write DQ fra0e for0at is shown below for x8 and x1± con-  
figurations (the x4 configuration does not support the DBI function).  
Table 61: DBI Write, DQ Frame Format (x8)  
Transfer  
Function  
0
1
2
3
4
5
6
7
DQ[7:0]  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
Byte 7  
DM_n or  
DBI_n  
DM0 or  
DBI0  
DM1 or  
DBI1  
DM2 or  
DBI2  
DM3 or  
DBI3  
DM4 or  
DBI4  
DM5 or  
DBI5  
DM6 or  
DBI6  
DM7 or  
DBI7  
Table 62: DBI Write, DQ Frame Format (x16)  
Transfer, Lower (L) and Upper(U)  
Function  
0
1
2
3
4
5
6
7
DQ[7:0]  
LByte 0  
LByte 1  
LByte 2  
LByte 3  
LByte 4  
LByte 5  
LByte 6  
LByte 7  
LDM_n or  
LDBI_n  
LDM0 or  
LDBI0  
LDM1 or  
LDBI1  
LDM2 or  
LDBI2  
LDM3 or  
LDBI3  
LDM4 or  
LDBI4  
LDM5 or  
LDBI5  
LDM6 or  
LDBI6  
LDM7 or  
LDBI7  
DQ[15:8]  
UByte 0  
UByte 1  
UByte 2  
UByte 3  
170  
UByte 4  
UByte 5  
UByte 6  
UByte 7  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Data Bus Inversion  
Table 62: DBI Write, DQ Frame Format (x16) (Continued)  
Transfer, Lower (L) and Upper(U)  
Function  
0
1
2
3
4
5
6
7
UDM_n or  
UDBI_n  
UDM0 or  
UDBI0  
UDM1 or  
UDBI1  
UDM2 or  
UDBI2  
UDM3 or  
UDBI3  
UDM4 or  
UDBI4  
UDM5 or  
UDBI5  
UDM6 or  
UDBI6  
UDM7 or  
UDBI7  
DBI During a READ Operation  
If the nu0ber of 6 data bits within a given byte lane is greater than four during a READ  
operation, the DRAM inverts read data on its DQ outputs and drives the DBI_n pin  
LOW; otherwise, the DRAM does not invert the read data and drives the DBI_n pin  
HIGH. The read DQ fra0e for0at is shown below for x8 and x1± configurations (the x4  
configuration does not support the DBI function).  
Table 63: DBI Read, DQ Frame Format (x8)  
Transfer Byte  
Function  
DQ[7:0]  
DBI_n  
0
1
2
3
4
5
6
7
Byte 0  
DBI0  
Byte 1  
DBI1  
Byte 2  
DBI2  
Byte 3  
DBI3  
Byte 4  
DBI4  
Byte 5  
DBI5  
Byte 6  
DBI6  
Byte 7  
DBI7  
Table 64: DBI Read, DQ Frame Format (x16)  
Transfer Byte, Lower (L) and Upper(U)  
Function  
DQ[7:0]  
LDBI_n  
0
1
2
3
4
5
6
7
LByte 0  
LDBI0  
LByte 1  
LDBI1  
LByte 2  
LDBI2  
LByte 3  
LDBI3  
LByte 4  
LDBI4  
LByte 5  
LDBI5  
LByte 6  
LDBI6  
LByte 7  
LDBI7  
DQ[15:8]  
UDBI_n  
UByte 0  
UDBI0  
UByte 1  
UDBI1  
UByte 2  
UDBI2  
UByte 3  
UDBI3  
UByte 4  
UDBI4  
UByte 5  
UDBI5  
UByte 6  
UDBI6  
UByte 7  
UDBI7  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
171  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Data Mask  
Data Mask  
The DATA MASK (DM) function, also described as PARTIAL WRITE, is supported only  
for x8 and x1± configurations (it is not supported on x4 devices). The DM function  
shares a co00on pin with the DBI_n and TDQS functions. The DM function applies  
only to WRITE operations and cannot be enabled at the sa0e ti0e the WRITE DBI  
function is enabled. The valid configurations for the TDQS, DM, and DBI functions are  
shown here.  
Table 65: DM vs. TDQS vs. DBI Function Matrix  
Data Mask (DM)  
TDQS (x8 only)  
Write DBI  
Read DBI  
Enabled  
MR5[10] = 1  
Disabled  
MR1[11] = 0  
Disabled  
MR5[11] = 0  
Enabled or Disabled  
MR5[12] = 1 or  
MR5[12] = 0  
Disabled  
Enabled  
Disabled  
Disabled  
MR5[10] = 0  
MR1[11] = 1  
MR5[11] = 0  
MR5[12] = 0  
Disabled  
MR1[11] = 0  
Enabled  
MR5[11] = 1  
Enabled or Disabled  
MR5[12] = 1 or  
MR5[12] = 0  
Disabled  
MR1[11] = 0  
Disabled  
MR5[11] = 0  
Enabled (or Disabled)  
MR5[12] = 1 (or  
MR5[12] = 0)  
When enabled, the DM function applies during a WRITE operation. If DM_n is sa0pled  
LOW on a given byte lane, the DRAM 0asks the write data received on the DQ inputs. If  
DM_n is sa0pled HIGH on a given byte lane, the DRAM does not 0ask the data and  
writes this data into the DRAM core. The DQ fra0e for0at for x8 and x1± configurations  
is shown below. If both CRC write and DM are enabled (via MRS), the CRC will be  
checked and valid prior to the DRAM writing data into the DRAM core. If a CRC error  
occurs while the DM feature is enabled, CRC write persistent 0ode will be enabled and  
data will not be written into the DRAM core. In the case of CRC write enabled and DM  
disabled (via MRS), that is, CRC write nonpersistent 0ode, data is written to the DRAM  
core even if a CRC error occurs.  
Table 66: Data Mask, DQ Frame Format (x8)  
Transfer  
Function  
0
1
2
3
4
5
6
7
DQ[7:0]  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
Byte 7  
DM_n or  
DBI_n  
DM0 or  
DBI0  
DM1 or  
DBI1  
DM2 or  
DBI2  
DM3 or  
DBI3  
DM4 or  
DBI4  
DM5 or  
DBI5  
DM6 or  
DBI6  
DM7 or  
DBI7  
Table 67: Data Mask, DQ Frame Format (x16)  
Transfer, Lower (L) and Upper (U)  
Function  
0
1
2
3
4
5
6
7
DQ[7:0]  
LByte 0  
LByte 1  
LByte 2  
LByte 3  
LByte 4  
LByte 5  
LByte 6  
LByte 7  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
172  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Data Mask  
Table 67: Data Mask, DQ Frame Format (x16) (Continued)  
Transfer, Lower (L) and Upper (U)  
Function  
0
1
2
3
4
5
6
7
LDM_n or  
LDBI_n  
LDM0 or  
LDBI0  
LDM1 or  
LDBI1  
LDM2 or  
LDBI2  
LDM3 or  
LDBI3  
LDM4 or  
LDBI4  
LDM5 or  
LDBI5  
LDM6 or  
LDBI6  
LDM7 or  
LDBI7  
DQ[15:8]  
UByte 0  
UByte 1  
UByte 2  
UByte 3  
UByte 4  
UByte 5  
UByte 6  
UByte 7  
UDM_n or  
UDBI_n  
UDM0 or  
UDBI0  
UDM1 or  
UDBI1  
UDM2 or  
UDBI2  
UDM3 or  
UDBI3  
UDM4 or  
UDBI4  
UDM5 or  
UDBI5  
UDM6 or  
UDBI6  
UDM7 or  
UDBI7  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
173  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programmable Preamble Modes and DQS Postambles  
Programmable Preamble Modes and DQS Postambles  
The device supports progra00able WRITE and READ prea0ble 0odes, either the nor-  
0al 1tCK prea0ble 0ode or special 2tCK prea0ble 0ode. The 2tCK prea0ble 0ode  
places special ti0ing constraints on 0any operational features as well as being suppor-  
ted for data rates of DDR4-2466 and faster. The WRITE prea0ble 1tCK or 2tCK 0ode  
can be selected independently fro0 READ prea0ble 1tCK or 2tCK 0ode.  
READ prea0ble training is also supported; this 0ode can be used by the DRAM con-  
troller to train or "read level" the DQS receivers.  
There are tCCD restrictions under so0e circu0stances:  
• When 2tCK READ prea0ble 0ode is enabled, a tCCD_S or tCCD_L of 5 clocks is not  
allowed.  
• When 2tCK WRITE prea0ble 0ode is enabled and write CRC is not enabled, a tCCD_S  
or tCCD_L of 5 clocks is not allowed.  
• When 2tCK WRITE prea0ble 0ode is enabled and write CRC is enabled, a CCD_S or  
t
tCCD_L of ± clocks is not allowed.  
WRITE Preamble Mode  
MR4[12] = 6 selects 1tCK WRITE prea0ble 0ode while MR4[12] = 1 selects 2tCK WRITE  
prea0ble 0ode. Exa0ples are shown in the figures below.  
Figure 104: 1tCK vs. 2tCK WRITE Preamble Mode  
t
1 CK Mode  
WR  
WL  
CK_c  
CK_t  
Preamble  
DQS_t,  
DQS_c  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DQ  
t
2 CK Mode  
WR  
WL  
CK_c  
CK_t  
Preamble  
DQS_t,  
DQS_c  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DQ  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
174  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programmable Preamble Modes and DQS Postambles  
CWL has special considerations when in the 2tCK WRITE prea0ble 0ode. The CWL val-  
ue selected in MR2[5:3], as seen in table below, requires at least one additional clock  
when the pri0ary CWL value and 2tCK WRITE prea0ble 0ode are used; no additional  
clocks are required when the alternate CWL value and 2tCK WRITE prea0ble 0ode are  
used.  
Table 68: CWL Selection  
CWL - Primary Choice  
1tCK Preamble 2tCK Preamble  
CWL - Alternate Choice  
Speed Bin  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
DDR4-2666  
DDR4-2933  
DDR4-3200  
1tCK Preamble  
2tCK Preamble  
9
N/A  
N/A  
N/A  
14  
11  
12  
14  
16  
18  
20  
20  
N/A  
N/A  
N/A  
16  
10  
11  
12  
14  
16  
16  
16  
18  
18  
20  
18  
20  
1. CWL programmable requirement for MR2[5:3].  
Note:  
t
When operating in 2tCK WRITE prea0ble 0ode, WTR (co00and based) and tWR  
(MR6[11:9]) 0ust be progra00ed to a value 1 clock greater than the tWTR and tWR set-  
ting nor0ally required for the applicable speed bin to be JEDEC co0pliant; however,  
Micron's DDR4 DRAMs do not require these additional tWTR and tWR clocks. The  
CAS_n-to-CAS_n co00and delay to either a different bank group (tCCD_S) or the sa0e  
bank group (tCCD_L) have 0ini0u0 ti0ing require0ents that 0ust be satisfied be-  
tween WRITE co00ands and are stated in the Ti0ing Para0eters by Speed Bin tables.  
Figure 105: 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 4  
t
1 CK Mode  
CMD  
WRITE  
WRITE  
CK_c  
CK_t  
tCCD = 4  
WL  
DQS_t,  
DQS_c  
Preamble  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
DQ  
t
2 CK Mode  
CMD  
WRITE  
WRITE  
CK_c  
CK_t  
tCCD = 4  
WL  
DQS_t,  
DQS_c  
Preamble  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
DQ  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
175  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programmable Preamble Modes and DQS Postambles  
Figure 106: 1tCK vs. 2tCK WRITE Preamble Mode, tCCD = 5  
1tCK Mode  
CMD  
WRITE  
WRITE  
CK_c  
CK_t  
tCCD = 5  
WL  
DQS_t,  
DQS_c  
Preamble  
Preamble  
D0  
D0  
D1 D2  
D3 D4 D5  
D6  
D7  
D1 D2  
D3  
DQ  
2tCK Mode: tCCD = 5 is not allowed in 2tCK mode.  
1. tCCD_S and tCCD_L = 5 tCKs is not allowed when in 2tCK WRITE preamble mode.  
Note:  
Figure 107: 1tCK vs. 2 tCK WRITE Preamble Mode, tCCD = 6  
1tCK Mode  
CMD  
WRITE  
WRITE  
CK_c  
CK_t  
tCCD = 6  
WL  
DQS_t,  
DQS_c  
Preamble  
Preamble  
D0  
D0  
D1 D2 D3 D4 D5 D6  
D7  
D1 D2  
D3  
DQ  
2tCK Mode  
CMD  
WRITE  
WRITE  
CK_c  
CK_t  
tCCD = 6  
WL  
DQS_t,  
DQS_c  
Preamble  
Preamble  
D0  
D1 D2 D3 D4 D5 D6  
D7  
D0  
D1 D2  
D3  
DQ  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
176  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programmable Preamble Modes and DQS Postambles  
READ Preamble Mode  
MR4[11] = 6 selects 1tCK READ prea0ble 0ode and MR4[11] = 1 selects 2tCK READ pre-  
a0ble 0ode. Exa0ples are shown in the following figure.  
Figure 108: 1tCK vs. 2tCK READ Preamble Mode  
t
1 CK Mode  
RD  
CL  
CK_c  
CK_t  
Preamble  
DQS_t,  
DQS_c  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DQ  
t
2 CK Mode  
RD  
CL  
CK_c  
CK_t  
Preamble  
DQS_t,  
DQS_c  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DQ  
READ Preamble Training  
DDR4 supports READ prea0ble training via MPR reads; that is, READ prea0ble train-  
ing is allowed only when the DRAM is in the MPR access 0ode. The READ prea0ble  
training 0ode can be used by the DRAM controller to train or "read level" its DQS re-  
ceivers. READ prea0ble training is entered via an MRS co00and (MR4[16] = 1 is ena-  
bled and MR4[16] = 6 is disabled). After the MRS co00and is issued to enable READ  
prea0ble training, the DRAM DQS signals are driven to a valid level by the ti0e tSDO is  
satisfied. During this ti0e, the data bus DQ signals are held quiet, that is, driven HIGH.  
The DQS_t signal re0ains driven LOW and the DQS_c signal re0ains driven HIGH until  
an MPR Page6 READ co00and is issued (MPR6 through MPR3 deter0ine which pat-  
tern is used), and when CAS latency (CL) has expired, the DQS signals will toggle nor-  
0ally depending on the burst length setting. To exit READ prea0ble training 0ode, an  
MRS co00and 0ust be issued, MR4[16] = 6.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
177  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programmable Preamble Modes and DQS Postambles  
Figure 109: READ Preamble Training  
MRS  
MPR RD  
CL  
CMD  
t
SDO  
DQS_c  
DQS_t,  
DQs (Quiet/Driven HIGH)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
WRITE Postamble  
Whether the 1tCK or 2tCK WRITE prea0ble 0ode is selected, the WRITE posta0ble re-  
0ains the sa0e at ½tCK.  
Figure 110: WRITE Postamble  
t
1 CK Mode  
WR  
WL  
CK_c  
CK_t  
Postamble  
DQS_t,  
DQS_c  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DQ  
t
2 CK Mode  
WR  
WL  
CK_c  
CK_t  
Postamble  
DQS_t,  
DQS_c  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DQ  
READ Postamble  
Whether the 1tCK or 2tCK READ prea0ble 0ode is selected, the READ posta0ble re-  
0ains the sa0e at ½tCK.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
178  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Programmable Preamble Modes and DQS Postambles  
Figure 111: READ Postamble  
t
1 CK Mode  
RD  
CL  
CK_c  
CK_t  
Postamble  
DQS_t,  
DQS_c  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DQ  
t
2 CK Mode  
RD  
CL  
CK_c  
CK_t  
Postamble  
DQS_t,  
DQS_c  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DQ  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
179  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Bank Access Operation  
Bank Access Operation  
DDR4 supports bank grouping: x4/x8 DRAMs have four bank groups (BG[1:6]), and  
each bank group is co0prised of four subbanks (BA[1:6]); x1± DRAMs have two bank  
groups (BG[6]), and each bank group is co0prised of four subbanks. Bank accesses to  
different banks' groups require less ti0e delay between accesses than bank accesses to  
within the sa0e bank's group. Bank accesses to different bank groups require tCCD_S  
(or short) delay between co00ands while bank accesses within the sa0e bank group  
require tCCD_L (or long) delay between co00ands.  
Figure 112: Bank Group x4/x8 Block Diagram  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Memory Array  
Memory Array  
Memory Array  
Memory Array  
Bank Group 0  
Bank Group 1  
Bank Group 2  
Bank Group 3  
CMD/ADDR  
register  
CMD/ADDR  
Sense amplifiers  
Local I/O gating  
Sense amplifiers  
Local I/O gating  
Sense amplifiers  
Local I/O gating  
Sense amplifiers  
Local I/O gating  
Global I/O gating  
Data I/O  
1. Bank accesses to different bank groups require tCCD_S.  
2. Bank accesses within the same bank group require tCCD_L.  
Notes:  
Table 69: DDR4 Bank Group Timing Examples  
Parameter  
tCCD_S  
DDR4-1600  
4nCK  
DDR4-2133  
4nCK  
DDR4-2400  
4nCK  
tCCD_L  
4nCK or 6.25ns  
4nCK or 5.355ns  
4nCK or 5ns  
tRRD_S (½K)  
tRRD_L (½K)  
4nCK or 5ns  
4nCK or 6ns  
4nCK or 3.7ns  
4nCK or 5.3ns  
4nCK or 3.3ns  
4nCK or 4.9ns  
tRRD_S (1K)  
tRRD_L (1K)  
4nCK or 5ns  
4nCK or 6ns  
4nCK or 3.7ns  
4nCK or 5.3ns  
4nCK or 3.3ns  
4nCK or 4.9ns  
tRRD_S (2K)  
tRRD_L (2K)  
4nCK or 6ns  
4nCK or 5.3ns  
4nCK or 6.4ns  
4nCK or 5.3ns  
4nCK or 6.4ns  
4nCK or 7.5ns  
tWTR_S  
2nCK or 2.5ns  
2nCK or 2.5ns  
2nCK or 2.5ns  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
180  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Bank Access Operation  
Table 69: DDR4 Bank Group Timing Examples (Continued)  
Parameter  
DDR4-1600  
DDR4-2133  
DDR4-2400  
tWTR_L  
4nCK or 7.5ns  
4nCK or 7.5ns  
4nCK or 7.5ns  
1. Refer to Timing Tables for actual specification values, these values are shown for refer-  
ence only and are not verified for accuracy.  
Notes:  
2. Timings with both nCK and ns require both to be satisfied; that is, the larger time of the  
two cases must be satisfied.  
Figure 113: READ Burst tCCD_S and tCCD_L Examples  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
DES  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
DES  
DES  
DES  
DES  
t
DES  
DES  
READ  
READ  
t
CCD_S  
CCD_L  
Bank Group  
(BG)  
BG a  
BG b  
BG b  
Bank  
Bank c  
Bank c  
Bank c  
Address  
Col n  
Col n  
Col n  
Don’t Care  
1. tCCD_S; CAS_n-to-CAS_n delay (short). Applies to consecutive CAS_n to different bank  
groups (T0 to T4).  
Notes:  
2. tCCD_L; CAS_n-to-CAS_n delay (long). Applies to consecutive CAS_n to the same bank  
group (T4 to T10).  
Figure 114: Write Burst tCCD_S and tCCD_L Examples  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
DES  
CK_c  
CK_t  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
WRITE  
Command  
WRITE  
tCCD_S  
tCCD_L  
Bank Group  
(BG)  
BG a  
BG b  
BG b  
Bank c  
Bank c  
Bank c  
Bank  
Coln  
Coln  
Coln  
Address  
Don’t Care  
1. tCCD_S; CAS_n-to-CAS_n delay (short). Applies to consecutive CAS_n to different bank  
groups (T0 to T4).  
Notes:  
2. tCCD_L; CAS_n-to-CAS_n delay (long). Applies to consecutive CAS_n to the same bank  
group (T4 to T10).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
181  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Bank Access Operation  
Figure 115: tRRD Timing  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
ACT  
T11  
DES  
CK_c  
CK_t  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
ACT  
ACT  
Command  
t
t
RRD_S  
RRD_L  
Bank  
Group  
(BG)  
BG b  
Bank d  
Row n  
BG a  
Bank c  
Row n  
BG b  
Bank c  
Row n  
Bank  
Address  
Don’t Care  
1. tRRD_S; ACTIVATE-to-ACTIVATE command period (short); applies to consecutive ACTI-  
VATE commands to different bank groups (T0 and T4).  
Notes:  
2. tRRD_L; ACTIVATE-to-ACTIVATE command period (long); applies to consecutive ACTI-  
VATE commands to the different banks in the same bank group (T4 and T10).  
Figure 116: tWTR_S Timing (WRITE-to-READ, Different Bank Group, CRC and DM Disabled)  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
CK_c  
CK_t  
Command  
WRITE  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
READ  
Valid  
tWTR_S  
Bank  
BGa  
Bank c  
Col n  
BGb  
Bank c  
Col n  
Group  
Bank  
Address  
tWPRE  
tWPST  
DQS, DQS_c  
DQ  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
WL  
RL  
Time Break  
Transitioning Data  
Don’t Care  
1. tWTR_S: delay from start of internal write transaction to internal READ command to a  
different bank group.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
182  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Bank Access Operation  
Figure 117: tWTR_L Timing (WRITE-to-READ, Same Bank Group, CRC and DM Disabled)  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Tb0  
Tb1  
CK_c  
CK_t  
Command  
WRITE  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
READ  
Valid  
tWTR_L  
Bank  
BGa  
Bank c  
Col n  
BGa  
Bank c  
Col n  
Group  
Bank  
Address  
tWPRE  
tWPST  
DQS, DQS_c  
DQ  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
WL  
RL  
Time Break  
Transitioning Data  
Don’t Care  
1. tWTR_L: delay from start of internal write transaction to internal READ command to the  
same bank group.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
183  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
READ Operation  
Read Timing Definitions  
The read ti0ings shown below are applicable in nor0al operation 0ode, that is, when  
the DLL is enabled and locked.  
Note: tDQSQ = both rising/falling edges of DQS; no tAC defined.  
Rising data strobe edge para0eters:  
t
• DQSCK (MIN)/(MAX) describes the allowed range for a rising data strobe edge rela-  
tive to CK.  
t
• DQSCK is the actual position of a rising strobe edge relative to CK.  
t
• QSH describes the DQS differential output HIGH ti0e.  
t
• DQSQ describes the latest valid transition of the associated DQ pins.  
t
• QH describes the earliest invalid transition of the associated DQ pins.  
Falling data strobe edge para0eters:  
t
• QSL describes the DQS differential output LOW ti0e.  
t
• DQSQ describes the latest valid transition of the associated DQ pins.  
t
• QH describes the earliest invalid transition of the associated DQ pins.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
184  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 118: Read Timing Definition  
CK_c  
CK_t  
t
t
t
t
DQSCK (MIN) DQSCK (MAX) DQSCK (MIN) DQSCK (MAX)  
t
t
DQSCKi  
DQSCKi  
Rising strobe  
region  
Rising strobe  
region  
t
DQSCK MAX  
window  
window  
t
t
DQSCKi  
DQSCKi  
Rising strobe  
region  
Rising strobe  
region  
t
DQSCK center  
window  
window  
t
t
DQSCKi  
DQSCKi  
Rising strobe  
region  
Rising strobe  
region  
t
DQSCK MIN  
window  
window  
t
t
DQSCK  
DQSCK  
t
t
QSH/DQS_c  
QSH/DQS_t  
DQS_c  
DQS_t  
t
t
QH  
QH  
t
t
DQSQ  
DQSQ  
Associated  
DQ Pins  
Table 70: Read-to-Write and Write-to-Read Command Intervals  
Access Type  
Bank Group  
Same  
Timing Parameters  
CL - CWL + RBL/2 + 1tCK + tWPRE  
CL - CWL + RBL/2 + 1tCK + tWPRE  
CWL + WBL/2 + tWTR_L  
Note  
1, 2  
1, 2  
1, 3  
1, 3  
Read-to-Write, mini-  
mum  
Different  
Same  
Write-to-Read, mini-  
mum  
Different  
CWL + WBL/2 + tWTR_S  
1. These timings require extended calibrations times tZQinit and tZQCS.  
Notes:  
2. RBL: READ burst length associated with READ command, RBL = 8 for fixed 8 and on-the-  
fly mode 8 and RBL = 4 for fixed BC4 and on-the-fly mode BC4.  
3. WBL: WRITE burst length associated with WRITE command, WBL = 8 for fixed 8 and on-  
the-fly mode 8 or BC4 and WBL = 4 for fixed BC4 only.  
Read Timing – Clock-to-Data Strobe Relationship  
The clock-to-data strobe relationship shown below is applicable in nor0al operation  
0ode, that is, when the DLL is enabled and locked.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
185  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Rising data strobe edge para0eters:  
t
• DQSCK (MIN)/(MAX) describes the allowed range for a rising data strobe edge rela-  
tive to CK.  
t
• DQSCK is the actual position of a rising strobe edge relative to CK.  
t
• QSH describes the data strobe high pulse width.  
t
• HZ(DQS) DQS strobe going to high, nondrive level (shown in the posta0ble section  
of the figure below).  
Falling data strobe edge para0eters:  
t
• QSL describes the data strobe low pulse width.  
t
• LZ(DQS) DQS strobe going to low, initial drive level (shown in the prea0ble section  
of the figure below).  
Figure 119: Clock-to-Data Strobe Relationship  
RL measured  
to this point  
CK_t  
CK_c  
t
t
t
t
DQSCK (MIN)  
DQSCK (MIN)  
DQSCK (MIN)  
DQSCK (MIN)  
t
HZ(DQS) MIN  
t
t
t
t
t
t
t
QSH  
QSL  
QSH  
QSL  
QSH  
QSL  
LZ(DQS) MIN  
DQS_t, DQS_c  
Early Strobe  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
RPST  
t
t
RPRE  
t
HZ(DQS) MAX  
t
t
t
t
DQSCK (MAX)  
DQSCK (MAX)  
Bit 2  
DQSCK (MAX)  
Bit 4  
DQSCK (MAX)  
t
RPST  
Bit 7  
t
LZ(DQS) MAX  
DQS_t, DQS_c  
Late Strobe  
Bit 0  
Bit 1  
Bit 3  
Bit 5  
Bit 6  
t
t
t
t
t
RPRE  
QSH  
QSL  
QSH  
QSL  
1. Within a burst, the rising strobe edge will vary within tDQSCKj while at the same volt-  
age and temperature. However, when the device, voltage, and temperature variations  
are incorporated, the rising strobe edge variance window can shift between tDQSCK  
(MIN) and tDQSCK (MAX).  
Notes:  
A timing of this window's right edge (latest) from rising CK_t, CK_c is limited by a devi-  
ce's actual tDQSCK (MAX). A timing of this window's left inside edge (earliest) from ris-  
ing CK_t, CK_c is limited by tDQSCK (MIN).  
2. Notwithstanding Note 1, a rising strobe edge with tDQSCK (MAX) at T(n) can not be im-  
mediately followed by a rising strobe edge with tDQSCK (MIN) at T(n + 1) because other  
timing relationships (tQSH, tQSL) exist: if tDQSCK(n + 1) < 0: tDQSCK(n) < 1.0 tCK - (tQSH  
(MIN) + tQSL (MIN)) - | tDQSCK(n + 1) |.  
3. The DQS_t, DQS_c differential output HIGH time is defined by tQSH, and the DQS_t,  
DQS_c differential output LOW time is defined by tQSL.  
4. tLZ(DQS) MIN and tHZ(DQS) MIN are not tied to tDQSCK (MIN) (early strobe case), and  
tLZ(DQS) MAX and tHZ(DQS) MAX are not tied to tDQSCK (MAX) (late strobe case).  
5. The minimum pulse width of READ preamble is defined by tRPRE (MIN).  
6. The maximum READ postamble is bound by tDQSCK (MIN) plus tQSH (MIN) on the left  
side and tHZDSQ (MAX) on the right side.  
7. The minimum pulse width of READ postamble is defined by tRPST (MIN).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
186  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
8. The maximum READ preamble is bound by tLZDQS (MIN) on the left side and tDQSCK  
(MAX) on the right side.  
Read Timing – Data Strobe-to-Data Relationship  
The data strobe-to-data relationship is shown below and is applied when the DLL is en-  
abled and locked.  
Note: tDQSQ: both rising/falling edges of DQS; no tAC defined.  
Rising data strobe edge para0eters:  
t
• DQSQ describes the latest valid transition of the associated DQ pins.  
t
• QH describes the earliest invalid transition of the associated DQ pins.  
Falling data strobe edge para0eters:  
t
• DQSQ describes the latest valid transition of the associated DQ pins.  
t
• QH describes the earliest invalid transition of the associated DQ pins.  
Data valid window para0eters:  
t
• DVWd is the Data Valid Window per device per UI and is derived fro0 [tQH - tDQSQ]  
of each UI on a given DRAM  
t
• DVWp is the Data Valid Window per pin per UI and is derived [tQH - tDQSQ] of each  
UI on a pin of a given DRAM  
Figure 120: Data Strobe-to-Data Relationship  
T0  
T1  
T2  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
CK_c  
CK_t  
3
READ  
DES  
DES  
DES  
Command  
RL = AL + CL  
Bank,  
Col n  
4
Address  
t
t
DQSQ (MAX)  
DQSQ (MAX)  
t
RPST  
t
RPRE (1nCK)  
DQS_t, DQS_c  
t
t
QH  
QH  
2
DQ  
D
D
D
D
n + 3  
D
n + 4  
D
D
D
OUT  
OUT  
n + 1  
OUT  
n + 2  
OUT  
OUT  
OUT  
n + 5  
OUT  
n + 6  
OUT  
n + 7  
n
(Last data )  
t
DVWp  
2
D
D
n + 1  
D
n + 2  
D
n + 3  
D
n + 4  
D
n + 5  
D
D
n + 7  
OUT  
n
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
n + 6  
OUT  
DQ  
(First data no longer)  
t
DVWp  
D
D
n + 1  
D
n + 2  
D
n + 3  
D
n + 4  
D
n + 5  
D
n + 6  
D
n + 7  
OUT  
n
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
All DQ collectively  
t
t
DVWd  
DVWd  
Don’t Care  
1. BL = 8, RL = 11 (AL = 0, CL = 1) , Premable = 1tCK.  
Notes:  
2. DOUT n = data-out from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during  
READ commands at T0.  
5. Output timings are referenced to VDDQ, and DLL on for locking.  
6. tDQSQ defines the skew between DQS to data and does not define DQS to clock.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
187  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
7. Early data transitions may not always happen at the same DQ. Data transitions of a DQ  
can vary (either early or late) within a burst.  
tLZ(DQS), tLZ(DQ), tHZ(DQS), and tHZ(DQ) Calculations  
tHZ and tLZ transitions occur in the sa0e ti0e window as valid data transitions. These  
para0eters are referenced to a specific voltage level that specifies when the device out-  
put is no longer driving tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS) and  
tLZ(DQ). The figure below shows a 0ethod to calculate the point when the device is no  
longer driving tHZ(DQS) and tHZ(DQ), or begins driving tLZ(DQS) and tLZ(DQ), by  
0easuring the signal at two different voltages. The actual voltage 0easure0ent points  
are not critical as long as the calculation is consistent. tLZ(DQS), tLZ(DQ), tHZ(DQS),  
and tHZ(DQ) are defined as singled-ended para0eters.  
Figure 121: tLZ and tHZ Method for Calculating Transitions and Endpoints  
t
t
t
LZ(DQ): CK_t, CK_c rising crossing at RL  
HZ(DQ) with BL8: CK_t, CK_c rising crossing at RL + 4CK  
HZ(DQ) with BC4: CK_t, CK_c rising crossing at RL + 2CK  
CK_t  
CK_c  
t
t
LZ  
HZ  
Begin point:  
Extrapolated point at V  
DDQ  
V
DDQ  
DQ  
V
DQ  
DDQ  
V
V
SW2  
SW2  
0.7 × V  
DDQ  
0.7 × V  
DDQ  
V
V
SW1  
SW1  
0.4 × V  
DDQ  
0.4 × V  
DDQ  
Begin point: Extrapolated point (low level)  
1. Vsw1 = (0.70 - 0.04) × VDDQ for both tLZ and tHZ.  
2. Vsw2 = (0.70 + 0.04) × VDDQ for both tLZ and tHZ.  
Notes:  
3. Extrapolated point (low level) = VDDQ/(50 + 34) × 34 = 0.4 × VDDQ  
Driver impedance = RZQ/7 = 34Ω  
V
TT test load = 50Ω to VDDQ.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
188  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
tRPRE Calculation  
Figure 122: tRPRE Method for Calculating Transitions and Endpoints  
CK_t  
VDD/2  
CK_c  
Single-ended signal provided as background information  
DQS_t  
VDDQ  
0.7 × V  
DDQ  
0.4 × V  
DDQ  
DQS_c  
VDDQ  
0.7 × V  
DDQ  
0.4 × V  
DDQ  
VDDQ  
DQS_t  
DQS_c  
DQS_t  
0.7 × V  
DDQ  
0.4 × V  
DQS_c  
DDQ  
Resulting differential signal relevanttRfPoRrE specification  
0.6 × V  
DDQ  
VSW2  
VSW1  
0.3 × V  
DDQ  
DQS_t, DQS_c  
0V  
tRPRE beginst1()  
tRPRE endst(2)  
1. Vsw1 = (0.3 - 0.04) × VDDQ  
.
Notes:  
2. Vsw2 = (0.30 + 0.04) × VDDQ  
.
3. DQS_t and DQS_c low level = VDDQ/(50 + 34) × 34 = 0.4 × VDDQ  
Driver impedance = RZQ/7 = 34Ω  
V
TT test load = 50Ω to VDDQ.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
189  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
tRPST Calculation  
Figure 123: tRPST Method for Calculating Transitions and Endpoints  
CK_t  
VDD/2  
CK_c  
Single-ended signal provided as background information  
VDDQ  
0.7 × V  
DDQ  
0.4 × V  
DQS_t  
DQS_c  
DDQ  
VDDQ  
0.7 × V  
DDQ  
0.4 × V  
DDQ  
DQS_c  
VDDQ  
0.7 × V  
DDQ  
DQS_t  
Resulting differential signal relevanttRfPoSrT specification  
tRPST beginst(1)  
0V  
VSW2  
VSW1  
–0.3 × V  
DDQ  
–0.6 × V  
DQS_t, DQS_c  
DDQ  
tRPST endst(2)  
1. Vsw1 = (–0.3 - 0.04) × VDDQ  
.
Notes:  
2. Vsw2 = (–0.30 + 0.04) × VDDQ  
.
3. DQS_t and DQS_c low level = VDDQ/(50 + 34) × 34 = 0.4 × VDDQ  
Driver impedance = RZQ/7 = 34Ω  
V
TT test load = 50Ω to VDDQ.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
190  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
READ Burst Operation  
DDR4 READ co00ands support bursts of BL8 (fixed), BC4 (fixed), and BL8/BC4 on-  
the-fly (OTF); OTF uses address A12 to control OTF when OTF is enabled:  
• A12 = 6, BC4 (BC4 = burst chop)  
• A12 = 1, BL8  
READ co00ands can issue precharge auto0atically with a READ with auto precharge  
co00and (RDA), and is enabled by A16 HIGH:  
• READ co00and with A16 = 6 (RD) perfor0s standard read, bank re0ains active after  
READ burst.  
• READ co00and with A16 = 1 (RDA) perfor0s read with auto precharge, bank goes in  
to precharge after READ burst.  
Figure 124: READ Burst Operation, RL = 11 (AL = 0, CL = 11, BL8)  
T0  
T1  
T2  
Ta0  
Ta1  
Ta2  
Ta3  
Ta4  
Ta5  
Ta6  
Ta7  
Ta8  
Ta9  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Bank Group  
Address  
Bank  
col n  
Address  
tRPRE  
tRPST  
DQS_t  
DQS_c  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
CL = 11  
RL = AL + CL  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, RL = 0, AL = 0, CL = 11, Preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
command at T0.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
191  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 125: READ Burst Operation, RL = 21 (AL = 10, CL = 11, BL8)  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Tb0  
DES  
Tb1  
DES  
Tb2  
DES  
Tb3  
DES  
Tb4  
DES  
Tb5  
DES  
Tb6  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
DES  
DES  
Bank Group  
Address  
Bank  
col n  
Address  
t
t
RPRE  
RPST  
DQS_t  
DQS_c  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
AL = 10  
CL = 11  
RL = AL + CL  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, RL = 21, AL = (CL - 1), CL = 11, Preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
command at T0.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
192  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
READ Operation Followed by Another READ Operation  
Figure 126: Consecutive READ (BL8) with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
DES  
T19  
DES  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
b
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CL = 11, Preamble = 1tCK.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T0 and T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
Figure 127: Consecutive READ (BL8) with 2tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
DES  
T19  
DES  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
b
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CL = 11, Preamble = 2tCK.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T0 and T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
193  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 128: Nonconsecutive READ (BL8) with 1tCK Preamble in Same or Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T5  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tCCD_S/L = 5  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CL = 11, Preamble = 1tCK, tCCD_S/L = 5.  
Notes:  
2. DO n (or b) = data-out from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T0 and T5.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
Figure 129: Nonconsecutive READ (BL8) with 2tCK Preamble in Same or Different Bank Group  
T0  
T1  
T2  
T5  
T6  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tCCD_S/L = 6  
Bank Group  
Address  
BGa or  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tRPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CL = 11, Preamble = 2tCK, tCCD_S/L = 6.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[A1:0 = 00] or MR0[A1:0 = 01] and A12 = 1 during  
READ commands at T0 and T6.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
6. 6 tCCD_S/L = 5 isn’t allowed in 2tCK preamble mode.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
194  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 130: READ (BC4) to READ (BC4) with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
DES  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPRE  
tRPST  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3  
b
b + 1 b + 2 b + 3  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CL = 11, Preamble = 1tCK.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ  
commands at T0 and T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
Figure 131: READ (BC4) to READ (BC4) with 2tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
DES  
T19  
DES  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3  
b
b + 1 b + 2 b + 3  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CL = 11, Preamble = 2tCK.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ  
commands at T0 and T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
195  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 132: READ (BL8) to READ (BC4) OTF with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
b
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, AL = 0, CL = 11, Preamble = 1tCK.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0. BC4  
setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
Figure 133: READ (BL8) to READ (BC4) OTF with 2tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
b
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, AL =0, CL = 11, Preamble = 2tCK.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0. BC4  
setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
196  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 134: READ (BC4) to READ (BL8) OTF with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPST  
tRPST  
tRPRE  
tRPRE  
DQS_t,  
DQS_c  
RL = 11  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n + 1 n + 2 n + 3  
b
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, AL =0, CL = 11, Preamble = 1tCK.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0. BL8  
setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
Figure 135: READ (BC4) to READ (BL8) OTF with 2tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
DES  
T19  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tRPST  
tRPRE  
DQS_t,  
DQS_c  
RL = 11  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n + 1 n + 2 n + 3  
b
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, AL = 0, CL = 11, Preamble = 2tCK.  
2. DO n (or b) = data-out from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0. BL8  
setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
197  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
READ Operation Followed by WRITE Operation  
Figure 136: READ (BL8) to WRITE (BL8) with 1tCK Preamble in Same or Different Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
DES  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
READ to WRITE command delay  
= RL +BL/2 - WL + 2 tCK  
tWTR  
4 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE  
preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T0 and WRITE commands at T8.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
Figure 137: READ (BL8) to WRITE (BL8) with 2tCK Preamble in Same or Different Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
DES  
T19  
DES  
T20  
T21  
DES  
T22  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
tWR  
READ to WRITE command delay  
= RL +BL/2 - WL + 3 tCK  
tWTR  
4 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = 10  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9+1 [see Note  
5], AL = 0), WRITE preamble = 2tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
198  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T0 and WRITE commands at T8.  
5. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a  
value at least 1 clock greater than the lowest CWL setting.  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
Figure 138: READ (BC4) OTF to WRITE (BC4) OTF with 1tCK Preamble in Same or Different Bank  
Group  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
DES  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
tWTR  
READ to WRITE command delay  
= RL +BL/2 - WL + 2 tCK  
4 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0),  
WRITE preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 (OTF) setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0  
and WRITE commands at T6.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
199  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 139: READ (BC4) OTF to WRITE (BC4) OTF with 2tCK Preamble in Same or Different Bank  
Group  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
DES  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
READ to WRITE command delay  
= RL +BL/2 - WL + 3 tCK  
tWTR  
4 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = 10  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9 + 1 [see Note  
5], AL = 0), WRITE preamble = 2tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 (OTF) setting activated by MR0[1:0] = 01 and A12 = 0 during READ commands at T0  
and WRITE commands at T6.  
5. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a  
value at least 1 clock greater than the lowest CWL setting.  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
Figure 140: READ (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Preamble in Same or Different Bank  
Group  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
tWTR  
READ to WRITE command delay  
= RL +BL/2 - WL + 2 tCK  
2 Clocks  
Bank Group  
Address  
BGa or  
BGb  
BGa  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0),  
WRITE preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
200  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 (fixed) setting activated by MR0[1:0] = 01.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
Figure 141: READ (BC4) Fixed to WRITE (BC4) Fixed with 2tCK Preamble in Same or Different Bank  
Group  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
READ to WRITE command delay  
= RL +BL/2 - WL + 3 tCK  
tWTR  
2 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = 10  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 9 (CWL = 9 + 1 [see Note  
5], AL = 0), WRITE preamble = 2tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 (fixed) setting activated by MR0[1:0] = 10.  
5. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a  
value at least 1 clock greater than the lowest CWL setting.  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
201  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 142: READ (BC4) to WRITE (BL8) OTF with 1tCK Preamble in Same or Different Bank Group  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
tWTR  
READ to WRITE command delay  
= RL +BL/2 - WL + 2 tCK  
4 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tRPST  
tWPST  
tRPRE  
tWPRE  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3 n + 4 n + 5 n + 6 n + 7  
WL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE  
preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0.  
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T6.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
Figure 143: READ (BC4) to WRITE (BL8) OTF with 2tCK Preamble in Same or Different Bank Group  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
T19  
DES  
T20  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
tWR  
READ to WRITE command delay  
= RL +BL/2 - WL + 3 tCK  
tWTR  
4 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tRPST  
tWPST  
tRPRE  
tWPRE  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3 n + 4 n + 5 n + 6 n + 7  
WL = 10  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9 + 1 [see Note  
5], AL = 0), WRITE preamble = 2tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0.  
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T6.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
202  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
Figure 144: READ (BL8) to WRITE (BC4) OTF with 1tCK Preamble in Same or Different Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
DES  
T19  
T20  
DES  
T21  
DES  
T22  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
tWR  
tWTR  
READ to WRITE command delay  
= RL +BL/2 - WL + 2 tCK  
4 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3  
WL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL = 0), WRITE  
preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0.  
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
Figure 145: READ (BL8) to WRITE (BC4) OTF with 2tCK Preamble in Same or Different Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
DES  
T19  
DES  
T20  
T21  
DES  
T22  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
tWR  
READ to WRITE command delay  
= RL +BL/2 - WL + 3 tCK  
tWTR  
4 Clocks  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3  
WL = 10  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 2tCK, WL = 10 (CWL = 9 + 1 [see Note  
5], AL = 0), WRITE preamble = 2tCK.  
Notes:  
2. DO n = data-out from column n; DI b = data-in from column b.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
203  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during READ commands at T0.  
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
READ Operation Followed by PRECHARGE Operation  
The 0ini0u0 external READ co00and to PRECHARGE co00and spacing to the sa0e  
bank is equal to AL + tRTP with tRTP being the internal READ co00and to PRECHARGE  
co00and delay. Note that the 0ini0u0 ACT to PRE ti0ing, tRAS, 0ust be satisfied as  
well. The 0ini0u0 value for the internal READ co00and to PRECHARGE co00and  
delay is given by tRTP (MIN) = MAX (4 × nCK, 7.5ns). A new bank ACTIVATE co00and  
0ay be issued to the sa0e bank if the following two conditions are satisfied si0ultane-  
ously:  
• The 0ini0u0 RAS precharge ti0e (tRP [MIN]) has been satisfied fro0 the clock at  
which the precharge begins.  
• The 0ini0u0 RAS cycle ti0e (tRC [MIN]) fro0 the previous bank activation has been  
satisfied.  
Figure 146: READ to PRECHARGE with 1tCK Preamble  
T0  
T1  
T2  
T3  
T6  
T7  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
T19  
DES  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
DES  
READ  
BGa  
DES  
DES  
DES  
PRE  
ACT  
BGa  
Bank Group  
Address  
BGa  
or BGb  
Bank a  
Col n  
Bank a  
(or all)  
Bank a  
Row b  
Address  
tRTP  
tRP  
RL = AL + CL  
BC4 Opertaion  
DQS_t,  
DQS_c  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3  
BL8 Opertaion  
DQS_t,  
DQS_c  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Time Break  
Transitioning Data  
Don’t Care  
1. RL = 11 (CL = 11, AL = 0 ), Preamble = 1tCK, tRTP = 6, tRP = 11.  
Notes:  
2. DO n = data-out from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. The example assumes that tRAS (MIN) is satisfied at the PRECHARGE command time (T7)  
and that tRC (MIN) is satisfied at the next ACTIVATE command time (T18).  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
204  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 147: READ to PRECHARGE with 2tCK Preamble  
T0  
T1  
T2  
T3  
T6  
T7  
T10  
T11  
T12  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
T19  
DES  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
DES  
READ  
BGa  
DES  
DES  
DES  
PRE  
DES  
DES  
DES  
ACT  
BGa  
Bank Group  
Address  
BGa or  
BGb  
Bank a  
Col n  
Bank a  
(or all)  
Bank a  
Row b  
Address  
tRTP  
tRP  
RL = AL + CL  
BC4 Opertaion  
DQS_t,  
DQS_c  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3  
BL8 Opertaion  
DQS_t,  
DQS_c  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Time Break  
Transitioning Data  
Don’t Care  
1. RL = 11 (CL = 11, AL = 0 ), Preamble = 2tCK, tRTP = 6, tRP = 11.  
Notes:  
2. DO n = data-out from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. The example assumes that tRAS (MIN) is satisfied at the PRECHARGE command time (T7)  
and that tRC (MIN) is satisfied at the next ACTIVATE command time (T18).  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
Figure 148: READ to PRECHARGE with Additive Latency and 1tCK Preamble  
T0  
T1  
T2  
T3  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T16  
PRE  
T19  
DES  
T20  
DES  
T21  
DES  
T22  
DES  
T23  
DES  
T24  
DES  
T25  
DES  
T26  
DES  
T27  
CK_c  
CK_t  
Command  
DES  
READ  
BGa  
DES  
DES  
ACT  
BGa  
Bank Group  
Address  
BGa or  
BGb  
Bank a  
Col n  
Bank a  
(or all)  
Bank a  
Row b  
Address  
t
t
AL = CL - 2 = 9  
RTP  
RP  
CL = 11  
BC4 Opertaion  
DQS_t,  
DQS_c  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3  
BL8 Opertaion  
DQS_t,  
DQS_c  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Time Break  
Transitioning Data  
Don’t Care  
1. RL =20 (CL = 11, AL = CL - 2), Preamble = 1tCK, tRTP = 6, tRP = 11.  
Notes:  
2. DO n = data-out from column n.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
205  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. The example assumes that tRAS (MIN) is satisfied at the PRECHARGE command time  
(T16) and that tRC (MIN) is satisfied at the next ACTIVATE command time (T27).  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
Figure 149: READ with Auto Precharge and 1tCK Preamble  
T0  
T1  
T2  
T3  
T6  
T7  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
T19  
DES  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
DES  
RDA  
BGa  
DES  
DES  
DES  
PRE  
ACT  
BGa  
Bank Group  
Address  
BGa or  
BGb  
Bank a  
Col n  
Bank a  
Col n  
Bank a  
Row b  
Address  
tRTP  
tRP  
RL = AL + CL  
BC4 Opertaion  
DQS_t,  
DQS_c  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3  
BL8 Opertaion  
DQS_t,  
DQS_c  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Time Break  
Transitioning Data  
Don’t Care  
1. RL = 11 (CL = 11, AL = 0 ), Preamble = 1tCK, tRTP = 6, tRP = 11.  
Notes:  
2. DO n = data-out from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. tRTP = 6 setting activated by MR0[A11:9 = 001].  
5. The example assumes that tRC (MIN) is satisfied at the next ACTIVATE command time  
(T18).  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
206  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 150: READ with Auto Precharge, Additive Latency, and 1tCK Preamble  
T0  
T1  
T2  
T3  
T10  
T11  
T12  
T13  
T16  
T19  
T20  
T21  
T22  
T23  
T24  
DES  
T25  
DES  
T26  
DES  
T27  
CK_c  
CK_t  
Command  
DES  
RDA  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
ACT  
BGa  
Bank Group  
Address  
Bank a  
Col n  
Bank a  
Row b  
Address  
AL = CL - 2 = 9  
tRTP  
tRP  
CL = 11  
BC4 Opertaion  
DQS_t,  
DQS_c  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3  
BL8 Opertaion  
DQS_t,  
DQS_c  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Time Break  
Transitioning Data  
Don’t Care  
1. RL = 20 (CL = 11, AL = CL - 2), Preamble = 1tCK, tRTP = 6, tRP = 11.  
Notes:  
2. DO n = data-out from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. tRTP = 6 setting activated by MR0[11:9] = 001.  
5. The example assumes that tRC (MIN) is satisfied at the next ACTIVATE command time  
(T27).  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
READ Operation with Read Data Bus Inversion (DBI)  
Figure 151: Consecutive READ (BL8) with 1tCK Preamble and DBI in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
DES  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
CCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
t
t
RPRE  
RPST  
DQS_t,  
DQS_c  
RL = 11 + 2 (Read DBI adder)  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
b
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b +4 _ b + 5 b + 6 b + 7  
RL = 11 + 2 (Read DBI adder)  
DBI  
n
DBI  
DBI  
DBI  
DBI  
DBI  
DBI  
DBI  
DBI  
b
DBI  
DBI  
DBI  
DBI  
DBI  
DBI  
DBI  
DBI_n  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, AL = 0, CL = 11, Preamble = 1tCK, RL = 11 + 2 (Read DBI adder).  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
207  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
2. DO n (or b) = data-out from column n (or b); DBI n (or b) = data bus inversion from col-  
umn n (or b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T0 and T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Enable.  
READ Operation with Command/Address Parity (CA Parity)  
Figure 152: Consecutive READ (BL8) with 1tCK Preamble and CA Parity in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T20  
T21  
DES  
CK_c  
CK_t  
Command  
READ  
BGa  
DES  
DES  
DES  
READ  
BGb  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tCCD_S = 4  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
Parity  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 15  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
b
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b +4 _ b + 5 b + 6 b + 7  
RL = 15  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, AL = 0, CL = 11, PL = 4, (RL = CL + AL + PL = 15), Preamble = 1tCK.  
Notes:  
2. DO n (or b) = data-out from column n (or b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[A1:A0 = 00] or MR0[A1:A0 = 01] and A12 = 1 during  
READ commands at T0 and T4.  
5. CA parity = Enable, CS to CA latency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
208  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 153: READ (BL8) to WRITE (BL8) with 1tCK Preamble and CA Parity in Same or Different Bank  
Group  
T0  
T1  
T7  
T8  
T9  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
READ to WRITE command delay  
= RL +BL/2 - WL + 2 tCK  
4 Clocks  
tWTR  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
Parity  
tWPST  
tWPRE  
tRPRE  
tRPST  
DQS_t,  
DQS_c  
RL = 15  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = 13  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, AL = 0, CL = 11, PL = 4, (RL = CL + AL + PL = 15), READ preamble = 1tCK, CWL = 9,  
AL = 0, PL = 4, (WL = CL + AL + PL = 13), WRITE preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n, DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T0 and WRITE command at T8.  
5. CA parity = Enable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
209  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
READ Followed by WRITE with CRC Enabled  
Figure 154: READ (BL8) to WRITE (BL8 or BC4: OTF) with 1tCK Preamble and Write CRC in Same or  
Different Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
DES  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
t
WR  
WTR  
READ to WRITE command delay  
= RL +BL/2 - WL + 2 CK  
4 Clocks  
t
Bank Group  
Address  
BGa or  
BGb  
BGa  
Bank  
Col n  
Bank  
Col b  
Address  
t
WPST  
t
t
t
WPRE  
RPRE  
RPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ x4,  
BL = 8  
CRC  
CRC  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = 9  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ x8/X16,  
BL = 8  
CRC  
CRC  
CRC  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
DQ x4,  
READ: BL = 8,  
WRITE: BC = 4 (OTF)  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
CRC  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3  
DQ x8/X16,  
READ: BL = 8,  
DO  
n
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3  
WRITE: BC = 4 (OTF)  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8 (or BC = 4: OTF for Write), RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL =  
9 (CWL = 9, AL = 0), WRITE preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n, DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T0 and WRITE commands at T8.  
5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T8.  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Enable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
210  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
Figure 155: READ (BC4: Fixed) to WRITE (BC4: Fixed) with 1tCK Preamble and Write CRC in Same or  
Different Bank Group  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
CK_c  
CK_t  
Command  
READ  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
DES  
DES  
WR  
READ to WRITE command delay  
= RL +BL/2 - WL + 2 CK  
t
t
2 Clocks  
WTR  
Bank Group  
Address  
BGa or  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
t
t
t
t
WPST  
WPRE  
RPRE  
RPST  
DQS_t,  
DQS_c  
RL = 11  
DO  
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DQ x4,  
BC = 4 (Fixed)  
CRC  
CRC  
CRC  
n
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = 9  
DO  
n
DO  
DO  
DO  
DI  
b
DI  
DI  
DI  
DQ x8/X16,  
BC = 4 (Fixed)  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4 (Fixed), RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK, WL = 9 (CWL = 9, AL =  
0), WRITE preamble = 1tCK.  
Notes:  
2. DO n = data-out from column n, DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 10.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Enable.  
READ Operation with Command/Address Latency (CAL) Enabled  
Figure 156: Consecutive READ (BL8) with CAL (3tCK) and 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T13  
T14  
T15  
T17  
T18  
T19  
T21  
T22  
T23  
DES  
CK_c  
CK_t  
tCAL = 3  
DES  
tCAL = 3  
Command  
w/o CS_n  
DES  
READ  
DES  
DES  
DES  
READ  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
CS_n  
tCCD_S = 4  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tRPST  
tRPRE  
DQS_t,  
DQS_c  
RL = 11  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 5 b + 6 b + 7  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK.  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
211  
8Gb: x8, x16 Automotive DDR4 SDRAM  
READ Operation  
2. DI n (or b) = data-in from column n (or b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T3 and T7.  
5. CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
6. Enabling CAL mode does not impact ODT control timings. The same timing relationship  
relative to the command/address bus as when CAL is disabled should be maintained.  
Figure 157: Consecutive READ (BL8) with CAL (4tCK) and 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T14  
T15  
T16  
T18  
T19  
T21  
T22  
T23  
T24  
DES  
CK_c  
CK_t  
tCAL = 4  
DES  
tCAL = 4  
DES  
Command  
w/o CS_n  
DES  
READ  
DES  
DES  
READ  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
CS_n  
tCCD_S = 4  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tRPST  
tRPRE  
DQS_t,  
DQS_c  
RL = 11  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 5 b + 6 b + 7  
RL = 11  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, RL = 11 (CL = 11, AL = 0), READ preamble = 1tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ  
commands at T3 and T8.  
5. CA parity = Disable, CS to CA latency = Enable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
6. Enabling CAL mode does not impact ODT control timings. The same timing relationship  
relative to the command/address bus as when CAL is disabled should be maintained.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
212  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
WRITE Operation  
Write Timing Definitions  
The write ti0ings shown in the following figures are applicable in nor0al operation  
0ode, that is, when the DLL is enabled and locked.  
Write Timing – Clock-to-Data Strobe Relationship  
The clock-to-data strobe relationship is shown below and is applicable in nor0al oper-  
ation 0ode, that is, when the DLL is enabled and locked.  
Rising data strobe edge para0eters:  
t
• DQSS (MIN) to tDQSS (MAX) describes the allowed range for a rising data strobe edge  
relative to CK.  
t
• DQSS is the actual position of a rising strobe edge relative to CK.  
t
• DQSH describes the data strobe high pulse width.  
t
• WPST strobe going to HIGH, nondrive level (shown in the posta0ble section of the  
graphic below).  
Falling data strobe edge para0eters:  
t
• DQSL describes the data strobe low pulse width.  
t
• WPRE strobe going to LOW, initial drive level (shown in the prea0ble section of the  
graphic below).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
213  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 158: Write Timing Definition  
T0  
T1  
T2  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
CK_c  
CK_t  
Command3  
WRITE  
DES  
DES  
DES  
DES  
DES  
WL = AL + CWL  
Bank,  
Col n  
Address4  
t
t
t
t
t
DQSS  
DSH  
DSH  
DSH  
DSH  
t
t
WPSTaa  
tDQSS (MIN)  
WPRE(1nCK)  
DQS_t, DQS_c  
DQ2  
t
t
t
t
t
t
t
DQSL DQSH DQSL DQSH DQSL DQSH DQSL tDQSH  
t
t
DQSL (MIN)  
DQSH (MIN)  
t
t
t
t
t
DSS  
DSS  
DSS  
DSS  
DSS  
DIN  
n
DIN  
n+ 2  
DIN  
DIN  
n+ 4  
DIN  
n+ 6  
DIN  
n+ 7  
n+ 3  
t
t
t
t
DSH  
DSH  
DSH  
DSH  
t
t
t
WPST (MIN)  
WPRE(1nCK)  
DQSS (nominal)  
DQS_t, DQS_c  
DQ2  
t
t
t
t
t
t
t
t
DQSL DQSH DQSL DQSH DQSL DQSH DQSL DQSH  
t
t
DQSL (MIN)  
DQSH (MIN)  
t
t
t
t
t
DSS  
DSS  
DSS  
DSS  
DSS  
DIN  
n
DIN  
n+ 2  
DIN  
DIN  
n+ 4  
DIN  
DIN  
n+ 7  
n+ 3  
n+ 6  
t
DQSS  
t
t
t
t
DSH  
DSH  
DSH  
DSH  
t
t
WPST (MIN)  
WPRE(1nCK)  
t
DQSS (MAX)  
DQS_t, DQS_c  
t
t
t
t
t
t
t
t
DQSL DQSH DQSL DQSH DQSL DQSH DQSL DQSH  
t
t
DQSL (MIN)  
DQSH (MIN)  
t
t
t
t
t
DSS  
DSS  
DSS  
DSS  
DSS  
DIN  
n
DIN  
n+ 2  
DIN  
n+ 3  
DIN  
n+ 4  
DIN  
n+ 6  
DIN  
n+ 7  
DQ2  
DM_n  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, WL = 9 (AL = 0, CWL = 9).  
Notes:  
2. DIN n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE command at T0.  
5. tDQSS must be met at each rising clock edge.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
214  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
tWPRE Calculation  
Figure 159: tWPRE Method for Calculating Transitions and Endpoints  
&.BW  
9''ꢄꢈ  
&.BF  
6LQJOHꢏHQGHGꢀVLJQDOꢀSURYLGHGꢀDVꢀEDFNJURXQGꢀLQIRUPDWLRQ  
'46BW  
95()'4ꢀꢀ  
'46BF  
95()'4ꢀꢀ  
'46BW  
'46BF  
'46BW  
95()'4ꢀꢀ  
'46BF  
5HVXOWLQJꢀGLIIHUHQWLDOꢀVLJQDOꢀUHOHYDQWꢀIRUꢀW:35(ꢀVSHFLILFDWLRQꢀ  
9
,+ꢆ',))3HDN  
9,+ꢆ',))'46  
96:ꢈ  
96:ꢇ  
'46BWꢆꢀ'46BFꢀ  
ꢅ9  
W:35(ꢀEHJLQVꢀꢌ Wꢇꢎ  
W:35(ꢀHQGVꢀꢌWꢈꢎ  
1. Vsw1 = (0.1) × VIH,diff,DQS  
2. Vsw2 = (0.9) × VIH,diff,DQS  
.
.
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
215  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
tWPST Calculation  
Figure 160: tWPST Method for Calculating Transitions and Endpoints  
&.BW  
9''ꢄꢈ  
&.BF  
6LQJOHꢏHQGHGꢀVLJQDOꢀSURYLGHGꢀDVꢀEDFNJURXQGꢀLQIRUPDWLRQ  
95()'4ꢀꢀ  
'46BW  
'46BF  
95()'4ꢀꢀ  
'46BF  
'46BW  
95()'4ꢀꢀ  
W
5HVXOWLQJꢀGLIIHUHQWLDOꢀVLJQDOꢀUHOHYDQWꢀIRUꢀ :367ꢀVSHFLILFDWLRQꢀ  
W
W:367ꢀEHJLQVꢀꢌ ꢇꢎ  
ꢅ9  
96:ꢈ  
96:ꢇ  
9,/ꢆ',))'46  
9
'46BWꢆꢀ'46BFꢀ  
,/ꢆ',))3HDN  
W:367ꢀHQGVꢀꢌ Wꢈꢎ  
1. Vsw1 =(0.9) × VIL,diff,DQS  
.
Notes:  
2. Vsw2 = (0.1) × VIL,diff,DQS  
.
Write Timing – Data Strobe-to-Data Relationship  
The DQ input receiver uses a co0pliance 0ask (Rx) for voltage and ti0ing as shown in  
the figure below. The receiver 0ask (Rx 0ask) defines the area where the input signal  
0ust not encroach in order for the DRAM input receiver to be able to successfully cap-  
ture a valid input signal. The Rx 0ask is not the valid data-eye. TdiVW and VdiVW define  
the absolute 0axi0u0 Rx 0ask.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
216  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 161: Rx Compliance Mask  
Rx Mask  
VCENTDQ,midpoint  
TdiVW  
VCENTDQ,0idpoint is defined as the 0idpoint between the largest VREFDQ voltage level and  
the s0allest VREFDQ voltage level across all DQ pins for a given DRAM. Each DQ pin's  
VREFDQ is defined by the center (widest opening) of the cu0ulative data input eye as de-  
picted in the following figure. This 0eans a DRAM's level variation is accounted for  
within the DRAM Rx 0ask. The DRAM VREFDQ level will be set by the syste0 to account  
for RON and ODT settings.  
Figure 162: VCENT_DQ VREFDQ Voltage Variation  
DQx  
DQz  
DQy  
(largest V  
V
Level)  
(smallest V  
Level)  
REFDQ  
REFDQ  
V
CENTDQz  
CENTDQx  
V
CENTDQ,midpoint  
V
CENTDQy  
V
variation  
REF  
(component)  
The following figure shows the Rx 0ask require0ents both fro0 a 0idpoint-to-0id-  
point reference (left side) and fro0 an edge-to-edge reference. The intent is not to add  
any new require0ent or specification between the two but rather how to convert the  
relationship between the two 0ethodologies. The 0ini0u0 data-eye shown in the  
co0posite view is not actually obtainable due to the 0ini0u0 pulse width require-  
0ent.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
217  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 163: Rx Mask DQ-to-DQS Timings  
DQS, DQs Data-In at DRAM Ball  
DQS, DQs Data-In at DRAM Ball  
Rx Mask – Alternative View  
Rx Mask  
DQS_c  
DQS_t  
DQS_c  
DQS_t  
0.5 × TdiVW  
0.5 × TdiVW  
0.5 × TdiVW  
0.5 × TdiVW  
DRAMa  
DQx–z  
DRAMa  
DQx–z  
Rx Mask  
Rx Mask  
TdiVW  
TdiVW  
t
DQS2DQ +0.5 × TdiVW  
t
DQS2DQ  
DRAMb  
DQy  
DRAMb  
DQy  
Rx Mask  
Rx Mask  
T
diVW  
t
t
DQ2DQ  
DQ2DQ  
DRAMb  
DQz  
DRAMb  
DQz  
Rx Mask  
Rx Mask  
T
diVW  
t
DQ2DQ  
t
DQS2DQ +0.5 × TdiVW  
t
DQS2DQ  
DRAMc  
DQz  
DRAMc  
DQz  
Rx Mask  
Rx Mask  
T
diVW  
t
t
DQ2DQ  
DQ2DQ  
DRAMc  
DQy  
DRAMc  
DQy  
Rx Mask  
Rx Mask  
T
diVW  
t
DQ2DQ  
1. DQx represents an optimally centered mask.  
DQy represents earliest valid mask.  
Notes:  
DQz represents latest valid mask.  
2. DRAMa represents a DRAM without any DQS/DQ skews.  
DRAMb represents a DRAM with early skews (negative tDQS2DQ).  
DRAMc represents a DRAM with delayed skews (positive tDQS2DQ).  
3. This figure shows the skew allowed between DRAM-to-DRAM and between DQ-to-DQ  
for a DRAM. Signals assume data is center-aligned at DRAM latch.  
TdiPW is not shown; composite data-eyes shown would violate TdiPW.  
V
CENTDQ,midpoint is not shown but is assumed to be midpoint of VdiVW.  
The previous figure shows the basic Rx 0ask require0ents. Converting the Rx 0ask re-  
quire0ents to a classical DQ-to-DQS relationship is shown in the following figure. It  
should beco0e apparent that DRAM write training is required to take full advantage of  
the Rx 0ask.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
218  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 164: Rx Mask DQ-to-DQS DRAM-Based Timings  
DQS, DQs Data-In at DRAM Ball  
DQS, DQs Data-In at DRAM Ball  
Rx Mask vs. Composite Data-Eye  
Rx Mask vs. UI Data-Eye  
DQS_c  
DQS_t  
DQS_c  
DQS_t  
t
t
TdiPW  
DSx  
DHx  
DRAMa  
DQx–z  
DRAMa  
DQx , y, z  
Rx Mask  
Rx Mask  
TdiVW  
TdiVW  
TdiPW  
TdiPW  
t
t
DSy  
DHy  
*Skew  
DRAMb  
DQy  
Rx Mask  
t
DQ2DQ  
TdiVW  
DRAMb  
DQz  
Rx Mask  
t
DQ2DQ  
TdiPW  
T
diVW  
t
t
DSz  
DHz  
*Skew  
DRAMc  
DQy  
Rx Mask  
t
DQ2DQ  
TdiVW  
DRAMc  
DQz  
Rx Mask  
t
DQ2DQ  
TdiVW  
TdiPW  
1. DQx represents an optimally centered mask.  
DQy represents earliest valid mask.  
Notes:  
DQz represents latest valid mask.  
2. *Skew = tDQS2DQ + 0.5 × TdiVW  
DRAMa represents a DRAM without any DQS/DQ skews.  
DRAMb represents a DRAM with the earliest skews (negative tDQS2DQ, tDQSy > *Skew).  
DRAMc represents a DRAM with the latest skews (positive tDQS2DQ, tDQHz > *Skew).  
3. tDS/tDH are traditional data-eye setup/hold edges at DC levels.  
tDS and tDH are not specified; tDH and tDS may be any value provided the pulse width  
and Rx mask limits are not violated.  
tDH (MIN) > TdiVW + tDS (MIN) + tDQ2DQ.  
The DDR4 SDRAM's input receivers are expected to capture the input data with an Rx  
0ask of TdiVW provided the 0ini0u0 pulse width is satisfied. The DRAM controller  
will have to train the data input buffer to utilize the Rx 0ask specifications to this 0axi-  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
219  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
0u0 benefit. If the DRAM controller does not train the data input buffers, then the  
worst case li0its have to be used for the Rx 0ask (TdiVW + 2 × tDQS2DQ), which will  
generally be the classical 0ini0u0 ( tDS and tDH) and is required as well.  
Figure 165: Example of Data Input Requirements Without Training  
t
TdiVW + 2 × DQS2DQ  
V
IH(DC)  
0.5 × V  
0.5 × V  
diVW  
Rx Mask  
V
CENTDQ,midpoint  
diVW  
V
IL(DC)  
t
t
DS  
DH  
0.5 × TdiVW + DQS2DQ 0.5 × TdiVW + DQS2DQ  
DQS_c  
t
t
DQS_t  
WRITE Burst Operation  
The following write ti0ing diagra0s are intended to help understand each write pa-  
ra0eter's 0eaning and are only exa0ples. Each para0eter will be defined in detail sep-  
arately. In these write ti0ing diagra0s, CK and DQS are shown aligned, and DQS and  
DQ are shown center-aligned for the purpose of illustration.  
DDR4 WRITE co00and supports bursts of BL8 (fixed), BC4 (fixed), and BL8/BC4 on-  
the-fly (OTF); OTF uses address A12 to control OTF when OTF is enabled:  
• A12 = 6, BC4 (BC4 = burst chop)  
• A12 = 1, BL8  
WRITE co00ands can issue precharge auto0atically with a WRITE with auto pre-  
charge (WRA) co00and, which is enabled by A16 HIGH.  
• WRITE co00and with A16 = 6 (WR) perfor0s standard write, bank re0ains active af-  
ter WRITE burst  
• WRITE co00and with A16 = 1 (WRA) perfor0s write with auto precharge, bank goes  
into precharge after WRITE burst  
The DATA MASK (DM) function is supported for the x8 and x1± configurations only (the  
DM function is not supported on x4 devices). The DM function shares a co00on pin  
with the DBI_n and TDQS functions. The DM function only applies to WRITE opera-  
tions and cannot be enabled at the sa0e ti0e the DBI function is enabled.  
• If DM_n is sa0pled LOW on a given byte lane, the DRAM 0asks the write data re-  
ceived on the DQ inputs.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
220  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
• If DM_n is sa0pled HIGH on a given byte lane, the DRAM does not 0ask the data and  
writes this data into the DRAM core.  
• If CRC write is enabled, then DM enabled (via MRS) will be selected between write  
CRC nonpersistent 0ode (DM disabled) and write CRC persistent 0ode (DM ena-  
bled).  
Figure 166: WRITE Burst Operation, WL = 9 (AL = 0, CWL = 9, BL8)  
T0  
T1  
T2  
T7  
T8  
T9  
T10  
T11  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
CK_c  
CK_t  
Command  
WRITE  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Bank Group  
Address  
Bank  
Col n  
Address  
tWPST  
tWPRE  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
WL = AL + CWL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, WL = 0, AL = 0, CWL = 9, Preamble = 1tCK.  
Notes:  
2. DI n = Data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE command at T0.  
5. CA parity = Disable, CS to CA atency = Disable, Read DBI = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
221  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 167: WRITE Burst Operation, WL = 19 (AL = 10, CWL = 9, BL8)  
T0  
T1  
T2  
T9  
T10  
T11  
T17  
T18  
T19  
DES  
T20  
DES  
T21  
DES  
T22  
DES  
T23  
DES  
CK_c  
CK_t  
Command  
WRITE  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
Bank Group  
Address  
Bank  
Col n  
Address  
t
t
WPST  
WPRE  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
AL = 10  
CWL = 9  
WL = AL + CWL = 19  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, WL = 19, AL = 10 (CL - 1), CWL = 9, Preamble = 1tCK.  
Notes:  
2. DI n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE command at T0.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable.  
WRITE Operation Followed by Another WRITE Operation  
Figure 168: Consecutive WRITE (BL8) with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
DES  
T18  
DES  
T19  
DES  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
WR  
t
4 Clocks  
t
CCD_S = 4  
WTR  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
t
t
WPST  
WPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = AL + CWL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CWL = 9, Preamble = 1tCK.  
2. DI n (or b) = data-in from column n (or column b).  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
222  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE commands at T0 and T4.  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T17.  
Figure 169: Consecutive WRITE (BL8) with 2tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
T17  
DES  
T18  
DES  
T19  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
t
WR  
t
4 Clocks  
t
CCD_S = 4  
WTR  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
t
t
WPST  
WPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 10  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = AL + CWL = 10  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CWL = 9 + 1 = 10 (see Note 7), Preamble = 2tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE commands at T0 and T4.  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T17.  
7. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a  
value at least 1 clock greater than the lowest CWL setting supported in the applicable  
tCK range, which means CWL = 9 is not allowed when operating in 2tCK WRITE pream-  
ble mode.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
223  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 170: Nonconsecutive WRITE (BL8) with 1tCK Preamble in Same or Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T5  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
WR  
t
4 Clocks  
t
CCD_S/L = 5  
WTR  
Bank Group  
Address  
BGa  
BGa  
or BGb  
Bank  
Col n  
Bank  
Col b  
Address  
t
t
WPST  
WPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = AL + CWL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CWL = 9, Preamble = 1tCK, tCCD_S/L = 5tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE commands at T0 and T5.  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T18.  
Figure 171: Nonconsecutive WRITE (BL8) with 2tCK Preamble in Same or Different Bank Group  
T0  
T1  
T2  
T6  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
T18  
T19  
DES  
T20  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
tWR  
tCCD_S/L = 6  
4 Clocks  
tWTR  
Bank Group  
Address  
BGa  
BGa  
or BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tWPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 10  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = AL + CWL = 10  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8, AL = 0, CWL = 9 + 1 = 10 (see Note 8), Preamble = 2tCK, tCCD_S/L = 6tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE commands at T0 and T6.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
224  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.  
6. tCCD_S/L = 5 isn’t allowed in 2tCK preamble mode.  
7. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T20.  
8. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a  
value at least 1 clock greater than the lowest CWL setting supported in the applicable  
tCK range, which means CWL = 9 is not allowed when operating in 2tCK WRITE pream-  
ble mode.  
Figure 172: WRITE (BC4) OTF to WRITE (BC4) OTF with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
T16  
DES  
T17  
DES  
T18  
T19  
DES  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
t
WR  
t
4 Clocks  
t
CCD_S = 4  
WTR  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
t
t
t
WPST  
t
WPST  
WPRE  
WPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = AL + CWL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BC4, AL = 0, CWL = 9, Preamble = 1tCK.  
2. DI n (or b) = data-in from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and  
T4.  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T17.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
225  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 173: WRITE (BC4) OTF to WRITE (BC4) OTF with 2tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
WR  
t
4 Clocks  
t
CCD_S = 4  
WTR  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
t
t
t
WPST  
WPRE  
WPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 10  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = AL + CWL = 10  
Time Break  
Transitioning Data  
Don’t Care  
1. BC4, AL = 0, CWL = 9 + 1 = 10 (see Note 7), Preamble = 2tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE commands at T0 and  
T4.  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T18.  
7. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a  
value at least 1 clock greater than the lowest CWL setting supported in the applicable  
tCK range, which means CWL = 9 is not allowed when operating in 2tCK WRITE pream-  
ble mode.  
Figure 174: WRITE (BC4) Fixed to WRITE (BC4) Fixed with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
T15  
DES  
T16  
DES  
T17  
T18  
DES  
T19  
DES  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
t
WR  
t
2 Clocks  
t
CCD_S = 4  
WTR  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
t
t
t
WPST  
t
WPST  
WPRE  
WPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = AL + CWL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BC4, AL = 0, CWL = 9, Preamble = 1tCK.  
2. DI n (or b) = data-in from column n (or column b).  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
226  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 (fixed) setting activated by MR0[1:0] = 10.  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Disable, Write CRC = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T15.  
Figure 175: WRITE (BL8) to WRITE (BC4) OTF with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
DES  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
T16  
DES  
T17  
DES  
T18  
DES  
T19  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
tWR  
tWTR  
tCCD_S = 4  
4 Clocks  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3  
WL = AL + CWL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8/BC = 4, AL = 0, CL = 9, Preamble = 1tCK.  
2. DI n (or b) = data-in from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE command at T0.  
BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T17.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
227  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 176: WRITE (BC4) OTF to WRITE (BL8) with 1tCK Preamble in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
DES  
T19  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
tCCD_S = 4  
4 Clocks  
tWTR  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPST  
tWPRE  
tWPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = AL + CWL = 9  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8/BC = 4, AL = 0, CL = 9, Preamble = 1tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0.  
BL8 setting activated by MR0[1:0] = 01 and A12 = 1 during WRITE command at T4.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T17.  
WRITE Operation Followed by READ Operation  
Figure 177: WRITE (BL8) to READ (BL8) with 1tCK Preamble in Different Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T24  
T25  
T26  
T27  
DES  
T28  
DES  
T29  
DES  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
READ  
DES  
DES  
DES  
DES  
tWTR_S = 2  
4 Clocks  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
RL = AL + CL = 11  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble =  
1tCK.  
Notes:  
2. DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
228  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE command at T0 and READ command at T15.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after  
the last write data shown at T13.  
Figure 178: WRITE (BL8) to READ (BL8) with 1tCK Preamble in Same Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
DES  
T11  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
T16  
DES  
T17  
T18  
DES  
T26  
DES  
T27  
DES  
T28  
DES  
T29  
DES  
CK_c  
CK_t  
Command  
WRITE  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
READ  
BGa  
tWTR_L = 4  
4 Clocks  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
RL = AL + CL = 11  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble =  
1tCK.  
Notes:  
2. DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE command at T0 and READ command at T17.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after  
the last write data shown at T13.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
229  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 179: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Different Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
DES  
T24  
DES  
T25  
DES  
T26  
DES  
T27  
DES  
T28  
DES  
T29  
DES  
CK_c  
CK_t  
Command  
WRITE  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
READ  
BGb  
tWTR_S = 2  
4 Clocks  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tRPST  
tWPRE  
tRPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
RL = AL + CL = 11  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble =  
1tCK.  
Notes:  
2. DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0 and  
READ command at T15.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after  
the last write data shown at T13.  
Figure 180: WRITE (BC4) OTF to READ (BC4) OTF with 1tCK Preamble in Same Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T26  
T27  
T28  
DES  
T29  
DES  
CK_c  
CK_t  
Command  
WRITE  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
READ  
BGa  
DES  
DES  
DES  
tWTR_L = 4  
4 Clocks  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
tRPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
RL = AL + CL = 11  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
b + 1 b + 2  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1tCK, WRITE preamble =  
1tCK.  
Notes:  
2. DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0 and  
READ command at T17.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
230  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after  
the last write data shown at T13.  
Figure 181: WRITE (BC4) Fixed to READ (BC4) Fixed with 1 tCK Preamble in Different Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
T11  
DES  
T12  
T13  
DES  
T14  
DES  
T22  
DES  
T23  
DES  
T24  
T25  
DES  
T26  
DES  
T27  
DES  
T28  
DES  
T29  
DES  
CK_c  
CK_t  
Command  
WRITE  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
READ  
BGb  
tWTR_S = 2  
2 Clocks  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tRPST  
tWPRE  
tRPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
RL = AL + CL = 11  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4, WL = 9 (CWL = 9, AL = 0), CL = 11, READ preamble = 1 tCK, WRITE preamble =  
1tCK.  
Notes:  
2. DI b = data-in from column b.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 10.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
6. The write timing parameter (tWTR_S) is referenced from the first rising clock edge after  
the last write data shown at T11.  
Figure 182: WRITE (BC4) Fixed to READ (BC4) Fixed with 1tCK Preamble in Same Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
T11  
DES  
T12  
DES  
T13  
T14  
DES  
T15  
T16  
DES  
T24  
DES  
T25  
DES  
T26  
DES  
T27  
DES  
T28  
DES  
T29  
DES  
CK_c  
CK_t  
Command  
WRITE  
BGa  
DES  
DES  
DES  
DES  
DES  
DES  
READ  
BGa  
tWTR_L = 4  
2 Clocks  
Bank Group  
Address  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tRPST  
tWPRE  
tRPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
RL = AL + CL = 11  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BC = 4, WL = 9 (CWL = 9, AL = 0), C L = 11, READ preamble = 1tCK, WRITE preamble =  
1tCK.  
Notes:  
2. DI b = data-in from column b.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
231  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 10.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write DBI = Disable,  
Write CRC = Disable.  
6. The write timing parameter (tWTR_L) is referenced from the first rising clock edge after  
the last write data shown at T11.  
WRITE Operation Followed by PRECHARGE Operation  
The 0ini0u0 external WRITE co00and to PRECHARGE co00and spacing is equal to  
WL (AL + CWL) plus either 4tCK (BL8/BC4-OTF) or 2tCK (BC4-fixed) plus tWR. The 0in-  
i0u0 ACT to PRE ti0ing, tRAS, 0ust be satisfied as well.  
Figure 183: WRITE (BL8/BC4-OTF) to PRECHARGE with 1tCK Preamble  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
DES  
T11  
T12  
DES  
T13  
DES  
T14  
DES  
T22  
DES  
T23  
T24  
DES  
T25  
PRE  
T26  
DES  
CK_c  
CK_t  
Command  
Address  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
WL = AL + CWL = 9  
4 Clocks  
tWR = 12  
tRP  
BGa, Bank b  
Col n  
BGa, Bank b  
(or all)  
BC4 (OTF) Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
BL8 Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12.  
Notes:  
2. DI n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0. BL8  
setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE command  
at T0.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.  
6. The write recovery time (tWR) is referenced from the first rising clock edge after the last  
write data shown at T13. tWR specifies the last burst WRITE cycle until the PRECHARGE  
command can be issued to the same bank.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
232  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 184: WRITE (BC4-Fixed) to PRECHARGE with 1tCK Preamble  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T22  
DES  
T23  
PRE  
T24  
DES  
T25  
DES  
T26  
DES  
CK_c  
CK_t  
Command  
Address  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
WL = AL + CWL = 9  
2 Clocks  
tWR = 12  
tRP  
BGa, Bank b  
Col n  
BGa, Bank b  
(or all)  
BC4 (Fixed) Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12.  
Notes:  
2. DI n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 10.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.  
6. The write recovery time (tWR) is referenced from the first rising clock edge after the last  
write data shown at T11. tWR specifies the last burst WRITE cycle until the PRECHARGE  
command can be issued to the same bank.  
Figure 185: WRITE (BL8/BC4-OTF) to Auto PRECHARGE with 1tCK Preamble  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
DES  
T11  
T12  
DES  
T13  
DES  
T14  
DES  
T22  
DES  
T23  
T24  
DES  
T25  
DES  
T26  
DES  
CK_c  
CK_t  
Command  
Address  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
WL = AL + CWL = 9  
4 Clocks  
tWR = 12  
tRP  
BGa, Bank b  
Col n  
BC4 (OTF) Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
BL8 Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12.  
Notes:  
2. DI n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0.  
BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE com-  
mand at T0.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
233  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
6. The write recovery time (tWR) is referenced from the first rising clock edge after the last  
write data shown at T13. tWR specifies the last burst WRITE cycle until the PRECHARGE  
command can be issued to the same bank.  
Figure 186: WRITE (BC4-Fixed) to Auto PRECHARGE with 1tCK Preamble  
T0  
T1  
T2  
T3  
T4  
T7  
T8  
T9  
T10  
T11  
DES  
T12  
DES  
T13  
T14  
DES  
T22  
DES  
T23  
DES  
T24  
DES  
T25  
DES  
T26  
DES  
CK_c  
CK_t  
Command  
Address  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
t
RP  
WL = AL + CWL = 9  
2 Clocks  
WR = 12  
BGa, Bank b  
Col n  
BC4 (Fixed) Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK, tWR = 12.  
Notes:  
2. DI n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 10.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, CRC = Disable.  
6. The write recovery time (tWR) is referenced from the first rising clock edge after the last  
write data shown at T11. tWR specifies the last burst WRITE cycle until the PRECHARGE  
command can be issued to the same bank.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
234  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
WRITE Operation with WRITE DBI Enabled  
Figure 187: WRITE (BL8/BC4-OTF) with 1tCK Preamble and DBI  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
DES  
T16  
DES  
T17  
DES  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
WL = AL + CWL = 9  
4 Clocks  
tWR  
tWTR  
Address  
Address  
BGa  
Bank,  
Col n  
BC4 (OTF) Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
DI  
n
DI  
DI  
DI  
DBI_n  
n + 1 n + 2 n + 3  
BL8 Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DBI_n  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
Transitioning Data  
Don’t Care  
1. BL = 8 with BC4-OTF, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK.  
Notes:  
2. DI n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE command at T0.  
BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE com-  
mand at T0.  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disa-  
bled.  
6. The write recovery time (tWR_DBI) is referenced from the first rising clock edge after the  
last write data shown at T13.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
235  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 188: WRITE (BC4-Fixed) with 1tCK Preamble and DBI  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
DES  
T12  
DES  
T13  
DES  
T14  
DES  
T15  
T16  
DES  
T17  
DES  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
WL = AL + CWL = 9  
2 Clocks  
tWR  
tWTR  
Address  
Address  
BGa  
Bank,  
Col n  
BC4 (Fixed) Opertaion  
DQS_t,  
DQS_c  
DI  
n
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3  
DI  
n
DI  
DI  
DI  
DBI_n  
n + 1 n + 2 n + 3  
Transitioning Data  
Don’t Care  
1. BC4 = fixed, WL = 9 (CWL = 9, AL = 0 ), Preamble = 1tCK.  
Notes:  
2. DI n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 10.  
5. CA parity = Disable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disa-  
bled.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
236  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
WRITE Operation with CA Parity Enabled  
Figure 189: Consecutive Write (BL8) with 1tCK Preamble and CA Parity in Different Bank Group  
T0  
T1  
T2  
T3  
T4  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
DES  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
WR  
t
4 Clocks  
t
CCD_S = 4  
WTR  
Bank Group  
Address  
BGa  
BGb  
Bank  
Col n  
Bank  
Col b  
Address  
Parity  
Valid  
Valid  
t
t
WPST  
WPRE  
DQS_t,  
DQS_c  
WL = PL + AL + CWL = 13  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = PL + AL + CWL = 13  
Time Break  
Transitioning Data  
Don’t Care  
1. BL = 8, WL = 9 (CWL = 13, AL = 0 ), Preamble = 1tCK.  
Notes:  
2. DI n = data-in from column n.  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during WRITE com-  
mands at T0 and T4.  
5. CA parity = Enable, CS to CA latency = Disable, Write DBI = Enabled, Write CRC = Disa-  
ble.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T21.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
237  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
WRITE Operation with Write CRC Enabled  
Figure 190: Consecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or Differ-  
ent Bank Group  
T0  
T1  
T2  
T3  
T4  
T5  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
t
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
t
WR  
WTR  
4 Clocks  
CCD_S/L = 5  
Bank Group  
Address  
BGa or  
BGb  
BGa  
Bank  
Col n  
Bank  
Col b  
Address  
t
WPST  
t
WPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ x4,  
BL = 8  
CRC  
CRC  
CRC  
CRC  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ x8/X16,  
BL = 8  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
DQ x4,  
BC = 4 (OTF)  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
CRC  
CRC  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
DQ x8/X16,  
BC = 4 (OTF)  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8/BC4-OTF, AL = 0, CWL = 9, Preamble = 1tCK, tCDD_S/L = 5tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE commands at T0 and T5.  
5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and  
T5.  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable.  
7. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T18.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
238  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 191: Consecutive WRITE (BC4-Fixed) with 1tCK Preamble and Write CRC in Same or Different  
Bank Group  
T0  
T1  
T2  
T3  
T4  
T5  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR  
tCCD_S/L = 5  
2 Clocks  
tWTR  
Bank Group  
Address  
BGa or  
BGb  
BGa  
Bank  
Col n  
Bank  
Col b  
Address  
tWPST  
tWPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DQ x4,  
BC = 4 (Fixed)  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
WL = AL + CWL = 9  
DQ x8/X16,  
BC = 4 (Fixed)  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BC4-fixed, AL = 0, CWL = 9, Preamble = 1tCK, tCDD_S/L = 5tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BC4 setting activated by MR0[1:0] = 10 during WRITE commands at T0 and T5.  
5. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable,  
DM = Disable.  
6. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T16.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
239  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 192: Nonconsecutive WRITE (BL8/BC4-OTF) with 1tCK Preamble and Write CRC in Same or Dif-  
ferent Bank Group  
7ꢅ  
7ꢇ  
7ꢐ  
7ꢂ  
7ꢉ  
7ꢁ  
7ꢑ  
7ꢇꢅ  
7ꢇꢇ  
7ꢇꢈ  
7ꢇꢋ  
7ꢇꢃ  
7ꢇꢐ  
7ꢇꢂ  
7ꢇꢉ  
7ꢇꢁ  
7ꢇꢑ  
7ꢈꢅ  
&.BF  
&.BW  
&RPPDQG  
:5,7(  
'(6  
W
'(6  
:5,7(  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
'(6  
W
W
:5  
:75  
ꢃꢀ&ORFNV  
&&'B6ꢄ/ꢀ ꢀꢂ  
%DQNꢀ*URXS  
$GGUHVV  
%*DꢀRU  
%*E  
%*D  
%DQN  
&ROꢀQ  
%DQN  
&ROꢀE  
$GGUHVV  
W
W
:367  
:35(  
'46BWꢆ  
'46BF  
:/ꢀ ꢀ$/ꢀꢓꢀ&:/ꢀ ꢀꢑ  
',  
Q
',  
',  
',  
',  
',  
',  
',  
',  
E
',  
',  
',  
',  
',  
',  
',  
'4ꢀ[ꢃꢆ  
%/ꢀ ꢀꢁ  
&5& &5&  
&5& &5&  
Qꢀꢓꢀꢇ Qꢀꢓꢀꢈ Qꢀꢓꢀꢋ Qꢀꢓꢀꢃ Qꢀꢓꢀꢐ Qꢀꢓꢀꢂ Qꢀꢓꢀꢉ  
Eꢀꢓꢀꢇ Eꢀꢓꢀꢈ Eꢀꢓꢀꢋ Eꢀꢓꢀꢃ Eꢀꢓꢀꢐ Eꢀꢓꢀꢂ Eꢀꢓꢀꢉ  
:/ꢀ ꢀ$/ꢀꢓꢀ&:/ꢀ ꢀꢑ  
',  
Q
',  
',  
',  
',  
',  
',  
',  
',  
E
',  
',  
',  
',  
',  
',  
',  
'4ꢀ[ꢁꢄ;ꢇꢂꢆ  
%/ꢀ ꢀꢁ  
&5&  
&5&  
Qꢀꢓꢀꢇ Qꢀꢓꢀꢈ Qꢀꢓꢀꢋ Qꢀꢓꢀꢃ Qꢀꢓꢀꢐ Qꢀꢓꢀꢂ Qꢀꢓꢀꢉ  
Eꢀꢓꢀꢇ Eꢀꢓꢀꢈ Eꢀꢓꢀꢋ Eꢀꢓꢀꢃ Eꢀꢓꢀꢐ Eꢀꢓꢀꢂ Eꢀꢓꢀꢉ  
'4ꢀ[ꢃꢆ  
%&ꢀ ꢀꢃꢀꢌ27)ꢎ  
',  
Q
',  
',  
',  
',  
E
',  
',  
',  
&5& &5&  
&5&  
&5& &5&  
&5&  
Qꢀꢓꢀꢇ Qꢀꢓꢀꢈ Qꢀꢓꢀꢋ  
Eꢀꢓꢀꢇ Eꢀꢓꢀꢈ Eꢀꢓꢀꢋ  
'4ꢀ[ꢁꢄ;ꢇꢂꢆ  
%&ꢀ ꢀꢃꢀꢌ27)ꢎ  
',  
Q
',  
',  
',  
',  
E
',  
',  
',  
Qꢀꢓꢀꢇ Qꢀꢓꢀꢈ Qꢀꢓꢀꢋ  
Eꢀꢓꢀꢇ Eꢀꢓꢀꢈ Eꢀꢓꢀꢋ  
7LPHꢀ%UHDNꢀ  
7UDQVLWLRQLQJꢀ'DWD  
'RQ¶Wꢀ&DUH  
1. BL8/BC4-OTF, AL = 0, CWL = 9, Preamble = 1tCK, tCDD_S/L = 6tCK.  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE commands at T0 and T6.  
5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and  
T6.  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable,  
DM = Disable.  
7. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T19.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
240  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 193: Nonconsecutive WRITE (BL8/BC4-OTF) with 2tCK Preamble and Write CRC in Same or Dif-  
ferent Bank Group  
T0  
T1  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
CK_c  
CK_t  
Command  
WRITE  
DES  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
t
t
WR  
WTR  
t
4 Clocks  
CCD_S/L = 7  
Bank Group  
Address  
BGa or  
BGb  
BGa  
Bank  
Col n  
Bank  
Col b  
Address  
t
WPST  
t
t
WPRE  
WPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 10  
WL = AL + CWL = 10  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ x4,  
BL = 8  
CRC  
CRC  
CRC  
CRC  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ x8/X16,  
BL = 8  
CRC  
CRC  
CRC  
CRC  
CRC  
CRC  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
b + 1 b + 2 b + 3 b + 4 b + 5 b + 6 b + 7  
DQ x4,  
BC = 4 (OTF)  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
CRC  
CRC  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
DQ x8/X16,  
BC = 4 (OTF)  
DI  
n
DI  
DI  
DI  
DI  
b
DI  
DI  
DI  
n + 1 n + 2 n + 3  
b + 1 b + 2 b + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8/BC4-OTF, AL = 0, CWL = 9 + 1 = 10 (see Note 9), Preamble = 2tCK, tCDD_S/L = 7tCK  
(see Note 7).  
Notes:  
2. DI n (or b) = data-in from column n (or column b).  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE commands at T0 and T7.  
5. BC4 setting activated by MR0[1:0] = 01 and A12 = 0 during WRITE commands at T0 and  
T7.  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable,  
DM = Disable.  
7. tCDD_S/L = 6tCK is not allowed in 2tCK preamble mode if minimum tCDD_S/L allowed in  
1tCK preamble mode would have been 6 clocks.  
8. The write recovery time (tWR) and write timing parameter (tWTR) are referenced from  
the first rising clock edge after the last write data shown at T21.  
9. When operating in 2tCK WRITE preamble mode, CWL may need to be programmed to a  
value at least 1 clock greater than the lowest CWL setting supported in the applicable  
tCK range. That means CWL = 9 is not allowed when operating in 2tCK WRITE preamble  
mode.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
241  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
WRITE Operation  
Figure 194: WRITE (BL8/BC4-OTF/Fixed) with 1tCK Preamble and Write CRC in Same or Different Bank  
Group  
T0  
T1  
T2  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
CK_c  
CK_t  
Command  
WRITE  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
DES  
tWR_CRC_DM  
4 Clocks  
tWTR_S_CRC_DM/tWTR_L_CRC_DM  
Bank Group  
Address  
BGa  
Bank  
Col n  
Address  
tWPST  
tWPRE  
DQS_t,  
DQS_c  
WL = AL + CWL = 9  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ x4,  
BL = 8  
CRC  
CRC  
CRC  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
DI  
n
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DQ x8/X16,  
BL = 8  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
DM  
n
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DMx4/x8/x16  
BL = 8  
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
DQ x4,  
BC = 4 (OTF/Fixed)  
DI  
n
DI  
DI  
DI  
CRC  
CRC  
CRC  
n + 1 n + 2 n + 3  
DQ x8/X16,  
BC = 4 (OTF/Fixed)  
DI  
n
DI  
DI  
DI  
n + 1 n + 2 n + 3  
DM x4/x8/x16  
BC = 4 (OTF / Fixed)  
DM  
n
DM  
DM  
DM  
n + 1 n + 2 n + 3  
Time Break  
Transitioning Data  
Don’t Care  
1. BL8/BC4, AL = 0, CWL = 9, Preamble = 1tCK.  
2. DI n (or b) = data-in from column n (or column b).  
Notes:  
3. DES commands are shown for ease of illustration; other commands may be valid at  
these times.  
4. BL8 setting activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during  
WRITE command at T0.  
5. BC4 setting activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during  
WRITE command at T0.  
6. CA parity = Disable, CS to CA latency = Disable, Read DBI = Disable, Write CRC = Enable,  
DM = Enable.  
7. The write recovery time (tWR_CRC_DM) and write timing parameter (tWTR_S_CRC_DM/  
tWTR_L_CRC_DM) are referenced from the first rising clock edge after the last write da-  
ta shown at T13.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
242  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Write Timing Violations  
Write Timing Violations  
Motivation  
Generally, if ti0ing para0eters are violated, a co0plete reset/initialization procedure  
has to be initiated to 0ake sure that the device works properly. However, for certain 0i-  
nor violations, it is desirable that the device is guaranteed not to "hang up" and that er-  
rors are li0ited to that specific operation. A 0inor violation does not include a 0ajor  
ti0ing violation (for exa0ple, when a DQS strobe 0isses in the tDQSCK window).  
For the following, it will be assu0ed that there are no ti0ing violations with regard to  
the WRITE co00and itself (including ODT, and so on) and that it does satisfy all ti0ing  
require0ents not 0entioned below.  
Data Setup and Hold Violations  
If the data-to-strobe ti0ing require0ents (tDS, tDH) are violated, for any of the strobe  
edges associated with a WRITE burst, then wrong data 0ight be written to the 0e0ory  
location addressed with this WRITE co00and.  
In the exa0ple, the relevant strobe edges for WRITE Burst A are associated with the  
clock edges: T5, T5.5, T±, T±.5, T7, T7.5, T8, and T8.5.  
Subsequent reads fro0 that location 0ight result in unpredictable read data; however,  
the device will work properly otherwise.  
Strobe-to-Strobe and Strobe-to-Clock Violations  
If the strobe ti0ing require0ents (tDQSH, tDQSL, tWPRE, tWPST) or the strobe to clock  
ti0ing require0ents (tDSS, tDSH, tDQSS) are violated, for any of the strobe edges asso-  
ciated with a WRITE burst, then wrong data 0ight be written to the 0e0ory location  
addressed with the offending WRITE co00and. Subsequent reads fro0 that location  
0ight result in unpredictable read data; however, the device will work properly other-  
wise with the following constraints:  
• Both write CRC and data burst OTF are disabled; ti0ing specifications other than  
tDQSH, tDQSL, tWPRE, tWPST, tDSS, tDSH, tDQSS are not violated.  
• The offending write strobe (and prea0ble) arrive no earlier or later than six DQS tran-  
sition edges fro0 the WRITE latency position.  
• A READ co00and following an offending WRITE co00and fro0 any open bank is  
allowed.  
• One or 0ore subsequent WR or a subsequent WRA (to sa0e bank as offending WR)  
0ay be issued tCCD_L later, but incorrect data could be written. Subsequent WR and  
WRA can be either offending or non-offending writes. Reads fro0 these writes 0ay  
provide incorrect data.  
• One or 0ore subsequent WR or a subsequent WRA (to a different bank group) 0ay be  
issued tCCD_S later, but incorrect data could be written. Subsequent WR and WRA  
can be either offending or non-offending writes. Reads fro0 these writes 0ay provide  
incorrect data.  
• After one or 0ore precharge co00ands (PRE or PREA) are issued to the device after  
an offending WRITE co00and and all banks are in precharged state (idle state), a  
subsequent, non-offending WR or WRA to any open bank will be able to write correct  
data.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
243  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
ZQ CALIBRATION Commands  
ZQ CALIBRATION Commands  
A ZQ CALIBRATION co00and is used to calibrate DRAM RON and ODT values. The de-  
vice needs a longer ti0e to calibrate the output driver and on-die ter0ination circuits  
at initialization and a relatively s0aller ti0e to perfor0 periodic calibrations.  
The ZQCL co00and is used to perfor0 the initial calibration during the power-up ini-  
tialization sequence. This co00and 0ay be issued at any ti0e by the controller de-  
pending on the syste0 environ0ent. The ZQCL co00and triggers the calibration en-  
gine inside the DRAM and, after calibration is achieved, the calibrated values are trans-  
ferred fro0 the calibration engine to DRAM I/O, which is reflected as an updated out-  
put driver and ODT values.  
The first ZQCL co00and issued after reset is allowed a ti0ing period of tZQinit to per-  
for0 the full calibration and the transfer of values. All other ZQCL co00ands except  
the first ZQCL co00and issued after reset are allowed a ti0ing period of tZQoper.  
The ZQCS co00and is used to perfor0 periodic calibrations to account for voltage and  
te0perature variations. A shorter ti0ing window is provided to perfor0 the calibration  
and transfer of values as defined by ti0ing para0eter tZQCS. One ZQCS co00and can  
effectively correct a 0ini0u0 of 6.5% (ZQ correction) of RON and RTT i0pedance error  
within ±4 nCK for all speed bins assu0ing the 0axi0u0 sensitivities specified in the  
Output Driver and ODT Voltage and Te0perature Sensitivity tables. The appropriate in-  
terval between ZQCS co00ands can be deter0ined fro0 these tables and other appli-  
cation-specific para0eters. One 0ethod for calculating the interval between ZQCS  
co00ands, given the te0perature (Tdrift_rate) and voltage (Vdrift_rate) drift rates that the  
device is subjected to in the application, is illustrated. The interval could be defined by  
the following for0ula:  
ZQ  
correction  
(T  
x T  
) + (V  
x T  
)
sense drift_rate sense drift_rate  
Where Tsense = MAX(dRTTdT, dRONdTM) and Vsense = MAX(dRTTdV, dRONdVM) define  
the te0perature and voltage sensitivities.  
For exa0ple, if Tsens = 1.5%/°C, Vsens = 6.15%/0V, Tdriftrate = 1 °C/sec and Vdriftrate = 15  
0V/sec, then the interval between ZQCS co00ands is calculated as:  
0.5  
= 0.133 §128ms  
(1.5 × 1) + (0.15 × 15)  
No other activities should be perfor0ed on the DRAM channel by the controller for the  
duration of tZQinit, tZQoper, or tZQCS. The quiet ti0e on the DRAM channel allows ac-  
curate calibration of output driver and on-die ter0ination values. After DRAM calibra-  
tion is achieved, the device should disable the ZQ current consu0ption path to reduce  
power.  
All banks 0ust be precharged and tRP 0et before ZQCL or ZQCS co00ands are issued  
by the controller.  
ZQ CALIBRATION co00ands can also be issued in parallel to DLL lock ti0e when  
co0ing out of self refresh. Upon self refresh exit, the device will not perfor0 an I/O cali-  
bration without an explicit ZQ CALIBRATION co00and. The earliest possible ti0e for a  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
244  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
ZQ CALIBRATION Commands  
ZQ CALIBRATION co00and (short or long) after self refresh exit is tXS, tXS_Abort, or  
tXS_FAST depending on operation 0ode.  
In syste0s that share the ZQ resistor between devices, the controller 0ust not allow any  
overlap of tZQoper, tZQinit, or tZQCS between the devices.  
Figure 195: ZQ Calibration Timing  
T0  
T1  
Ta0  
Ta1  
Ta2  
Ta3  
Tb0  
Tb1  
DES  
Tc0  
Tc1  
Tc2  
CK_c  
CK_t  
Command  
Address  
A10  
ZQCL  
DES  
DES  
DES  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
ZQCS  
DES  
DES  
Valid  
Valid  
Valid  
CKE  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Note 1  
Note 2  
ODT  
DQ Bus  
High-Z or RTT(Park)  
High-Z or RTT(Park)  
Activities  
Activities  
Note 3  
t
t
ZQinit_ ZQoper  
t
ZQCS  
Time Break  
Don’t Care  
1. CKE must be continuously registered HIGH during the calibration procedure.  
Notes:  
2. During ZQ calibration, the ODT signal must be held LOW and DRAM continues to pro-  
vide RTT_PARK.  
3. All devices connected to the DQ bus should be High-Z during the calibration procedure.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
245  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
On-Die Termination  
On-Die Termination  
The on-die ter0ination (ODT) feature enables the device to change ter0ination resist-  
ance for each DQ, DQS, and DM_n/DBI_n signal for x4 and x8 configurations (and  
TDQS for the x8 configuration when enabled via A11 = 1 in MR1) via the ODT control  
pin, WRITE co00and, or default parking value with MR setting. For the x1± configura-  
tion, ODT is applied to each DQU, DQL, DQSU, DQSL, DMU_n/DBIU_n, and DML_n/  
DBIL_n signal. The ODT feature is designed to i0prove the signal integrity of the 0e0-  
ory channel by allowing the DRAM controller to independently change ter0ination re-  
sistance for any or all DRAM devices. If DBI read 0ode is enabled while the DRAM is in  
standby, either DM 0ode or DBI write 0ode 0ust also be enabled if RTT(NOM) or  
RTT(Park) is desired. More details about ODT control 0odes and ODT ti0ing 0odes can  
be found further along in this docu0ent.  
The ODT feature is turned off and not supported in self refresh 0ode.  
Figure 196: Functional Representation of ODT  
ODT  
VDDQ  
To other  
circuitry  
such as  
RCV,  
RTT  
Switch  
DQ, DQS, DM, TDQS  
. . .  
The switch is enabled by the internal ODT control logic, which uses the external ODT  
pin and other control infor0ation. The value of RTT is deter0ined by the settings of  
0ode register bits (see Mode Register). The ODT pin will be ignored if the 0ode register  
MR1 is progra00ed to disable RTT(NOM) [MR1[16,9,8] = 6,6,6] and in self refresh 0ode.  
ODT Mode Register and ODT State Table  
The ODT 0ode of the DDR4 device has four states: data ter0ination disable, RTT(NOM)  
TT(WR), and RTT(Park). The ODT 0ode is enabled if any of MR1[16:8] (RTT(NOM)),  
,
R
MR2[11:9] (RTT(WR)), or MR5[8:±] (RTT(Park)) are non-zero. When enabled, the value of  
RTT is deter0ined by the settings of these bits.  
RTT control of each RTT condition is possible with a WR or RD co00and and ODT pin.  
• RTT(WR): The DRAM (rank) that is being written to provide ter0ination regardless of  
ODT pin status (either HIGH or LOW).  
• RTT(NOM): DRAM turns ON RTT(NOM) if it sees ODT asserted HIGH (except when ODT  
is disabled by MR1).  
• RTT(Park): Default parked value set via MR5 to be enabled and RTT(NOM) is not turned  
on.  
• The Ter0ination State Table that follows shows various interactions.  
The RTT values have the following priority:  
• Data ter0ination disable  
• RTT(WR)  
• RTT(NOM)  
• RTT(Park)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
246  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
ODT Mode Register and ODT State Table  
Table 71: Termination State Table  
Case  
RTT(Park)  
RTT(NOM)  
1
RTT(WR)  
2
ODT Pin  
ODT READS3 ODT Standby ODT WRITES  
A4  
Disabled  
Disabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
Low  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
Off (High-Z)  
RTT(Park)  
Off (High-Z)  
RTT(WR)  
B5  
C6  
Enabled  
Disabled  
RTT(Park)  
RTT(WR)  
RTT(Park)  
Off (High-Z)  
RTT(NOM)  
Off (High-Z)  
RTT(NOM)  
RTT(WR)  
High  
Enabled  
Disabled  
Enabled  
Low  
Off (High-Z)  
RTT(NOM)  
High  
RTT(WR)  
D6  
Enabled  
Enabled  
Low  
RTT(Park)  
RTT(Park)  
RTT(NOM)  
RTT(WR)  
High  
RTT(NOM)  
Low  
RTT(Park)  
High  
RTT(NOM)  
RTT(WR)  
1. If RTT(NOM) MR is disabled, power to the ODT receiver will be turned off to save power.  
Notes:  
2. If RTT(WR) is enabled, RTT(WR) will be activated by a WRITE command for a defined period  
time independent of the ODT pin and MR setting of RTT(Park)/RTT(NOM). This is described in  
the Dynamic ODT section.  
3. When a READ command is executed, the DRAM termination state will be High-Z for a  
defined period independent of the ODT pin and MR setting of RTT(Park)/RTT(NOM). This is  
described in the ODT During Read section.  
4. Case A is generally best for single-rank memories.  
5. Case B is generally best for dual-rank, single-slotted memories.  
6. Case C and Case D are generally best for multi-slotted memories.  
ODT Read Disable State Table  
Upon receiving a READ co00and, the DRAM driving data disables ODT after RL - (2 or  
3) clock cycles, where 2 = 1tCK prea0ble 0ode and 3 = 2tCK prea0ble 0ode. ODT stays  
off for a duration of BL/2 + (2 or 3) + (6 or 1) clock cycles, where 2 = 1tCK prea0ble  
0ode, 3 = 2tCK prea0ble 0ode, 6 = CRC disabled, and 1 = CRC enabled.  
Table 72: Read Termination Disable Window  
Start ODT Disable After  
Read  
Preamble  
CRC  
Duration of ODT Disable  
1tCK  
Disabled  
Enabled  
Disabled  
Enabled  
RL - 2  
RL - 2  
RL - 3  
RL - 3  
BL/2 + 2  
BL/2 + 3  
BL/2 + 3  
BL/2 + 4  
2tCK  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
247  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Synchronous ODT Mode  
Synchronous ODT Mode  
Synchronous ODT 0ode is selected whenever the DLL is turned on and locked. Based  
on the power-down definition, these 0odes include the following:  
• Any bank active with CKE HIGH  
• Refresh with CKE HIGH  
• Idle 0ode with CKE HIGH  
• Active power-down 0ode (regardless of MR1 bit A16)  
• Precharge power-down 0ode  
In synchronous ODT 0ode, RTT(NOM) will be turned on DODTLon clock cycles after  
ODT is sa0pled HIGH by a rising clock edge and turned off DODTLoff clock cycles after  
ODT is registered LOW by a rising clock edge. The ODT latency is deter0ined by the  
progra00ed values for: CAS WRITE latency (CWL), additive latency (AL), and parity la-  
tency (PL), as well as the progra00ed state of the prea0ble.  
ODT Latency and Posted ODT  
The ODT latencies for synchronous ODT 0ode are su00arized in the table below. For  
details, refer to the latency definitions.  
Table 73: ODT Latency at DDR4-1600/-1866/-2133/-2400/-2666/-3200  
Applicable when write CRC is disabled  
Symbol  
DODTLon  
DODTLoff  
Parameter  
1tCK Preamble  
CWL + AL + PL - 2  
CWL + AL + PL - 2  
CL + AL + PL - 2  
2tCK Preamble  
CWL + AL + PL - 3  
CWL + AL + PL - 3  
CL + AL + PL - 3  
Unit  
tCK  
Direct ODT turn-on latency  
Direct ODT turn-off latency  
RODTLoff READ command to internal ODT turn-off  
latency  
RODTLon4  
READ command to RTT(Park) turn-on la-  
tency in BC4-fixed  
RODTLoff + 4  
RODTLoff + 6  
RODTLoff + 5  
RODTLoff + 7  
RODTLon8  
READ command to RTT(Park) turn-on la-  
tency in BL8/BC4-OTF  
ODTH4  
ODTH8  
ODT Assertion time, BC4 mode  
ODT Assertion time, BL8 mode  
4
6
5
7
Timing Parameters  
In synchronous ODT 0ode, the following para0eters apply:  
• DODTLon, DODTLoff, RODTLoff, RODTLon4, RODTLon8, and tADC (MIN)/(MAX).  
t
• ADC (MIN) and tADC (MAX) are 0ini0u0 and 0axi0u0 RTT change ti0ing skew  
between different ter0ination values. These ti0ing para0eters apply to both the syn-  
chronous ODT 0ode and the data ter0ination disable 0ode.  
When ODT is asserted, it 0ust re0ain HIGH until 0ini0u0 ODTH4 (BC = 4) or  
ODTH8 (BL = 8) is satisfied. If write CRC 0ode or 2tCK prea0ble 0ode is enabled,  
ODTH should be adjusted to account for it. ODTHx is 0easured fro0 ODT first regis-  
tered HIGH to ODT first registered LOW or fro0 the registration of a WRITE co00and.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
248  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Synchronous ODT Mode  
Figure 197: Synchronous ODT Timing with BL8  
7ꢅ  
7ꢇ  
7ꢈ  
7ꢋ  
7ꢃ  
7ꢐ  
7ꢂ  
7ꢉ  
7ꢁ  
7ꢑ  
7ꢇꢅ  
7  
7ꢇꢈ  
7ꢇꢋ  
7ꢇꢃ  
7ꢇꢐ  
7ꢇꢂ  
7ꢇꢉ  
7  
diff_CK  
Command  
ODT  
DODTLon = WL - 2  
DODTLoff = WL - 2  
t
t
ADC (MAX)  
ADC (MAX)  
t
t
ADC (MIN)  
ADC (MIN)  
DRAM_R  
TT  
R
R
R
TT(Park)  
TT(NOM)  
TT(Park)  
Transitioning  
1. Example for CWL = 9, AL = 0, PL = 0; DODTLon = AL + PL + CWL - 2 = 7; DODTLoff = AL +  
PL + CWL - 2 = 7.  
Notes:  
2. ODT must be held HIGH for at least ODTH8 after assertion (T1).  
Figure 198: Synchronous ODT with BC4  
T0  
T1  
T2  
T3  
T4  
T5  
T18  
T19  
T20  
T21  
T22  
T23  
T36  
T37  
T38  
T39  
T40  
T41  
42  
diff_CK  
WRS4  
Command  
ODTH4  
ODT  
DODTLoff = WL - 2  
ODTLcnw= WL - 2  
DODTLon = CWL - 2  
ODTLcwn4 = ODTLcnw + 4  
tADC (MAX)  
tADC (MIN)  
tADC (MAX)  
tADC (MAX)  
tADC (MIN)  
tADC (MAX)  
tADC (MIN)  
tADC (MIN)  
RTT(Park)  
RTT(NOM)  
RTT(Park)  
RTT(WR)  
RTT(Park)  
DRAM_RTT  
Transitioning  
1. Example for CWL = 9, AL = 10, PL = 0; DODTLon/off = AL + PL+ CWL - 2 = 17; ODTcnw =  
AL + PL+ CWL - 2 = 17.  
Notes:  
2. ODT must be held HIGH for at least ODTH4 after assertion (T1).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
249  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Synchronous ODT Mode  
ODT During Reads  
Because the DRAM cannot ter0inate with RTT and drive with RON at the sa0e ti0e, RTT  
0ay no0inally not be enabled until the end of the posta0ble as shown in the exa0ple  
below. At cycle T25 the device turns on the ter0ination when it stops driving, which is  
deter0ined by tHZ. If the DRAM stops driving early (that is, tHZ is early), then tADC  
(MIN) ti0ing 0ay apply. If the DRAM stops driving late (that is, tHZ is late), then the  
DRAM co0plies with tADC (MAX) ti0ing.  
Using CL = 11 as an exa0ple for the figure below: PL = 6, AL = CL - 1 = 16, RL = PL + AL +  
CL = 21, CWL= 9; RODTLoff = RL - 2 = 19, DODTLon = PL + AL + CWL - 2 = 17, 1tCK  
prea0ble.  
Figure 199: ODT During Reads  
7ꢅ  
7ꢇ  
7ꢈ  
7ꢋ  
7ꢃ  
7ꢁ  
7ꢑ  
7ꢇꢅ  
7ꢇꢁ  
7ꢇꢑ  
7ꢈꢅ  
7ꢈꢇ  
7ꢈꢈ  
7ꢈꢋ  
7ꢈꢃ  
7ꢈꢐ  
7ꢈꢂ  
7ꢈꢉ  
7ꢈꢁ  
GLIIB&.  
&RPPDQG  
$GGUHVV  
5'  
$
5/ꢀ ꢀ$/ꢀꢓꢀ&/ꢀꢓꢀ3/  
2'7  
52'7/RIIꢀ ꢀ5/ꢏꢀꢈ  
'2'7/RQꢀ ꢀ:/ꢀꢏꢀꢈ  
W$'&ꢀꢌ0$;ꢎ  
W$'&ꢀꢌ0,1ꢎ  
W$'&ꢀꢌ0$;ꢎ  
W$'&ꢀꢌ0,1ꢎ  
'46B2'7  
5
5
77120ꢎ  
773DUNꢎ  
W&.ꢀ3UHDPEOH  
W$'&ꢀꢌ0$;ꢎ  
W$'&ꢀꢌ0,1ꢎ  
W$'&ꢀꢌ0$;ꢎ  
W$'&ꢀꢌ0,1ꢎ  
'46B2'7  
5
5
77120ꢎ  
773DUNꢎ  
W&.ꢀ3UHDPEOH  
'46GLII  
W$'&ꢀꢌ0$;ꢎꢀꢓꢀꢇQ&.  
W$'&ꢀꢌ0$;ꢎ  
W$'&ꢀꢌ0,1ꢎ  
W$'&ꢀꢌ0,1ꢎ  
'4B2'7  
5
5
77120ꢎ  
773DUNꢎ  
W&.ꢀ3UHDPEOH  
'4  
4$ꢅ 4$ꢇ 4$ꢈ 4$ꢋ 4$ꢃ 4$ꢐ 4$ꢂ 4$ꢉ  
W$'&ꢀꢌ0$;ꢎꢀꢓꢀꢈQ&.  
W$'&ꢀꢌ0$;ꢎ  
W$'&ꢀꢌ0,1ꢎ  
W$'&ꢀꢌ0,1ꢎ  
'4B2'7  
5
5
77120ꢎ  
773DUNꢎ  
W&.ꢀ3UHDPEOH  
'4  
4$ꢅ 4$ꢇ 4$ꢈ 4$ꢋ 4$ꢃ 4$ꢐ 4$ꢂ 4$ꢉ  
7UDQVLWLRQLQJ  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
250  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Dynamic ODT  
Dynamic ODT  
In certain application cases and to further enhance signal integrity on the data bus, it is  
desirable that the ter0ination strength of the device can be changed without issuing an  
MRS co00and. This require0ent is supported by the dyna0ic ODT feature.  
Functional Description  
Dyna0ic ODT 0ode is enabled if bit A9 or A16 of MR2 is set to 1.  
• Three RTT values are available: RTT(NOM), RTT(WR), and RTT(Park)  
.
– The value for RTT(NOM) is preselected via bits MR1[16:8].  
– The value for RTT(WR) is preselected via bits MR2[11:9].  
– The value for RTT(Park) is preselected via bits MR5[8:±].  
• During operation without WRITE co00ands, the ter0ination is controlled as fol-  
lows:  
– No0inal ter0ination strength RTT(NOM) or RTT(Park) is selected.  
– RTT(NOM) on/off ti0ing is controlled via ODT pin and latencies DODTLon and  
DODTLoff, and RTT(Park) is on when ODT is LOW.  
• When a WRITE co00and (WR, WRA, WRS4, WRS8, WRAS4, and WRAS8) is regis-  
tered, and if dyna0ic ODT is enabled, the ter0ination is controlled as follows:  
– Latency ODTLcnw after the WRITE co00and, ter0ination strength RTT(WR) is se-  
lected.  
– Latency ODTLcwn8 (for BL8, fixed by MRS or selected OTF) or ODTLcwn4 (for  
BC4, fixed by MRS or selected OTF) after the WRITE co00and, ter0ination  
strength RTT(WR) is de-selected.  
One or two clocks will be added into or subtracted fro0 ODTLcwn8 and ODTLcwn4,  
depending on write CRC 0ode and/or 2tCK prea0ble enable0ent.  
The following table shows latencies and ti0ing para0eters relevant to the on-die ter0i-  
nation control in dyna0ic ODT 0ode. The dyna0ic ODT feature is not supported in  
DLL-off 0ode. An MRS co00and 0ust be used to set RTT(WR) to disable dyna0ic ODT  
externally (MR2[11:9] = 666).  
Table 74: Dynamic ODT Latencies and Timing (1tCK Preamble Mode and CRC Disabled)  
Definition for All  
Name and Description  
Abbr.  
Defined from  
Defined to  
DDR4 Speed Bins  
Unit  
ODT latency for change from  
ODTLcnw Registering external Change RTT strength  
ODTLcnw = WL - 2  
tCK  
RTT(Park)/RTT(NOM) to RTT(WR)  
WRITE command  
from RTT(Park)/RTT(NOM)  
to RTT(WR)  
ODT latency for change from  
TT(WR) to RTT(Park)/RTT(NOM) (BC =  
4)  
ODTLcwn Registering external Change RTT strength  
WRITE command from RTT(WR) to  
TT(Park)/RTT(NOM)  
ODTLcwn Registering external Change RTT strength  
ODTLcwn4 = 4 +  
ODTLcnw  
tCK  
R
4
R
ODT latency for change from  
ODTLcwn8 = 6 +  
ODTLcnw  
tCK  
(AVG)  
RTT(WR) to RTT(Park)/RTT(NOM) (BL =  
8
WRITE command  
from RTT(NOM) to  
RTT(WR)  
8)  
RTT change skew  
tADC  
ODTLcnw  
ODTLcwn  
RTT valid  
tADC (MIN) = 0.3  
tADC (MAX) = 0.7  
tCK  
(AVG)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
251  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Dynamic ODT  
Table 75: Dynamic ODT Latencies and Timing with Preamble Mode and CRC Mode Matrix  
1tCK Parameter  
CRC Off  
2tCK Parameter  
CRC Off  
Symbol  
ODTLcnw1  
ODTLcwn4  
ODTLcwn8  
CRC On  
WL - 2  
CRC On  
WL - 3  
Unit  
tCK  
WL - 2  
WL - 3  
ODTLcnw + 4  
ODTLcnw + 6  
ODTLcnw + 7  
ODTLcnw + 7  
ODTLcnw + 5  
ODTLcnw + 7  
ODTLcnw + 8  
ODTLcnw + 8  
1. ODTLcnw = WL - 2 (1tCK preamble) or WL - 3 (2tCK preamble).  
Note:  
Figure 200: Dynamic ODT (1t CK Preamble; CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled)  
T0  
T1  
T2  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
diff_CK  
WR  
Command  
ODT  
DODTLon = WL - 2  
DODTLoff = WL - 2  
t
t
t
t
ADC (MAX)  
ADC (MAX)  
ADC (MAX)  
ADC (MAX)  
R
TT  
t
t
t
t
ADC (MIN)  
ADC (MIN)  
ADC (MIN)  
ADC (MIN)  
ODTLcnw  
ODTLcwn  
Transitioning  
1. ODTLcnw = WL - 2 (1tCK preamble) or WL - 3 (2tCK preamble).  
Notes:  
2. If BC4, then ODTLcwn = WL + 4 if CRC disabled or WL + 5 if CRC enabled; If BL8, then  
ODTLcwn = WL + 6 if CRC disabled or WL + 7 if CRC enabled.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
252  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Dynamic ODT  
Figure 201: Dynamic ODT Overlapped with RTT(NOM) (CL = 14, CWL = 11, BL = 8, AL = 0, CRC Disabled)  
T0  
T1  
T2  
T5  
T6  
T7  
T9  
T10  
T11  
T12  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
diff_CK  
WR  
Command  
ODT  
ODTLcnw  
ODTLcwn8  
t
t
t
ADC (MAX)  
ADC (MAX)  
ADC (MAX)  
R
R
R
R
R
TT_PARK  
TT  
TT_NOM  
TT_WR  
TT_NOM  
t
t
t
ADC (MIN)  
ADC (MIN)  
ADC (MIN)  
DODTLoff = CWL -2  
1. Behavior with WR command issued while ODT is registered HIGH.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
253  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Asynchronous ODT Mode  
Asynchronous ODT Mode  
Asynchronous ODT 0ode is selected when the DRAM runs in DLL-off 0ode. In asyn-  
chronous ODT ti0ing 0ode, the internal ODT co00and is not delayed by either addi-  
tive latency (AL) or the parity latency (PL) relative to the external ODT signal (RTT(NOM)).  
In asynchronous ODT 0ode, two ti0ing para0eters apply: tAONAS (MIN/MAX), and  
tAOFAS (MIN/MAX).  
R
TT(NOM) Turn-on Time  
• Mini0u0 RTT(NOM) turn-on ti0e (tAONAS [MIN]) is when the device ter0ination cir-  
cuit leaves RTT(Park) and ODT resistance begins to turn on.  
• Maxi0u0 RTT(NOM) turn-on ti0e (tAONAS [MAX]) is when the ODT resistance has  
reached RTT(NOM)  
.
• AONAS (MIN) and tAONAS (MAX) are 0easured fro0 ODT being sa0pled HIGH.  
t
RTT(NOM) Turn-off Time  
• Mini0u0 RTT(NOM) turn-off ti0e (tAOFAS [MIN]) is when the device's ter0ination  
circuit starts to leave RTT(NOM)  
.
• Maxi0u0 RTT(NOM) turn-off ti0e (tAOFAS [MAX]) is when the on-die ter0ination has  
reached RTT(Park)  
.
• AOFAS (MIN) and tAOFAS (MAX) are 0easured fro0 ODT being sa0pled LOW.  
t
Figure 202: Asynchronous ODT Timings with DLL Off  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Ti  
Ti + 1  
Ti + 2  
Ti + 3  
Ti + 4  
Ti + 5  
Ti + 6  
Ta  
Tb  
diff_CK  
CKE  
tIH  
tIS  
tIH  
tIS  
ODT  
tAONAS (MAX)  
tAONAS (MIN)  
tAONAS (MIN)  
tAONAS (MAX)  
RTT  
RTT(Park)  
RTT(NOM)  
Transitioning  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
254  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Specifications  
Electrical Specifications  
Absolute Ratings  
Stresses greater than those listed 0ay cause per0anent da0age to the device. This is a  
stress rating only, and functional operation of the device at these or any other condi-  
tions outside those indicated in the operational sections of this specification is not i0-  
plied. Exposure to absolute 0axi0u0 rating conditions for extended periods 0ay ad-  
versely affect reliability. Although "unli0ited" row accesses to the sa0e row is allowed  
within the refresh period; excessive row accesses to the sa0e row over a long ter0 can  
result in degraded operation.  
Table 76: Absolute Maximum Ratings  
Symbol  
VDD  
Parameter  
Voltage on VDD pin relative to VSS  
Min  
–0.4  
–0.4  
–0.4  
–0.4  
–55  
Max  
1.5  
Unit  
V
Notes  
1
1
3
VDDQ  
VPP  
Voltage on VDDQ pin relative to VSS  
Voltage on VPP pin relative to VSS  
1.5  
V
3.0  
V
VIN, VOUT Voltage on any pin relative to VSS  
TSTG Storage temperature  
1.5  
V
150  
°C  
2
1. VDD and VDDQ must be within 300mV of each other at all times, and VREF must not be  
Notes:  
greater than 0.6 × VDDQ. When VDD and VDDQ are <500mV, VREF can be 300mV.  
2. Storage temperature is the case surface temperature on the center/top side of the  
DRAM. For the measurement conditions, please refer to the JESD51-2 standard.  
3. VPP must be equal to or greater than VDD/VDDQ at all times when powered.  
DRAM Component Operating Temperature Range  
Operating te0perature, TOPER, is the case surface te0perature on the center/top side of  
the DRAM. For 0easure0ent conditions, refer to the JEDEC docu0ent JESD51-2.  
Table 77: Temperature Range  
Symbol  
Parameter  
Min  
–40  
Max  
85  
Unit  
°C  
Notes  
TOPER  
Normal operating temperature range  
Extended temperature range (optional)  
1
2
>85  
125  
°C  
1. The normal temperature range specifies the temperatures at which all DRAM specifica-  
tions will be supported. During operation, the DRAM case temperature must be main-  
tained between –40°C to 85°C under all operating conditions for the commercial offer-  
ing.  
Notes:  
2. Some applications require operation of the commercial and industrial temperature  
DRAMs in the extended temperature range (between 85°C and 125°C case tempera-  
ture). Full specifications are supported in this range, but the following additional condi-  
tions apply:  
• REFRESH commands must be doubled in frequency, reducing the refresh interval tREFI  
to 3.9μs. It is also possible to specify a component with 1X refresh (tREFI to 7.8μs) in  
the extended temperature range.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
255  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Operating Conditions  
• REFRESH command must be issued once every 0.975μs if TC is greater than 105°C, once  
every 1.95μs if TC is greater than or equal to 95°C, once every 3.9μs if TC is greater  
than 85°C, and once every 7.8μs if TC is less than 85°C.  
Electrical Characteristics – AC and DC Operating Conditions  
Supply Operating Conditions  
Table 78: Recommended Supply Operating Conditions  
Rating  
Symbol Parameter  
Min  
1.14  
Typ  
1.2  
1.2  
2.5  
Max  
1.26  
Unit  
V
Notes  
1, 2, 3, 4, 5  
1, 2, 6  
VDD  
VDDQ  
VPP  
Supply voltage  
Supply voltage for output  
Wordline supply voltage  
1.14  
1.26  
V
2.375  
2.750  
V
7
1. Under all conditions VDDQ must be less than or equal to VDD  
.
Notes:  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. VDD slew rate between 300mV and 80% of VDD,min shall be between 0.004 V/ms and 600  
V/ms, 20 MHz band-limited measurement.  
4. VDD ramp time from 300mV to VDD,min shall be no longer than 200ms.  
5. A stable valid VDD level is a set DC level (0 Hz to 250 KHz) and must be no less than  
VDD,min and no greater than VDD,max. If the set DC level is altered anytime after initializa-  
tion, the DLL reset and calibrations must be performed again after the new set DC level  
is final. AC noise of 60mV (greater than 250 KHz) is allowed on VDD provided the noise  
doesn't alter VDD to less than VDD,min or greater than VDD,max  
6. A stable valid VDDQ level is a set DC level (0 Hz to 250 KHz) and must be no less than  
DDQ,min and no greater than VDDQ,max. If the set DC level is altered anytime after initial-  
.
V
ization, the DLL reset and calibrations must be performed again after the new set DC  
level is final. AC noise of 60mV (greater than 250 KHz) is allowed on VDDQ provided the  
noise doesn't alter VDDQ to less than VDDQ,min or greater than VDDQ,max  
7. A stable valid VPP level is a set DC level (0 Hz to 250 KHz) and must be no less than  
PP,min and no greater than VPP,max. If the set DC level is altered anytime after initializa-  
.
V
tion, the DLL reset and calibrations must be performed again after the new set DC level  
is final. AC noise of 120mV (greater than 250 KHz) is allowed on VPP provided the noise  
doesn't alter VPP to less than VPP,min or greater than VPP,max  
.
Table 79: VDD Slew Rate  
Symbol  
VDD_sl  
Min  
0.004  
Max  
600  
Unit  
V/ms  
ms  
Notes  
1, 2  
3
VDD_on  
200  
1. Measurement made between 300mV and 80% VDD (minimum level).  
2. The DC bandwidth is limited to 20 MHz.  
Notes:  
3. Maximum time to ramp VDD from 300 mV to VDD minimum.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
256  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Operating Conditions  
Leakages  
Table 80: Leakages  
Condition  
Symbol  
IIN  
Min  
–2  
Max  
Unit  
μA  
μA  
μA  
μA  
μA  
μA  
Notes  
Input leakage (excluding ZQ and TEN)  
ZQ leakage  
2
3
1
1
IZQ  
–3  
TEN leakage  
ITEN  
–6  
10  
2
1, 2  
3
VREFCA leakage  
IVREFCA  
IOZpd  
IOZpu  
–2  
Output leakage: VOUT = VDDQ  
Output leakage: VOUT = VSSQ  
5
4
–50  
4, 5  
1. Input under test 0V < VIN < 1.1V.  
Notes:  
2. Additional leakage due to weak pull-down.  
3. VREFCA = VDD/2, VDD at valid level after initialization.  
4. DQs are disabled.  
5. ODT is disabled with the ODT input HIGH.  
VREFCA Supply  
VREFCA is to be supplied to the DRAM and equal to VDD/2. The VREFCA is a reference sup-  
ply input and therefore does not draw biasing current.  
The DC-tolerance li0its and AC-noise li0its for the reference voltages VREFCA are illus-  
trated in the figure below. The figure shows a valid reference voltage VREF(t) as a function  
of ti0e (VREF stands for VREFCA). VREF(DC) is the linear average of VREF(t) over a very long  
period of ti0e (1 second). This average has to 0eet the MIN/MAX require0ents. Fur-  
ther0ore, VREF(t) 0ay te0porarily deviate fro0 VREF(DC) by no 0ore than ±1% VDD for  
the AC-noise li0it.  
Figure 203: VREFDQ Voltage Range  
Voltage  
V
DD  
V
REF(t)  
V
AC-noise  
REF  
V
V
MAX  
MIN  
REF(DC)  
V
REF(DC)  
/2  
DD  
V
REF(DC)  
V
SS  
Time  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
257  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Operating Conditions  
The voltage levels for setup and hold ti0e 0easure0ents are dependent on VREF. VREF is  
understood as VREF(DC), as defined in the above figure. This clarifies that DC-variations  
of VREF affect the absolute voltage a signal has to reach to achieve a valid HIGH or LOW  
level, and therefore, the ti0e to which setup and hold is 0easured. Syste0 ti0ing and  
voltage budgets need to account for VREF(DC) deviations fro0 the opti0u0 position  
within the data-eye of the input signals. This also clarifies that the DRAM setup/hold  
specification and derating values need to include ti0e and voltage associated with VREF  
AC-noise. Ti0ing and voltage effects due to AC-noise on VREF up to the specified li0it  
(±1% of VDD) are included in DRAM ti0ings and their associated deratings.  
VREFDQ Supply and Calibration Ranges  
The device internally generates its own VREFDQ. DRAM internal VREFDQ specification pa-  
ra0eters: voltage range, step size, VREF step ti0e, VREF full step ti0e, and VREF valid level  
are used to help provide esti0ated values for the internal VREFDQ and are not pass/fail  
li0its. The voltage operating range specifies the 0ini0u0 required range for DDR4  
SDRAM devices. The 0ini0u0 range is defined by VREFDQ,0in and VREFDQ,0ax. A cali-  
bration sequence should be perfor0ed by the DRAM controller to adjust VREFDQ and  
opti0ize the ti0ing and voltage 0argin of the DRAM data input receivers.  
Table 81: VREFDQ Specification  
Parameter  
Symbol  
VREFDQ R1  
VREFDQ R2  
VREF,step  
Min  
60%  
Typ  
Max  
92%  
Unit  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
ns  
Notes  
1, 2  
Range 1 VREFDQ operating points  
Range 2 VREFDQ operating points  
VREF step size  
45%  
77%  
1, 2  
0.5%  
–1.625%  
–0.15%  
0.65%  
0%  
0%  
0.8%  
1.625%  
0.15%  
150  
3
VREF set tolerance  
VREF,set_tol  
4, 5, 6  
4, 7, 8  
9, 10, 11  
12  
VREF step time  
VREF,time  
VREF valid tolerance  
VREF_val_tol  
–0.15%  
0%  
0.15%  
VDDQ  
1. VREF(DC) voltage is referenced to VDDQ(DC). VDDQ(DC) is 1.2V.  
2. DRAM range 1 or range 2 is set by the MRS6[6]6.  
Notes:  
3. VREF step size increment/decrement range. VREF at DC level.  
4. VREF,new = VREF,old n × VREF,step; n = number of steps. If increment, use “+,” if decrement,  
use “-.”  
5. For n >4, the minimum value of VREF setting tolerance = VREF,new - 1.625% × VDDQ. The  
maximum value of VREF setting tolerance = VREF,new + 1.625% × VDDQ  
.
6. Measured by recording the MIN and MAX values of the VREF output over the range,  
drawing a straight line between those points, and comparing all other VREF output set-  
tings to that line.  
7. For n 4, the minimum value of VREF setting tolerance = VREF,new - 0.15% × VDDQ. The  
maximum value of VREF setting tolerance = VREF,new + 0.15% × VDDQ  
.
8. Measured by recording the MIN and MAX values of the VREF output across four consecu-  
tive steps (n = 4), drawing a straight line between those points, and comparing all VREF  
output settings to that line.  
9. Time from MRS command to increment or decrement one step size for VREF  
10. Time from MRS command to increment or decrement more than one step size up to the  
full range of VREF  
.
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
258  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Operating Conditions  
11. If the VREF monitor is enabled, VREF must be derated by +10ns if DQ bus load is 0pF and  
an additional +15 ns/pF of DQ bus loading.  
12. Only applicable for DRAM component-level test/characterization purposes. Not applica-  
ble for normal mode of operation. VREF valid qualifies the step times, which will be char-  
acterized at the component level.  
VREFDQ Ranges  
MR±[±] selects range 1 (±6% to 92.5% of VDDQ) or range 2 (45% to 77.5% of VDDQ), and  
MR±[5:6] sets the VREFDQ level, as listed in the following table. The values in MR±[±:6]  
will update the VDDQ range and level independent of MR±[7] setting. It is reco00ended  
MR±[7] be enabled when changing the settings in MR±[±:6], and it is highly reco00en-  
ded MR±[7] be enabled when changing the settings in MR±[±:6] 0ultiple ti0es during a  
calibration routine.  
Table 82: VREFDQ Range and Levels  
MR6[6] 0 =  
MR6[6] 1 =  
Range 2  
MR6[6] 0 =  
Range 1  
MR6[6] 1 =  
Range 2  
MR6[5:0]  
00 0000  
00 0001  
00 0010  
00 0011  
00 0100  
00 0101  
00 0110  
00 0111  
00 1000  
00 1001  
00 1010  
00 1011  
00 1100  
00 1101  
00 1110  
00 1111  
01 0000  
01 0001  
01 0010  
01 0011  
01 0100  
01 0101  
01 0110  
01 0111  
01 1000  
01 1001  
Range 1  
60.00%  
60.65%  
61.30%  
61.95%  
62.60%  
63.25%  
63.90%  
64.55%  
65.20%  
65.85%  
66.50%  
67.15%  
67.80%  
68.45%  
69.10%  
69.75%  
70.40%  
71.05%  
71.70%  
72.35%  
73.00%  
73.65%  
74.30%  
74.95%  
75.60%  
76.25%  
MR6[5:0]  
01 1010  
01 1011  
01 1100  
01 1101  
01 1110  
01 1111  
10 0000  
10 0001  
10 0010  
10 0011  
10 0100  
10 0101  
10 0110  
10 0111  
10 1000  
10 1001  
10 1010  
10 1011  
10 1100  
10 1101  
10 1110  
10 1111  
11 0000  
11 0001  
11 0010  
45.00%  
45.65%  
46.30%  
46.95%  
47.60%  
48.25%  
48.90%  
49.55%  
50.20%  
50.85%  
51.50%  
52.15%  
52.80%  
53.45%  
54.10%  
54.75%  
55.40%  
56.05%  
56.70%  
57.35%  
58.00%  
58.65%  
59.30%  
59.95%  
60.60%  
61.25%  
76.90%  
77.55%  
78.20%  
78.85%  
79.50%  
80.15%  
80.80%  
81.45%  
82.10%  
82.75%  
83.40%  
84.05%  
84.70%  
85.35%  
86.00%  
86.65%  
87.30%  
87.95%  
88.60%  
89.25%  
89.90%  
90.55%  
91.20%  
91.85%  
92.50%  
61.90%  
62.55%  
63.20%  
63.85%  
64.50%  
65.15%  
65.80%  
66.45%  
67.10%  
67.75%  
68.40%  
69.05%  
69.70%  
70.35%  
71.00%  
71.65%  
72.30%  
72.95%  
73.60%  
74.25%  
74.90%  
75.55%  
76.20%  
76.85%  
77.50%  
11 0011 to 11 1111 are reserved  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
259  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Electrical Characteristics – AC and DC Single-Ended Input Measurement  
Levels  
RESET_n Input Levels  
Table 83: RESET_n Input Levels (CMOS)  
Parameter  
Symbol  
VIH(AC)_RESET  
VIH(DC)_RESET  
VIL(DC)_RESET  
VIL(AC)_RESET  
tR_RESET  
Min  
Max  
Unit  
V
Note  
AC input high voltage  
DC input high voltage  
DC input low voltage  
AC input low voltage  
Rising time  
0.8 × VDD  
VDD  
1
2
0.7 × VDD  
VDD  
V
VSS  
VSS  
0.3 × VDD  
V
3
0.2 × VDD  
V
4
1
μs  
μs  
μs  
5
RESET pulse width after power-up  
RESET pulse width during power-up  
tPW_RESET_S  
tPW_RESET_L  
1
6, 7  
6
200  
1. Overshoot should not exceed the VIN shown in the Absolute Maximum Ratings table.  
2. After RESET_n is registered HIGH, the RESET_n level must be maintained above  
Notes:  
VIH(DC)_RESET, otherwise operation will be uncertain until it is reset by asserting RESET_n  
signal LOW.  
3. After RESET_n is registered LOW, the RESET_n level must be maintained below VIL(DC)_RE-  
SET during tPW_RESET, otherwise the DRAM may not be reset.  
4. Undershoot should not exceed the VIN shown in the Absolute Maximum Ratings table.  
5. Slope reversal (ring-back) during this level transition from LOW to HIGH should be miti-  
gated as much as possible.  
6. RESET is destructive to data contents.  
7. See RESET Procedure at Power Stable Condition figure.  
Figure 204: RESET_n Input Slew Rate Definition  
tPW_RESET  
VIH(AC)_RESET,min  
VIH(DC)_RESET,min  
VIL(DC)_RESET,max  
VIL(AC)_RESET,max  
tR_RESET  
Command/Address Input Levels  
Table 84: Command and Address Input Levels: DDR4-1600 Through DDR4-2400  
Parameter  
Symbol  
Min  
Max  
VDD  
Unit  
Note  
AC input high voltage  
VIH(AC)  
VREF + 100  
5
mV  
1, 2, 3  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
260  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Table 84: Command and Address Input Levels: DDR4-1600 Through DDR4-2400 (Continued)  
Parameter  
Symbol  
VIH(DC)  
Min  
VREF + 75  
VSS  
Max  
VDD  
Unit  
mV  
mV  
mV  
V
Note  
1, 2  
DC input high voltage  
DC input low voltage  
AC input low voltage  
Reference voltage for CMD/ADDR inputs  
VIL(DC)  
VREF - 75  
VREF - 100  
0.51 × VDD  
1, 2  
VIL(AC)  
VSS5  
1, 2, 3  
4
VREFFCA(DC)  
0.49 × VDD  
1. For input except RESET_n. VREF = VREFCA(DC)  
2. VREF = VREFCA(DC)  
.
Notes:  
.
3. Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings.  
4. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than  
1% VDD (for reference: approximately 12mV).  
5. Refer to “Overshoot and Undershoot Specifications.”  
Table 85: Command and Address Input Levels: DDR4-2666  
Parameter  
Symbol  
VIH(AC)  
Min  
VREF + 90  
VREF + 65  
VSS  
Max  
VDD  
Unit  
mV  
mV  
mV  
mV  
V
Note  
1, 2, 3  
1, 2  
AC input high voltage  
DC input high voltage  
DC input low voltage  
AC input low voltage  
Reference voltage for CMD/ADDR inputs  
5
VIH(DC)  
VDD  
VIL(DC)  
VREF - 65  
VREF - 90  
0.51 × VDD  
1, 2  
VIL(AC)  
VSS5  
1, 2, 3  
4
VREFFCA(DC)  
0.49 × VDD  
1. For input except RESET_n. VREF = VREFCA(DC)  
2. VREF = VREFCA(DC)  
.
Notes:  
.
3. Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings.  
4. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than  
1% VDD (for reference: approximately 12mV).  
5. Refer to “Overshoot and Undershoot Specifications.”  
Table 86: Command and Address Input Levels: DDR4-2933 and DDR4-3200  
Parameter  
Symbol  
VIH(AC)  
Min  
VREF + 90  
VREF + 65  
VSS  
Max  
VDD  
Unit  
mV  
mV  
mV  
mV  
V
Note  
1, 2, 3  
1, 2  
AC input high voltage  
DC input high voltage  
DC input low voltage  
AC input low voltage  
Reference voltage for CMD/ADDR inputs  
5
VIH(DC)  
VDD  
VIL(DC)  
VREF - 65  
VREF - 90  
0.51 × VDD  
1, 2  
VIL(AC)  
VSS5  
1, 2, 3  
4
VREFFCA(DC)  
0.49 × VDD  
1. For input except RESET_n. VREF = VREFCA(DC)  
2. VREF = VREFCA(DC)  
.
Notes:  
.
3. Input signal must meet VIL/VIH(AC) to meet tIS timings and VIL/VIH(DC) to meet tIH timings.  
4. The AC peak noise on VREF may not allow VREF to deviate from VREFCA(DC) by more than  
1% VDD (for reference: approximately 12mV).  
5. Refer to “Overshoot and Undershoot Specifications.”  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
261  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Table 87: Single-Ended Input Slew Rates  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Single-ended input slew rate – CA  
SRCA  
1.0  
7.0  
V/ns  
1, 2, 3, 4  
1. For input except RESET_n.  
2. VREF = VREFCA(DC)  
3. tIS/tIH timings assume SRCA = 1V/ns.  
Notes:  
.
4. Measured between VIH(AC) and VIL(AC) for falling edges and between VIL(AC) and VIH(AC)  
for rising edges  
Figure 205: Single-Ended Input Slew Rate Definition  
TR  
TFse  
se  
V
IH(AC)  
V
IH(DC)  
V
REFCA  
V
IL(DC)  
V
IL(AC)  
Command, Control, and Address Setup, Hold, and Derating  
The total tIS (setup ti0e) and tIH (hold ti0e) required is calculated to account for slew  
rate variation by adding the data sheet tIS (base) values, the VIL(AC)/VIH(AC) points, and  
tIH (base) values, the VIL(DC)/VIH(DC) points; to the ǻtIS and ǻtIH derating values, respec-  
tively. The base values are derived with single-end signals at 1V/ns and differential clock  
t
at 2 V/ns. Exa0ple: IS (total setup ti0e) = tIS (base) + ǻtIS. For a valid transition, the  
input signal has to re0ain above/below VIH(AC)/VIL(AC) for the ti0e defined by tVAC.  
Although the total setup ti0e for slow slew rates 0ight be negative (for exa0ple, a valid  
input signal will not have reached VIH(AC)/VIL(AC) at the ti0e of the rising clock transi-  
tion), a valid input signal is still required to co0plete the transition and to reach  
VIH(AC)/VIL(AC). For slew rates that fall between the values listed in derating tables, the  
derating values 0ay be obtained by linear interpolation.  
Setup (tIS) no0inal slew rate for a rising signal is defined as the slew rate between the  
last crossing of VIL(DC)0ax and the first crossing of VIH(AC)0in that does not ring back be-  
low VIH(DC)0in . Setup (tIS) no0inal slew rate for a falling signal is defined as the slew  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
262  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
rate between the last crossing of VIH(DC)0in and the first crossing of VIL(AC)0ax that does  
not ring back above VIL(DC)0ax  
.
Hold (tIH) no0inal slew rate for a rising signal is defined as the slew rate between the  
last crossing of VIL(DC)0ax and the first crossing of VIH(AC)0in that does not ring back be-  
low VIH(DC)0in. Hold (tIH) no0inal slew rate for a falling signal is defined as the slew rate  
between the last crossing of VIH(DC)0in and the first crossing of VIL(AC)0inthat does not  
ring back above VIL(DC)0ax  
.
Table 88: Command and Address Setup and Hold Values Referenced – AC/DC-Based  
Symbol  
1600  
115  
140  
1866  
100  
125  
2133  
80  
2400  
62  
2666  
2933  
3200  
Unit  
ps  
Reference  
VIH(AC)/VIL(AC)  
VIH(DC)/VIL(DC)  
VIH(AC)/VIL(AC)  
VIH(DC)/VIL(DC)  
VIH(DC)/VIL(DC)  
tIS(base, AC100)  
tIH(base, DC75)  
tIS(base, AC90)  
tIH(base, DC65)  
tIS/tIH(Vref)  
105  
87  
ps  
55  
80  
145  
48  
73  
138  
40  
65  
130  
ps  
ps  
215  
200  
180  
162  
ps  
Table 89: Derating Values for tIS/tIH – AC100DC75-Based  
ΔtIS with AC100 Threshold, ΔtIH with DC75 Threshold Derating (ps) – AC/DC-Based  
CMD/  
ADDR  
Slew Rate  
V/ns  
CK, CK# Differential Slew Rate  
10.0 V/ns  
8.0 V/ns  
6.0 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIH ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.5  
1.0  
76  
73  
70  
65  
57  
40  
23  
–10  
54  
53  
50  
46  
40  
28  
15  
–10  
76  
74  
71  
66  
57  
41  
24  
–9  
55  
53  
51  
47  
41  
28  
16  
–9  
77  
75  
72  
67  
58  
42  
25  
–8  
56  
54  
52  
48  
42  
29  
17  
–8  
79  
77  
74  
69  
60  
44  
27  
–6  
58  
56  
54  
50  
44  
31  
19  
–6  
82  
79  
76  
71  
63  
46  
29  
–4  
60  
58  
56  
52  
46  
33  
21  
–4  
86  
83  
80  
75  
67  
50  
33  
64  
63  
60  
56  
50  
38  
25  
94  
92  
88  
83  
75  
58  
42  
8
73  
71  
68  
65  
58  
46  
33  
8
111  
108  
105  
100  
92  
89  
88  
85  
81  
75  
63  
50  
25  
75  
58  
25  
0
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
–17  
–26  
–37  
–52  
–73  
–14  
–19  
–26  
–35  
–48  
–16  
–25  
–36  
–51  
–72  
–14  
–19  
–25  
–34  
–47  
–15  
–24  
–35  
–50  
–71  
–13  
–18  
–24  
–33  
–46  
–13  
–22  
–33  
–48  
–69  
–10  
–16  
–22  
–31  
–44  
–11  
–20  
–31  
–46  
–67  
–98  
–8  
1
4
18  
9
21  
16  
9
–7  
–4  
–9  
–14  
–20  
–29  
–42  
–60  
–16  
–27  
–42  
–63  
–94  
–7  
–1  
–16  
–25  
–38  
–56  
–18  
–33  
–54  
–85  
–8  
–2  
–17  
–29  
–48  
–17  
–38  
–69  
0
–13  
–31  
–104 –66 –103 –66 –102 –65 –100 –63  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
263  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Table 90: Derating Values for tIS/tIH – AC90/DC65-Based  
ΔtIS with AC90 Threshold, ΔtIH with DC65 Threshold Derating (ps) – AC/DC-Based  
CMD/  
ADDR  
Slew Rate  
V/ns  
CK, CK# Differential Slew Rate  
10.0 V/ns  
8.0 V/ns  
6.0 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIH ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.5  
1.0  
68  
66  
63  
59  
51  
36  
21  
–9  
47  
45  
43  
40  
34  
24  
13  
–9  
69  
67  
64  
59  
52  
37  
22  
–8  
47  
46  
44  
40  
35  
24  
13  
–8  
70  
68  
65  
60  
53  
38  
23  
–8  
48  
47  
45  
41  
36  
25  
14  
–8  
72  
69  
66  
62  
54  
39  
24  
–6  
50  
49  
46  
43  
38  
27  
16  
–6  
73  
71  
68  
64  
56  
41  
26  
–4  
52  
50  
48  
45  
40  
29  
18  
–4  
77  
75  
72  
68  
60  
45  
30  
56  
54  
52  
49  
43  
33  
22  
85  
83  
80  
75  
68  
53  
38  
8
63  
62  
60  
56  
51  
40  
29  
8
100  
98  
95  
90  
83  
68  
53  
23  
78  
77  
75  
71  
66  
55  
44  
23  
0
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
–15  
–23  
–34  
–47  
–67  
–95  
–13  
–17  
–23  
–31  
–42  
–58  
–15  
–23  
–33  
–47  
–66  
–95  
–12  
–17  
–22  
–30  
–41  
–57  
–14  
–22  
–32  
–46  
–65  
–94  
–11  
–16  
–21  
–29  
–40  
–56  
–12  
–20  
–30  
–44  
–63  
–92  
–9  
–10  
–18  
–28  
–42  
–61  
–90  
–7  
1
4
16  
8
19  
14  
9
–6  
–4  
–8  
–14  
–20  
–27  
–38  
–54  
–12  
–18  
–25  
–36  
–53  
–14  
–25  
–38  
–58  
–86  
–7  
–1  
–14  
–22  
–33  
–49  
–17  
–31  
–50  
–79  
–6  
–2  
–14  
–25  
–41  
–16  
–35  
–64  
1
–10  
–26  
Data Receiver Input Requirements  
The following para0eters apply to the data receiver Rx MASK operation detailed in the  
Write Ti0ing section, Data Strobe-to-Data Relationship.  
The rising edge slew rates are defined by srr1 and srr2. The slew rate 0easure0ent  
points for a rising edge are shown in the figure below. A LOW-to-HIGH transition ti0e,  
tr1, is 0easured fro0 6.5 × VdiVW,0ax below VCENTDQ,0idpoint to the last transition  
through 6.5 × VdiVW,0ax above VCENTDQ,0idpoint; tr2 is 0easured fro0 the last transition  
through 6.5 × VdiVW,0ax above VCENTDQ,0idpoint to the first transition through the 6.5 ×  
VIHL(AC)0in above VCENTDQ,0idpoint  
.
The falling edge slew rates are defined by srf1 and srf2. The slew rate 0easure0ent  
points for a falling edge are shown in the figure below. A HIGH-to-LOW transition ti0e,  
tf1, is 0easured fro0 6.5 × VdiVW,0ax above VCENTDQ,0idpoint to the last transition  
through 6.5 × VdiVW,0ax below VCENTDQ,0idpoint; tf2 is 0easured fro0 the last transition  
through 6.5 × VdiVW,0ax below VCENTDQ,0idpoint to the first transition through the 6.5 ×  
VIHL(AC)0in below VCENTDQ,0idpoint  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
264  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Figure 206: DQ Slew Rate Definitions  
t
r2  
0.5 × V  
V
diVW,max  
Rx Mask  
Rx Mask  
CENTDQ,midpoint  
0.5 × V  
diVW,max  
t
r1  
t
f1  
0.5 × V  
V
diVW,max  
CENTDQ,midpoint  
0.5 × V  
diVW,max  
t
f2  
1. Rising edge slew rate equation srr1 = VdiVW,max/(tr1).  
Notes:  
2. Rising edge slew rate equation srr2 = (VIHL(AC)min - VdiVW,max )/(2 × tr2).  
3. Falling edge slew rate equation srf1 = VdiVW,max/(tf1).  
4. Falling edge slew rate equation srf2 = (VIHL(AC)min - VdiVW,max )/(2 × tf2).  
Table 91: DQ Input Receiver Specifications  
Note 1 applies to the entire table  
DDR4-1600,  
1866, 2133  
DDR4-2400  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Not  
Max Unit es  
Parameter  
Symbol Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
VIN Rx mask input  
peak-to-peak  
VdiVW  
TdiVW  
VIHL(AC)  
136  
130  
120  
115  
110  
0.23  
mV 2, 3  
UI 2, 3  
mV 4, 5  
DQ Rx input tim-  
ing window  
0.2  
0.2  
0.22  
0.23  
DQ AC input  
swing peak-to-  
peak  
186  
160  
150  
145  
140  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
265  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Table 91: DQ Input Receiver Specifications (Continued)  
Note 1 applies to the entire table  
DDR4-1600,  
1866, 2133  
DDR4-2400  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Not  
Max Unit es  
Parameter  
Symbol Min  
TdiPW 0.58  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
DQ input pulse  
width  
0.58  
0.58  
0.58  
0.58  
0.22  
0.125  
9
UI  
6
7
8
9
DQS-to-DQ Rx  
mask offset  
DQ-to-DQ Rx mask tDQ2DQ  
offset  
tDQS2D –0.17  
Q
0.17  
0.1  
9
–0.17  
0.17  
0.1  
9
–0.19  
0.19  
0.105  
9
–0.22  
0.22  
0.115  
9
–0.22  
UI  
UI  
Input slew rate  
over VdiVW if tCK ≥  
0.925ns  
srr1, srf1  
1
1
1
1
1
V/ns  
Input slew rate  
over VdiVW if  
0.935ns > tCK ≥  
0.625ns  
srr1, srf1  
1.25  
9
1.25  
9
1.25  
9
1.25  
9
V/ns  
9
Rising input slew  
rate over 1/2  
VIHL(AC)  
srr2  
srf2  
0.2 ×  
srr1  
9
9
0.2 ×  
srr1  
9
9
0.2 ×  
srr1  
9
9
0.2 ×  
srr1  
9
9
0.2 ×  
srr1  
9
9
V/ns 10  
V/ns 10  
Falling input slew  
rate over 1/2  
VIHL(AC)  
0.2 ×  
srf1  
0.2 ×  
srf1  
0.2 ×  
srf1  
0.2 ×  
srf1  
0.2 ×  
srf1  
1. All Rx mask specifications must be satisfied for each UI. For example, if the minimum in-  
put pulse width is violated when satisfying TdiVW (MIN), VdiVW,max, and minimum slew  
rate limits, then either TdiVW (MIN) or minimum slew rates would have to be increased  
to the point where the minimum input pulse width would no longer be violated.  
Notes:  
2. Data Rx mask voltage and timing total input valid window where VdiVW is centered  
around VCENTDQ,midpoint after VREFDQ training is completed. The data Rx mask is applied  
per bit and should include voltage and temperature drift terms. The input buffer design  
specification is to achieve at least a BER =1e- 16 when the Rx mask is not violated.  
3. Defined over the DQ internal VREF range 1.  
4. Overshoot and undershoot specifications apply.  
5. DQ input pulse signal swing into the receiver must meet or exceed VIHL(AC)min. VIHL(AC)min  
is to be achieved on an UI basis when a rising and falling edge occur in the same UI (a  
valid TdiPW).  
6. DQ minimum input pulse width defined at the VCENTDQ,midpoint  
.
7. DQS-to-DQ Rx mask offset is skew between DQS and DQ within a nibble (x4) or word  
(x8, x16 [for x16, the upper and lower bytes are treated as separate x8s]) at the SDRAM  
balls over process, voltage, and temperature.  
8. DQ-to-DQ Rx mask offset is skew between DQs within a nibble (x4) or word (x8, x16) at  
the SDRAM balls for a given component over process, voltage, and temperature.  
9. Input slew rate over VdiVW mask centered at VCENTDQ,midpoint. Slowest DQ slew rate to  
fastest DQ slew rate per transition edge must be within 1.7V/ns of each other.  
10. Input slew rate between VdiVW mask edge and VIHL(AC)min points.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
266  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
The following figure shows the Rx 0ask relationship to the input ti0ing specifications  
relative to syste0 tDS and tDH. The classical definition for tDS/tDH required a DQ rising  
and falling edges to not violate tDS and tDH relative to the DQS strobe at any ti0e; how-  
ever, with the Rx 0ask tDS and tDH can shift relative to the DQS strobe provided the  
input pulse width specification is satisfied and the Rx 0ask is not violated.  
Figure 207: Rx Mask Relative to tDS/tDH  
TdiPW  
VIH(DC)  
0.5 × VdiVW  
VCENTDQ,pin mean  
Rx  
Mask  
0.5 × VdiVW  
VIL(DC)  
tf1  
TdiVW  
tr1  
tDS = Greater of 0.5 × TdiVW  
or  
tDH = Greater of 0.5 × TdiVW  
or  
0.5 × (TdiPW + VdiVW/tf1)  
0.5 × (TdiPW + VdiVW/tr1)  
DQS_c  
DQS_t  
The following figure and table show an exa0ple of the worst case Rx 0ask required if  
the DQS and DQ pins do not have DRAM controller to DRAM write DQ training. The  
figure and table show that without DRAM write DQ training, the Rx 0ask would in-  
crease fro0 6.2UI to essentially 6.54UI. This would also be the 0ini0u0 tDS and tDH  
required as well.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
267  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Figure 208: Rx Mask Without Write Training  
TdiVW + 2 × tDQS2DQ  
Rx Mask  
VIH(DC)  
0.5 × VdiVW  
VCENTDQ,midpoint  
0.5 × VdiVW  
VIL(DC)  
tDS  
0.5 × TdiVW + tDQS2DQ 0.5 × TdiVW + tDQS2DQ  
DQS_c  
tDH  
DQS_t  
Table 92: Rx Mask and tDS/tDH without Write Training  
Rx Mask  
with Write  
Train  
VIHL(AC)  
(mV)  
TdiPW  
(UI)  
VdiVW  
(mV)  
TdiVW  
(UI)  
tDQS2DQ  
(UI)  
tDQ2DQ  
(UI)  
tDS + tDH  
(ps)  
DDR4  
(ps)  
1600  
1866  
2133  
2400  
2666  
2933  
3200  
186  
186  
186  
160  
150  
145  
140  
0.58  
0.58  
0.58  
0.58  
0.58  
0.58  
0.58  
136  
136  
136  
130  
120  
115  
110  
0.2  
0.2  
0.17  
0.17  
0.17  
0.17  
0.19  
0.22  
0.22  
0.1  
0.1  
125  
107.1  
94  
338  
289  
253  
225  
225  
228  
209  
0.2  
0.1  
0.2  
0.1  
83.3  
82.5  
78.4  
71.8  
0.22  
0.23  
0.23  
0.105  
0.115  
0.125  
1. VIHL(AC), VdiVW, and VILH(DC) referenced to VCENTDQ,midpoint  
.
Note:  
Connectivity Test (CT) Mode Input Levels  
Table 93: TEN Input Levels (CMOS)  
Parameter  
Symbol  
VIH(AC)_TEN  
VIH(DC)_TEN  
VIL(DC)_TEN  
VIL(AC)_TEN  
Min  
0.8 × VDD  
0.7 × VDD  
VSS  
Max  
VDD  
VDD  
Unit  
V
Note  
TEN AC input high voltage  
TEN DC input high voltage  
TEN DC input low voltage  
TEN AC input low voltage  
1
V
0.3 × VDD  
0.2 × VDD  
V
VSS  
V
2
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
268  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Table 93: TEN Input Levels (CMOS) (Continued)  
Parameter  
Symbol  
tF_TEN  
tR_TEN  
Min  
Max  
1 0  
Unit  
ns  
Note  
TEN falling time  
TEN rising time  
1 0  
ns  
1. Overshoot should not exceed the VIN values in the Absolute Maximum Ratings table.  
2. Undershoot should not exceed the VIN values in the Absolute Maximum Ratings table.  
Notes:  
Figure 209: TEN Input Slew Rate Definition  
V
IH(AC)_TENmin  
V
IH(DC)_TENmin  
V
IL(DC)_TENmin  
V
IL(AC)_TENmin  
t
t
F_TEN  
R_TEN  
Table 94: CT Type-A Input Levels  
Parameter  
Symbol  
VIH(AC)  
Min  
VREF + 200  
VREF + 150  
VSS  
Max  
Unit  
V
Note  
2, 3  
2, 3  
2, 3  
2, 3  
2
1
CTipA AC input high voltage  
CTipA DC input high voltage  
CTipA DC input low voltage  
CTipA AC input low voltage  
CTipA falling time  
VDD1  
VIH(DC)  
VDD  
V
VIL(DC)  
VREF - 150  
V
1
VIL(AC)  
VSS1  
VREF - 200  
V
tF_CTipA  
tR_CTipA  
5
5
ns  
ns  
CTipA rising time  
2
1. Refer to Overshoot and Undershoot Specifications.  
Notes:  
2. CT Type-A inputs: CS_n, BG[1:0], BA[1:0], A[9:0], A10/AP, A11, A12/BC_n, A13, WE_n/A14,  
CAS_n/A15, RAS_n/A16, CKE, ACT_n, ODT, CLK_t, CLK_C, PAR.  
3. VREFCA = 0.5 × VDD  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
269  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Figure 210: CT Type-A Input Slew Rate Definition  
VIH(AC)_CTipAmin  
VIH(DC)_CTipAmin  
VREFCA  
VIL(DC)_CTipAmax  
VIL(AC)_CTipAmax  
tF_CTipA  
tR_CTipA  
Table 95: CT Type-B Input Levels  
Parameter  
Symbol  
VIH(AC)  
VIH(DC)  
Min  
VREF + 300  
VREF + 200  
VSS  
Max  
Unit  
Note  
2, 3  
2, 3  
2, 3  
2, 3  
2
1
CTipB AC input high voltage  
CTipB DC input high voltage  
CTipB DC input low voltage  
CTipB AC input low voltage  
CTipB falling time  
VDD1  
V
V
VDD  
VIL(DC)  
VREF - 200  
V
1
VIL(AC)  
VSS1  
VREF - 300  
V
tF_CTipB  
tR_CTipB  
5
5
ns  
ns  
CTipB rising time  
2
1. Refer to Overshoot and Undershoot Specifications.  
2. CT Type-B inputs: DML_n/DBIL_n, DMU_n/DBIU_n and DM_n/DBI_n.  
3. VREFDQ should be 0.5 × VDD  
Notes:  
Figure 211: CT Type-B Input Slew Rate Definition  
V
IH(AC)_CTipBmin  
V
IH(DC)_CTipBmin  
V
REFDQ  
V
IL(DC)_CTipBmax  
V
IL(AC)_CTipBmax  
tF_CTipB  
tR_CTipB  
Table 96: CT Type-C Input Levels (CMOS)  
Parameter  
Symbol  
Min  
0.8 × VDD  
0.7 × VDD  
VSS  
Max  
Unit  
Note  
1
CTipC AC input high voltage  
CTipC DC input high voltage  
CTipC DC input low voltage  
VIH(AC)_CTipC  
VIH(DC)_CTipC  
VIL(DC)_CTipC  
VDD  
V
V
V
2
2
2
VDD  
0.3 × VDD  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
270  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Single-Ended Input  
Measurement Levels  
Table 96: CT Type-C Input Levels (CMOS) (Continued)  
Parameter  
Symbol  
VIL(AC)_CTipC  
tF_CTipC  
Min  
Max  
0.2 × VDD  
1 0  
Unit  
V
Note  
1
CTipC AC input low voltage  
CTipC falling time  
CTipC rising time  
VSS  
2
2
2
ns  
tR_CTipC  
1 0  
ns  
1. Refer to Overshoot and Undershoot Specifications.  
2. CT Type-C inputs: Alert_n.  
Notes:  
Figure 212: CT Type-C Input Slew Rate Definition  
V
IH(AC)_TENmin  
V
IH(DC)_TENmin  
V
IL(DC)_TENmin  
V
IL(AC)_TENmin  
t
t
F_TEN  
R_TEN  
Table 97: CT Type-D Input Levels  
Parameter  
Symbol  
VIH(AC)_CTipD  
VIH(DC)_CTipD  
VIL(DC)_CTipD  
VIL(AC)_CTipD  
tR_RESET  
Min  
Max  
Unit  
V
Note  
CTipD AC input high voltage  
CTipD DC input high voltage  
CTipD DC input low voltage  
CTipD AC input low voltage  
Rising time  
0.8 × VDD  
VDD  
4
2
1
5
3
0.7 × VDD  
VDD  
V
VSS  
VSS  
0.3 × VDD  
V
0.2 × VDD  
V
1
μs  
μs  
μs  
RESET pulse width - after power-up  
RESET pulse width - during power-up  
tPW_RESET_S  
tPW_RESET_L  
1
200  
1. After RESET_n is registered LOW, the RESET_n level must be maintained below VIL(DC)_RE-  
SET during tPW_RESET, otherwise, the DRAM may not be reset.  
Notes:  
2. After RESET_n is registered HIGH, the RESET_n level must be maintained above  
VIH(DC)_RESET, otherwise, operation will be uncertain until it is reset by asserting RESET_n  
signal LOW.  
3. Slope reversal (ring-back) during this level transition from LOW to HIGH should be miti-  
gated as much as possible.  
4. Overshoot should not exceed the VIN values in the Absolute Maximum Ratings table.  
5. Undershoot should not exceed the VIN values in the Absolute Maximum Ratings table.  
6. CT Type-D inputs: RESET_n; same requirements as in normal mode.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
271  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
Figure 213: CT Type-D Input Slew Rate Definition  
t
PW_RESET  
V
V
IH(AC)_RESETmin  
IH(DC)_RESETmin  
V
V
IL(DC)_RESETmax  
IL(AC)_RESETmax  
t
R_RESET  
Electrical Characteristics – AC and DC Differential Input Measurement  
Levels  
Differential Inputs  
Figure 214: Differential AC Swing and “Time Exceeding AC-Level” tDVAC  
t
DVAC  
V
IH,diff(AC)min  
V
IH,diff,min  
CK_t, CK_c  
0.0  
V
IL,diff,max  
V
IL,diff(AC)max  
t
Half cycle  
DVAC  
1. Differential signal rising edge from VIL,diff,max to VIH,diff(AC)min must be monotonic slope.  
2. Differential signal falling edge from IH,diff,min to VIL,diff(AC)max must be monotonic slope.  
Notes:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
272  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
Table 98: Differential Input Swing Requirements for CK_t, CK_c  
DDR4-1600 / 1866 /  
2133 / 2400  
DDR4-2666 / 2933 /  
3200  
Parameter  
Symbol  
VIHdiff  
Min  
Max  
Min  
0.120  
Max  
Note 3  
-0.120  
Note 3  
Unit  
V
Notes  
Differential input high  
Differential input low  
Differential input high (AC)  
0.150  
Note 3  
–0.150  
Note 3  
1
1
2
VILdiff  
Note 3  
Note 3  
V
VIHdiff(AC) 2 × (VIH(AC)  
- VREF  
Note 3  
2 × (VIH(AC)  
V
)
- VREF  
)
Differential input low (AC)  
Notes:  
VILdiff(AC)  
2 × (VIL(AC)  
-
Note 3  
2 × (VIL(AC)  
-
V
2
VREF  
)
VREF)  
1. Used to define a differential signal slew-rate.  
2. For CK_t, CK_c use VIH(AC) and VIL(AC) of ADD/CMD and VREFCA  
.
3. These values are not defined; however, the differential signals (CK_t, CK_c) need to be  
within the respective limits, VIH(DC)max and VIL(DC)min for single-ended signals as well as  
the limitations for overshoot and undershoot.  
Table 99: Minimum Time AC Time tDVAC for CK  
tDVAC (ps) at |VIH,diff(AC) to VIL,diff(AC)  
|
Slew Rate (V/ns)  
200mV  
120  
115  
110  
105  
100  
95  
>4.0  
4.0  
3.0  
2.0  
1.9  
1.6  
1.4  
1.2  
1.0  
<1.0  
90  
85  
80  
80  
1. Below VIL(AC)  
.
Note:  
Single-Ended Requirements for CK Differential Signals  
Each individual co0ponent of a differential signal (CK_t, CK_c) has to co0ply with cer-  
tain require0ents for single-ended signals. CK_t and CK_c have to reach approxi0ately  
V
SEH0in/VSEL,0ax, which are approxi0ately equal to the AC levels VIH(AC) and VIL(AC) for  
ADD/CMD signals in every half-cycle. The applicable AC levels for ADD/CMD 0ight  
differ per speed-bin, and so on. For exa0ple, if a value other than 1660V is used for  
ADD/CMD VIH(AC) and VIL(AC) signals, then these AC levels also apply for the single-  
ended signals CK_t and CK_c.  
While ADD/CMD signal require0ents are with respect to VREFCA, the single-ended co0-  
ponents of differential signals have a require0ent with respect to VDD/2; this is no0i-  
nally the sa0e. The transition of single-ended signals through the AC levels is used to  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
273  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
0easure setup ti0e. For single-ended co0ponents of differential signals the require-  
0ent to reach VSEL,0ax/VSEH,0in has no bearing on ti0ing, but adds a restriction on the  
co00on 0ode characteristics of these signals.  
Figure 215: Single-Ended Requirements for CK  
VDD or VDDQ  
VSEH,min  
VDD/2 or VDDQ/2  
VSEH  
CK  
VSEL,max  
VSEL  
VSS or VSSQ  
Table 100: Single-Ended Requirements for CK  
DDR4-1600 / 1866 /  
2133 / 2400  
DDR4-2666 / 2933 /  
3200  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Notes  
Single-ended high level for CK_t,  
CK_c  
VSEH  
VDD/2 +  
0.100  
Note 3  
VDD/2 +  
0.90  
Note 3  
V
1, 2  
Single-ended low level for CK_t, CK_c  
VSEL  
Note 3  
VDD/2 -  
0.100  
Note 3  
VDD/2 - 0.90  
V
1, 2  
1. For CK_t, CK_c use VIH(AC) and VIL(AC) of ADD/CMD and VREFCA  
2. ADDR/CMD VIH(AC) and VIL(AC) based on VREFCA  
.
Notes:  
.
3. These values are not defined; however, the differential signal (CK_t, CK_c) need to be  
within the respective limits, VIH(DC)max and VIL(DC)min for single-ended signals as well as  
the limitations for overshoot and undershoot.  
Slew Rate Definitions for CK Differential Input Signals  
Table 101: CK Differential Input Slew Rate Definition  
Measured  
Description  
From  
To  
Defined by  
Differential input slew rate for rising edge  
VIL,diff,max  
VIH,diff,min  
|VIH,diff,min - VIL,diff,maxΔTRdiff  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
274  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
Table 101: CK Differential Input Slew Rate Definition (Continued)  
Measured  
From  
VIH,diff,min  
Description  
To  
Defined by  
Differential input slew rate for falling edge  
VIL,diff,max  
|VIH,diff,min - VIL,diff,maxΔTFdiff  
1. The differential signal CK_t, CK_c must be monotonic between these thresholds.  
Note:  
Figure 216: Differential Input Slew Rate Definition for CK_t, CK_c  
TRdiff  
VIH,diff,min  
0
VIL,diff,max  
TFdiff  
CK Differential Input Cross Point Voltage  
To guarantee tight setup and hold ti0es as well as output skew para0eters with respect  
to clock and strobe, each cross point voltage of differential input signal CK_t, CK_c 0ust  
0eet the require0ents shown below. The differential input cross point voltage VIX(CK) is  
0easured fro0 the actual cross point of true and co0ple0ent signals to the 0idlevel  
between VDD and VSS  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
275  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
Figure 217: VIX(CK) Definition  
VDD  
CK_c  
VIX(CK)  
VDD/2  
VIX(CK)  
VIX(CK)  
CK_t  
VSS  
VSEH  
VSEL  
Table 102: Cross Point Voltage For CK Differential Input Signals at DDR4-1600 through DDR4-2400  
DDR4-1600, 1866, 2133  
DDR4-2400  
Parameter  
Sym  
Input Level  
Min  
N/A  
N/A  
Max  
Min  
N/A  
N/A  
Max  
Differential VIX(CK)  
input cross  
point volt-  
VSEH > VDD/2 + 145mV  
120mV  
120mV  
VDD/2 + 100mV VSEH VDD/2  
(VSEH - VDD/2) -  
25mV  
(VSEH - VDD/2) -  
25mV  
+ 145mV  
age relative  
to VDD/2 for  
CK_t, CK_c  
V
DD/2 - 145mV VSEL VDD/2 - –(VDD/2-VSEL  
)
N/A  
–(VDD/2-VSEL) +  
25mV  
N/A  
100mV  
+25mV  
VSEL VDD/2 - 145mV  
–120mV  
N/A  
–120mV  
N/A  
Table 103: Cross Point Voltage For CK Differential Input Signals at DDR4-2666 through DDR4-3200  
DDR4-2666  
DDR4-2933, 3200  
Parameter  
Sym  
Input Level  
Min  
N/A  
N/A  
Max  
Min  
Max  
Differential VIX(CK)  
input cross  
point volt-  
VSEH > VDD/2 + 135mV  
110mV  
N/A  
N/A  
110mV  
VDD/2 + 90mV VSEH VDD/2 +  
(VSEH - VDD/2) -  
30mV  
(VSEH - VDD/2) -  
30mV  
135mV  
age relative  
to VDD/2 for  
CK_t, CK_c  
V
DD/2 - 135mV VSEL VDD/2 - –(VDD/2-VSEL) +  
N/A  
–(VDD/2-VSEL) +  
30mV  
N/A  
90mV  
30mV  
VSEL VDD/2 - 135mV  
–110mV  
N/A  
–110mV  
N/A  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
276  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
DQS Differential Input Signal Definition and Swing Requirements  
Figure 218: Differential Input Signal Definition for DQS_t, DQS_c  
VIH,diff,peak  
Half cycle  
0.0V  
Half cycle  
VIL,diff,peak  
Table 104: DDR4-1600 through DDR4-2400 Differential Input Swing Requirements for DQS_t, DQS_c  
DDR4-1600, 1866,  
2133  
DDR4-2400  
Parameter  
Symbol  
VIH,diff,peak  
VIL,diff,peak  
Min  
186  
Max  
VDDQ  
–186  
Min  
Max  
VDDQ  
–160  
Unit  
mV  
Notes  
1 , 2  
Peak differential input high voltage  
Peak differential input low voltage  
160  
VSSQ  
VSSQ  
mV  
1 , 2  
1. Minimum and maximum limits are relative to single-ended portion and can be exceeded  
within allowed overshoot and undershoot limits.  
Notes:  
2. Minimum value point is used to determine differential signal slew-rate.  
Table 105: DDR4-2633 through DDR4-3200 Differential Input Swing Requirements for DQS_t, DQS_c  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Notes  
Peak differential input high volt-  
age  
VIH,diff,peak  
150  
VDDQ  
145  
VDDQ  
140  
VDDQ  
mV  
1 , 2  
Peak differential input low volt-  
age  
VIL,diff,peak  
VSSQ  
–150  
VSSQ  
–145  
VSSQ  
–140  
mV  
1 , 2  
1. Minimum and maximum limits are relative to single-ended portion and can be exceeded  
within allowed overshoot and undershoot limits.  
Notes:  
2. Minimum value point is used to determine differential signal slew-rate.  
The peak voltage of the DQS signals are calculated using the following equations:  
V
IH,dif,Peak voltage = MAX(ft)  
VIL,dif,Peak voltage = MIN(ft)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
277  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
(ft) = DQS_t, DQS_c.  
The MAX(f(t)) or MIN(f(t)) used to deter0ine the 0idpoint fro0 which to reference the  
±35% window of the exe0pt non-0onotonic signaling shall be the s0allest peak volt-  
age observed in all UIs.  
Figure 219: DQS_t, DQS_c Input Peak Voltage Calculation and Range of Exempt non-Monotonic Sig-  
naling  
DQS_t  
+50%  
+35%  
MIN(f )  
t
MAX(f )  
t
–35%  
–50%  
DQS_c  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
278  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
DQS Differential Input Cross Point Voltage  
To achieve tight RxMask input require0ents as well as output skew para0eters with re-  
spect to strobe, the cross point voltage of differential input signals (DQS_t, DQS_c) 0ust  
0eet VIX_DQS,ratio in the table below. The differential input cross point voltage VIX_DQS  
(VIX_DQS_FR and VIX_DQS_RF) is 0easured fro0 the actual cross point of DQS_t, DQS_c  
relative to the VDQS,0id of the DQS_t and DQS_c signals.  
VDQS,0id is the 0idpoint of the 0ini0u0 levels achieved by the transitioning DQS_t  
and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the difference between the low-  
est horizontal tangent above VDQS,0id of the transitioning DQS signals and the highest  
horizontal tangent below VDQS,0id of the transitioning DQS signals. A non-0onotonic  
transitioning signal’s ledge is exe0pt or not used in deter0ination of a horizontal tan-  
gent provided the said ledge occurs within ±35% of the 0idpoint of either VIH.DIFF.Peak  
voltage (DQS_t rising) or VIL.DIFF.Peak voltage (DQS_c rising), as shown in the figure be-  
low.  
A secondary horizontal tangent resulting fro0 a ring-back transition is also exe0pt in  
deter0ination of a horizontal tangent. That is, a falling transition’s horizontal tangent is  
derived fro0 its negative slope to zero slope transition (point A in the figure below), and  
a ring-back’s horizontal tangent is derived fro0 its positive slope to zero slope transi-  
tion (point B in the figure below) and is not a valid horizontal tangent; a rising transi-  
tion’s horizontal tangent is derived fro0 its positive slope to zero slope transition (point  
C in the figure below), and a ring-back’s horizontal tangent derived fro0 its negative  
slope to zero slope transition (point D in the figure below) and is not a valid horizontal  
tangent.  
Figure 220: VIXDQS Definition  
Lowest horizontal tanget above V  
of the transitioning signals  
DQS,mid  
C
DQS_t  
D
V
V
IX_DQS,RF  
IX_DQS,FR  
V
DQS,mid  
V
V
IX_DQS,FR  
IX_DQS,RF  
B
DQS_c  
A
Highest horizontal tanget below V  
of the transitioning signals  
DQS,mid  
V
SSQ  
Table 106: Cross Point Voltage For Differential Input Signals DQS  
DDR4-1600, 1866, 2133, 2400,  
2666, 2933, 3200  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
DQS_t and DQS_c crossing relative to the  
midpoint of the DQS_t and DQS_c signal  
swings  
VIX_DQS,ratio  
25  
%
1, 2  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
279  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
Table 106: Cross Point Voltage For Differential Input Signals DQS (Continued)  
DDR4-1600, 1866, 2133, 2400,  
2666, 2933, 3200  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
VDQS,mid to Vcent(midpoint) offset  
VDQS,mid_to_Vcent  
Note 3  
mV  
2
1. VIX_DQS,ratio is DQS VIX crossing (VIX_DQS,FR or VIX_DQS,RF) divided by VDQS_trans. VDQS_trans is  
the difference between the lowest horizontal tangent above VDQS,midd of the transition-  
ing DQS signals and the highest horizontal tangent below VDQS,mid of the transitioning  
DQS signals.  
Notes:  
2. VDQS,mid will be similar to the VREFDQ internal setting value (Vcent(midpoint) offset) ob-  
tained during VREF Training if the DQS and DQs drivers and paths are matched.  
3. The maximum limit shall not exceed the smaller of VIH,diff,DQS minimum limit or 50mV.  
Slew Rate Definitions for DQS Differential Input Signals  
Table 107: DQS Differential Input Slew Rate Definition  
Measured  
Description  
From  
To  
Defined by  
Differential input slew rate for rising edge  
Differential input slew rate for falling edge  
V IL,diff,DQS  
V IH,diff,DQS  
V IH,diff,DQS  
V IL,diff,DQS  
|VIH,diff,DQS - VIL,diff,DQSΔTRdiff  
|VIHdiffDQS - VIL,diff,DQSΔTFdiff  
1. The differential signal DQS_t, DQS_c must be monotonic between these thresholds.  
Note:  
Figure 221: Differential Input Slew Rate and Input Level Definition for DQS_t, DQS_c  
VIH,diff,peak  
VIH,diff,DQS  
0.0V  
VIL,diff,DQS  
TR  
TF  
diff  
diff  
VIL,diff,peak  
Table 108: DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels for DQS_t,  
DQS_c  
DDR4-1600, 1866, 2133  
DDR4-2400  
Min Max  
Parameter  
Symbol  
VIH,diff,peak  
VIH,diff,DQS  
VIL,diff,DQS  
Min  
186  
136  
Max  
VDDQ  
Unit  
mV  
mV  
mV  
Notes  
1
Peak differential input high voltage  
Differential input high voltage  
Differential input low voltage  
160  
130  
VDDQ  
2, 3  
2, 3  
–136  
–130  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
280  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Differential Input Meas-  
urement Levels  
Table 108: DDR4-1600 through DDR4-2400 Differential Input Slew Rate and Input Levels for DQS_t,  
DQS_c (Continued)  
DDR4-1600, 1866, 2133  
DDR4-2400  
Parameter  
Symbol  
VIL,diff,peak  
SRIdiff  
Min  
VSSQ  
3.0  
Max  
–186  
18  
Min  
Max  
–160  
18  
Unit  
mV  
Notes  
1
Peak differential input low voltage  
DQS differential input slew rate  
VSSQ  
3.0  
V/ns  
4, 5  
1. Minimum and maximum limits are relative to single-ended portion and can be exceeded  
within allowed overshoot and undershoot limits.  
Notes:  
2. Differential signal rising edge from VIL,diff,DQS to VIH,diff,DQS must be monotonic slope.  
3. Differential signal falling edge from VIH,diff,DQS to VIL,diff,DQS must be monotonic slope.  
4. Differential input slew rate for rising edge from VIL,diff,DQS to VIH,diff,DQS is defined by |  
V
IL,diff,min - VIH,diff,maxΔTRdiff  
5. Differential input slew rate for falling edge from VIH,diff,DQS to VIL,diff,DQS is defined by |  
IL,diff,min - VIH,diff,maxΔTFdiff  
.
V
.
Table 109: DDR4-2666 through DDR4-3200 Differential Input Slew Rate and Input Levels for DQS_t,  
DQS_c  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit Notes  
Peak differential input  
high voltage  
VIH,diff,peak  
150  
120  
VDDQ  
145  
115  
VDDQ  
140  
110  
VDDQ  
mV  
mV  
mV  
mV  
V/ns  
1
Differential input high  
voltage  
VIH,diff,DQS  
VIL,diff,DQS  
VIL,diff,peak  
SRIdiff  
2, 3  
2, 3  
1
Differential input low  
voltage  
–120  
–150  
18  
–115  
–145  
18  
–110  
–140  
18  
Peak differential input  
low voltage  
VSSQ  
3.0  
VSSQ  
3.0  
VSSQ  
3.0  
DQS differential input  
slew rate  
4, 5  
1. Minimum and maximum limits are relative to single-ended portion and can be exceeded  
within allowed overshoot and undershoot limits.  
Notes:  
2. Differential signal rising edge from VIL,diff,DQS to VIH,diff,DQS must be monotonic slope.  
3. Differential signal falling edge from VIH,diff,DQS to VIL,diff,DQS must be monotonic slope.  
4. Differential input slew rate for rising edge from VIL,diff,DQS to VIH,diff,DQS is defined by |  
V
IL,diff,min - VIH,diff,maxΔTRdiff  
5. Differential input slew rate for falling edge from VIH,diff,DQS to VIL,diff,DQS is defined by |  
IL,diff,min - VIH,diff,maxΔTFdiff  
.
V
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
281  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – Overshoot and Undershoot Specifi-  
cations  
Electrical Characteristics – Overshoot and Undershoot Specifications  
Address, Command, and Control Overshoot and Undershoot Specifications  
Table 110: ADDR, CMD, CNTL Overshoot and Undershoot/Specifications  
DDR4- DDR4-  
1600 1866  
DDR4-  
2133  
DDR4- DDR4- DDR4- DDR4-  
2400 2666 2933 3200  
Description  
Unit  
Address and control pins (A[17:0], BG[1:0], BA[1:0], CS_n, RAS_n, CAS_n, WE_n, CKE, ODT, C2-0)  
Area A: Maximum peak amplitude above VDD  
absolute MAX  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
V
V
V
Area B: Amplitude allowed between VDD and  
VDD absolute MAX  
Area C: Maximum peak amplitude allowed for  
undershoot below VSS  
Area A maximum overshoot area per 1tCK  
Area B maximum overshoot area per 1tCK  
Area C maximum undershoot area per 1tCK  
0.0083 0.0071  
0.2550 0.2185  
0.2644 0.2265  
0.0062  
0.1914  
0.1984  
0.0055 0.0055 0.0055 0.0055 V/ns  
0.1699 0.1699 0.1699 0.1699 V/ns  
0.1762 0.1762 0.1762 0.1762 V/ns  
Figure 222: ADDR, CMD, CNTL Overshoot and Undershoot Definition  
Absolute MAX overshoot  
Overshoot area above V absolute MAX  
DD  
A
V
absolute MAX  
DD  
Overshoot area below V absolute MAX  
DD  
B
and above V MAX  
DD  
V
DD  
t
1 CK  
V
SS  
Undershoot area below V  
SS  
C
Clock Overshoot and Undershoot Specifications  
Table 111: CK Overshoot and Undershoot/ Specifications  
DDR4- DDR4- DDR4- DDR4- DDR4- DDR4- DDR4-  
Description  
1600  
1866  
2133  
2400  
2666  
2933 3200  
Unit  
CLK_t, CLK_n  
Area A: Maximum peak amplitude above VDD  
absolute MAX  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
0.06  
0.24  
0.30  
V
V
V
Area B: Amplitude allowed between VDD and  
VDD absolute MAX  
Area C: Maximum peak amplitude allowed for  
undershoot below VSS  
Area A maximum overshoot area per 1UI  
Area B maximum overshoot area per 1UI  
0.0038 0.0032 0.0028 0.0025 0.0025 0.0025 0.0025 V/ns  
0.1125 0.0964 0.0844 0.0750 0.0750 0.0750 0.0750 V/ns  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
282  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – Overshoot and Undershoot Specifi-  
cations  
Table 111: CK Overshoot and Undershoot/ Specifications (Continued)  
DDR4- DDR4- DDR4- DDR4- DDR4- DDR4- DDR4-  
1600 1866 2133 2400 2666 2933 3200  
0.1144 0.0980 0.0858 0.0762 0.0762 0.0762 0.0762 V/ns  
Description  
Unit  
Area C maximum undershoot area per 1UI  
Figure 223: CK Overshoot and Undershoot Definition  
Absolute MAX overshoot  
VDD absolute MAX  
Overshoot area above VDD absolute MAX  
A
B
Overshoot area below VDD absolute MAX  
and above VDD MAX  
VDD  
VSS  
1UI  
Undershoot area below VSS  
C
Data, Strobe, and Mask Overshoot and Undershoot Specifications  
Table 112: Data, Strobe, and Mask Overshoot and Undershoot/ Specifications  
DDR4- DDR4- DDR4- DDR4- DDR4- DDR4- DDR4-  
1600 1866 2133 2400 2666 2933 3200  
DQS_t, DQS_n, DQSL_t, DQSL_n, DQSU_t, DQSU_n, DQ[0:15], DM/DBI, UDM/UDBI, LDM/LDBI,  
Description  
Unit  
Area A: Maximum peak amplitude above VDDQ  
absolute MAX  
0.16  
0.24  
0.30  
0.10  
0.16  
0.24  
0.30  
0.10  
0.16  
0.24  
0.30  
0.10  
0.16  
0.24  
0.30  
0.10  
0.16  
0.24  
0.30  
0.10  
0.16  
0.24  
0.30  
0.10  
0.16  
0.24  
0.30  
0.10  
V
V
V
V
Area B: Amplitude allowed between VDDQ and  
VDDQ absolute MAX  
Area C: Maximum peak amplitude allowed for  
undershoot below VSSQ  
Area D: Maximum peak amplitude below VSSQ  
absolute MIN  
Area A maximum overshoot area per 1UI  
Area B maximum overshoot area per 1UI  
Area C maximum undershoot area per 1UI  
Area D maximum undershoot area per 1UI  
0.0150 0.0129 0.0113 0.0100 0.0129 0.0113 0.0100 V/ns  
0.1050 0.0900 0.0788 0.0700 0.0900 0.0788 0.0700 V/ns  
0.1050 0.0900 0.0788 0.0700 0.0900 0.0788 0.0700 V/ns  
0.0150 0.0129 0.0113 0.0100 0.0129 0.0113 0.0100 V/ns  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
283  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Measurement  
Levels  
Figure 224: Data, Strobe, and Mask Overshoot and Undershoot Definition  
Absolute MAX overshoot  
VDDQ absolute MAX  
Overshoot area above VDDQ absolute MAX  
A
B
Overshoot area below VDDQ absolute MAX  
and above VDDQ MAX  
VDDQ  
VSSQ  
1UI  
Undershoot area below VSSQ MIN and  
above VSSQ absolute MIN  
C
VSSQ absolute MIN  
D
Undershoot area below VSSQ absolute MIN  
Absolute MAX undershoot  
Electrical Characteristics – AC and DC Output Measurement Levels  
Single-Ended Outputs  
Table 113: Single-Ended Output Levels  
Parameter  
Symbol  
VOH(DC)  
VOM(DC)  
VOL(DC)  
VOH(AC)  
VOL(AC)  
DDR4-1600 to DDR4-3200  
1.1 × VDDQ  
Unit  
V
DC output high measurement level (for IV curve linearity)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
AC output high measurement level (for output slew rate)  
AC output low measurement level (for output slew rate)  
0.8 × VDDQ  
V
0.5 × VDDQ  
V
(0.7 + 0.15) × VDDQ  
(0.7 - 0.15) × VDDQ  
V
V
1. The swing of 0.15 × VDDQ is based on approximately 50% of the static single-ended  
output peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load  
Note:  
of 50Ω to VTT = VDDQ  
.
Using the sa0e reference load used for ti0ing 0easure0ents, output slew rate for fall-  
ing and rising edges is defined and 0easured between VOL(AC) and VOH(AC) for single-  
ended signals.  
Table 114: Single-Ended Output Slew Rate Definition  
Measured  
Description  
From  
VOL(AC)  
VOH(AC)  
To  
Defined by  
Single-ended output slew rate for rising edge  
Single-ended output slew rate for falling edge  
VOH(AC)  
VOL(AC)  
[VOH(AC) - VOL(AC)ΔTRse  
[VOH(AC) - VOL(AC)ΔTFse  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
284  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Measurement  
Levels  
Figure 225: Single-ended Output Slew Rate Definition  
TR  
se  
V
OH(AC)  
V
OL(AC)  
TF  
se  
Table 115: Single-Ended Output Slew Rate  
For RON = RZQ/7  
DDR4-1600/ 1866 / 2133 /  
2400  
DDR4-2666  
Min Max  
DDR4-2933 / 3200  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Single-ended output  
slew rate  
SRQse  
4
9
4
9
4
9
V/ns  
1. SR = slew rate; Q = query output; se = single-ended signals  
Notes:  
2. In two cases a maximum slew rate of 12V/ns applies for a single DQ signal within a byte  
lane:  
• Case 1 is defined for a single DQ signal within a byte lane that is switching into a cer-  
tain direction (either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ sig-  
nals in the same byte lane are static (they stay at either HIGH or LOW).  
• Case 2 is defined for a single DQ signal within a byte lane that is switching into a cer-  
tain direction (either from HIGH-to-LOW or LOW-to-HIGH) while all remaining DQ sig-  
nals in the same byte lane are switching into the opposite direction (from LOW-to-  
HIGH or HIGH-to-LOW, respectively). For the remaining DQ signal switching into the  
opposite direction, the standard maximum limit of 9 V/ns applies.  
Differential Outputs  
Table 116: Differential Output Levels  
Parameter  
Symbol  
DDR4-1600 to DDR4-3200  
Unit  
AC differential output high measurement level (for output slew  
rate)  
VOH,diff(AC)  
0.3 × VDDQ  
V
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
285  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Measurement  
Levels  
Table 116: Differential Output Levels (Continued)  
Parameter  
Symbol  
DDR4-1600 to DDR4-3200  
Unit  
AC differential output low measurement level (for output slew  
rate)  
VOL,diff(AC)  
–0.3 × VDDQ  
V
1. The swing of 0.3 × VDDQ is based on approximately 50% of the static single-ended out-  
put peak-to-peak swing with a driver impedance of RZQ/7 and an effective test load of  
50Ω to VTT = VDDQ at each differential output.  
Note:  
Using the sa0e reference load used for ti0ing 0easure0ents, output slew rate for fall-  
ing and rising edges is defined and 0easured between VOL,diff(AC) and VOH,diff(AC) for dif-  
ferential signals.  
Table 117: Differential Output Slew Rate Definition  
Measured  
Description  
From  
VOL,diff(AC)  
VOH,diff(AC)  
To  
Defined by  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOH,diff(AC)  
VOL,diff(AC)  
[VOH,diff(AC) - VOL,diff(AC)ΔTRdiff  
[VOH,diff(AC) - VOL,diff(AC)ΔTFdiff  
Figure 226: Differential Output Slew Rate Definition  
TR  
diff  
V
OH,diff(AC)  
V
OL,diff(AC)  
TF  
diff  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
286  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Measurement  
Levels  
Table 118: Differential Output Slew Rate  
For RON = RZQ/7  
DDR4-1600 / 1866 /  
2133 / 2400  
DDR4-2666  
Min Max  
18  
DDR4-2933 / 3200  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Differential output slew  
rate  
SRQdiff  
8
18  
8
8
18  
V/ns  
1. SR = slew rate; Q = query output; diff = differential signals.  
Note:  
Reference Load for AC Timing and Output Slew Rate  
The effective reference load of 56ȍ to VTT = VDDQ and driver i0pedance of RZQ/7 for  
each output was used in defining the relevant AC ti0ing para0eters of the device as  
well as output slew rate 0easure0ents.  
Ron no0inal of DQ, DQS_t and DQS_c drivers uses 34 oh0s to specify the relevant AC  
ti0ing paraeter values of the device. The 0axi0u0 DC High level of Output signal = 1.6  
* VDDQ, the 0ini0u0 DC Low level of Output signal = { 34 /( 34 + 56 ) } *VDDQ = 6.4*  
VDDQ  
The no0inal reference level of an Output signal can be approxi0ated by the following:  
The center of 0axi0u0 DC High and 0ini0u0 DC Low = { ( 1 + 6.4 ) / 2 } * VDDQ = 6.7  
* VDDQ. The actual reference level of Output signal 0ight vary with driver Ron and ref-  
erence load tolerances. Thus, the actual reference level or 0idpoint of an output signal  
is at the widest part of the output signal’s eye.  
Figure 227: Reference Load For AC Timing and Output Slew Rate  
VDDQ  
VTT = VDDQ  
DQ, DQS_t, DQS_c,  
DM, TDQS_t, TDQS_c  
CK_t, CK_c  
DUT  
VSSQ  
RTT = 50ȍ  
Timing reference point  
Connectivity Test Mode Output Levels  
Table 119: Connectivity Test Mode Output Levels  
Parameter  
Symbol  
VOH(DC)  
VOM(DC)  
VOL(DC)  
DDR4-1600 to DDR4-3200  
1.1 × VDDQ  
Unit  
V
DC output high measurement level (for IV curve linearity)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
0.8 × VDDQ  
V
0.5 × VDDQ  
V
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
287  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Measurement  
Levels  
Table 119: Connectivity Test Mode Output Levels (Continued)  
Parameter  
Symbol  
VOB(DC)  
VOH(AC)  
VOL(AC)  
DDR4-1600 to DDR4-3200  
Unit  
V
DC output below measurement level (for IV curve linearity)  
AC output high measurement level (for output slew rate)  
AC output low measurement level (for output slew rate)  
0.2 × VDDQ  
VTT + (0.1 × VDDQ  
)
V
VTT - (0.1 × VDDQ  
)
V
1. Driver impedance of RZQ/7 and an effective test load of 50Ω to VTT = VDDQ  
.
Note:  
Figure 228: Connectivity Test Mode Reference Test Load  
VDDQ  
DQ, DQS_t, DQS_c,  
DQSL_t, DQSL_c, DQSU_t, DQSU_c,  
DM, DML, DMH, TDQS_t, TDQS_c  
0.5 × VDDQ  
CT_Inputs  
DUT  
VSSQ  
RTT = 50ȍ  
Timing reference point  
Figure 229: Connectivity Test Mode Output Slew Rate Definition  
V
OH(AC)  
V
TT  
0.5 x VDD  
V
OL(AC)  
TF  
TR  
output_CT  
output_CT  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
288  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Driver Charac-  
teristics  
Table 120: Connectivity Test Mode Output Slew Rate  
DDR4-1600 / 1866 /  
2133 / 2400  
DDR4-2933 /  
3200  
DDR4-2666  
Parameter  
Symbol  
Min  
Max  
10  
Min  
Max  
Min  
Max  
10  
Unit  
ns/V  
ns/V  
Output signal falling time  
Output signal rising time  
TF_output_CT  
TR_output_CT  
10  
10  
10  
10  
Electrical Characteristics – AC and DC Output Driver Characteristics  
Output Driver Electrical Characteristics  
The DDR4 driver supports two RON values. These RON values are referred to as strong  
0ode (low RON: 34ȍ) and weak 0ode (high RON: 48ȍ). A functional representation of  
the output buffer is shown in the figure below.  
Figure 230: Output Driver: Definition of Voltages and Currents  
Chip in drive mode  
Output driver  
VDDQ  
IPU  
To  
other  
circuitry  
like  
RCV,  
...  
RONPU  
DQ  
VOUT  
VSSQ  
IOUT  
RONPD  
IPD  
The output driver i0pedance, RON, is deter0ined by the value of the external reference  
resistor RZQ as follows: RON(34) = RZQ/7, or RON(48) = RZQ/5. This provides either a no0i-  
nal 34.3ȍ ±16% or 48ȍ ±16% with no0inal RZQ = 246ȍ.  
The individual pull-up and pull-down resistors (RONPu and RONPd) are defined as fol-  
lows:  
RONPu when RONPd is off:  
V
- V  
OUT  
DDQ  
R
=
ONPU  
I
OUT  
RONPD when RONPU is off:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
289  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Driver Charac-  
teristics  
VOUT  
RONPD  
=
IOUT  
Table 121: Strong Mode (34Ω) Output Driver Electrical Characteristics  
Assumes RZQ Ω; Entire operating temperature range after proper ZQ calibration  
RON,nom  
Resistor  
VOUT  
Min  
0.8  
0.9  
0.9  
0.9  
0.9  
0.8  
–10  
Nom  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
Max  
1.1  
Unit  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
%
Notes  
1, 2, 3  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
RON34PD  
1.1  
1, 2, 3  
1.25  
1.25  
1.1  
1, 2, 3  
Ω  
1, 2, 3  
RON34PU  
1, 2, 3  
1.1  
1, 2, 3  
Mismatch between DQ to DQ  
within byte variation pull-up,  
MMPUdd  
10  
1, 2, 3, 4, 5  
Mismatch between DQ to DQ  
within byte variation pull-down,  
MMPDdd  
VOM(DC) = 0.8 × VDDQ  
10  
10  
%
%
1, 2, 3, 4,  
6, 7  
Mismatch between pull-up and  
pull-down, MMPUPD  
VOM(DC) = 0.8 × VDDQ  
1, 2, 3, 4,  
6, 7  
1. The tolerance limits are specified after calibration with stable voltage and temperature.  
For the behavior of the tolerance limits if temperature or voltage changes after calibra-  
tion, see following section on voltage and temperature sensitivity.  
Notes:  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ  
VSS.  
=
3. Micron recommends calibrating pull-down and pull-up output driver impedances at 0.8  
× VDDQ. Other calibration schemes may be used to achieve the linearity specification  
shown above; for example, calibration at 0.5 × VDDQ and 1.1 VDDQ  
.
4. DQ-to-DQ mismatch within byte variation for a given component including DQS_t and  
DQS_c (characterized).  
5. Measurement definition for mismatch between pull-up and pull-down, MMPUPD  
:
Measure both RONPU and RONPD at 0.8 × VDDQ separately; RON,nom is the nominal RON val-  
ue:  
R
- R  
ONPD  
ONPU  
R
MM  
=
× 100  
PUPD  
ON,nom  
6. RON variance range ratio to RON nominal value in a given component, including DQS_t  
and DQS_c:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
290  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Driver Charac-  
teristics  
R
R
- R  
ONPU,min  
ONPU,max  
MM  
=
=
× 100  
× 100  
PUDD  
R
ON,nom  
- R  
ONPD,max  
ONPD,min  
MM  
PDDD  
R
ON,nom  
7. The lower and upper bytes of a x16 are each treated on a per byte basis.  
8. For IT, AT, and UT devices, the minimum values are derated by 9% when the device op-  
erates between –40°C and 0°C (TC).  
Table 122: Weak Mode (48Ω) Output Driver Electrical Characteristics  
Assumes RZQ Ω; Entire operating temperature range after proper ZQ calibration  
RON,nom  
Resistor  
VOUT  
Min  
0.8  
0.9  
0.9  
0.9  
0.9  
0.8  
-10  
Nom  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
Max  
1.1  
Unit  
RZQ/5  
RZQ/5  
RZQ/5  
RZQ/5  
RZQ/5  
RZQ/5  
%
Notes  
1, 2, 3  
Ω  
RON34PD  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
1.1  
1, 2, 3  
1.25  
1.25  
1.1  
1, 2, 3  
RON34PU  
1, 2, 3  
1, 2, 3  
1.1  
1, 2, 3  
Mismatch between DQ to DQ  
within byte variation pull-up,  
MMPUdd  
10  
1, 2, 3, 4, 5  
Mismatch between DQ to DQ  
within byte variation pull-down,  
MMPDdd  
VOM(DC) = 0.8 × VDDQ  
10  
10  
%
%
1, 2, 3, 4,  
6, 7  
Mismatch between pull-up and  
pull-down, MMPUPD  
VOM(DC) = 0.8 × VDDQ  
1, 2, 3, 4,  
6, 7  
1. The tolerance limits are specified after calibration with stable voltage and temperature.  
For the behavior of the tolerance limits if temperature or voltage changes after calibra-  
tion, see following section on voltage and temperature sensitivity.  
Notes:  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ  
VSS.  
=
3. Micron recommends calibrating pull-down and pull-up output driver impedances at 0.8  
× VDDQ. Other calibration schemes may be used to achieve the linearity specification  
shown above; for example, calibration at 0.5 × VDDQ and 1.1 VDDQ  
.
4. DQ-to-DQ mismatch within byte variation for a given component including DQS_t and  
DQS_c (characterized).  
5. Measurement definition for mismatch between pull-up and pull-down, MMPUPD  
:
Measure both RONPU and RONPD at 0.8 × VDDQ separately; RON,nom is the nominal RON val-  
ue:  
RONPU - RONPD  
MMPUPD  
=
× 100  
RON,nom  
6. RON variance range ratio to RON nominal value in a given component, including DQS_t  
and DQS_c:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
291  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Driver Charac-  
teristics  
R
R
- R  
ONPU,min  
ONPU,max  
MM  
=
=
× 100  
× 100  
PUDD  
R
ON,nom  
- R  
ONPD,max  
ONPD,min  
MM  
PDDD  
R
ON,nom  
7. The lower and upper bytes of a x16 are each treated on a per byte basis.  
8. For IT, AT, and UT devices, the minimum values are derated by 9% when the device op-  
erates between –40°C and 0°C (TC).  
Output Driver Temperature and Voltage Sensitivity  
If te0perature and/or voltage change after calibration, the tolerance li0its widen ac-  
cording to the equations and tables below.  
ǻT = T - T(@calibration); ǻV = VDDQ - VDDQ(@ calibration); VDD = VDDQ  
Table 123: Output Driver Sensitivity Definitions  
Symbol  
Min  
Max  
Unit  
RZQ/6  
RZQ/6  
RZQ/6  
RONPU@ VOH(DC)  
RON@ VOM(DC)  
RONPD@ VOL(DC)  
0.6 - dRONdTH × |ΔT| - dRONdVH × |ΔV|  
0.9 - dRONdTM × |ΔT| - dRONdVM × |ΔV|  
0.6 - dRONdTL × |ΔT| - dRONdVL × |ΔV|  
1.1 _ dRONdTH × |ΔT| + dRONdVH × |ΔV|  
1.1 + dRONdTM × |ΔT| + dRONdVM × |ΔV|  
1.1 + dRONdTL × |ΔT| + dRONdVL × |ΔV|  
Table 124: Output Driver Voltage and Temperature Sensitivity  
Voltage and Temperature Range  
Symbol  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVM  
Min  
Max  
1.5  
Unit  
%/°C  
0
0
0
0
0
0
0.15  
1.5  
%/mV  
%/°C  
0.15  
1.5  
%/mV  
%/°C  
0.15  
%/mV  
Alert Driver  
A functional representation of the alert output buffer is shown in the figure below. Out-  
put driver i0pedance, RON, is defined as follows.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
292  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – AC and DC Output Driver Charac-  
teristics  
Figure 231: Alert Driver  
Alert driver  
'5$0  
Alert  
I
OUT  
R
V
OUT  
ONPD  
I
PD  
V
SSQ  
RONPD when RONPU is off:  
VOUT  
RONPD  
=
IOUT  
Table 125: Alert Driver Voltage  
RON,nom  
Register  
VOUT  
Min  
Nom  
N/A  
Max  
1.2  
Unit  
RZQ/7  
RZQ/7  
RZQ/7  
N/A  
RONPD  
VOL(DC) = 0.1 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
0.3  
0.4  
0.4  
N/A  
1.12  
1.4  
N/A  
1. VDDQ voltage is at VDDQ(DC)  
.
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
293  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – On-Die Termination Characteristics  
Electrical Characteristics – On-Die Termination Characteristics  
ODT Levels and I-V Characteristics  
On-die ter0ination (ODT) effective resistance settings are defined and can be selected  
by any or all of the following options:  
• MR1[16:8] (RTT(NOM)): Disable, 246 oh0s, 126 oh0s, 86 oh0s, ±6 oh0s, 48 oh0s, 46  
oh0s, and 34 oh0s.  
• MR2[11:9] (RTT(WR)): Disable, 246 oh0s,126 oh0s, and 86 oh0s.  
• MR5[8:±] (RTT(Park)): Disable, 246 oh0s, 126 oh0s, 86 oh0s, ±6 oh0s, 48 oh0s, 46  
oh0s, and 34 oh0s.  
ODT is applied to the following inputs:  
• x4: DQ, DM_n, DQS_t, and DQS_c inputs.  
• x8: DQ, DM_n, DQS_t, DQS_c, TDQS_t, and TDQS_c inputs.  
• x1±: DQ, LDM_n, UDM_n, LDQS_t, LDQS_c, UDQS_t, and UDQS_c inputs.  
A functional representation of ODT is shown in the figure below.  
Figure 232: ODT Definition of Voltages and Currents  
Chip in termination mode  
ODT  
VDDQ  
RTT  
To other  
circuitry  
like RCV,  
DQ  
...  
IOUT  
VOUT  
VSSQ  
Table 126: ODT DC Characteristics  
RTT  
VOUT  
Min  
0.9  
0.9  
0.8  
0.9  
0.9  
0.8  
0.9  
0.9  
0.8  
Nom  
Max  
1.25  
1.1  
Unit  
RZQ  
Notes  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
240 ohm  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
1
1
1
1
1
1
1
1
1
RZQ  
1.1  
RZQ  
120 ohm  
80 ohm  
1.25  
1.1  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/3  
RZQ/3  
RZQ/3  
1.1  
1.25  
1.1  
1.1  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
294  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – On-Die Termination Characteristics  
Table 126: ODT DC Characteristics (Continued)  
RTT  
VOUT  
Min  
0.9  
0.9  
0.8  
0.9  
0.9  
0.8  
0.9  
0.9  
0.8  
0.9  
0.9  
0.8  
0
Nom  
Max  
1.25  
1.1  
Unit  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/5  
RZQ/5  
RZQ/5  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/7  
RZQ/7  
RZQ/7  
%
Notes  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 4, 5, 6  
60 ohm  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOL(DC) = 0.5 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
VOH(DC) = 1.1 × VDDQ  
VOM(DC) = 0.8 × VDDQ  
1
1
1
1
1
1
1
1
1
1
1
1
1.1  
48 ohm  
40 ohm  
34 ohm  
1.25  
1.1  
1.1  
1.25  
1.1  
1.1  
1.25  
1.1  
1.1  
DQ-to-DQ mismatch  
within byte  
10  
1. The tolerance limits are specified after calibration to 240 ohm 1% resistor with stable  
voltage and temperature. For the behavior of the tolerance limits if temperature or  
voltage changes after calibration, see ODT Temperature and Voltage Sensitivity.  
Notes:  
2. Micron recommends calibrating pull-up ODT resistors at 0.8 × VDDQ. Other calibration  
schemes may be used to achieve the linearity specification shown here.  
3. The tolerance limits are specified under the condition that VDDQ = VDD and VSSQ = VSS.  
4. The DQ-to-DQ mismatch within byte variation for a given component including DQS_t  
and DQS_c.  
5. RTT variance range ratio to RTT nominal value in a given component, including DQS_t  
and DQS_c.  
R
- R  
TT(MIN)  
TT(MAX)  
× 100  
DQ-to-DQ mismatch =  
R
TT(NOM)  
6. DQ-to-DQ mismatch for a x16 device is treated as two separate bytes.  
7. For IT, AT, and UT devices, the minimum values are derated by 9% when the device op-  
erates between –40°C and 0°C (TC).  
ODT Temperature and Voltage Sensitivity  
If te0perature and/or voltage change after calibration, the tolerance li0its widen ac-  
cording to the following equations and tables.  
ǻT = T - T(@ calibration); ǻV = VDDQ - VDDQ(@ calibration); VDD = VDDQ  
Table 127: ODT Sensitivity Definitions  
Parameter  
Min  
Max  
Unit  
RTT@  
0.9 - dRTTdT × |ΔT| - dRTTdV × |ΔV|  
1.6 + dRTTdTH × |ΔT| + dRTTdVH × |ΔV|  
RZQ/n  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
295  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – On-Die Termination Characteristics  
Table 128: ODT Voltage and Temperature Sensitivity  
Parameter  
dRTTdT  
Min  
Max  
1.5  
Unit  
%/°C  
0
0
dRTTdV  
0.15  
%/mV  
ODT Timing Definitions  
The reference load for ODT ti0ings is different than the reference load used for ti0ing  
0easure0ents.  
Figure 233: ODT Timing Reference Load  
VDDQ  
DQ, DQS_t, DQS_c,  
DM, TDQS_t, TDQS_c  
CK_t, CK_c  
DUT  
VSSQ  
RTT = 50ȍ  
VTT  
=
VSSQ  
Timing reference point  
ODT Timing Definitions and Waveforms  
Definitions for tADC, tAONAS, and tAOFAS are provided in the Table 129 (page 29±) and  
shown in Figure 234 (page 297) and Figure 23± (page 298). Measure0ent reference set-  
tings are provided in the subsequent Table 136 (page 297).  
The tADC for the dyna0ic ODT case and read disable ODT cases are represented by  
tADC of Direct ODT Control case.  
Table 129: ODT Timing Definitions  
Parameter  
Begin Point Definition  
End Point Definition  
Figure  
tADC  
Rising edge of CK_t, CK_c defined by the end point of  
DODTLoff  
Extrapolated point at VRTT,nom  
Figure 234  
(page 297)  
Rising edge of CK_t, CK_c defined by the end point of  
DODTLon  
Extrapolated point at VSSQ  
Extrapolated point at VRTT,nom  
Extrapolated point at VSSQ  
Extrapolated point at VSSQ  
Extrapolated point at VRTT,nom  
Figure 234  
(page 297)  
Rising edge of CK_t, CK_c defined by the end point of  
ODTLcnw  
Figure 235  
(page 298)  
Rising edge of CK_t, CK_c defined by the end point of  
ODTLcwn4 or ODTLcwn8  
Figure 235  
(page 298)  
tAONAS  
tAOFAS  
Rising edge of CK_t, CK_c with ODT being first registered  
HIGH  
Figure 236  
(page 298)  
Rising edge of CK_t, CK_c with ODT being first registered  
LOW  
Figure 236  
(page 298)  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
296  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – On-Die Termination Characteristics  
Table 130: Reference Settings for ODT Timing Measurements  
Measure  
Parameter  
tADC  
RTT(Park)  
Disable  
RTT(NOM)  
RZQΩ  
RZQΩ  
RZQΩ  
RZQΩ  
RTT(WR)  
VSW1  
0.20V  
0.20V  
0.20V  
0.20V  
VSW2  
0.40V  
0.40V  
0.40V  
0.40V  
Note  
1, 2, 4  
1, 3, 5  
1, 2, 6  
1, 2, 6  
High-Z  
tAONAS  
tAOFAS  
Disable  
Disable  
1. MR settings are as follows: MR1 has A10 = 1, A9 = 1, A8 = 1 for RTT(NOM) setting; MR5 has  
A8 = 0, A7 = 0, A6 = 0 for RTT(Park) setting; and MR2 has A11 = 0, A10 = 1, A9 = 1 for  
Notes:  
R
TT(WR) setting.  
2. ODT state change is controlled by ODT pin.  
3. ODT state change is controlled by a WRITE command.  
4. Refer to Figure 234 (page 297).  
5. Refer to Figure 235 (page 298).  
6. Refer to Figure 236 (page 298).  
Figure 234: tADC Definition with Direct ODT Control  
DODTLoff  
DODTLon  
Begin point: Rising edge  
Begin point: Rising edge  
of CK_t, CK_c defined  
by the end point of  
DODTLon  
of CK_t, CK_c defined  
by the end point of  
DODTLoff  
CK_c  
CK_t  
t
t
ADC  
ADC  
End point: Extrapolated  
VRTT,nom  
VRTT,nom  
point at V  
RTT,nom  
Vsw2  
Vsw1  
DQ, DM  
DQS_t, DQS_c  
TDQS_t, TDQS_c  
End point: Extrapolated  
VSSQ  
VSSQ  
point at V  
SSQ  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
297  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Electrical Characteristics – On-Die Termination Characteristics  
Figure 235: tADC Definition with Dynamic ODT Control  
ODTLcnw  
ODTLcnw4/8  
Begin point: Rising edge  
of CK_t, CK_c defined  
by the end point of  
ODTLcnw  
Begin point: Rising edge  
of CK_t, CK_c defined  
by the end point of  
ODTLcnw4 or ODTLcnw8  
CK_c  
CK_t  
t
t
ADC  
ADC  
End point: Extrapolated  
point at V  
VRTT,nom  
VRTT,nom  
RTT,nom  
Vsw2  
Vsw1  
DQ, DM  
DQS_t, DQS_c  
TDQS_t, TDQS_c  
End point: Extrapolated  
VSSQ  
VSSQ  
point at V  
SSQ  
Figure 236: tAOFAS and tAONAS Definitions  
Rising edge of CK_t, CK_c  
with ODT being first  
registered LOW  
Rising edge of CK_t, CK_c  
with ODT being first  
registered HIGH  
CK_c  
CK_t  
tAOFAS  
tAONAS  
End point: Extrapolated  
point at VRTT_NOM  
V
V
RTT,nom  
RTT,nom  
Vsw2  
Vsw1  
DQ, DM  
DQS_t, DQS_c  
TDQS_t, TDQS_c  
End point: Extrapolated  
point at VSSQ  
V
V
SSQ  
SSQ  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
298  
8Gb: x8, x16 Automotive DDR4 SDRAM  
DRAM Package Electrical Specifications  
DRAM Package Electrical Specifications  
Table 131: DRAM Package Electrical Specifications for x4 and x8 Devices  
1600/1866/2133/  
2400/2666  
2933  
3200  
Parameter  
Symbol  
ZIO  
Min  
Max  
85  
Min  
48  
14  
Max  
85  
Min  
48  
14  
Max  
85  
Unit Notes  
Input/  
output  
Zpkg  
45  
14  
ohm 1, 2, 4  
Package delay  
Lpkg  
TdIO  
42  
40  
40  
ps  
nH  
pF  
1, 3, 4  
LIO  
3.3  
0.78  
85  
3.3  
0.78  
85  
3.3  
0.78  
85  
Cpkg  
CIO  
DQS_t,  
DQS_c  
Zpkg  
ZIO DQS  
TdIO DQS  
DZIO DQS  
DTdIO DQS  
LIO DQS  
CIO DQS  
ZI CTRL  
45  
14  
48  
14  
48  
14  
ohm  
ps  
1, 2  
1, 3  
Package delay  
Delta Zpkg  
Delta delay  
Lpkg  
42  
40  
40  
10  
10  
10  
ohm 1, 2, 6  
5
5
5
ps  
nH  
pF  
1, 3, 6  
3.3  
0.78  
90  
3.3  
0.78  
90  
3.3  
0.78  
90  
Cpkg  
Input CTRL Zpkg  
pins  
50  
14  
50  
14  
50  
14  
ohm 1, 2, 8  
Package delay  
TdI CTRL  
LI CTRL  
42  
40  
40  
ps  
nH  
pF  
1, 3, 8  
Lpkg  
Cpkg  
3.4  
0.7  
90  
3.4  
0.7  
90  
3.4  
0.7  
90  
CI CTRL  
Input CMD Zpkg  
ADD pins  
ZI ADD CMD  
TdI ADD CMD  
LI ADD CMD  
CI ADD CMD  
ZCK  
50  
14  
50  
14  
50  
14  
ohm 1, 2, 7  
Package delay  
45  
40  
40  
ps  
nH  
pF  
1, 3, 7  
Lpkg  
Cpkg  
3.6  
0.74  
90  
3.6  
0.74  
90  
3.6  
0.74  
90  
CK_t, CK_c Zpkg  
50  
14  
50  
14  
50  
14  
ohm  
ps  
1, 2  
1, 3  
Package delay  
TdCK  
42  
42  
42  
Delta Zpkg  
Delta delay  
Lpkg  
DZDCK  
10  
10  
10  
ohm 1, 2, 5  
DTdDCK  
LI CLK  
5
5
5
ps  
nH  
pF  
1, 3, 5  
3.4  
0.7  
100  
55  
3.4  
0.7  
100  
55  
3.4  
0.7  
100  
55  
Cpkg  
CI CLK  
ZQ Zpkg  
ZO ZQ  
ohm  
ps  
1, 2  
1, 3  
1, 2  
1, 3  
ZQ delay  
TdO ZQ  
ZO ALERT  
TdO ALERT  
20  
40  
20  
20  
40  
20  
20  
40  
20  
ALERT Zpkg  
ALERT delay  
100  
55  
100  
55  
100  
55  
ohm  
ps  
1. The package parasitic (L and C) are validated using package only samples. The capaci-  
tance is measured with VDD, VDDQ, VSS, and VSSQ shorted with all other signal pins float-  
ing. The inductance is measured with VDD, VDDQ, VSS, and VSSQ shorted and all other sig-  
nal pins shorted at the die, not pin, side.  
Notes:  
2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a  
given pin where: Zpkg (total per pin) = SQRT (Lpkg/Cpkg).  
3. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin  
where: Tdpkg (total per pin) = SQRT (Lpkg × Cpkg).  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
299  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
DRAM Package Electrical Specifications  
4. ZIO and TdIO apply to DQ, DM, DQS_c, DQS_t, TDQS_t, and TDQS_c.  
5. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c  
for delay (Td).  
6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO  
(DQS_t), TdIO (DQS_c) for delay (Td).  
7. ZI ADD CMD and TdI ADD CMD apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, and WE_n.  
8. ZI CTRL and TdI CTRL apply to ODT, CS_n, and CKE.  
9. Package implementations will meet specification if the Zpkg and package delay fall  
within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maxi-  
mum values shown.  
10. It is assumed that Lpkg can be approximated as Lpkg = ZO × Td.  
11. It is assumed that Cpkg can be approximated as Cpkg = Td/ZO.  
Table 132: DRAM Package Electrical Specifications for x16 Devices  
1600/1866/2133/  
2400/2666  
2933  
3200  
Parameter  
Symbol  
ZIO  
Min  
45  
14  
Max  
85  
Min  
45  
14  
Max  
85  
Min  
45  
14  
Max  
85  
Unit Notes  
Input/  
output  
Zpkg  
ohm 1, 2, 4  
Package delay  
Lpkg  
TdIO  
45  
45  
45  
ps  
nH  
pF  
1, 3, 4  
LIO  
3.4  
0.82  
85  
3.4  
0.82  
85  
3.4  
0.82  
85  
Cpkg  
CIO  
DQSL_t/  
DQSL_c/  
DQSU_t/  
DQSU_c  
Zpkg  
ZIO DQS  
TdIO DQS  
LIO DQS  
CIO DQS  
DZIO DQS  
DTdIO DQS  
45  
14  
45  
14  
45  
14  
ohm  
ps  
1, 2  
1, 3  
Package delay  
Lpkg  
45  
45  
45  
3.4  
0.82  
10  
3.4  
0.82  
10  
3.4  
0.82  
10  
nH  
pF  
Cpkg  
DQSL_t/  
DQSL_c,  
DQSU_t/  
DQSU_c,  
Delta Zpkg  
Delta delay  
ohm 1, 2, 6  
ps 1, 3, 6  
5
5
5
Input CTRL Zpkg  
pins  
ZI CTRL  
TdI CTRL  
LI CTRL  
50  
14  
90  
42  
50  
14  
90  
42  
50  
14  
90  
42  
ohm 1, 2, 8  
Package delay  
ps  
nH  
pF  
1, 3, 8  
Lpkg  
Cpkg  
3.4  
0.7  
90  
3.4  
0.7  
90  
3.4  
0.7  
90  
CI CTRL  
Input CMD Zpkg  
ADD pins  
ZI ADD CMD  
TdI ADD CMD  
LI ADD CMD  
CI ADD CMD  
ZCK  
50  
14  
50  
14  
50  
14  
ohm 1, 2, 7  
Package delay  
52  
52  
52  
ps  
nH  
pF  
1, 3, 7  
Lpkg  
Cpkg  
3.9  
0.86  
90  
3.9  
0.86  
90  
3.9  
0.86  
90  
CK_t, CK_c Zpkg  
50  
14  
50  
14  
50  
14  
ohm  
ps  
1, 2  
1, 3  
Package delay  
TdCK  
42  
42  
42  
Delta Zpkg  
Delta delay  
Lpkg  
DZDCK  
10  
10  
10  
ohm 1, 2, 5  
DTdDCK  
LI CLK  
5
5
5
ps  
nH  
1, 3, 5  
Input CLK  
ZQ Zpkg  
3.4  
0.7  
100  
3.4  
0.7  
100  
3.4  
0.7  
100  
Cpkg  
CI CLK  
pF  
ZO ZQ  
ohm  
1, 2  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
300  
8Gb: x8, x16 Automotive DDR4 SDRAM  
DRAM Package Electrical Specifications  
Table 132: DRAM Package Electrical Specifications for x16 Devices (Continued)  
1600/1866/2133/  
2400/2666  
2933  
3200  
Parameter  
ZQ delay  
Symbol  
TdO ZQ  
Min  
20  
Max  
90  
Min  
20  
Max  
90  
Min  
20  
Max  
90  
Unit Notes  
ps  
ohm  
ps  
1, 3  
1, 2  
1, 3  
ALERT Zpkg  
ALERT delay  
ZO ALERT  
TdO ALERT  
40  
100  
55  
40  
100  
55  
40  
100  
55  
20  
20  
20  
1. The package parasitic (L and C) are validated using package only samples. The capaci-  
tance is measured with VDD, VDDQ, VSS, and VSSQ shorted with all other signal pins float-  
ing. The inductance is measured with VDD, VDDQ, VSS, and VSSQ shorted and all other sig-  
nal pins shorted at the die, not pin, side.  
Notes:  
2. Package-only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a  
given pin where: Zpkg (total per pin) = SQRT (Lpkg/Cpkg).  
3. Package-only delay (Tpkg) is calculated based on Lpkg and Cpkg total for a given pin  
where: Tdpkg (total per pin) = SQRT (Lpkg × Cpkg).  
4. ZIO and TdIO apply to DQ, DM, DQS_c, DQS_t, TDQS_t, and TDQS_c.  
5. Absolute value of ZCK_t, ZCK_c for impedance (Z) or absolute value of TdCK_t, TdCK_c  
for delay (Td).  
6. Absolute value of ZIO (DQS_t), ZIO (DQS_c) for impedance (Z) or absolute value of TdIO  
(DQS_t), TdIO (DQS_c) for delay (Td).  
7. ZI ADD CMD and TdI ADD CMD apply to A[17:0], BA[1:0], BG[1:0], RAS_n CAS_n, and WE_n.  
8. ZI CTRL and TdI CTRL apply to ODT, CS_n, and CKE.  
9. Package implementations will meet specification if the Zpkg and package delay fall  
within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maxi-  
mum values shown.  
10. It is assumed that Lpkg can be approximated as Lpkg = ZO × Td.  
11. It is assumed that Cpkg can be approximated as Cpkg = Td/ZO.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
301  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
DRAM Package Electrical Specifications  
Table 133: Pad Input/Output Capacitance  
DDR4-1600,  
1866, 2133  
DDR4-2400,  
2666  
DDR4-2933  
DDR4-3200  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max Unit Notes  
Input/output capacitance:  
DQ, DM, DQS_t, DQS_c,  
TDQS_t, TDQS_c  
CIO  
0.55  
1.4  
0.55  
1.15  
0.55  
1.00  
0.55  
1.00  
pF  
1, 2, 3  
Input capacitance: CK_t and  
CK_c  
CCK  
CDCK  
CDDQS  
CI  
0.2  
0
0.8  
0.05  
0.05  
0.8  
0.2  
0
0.7  
0.05  
0.05  
0.7  
0.2  
0
0.7  
0.05  
0.05  
0.6  
0.2  
0
0.7  
0.05  
0.05  
0.55  
0.1  
pF 1, 2, 3,  
4
Input capacitance delta: CK_t  
and CK_c  
pF 1, 2, 3,  
5
Input/output capacitance del-  
ta: DQS_t and DQS_c  
0
0
0
0
pF  
1, 2, 3  
Input capacitance: CTRL,  
ADD, CMD input-only pins  
0.2  
–0.1  
0.2  
–0.1  
–0.1  
–0.1  
0.2  
–0.1  
–0.1  
–0.1  
0.2  
–0.1  
–0.1  
–0.1  
pF 1, 2, 3,  
6
Input capacitance delta: All  
CTRL input-only pins  
CDI_CTRL  
0.1  
0.1  
0.1  
pF 1, 2, 3,  
7
Input capacitance delta: All  
ADD/CMD input-only pins  
CDI_ADD_CM –0.1  
0.1  
0.1  
0.1  
0.1  
pF 1, 2, 3,  
8, 9  
D
Input/output capacitance del-  
ta: DQ, DM, DQS_t, DQS_c,  
TDQS_t, TDQS_c  
CDIO  
–0.1  
0.1  
0.1  
0.1  
0.1  
pF 1, 2, 10,  
11  
Input/output capacitance:  
ALERT pin  
CALERT  
CZQ  
0.5  
1.5  
2.3  
2.3  
0.5  
1.5  
2.3  
2.3  
0.5  
1.5  
2.3  
2.3  
0.5  
1.5  
2.3  
2.3  
pF 1, 2, 2,  
3
Input/output capacitance: ZQ  
pin  
pF 1, 2, 3,  
12  
Input/output capacitance:  
TEN pin  
CTEN  
0.2  
0.2  
0.2  
0.2  
pF 1, 2, 3,  
13  
1. Although the DM, TDQS_t, and TDQS_c pins have different functions, the loading  
matches DQ and DQS.  
Notes:  
2. This parameter is not subject to a production test; it is verified by design and characteri-  
zation. The capacitance is measured according to the JEP147 specification, “Procedure  
for Measuring Input Capacitance Using a Vector Network Analyzer (VNA),” with VDD  
,
VDDQ, VSS, and VSSQ applied and all other pins floating (except the pin under test, CKE,  
RESET_n and ODT, as necessary). VDD = VDDQ = 1.5V, VBIAS = VDD/2 and on-die termination  
off. Measured data is rounded using industry standard half-rounded up methodology to  
the nearest hundredth of the MSB.  
3. This parameter applies to monolithic die, obtained by de-embedding the package L and  
C parasitics.  
4. CDIO = CIO(DQ, DM) - 0.5 × (CIO(DQS_t) + CIO(DQS_c)).  
5. Absolute value of CIO (DQS_t), CIO (DQS_c)  
6. Absolute value of CCK_t, CCK_c  
7. CI applies to ODT, CS_n, CKE, A[15:0], BA[1:0], RAS_n, CAS_n, and WE_n.  
8. CDI_CTRL applies to ODT, CS_n, and CKE.  
9. CDI_CTRL = CI(CTRL) - 0.5 × (CI(CLK_t) + CI(CLK_c)).  
10. CDI_ADD_CMD applies to A[15:0], BA1:0], RAS_n, CAS_n and WE_n.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
302  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Thermal Characteristics  
11. CDI_ADD_CMD = CI(ADD_CMD) - 0.5 × (CI(CLK_t) + CI(CLK_c)).  
12. Maximum external load capacitance on ZQ pin: 5pF.  
13. Only applicable if TEN pin does not have an internal pull-up.  
Thermal Characteristics  
Table 134: Thermal Characteristics  
Parameter/Condition  
Value  
0 to +85  
0 to +95  
–40 to +95  
Units  
°C  
Symbol  
Notes  
1, 2, 3  
Operating case temperature:  
Commercial  
TC  
TC  
TC  
°C  
1, 2, 3, 4  
1, 2, 3, 4  
Operating case temperature:  
Industrial  
°C  
Operating case temperature:  
Automotive  
–40 to +105  
–40 to +125  
°C  
°C  
TC  
TC  
1, 2, 3, 4  
1, 2, 3, 4  
Operating case temperature:  
Ultra-high  
78-ball “WE”  
96-ball “JY”  
4.2  
4.1  
Junction-to-case (TOP) Rev B  
°C/W  
ΘJC  
5
1. MAX operating case temperature. TC is measured in the center of the package.  
Notes:  
2. A thermal solution must be designed to ensure the DRAM device does not exceed the  
maximum TC during operation.  
3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC dur-  
ing operation.  
4. If TC exceeds 85°C, the DRAM must be refreshed externally at 2x refresh, which is a 3.9μs  
interval refresh rate.  
5. The thermal resistance data is based off of a number of samples from multiple lots and  
should be viewed as a typical number.  
Figure 237: Thermal Measurement Point  
TC test point  
(L/2)  
L
(W/2)  
W
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
303  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Measurement Conditions  
Current Specifications – Measurement Conditions  
IDD, IPP, and IDDQ Measurement Conditions  
IDD, IPP, and IDDQ 0easure0ent conditions, such as test load and patterns, are defined  
in this section.  
• IDD currents (IDD6, IDD1, IDD2N, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5R  
,
IDD±N, IDD±E, IDD±R, IDD7, and IDD8) are 0easured as ti0e-averaged currents with all  
VDD balls of the device under test grouped together. IPP and IDDQ currents are not in-  
cluded in IDD currents.  
• IPP currents are IPPSB for standby cases (IDD2N, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3P, IDD8);  
IPP6 for active cases (IDD6,IDD1, IDD4R, IDD4W); IPP5R and IPP±N for self refresh cases  
(IDD±N, IDD±E, IDD±R), and IPP7. These have the sa0e definitions as the IDD currents ref-  
erenced but are 0easured on the VPP supply.  
• IDDQ currents (IDDQ2NT) are 0easured as ti0e-averaged currents with VDDQ balls of  
the device under test grouped together. IDD current is not included in IDDQ currents.  
Note: IDDQ values cannot be directly used to calculate the I/O power of the de-  
vice. They can be used to support correlation of si0ulated I/O power to actual  
I/O power. In DRAM 0odule application, IDDQ cannot be 0easured separately  
because VDD and VDDQ are using a 0erged-power layer in the 0odule PCB.  
The following definitions apply for IDD, IDDP and IDDQ 0easure0ents.  
• “6” and “LOW” are defined as VIN ”VIL(AC)0ax  
• “1” and “HIGH” are defined as VIN •VIH(AC)0in  
• “Midlevel” is defined as inputs VREF = VDD/2  
• Ti0ings used for IDD, IDDP and IDDQ 0easure0ent-loop patterns are provided in the  
Current Test Definition and Patterns section.  
• Basic IDD, IPP, and IDDQ 0easure0ent conditions are described in the Current Test  
Definition and Patterns section.  
• Detailed IDD, IPP, and IDDQ 0easure0ent-loop patterns are described in the Current  
Test Definition and Patterns section.  
• Current 0easure0ents are done after properly initializing the device. This includes,  
but is not li0ited to, setting:  
RON = RZQ/7 (34 oh0 in MR1);  
Qoff = 6B (output buffer enabled in MR1);  
R
TT(NOM) = RZQ/± (46 oh0 in MR1);  
RTT(WR) = RZQ/2 (126 oh0 in MR2);  
RTT(Park) = disabled;  
TDQS feature disabled in MR1; CRC disabled in MR2; CA parity feature disabled in  
MR3; Gear-down 0ode disabled in MR3; Read/Write DBI disabled in MR5; DM disa-  
bled in MR5  
• Define D = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, LOW, LOW, LOW}; apply BG/BA  
changes when directed.  
• Define D_n = {CS_n, RAS_n, CAS_n, WE_n}: = {HIGH, HIGH, HIGH, HIGH}; apply in-  
vert of BG/BA changes when directed above.  
Note: The 0easure0ent-loop patterns 0ust be executed at least once before ac-  
tual current 0easure0ents can be taken.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
304  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Measurement Conditions  
Figure 238: Measurement Setup and Test Load for IDDx, IDDPx, and IDDQx  
I
I
I
DDQ  
DD  
PP  
V
V
V
DDQ  
DD  
PP  
RESET_n  
CK_t/CK_c  
DDR4  
DQS_t, DQS_c  
DQ  
CKE  
CS_n  
C
SDRAM  
DM_n  
ACT_n, RAS_n, CAS_n, WE_n  
A, BG, BA  
ODT  
ZQ  
V
V
SS  
SSQ  
Figure 239: Correlation: Simulated Channel I/O Power to Actual Channel I/O Power  
Application-specific  
memory channel  
environment  
IDD Q  
test load  
Channel I/O  
power simulation  
IDD Q  
simulation  
IDD Q  
measurement  
Correlation  
Correction  
Channel I/O  
power number  
1. Supported by IDDQ measurement.  
Note:  
IDD Definitions  
Table 135: Basic IDD, IPP, and IDDQ Measurement Conditions  
Symbol Description  
IDD0  
Operating One Bank Active-Precharge Current (AL = 0)  
CKE: HIGH; External clock: On; tCK, nRC, nRAS, CL: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between  
ACT and PRE; Command, address, bank group address, bank address inputs: partially toggling according to the  
next table; Data I/O: VDDQ; DM_n: stable at 0; Bank activity: cycling with one bank active at a time: 0, 0, 1, 1, 2,  
2, ... (see the IDD0 Measurement-Loop Pattern table); Output buffer and RTT: enabled in mode registers;2 ODT  
signal: stable at 0; Pattern details: see the IDD0 Measurement-Loop Pattern table  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
305  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Measurement Conditions  
Table 135: Basic IDD, IPP, and IDDQ Measurement Conditions (Continued)  
Symbol Description  
IPP0  
Operating One Bank Active-Precharge IPP Current (AL = 0)  
Same conditions as IDD0 above  
IDD1  
Operating One Bank Active-Read-Precharge Current (AL = 0)  
CKE: HIGH; External clock: on; tCK, nRC, nRAS, nRCD, CL: see the previous table; BL: 8;1, 5 AL: 0; CS_n: HIGH  
between ACT, RD, and PRE; Command, address, bank group address, bank address inputs, Data I/O: partially  
toggling according to the IDD1 Measurement-Loop Pattern table; DM_n: stable at 0; Bank activity: cycling with  
one bank active at a time: 0, 0, 1, 1, 2, 2, ... (see the following table); Output buffer and RTT: enabled in mode  
registers;2 ODT Signal: stable at 0; Pattern details: see the IDD1 Measurement-Loop Pattern table  
IDD2N  
Precharge Standby Current (AL = 0)  
CKE: HIGH; External clock: On; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, ad-  
dress, bank group address, bank address Inputs: partially toggling according to the IDD2N and IDD3N Measure-  
ment-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer and  
RTT: enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD2N and IDD3N Measurement-  
Loop Pattern table  
IDD2NT  
Precharge Standby ODT Current  
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, ad-  
dress, bank gropup address, bank address inputs: partially toggling according to the IDD2NT and IDDQ2NT Meas-  
urement-Loop Pattern table; Data I/O: VSSQ; DM_n: stable at 1; Bank activity: all banks closed; Output buffer  
and RTT: enabled in mode registers;2 ODT signal: toggling according to the IDD2NT and IDDQ2NT Measurement-  
Loop Pattern table; Pattern details: see the IDD2NT and IDDQ2NT Measurement-Loop Pattern table  
IDDQ2NT  
IDD2P  
Precharge Standby ODT IDDQ Current  
Has the same definition as IDD2NT above, with the exception of measuring IDDQ current instead of IDD current  
Precharge Power-Down Current  
CKE: LOW; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, ad-  
dress, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all  
banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0  
IDD2Q  
Precharge Quiet Standby Current  
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, ad-  
dress, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all  
banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0  
IDD3N  
Active Standby Current (AL = 0)  
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, ad-  
dress, bank group address, bank address inputs: partially toggling according to the IDD2N and IDD3N Measure-  
ment-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all banks open; Output buffer and  
RTT: Enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD2N and IDD3N Measurement-  
Loop Pattern table  
IPPSB  
Active Standby IPPSB Current (AL = 0)  
Same conditions as IDD3N above  
IDD3P  
Active Power-Down Current (AL = 0)  
CKE: LOW; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: stable at 1; Command, ad-  
dress, bank group address, bank address inputs: stable at 1; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: all  
banks open; Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
306  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Measurement Conditions  
Table 135: Basic IDD, IPP, and IDDQ Measurement Conditions (Continued)  
Symbol Description  
IDD4R  
IDD4W  
IDD5R  
Operating Burst Read Current (AL = 0)  
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 5 AL: 0; CS_n: HIGH between RD; Com-  
mand, address, bank group address, bank address inputs: partially toggling according to the IDD4R Measure-  
ment-Loop Pattern table; Data I/O: seamless read data burst with different data between one burst and the  
next one according to the IDD4R Measurement-Loop Pattern table; DM_n: stable at 1; Bank activity: all banks  
open, RD commands cycling through banks: 0, 0, 1, 1, 2, 2, ... (see the IDD4R Measurement-Loop Pattern table);  
Output buffer and RTT: Enabled in mode registers;2 ODT signal: stable at 0; Pattern details: see the IDD4R Meas-  
urement-Loop Pattern table  
Operating Burst Write Current (AL = 0)  
CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between WR; Com-  
mand, address, bank group address, bank address inputs: partially toggling according to the IDD4W Measure-  
ment-Loop Pattern table; Data I/O: seamless write data burst with different data between one burst and the  
next one according to the IDD4W Measurement-Loop Pattern table; DM: stable at 0; Bank activity: all banks  
open, WR commands cycling through banks: 0, 0, 1, 1, 2, 2, ... (see IDD4W Measurement-Loop Pattern table);  
Output buffer and RTT: enabled in mode registers (see note2); ODT signal: stable at HIGH; Pattern details: see  
the IDD4W Measurement-Loop Pattern table  
Burst Refresh Current (1X REF)  
CKE: HIGH; External clock: on; tCK, CL, nREFI: see the previous table; BL: 8;1 AL: 0; CS_n: HIGH between REF;  
Command, address, bank group address, bank address inputs: partially toggling according to the IDD5R Meas-  
urement-Loop Pattern table; Data I/O: VDDQ; DM_n: stable at 1; Bank activity: REF command every nREFI (see  
the IDD5R Measurement-Loop Pattern table); Output buffer and RTT: enabled in mode registers2; ODT signal:  
stable at 0; Pattern details: see the IDD5R Measurement-Loop Pattern table  
IPP5R  
Burst Refresh Current (1X REF)  
Same conditions as IDD5R above  
IDD6N  
Self Refresh Current: Normal Temperature Range  
TC: 0–85°C; Auto self refresh (ASR): disabled;3 Self refresh temperature range (SRT): normal;4 CKE: LOW; Exter-  
nal clock: off; CK_t and CK_c: LOW; CL: see the table above; BL: 8;1 AL: 0; CS_n, command, address, bank group  
address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: SELF REFRESH operation; Output buffer  
and RTT: enabled in mode registers;2 ODT signal: midlevel  
IPP6N  
IDD6E  
Self Refresh IPP Current: Normal Temperature Range  
Same conditions as IDD6N above  
Self Refresh Current: Extended Temperature Range 4  
TC: 0–95°C; Auto self refresh (ASR): disabled4; Self refresh temperature range (SRT): extended;4 CKE: LOW; Ex-  
ternal clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8;1 AL: 0; CS_n, command, address, group  
bank address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF  
REFRESH operation; Output buffer and RTT: enabled in mode registers;2 ODT signal: midlevel  
IDD6R  
Self Refresh Current: Reduced Temperature Range  
TC: 0–45°C; Auto self refresh (ASR): disabled; Self refresh temperature range (SRT): reduced;4 CKE: LOW; Exter-  
nal clock: off; CK_t and CK_c: LOW; CL: see the previous table; BL: 8;1 AL: 0; CS_n, command, address, bank  
group address, bank address, data I/O: VDDQ; DM_n: stable at 1; Bank activity: EXTENDED TEMPERATURE SELF  
REFRESH operation; Output buffer and RTT: enabled in mode registers;2 ODT signal: midlevel  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
307  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Measurement Conditions  
Table 135: Basic IDD, IPP, and IDDQ Measurement Conditions (Continued)  
Symbol Description  
IDD7  
Operating Bank Interleave Read Current  
CKE: HIGH; External clock: on; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see the previous table; BL: 8;1 5 AL: CL -  
1; CS_n: HIGH between ACT and RDA; Command, address, group bank adress, bank address inputs: partially  
toggling according to the IDD7 Measurement-Loop Pattern table; Data I/O: read data bursts with different data  
between one burst and the next one according to the IDD7 Measurement-Loop Pattern table; DM: stable at 1;  
Bank activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see the IDD7  
Measurement-Loop Pattern table; Output buffer and RTT: enabled in mode registers;2 ODT signal: stable at 0;  
Pattern details: see the IDD7 Measurement-Loop Pattern table  
IPP7  
Operating Bank Interleave Read IPP Current  
Same conditions as IDD7 above  
IDD8  
Maximum Power Down Current  
Place DRAM in MPSM then CKE: HIGH; External clock: on; tCK, CL: see the previous table; BL: 8;1 AL: 0; CS_n:  
stable at 1; Command, address, bank group address, bank address inputs: stable at 0; Data I/O: VDDQ; DM_n:  
stable at 1; Bank activity: all banks closed; Output buffer and RTT: Enabled in mode registers;2 ODT signal: sta-  
ble at 0  
1. Burst length: BL8 fixed by MRS: set MR0[1:0] 00.  
Notes:  
2. Output buffer enable: set MR1[12] 0 (output buffer enabled); set MR1[2:1] 00 (RON  
=
RZQ/7); RTT(NOM) enable: set MR1[10:8] 011 (RZQ/6); RTT(WR) enable: set MR2[11:9] 001  
(RZQ/2), and RTT(Park) enable: set MR5[8:6] 000 (disabled).  
3. Auto self refresh (ASR): set MR2[6] 0 to disable or MR2[6] 1 to enable feature.  
4. Self refresh temperature range (SRT): set MR2[7] 0 for normal or MR2[7] 1 for extended  
temperature range.  
5. READ burst type: Nibble sequential, set MR0[3] 0.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
308  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
Current Specifications – Patterns and Test Conditions  
Current Test Definitions and Patterns  
Table 136: IDD0 and IPP0 Measurement-Loop Pattern1  
Data3  
0
0
ACT  
D, D  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
3
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
1, 2  
3, 4  
D_n,  
D_n  
...  
Repeat pattern 1...4 until nRAS - 1; truncate if necessary  
nRAS  
PRE  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
...  
Repeat pattern 1...4 until nRC - 1; truncate if necessary  
1
2
3
4
5
6
7
8
9
1 × nRC  
2 × nRC  
3 × nRC  
4 × nRC  
5 × nRC  
6 × nRC  
7 × nRC  
8 × nRC  
9 × nRC  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 1 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead 4  
10 10 × nRC  
11 11 × nRC  
12 12 × nRC  
13 13 × nRC  
14 14 × nRC  
15 15 × nRC  
1. DQS_t, DQS_c are VDDQ  
.
Notes:  
2. BG1 is a "Don't Care" for x16 devices.  
3. DQ signals are VDDQ  
4. For x4 and x8 only.  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
309  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
Table 137: IDD1 Measurement – Loop Pattern1  
Data3  
0
0
1, 2  
ACT  
D, D  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
3
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
3, 4  
D_n, D_n  
...  
Repeat pattern 1...4 until nRCD - AL - 1; truncate if necessary  
nRCD - AL  
...  
RD  
0
1
1
0
1
0
0
0
0
0
0
0
0
0
D0 = 00, D1 =  
FF,  
D2 = FF, D3 =  
00,  
D4 = FF, D5 =  
00,  
Repeat pattern 1...4 until nRAS - 1; truncate if necessary  
nRAS  
...  
PRE  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
Repeat pattern 1...4 until nRC - 1; truncate if necessary  
D5 = 00, D7 = FF  
1
1 × nRC + 0  
ACT  
D, D  
0
1
0
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1 × nRC + 1,  
2
1 × nRC + 3, D_n, D_n  
1
1
1
1
1
0
3
3
0
0
0
7
F
0
4
...  
Repeat pattern nRC + 1...4 until 1 × nRC + nRAS - 1; truncate if necessary  
1 × nRC  
+nRCD - AL  
RD  
0
1
1
0
1
0
1
1
0
0
0
0
0
0
D0 = FF, D1 =  
00,  
D2 = 00, D3 =  
FF,  
D4 = 00, D5 =  
FF,  
...  
Repeat pattern 1...4 until nRAS - 1; truncate if necessary  
1 × nRC +  
nRAS  
PRE  
0
1
0
1
0
0
1
1
0
0
0
0
0
0
...  
Repeat pattern nRC + 1...4 until 2 × nRC - 1; truncate if necessary  
D5 = FF, D7 = 00  
2
3
2 × nRC  
3 × nRC  
4 × nRC  
5 × nRC  
6 × nRC  
7 × nRC  
9 × nRC  
10 × nRC  
11 × nRC  
12 × nRC  
13 × nRC  
14 × nRC  
15 × nRC  
16 × nRC  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead 4  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1. DQS_t, DQS_c are VDDQ when not toggling.  
Notes:  
CCMTD-1406124318-10419  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
310  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
2. BG1 is a "Don't Care" for x16 devices.  
3. DQ signals are VDDQ except when burst sequence drives each DQ signal by a READ com-  
mand.  
4. For x4 and x8 only.  
Table 138: IDD2N, IDD3N, and IPP3P Measurement – Loop Pattern1  
Data3  
0
0
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
3
3
0
0
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
0
0
F
F
0
0
0
0
1
D
2
D_n  
D_n  
3
1
2
4–7  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 1 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 3, use BA[1:0] = 0 instead 4  
8–11  
12–15  
16–19  
20–23  
24–27  
28–31  
32–35  
36–39  
40–43  
44–47  
48–51  
52–55  
56–59  
60–63  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1. DQS_t, DQS_c are VDDQ  
.
Notes:  
2. BG1 is a "Don't Care" for x16 devices.  
3. DQ signals are VDDQ  
4. For x4 and x8 only.  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
311  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
Table 139: IDD2NT and IDDQ2NT Measurement – Loop Pattern1  
Data3  
0
0
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
3
3
0
0
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
0
0
F
F
0
0
0
0
1
D
2
D_n  
D_n  
3
1
2
4–7  
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 1 instead  
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 3 instead  
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 0 instead 4  
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0 with ODT = 0, use BG[1:0] = 2, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0 with ODT = 1, use BG[1:0] = 3, use BA[1:0] = 0 instead 4  
8–11  
12–15  
16–19  
20–23  
24–27  
28–31  
32–35  
36–39  
40–43  
44–47  
48–51  
52–55  
56–59  
60–63  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1. DQS_t, DQS_c are VSSQ  
.
Notes:  
2. BG1 is a "Don't Care" for x16 devices.  
3. DQ signals are VSSQ  
4. For x4 and x8 only.  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
312  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
Table 140: IDD4R Measurement – Loop Pattern1  
Data3  
0
0
1
RD  
D
0
1
1
1
0
1
1
0
1
0
0
1
1
0
1
0
0
0
0
0
3
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
D0 = 00, D1 =  
FF,  
D2 = FF, D3 =  
00,  
D4 = FF, D5 =  
00,  
2, 3  
D_n,  
D_n  
D5 = 00, D7 =  
FF  
1
4
5
RD  
D
0
1
1
1
0
1
1
0
1
0
0
1
1
0
1
0
0
0
1
0
3
1
0
3
0
0
0
0
0
0
0
0
0
7
0
7
F
0
F
0
0
0
D0 = FF, D1 = 00  
D2 = 00, D3 =  
FF  
D4 = 00, D5 =  
FF  
6, 7  
D_n,  
D_n  
D5 = FF, D7 = 00  
2
3
8–11  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead 4  
12–15  
16–19  
20–23  
24–27  
28–31  
32–35  
36–39  
40–43  
44–47  
48–51  
52–55  
56–59  
60–63  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1. DQS_t, DQS_c are VDDQ when not toggling.  
2. BG1 is a "Don't Care" for x16 devices.  
Notes:  
3. Burst sequence driven on each DQ signal by a READ command. Outside burst operation,  
DQ signals are VDDQ  
.
4. For x4 and x8 only.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
313  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
Table 141: IDD4W Measurement – Loop Pattern1  
Data3  
0
1
0
1
WR  
D
0
1
1
1
0
1
1
0
1
0
0
1
0
0
0
1
1
1
0
0
3
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
D0 = 00, D1 = FF,  
D2 = FF, D3 = 00,  
D4 = FF, D5 = 00,  
D5 = 00, D7 = FF  
2, 3  
D_n,  
D_n  
4
5
WR  
D
0
1
1
1
0
1
1
0
1
0
0
1
0
0
0
1
1
1
1
0
3
1
0
3
0
0
0
0
0
0
0
0
0
7
0
7
F
0
F
0
0
0
D0 = FF, D1 = 00  
D2 = 00, D3 = FF  
D4 = 00, D5 = FF  
D5 = FF, D7 = 00  
6, 7  
D_n,  
D_n  
2
3
8–11  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead 4  
12–15  
16–19  
20–23  
24–27  
28–31  
32–35  
36–39  
40–43  
44–47  
48–51  
52–55  
56–59  
60–63  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1. DQS_t, DQS_c are VDDQ when not toggling.  
2. BG1 is a "Don't Care" for x16 devices.  
Notes:  
3. Burst sequence driven on each DQ signal by WRITE command. Outside burst operation,  
DQ signals are VDDQ  
.
4. For x4 and x8 only.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
314  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
Table 142: IDD4Wc Measurement – Loop Pattern1  
Data4  
0
1
0
WR  
0
1
1
1
0
1
1
0
1
0
0
1
0
0
0
1
1
1
0
0
3
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
D0 = 00, D1 = FF,  
D2 = FF, D3 = 00,  
D4 = FF, D5 = 00,  
D8 = CRC  
1, 2  
3, 4  
D, D  
D_n,  
D_n  
5
WR  
0
1
1
1
0
1
1
0
1
0
0
1
0
0
0
1
1
1
1
0
3
1
0
3
0
0
0
0
0
0
0
0
0
7
0
7
F
0
F
0
0
0
D0 = FF, D1 = 00,  
D2 = 00, D3 = FF,  
D4 = 00, D5 = FF,  
D5 = FF, D7 = 00  
D8 = CRC  
6, 7  
8, 9  
D, D  
D_n,  
D_n  
2
3
10–14  
15–19  
20–24  
25–29  
30–34  
35–39  
40–44  
45–49  
50–54  
55–59  
60–64  
65–69  
70–74  
75–79  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead 4  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead 4  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead 4  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1. Pattern provided for reference only.  
2. DQS_t, DQS_c are VDDQ when not toggling.  
3. BG1 is a "Don't Care" for x16 devices.  
Notes:  
4. Burst sequence driven on each DQ signal by WRITE command. Outside burst operation,  
DQ signals are VDDQ  
.
5. For x4 and x8 only.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
315  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
Table 143: IDD5R Measurement – Loop Pattern1  
Data3  
0
1
0
REF  
D
0
1
1
1
1
1
0
0
1
1
0
0
0
1
1
0
0
0
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
3
3
0
0
0
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
7
0
0
0
F
F
0
0
0
0
0
1
2
D
3
D_n  
D_n  
4
5–8  
Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 1 instead  
Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 3 instead  
Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat pattern 1...4, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat pattern 1...4, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 0 instead 4  
Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 1 instead 4  
Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 2 instead 4  
Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 3 instead 4  
Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 1 instead 4  
Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 2 instead 4  
Repeat pattern 1...4, use BG[1:0] = 2, use BA[1:0] = 3 instead 4  
Repeat pattern 1...4, use BG[1:0] = 3, use BA[1:0] = 0 instead 4  
Repeat sub-loop 1; truncate if necessary  
9–12  
13–16  
17–20  
21–24  
25–28  
29–32  
33–36  
37–40  
41–44  
45–48  
49–52  
53–56  
57–60  
61–64  
2
65...nREFI -  
1
1. DQS_t, DQS_c are VDDQ  
.
Notes:  
2. BG1 is a "Don't Care" for x16 devices.  
3. DQ signals are VDDQ  
4. For x4 and x8 only.  
.
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
316  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
Table 144: IDD7 Measurement – Loop Pattern1  
Data3  
0
1
0
ACT  
RDA  
D
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
1
0
1
0
1
0
0
0
0
0
0
0
3
0
0
0
3
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
7
0
0
0
F
0
0
0
0
1
2
3
D_n  
...  
Repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary  
nRRD  
ACT  
RDA  
0
0
0
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
nRRD+1  
...  
Repeat pattern 2...3 until 2 × nRRD - 1, if nRRD > 4. Truncate if necessary  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 2 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 3 instead  
2
3
2 × nRRD  
3 × nRRD  
4 × nRRD  
nFAW  
4
Repeat pattern 2...3 until nFAW - 1, if nFAW > 4 × nRRD. Truncate if necessary  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 1 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 0, use BA[1:0] = 3 instead  
Repeat sub-loop 1, use BG[1:0] = 1, use BA[1:0] = 0 instead  
Repeat sub-loop 4  
5
6
nFAW + nRRD  
nFAW + 2 × nRRD  
nFAW + 3 × nRRD  
nFAW + 4 × nRRD  
2 × nFAW  
7
8
9
10  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 0 instead  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 1 instead  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 2 instead  
11 2 × nFAW + nRRD  
12  
13  
14  
15  
2 × nFAW + 2 ×  
nRRD  
2 × nFAW + 3 ×  
nRRD  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 3 instead  
Repeat sub-loop 4  
2 × nFAW + 4 ×  
nRRD  
3 × nFAW  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 1 instead  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 2 instead  
Repeat sub-loop 0, use BG[1:0] = 2, use BA[1:0] = 3 instead  
16 3 × nFAW + nRRD  
17  
18  
19  
20  
3 × nFAW + 2 ×  
nRRD  
3 × nFAW + 3 ×  
nRRD  
Repeat sub-loop 1, use BG[1:0] = 3, use BA[1:0] = 0 instead  
Repeat sub-loop 4  
3 × nFAW + 4 ×  
nRRD  
4 × nFAW  
Repeat pattern 2...3 until nRC - 1, if nRC > 4 × nFAW. Truncate if necessary  
1. DQS_t, DQS_c are VDDQ  
.
Notes:  
2. BG1 is a "Don't Care" for x16 devices.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
317  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Patterns and Test Conditions  
3. DQ signals are VDDQ except when burst sequence drives each DQ signal by a READ com-  
mand.  
4. For x4 and x8 only.  
IDD Specifications  
Table 145: Timings used for IDD, IPP, and IDDQ Measurement – Loop Patterns  
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666  
DDR4-2933  
DDR4-3200  
Uni  
t
Symbol  
tCK  
1.25  
1.071  
0.937  
0.833  
0.75  
0.682  
0.625  
ns  
CL  
10 11 12 12 13 14 14 15 16 15 16 17 17 18 19 20 21 22 20 22 24 CK  
11 11 10 12 12 11 14 14 12 16 16 14 18 18 14 18 18 16 20 20 CK  
CWL  
9
nRCD  
nRC  
10 11 12 12 13 14 14 15 16 15 16 17 17 18 19 19 20 21 20 22 24 CK  
38 39 40 44 45 46 50 51 52 54 55 57 60 61 62 66 67 68 72 74 76 CK  
10 11 12 12 13 14 14 15 16 15 16 17 17 18 19 19 20 21 20 22 24 CK  
nRP  
nRAS  
nFA x41  
28  
16  
20  
28  
32  
16  
22  
28  
36  
16  
23  
32  
39  
16  
26  
36  
43  
16  
28  
40  
47  
16  
31  
44  
52  
16  
34  
48  
CK  
CK  
CK  
CK  
W
x8  
x1  
6
nRRD x4  
4
4
5
4
4
5
4
4
6
4
4
7
4
4
7
4
4
8
4
4
9
CK  
CK  
CK  
_S  
x8  
x1  
6
nRRD x4  
5
5
6
5
5
6
6
6
7
6
6
8
7
7
9
8
8
8
8
CK  
CK  
CK  
_L  
x8  
x1  
6
10  
11  
nCCD_S  
nCCD_L  
nWTR_S  
nWTR_L  
nREFI  
4
5
4
5
4
6
4
6
4
7
4
8
4
8
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
CK  
2
3
3
3
4
4
4
6
7
8
9
10  
11  
12  
6,240  
128  
208  
280  
440  
7,283  
150  
243  
327  
514  
8,324  
171  
278  
374  
587  
9,364  
193  
313  
421  
660  
10,400  
214  
347  
467  
734  
11,437  
235  
382  
514  
807  
12,480  
256  
416  
560  
880  
nRFC 2Gb  
nRFC 4Gb  
nRFC 8Gb  
nRFC  
16Gb  
1. 1KB based x4 use same numbers of clocks for nFAW as the x8.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
318  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Limits  
Current Specifications – Limits  
Table 146: IDD, IPP, and IDDQ Current Limits; Die Rev. B (–40° TC +95°C)  
DDR4-2666  
DDR4-2400  
(-083E)  
Symbol  
Width  
×8  
(-075E)  
51  
85  
3
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
I
DD0: One bank ACTIVATE-to-PRECHARGE current  
48  
80  
3
×16  
×8  
PP0: One bank ACTIVATE-to-PRECHARGE IPP current  
DD1: One bank ACTIVATE-to-READ-to- PRECHARGE  
×16  
×8  
4
4
63  
105  
35  
35  
50  
75  
25  
25  
30  
30  
46  
50  
3
60  
100  
34  
34  
50  
75  
25  
25  
30  
30  
43  
47  
3
current  
×16  
×8  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DD2N: Precharge standby current  
DD2NT: Precharge standby ODT current  
DD2P: Precharge power-down current  
DD2Q: Precharge quiet standby current  
DD3N: Active standby current  
×16  
×8  
×16  
×8  
×16  
×8  
×16  
×8  
×16  
×8  
PP3N: Active standby IPP current  
DD3P: Active power-down current  
DD4R: Burst read current  
×16  
×8  
3
3
39  
43  
149  
275  
135  
264  
255  
290  
28  
28  
30  
30  
35  
35  
35  
35  
20  
20  
37  
41  
138  
255  
126  
248  
255  
290  
28  
28  
30  
30  
35  
35  
35  
35  
20  
20  
×16  
×8  
×16  
×8  
DD4W: Burst write current  
×16  
×8  
DD5B: Burst refresh current (1X REF)  
PP5B: Burst refresh IPP current (1X REF)  
DD6N: Self refresh current1  
×16  
×8  
×16  
×8  
×16  
×8  
DD6AT: Auto self refresh current 4  
DD6ET: Self refresh current2  
×16  
×8  
×16  
×8  
DD6RT: Self refresh current3, 4  
×16  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
319  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Limits  
Table 146: IDD, IPP, and IDDQ Current Limits; Die Rev. B (–40° TC +95°C) (Continued)  
DDR4-2666  
(-075E)  
DDR4-2400  
(-083E)  
Symbol  
Width  
×8  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
I
I
PP6: Auto self refresh IPP current23  
5
5
5
5
×16  
×8  
DD7: Bank interleave read current  
PP7: Bank interleave read IPP current  
DD8: Maximum power-down current  
182  
262  
15  
20  
25  
25  
177  
252  
15  
20  
25  
25  
×16  
×8  
×16  
×8  
×16  
1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature  
range of operation (–40°C–+85°C).  
Notes:  
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended tempera-  
ture range of operation (–40°C–+95°C).  
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature  
range of operation (–40°C–+45°C).  
4. IDD6RT and IDD6AT values are typical.  
5. When additive latency is enabled for IDD0, current changes by approximately 0%.  
6. When additive latency is enabled for IDD1, current changes by approximately +5% (×4/  
×8), +4% (×16).  
7. When additive latency is enabled for IDD2N, current changes by approximately +0%.  
8. When DLL is disabled for IDD2N, current changes by approximately –23%.  
9. When CAL is enabled for IDD2N, current changes by approximately –25%.  
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.  
11. When CA parity is enabled for IDD2N, current changes by approximately +7%.  
12. When additive latency is enabled for IDD3N, current changes by approximately +0.6%.  
13. When additive latency is enabled for IDD4R, current changes by approximately +5%.  
14. When read DBI is enabled for IDD4R, current changes by approximately 0%.  
15. When additive latency is enabled for IDD4W, current changes by approximately +3% (×4/  
×8), +4% (×16).  
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.  
17. When write CRC is enabled for IDD4W, current changes by approximately +10% (×4/×8),  
+10% (×16).  
18. When CA parity is enabled for IDD4W, current changes by approximately +12% (×8),  
+12% (×16).  
19. When 2X REF is enabled for IDD5B, current changes by approximately –14%.  
20. When 4X REF is enabled for IDD5B, current changes by approximately –33%.  
21. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.  
22. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x, and IDD8 conditions; that is, test-  
ing IPP3N should satisfy the IPPs for the noted IDD tests.  
23. IPP6x is applicable to IDD6N, IDD6E, IDD6R, and IDD6A conditions.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
320  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Limits  
Table 147: IDD, IPP, and IDDQ Current Limits; Die Rev. B (–40° TC +105°C)  
DDR4-2666  
(-075E)  
DDR4-2400  
(-083E)  
Symbol  
Width  
×8  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
I
DD0: One bank ACTIVATE-to-PRECHARGE current  
53  
88  
3
53  
88  
3
×16  
×8  
PP0: One bank ACTIVATE-to-PRECHARGE IPP current  
DD1: One bank ACTIVATE-to-READ-to- PRECHARGE  
×16  
×8  
4
4
65  
108  
37  
38  
52  
78  
27  
28  
32  
33  
48  
53  
3
65  
108  
37  
38  
52  
78  
27  
28  
32  
33  
48  
53  
3
current  
×16  
×8  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DD2N: Precharge standby current  
DD2NT: Precharge standby ODT current  
DD2P: Precharge power-down current  
DD2Q: Precharge quiet standby current  
DD3N: Active standby current  
×16  
×8  
×16  
×8  
×16  
×8  
×16  
×8  
×16  
×8  
PP3N: Active standby IPP current  
DD3P: Active power-down current  
DD4R: Burst read current  
×16  
×8  
3
3
41  
46  
151  
279  
138  
269  
260  
295  
28  
28  
32  
33  
37  
38  
37  
38  
22  
23  
41  
46  
151  
279  
138  
269  
260  
295  
28  
28  
32  
33  
37  
38  
37  
38  
22  
23  
×16  
×8  
×16  
×8  
DD4W: Burst write current  
×16  
×8  
DD5B: Burst refresh current (1X REF)  
PP5B: Burst refresh IPP current (1X REF)  
DD6N: Self refresh current1  
×16  
×8  
×16  
×8  
×16  
×8  
DD6AT: Auto self refresh current 4  
DD6ET: Self refresh current2  
×16  
×8  
×16  
×8  
DD6RT: Self refresh current3, 4  
×16  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
321  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Limits  
Table 147: IDD, IPP, and IDDQ Current Limits; Die Rev. B (–40° TC +105°C) (Continued)  
DDR4-2666  
(-075E)  
DDR4-2400  
(-083E)  
Symbol  
Width  
×8  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
I
I
PP6: Auto self refresh IPP current23  
5
5
5
5
×16  
×8  
DD7: Bank interleave read current  
PP7: Bank interleave read IPP current  
DD8: Maximum power-down current  
184  
264  
15  
20  
27  
28  
184  
264  
15  
20  
27  
28  
×16  
×8  
×16  
×8  
×16  
1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature  
range of operation (–40°C–+85°C).  
Notes:  
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended tempera-  
ture range of operation (–40°C–+105°C).  
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature  
range of operation (–40°C–+45°C).  
4. IDD6RT and IDD6AT values are typical.  
5. When additive latency is enabled for IDD0, current changes by approximately 0%.  
6. When additive latency is enabled for IDD1, current changes by approximately +5% (×4/  
×8), +4% (×16).  
7. When additive latency is enabled for IDD2N, current changes by approximately +0%.  
8. When DLL is disabled for IDD2N, current changes by approximately –23%.  
9. When CAL is enabled for IDD2N, current changes by approximately –25%.  
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.  
11. When CA parity is enabled for IDD2N, current changes by approximately +7%.  
12. When additive latency is enabled for IDD3N, current changes by approximately +0.6%.  
13. When additive latency is enabled for IDD4R, current changes by approximately +5%.  
14. When read DBI is enabled for IDD4R, current changes by approximately 0%.  
15. When additive latency is enabled for IDD4W, current changes by approximately +3%(×4/  
×8), +4%(×16).  
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.  
17. When write CRC is enabled for IDD4W, current changes by approximately +10%(×4/×8),  
+10%(×16).  
18. When CA parity is enabled for IDD4W, current changes by approximately +12% (×8),  
+12% (×16).  
19. When 2X REF is enabled for IDD5B, current changes by approximately –14%.  
20. When 4X REF is enabled for IDD5B, current changes by approximately –33%.  
21. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.  
22. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x, and IDD8 conditions; that is, test-  
ing IPP3N should satisfy the IPPs for the noted IDD tests.  
23. IPP6x is applicable to IDD6N, IDD6E, IDD6R, and IDD6A conditions.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
322  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Limits  
Table 148: IDD, IPP, and IDDQ Current Limits; Die Rev. B (–40° TC +125°C)  
DDR4-2666  
(-075E)  
DDR4-2400  
(-083E)  
Symbol  
Width  
×8  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
I
DD0: One bank ACTIVATE-to-PRECHARGE current  
68  
95  
3
68  
95  
3
×16  
×8  
PP0: One bank ACTIVATE-to-PRECHARGE IPP current  
DD1: One bank ACTIVATE-to-READ-to- PRECHARGE  
×16  
×8  
4
4
80  
115  
53  
55  
77  
85  
45  
45  
49  
49  
76  
76  
3
80  
115  
53  
55  
77  
85  
45  
45  
49  
49  
76  
76  
3
current  
×16  
×8  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DD2N: Precharge standby current  
DD2NT: Precharge standby ODT current  
DD2P: Precharge power-down current  
DD2Q: Precharge quiet standby current  
DD3N: Active standby current  
×16  
×8  
×16  
×8  
×16  
×8  
×16  
×8  
×16  
×8  
PP3N: Active standby IPP current  
DD3P: Active power-down current  
DD4R: Burst read current  
×16  
×8  
3
3
69  
69  
170  
290  
161  
284  
275  
312  
28  
28  
51  
51  
59  
59  
59  
59  
47  
47  
69  
69  
170  
290  
161  
284  
275  
312  
28  
28  
51  
51  
59  
59  
59  
59  
47  
47  
×16  
×8  
×16  
×8  
DD4W: Burst write current  
×16  
×8  
DD5B: Burst refresh current (1X REF)  
PP5B: Burst refresh IPP current (1X REF)  
DD6N: Self refresh current1  
×16  
×8  
×16  
×8  
×16  
×8  
DD6AT: Auto self refresh current 4  
DD6ET: Self refresh current2  
×16  
×8  
×16  
×8  
DD6RT: Self refresh current3. 4  
×16  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
323  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Current Specifications – Limits  
Table 148: IDD, IPP, and IDDQ Current Limits; Die Rev. B (–40° TC +125°C) (Continued)  
DDR4-2666  
(-075E)  
DDR4-2400  
(-083E)  
Symbol  
Width  
×8  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
I
I
PP6: Auto self refresh IPP current23  
5
5
5
5
×16  
×8  
DD7: Bank interleave read current  
PP7: Bank interleave read IPP current  
DD8: Maximum power-down current  
192  
273  
15  
20  
42  
42  
192  
273  
15  
20  
42  
42  
×16  
×8  
×16  
×8  
×16  
1. Applicable for MR2 settings A7 = 0 and A6 = 0; manual mode with normal temperature  
range of operation (–40°C–+85°C).  
Notes:  
2. Applicable for MR2 settings A7 = 1 and A6 = 0; manual mode with extended tempera-  
ture range of operation (–40°C–+125°C).  
3. Applicable for MR2 settings A7 = 0 and A6 = 1; manual mode with reduced temperature  
range of operation (–40°C–+45°C).  
4. IDD6RT and IDD6AT values are typical.  
5. When additive latency is enabled for IDD0, current changes by approximately 0%.  
6. When additive latency is enabled for IDD1, current changes by approximately +5% (×4/  
×8), +4% (×16).  
7. When additive latency is enabled for IDD2N, current changes by approximately +0%.  
8. When DLL is disabled for IDD2N, current changes by approximately –23%.  
9. When CAL is enabled for IDD2N, current changes by approximately –25%.  
10. When gear-down is enabled for IDD2N, current changes by approximately 0%.  
11. When CA parity is enabled for IDD2N, current changes by approximately +7%.  
12. When additive latency is enabled for IDD3N, current changes by approximately +0.6%.  
13. When additive latency is enabled for IDD4R, current changes by approximately +5%.  
14. When read DBI is enabled for IDD4R, current changes by approximately 0%.  
15. When additive latency is enabled for IDD4W, current changes by approximately +3% (×4/  
×8), +4% (×16).  
16. When write DBI is enabled for IDD4W, current changes by approximately 0%.  
17. When write CRC is enabled for IDD4W, current changes by approximately +10%(×4/×8),  
+10%(×16).  
18. When CA parity is enabled for IDD4W, current changes by approximately +12% (×8),  
+12% (×16).  
19. When 2X REF is enabled for IDD5B, current changes by approximately –14%.  
20. When 4X REF is enabled for IDD5B, current changes by approximately –33%.  
21. IPP0 test and limit is applicable for IDD0 and IDD1 conditions.  
22. IPP3N test and limit is applicable for all IDD2x, IDD3x, IDD4x, and IDD8 conditions; that is, test-  
ing IPP3N should satisfy the IPPs for the noted IDD tests.  
23. IPP6x is applicable to IDD6N, IDD6E, IDD6R, and IDD6A conditions.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
324  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Speed Bin Tables  
Speed Bin Tables  
DDR4 DRAM ti0ing is pri0arily covered by two types of tables: the speed bin tables in  
this section and those tables found in the Electrical Characteristics and AC Ti0ing Pa-  
ra0eters section. The ti0ing para0eter tables define the applicable ti0ing specifica-  
tions based on the speed rating. The speed bin tables below list the tAA, tRCD, tRP, tRAS  
and tRC li0its of a given speed 0ark and are applicable to the CL settings in the lower  
half of the table provided they are applied in the correct clock range, which is noted.  
Table 149: DDR4-1600 Speed Bins and Operating Conditions  
DDR4-1600 Speed Bin  
CL-nRCD-nRP  
-125F  
-125E  
-125  
10-10-10  
11-11-11  
12-12-12  
Parameter  
Symbol  
tAA  
tAA_DBI  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Unit  
ns  
Internal READ command to first data  
12.50  
tAA  
13.755  
tAA  
15.00  
tAA  
Internal READ command to first data  
with read DBI enabled  
ns  
(MIN) + (MAX) + (MIN) + (MAX) + (MIN) + (MAX) +  
2nCK  
2nCK  
2nCK  
2nCK  
2nCK  
2nCK  
ACTIVATE to internal READ or WRITE  
delay time  
tRCD  
12.50  
13.755  
15.00  
ns  
PRECHARGE command period  
tRP  
tRAS  
12.50  
35  
13.755  
35  
15.00  
35  
ns  
ns  
ACTIVATE-to-PRECHARGE command  
period  
9 × tREFI  
9 × tREFI  
9 × tREFI  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
tRC6  
tRAS +  
tRP  
tRAS +  
tRP  
tRAS +  
tRP  
ns  
READ: non-  
DBI  
READ: DBI WRITE  
Symbol  
tCK4  
tCK4  
tCK4  
tCK4  
Min  
1.5  
Max  
1.9  
Min  
1.5  
Max  
1.9  
Min  
Max  
Unit  
ns  
CL = 9  
CL = 10  
CL = 10  
CL = 11  
CL = 12  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CWL = 9  
Reserved  
CWL = 9  
1.5  
1.9  
1.5  
1.9  
1.5  
1.9  
ns  
CWL = 9, 11  
CWL = 9, 11  
CWL = 9, 11  
1.25  
1.25  
1.25  
<1.5  
<1.5  
<1.5  
Reserved  
Reserved  
Reserved  
1.25 <1.5  
ns  
1.25  
1.25  
<1.5  
<1.5  
ns  
tCK4  
ns  
Supported CL settings  
9–12  
9, 10, 11, 12  
10, 12  
12, 14  
9, 11  
nCK  
nCK  
nCK  
Supported CL settings with read DBI  
Supported CWL settings  
11–14  
9, 11  
11, 12, 13, 14  
9, 11  
1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.  
Notes:  
2. When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value  
at least 1 clock greater than the lowest CWL setting supported in the applicable tCK  
range.  
3. The programmed value of CWL must be less than or equal to programmed value of CL.  
4. tCK (AVG) MIN.  
5. The DRAM supports 13.5ns with CL9 operation at defined clock rates.  
6. When calculating tRC and tRP in clocks, values may not be used in a combination that  
would violate tRAS.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
325  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Speed Bin Tables  
Table 150: DDR4-1866 Speed Bins and Operating Conditions  
DDR4-1866 Speed Bin  
CL-nRCD-nRP  
-107F  
-107E  
-107  
12-12-12  
13-13-13  
14-14-14  
Parameter  
Symbol  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Unit  
ns  
Internal READ command to first data  
Internal READ command to first data tAA_DBI  
with read DBI enabled  
12.85  
tAA  
13.927  
tAA  
15.00  
tAA  
ns  
(MIN) + (MAX) + (MIN) + (MAX) + (MIN) + (MAX) +  
2nCK  
2nCK  
2nCK  
2nCK  
2nCK  
2nCK  
ACTIVATE to internal READ or WRITE  
delay time  
tRCD  
12.85  
13.92 7  
15.00  
ns  
PRECHARGE command period  
tRP  
tRAS  
12.85  
34  
13.92 7  
34  
15.00  
34  
ns  
ns  
ACTIVATE-to-PRECHARGE command  
period  
9 × tREFI  
9 × tREFI  
9 × tREFI  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
tRC8  
tRAS +  
tRP  
tRAS +  
tRP  
tRAS +  
tRP  
ns  
READ:  
nonDBI READ: DBI WRITE  
Symbol  
tCK6  
tCK6  
tCK6  
tCK6  
tCK6  
tCK6  
tCK6  
tCK6  
Min  
1.5  
Max  
1.9  
Min  
1.5  
Max  
1.9  
Min  
Max  
Unit  
ns  
CL = 9  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CWL = 9  
Reserved  
CL = 10  
CL = 10  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CWL = 9  
1.5  
1.9  
1.5  
1.9  
1.5  
1.9  
ns  
CWL = 11  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1.25 <1.5  
ns  
CWL = 9, 11  
CWL = 9, 11  
CWL = 10, 12  
CWL = 10, 12  
CWL = 10, 12  
1.25  
1.25  
<1.5  
<1.5  
ns  
1.25  
<1.5  
<1.25  
<1.25  
<1.25  
ns  
1.071  
1.071  
1.071  
Reserved  
Reserved  
Reserved  
ns  
1.071  
1.071  
<1.25  
<1.25  
ns  
1.071  
<1.25  
ns  
Supported CL settings  
9, 10, 12–14  
9, 10–14  
10, 12, 14  
12, 14, 16  
9–12  
nCK  
nCK  
nCK  
Supported CL settings with read DBI  
Supported CWL settings  
11,12,14-16  
9–12  
11–16  
9–12  
1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.  
Notes:  
2. When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value  
at least 1 clock greater than the lowest CWL setting supported in the applicable tCK  
range.  
3. The programmed value of CWL must be less than or equal to programmed value of CL.  
4. 12.85ns is the minimum value of tAA and tRP when operating at DDR4-1866 at tCK  
(AVG) MIN = 1.071ns and is only a reference that does not consider the down binning  
strategy that 12.5ns supports.  
5. 13.92ns is the minimum value of tAA and tRP when operating at DDR4-1866 at tCK  
(AVG) MIN = 1.071ns and is only a reference that does not consider the down binning  
strategy that 13.75ns supports.  
6. tCK (AVG) MIN.  
7. The DRAM supports 13.5ns with CL9 operation and 13.75ns with CL11 operation at de-  
fined clock rates.  
8. When calculating tRC and tRP in clocks, values may not be used in a combination that  
would violate tRAS.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
326  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Speed Bin Tables  
Table 151: DDR4-2133 Speed Bins and Operating Conditions  
DDR4-2133 Speed Bin  
CL-nRCD-nRP  
-093F  
-093E  
-093  
14-14-14  
15-15-15  
16-16-16  
Parameter  
Symbol  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Unit  
ns  
Internal READ command to first data  
Internal READ command to first data tAA_DBI  
with read DBI enabled  
13.13  
tAA  
14.065  
tAA  
15.00  
tAA  
ns  
(MIN) + (MAX) + (MIN) + (MAX) + (MIN) + (MAX) +  
2nCK  
2nCK  
2nCK  
2nCK  
2nCK  
2nCK  
ACTIVATE to internal READ or WRITE  
delay time  
tRCD  
13.13  
14.065  
15.00  
ns  
PRECHARGE command period  
tRP  
tRAS  
13.13  
33  
14.065  
33  
15.00  
33  
ns  
ns  
ACTIVATE-to-PRECHARGE command  
period  
9 × tREFI  
9 × tREFI  
9 × tREFI  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
tRC7  
tRAS +  
tRP  
tRAS +  
tRP  
tRAS +  
tRP  
ns  
READ:  
nonDBI READ: DBI WRITE  
Symbol  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
Min  
1.5  
Max  
1.9  
Min  
1.5  
Max  
1.9  
Min  
Max  
Unit  
CL = 9  
CL = 11  
CL = 12  
CL = 13  
CL = 14  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CL = 19  
CWL = 9  
Reserved  
ns  
CL = 10  
CL = 11  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CWL = 9  
1.5  
1.9  
1.5  
1.9  
1.5  
1.9  
CWL = 9 , 11  
CWL = 9, 11  
CWL = 10, 12  
CWL = 10, 12  
CWL = 11, 14  
CWL = 11, 14  
CWL = 11, 14  
Reserved  
1.25  
1.25  
1.071  
1.071  
<1.5  
<1.5  
<1.25  
<1.25  
Reserved  
ns  
ns  
1.25  
<1.5  
1.25  
<1.5  
Reserved  
Reserved  
ns  
1.071  
0.9376  
0.937  
0.937  
<1.25  
<1.071  
<1.071  
<1.071  
1.071  
<1.25  
ns  
Reserved  
Reserved  
Reserved  
0.937 <1.071  
ns  
0.937  
0.937  
<1.071  
<1.071  
ns  
ns  
Supported CL settings  
9, 10, 12, 14–16  
11, 12, 14, 16–19  
9, 10, 11, 12, 14  
9–16  
10, 12, 14, 16  
12, 14, 16, 19  
9, 10, 11, 12, 14  
nCK  
nCK  
nCK  
Supported CL settings with read DBI  
Supported CWL settings  
11–16,18,19  
9, 10, 11, 12, 14  
1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.  
Notes:  
2. When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value  
at least 1 clock greater than the lowest CWL setting supported in the applicable tCK  
range.  
3. The programmed value of CWL must be less than or equal to programmed value of CL.  
4. tCK (AVG) MIN.  
5. The DRAM supports 13.5ns with CL9 operation and 13.75ns with CL11 operation 13.92ns  
with CL13 operation at defined clock rates.  
6. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing pa-  
rameters that are derived off the clock will use 0.938ns as its reference. For example, if  
tCK (MIN) = 0.938ns and tRP = 14.06ns, then tRP would require 15nCKs (14.06ns/0.938ns),  
but if tCK (MIN) = 0.937ns and tRP = 14.06ns, then tRP would still require 15nCKs  
(14.06ns/0.938ns) and not 16nCKs (14.06ns/0.937ns).  
7. When calculating tRC and tRP in clocks, values may not be used in a combination that  
would violate tRAS.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
327  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Speed Bin Tables  
Table 152: DDR4-2400 Speed Bins and Operating Conditions  
DDR4-2400 Speed Bin  
CL-nRCD-nRP  
-083F  
-083E  
-083  
15-15-15  
16-16-16  
17-17-17  
Parameter  
Symbol  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Unit  
ns  
Internal READ command to first data  
Internal READ command to first data tAA_DBI  
with read DBI enabled  
12.5  
tAA  
13.32  
tAA  
14.16  
tAA  
ns  
(MIN) + (MAX) + (MIN) + (MAX) + (MIN) + (MAX) +  
3nCK  
3nCK  
3nCK  
3nCK  
3nCK  
3nCK  
ACTIVATE to internal READ or WRITE  
delay time  
tRCD  
12.5  
13.32  
14.16  
ns  
PRECHARGE command period  
tRP  
tRAS  
12.5  
32  
13.32  
32  
14.16  
32  
ns  
ns  
ACTIVATE-to-PRECHARGE command  
period  
9 × tREFI  
9 × tREFI  
9 × tREFI  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
tRC6  
tRAS +  
tRP  
tRAS +  
tRP  
tRAS +  
tRP  
ns  
READ:  
READ: DBI WRITE  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
nonDBI  
CL = 9  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL =17  
CL = 18  
CL = 19  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
CWL = 9  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
1.5  
1.5  
1.9  
1.9  
1.5  
1.5  
1.9  
1.9  
Reserved  
ns  
ns  
CL = 10  
CL = 10  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CWL = 9  
1.5  
1.9  
CWL = 9, 11  
CWL = 9, 11  
CWL = 9, 11  
CWL = 10, 12  
CWL = 10, 12  
CWL = 10, 12  
CWL = 11, 14  
CWL = 11, 14  
CWL = 11, 14  
CWL = 12, 16  
CWL = 12, 16  
CWL = 12, 16  
CWL = 12, 16  
Reserved  
Reserved  
1.25 <1.5  
Reserved  
Reserved  
ns  
1.25  
1.25  
<1.5  
<1.5  
1.25  
1.25  
<1.5  
<1.5  
ns  
ns  
Reserved  
Reserved  
Reserved  
Reserved  
ns  
1.071  
1.071  
<1.25  
<1.25  
1.071  
1.071  
<1.25  
<1.25  
ns  
1.071  
<1.25  
ns  
Reserved  
Reserved  
Reserved  
0.9375  
Reserved  
ns  
<1.071  
<1.071  
0.937  
0.937  
<1.071  
<1.071  
ns  
0.937  
<1.071  
<0.937  
<0.937  
<0.937  
<0.937  
0.937  
ns  
0.833  
0.833  
0.833  
0.833  
Reserved  
Reserved  
Reserved  
ns  
0.833  
0.833  
0.833  
<0.937  
<0.937  
<0.937  
ns  
0.833  
0.833  
10–18  
<0.937  
ns  
<0.937  
ns  
Supported CL settings  
9, 10, 12, 14–18  
11, 12, 14, 16, 18-21  
9-12, 14, 16  
9–18  
nCK  
nCK  
nCK  
Supported CL settings with read DBI  
Supported CWL settings  
11–16, 18–21  
9-12, 14, 16  
12–16, 18–21  
9-12, 14, 16  
1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.  
Notes:  
2. When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value  
at least 1 clock greater than the lowest CWL setting supported in the applicable tCK  
range.  
3. The programmed value of CWL must be less than or equal to programmed value of CL.  
4. tCK (AVG) MIN.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
328  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Speed Bin Tables  
5. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing pa-  
rameters that are derived off the clock will use 0.938ns as its reference. For example, if  
tCK (MIN) = 0.938ns and tRP = 14.06ns, then tRP would require 15nCKs (14.06ns/0.938ns),  
but if tCK (MIN) = 0.937ns and tRP = 14.06ns, then tRP would still require 15nCKs  
(14.06ns/0.938ns) and not 16nCKs (14.06ns/0.937ns).  
6. When calculating tRC and tRP in clocks, values may not be used in a combination that  
would violate tRAS.  
Table 153: DDR4-2666 Speed Bins and Operating Conditions  
DDR4-2666 Speed Bin  
CL-nRCD-nRP  
-075F  
-075E  
-075  
17-17-17  
18-18-18  
19-19-19  
Parameter  
Symbol  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Unit  
ns  
Internal READ command to first data  
Internal READ command to first data tAA_DBI  
with read DBI enabled  
12.75  
tAA  
13.5  
tAA  
14.255  
tAA  
ns  
(MIN) + (MAX) + (MIN) + (MAX) + (MIN) + (MAX) +  
3nCK  
3nCK  
3nCK  
3nCK  
3nCK  
3nCK  
ACTIVATE to internal READ or WRITE  
delay time  
tRCD  
12.75  
13.5  
14.255  
ns  
PRECHARGE command period  
tRP  
tRAS  
12.75  
32  
13.5  
32  
14.255  
32  
ns  
ns  
ACTIVATE-to-PRECHARGE command  
period  
9 × tREFI  
9 × tREFI  
9 × tREFI  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
tRC7  
tRAS +  
tRP  
tRAS +  
tRP  
tRAS +  
tRP  
ns  
READ:  
READ: DBI WRITE  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
nonDBI  
CL = 9  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL =17  
CL = 18  
CL = 19  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
CL = 20  
CL = 21  
CL = 22  
CWL = 9  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
1.5  
1.5  
1.9  
1.9  
1.5  
1.5  
1.9  
1.9  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 10  
CL = 10  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CL = 17  
CL = 18  
CL = 19  
CWL = 9  
1.5  
1.9  
CWL = 9, 11  
CWL = 9, 11  
CWL = 9, 11  
CWL = 10, 12  
CWL = 10, 12  
CWL = 10, 12  
CWL = 11, 14  
CWL = 11, 14  
CWL = 11, 14  
CWL = 12, 16  
CWL = 12, 16  
CWL = 12, 16  
CWL = 12, 16  
CWL = 14, 18  
CWL = 14, 18  
CWL = 14, 18  
Reserved  
Reserved  
Reserved  
1.25  
1.25  
<1.5  
<1.5  
1.25  
1.25  
<1.5  
<1.5  
1.25  
1.25  
<1.5  
<1.5  
Reserved  
Reserved  
Reserved  
1.071  
1.071  
<1.25  
<1.25  
1.071  
1.071  
<1.25  
<1.25  
1.071  
1.071  
<1.25  
<1.25  
Reserved  
0.9376  
Reserved  
Reserved  
<1.071  
<1.071  
0.937  
0.937  
<1.071  
<1.071  
0.937  
0.937  
<1.071  
<1.071  
0.937  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.833  
0.833  
0.833  
0.750  
0.750  
0.750  
<0.937  
<0.937  
<0.937  
<0.833  
<0.833  
<0.833  
0.833  
<0.937  
<0.937  
0.833  
0.833  
<0.937  
<0.937  
0.833  
Reserved  
Reserved  
Reserved  
0.750 <0.833  
0.750  
0.750  
<0.833  
<0.833  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
329  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Speed Bin Tables  
Table 153: DDR4-2666 Speed Bins and Operating Conditions (Continued)  
DDR4-2666 Speed Bin  
CL-nRCD-nRP  
-075F  
-075E  
-075  
17-17-17  
18-18-18  
19-19-19  
Parameter  
Symbol  
tCK4  
Min  
0.750  
Max  
Min  
0.750  
Max  
Min  
0.750  
Max  
Unit  
ns  
CL = 20  
CL = 23  
CWL = 14, 18  
<0.833  
<0.833  
<0.833  
Supported CL settings  
9–20  
9–20  
10-–20  
nCK  
nCK  
nCK  
Supported CL settings with read DBI  
Supported CWL settings  
11–16, 18–23  
11–16, 18–23  
12–16, 18–23  
9-12, 14, 16, 18  
9-12, 14, 16, 18  
9-12, 14, 16, 18  
1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.  
Notes:  
2. When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value  
at least 1 clock greater than the lowest CWL setting supported in the applicable tCK  
range.  
3. The programmed value of CWL must be less than or equal to programmed value of CL.  
4. tCK (AVG) MIN.  
5. The DRAM supports 13.92ns with CL13 operation, 14.07ns with CL15 operation, and  
14.16ns with CL17 operation at defined clock rates.  
6. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing pa-  
rameters that are derived off the clock will use 0.938ns as its reference. For example, if  
tCK (MIN) = 0.938ns and tRP = 14.06ns, then tRP would require 15nCKs (14.06ns/0.938ns),  
but if tCK (MIN) = 0.937ns and tRP = 14.06ns, then tRP would still require 15nCKs  
(14.06ns/0.938ns) and not 16nCKs (14.06ns/0.937ns).  
7. When calculating tRC and tRP in clocks, values may not be used in a combination that  
would violate tRAS.  
Table 154: DDR4-2933 Speed Bins and Operating Conditions  
DDR4-2933 Speed Bin  
CL-nRCD-nRP  
-068E  
-068  
-068D  
20-20-20  
21-21-21  
22-22-22  
Parameter  
Symbol  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Unit  
ns  
Internal READ command to first data  
Internal READ command to first data tAA_DBI  
with read DBI enabled  
13.645  
tAA  
14.32  
tAA  
15  
tAA  
ns  
(MIN) + (MAX) + (MIN) + (MAX) + (MIN) + (MAX) +  
4nCK  
4nCK  
4nCK  
4nCK  
4nCK  
4nCK  
ACTIVATE to internal READ or WRITE  
delay time  
tRCD  
13.64  
14.32  
15  
ns  
PRECHARGE command period  
tRP  
tRAS  
13.64  
32  
14.32  
32  
15  
32  
ns  
ns  
ACTIVATE-to-PRECHARGE command  
period  
9 × tREFI  
9 × tREFI  
9 × tREFI  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
tRC6  
tRAS +  
tRP  
tRAS +  
tRP  
tRAS +  
tRP  
ns  
READ:  
READ: DBI WRITE  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
nonDBI  
CL = 9  
CL = 11  
CL = 12  
CL = 12  
CWL = 9  
tCK4  
tCK4  
tCK4  
1.5  
1.5  
1.9  
1.9  
Reserved  
Reserved  
ns  
ns  
ns  
CL = 10  
CL = 10  
CWL = 9  
1.5  
1.9  
1.5  
1.9  
CWL = 9, 11  
Reserved  
Reserved  
Reserved  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
330  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Speed Bin Tables  
Table 154: DDR4-2933 Speed Bins and Operating Conditions (Continued)  
DDR4-2933 Speed Bin  
CL-nRCD-nRP  
-068E  
-068  
-068D  
20-20-20  
21-21-21  
22-22-22  
Parameter  
Symbol  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
Min  
Max  
<1.5  
<1.5  
Min  
Max  
<1.5  
<1.5  
Min  
Reserved  
1.25 <1.5  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CL = 17  
CL = 18  
CL = 19  
CL = 20  
CL = 19  
CL = 20  
CL = 21  
CL = 22  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL =17  
CL = 18  
CL = 19  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
CL = 20  
CL = 21  
CL = 22  
CL = 23  
CL = 23  
CL = 24  
CL = 26  
CL = 26  
CWL = 9, 11  
CWL = 9, 11  
CWL = 10, 12  
CWL = 10, 12  
CWL = 10, 12  
CWL = 11, 14  
CWL = 11, 14  
CWL = 11, 14  
CWL = 12, 16  
CWL = 12, 16  
CWL = 12, 16  
CWL = 12, 16  
CWL = 14, 18  
CWL = 14, 18  
CWL = 14, 18  
CWL = 14, 18  
CWL = 16, 20  
CWL = 16, 20  
CWL = 16, 20  
CWL = 16, 20  
1.25  
1.25  
1.25  
1.25  
Reserved  
Reserved  
Reserved  
Reserved  
1.071  
1.071  
<1.25  
<1.25  
1.071  
1.071  
<1.25  
<1.25  
1.071  
<1.25  
Reserved  
0.9376  
Reserved  
Reserved  
Reserved  
<1.071  
<1.071  
0.937  
0.937  
<1.071  
<1.071  
0.937  
0.937  
<1.071  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.833  
0.833  
<0.937  
<0.937  
0.833  
0.833  
<0.937  
<0.937  
0.833  
<0.937  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.750  
<0.833  
<0.833  
0.750  
0.750  
<0.833  
<0.833  
0.750  
0.750  
<0.833  
<0.833  
0.750  
Reserved  
Reserved  
Reserved  
Reserved  
0.682  
0.682  
0.682  
<0.750  
<0.750  
<0.750  
Reserved  
Reserved  
0.682  
0.682  
<0.750  
<0.750  
0.682  
<0.750  
Supported CL settings  
9-22  
10-22  
10, 12, 14, 16, 18,  
19, 20, 22  
Supported CL settings with read DBI  
Supported CWL settings  
11-16, 18-24, 26  
12-16,18-24, 26  
12, 14, 16, 19, 21,  
22, 23, 26  
nCK  
9-12, 14, 16, 18, 20  
9-12, 14, 16, 18, 20  
9-12, 14, 16, 18, 20 nCK  
1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.  
Notes:  
2. When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value  
at least 1 clock greater than the lowest CWL setting supported in the applicable tCK  
range.  
3. The programmed value of CWL must be less than or equal to programmed value of CL.  
4. tCK (AVG) MIN.  
5. The DRAM supports 13.5ns with CL9 operation.  
6. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing pa-  
rameters that are derived off the clock will use 0.938ns as its reference. For example, if  
tCK (MIN) = 0.938ns and tRP = 14.06ns, then tRP would require 15nCKs (14.06ns/0.938ns),  
but if tCK (MIN) = 0.937ns and tRP = 14.06ns, then tRP would still require 15nCKs  
(14.06ns/0.938ns) and not 16nCKs (14.06ns/0.937ns).  
7. When calculating tRC and tRP in clocks, values may not be used in a combination that  
would violate tRAS.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
331  
© 2016 Micron Technology, Inc. All rights reserved.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Speed Bin Tables  
Table 155: DDR4-3200 Speed Bins and Operating Conditions  
DDR4-3200 Speed Bin  
CL-nRCD-nRP  
-062F  
-062E  
-062  
20-20-20  
22-22-22  
24-24-24  
Parameter  
Symbol  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Min  
Max  
19.00  
tAA  
Unit  
ns  
Internal READ command to first data  
Internal READ command to first data tAA_DBI  
with read DBI enabled  
12.5  
tAA  
13.755  
tAA  
15  
tAA  
ns  
(MIN) + (MAX) + (MIN) + (MAX) + (MIN) + (MAX) +  
4nCK  
4nCK  
4nCK  
4nCK  
4nCK  
4nCK  
ACTIVATE to internal READ or WRITE  
delay time  
tRCD  
12.5  
13.755  
15  
ns  
PRECHARGE command period  
tRP  
tRAS  
12.5  
32  
13.755  
32  
15  
32  
ns  
ns  
ACTIVATE-to-PRECHARGE command  
period  
9 × tREFI  
9 × tREFI  
9 × tREFI  
ACTIVATE-to-ACTIVATE or REFRESH  
command period  
tRC6  
tRAS +  
tRP  
tRAS +  
tRP  
tRAS +  
tRP  
ns  
READ:  
READ: DBI WRITE  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
nonDBI  
CL = 9  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL =17  
CL = 18  
CL = 19  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
CL = 20  
CL = 21  
CL = 22  
CL = 23  
CL = 24  
CL = 26  
CL = 28  
CWL = 9  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
tCK4  
1.5  
1.5  
1.9  
1.9  
Reserved  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
CL = 10  
CL = 10  
CL = 11  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CL = 17  
CL = 18  
CL = 19  
CL = 20  
CL = 20  
CL = 22  
CL = 24  
CWL = 9  
1.5  
1.9  
1.5  
1.9  
CWL = 9, 11  
CWL = 9, 11  
CWL = 9, 11  
CWL = 10, 12  
CWL = 10, 12  
CWL = 10, 12  
CWL = 11, 14  
CWL = 11, 14  
CWL = 11, 14  
CWL = 12, 16  
CWL = 12, 16  
CWL = 12, 16  
CWL = 12, 16  
CWL = 14, 18  
CWL = 14, 18  
CWL = 14, 18  
CWL = 14, 18  
CWL = 16, 20  
CWL = 16, 20  
CWL = 16, 20  
Reserved  
Reserved  
Reserved  
Reserved  
1.25 <1.5  
1.25  
1.25  
<1.5  
<1.5  
1.25  
1.25  
<1.5  
<1.5  
Reserved  
Reserved  
Reserved  
Reserved  
1.071  
1.071  
<1.25  
<1.25  
1.071  
1.071  
<1.25  
<1.25  
1.071  
<1.25  
Reserved  
0.9376  
Reserved  
Reserved  
Reserved  
<1.071  
<1.071  
0.937  
0.937  
<1.071  
<1.071  
0.937  
0.937  
<1.071  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.833  
0.833  
0.833  
<0.937  
<0.937  
<0.937  
0.833  
0.833  
<0.937  
<0.937  
0.833  
<0.937  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.750  
0.750  
0.750  
0.625  
0.625  
0.625  
<0.833  
<0.833  
<0.833  
<0.750  
<0.750  
<0.750  
0.750  
<0.833  
<0.833  
0.750  
0.750  
<0.833  
Reserved  
Reserved  
Reserved  
0.625  
0.625  
<0.750  
<0.750  
0.625  
<0.750  
Supported CL settings  
9–20, 22, 24  
10–20, 22, 24  
10, 12, 14, 16, 18.  
20, 24  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
332  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Refresh Parameters By Device Density  
Table 155: DDR4-3200 Speed Bins and Operating Conditions (Continued)  
DDR4-3200 Speed Bin  
CL-nRCD-nRP  
-062F  
-062E  
-062  
20-20-20  
22-22-22  
24-24-24  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Supported CL settings with read DBI  
11–16, 18-24, 26, 28 12–16, 18–22, 26, 28 12, 14, 16, 19, 21,  
23, 28  
nCK  
Supported CWL settings  
9-12, 14, 16, 18, 20  
9-12, 14, 16, 18, 20  
9-12, 14, 16, 18, 20 nCK  
1. Speed Bin table is only valid with DLL enabled and gear-down mode disabled.  
Notes:  
2. When operating in 2tCK WRITE preamble mode, CWL must be programmed to a value  
at least 1 clock greater than the lowest CWL setting supported in the applicable tCK  
range.  
3. The programmed value of CWL must be less than or equal to programmed value of CL.  
4. tCK (AVG) MIN.  
5. The DRAM requires 13.5ns for CL9 operation; JEDEC doesn't require CL9 support for a  
CL22 device.  
6. If the clock period is less than 0.938ns and greater than or equal to 0.937ns, timing pa-  
rameters that are derived off the clock will use 0.938ns as its reference. For example, if  
tCK (MIN) = 0.938ns and tRP = 14.06ns, then tRP would require 15nCKs (14.06ns/0.938ns),  
but if tCK (MIN) = 0.937ns and tRP = 14.06ns, then tRP would still require 15nCKs  
(14.06ns/0.938ns) and not 16nCKs (14.06ns/0.937ns).  
7. When calculating tRC and tRP in clocks, values may not be used in such a combination  
that would violate tRAS.  
Refresh Parameters By Device Density  
Table 156: Refresh Parameters by Device Density  
Parameter  
Symbol  
2Gb  
4Gb  
8Gb  
16Gb  
Unit Notes  
REF command to ACT or REF  
command time  
tRFC (All bank groups)  
160  
260  
350  
550  
ns  
Average periodic refresh inter-  
val  
tREFI  
-40°C TC 85°C  
85°C < TC 95°C  
95°C < TC 105°C  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
3.9  
1.95  
μs  
μs  
μs  
μs  
1
1
1.95  
0.975  
1.95  
0.975  
1.95  
0.975  
0.975  
0.4875  
105°C < TC ≤  
125°C  
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine  
if the devices support these options or requirements.  
Note:  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
333  
© 2016 Micron Technology, Inc. All rights reserved.  
Electrical Characteristics and AC Timing Parameters – DDR4-1600 through DDR4-2400  
Table 157: Electrical Characteristics and AC Timing Parameters  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Notes  
Clock Timing  
Clock period average (DLL off mode)  
Clock period average  
tCK (DLL_OFF)  
tCK (AVG,  
DLL_ON)  
8
20  
8
20  
8
20  
8
20  
ns  
ns  
1.25  
1.9  
1.071  
1.9  
0.937  
1.9  
0.833  
1.9  
14  
High pulse width average  
Low pulse width average  
tCH (AVG)  
tCL (AVG)  
tJITper_tot  
tJITper_tot  
tJITper,lck  
tCK (ABS)  
0.48  
0.48  
–63  
–31  
–50  
0.52  
0.52  
63  
0.48  
0.48  
–54  
–27  
–43  
0.52  
0.52  
54  
0.48  
0.48  
–47  
–23  
–38  
0.52  
0.52  
47  
0.48  
0.48  
–42  
–21  
-33  
0.52  
0.52  
42  
CK  
CK  
ps  
ps  
ps  
ps  
Clock period jitter  
Total  
Deterministic  
DLL locking  
31  
27  
23  
21  
50  
43  
38  
33  
Clock absolute period  
MIN = tCK (AVG) MIN + tJITper_tot MIN; MAX = tCK (AVG) MAX +  
tJITper_tot MAX  
Clock absolute high pulse width  
(includes duty cycle jitter)  
tCH (ABS)  
tCL (ABS)  
0.45  
0.45  
0.45  
0.45  
tCK  
(AVG)  
tCK  
(AVG)  
Clock absolute low pulse width  
(includes duty cycle jitter)  
0.45  
0.45  
0.45  
0.45  
Cycle-to-cycle jitter  
Total  
tJITcc _tot  
tJITcc,lck  
-
125  
100  
92  
-
107  
86  
-
94  
75  
-
83  
67  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
DLL locking  
-
-
-
-
Cumulative error across 2 cycles  
tERR2per  
tERR3per  
tERR4per  
tERR5per  
tERR6per  
tERR7per  
tERR8per  
tERR9per  
tERR10per  
tERR11per  
tERR12per  
tERRnper  
–92  
–79  
79  
–69  
69  
–61  
–73  
–81  
–87  
–92  
–97  
–101  
–104  
–107  
–110  
–112  
61  
3 cycles  
4 cycles  
5 cycles  
6 cycles  
7 cycles  
8 cycles  
9 cycles  
10 cycles  
11 cycles  
12 cycles  
–109  
–121  
–131  
–139  
–145  
–151  
–156  
–160  
–164  
–168  
109  
121  
131  
139  
145  
151  
156  
160  
164  
168  
–94  
94  
–82  
82  
73  
–104  
–112  
–119  
–124  
–129  
–134  
–137  
–141  
–144  
104  
112  
119  
124  
129  
134  
137  
141  
144  
–91  
91  
81  
–98  
98  
87  
–104  
–109  
–113  
–117  
–120  
–123  
–126  
104  
109  
113  
117  
120  
123  
126  
92  
97  
101  
104  
107  
110  
112  
n = 13, 14 . . . 49,  
50 cycles  
tERRnper MIN = (1 + 0.68ln[n]) × tJITper_tot MIN  
tERRnper MAX = (1 + 0.68ln[n]) × tJITper_tot MAX  
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
Min Max  
DQ Input Timing  
DDR4-1866  
DDR4-2133  
Min Max  
DDR4-2400  
Parameter  
Symbol  
Min Max  
Min  
Max  
Unit  
Notes  
Data setup time to  
DQS_t, DQS_c  
Base (calibrated  
VREF  
tDS  
Refer to DQ Input Receiver Specification section  
(approximately 0.15tCK to 0.28tCK )  
)
Noncalibrated  
VREF  
tPDA_S  
tDH  
minimum of 0.5UI  
UI  
Data hold time from  
DQS_t, DQS_c  
Base (calibrated  
Refer to DQ Input Receiver Specification section  
(approximately 0.15tCK to 0.28tCK )  
VREF  
)
Noncalibrated  
VREF  
tPDA_H  
tDIPW  
minimum of 0.5UI  
UI  
UI  
DQ and DM minimum data pulse width  
for each input  
0.58  
0.58  
0.58  
0.58  
DQ Output Timing (DLL enabled)  
DQS_t, DQS_c to DQ skew, per group, per  
access  
tDQSQ  
0.16  
0.16  
0.16  
0.17  
UI  
DQ output hold time from DQS_t, DQS_c  
Data Valid Window per device: tQH -  
tDQSQ each device’s output per UI  
tQH  
tDVWd  
0.76  
0.63  
0.76  
0.63  
0.76  
0.64  
0.74  
0.64  
UI  
UI  
Data Valid Window per device, per pin:  
tQH - tDQSQ each device’s output per UI  
tDVWp  
0.66  
-
0.66  
-
0.69  
-
0.72  
-
UI  
DQ Low-Z time from CK_t, CK_c  
DQ High-Z time from CK_t, CK_c  
tLZDQ  
tHZDQ  
–450  
225  
225  
–390  
195  
195  
–360  
180  
180  
–330  
175  
175  
ps  
ps  
DQ Strobe Input Timing  
DQS_t, DQS_c rising edge to CK_t, CK_c  
rising edge for 1tCK preamble  
tDQSS1ck  
tDQSS2ck  
tDQSL  
–0.27  
–0.50  
0.46  
0.27  
0.50  
0.54  
0.54  
–0.27  
–0.50  
0.46  
0.27  
0.50  
0.54  
0.54  
–0.27  
–0.50  
0.46  
0.27  
0.50  
0.54  
0.54  
–0.27  
–0.50  
0.46  
0.27  
0.50  
0.54  
0.54  
CK  
CK  
CK  
CK  
CK  
DQS_t, DQS_c rising edge to CK_t, CK_c  
rising edge for 2tCK preamble  
DQS_t, DQS_c differential input low pulse  
width  
DQS_t, DQS_c differential input high  
pulse width  
tDQSH  
tDSS  
0.46  
0.46  
0.46  
0.46  
DQS_t, DQS_c falling edge setup to CK_t,  
CK_c rising edge  
0.18  
0.18  
0.18  
0.18  
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Notes  
DQS_t, DQS_c falling edge hold from  
CK_t, CK_c rising edge  
tDSH  
0.18  
0.18  
0.18  
0.18  
CK  
DQS_t, DQS_c differential WRITE pream-  
ble for 1tCK preamble  
tWPRE1ck  
tWPRE2ck  
tWPST  
0.9  
1.8  
0.9  
1.8  
0.9  
1.8  
0.9  
1.8  
CK  
CK  
CK  
DQS_t, DQS_c differential WRITE pream-  
ble for 2tCK preamble  
DQS_t, DQS_c differential WRITE postam-  
ble  
0.33  
0.33  
0.33  
0.33  
DQS Strobe Output Timing (DLL enabled)  
DQS_t, DQS_c rising edge output access  
time from rising CK_t, CK_c  
tDQSCK  
tDQSCKi  
tQSH  
–225  
225  
370  
–195  
195  
330  
–180  
-
180  
310  
–175  
-
175  
290  
ps  
ps  
DQS_t, DQS_c rising edge output var-  
iance window per DRAM  
-
-
DQS_t, DQS_c differential output high  
time  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
CK  
CK  
DQS_t, DQS_c differential output low  
time  
tQSL  
DQS_t, DQS_c Low-Z time (RL - 1)  
tLZDQS  
tHZDQS  
tRPRE1ck  
–450  
225  
225  
–390  
195  
195  
–360  
180  
180  
–330  
175  
175  
ps  
ps  
DQS_t, DQS_c High-Z time (RL + BL/2)  
DQS_t, DQS_c differential READ pream-  
ble for 1tCK preamble  
0.9  
0.9  
0.9  
0.9  
CK  
DQS_t, DQS_c differential READ pream-  
ble for 2tCK preamble  
tRPRE2ck  
tRPST  
1.8  
1.8  
1.8  
1.8  
CK  
CK  
DQS_t, DQS_c differential READ postam-  
ble  
0.33  
0.33  
0.33  
0.33  
Command and Address Timing  
DLL locking time  
tDLLK  
tIS  
tISVREF  
597  
115  
215  
597  
100  
200  
768  
80  
768  
62  
CK  
ps  
ps  
2, 4  
CMD, ADDR setup time Base  
to CK_t, CK_c Base ref-  
erenced to VIH(AC) and  
VIL(AC) levels  
VREFCA  
180  
162  
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
Parameter  
Symbol  
tIH  
tIHVREF  
Min  
140  
215  
Max  
Min  
125  
200  
Max  
Min  
105  
180  
Max  
Min  
87  
Max  
Unit  
ps  
Notes  
CMD, ADDR hold time Base  
to CK_t, CK_c Base ref-  
erenced to VIH(DC) and  
VIL(DC) levels  
VREFCA  
162  
ps  
CTRL, ADDR pulse width for each input  
tIPW  
tRCD  
600  
525  
460  
410  
ps  
ns  
ACTIVATE to internal READ or WRITE de-  
lay  
See Speed Bin Tables for tRCD  
PRECHARGE command period  
tRP  
tRAS  
See Speed Bin Tables for tRP  
See Speed Bin Tables for tRAS  
ns  
ns  
ACTIVATE-to-PRECHARGE command peri-  
od  
13  
13  
1
ACTIVATE-to-ACTIVATE or REF command  
period  
tRC  
See Speed Bin Tables for tRC  
ns  
ACTIVATE-to-ACTIVATE command period  
to different bank groups for 1/2KB page  
size  
tRRD_S  
(1/2KB)  
MIN = greater  
of 4CK or 5ns  
MIN = greater  
MIN = greater  
MIN = greater  
CK  
of 4CK or 4.2ns of 4CK or 3.7ns of 4CK or 3.3ns  
ACTIVATE-to-ACTIVATE command period  
to different bank groups for 1KB page  
size  
tRRD_S  
(1KB)  
MIN = greater  
of 4CK or 5ns  
MIN = greater  
of 4CK or 4.2ns of 4CK or 3.7ns of 4CK or 3.3ns  
MIN = greater  
MIN = greater  
CK  
CK  
1
1
ACTIVATE-to-ACTIVATE command period  
to different bank groups for 2KB page  
size  
tRRD_S  
(2KB)  
MIN = greater  
of 4CK or 6ns  
MIN = greater  
of 4CK or 5.3ns of 4CK or 5.3ns of 4CK or 5.3ns  
MIN = greater  
MIN = greater  
ACTIVATE-to-ACTIVATE command period  
to same bank groups for 1/2KB page size  
tRRD_L  
(1/2KB)  
tRRD_L  
(1KB)  
tRRD_L  
(2KB)  
tFAW  
(1/2KB)  
tFAW  
(1KB)  
tFAW  
(2KB)  
MIN = greater  
of 4CK or 6ns  
MIN = greater  
of 4CK or 5.3ns of 4CK or 5.3ns of 4CK or 4.9ns  
MIN = greater MIN = greater MIN = greater  
of 4CK or 5.3ns of 4CK or 5.3ns of 4CK or 4.9ns  
MIN = greater MIN = greater MIN = greater  
MIN = greater  
MIN = greater  
CK  
CK  
CK  
ns  
1
1
1
ACTIVATE-to-ACTIVATE command period  
to same bank groups for 1KB page size  
MIN = greater  
of 4CK or 6ns  
ACTIVATE-to-ACTIVATE command period  
to same bank groups for 2KB page size  
MIN = greater  
of 4CK or 7.5ns of 4CK or 6.4ns of 4CK or 6.4ns of 4CK or 6.4ns  
MIN = greater MIN = greater MIN = greater MIN = greater  
of 16CK or 20ns of 16CK or 17ns of 16CK or 15ns of 16CK or 13ns  
MIN = greater MIN = greater MIN = greater MIN = greater  
of 20CK or 25ns of 20CK or 23ns of 20CK or 21ns of 20CK or 21ns  
MIN = greater MIN = greater MIN = greater MIN = greater  
of 28CK or 35ns of 28CK or 30ns of 28CK or 30ns of 28CK or 30ns  
Four ACTIVATE windows for 1/2KB page  
size  
Four ACTIVATE windows for 1KB page  
size  
ns  
Four ACTIVATE windows for 2KB page  
size  
ns  
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
Min Max  
DDR4-1866  
Min Max  
DDR4-2133  
Min Max  
DDR4-2400  
Min Max  
Parameter  
Symbol  
tWR  
tWR2  
Unit  
ns  
Notes  
6, 10, 1  
6, 11, 1  
7, 10, 1  
WRITE recovery time  
MIN = 15ns  
MIN = 1CK + tWR  
MIN = tWR_L + greater of (5CK or 3.75ns)  
CK  
WRITE recovery time when CRC and DM  
are both enabled  
tWR_CRC_DM MIN = tWR_L +  
greater of (4CK  
CK  
or 3.75ns)  
tWR_CRC_DM2  
tWTR_L  
MIN = 1CK + tWR_CRC_DM  
MIN = greater of 4CK or 7.5ns  
MIN = 1CK + tWTR_L  
CK  
CK  
CK  
7, 11, 1  
6, 10, 1  
6, 11, 1  
Delay from start of internal WRITE trans-  
action to internal READ command – Same  
bank group  
tWTR_L2  
Delay from start of internal WRITE trans- tWTR_L_CRC_D MIN = tWTR_L +  
MIN = tWTR_L + greater of (5CK or 3.75ns)  
CK  
7, 10, 1  
action to internal READ command – Same  
bank group when CRC and DM are both  
enabled  
M
greater of (4CK  
or 3.75ns)  
tWTR_L_CRC_D  
M2  
MIN = 1CK + tWTR_L_CRC_DM  
MIN = greater of (2CK or 2.5ns)  
MIN = 1CK + tWTR_S  
CK  
CK  
CK  
CK  
7, 11, 1  
Delay from start of internal WRITE trans-  
action to internal READ command – Dif-  
ferent bank group  
tWTR_S  
6, 8, 9,  
10, 1  
tWTR_S2  
6, 8, 9,  
11, 1  
Delay from start of internal WRITE trans- tWTR_S_CRC_D MIN = tWTR_S +  
MIN = tWTR_S + greater of (5CK or 3.75ns)  
7, 8, 9,  
10, 1  
action to internal READ command – Dif-  
ferent bank group when CRC and DM are  
both enabled  
M
greater of (4CK  
or 3.75ns)  
tWTR_S_CRC_D  
M2  
MIN = 1CK + tWTR_S_CRC_DM  
MIN = greater of 4CK or 7.5ns  
CK  
7, 8, 9,  
11, 1  
READ-to-PRECHARGE time  
tRTP  
tCCD_S  
CK  
CK  
1
CAS_n-to-CAS_n command delay to dif-  
ferent bank group  
4
4
4
4
CAS_n-to-CAS_n command delay to same  
bank group  
tCCD_L  
MIN =  
greater  
of 4CK  
or  
MIN =  
greater  
of 4CK  
or  
MIN =  
greater  
of 4CK  
or  
MIN =  
greater  
of 4CK  
or 5ns  
CK  
15  
6.25ns  
5.355ns  
5.355ns  
Auto precharge write recovery + pre-  
charge time  
tDAL (MIN)  
MIN = WR + ROUNDUPtRP/tCK (AVG); MAX = N/A  
CK  
MRS Command Timing  
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
Parameter  
Symbol  
tMRD  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
CK  
Notes  
MRS command cycle time  
8
8
8
8
MRS command cycle time in PDA mode  
MRS command cycle time in CAL mode  
tMRD_PDA  
tMRD_CAL  
tMOD  
MIN = greater of (16nCK, 10ns)  
MIN = tMOD + tCAL  
CK  
1
1
CK  
MRS command update delay in PDA  
mode  
MIN = greater of (24nCK, 15ns)  
CK  
MRS command update delay  
tMOD_PDA  
tMOD_CAL  
MIN = tMOD  
MIN = tMOD + tCAL  
CK  
CK  
MRS command update delay in CAL  
mode  
MRS command to DQS drive in preamble  
training  
tSDO  
MIN = tMOD + 9ns  
MPR Command Timing  
Multipurpose register recovery time  
tMPR  
tWR_MPR  
MIN = 1CK  
MIN = tMOD + AL + PL  
CRC Error Reporting Timing  
CK  
Multipurpose register write recovery time  
CRC error to ALERT_n latency  
CRC ALERT_n pulse width  
tCRC_ALERT  
tCRC_ALERT_P  
W
3
6
13  
10  
3
6
13  
10  
3
6
13  
10  
3
6
13  
10  
ns  
CK  
CA Parity Timing  
Parity latency  
PL  
4
-
4
-
4
-
5
-
CK  
CK  
Commands uncertain to be executed dur-  
ing this time  
tPAR_UN-  
KNOWN  
PL  
PL  
PL  
PL  
Delay from errant command to ALERT_n tPAR_ALERT_O  
48  
PL +  
6ns  
56  
P L +  
6ns  
64  
PL +  
6ns  
72  
PL +  
6ns  
CK  
CK  
CK  
assertion  
N
Pulse width of ALERT_n signal when as-  
serted  
tPAR_ALERT_P  
W
96  
112  
128  
144  
Time from alert asserted until DES com-  
mands required in persistent CA parity  
mode  
tPAR_ALERT_RS  
P
43  
50  
57  
64  
CAL Timing  
CS_n to command address latency  
tCAL  
tCALg  
3
4
4
5
CK  
CK  
CS_n to command address latency in  
gear-down mode  
N/A  
N/A  
N/A  
N/A  
MPSM Timing  
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
DDR4-1866  
Min Max  
DDR4-2133  
Min Max  
DDR4-2400  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Notes  
Command path disable delay upopn  
MPSM entry  
tMPED  
MIN = tMOD (MIN) + tCPDED (MIN)  
MIN = tMOD (MIN) + tCPDED (MIN)  
MIN = tCK - tCKSRX (MIN)  
tXS (MIN)  
CK  
1
Valid clock requirement after MPSM  
entry  
tCKMPE  
tCKMPX  
tXMP  
CK  
CK  
CK  
CK  
1
1
Valid clock requirement before MPSM  
exit  
Exit MPSM to commands not requiring a  
locked DLL  
Exit MPSM to commands requiring a  
locked DLL  
tXMPDLL  
MIN = tXMP (MIN) + tXSDLL (MIN)  
1
CS setup time to CKE  
tMPX_S  
tMPX_HH  
tMPX_LH  
MIN = tIS (MIN) + tIH (MIN)  
MIN = tXP  
ns  
ns  
ns  
CS_n HIGH hold time to CKE rising edge  
CS_n LOW hold time to CKE rising edge  
12  
tXMP-1  
0ns  
12  
tXMP-1  
0ns  
12  
tXMP-1  
0ns  
12  
tXMP-1  
0ns  
Connectivity Test Timing  
TEN pin HIGH to CS_n LOW – Enter CT  
mode  
tCT_Enable  
200  
200  
200  
200  
ns  
CS_n LOW and valid input to valid output  
tCT_Valid  
tCTCKE_Valid  
200  
200  
200  
200  
ns  
ns  
CK_t, CK_c valid and CKE HIGH after TEN  
goes HIGH  
10  
10  
10  
10  
Calibration and VREFDQ Train Timing  
ZQCL command: Long POWER-UP and  
tZQinit  
1024  
1024  
1024  
512  
1024  
512  
CK  
CK  
CK  
calibration time  
RESET operation  
Normal opera-  
tion  
tZQoper  
512  
512  
ZQCS command: Short calibration time  
The VREF increment/decrement step time  
tZQCS  
128  
128  
128  
128  
VREF_time  
tVREFDQE  
MIN = 150ns  
MIN = 150ns  
Enter VREFDQ training mode to the first  
write or VREFDQ MRS command delay  
ns  
ns  
1
1
Exit VREFDQ training mode to the first  
WRITE command delay  
tVREFDQX  
MIN = 150ns  
Initialization and Reset Timing  
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
DDR4-1866  
Min Max  
MIN = greater of 5CK or tRFC (MIN) + 10ns  
DDR4-2133  
DDR4-2400  
Parameter  
Symbol  
Min  
Max  
Min Max  
Min  
Max  
Unit  
Notes  
Exit reset from CKE HIGH to a valid com-  
mand  
tXPR  
CK  
1
RESET_L pulse low after power stable  
RESET_L pulse low at power-up  
tPW_REST_S  
tPW_REST_L  
tVDDPR  
0.1  
0.1  
0.1  
0.1  
μs  
μs  
200  
200  
200  
200  
Begin power supply ramp to power sup-  
plies stable  
MIN = N/A; MAX = 200  
ms  
RESET_n LOW to power supplies stable  
RESET_n LOW to I/O and RTT High-Z  
tRPS  
tIOZ  
MIN = 0; MAX = 0  
ns  
ns  
MIN = N/A; MAX = undefined  
Refresh Timing  
REFRESH-to-ACTIVATE  
tRFC1  
tRFC2  
tRFC4  
tRFC1  
tRFC2  
tRFC4  
tRFC1  
tRFC2  
tRFC4  
tREFI  
MIN = 260  
MIN = 160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
12  
or REFRESH command  
period (all bank  
groups)  
4Gb  
8Gb  
MIN = 110  
MIN = 350  
MIN = 260  
MIN = 160  
MIN = 550  
16Gb  
MIN = 350  
MIN = 260  
Average periodic re-  
fresh interval  
-40°C TC 85°C  
85°C < TC 95°C  
MIN = N/A; MAX = 7.8  
MIN = N/A; MAX = 3.9  
MIN = N/A; MAX = 1.95  
tREFI  
tREFI  
12  
95°C < TC ≤  
12  
105°C  
105°C < TC ≤  
125°C  
tREFI  
MIN = N/A; MAX = 0.975  
μs  
12  
1
Self Refresh Timing  
Exit self refresh to commands not requir-  
ing a locked DLL SRX to commands not  
requiring a locked DLL in self refresh  
abort  
tXS  
tXS_ABORT  
MIN = tRFC + 10ns  
MIN = tRFC4 + 10ns  
ns  
ns  
1
1
Exit self refresh to ZQCL, ZQCS and MRS  
(CL, CWL, WR, RTP and gear-down)  
tXS_FAST  
tXSDLL  
MIN = tRFC4 + 10ns  
MIN = tDLLK (MIN)  
ns  
Exit self refresh to commands requiring a  
locked DLL  
CK  
1
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
Min Max  
DDR4-1866  
Min Max  
DDR4-2133  
Min Max  
DDR4-2400  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Minimum CKE low pulse width for self re-  
fresh entry to self refresh exit timing  
tCKESR  
MIN = tCKE (MIN) + 1nCK  
CK  
1
Minimum CKE low pulse width for self re- tCKESR_PAR  
fresh entry to self refresh exit timing  
when CA parity is enabled  
MIN = tCKE (MIN) + 1nCK + PL  
CK  
1
Valid clocks after self refresh entry (SRE)  
or power-down entry (PDE)  
tCKSRE  
MIN = greater of (5CK, 10ns)  
CK  
CK  
1
1
Valid clock requirement after self refresh  
entry or power-down when CA parity is  
enabled  
tCKSRE_PAR  
MIN = greater of (5CK, 10ns) + PL  
Valid clocks before self refresh exit (SRX)  
or power-down exit (PDX), or reset exit  
tCKSRX  
MIN = greater of (5CK, 10ns)  
CK  
1
Power-Down Timing  
MIN = greater of 4CK or 6ns  
Exit power-down with DLL on to any val-  
id command  
tXP  
CK  
CK  
1
1
1
Exit power-down with DLL on to any val-  
id command when CA Parity is enabled.  
tXP _PAR  
MIN = (greater of 4CK or 6ns) + PL  
CKE MIN pulse width  
tCKE (MIN)  
tCPDED  
tPD  
MIN = greater of 3CK or 5ns  
CK  
CK  
CK  
Command pass disable delay  
4
4
4
4
Power-down entry to power-down exit  
timing  
MIN = tCKE (MIN); MAX = 9 × tREFI  
Begin power-down period prior to CKE  
registered HIGH  
tANPD  
PDE  
WL - 1CK  
CK  
CK  
CK  
Power-down entry period: ODT either  
synchronous or asynchronous  
Greater of tANPD or tRFC - REFRESH command to CKE LOW time  
tANPD + tXSDLL  
Power-down exit period: ODT either syn-  
chronous or asynchronous  
PDX  
Power-Down Entry Minimum Timing  
ACTIVATE command to power-down en-  
try  
tACTPDEN  
1
1
1
1
1
1
2
2
2
2
2
2
CK  
CK  
PRECHARGE/PRECHARGE ALL command  
to power-down entry  
tPRPDEN  
REFRESH command to power-down entry  
MRS command to power-down entry  
tREFPDEN  
tMRSPDEN  
CK  
CK  
MIN = tMOD (MIN)  
1
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
DDR4-1866  
Min Max  
MIN = RL + 4 + 1  
DDR4-2133  
DDR4-2400  
Parameter  
Symbol  
Min  
Max  
Min Max  
Min  
Max  
Unit  
Notes  
READ/READ with auto precharge com-  
mand to power-down entry  
tRDPDEN  
CK  
1
WRITE command to power-down entry  
(BL8OTF, BL8MRS, BC4OTF)  
tWRPDEN  
tWRPBC4DEN  
tWRAPDEN  
MIN = WL + 4 + tWR/tCK(AVG)  
MIN = WL + 2 + tWR/tCK(AVG)  
MIN = WL + 4 + WR + 1  
CK  
CK  
CK  
1
1
1
WRITE command to power-down entry  
(BC4MRS)  
WRITE with auto precharge command to  
power-down entry (BL8OTF,  
BL8MRS,BC4OTF)  
WRITE with auto precharge command to tWRAPBC4DEN  
power-down entry (BC4MRS)  
MIN = WL + 2 + WR + 1  
CK  
1
ODT Timing  
Direct ODT turn-on latency  
Direct ODT turn-off latency  
DODTLon  
DODTLoff  
tADC  
WL - 2 = CWL + AL + PL - 2  
WL - 2 = CWL + AL + PL - 2  
CK  
CK  
CK  
ns  
RTT dynamic change skew  
0.3  
1
0.7  
9
0.3  
0.7  
9
0.3  
1
0.7  
9
0.3  
1
0.7  
9
Asynchronous RTT(NOM) turn-on delay  
(DLL off)  
tAONAS  
1
Asynchronous RTT(NOM) turn-off delay  
(DLL off)  
tAOFAS  
1
9
1
9
1
9
1
9
ns  
ODT HIGH time with WRITE command  
and BL8  
ODTH8 1tCK  
ODTH8 2tCK  
ODTH4 1tCK  
ODTH4 2tCK  
6
7
4
5
6
7
4
5
6
7
4
5
6
7
4
5
CK  
ODT HIGH time without WRITE command  
or with WRITE command and BC4  
CK  
Write Leveling Timing  
First DQS_t, DQS_c rising edge after write  
leveling mode is programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
40  
40  
25  
40  
25  
CK  
CK  
DQS_t, DQS_c delay after write leveling  
mode is programmed  
25  
25  
Write leveling setup from rising CK_t,  
CK_c crossing to rising DQS_t, DQS_c  
crossing  
0.13  
0.13  
0.13  
0.13  
CK(AV  
G)  
Table 157: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Notes  
Write leveling hold from rising DQS_t,  
DQS_c crossing to rising CK_t, CK_c cross-  
ing  
tWLH  
0.13  
0.13  
0.13  
0.13  
CK(AV  
G)  
Write leveling output delay  
Write leveling output error  
tWLO  
tWLOE  
0
0
9.5  
2
0
0
9.5  
2
0
0
9.5  
2
0
0
9.5  
2
ns  
ns  
Gear-Down Timing (Not Supported Below DDR4-2666)  
Exit reset from CKE HIGH to a valid MRS  
gear-down  
tXPR_GEAR  
N/A  
N/A  
N/A  
N/A  
N/A  
CK  
CK  
CKE HIGH assert to gear-down enable  
time)  
tXS_GEAR  
N/A  
N/A  
N/A  
MRS command to sync pulse time  
Sync pulse to first valid command  
Gear-down setup time  
tSYNC_GEAR  
tCMD_GEAR  
tGEAR_setup  
tGEAR_hold  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
CK  
CK  
CK  
CK  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Gear-down hold time  
1. Maximum limit not applicable.  
Notes:  
2. tCCD_L and tDLLK should be programmed according to the value defined per operating frequency.  
3. Although unlimited row accesses to the same row is allowed within the refresh period, excessive row accesses to  
the same row over a long term can result in degraded operation.  
4. Data rate is greater than or equal to 1066 Mb/s.  
5. RFUcorr  
6. WRITE-to-READ when CRC and DM are both not enabled.  
7. WRITE-to-READ delay when CRC and DM are both enabled.  
8. The start of internal write transactions is defined as follows:  
• For BL8 (fixed by MRS and on-the-fly): rising clock edge four clock cycles after WL  
• For BC4 (on-the-fly): rising clock edge four clock cycles after WL  
• For BC4 (fixed by MRS): rising clock edge two clock cycles after WL  
9. For these parameters, the device supports tnPARAM [nCK] = RU{tPARAM [ns]/tCK(AVG) [ns]}, in clock cycles, assum-  
ing all input clock jitter specifications are satisfied.  
10. When operating in 1tCK WRITE preamble mode.  
11. When operating in 2tCK WRITE preamble mode.  
12. When CA parity mode is selected and the DLLoff mode is used, each REF command requires an additional "PL"  
added to tRFC refresh time.  
13. DRAM devices should be evenly addressed when being accessed. Disproportionate accesses to a particular row ad-  
dress may result in reduction of the product lifetime and/or reduction in data retention ability.  
14. Applicable from tCK (AVG) MIN to tCK (AVG) MAX as stated in the Speed Bin tables.  
15. JEDEC specifies a minimum of five clocks.  
16. The maximum read postamble is bound by tDQSCK (MIN) plus tQSH (MIN) on the left side and tHZ(DQS) MAX on  
the right side.  
17. The reference level of DQ output signal is specified with a midpoint as a widest part of output signal eye, which  
should be approximately 0.7 × VDDQ as a center level of the static single-ended output peak-to-peak swing with  
a driver impedance of 34 ohms and an effective test load of 50 ohms to VTT = VDDQ.  
18. JEDEC hasn't agreed upon the definition of the deterministic jitter; the user should focus on meeting the total  
limit.  
19. Spread spectrum is not included in the jitter specification values. However, the input clock can accommodate  
spread-spectrum at a sweep rate in the range of 20–60 kHz with an additional 1% of tCK (AVG) as a long-term  
jitter component; however, the spread spectrum may not use a clock rate below tCK (AVG) MIN.  
20. The actual tCAL minimum is the larger of 3 clocks or 3.748ns/tCK; the table lists the applicable clocks required at  
targeted speed bin.  
21. The maximum READ preamble is bounded by tLZ(DQS) MIN on the left side and tDQSCK (MAX) on the right side.  
See figure in the Clock to Data Strobe Relationship section. Boundary of DQS Low-Z occur one cycle earlier in 2tCK  
toggle mode, which is illustrated in the READ Preamble section.  
22. DQ falling signal middle-point of transferring from HIGH to LOW to first rising edge of DQS differential signal  
cross-point.  
Electrical Characteristics and AC Timing Parameters – DDR4-2666 through DDR4-3200  
Table 158: Electrical Characteristics and AC Timing Parameters  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Reserved  
Min Max  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Notes  
Clock Timing  
Clock period average (DLL off mode)  
Clock period average  
tCK (DLL_OFF)  
tCK (AVG,  
DLL_ON)  
8
20  
8
20  
8
20  
ns  
ns  
0.75  
1.9  
0.682  
1.9  
0.625  
1.9  
14  
High pulse width average  
Low pulse width average  
tCH (AVG)  
tCL (AVG)  
tJITper_tot  
tJITper_dj  
tJITper,lck  
tCK (ABS)  
0.48  
0.48  
–38  
–19  
–30  
0.52  
0.52  
38  
0.48  
0.48  
-34  
0.52  
0.52  
34  
0.48  
0.48  
–32  
–16  
–25  
0.52  
0.52  
32  
CK  
CK  
ps  
ps  
ps  
ps  
Clock period jitter  
Total  
Deterministic  
DLL locking  
19  
-17  
17  
16  
30  
-27  
27  
25  
Clock absolute period  
MIN = tCK (AVG) MIN + tJITper_tot MIN; MAX = tCK (AVG) MAX +  
tJITper_tot MAX  
Clock absolute high pulse width  
(includes duty cycle jitter)  
tCH (ABS)  
tCL (ABS)  
0.45  
0.45  
0.45  
tCK  
(AVG)  
tCK  
(AVG)  
Clock absolute low pulse width  
(includes duty cycle jitter)  
0.45  
0.45  
0.45  
Cycle-to-cycle jitter  
Total  
tJITcc _tot  
tJITcc,lck  
75  
60  
68  
55  
62  
50  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
DLL locking  
Cumulative error across 2 cycles  
tERR2per  
tERR3per  
tERR4per  
tERR5per  
tERR6per  
tERR7per  
tERR8per  
tERR9per  
tERR10per  
tERR11per  
tERR12per  
tERRnper  
–55  
–66  
–73  
–78  
–83  
–87  
–91  
–94  
–96  
–99  
–101  
55  
66  
73  
78  
83  
87  
91  
94  
96  
99  
101  
-50  
-60  
-66  
-71  
-75  
-79  
-83  
-85  
-88  
-90  
-92  
50  
60  
66  
71  
75  
79  
83  
85  
88  
90  
92  
–46  
–55  
–61  
–65  
–69  
–73  
–76  
–78  
–80  
–83  
–84  
46  
55  
61  
65  
69  
73  
76  
78  
80  
83  
84  
3 cycles  
4 cycles  
5 cycles  
6 cycles  
7 cycles  
8 cycles  
9 cycles  
10 cycles  
11 cycles  
12 cycles  
n = 13, 14 . . . 49,  
50 cycles  
tERRnper MIN = (1 + 0.68ln[n]) × tJITper_tot MIN  
tERRnper MAX = (1 + 0.68ln[n]) × tJITper_tot MAX  
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
Min Max  
DQ Input Timing  
DDR4-2933  
DDR4-3200  
Min Max  
Reserved  
Min Max  
Parameter  
Symbol  
Min Max  
Unit  
Notes  
Data setup time to  
DQS_t, DQS_c  
Base (calibrated  
VREF  
tDS  
Refer to DQ Input Receiver Specification section  
(approximately 0.15tCK to 0.28tCK )  
)
Non-calibrated  
VREF  
tPDA_S  
tDH  
minimum of 0.5ui  
UI  
Data hold time from  
DQS_t, DQS_c  
Base (calibrated  
Refer to DQ Input Receiver Specification section  
(approximately 0.15tCK to 0.28tCK )  
VREF  
)
Non-calibrated  
VREF  
tPDA_H  
tDIPW  
minimum of 0.5UI  
UI  
UI  
DQ and DM minimum data pulse width  
for each input  
0.58  
0.58  
0.58  
DQ Output Timing (DLL enabled)  
DQS_t, DQS_c to DQ skew, per group, per  
access  
tDQSQ  
0.18  
0.19  
0.22  
UI  
DQ output hold time from DQS_t, DQS_c  
Data Valid Window per device: tQH -  
tDQSQ each device’s output per IU  
tQH  
tDVWd  
0.74  
0.64  
0.74  
0.64  
0.74  
0.64  
UI  
UI  
Data Valid Window per device, per pin:  
tQH - tDQSQ each device’s output per IU  
tDVWp  
0.72  
0.72  
0.72  
UI  
DQ Low-Z time from CK_t, CK_c  
DQ High-Z time from CK_t, CK_c  
tLZDQ  
tHZDQ  
–310  
170  
170  
–280  
165  
165  
–250  
160  
160  
ps  
ps  
DQ Strobe Input Timing  
DQS_t, DQS_c rising edge to CK_t, CK_c  
rising edge for 1tCKpreamble  
tDQSS1ck  
tDQSS2ck  
tDQSL  
–0.27  
–0.50  
0.46  
0.27  
0.50  
0.54  
0.54  
–0.27  
–0.50  
0.46  
0.27  
0.50  
0.54  
0.54  
–0.27  
–0.50  
0.46  
0.27  
0.50  
0.54  
0.54  
CK  
CK  
CK  
CK  
CK  
DQS_t, DQS_c rising edge to CK_t, CK_c  
rising edge for 2tCKpreamble  
DQS_t, DQS_c differential input low pulse  
width  
DQS_t, DQS_c differential input high  
pulse width  
tDQSH  
tDSS  
0.46  
0.46  
0.46  
DQS_t, DQS_c falling edge setup to CK_t,  
CK_c rising edge  
0.18  
0.18  
0.18  
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Reserved  
Min Max  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Notes  
DQS_t, DQS_c falling edge hold from  
CK_t, CK_c rising edge  
tDSH  
0.18  
0.18  
0.18  
CK  
DQS_t, DQS_c differential WRITE pream-  
ble for 1tCKpreamble  
tWPRE1ck  
tWPRE2ck  
tWPST  
0.9  
1.8  
0.9  
1.8  
0.9  
1.8  
CK  
CK  
CK  
DQS_t, DQS_c differential WRITE pream-  
ble for 2tCKpreamble  
DQS_t, DQS_c differential WRITE postam-  
ble  
0.33  
0.33  
0.33  
DQS Strobe Output Timing (DLL enabled)  
DQS_t, DQS_c rising edge output access  
time from rising CK_t, CK_c  
tDQSCK  
tDQSCKi  
tQSH  
–170  
170  
270  
–165  
165  
265  
–160  
160  
260  
ps  
ps  
DQS_t, DQS_c rising edge output var-  
iance window per DRAM  
DQS_t, DQS_c differential output high  
time  
0.40  
0.40  
0.40  
0.40  
0.40  
0.40  
CK  
CK  
DQS_t, DQS_c differential output low  
time  
tQSL  
DQS_t, DQS_c Low-Z time (RL - 1)  
tLZDQS  
tHZDQS  
tRPRE1ck  
–310  
170  
170  
–280  
165  
165  
–250  
160  
160  
ps  
ps  
DQS_t, DQS_c High-Z time (RL + BL/2)  
DQS_t, DQS_c differential READ pream-  
ble for 1tCKpreamble  
0.9  
0.9  
0.9  
CK  
DQS_t, DQS_c differential READ pream-  
ble for 2tCKpreamble  
tRPRE2ck  
tRPST  
1.8  
1.8  
1.8  
CK  
CK  
DQS_t, DQS_c differential READ postam-  
ble  
0.33  
0.33  
0.33  
Command and Address Timing  
DLL locking time  
tDLLK  
tIS  
tISVREF  
854  
55  
940  
48  
1024  
40  
CK  
ps  
ps  
2, 3  
CMD, ADDR setup time Base  
to CK_t, CK_c refer-  
enced to VIH(AC) and  
VIL(AC) levels  
VREFCA  
145  
138  
130  
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Reserved  
Min Max  
Parameter  
Symbol  
tIH  
Min  
80  
Max  
Min  
73  
Max  
Min  
65  
Max  
Unit  
ps  
Notes  
CMD, ADDR hold time Base  
tIHVREF  
ps  
to CK_t, CK_c refer-  
enced to VIH(DC) and  
VIL(DC) levels  
VREFCA  
145  
138  
130  
CTRL, ADDR pulse width for each input  
tIPW  
tRCD  
385  
365  
350  
ps  
ns  
ACTIVATE to internal READ or WRITE de-  
lay  
See Speed Bin Tables for tRCD  
PRECHARGE command period  
tRP  
tRAS  
See Speed Bin Tables for tRP  
See Speed Bin Tables for tRAS  
ns  
ns  
ACTIVATE-to-PRECHARGE command peri-  
od  
13  
13  
1
ACTIVATE-to-ACTIVATE or REF command  
period  
tRC  
See Speed Bin Tables for tRC  
ns  
ACTIVATE-to-ACTIVATE command period  
to different bank groups for 1/2KB page  
size  
tRRD_S  
(1/2KB)  
MIN = greater  
MIN = greater  
MIN = greater  
CK  
of 4CK or 3.0ns of 4CK or 2.7ns of 4CK or 2.5ns  
ACTIVATE-to-ACTIVATE command period  
to different bank groups for 1KB page  
size  
tRRD_S  
(1KB)  
MIN = greater  
of 4CK or 3.0ns of 4CK or 2.7ns of 4CK or 2.5ns  
MIN = greater  
MIN = greater  
CK  
CK  
1
1
ACTIVATE-to-ACTIVATE command period  
to different bank groups for 2KB page  
size  
tRRD_S  
(2KB)  
MIN = greater  
of 4CK or 5.3ns of 4CK or 5.3ns of 4CK or 5.3ns  
MIN = greater  
MIN = greater  
ACTIVATE-to-ACTIVATE command period  
to same bank groups for 1/2KB page size  
tRRD_L  
(1/2KB)  
tRRD_L  
(1KB)  
tRRD_L  
(2KB)  
tFAW  
MIN = greater  
of 4CK or 4.9ns of 4CK or 4.9ns of 4CK or 4.9ns  
MIN = greater MIN = greater MIN = greater  
of 4CK or 4.9ns of 4CK or 4.9ns of 4CK or 4.9ns  
MIN = greater MIN = greater MIN = greater  
of 4CK or 6.4ns of 4CK or 6.4ns of 4CK or 6.4ns  
MIN = greater  
MIN = greater  
CK  
CK  
CK  
ns  
1
1
1
ACTIVATE-to-ACTIVATE command period  
to same bank groups for 1KB page size  
ACTIVATE-to-ACTIVATE command period  
to same bank groups for 2KB page size  
Four ACTIVATE windows for 1/2KB page  
size  
MIN = greater  
MIN = greater  
of 16CK or  
10.9ns  
MIN = greater  
(1/2KB)  
of 16CK or 12ns  
of 16CK or 10ns  
Four ACTIVATE windows for 1KB page  
size  
tFAW  
(1KB)  
tFAW  
(2KB)  
MIN = greater  
MIN = greater  
MIN = greater  
ns  
ns  
of 20CK or 21ns of 20CK or 21ns of 20CK or 21ns  
MIN = greater MIN = greater MIN = greater  
of 28CK or 30ns of 28CK or 30ns of 28CK or 30ns  
Four ACTIVATE windows for 2KB page  
size  
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
DDR4-2933  
Min Max  
DDR4-3200  
Min Max  
Reserved  
Min Max  
Parameter  
Symbol  
tWR  
tWR2  
Min  
Max  
Unit  
ns  
Notes  
5, 10, 1  
5, 11, 1  
6, 10, 1  
WRITE recovery time  
MIN = 15ns  
MIN = 1CK + tWR  
MIN = tWR + greater of (5CK or 3.75ns)  
CK  
WRITE recovery time when CRC and DM  
are both enabled  
tWR_CRC_DM  
CK  
WRITE recovery time when CRC and DM  
are both enabled  
tWR_CRC_DM2  
MIN = 1CK + tWR_CRC_DM  
CK  
6, 11, 1  
Delay from start of internal WRITE trans-  
action to internal READ command – Same  
bank group  
tWTR_L  
tWTR_L2  
MIN = greater of 4CK or 7.5ns  
MIN = 1CK + tWTR_L  
CK  
CK  
5, 10, 1  
5, 11, 1  
Delay from start of internal WRITE trans- tWTR_L_CRC_D  
MIN = tWTR_L + greater of (5CK or 3.75ns)  
MIN = 1CK + tWTR_L_CRC_DM  
MIN = greater of (2CK or 2.5ns)  
MIN = 1CK + tWTR_S  
CK  
CK  
CK  
CK  
CK  
CK  
6, 10, 1  
6, 11, 1  
action to internal READ command – Same  
bank group when CRC and DM are both  
enabled  
M
tWTR_L_CRC_D  
M2  
Delay from start of internal WRITE trans-  
action to internal READ command – Dif-  
ferent bank group  
tWTR_S  
5, 7, 8,  
10, 1  
tWTR_S2  
5, 7, 8,  
11, 1  
Delay from start of internal WRITE trans- tWTR_S_CRC_D  
MIN = tWTR_S + greater of (5CK or 3.75ns)  
MIN = 1CK + tWTR_S_CRC_DM  
MIN = greater of 4CK or 7.5ns  
6, 7, 8,  
10, 1  
action to internal READ command – Dif-  
ferent bank group when CRC and DM are  
both enabled  
M
tWTR_S_CRC_D  
M2  
6, 7, 8,  
11, 1  
READ-to-PRECHARGE time  
tRTP  
CK  
CK  
1
CAS_n-to-CAS_n command delay to dif-  
ferent bank group  
tCCD_S  
4
4
4
CAS_n-to-CAS_n command delay to same  
bank group  
tCCD_L  
MIN =  
greater  
of 4CK  
or 5ns  
MIN =  
greater  
of 4CK  
or 5ns  
MIN =  
greater  
of 4CK  
or 5ns  
CK  
15  
Auto precharge write recovery + pre-  
charge time  
tDAL (MIN)  
MIN = WR + ROUNDUPtRP/tCK (AVG); MAX = N/A  
CK  
MRS Command Timing  
10  
MRS command cycle time  
tMRD  
tMRD_PDA  
tMRD_CAL  
9
10  
CK  
CK  
MRS command cycle time in PDA mode  
MRS command cycle time in CAL mode  
MIN = greater of (16nCK, 10ns)  
MIN = tMOD + tCAL  
1
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
Min Max  
DDR4-2933  
Min Max  
DDR4-3200  
Min Max  
Reserved  
Min Max  
Parameter  
Symbol  
Unit  
Notes  
MRS command update delay in PDA  
mode  
tMOD  
MIN = greater of (24nCK, 15ns)  
CK  
1
MRS command update delay  
tMOD_PDA  
tMOD_CAL  
MIN = tMOD  
MIN = tMOD + tCAL  
CK  
CK  
MRS command update delay in CAL  
mode  
MRS commandto DQS drive in preamble  
training  
tSDO  
MIN = tMOD + 9ns  
MPR Command Timing  
Multipurpose register recovery time  
tMPR  
tWR_MPR  
MIN = 1nCK  
MIN = tMOD + AL + PL  
CRC Error Reporting Timing  
CK  
Multipurpose register write recovery time  
CRC error to ALERT_n latency  
CRC ALERT_n pulse width  
tCRC_ALERT  
tCRC_ALERT_P  
W
3
6
13  
10  
3
6
13  
10  
3
6
13  
10  
ns  
CK  
CA Parity Timing  
Parity latency  
PL  
5
6
6
CK  
CK  
Commands uncertain to be executed dur-  
ing this time  
tPAR_UN-  
KNOWN  
PL  
PL  
PL  
Delay from errant command to ALERT_n tPAR_ALERT_O  
80  
PL +  
6ns  
88  
PL +  
6ns  
96  
PL +  
6ns  
CK  
CK  
CK  
assertion  
N
Pulse width of ALERT_n signal when as-  
serted  
tPAR_ALERT_P  
W
160  
176  
192  
Time from alert asserted until DES com-  
mands required in persistent CA parity  
mode  
tPAR_ALERT_RS  
P
71  
78  
85  
CAL Timing  
CS_n to command address latency  
tCAL  
tCALg  
5
6
6
8
6
8
CK  
CK  
CS_n to command address latency in  
gear-down mode  
MPSM Timing  
MIN = tMOD (MIN) + tCPDED (MIN)  
Command path disable delay upopn  
MPSM entry  
tMPED  
CK  
1
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
DDR4-2933  
Min Max  
DDR4-3200  
Min Max  
Reserved  
Min Max  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Valid clock requirement after MPSM  
entry  
tCKMPE  
MIN = tMOD (MIN) + tCPDED (MIN)  
MIN = tCK - tCKSRX (MIN)  
tXS (MIN)  
CK  
1
Valid clock requirement before MPSM  
exit  
tCKMPX  
tXMP  
CK  
CK  
CK  
1
1
Exit MPSM to commands not requiring a  
locked DLL  
Exit MPSM to commands requiring a  
locked DLL  
tXMPDLL  
MIN = tXMP (MIN) + tXSDLL (MIN)  
CS setup time to CKE  
tMPX_S  
tMPX_HH  
tMPX_LH  
MIN = tIS (MIN) + tIH (MIN)  
MIN = tXP  
ns  
ns  
ns  
CS_n HIGH hold time to CKE rising edge  
CS_n LOW hold time to CKE rising edge  
12  
tXMP-1  
0ns  
12  
tXMP-1  
0ns  
12  
tXMP-1  
0ns  
Connectivity Test Timing  
TEN pin HIGH to CS_n LOW – Enter CT  
mode  
tCT_Enable  
200  
200  
200  
ns  
CS_n LOW and valid input to valid output  
tCT_Valid  
tCTCKE_Valid  
200  
200  
200  
ns  
ns  
CK_t, CK_c valid and CKE HIGH after TEN  
goes HIGH  
10  
10  
10  
Calibration and VREFDQ Train Timing  
ZQCL command: Long POWER-UP and  
tZQinit  
1024  
1024  
1024  
512  
CK  
CK  
CK  
calibration time  
RESET operation  
Normal opera-  
tion  
tZQoper  
512  
512  
ZQCS command: Short calibration time  
The VREF increment/decrement step time  
tZQCS  
128  
128  
128  
VREF_time  
tVREFDQE  
MIN = 150ns  
MIN = 150ns  
Enter VREFDQ training mode to the first  
write or VREFDQ MRS command delay  
ns  
ns  
1
1
Exit VREFDQ training mode to the first  
WRITE command delay  
tVREFDQX  
MIN = 150ns  
Initialization and Reset Timing  
Exit reset from CKE HIGH to a valid com-  
mand  
tXPR  
MIN = greater of 5CK or tRFC (MIN) + 10ns  
CK  
μs  
1
RESET_L pulse low after power stable  
tPW_REST_S  
0.1  
0.1 0.1  
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Reserved  
Min Max  
Parameter  
Symbol  
tPW_REST_L  
tVDDPR  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
μs  
Notes  
RESET_L pulse low at power-up  
200  
200  
200  
Begin power supply ramp to power sup-  
plies stable  
MIN = N/A; MAX = 200  
ms  
RESET_n LOW to power supplies stable  
RESET_n LOW to I/O and RTT High-Z  
tRPS  
tIOZ  
MIN = 0; MAX = 0  
ns  
ns  
MIN = N/A; MAX = undefined  
Refresh Timing  
REFRESH-to-ACTIVATE  
tRFC1  
tRFC2  
tRFC4  
tRFC1  
tRFC2  
tRFC4  
tRFC1  
tRFC2  
tRFC4  
tREFI  
MIN = 260  
MIN = 160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
1, 12  
12  
or REFRESH command  
period (all bank  
groups)  
4Gb  
8Gb  
MIN = 110  
MIN = 350  
MIN = 260  
MIN = 160  
MIN = 550  
16Gb  
MIN = 350  
MIN = 260  
Average periodic re-  
fresh interval  
-40°C TC 85°C  
85°C < TC 95°C  
MIN = N/A; MAX = 7.8  
MIN = N/A; MAX = 3.9  
MIN = N/A; MAX = 1.95  
tREFI  
tREFI  
12  
95°C < TC ≤  
12  
105°C  
105°C < TC ≤  
125°C  
tREFI  
MIN = N/A; MAX = 0.975  
μs  
12  
1
Self Refresh Timing  
Exit self refresh to commands not requir-  
ing a locked DLL SRX to commands not  
requiring a locked DLL in self refresh  
abort  
tXS  
tXS_ABORT  
MIN = tRFC + 10ns  
MIN = tRFC4 + 10ns  
ns  
ns  
1
1
Exit self refresh to ZQCL, ZQCS and MRS  
(CL, CWL, WR, RTP and gear-down)  
tXS_FAST  
tXSDLL  
MIN = tRFC4 + 10ns  
MIN = tDLLK (MIN)  
ns  
Exit self refresh to commands requiring a  
locked DLL  
CK  
1
1
Minimum CKE low pulse width for self re-  
fresh entry to self refresh exit timing  
tCKESR  
MIN = tCKE (MIN) + 1nCK  
CK  
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
Min Max  
DDR4-2933  
Min Max  
DDR4-3200  
Min Max  
Reserved  
Min Max  
Parameter  
Symbol  
Unit  
Notes  
Minimum CKE low pulse width for self re-  
fresh entry to self refresh exit timing  
when CA parity is enabled  
tCKESR_par  
MIN = tCKE (MIN) + 1nCK + PL  
CK  
1
Valid clocks after self refresh entry (SRE)  
or power-down entry (PDE)  
tCKSRE  
MIN = greater of (5CK, 10ns)  
CK  
CK  
1
1
Valid clock requirement after self refresh  
entry or power-down when CA parity is  
enabled  
tCKSRE_par  
MIN = greater of (5CK, 10ns) + PL  
Valid clocks before self refresh exit (SRX)  
or power-down exit (PDX), or reset exit  
tCKSRX  
MIN = greater of (5CK, 10ns)  
CK  
1
Power-Down Timing  
MIN = greater of 4CK or 6ns  
Exit power-down with DLL on to any val-  
id command  
tXP  
CK  
CK  
1
1
Exit precharge power-down with DLL fro-  
zen to commands not requiring a locked  
DLL when CA Parity is enabled.  
tXP _PAR  
MIN = (greater of 4CK or 6ns) + PL  
CKE MIN pulse width  
tCKE (MIN)  
tCPDED  
tPD  
MIN = greater of 3CK or 5ns  
CK  
CK  
CK  
1
Command pass disable delay  
4
4
4
Power-down entry to power-down exit  
timing  
MIN = tCKE (MIN); MAX = 9 × tREFI  
Begin power-down period prior to CKE  
registered HIGH  
tANPD  
PDE  
WL - 1CK  
CK  
CK  
CK  
Power-down entry period: ODT either  
synchronous or asynchronous  
Greater of tANPD or tRFC - REFRESH command to CKE LOW time  
tANPD + tXSDLL  
Power-down exit period: ODT either syn-  
chronous or asynchronous  
PDX  
Power-Down Entry Minimum Timing  
ACTIVATE command to power-down en-  
try  
tACTPDEN  
2
2
2
2
2
2
2
2
2
CK  
CK  
PRECHARGE/PRECHARGE ALL command  
to power-down entry  
tPRPDEN  
REFRESH command to power-down entry  
MRS command to power-down entry  
tREFPDEN  
tMRSPDEN  
CK  
CK  
MIN = tMOD (MIN)  
1
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
DDR4-2933  
Min Max  
MIN = RL + 4 + 1  
DDR4-3200  
Reserved  
Min Max  
Parameter  
Symbol  
Min  
Max  
Min Max  
Unit  
Notes  
READ/READ with auto precharge com-  
mand to power-down entry  
tRDPDEN  
CK  
1
WRITE command to power-down entry  
(BL8OTF, BL8MRS, BC4OTF)  
tWRPDEN  
tWRPBC4DEN  
tWRAPDEN  
MIN = WL + 4 + tWR/tCK(AVG)  
MIN = WL + 2 + tWR/tCK(AVG)  
MIN = WL + 4 + WR + 1  
CK  
CK  
CK  
1
1
1
WRITE command to power-down entry  
(BC4MRS)  
WRITE with auto precharge command to  
power-down entry (BL8OTF,  
BL8MRS,BC4OTF)  
WRITE with auto precharge command to tWRAPBC4DEN  
power-down entry (BC4MRS)  
MIN = WL + 2 + WR + 1  
CK  
1
ODT Timing  
Direct ODT turn-on latency  
Direct ODT turn-off latency  
DODTLon  
DODTLoff  
tADC  
WL - 2 = CWL + AL + PL - 2  
WL - 2 = CWL + AL + PL - 2  
CK  
CK  
CK  
ns  
RTT dynamic change skew  
0.3  
1
0.7  
9
0.3  
0.7  
9
0.3  
1
0.7  
9
Asynchronous RTT(NOM) turn-on delay  
(DLL off)  
tAONAS  
1
Asynchronous RTT(NOM) turn-off delay  
(DLL off)  
tAOFAS  
1
9
1
9
1
9
ns  
ODT HIGH time with WRITE command  
and BL8  
ODTH8 1tCK  
ODTH8 2tCK  
ODTH4 1tCK  
ODTH4 2tCK  
6
7
4
5
6
7
4
5
6
7
4
5
CK  
ODT HIGH time without WRITE command  
or with WRITE command and BC4  
CK  
Write Leveling Timing  
First DQS_t, DQS_c rising edge after write  
leveling mode is programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
40  
40  
25  
CK  
CK  
CK  
DQS_t, DQS_c delay after write leveling  
mode is programmed  
25  
25  
Write leveling setup from rising CK_t,  
CK_c crossing to rising DQS_t, DQS_c  
crossing  
0.13  
0.13  
0.13  
Table 158: Electrical Characteristics and AC Timing Parameters (Continued)  
DDR4-2666  
DDR4-2933  
DDR4-3200  
Reserved  
Min Max  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Notes  
Write leveling hold from rising DQS_t,  
DQS_c crossing to rising CK_t, CK_c cross-  
ing  
tWLH  
0.13  
0.13  
0.13  
CK  
Write leveling output delay  
Write leveling output error  
tWLO  
tWLOE  
0
0
9.5  
2
0
0
9.5  
2
0
0
9.5  
2
ns  
ns  
Gear-Down Timing  
Exit reset from CKE HIGH to a valid MRS  
gear-down  
tXPR_GEAR  
tXS_GEAR  
tXPR  
tXPR  
tXPR  
tXS  
CK  
CK  
CKE HIGH assert to gear-down enable  
time)  
tXS  
tXS  
MRS command to sync pulse time  
Sync pulse to first valid command  
Gear-down setup time  
tSYNC_GEAR  
tCMD_GEAR  
tGEAR_setup  
tGEAR_hold  
tMOD + 4CK  
tMOD  
tMOD + 4CK  
tMOD  
tMOD + 4CK  
tMOD  
CK  
CK  
CK  
CK  
2CK  
2CK  
2CK  
2CK  
2CK  
2CK  
Gear-down hold time  
1. Maximum limit not applicable.  
Notes:  
2. tCCD_L and tDLLK should be programmed according to the value defined per operating frequency.  
3. Data rate is greater than or equal to 1066 Mb/s.  
4. RFU  
5. WRITE-to-READ when CRC and DM are both not enabled.  
6. WRITE-to-READ delay when CRC and DM are both enabled.  
7. The start of internal write transactions is defined as follows:  
• For BL8 (fixed by MRS and on-the-fly): rising clock edge four clock cycles after WL  
• For BC4 (on-the-fly): rising clock edge four clock cycles after WL  
• For BC4 (fixed by MRS): rising clock edge two clock cycles after WL  
8. For these parameters, the device supports tnPARAM [nCK] = RU{tPARAM [ns]/tCK(AVG) [ns]}, in clock cycles, assum-  
ing all input clock jitter specifications are satisfied.  
9. Although unlimited row accesses to the same row is allowed within the refresh period, excessive row accesses to  
the same row over a long term can result in degraded operation.  
10. When operating in 1tCK WRITE preamble mode.  
11. When operating in 2tCK WRITE preamble mode.  
12. When CA parity mode is selected and the DLLoff mode is used, each REF command requires an additional "PL"  
added to tRFC refresh time.  
13. DRAM devices should be evenly addressed when being accessed. Disproportionate accesses to a particular row ad-  
dress may result in reduction of the product lifetime and/or reduction in data retention ability.  
14. Applicable from tCK (AVG) MIN to tCK (AVG) MAX as stated in the Speed Bin tables.  
15. JEDEC specifies a minimum of five clocks.  
16. The maximum read postamble is bound by tDQSCK(MIN) plus tQSH(MIN) on the left side and tHZ(DQS)MAX on the  
right side.  
17. The reference level of DQ output signal is specified with a midpoint as a widest part of output signal eye, which  
should be approximately 0.7 × VDDQ as a center level of the static single-ended output peak-to-peak swing with a  
driver impedance of 34 ohms and an effective test load of 50 ohms to VTT = VDDQ  
.
18. JEDEC hasn't agreed upon the definition of the deterministic jitter; the user should focus on meeting the total  
limit.  
19. Spread spectrum is not included in the jitter specification values. However, the input clock can accommodate  
spread-spectrum at a sweep rate in the range of 20–60 kHz with an additional 1% of tCK (AVG) as a long-term  
jitter component; however, clock rate below tCK (AVG) MIN.  
20. The actual tCAL minimum is the larger of 3 clocks or 3.748ns/tCK; the table lists the applicable clocks required at  
targeted speed bin.  
21. The maximum READ preamble is bounded by tLZ(DQS) MIN on the left side and tDQSCK (MAX) on the right side.  
See figure in Clock to Data Strobe Relationship. Boundary of DQS Low-Z occur one cycle earlier in 2tCK toggle  
mode which is illustrated in READ Preamble.  
22. DQ falling signal middle-point of transferring from High to Low to first rising edge of DQS differential signal  
cross-point.  
8Gb: x8, x16 Automotive DDR4 SDRAM  
Revision History  
Revision History  
Rev. C – 3/17  
• Added Functional Block Diagra0 for 512 Meg x 8 and for 25± Meg x 1±  
• Updated Power-Up and Initialization Sequence in RESET and Initialization Procedure  
section  
• Updated WR (WRITE recovery)/RTP (READ-to-PRECHARGE) in MR6 Register Defini-  
tion table: Added 1661 = 28/14 clocks; Changed to 1616 through 1111 = Reserved  
• Updated note 2 for MR6 Register Definition table  
• Updated Input Clock Frequency Change section  
• Updated TCR Mode – Nor0al Te0perature Range section and TCR Mode – Extended  
Te0perature Range section in Te0perature-Controlled Refresh Mode  
• Updated Current Specification _ Li0its tables  
• Added Connectivity Test Mode Output Driver Electrical Characteristics section  
• Added note 18 to note 22 to Electrical Characteristics and AC Ti0ing Para0eters table  
in Electrical Characteristics and AC Ti0ing Para0eters  
Rev. B – 9/16  
Rev. A – 6/16  
• Updated legal status to Production  
• Initial release  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000  
www.micron.com/products/support Sales inquiries: 800-932-4992  
Micron and the Micron logo are trademarks of Micron Technology, Inc.  
All other trademarks are the property of their respective owners.  
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.  
Although considered final, these specifications are subject to change, as further product development and data characterization some-  
times occur.  
CCMTD-1406124318-10419  
8gb_auto_ddr4_dram.pdf - Rev. C 3/17 EN  
Micron Technology, Inc. reserves the right to change products or specifications without notice.  
© 2016 Micron Technology, Inc. All rights reserved.  
358  

相关型号:

MT40A1G8WE-083EAAT

Automotive DDR4 SDRAM
MICRON

MT40A256M16GE-062E

4Gb: x4, x8, x16 DDR4 SDRAM
MICRON

MT40A256M16GE-075E

Temperature controlled refresh (TCR)
MICRON

MT40A256M16GE-075EAIT

Automotive DDR4 SDRAM
MICRON

MT40A256M16GE-075EAUT

Automotive DDR4 SDRAM
MICRON

MT40A2G4

Programmable data strobe preambles
MICRON

MT40A2G4PM-083E

Programmable data strobe preambles
MICRON

MT40A2G8NRE-083E

TwinDie 1.2V DDR4 SDRAM
MICRON

MT40A4G4FSE-083E

TwinDie 1.2V DDR4 SDRAM
MICRON

MT40A4G4NRE-075E

TwinDie 1.2V DDR4 SDRAM
MICRON

MT40A4G4NRE-083E

TwinDie 1.2V DDR4 SDRAM
MICRON

MT40A512M16

Programmable data strobe preambles
MICRON